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Abstract of the Thesis

Measuring Formative Learning Behaviors of

Introductory Statistical Programming in R via

Content Clustering

by

Shane William Strouth Roberts

Master of Science in Statistics

University of California, Los Angeles, 2015

Professor Robert Gould, Chair

Understanding student learning is an open problem in the teaching of introductory sta-

tistical programming. Formative learning is observed when analyzing the interaction

between the learning environment and the student. This can be operationalized by view-

ing how students respond to the error messages they receive while programming. Current

California Common Core State Standards: Mathematics (CA CCSSM) highlight perse-

verance as an overarching habit of a productive mathematical thinker. Perseverance can

be measured as a type of formative learning by measuring the time and attempts that

students use to correct errors. The MOBILIZE project promotes statistical programming

at the high school level in the Los Angeles Unified School District while following the

CA CCSSM. Logs of high school student statistical programming during the 2013-2014

school year were collected along with the errors that occurred. Using these logs, error

blocks were formed that follow a student’s interaction with an error message. With the

error blocks we were able to observe perseverance by students on multiple days of curricu-

lum. Our findings suggest that there was an increase in perseverance, because students

increased in time spent and attempts made to correct an error as the number of days of

programming curriculum increased. Additionally, students who showed more persever-

ance were more likely to eventually fix an error. Descriptive variables were explored to

provide background for the variation in student programming errors.
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CHAPTER 1

Introduction

Studies of programming education often report poor learning results for students in intro-

ductory programming courses. However, improvement of these introductory courses can

be achieved with careful evaluation of a student’s interaction with a new programming

environment. Creation of learning metrics is a valuable tool to aid improvement, but

the course curriculum and programming language of instruction must be carefully con-

sidered. There are numerous programming languages that are taught at the introductory

level, and numerous purposes that are the focus of introductory programming courses. A

clear consensus has not been reached on the optimal language or curriculum to approach

introductory programming. Reviews of the current literature have suggested that a case

by case evaluation is needed until a comprehensive study of the various options for in-

troductory programming has been concluded. For this reason, the subject of improving

and evaluating introductory programming education continues to be an open research

problem[1, 2, 3, 4].

The programming language R ”is an integrated suite of software facilities for data

manipulation, calculation, and graphical display”[5]. While not strictly a statistical pro-

gramming language, R is often used for statistical analysis and is a popular programming

language for introductory statistical programming courses. Unfortunately, much of the

current research on the evaluation of introductory programming is focused on general

computer programming courses. While evaluating introductory statistical programming

(such as that produced in R), differences between general and statistical programming

courses need to be considered to properly measure learning.

Program results, code style, line count, compilation time, comment usage, and sim-

plicity are just some of the many possibilities for the evaluation of student generated

code in general introductory programming courses. A set of these metrics can be used
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to deduce student learning in the course. Measurement for most of these metrics re-

quires an environment that generates multiple lines of code as chunks. These metrics are

possible at the introductory level because the environment used in introductory program-

ming courses most often contains an explicit compilation step. An explicit compilation

is when the translation of code into machine processing is completed with an explicit

action rather than automatically after the completion of a line. The resulting code is

usually written in chunks of multiple lines of code, and then compiled. There is not an

explicit compilation step when programming R in the console for introductory statistical

programming. Instead, introductory level programming in the R environment is a series

of single lines of code compiled individually. This style of programming is referred to as

scripting. The resulting code from scripting and explicit compilation environments differ

in structure. New metrics are needed so that we can offer measurements of learning in

statistical programming in R at an introductory level.

In this paper, data from the Mobilize Project is utilized to explore the topic of mea-

suring learning in an introductory statistical programming course. The Mobilize project

is a NSF funded project by the University of California, Los Angeles in partnership with

the Los Angeles Unified School District. The Mobilize project includes an introductory

statistical programming course - Exploring Computer Science(ECS). ECS - the Mobilize

project created a six week module for ECS to teach computing with data. The goal of

Mobilize is ”to strengthen computer science instruction throughout the Los Angeles high

school educational system and to develop innovative methods for educating and engaging

students in computational thinking and data analysis”[7]. ECS is one part of this larger

Mobilize project that was founded in 2010. ECS is a new high school level curriculum

that is designed to pair computational thinking with relatable examples for high school

students. Within the curriculum the six week module on statistical programming is of-

fered using the programming language R. The current syllabus for the ECS curriculum,

called Mobilize Prime, is based on a programming style of single line inputs of pre-written

functions for conducting data analysis. This style is of the scripting type rather than an

explicit compilation type. In 2013-2014, the Mobilize Prime Module was taught by three

ECS teachers with two classes each. A total of 140 students were enrolled in the six

classes. The students were ages 14-18, and were enrolled in the class based on councilor
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recommendation. Demographics of the student are reasonably consistent with the school

district at large. The ECS course is not designated as advanced nor remedial, so a range

of student ability is expected to be found in the students. Logs of each students’ pro-

gramming during the statistical programming unit were collected and will be used for

analysis in this paper.

We will propose a method for the formative assessment of learning in introductory

statistical programming of R. Formative assessment differs from the usual method of

measuring learning which is summative assessment. Summative assessment is the mea-

surement of learning that occurs at the end of a timeline, and is not part of the learning

process. Examples of summative assessment are standardized tests, and final projects.

Instead, formative assessment occurs during the learning process and is often paired with

automatic feedback to improve student learning. In this paper, we will examine the for-

mative learning that surrounds the error messages students receive while programming

in R. We will take advantage of the scripting style of programming to view how students

behave when confronted with the automatic error messages. We will focus on how long

students spend on correcting errors, how many attempts they need to correct an error,

and the proportion of errors that are successfully corrected. The student interaction

with error messages and the process of attempting to correct errors will be refered to as

perseverance. Where students who spend more time on correcting errors, and attempt

more corrections, are showing more perseverance in their learning. Perseverance is listed

as the first ”Overarching habit of mind of a productive mathematical thinker” in the

Current California Common Core State Standards: Mathematics (CA CCSSM)[8]. For

this reason, our analysis will be exploring the realization of an important standard for

evaluating the curriculum. In order to view these metrics, we clustered lines of code based

on content into error blocks. Each error block will contain an initial error, repeated

errors, and corrected error if the student was able to successfully correct the code. In

this paper we will use a clustering algorithm to create the error blocks. The algorithm

is tuned to the variation in code and data used by the students. From these metrics

conclusions will be made about the perseverance of students, and recommendations will

be made to aid in the building of future LAUSD ECS syllabi.
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CHAPTER 2

Data Management

Analysis and data processing in this paper were completed in R, the statistical program-

ming language[5]. Locally weighted regression smoothing using the loess function and the

R package ggplot2 were used to create the figures in the analysis [6]. The data used in

the analysis was gathered from the LAUSD ECS 2013-2014 classes [7]. Use of this data

was approved by the UCLA IRB.

2.1 Raw Data

The raw form of the data used in the analysis was a recording of 140 student logs from the

online RStudio application used in the ECS course. Nine students had logs that contained

zero lines of code, so they were not included in the data. The logs are a recording of the

console output from the students programming session. Console output includes code

entered, descriptive statistics, and the code generated by click through interfaces. The

data consisted of two variables: code entered, and time of entry. In aggregate, 8178 lines

of code were recorded from student logs. A row in this data is a single line of code entered

by a student in the R programming language. Table 2.1 displays a snapshot of what a

raw form of the data contained

4



Code Time

1 load(˜/ecs unit5/cdc.rda) 2014-01-10 10:42:45

2 View(cdc) 2014-01-10 10:43:01

3 table(cdc$gender) 2014-01-11 09:32:51

4 table(cdc$gender) 2014-01-11 10:44:34

5 mosaicplot(table(cdc$eat salad, cdc$drink soda)) 2014-01-19 11:15:20

6 girls = subset(cdc, gender==Female) 2014-01-19 11:17:35

Table 2.1: Raw form of the Student Programming Log

2.2 Identifying Errors

Each log was cleaned of descriptive outputs and output artifacts produced by R in the

compiling process. The log system used for gathering the data created timestamps for

each line of code. These timestamps needed to be separated from code, so that the

code could be inputted into an R console to reproduce the error a student would have

received. This was done manually to ensure that the remaining information was exactly

what the students had typed into their computers. This code was executed in R to test

if each line of code resulted in an error. The appropriate datasets were uploaded in R

to ensure that the errors would match those that the students received in the classroom.

Errors from each student log were inspected manually to ensure that we were viewing the

correct count of errors. A section of the ECS course relied on student gathered data, and

students worked with unique datasets. Sections of the code referring to these datasets

were removed because they could not be tested for errors. 1596 (19.5%) lines of code

were removed from the data.

2.3 Code Characteristics

To aid in analysis, descriptive variables were formed from the information of the raw

data. Four types of characteristics were identified in the characters of the code submitted

by the students.
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The first characteristic, function , identifies how many functions were specified in the

single line of code. A function signifies a named section of programming that performs

a specific task. In R, functions can be written by the user, however in this introductory

curriculum the writing of functions is not covered. Instead, pre-written functions are

taught to the students. Lines of code might contain no functions, a single function, or

multiple nested functions. Examples of lines of code and the specific functions used in

the line are shown in Table 2.2.

Code Function

1 labike$latitude Without Function

2 girls = subset(cdc, gender==”Female”) subset()

3 mean(table(cdc$gender)) table() & mean()

4 labike[10, 4]==”none” Without Function

Table 2.2: Examples of Code containing a Function

The second characteristic, access , identifies if the code employs an operator to access

specific information in a named list, vector, or data frame in the current R environment.

By using an access, the student can call for subsets of an object stored in the current

R workspace. Examples of lines of code with and without access operators are shown in

Table 2.3.

Code Access Operator

1 labike$latitude $

2 sqrt(25) Without Access

3 table(cdc$gender) $

4 labike[10, 4]==”none” [ , ]

Table 2.3: Examples of Code containing an Access Operator

The third characteristic, listing , identifies if a list is within the line of code. A

list specifies a grouping of multiple elements of information. Lists can be placed within

functions to increase the number of parameter specifications, or used to assign multiple
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values to an object. Examples of lines of code with and without listings are shown in

Table 2.4.

Code List

1 labike$latitude Without Listing

2 girls = subset(cdc, gender==”Female”) Listing within subset()

3 table(cdc$gender) Without Listing

4 labike[10, 4]==”none” Listing within Access []

Table 2.4: Examples of Code containing a Listing

The fourth characteristic, assignment , identifies if the line of code stores values after

the execution of the code. An assignment operator declares that a named object will store

a specific set of information that is declared in the remainder of the line. Assignment

in R can be completed using two operators ”<-” & ”=”. The recommended operator is

”<-”, because ”=” can also be used to declare parameter values within a function or as

part of a test of inequalities. Table 2.5 shows lines of code and identifies lines containing

assignment.

Code Assignment

1 labike$latitude <- labike$latitude - 1 <-

2 girls = subset(cdc, gender==”Female”) =

3 table(cdc$gender) No assignment

4 labike[10, 4]==”none” No assignment

Table 2.5: Examples of Code containing an Assignment

Additionally, the line number for each line of code(with respect to individual student),

teacher id, student id, and character length of code was identified for each observation

of the data. To align our analysis with the syllabus we will remove the 8.8% of the lines

that fall on non-programming days. These days occur when less than 33% of the students

in a class are programming. The average number of lines produced by students on these

days is five, and the lines will not be included in the analysis.
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2.4 Final Dataset

The final dataset contains 5944 observations of 11 variables. Table 2.6 lists the 11 vari-

ables in the final dataset.

Variables Description

1 code String of student entered code

2 errors Dummy variable if code resulted in an error

3 time Time that student entered line of code

4 line Line number of code within a student’s log

5 char Character length of a line of code

6 studentid Student I.D. number

7 teacherid Teacher I.D. number for student’s class

8 fun Variable of the number of functions in line of code

9 access Dummy variable if code contains an access

10 listing Dummy variable if code contains a listing

11 assign Dummy variable if code is an assignment line

Table 2.6: Variables of Final Dataset

8



CHAPTER 3

Descriptive Overview of ECS Introductory

Statistical Programming Logs

The following descriptive analysis will be motivated by a search for patterns that relate to

the syllabus of the course. Additionally, the data will be inspected to justify the building

of content clusters of related errors, and provide insight for understanding the behavior

we will see in the content clusters.

3.1 Line Count

To begin our evaluation, we will consider the code in the context of the classroom en-

vironment, so that we can understand the different factors influencing our results. A

hierarchical structure is a latent context for each line of code in our aggregate dataset

of lines of code. Each line of code is contained within a day, student, class, and teacher

grouping. Looking at Figure 3.1, we can see that the percentage of lines that students

of each teacher produced in the aggregate varies greatly. Students taught by teacher B

produced 75% of the lines of code in the sample. Students of teacher C produced very

few lines of code at only 7%. This allows for possible bias in aggregate statistics, be-

cause teacher B influenced a large proportion of the lines of code. If there are differences

between the students of each teacher we would find skewed numbers for aggregate statis-

tics. We will examine information from the logs to explore the null hypothesis that the

students taught by the three teachers behaved in the same way.

Teacher A taught classes one and two, teacher B taught classes three and four, and

teacher C taught classes five and six. Looking at Figure 3.2, we can see that there is

within teacher variation in lines produced by students in each class. Students that were

enrolled in class 3 produced more than 33% of the total lines of the aggregate dataset.

9



Figure 3.1: Percent of Aggregate lines of code from each Teacher

Figure 3.2: Percent of Aggregate lines of code from each Class

Looking at Figure 3.3, we can see that a large percentage of the lines in the sample

were programmed on the first day of student programming. There appears to be a fairly

consistent trend that later days have less representation in the sample than earlier days.

Day 4 is unusual in that it is not in its expected place in the trend of lines produced.

We will keep note of this difference when inspecting future plots. Looking at Figure 3.4

we can see that the number of lines produced by each student varies greatly. A small

subset of students produced a large number of lines. These students who produced a
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large number of lines of code will have a larger influence on aggregate statistics that we

view.

Figure 3.3: Percent of Aggregate lines of code from each day of curriculum

Figure 3.4: Percent of Aggregate lines of code from each Student

It would be desirable to establish a standardized method of observation before delving

into further descriptive statistics. Because this ECS course has a syllabus and daily

instruction plan, a standardization by day of curriculum would be preferred. Figure 3.1

and 3.2 revealed that there is imbalance in line count among the teachers and classrooms.

Figure 3.5 shows that the number of students who stop programming is fairly proportional

11



to the remaining number of students still programming. For this reason, our finding that

day one had a much larger proportion of lines is logical. This rate results in very few

lines, and students (less that 5%) being observed for days eight, nine, and ten. Looking

at Figure 3.6 we can see that up until day eight the average number of lines produced

by individual students each day stays fairly constant. So for consistency, most of the

following graphics will be displaying information against the day of curriculum it was

produced, and only include the first seven days of curriculum.

Figure 3.5: Number of students who programmed on each day of curriculum

Figure 3.6: Average number of lines per student on each day of curriculum

Figure 3.7 shows the variation in the number of lines programmed by students on each

12



day of curriculum. Within day variation is greater than between day variation. For this

reason, we should include variation in our observations to support our understanding. We

can see that the median number of lines produced by students on one day is consistently

lower than the mean number of lines on the same day. Some students produced a much

larger amount of lines on a single day than the average/median number of the day. We

will move forward with looking at aggregate statistics by the day of curriculum on which

the lines were produced. We will focus on days one through seven as to avoid over fitting

our findings to the few students who programmed on days eight, nine, and ten. We pay

attention to day four as it has a very low number of lines of code. The current syllabus

plans for five days of programming by each student before they begin their final project, so

the seven days for observation should capture most of the syllabus driven programming.

Figure 3.7: Distribution of lines of code programmed by students on each day of curricu-

lum

3.2 Teachers and Classes

The three teachers divide the students into three groups. As previously mentioned,

each teacher was responsible for two classes of students. We are interested to see if

the teachers are associated with different behaviors in their students. Additionally, we

are interested to see if there are differences between the two classes taught by the same

teacher. Understanding how student behavior was different will provide information for
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comparison of lines between students from different classes. Looking at Table 3.1 we

observe the number of students programming on each day. The pairs of classes taught

by each teacher show similar patterns of student programming on the same days. Of

particular concern, the classes taught by teacher C participated in programming on only

one day. If we wish to make conclusions about learning, it would be difficult to measure

within one day. For the evaluation in this paper, the measurement of learning will be

limited to classes one through four.

Day : 1 2 3 4 5 6 7 8 9 10

Class 1 30 22 6 4 0 0 0 0 0 0

Class 2 14 11 7 4 2 1 1 0 0 0

Class 3 33 33 31 28 27 17 14 7 3 2

Class 4 20 20 20 15 12 9 6 4 4 1

Class 5 21 0 0 0 0 0 0 0 0 0

Class 6 13 0 0 0 0 0 0 0 0 0

Table 3.1: Number of students programming on a day of curriculum by Class

Table 3.2 provides a breakdown of the mean value of characteristic statistics. The

value shown is the mean of student values. We can see that for the most part the pattern

of similar results for the pairs of classes taught by each teacher is continued here. There

are also trends that appear to be similar for all classes. For example, it appears that

the mean number of functions in a line of code is close to one, so function use is a very

common tool used by students across all classes. There are some early indicators of

differences between classes in this table such as the fact that teacher C did not have a

single student program a line with an assignment operator. We will next view these same

characteristics by day of curriculum to see if there are additional patterns within the

contents of the code.
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Line Day Function Access Listing Assign Characters

Aggregate 49.77 3.40 0.99 0.41 0.31 0.05 32.97

Teacher A 26.52 2.50 1.02 0.35 0.38 0.09 30.23

Teacher B 92.98 5.70 1.05 0.42 0.40 0.06 44.22

Teacher C 12.50 1.00 0.83 0.48 0.06 0.00 18.99

Class 1 25.17 2.37 1.03 0.35 0.40 0.10 30.29

Class 2 29.43 2.79 1.02 0.36 0.35 0.08 30.11

Class 3 98.30 5.82 1.01 0.51 0.39 0.05 41.06

Class 4 84.20 5.50 1.12 0.26 0.42 0.07 49.43

Class 5 11.52 1.00 1.01 0.50 0.10 0.00 19.40

Class 6 14.08 1.00 0.55 0.46 0.00 0.00 18.32

Table 3.2: Mean of student characteristics - Aggregate/Teacher/Class

We will start our evaluation by viewing the number of characters that were input into

lines of code. Looking at figure 3.8 it appears that an increase in the number of days

of programming is associated with an increase in the number of characters in a line of

code. If we look at figure 3.9 we see that this pattern is mostly driven by the influence of

the students taught by teacher B shown in yellow. There is not an average line for the

students taught by teacher C because there was only entries on one day for all students

of teacher C. It appears that the students taught by teacher A show a fairly constant

average length of code, while those of teacher B show an average that increases by day.

Looking at Figure 3.10 we can see that the average length of code of the two classes each

teacher taught are very similar on each day.
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Figure 3.8: Code character length by day of curriculum - Aggregate

Figure 3.9: Code character length by day of curriculum - Teachers
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Figure 3.10: Code character length by day of curriculum - Classes

With the knowledge that average characters differ between classes we can expect a

difference in the characteristic content of the lines of code. Looking at figure 3.11 we can

see that an increase in average number of functions in a line of code is associated with

an increase in day. On day one, just under one function per line is used. As we approach

day seven, the average is 1.3 meaning that multiple functions in a single line becomes

more common. Looking at figure 3.12 we see that students taught by teacher B show

an increase from just under one function per line to the before mentioned 1.3 average.

Students taught by teacher A show a more constant rate of function use hovering around

1 on days one and two. Figure 3.13 shows that the classes taught by the same teacher

showed similar function use patterns. It is starting to become apparent that the patterns

of the two classes taught by the same teacher are similar.

17



Figure 3.11: Function count per line by day of curriculum - Aggregate

Figure 3.12: Function count per line by day of curriculum - Teachers
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Figure 3.13: Function count per line by day of curriculum - Classes

Looking at Figure 3.14 it appears that the percentile range of access operator usage

is very large relative to the bounded values of 0 to 1 that the variable can take. Looking

at Figure 3.15 we can see that there is a large variation in the number of access operators

used by students in the same class and in different classes. Figure 3.16 reveals the same

variability, and that the classes taught by the same teacher do not appear to have similar

values when using this visualization. If there is a pattern in access we will need to employ

further information to make conclusions.

Figure 3.14: Access count per line by day of curriculum - Aggregate
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Figure 3.15: Access count per line by day of curriculum - Teachers

Figure 3.16: Access count per line by day of curriculum - Classes

Looking at the average line in Figure 3.17, we see that the average number of listings

per line increases as day of curriculum increases. Figure 3.18 highlights that there is not a

clear difference between classes one through four in listing usage. Figure 3.19 also shows

that the four classes have an overlapping pattern of listing usage. It appears that in the

later days, students who used listings began to use listings frequently. So we see very few

students with a low usage rate of listings.
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Figure 3.17: Listing count per line by day of curriculum - Aggregate

Figure 3.18: Listing count per line by day of curriculum - Teachers
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Figure 3.19: Listing count per line by day of curriculum - Classes

The last characteristic to view is assignment operator usage per line. Looking at

Figure 3.20 we can see that the rate of assignment operators is much lower than the

other characteristics. The highest rate of assignment is .5, or an assignment in half of

a student’s daily lines. Figure 3.21 reveals that usage of assignment operators decreases

with number of days for students in classes one and two. Further inspection of the code is

needed to understand why this might be happening. The large number of zeros makes it

challenging to view trends in this distribution of assignment. Figure 3.22 shows that the

continued patterned of similarities of characteristic usage in paired classes is also shown

with assignment operators.
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Figure 3.20: Assignment operator count per line by day of curriculum - Aggregate

Figure 3.21: Assignment operator count per line by day of curriculum - Teachers
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Figure 3.22: Assignment operator count per line by day of curriculum - Classes

We have seen that the averages of classes taught by the same teacher appear to be

similar. Overall function usage and listing usage appear to increase across all classes.

The patterns of assignment and access are not as clear, so we will view the content of the

lines of code to look for further understanding in these patterns.

3.3 Code Contents

The content of the individual lines of code allows for observation of what the students

entered into their Rstudio console on days of programming. The students were given

guidance into what their goals for a specific task were, and the recommended functions

to use for this goal. There is opportunity for students to enter only the required lines,

explore code, make spelling mistakes, and even enter non-sensical writing in the console

of Rstudio. Examining these lines of code can give us insight into student behavior while

programming.

The scripting environment that the curriculum of the ECS class is based on relies on

the usage of pre-written functions. Table 3.3 highlights the most used functions in the

sample.

At the top of the table, the most used function is View(). View() is an interesting

function to observe when using Rstudio because it does not have to be typed into the
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Function Count %

View 1568 0.24

table 1214 0.19

plot 951 0.15

subset 908 0.14

barplot 666 0.10

MakeMap 240 0.04

load 231 0.04

read.csv 211 0.03

mosaicplot 190 0.03

hist 150 0.02

c 148 0.02

summary 128 0.02

boxplot 84 0.01

head 67 0.01

Table 3.3: Most Used Functions

console. When using the Rstudio interface, if the user clicks on the name of a data set in

the Rstudio workspace then the function View() is executed in the console. With 24% of

the lines containing the View() function, we can know that the students are looking at

the data, but it is difficult to say how often students are clicking on the interfaces versus

typing in the function.

Another interesting function in this list is load(). This function was used in 4% of the

lines and just as frequently as the read.csv() function. These two functions are the main

functions used by the students to upload data into the Rstudio software. When looking at

load(), we should be aware that if a student used load to bring in their data, they would

not have used an assignment operator. A student who uses read.csv() instead, would

have used an assignment operator. This difference may explain the unusual patterns that

we saw in the assignment operator plots of the previous section. Another explanation

for the decrease in assignment operator is the online Rstudio application. This version

of Rstudio maintains the workspace between days, so the students do not have to reload
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the data each day and use assignment operators in the process.

Table 3.4, 3.5, and 3.6 show the five most used functions by teacher. We see that

the functions are similar for all three teachers. They include View(), some form of data

manipulation, and plotting functions. It appears that teacher B did not have their stu-

dents use the load() command. This might explain the difference between teachers in the

assignment operator usage graph.

Function Count %

View 303 0.26

MakeMap 237 0.20

subset 202 0.17

plot 104 0.09

load 72 0.06

Table 3.4: Most used functions - Teacher A

Function Count %

View 1158 0.23

table 1078 0.22

plot 766 0.16

subset 706 0.14

barplot 614 0.12

Table 3.5: Most used functions - Teacher B

Function Count %

View 107 0.25

table 85 0.20

plot 81 0.19

load 71 0.17

barplot 40 0.09

Table 3.6: Most used functions - Teacher C
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Table 3.7 shows us the pattern of data set usage on the main days of programming

(Days where at least 33% of the class programmed). It appears that the most used data

set was cdc. The cdc dataset and labike dataset were used primarily on the first two

days of programming. Day four and beyond show primarily usage of the two Mobilize

data sets. It is interesting to see that there were 394 lines of code that used the same

data set called ”Bullied”. Bullied was a subset of the Mobilize SchoolSafety 2011 data

set. This name was the name that teacher B used when instructing their two classes.

It is interesting to see that the students utilized the same name as their teacher when

they had the option to choose their own name for the new data frame they created from

Mobilize SchoolSafety 2011.

Data Set Lines

cdc 2187

Mobilize ExerciseHealth 2011 904

Mobilize SchoolSafety 2011 764

labike 568

Bullied 394

Table 3.7: Most used Data sets - Aggregate

We have found that the function usage and data set usage differed with day and class.

This begins to give us a more granular view of what is happening when the students

program in the logs. We can see that the characteristic variability may be related to

content variability and teacher choice of function and data set. Next we will look at how

the time of code entry varies in the logs.

3.4 Line of Code Entry Time

Along with the code that was entered, the logs recorded what time the students entered

the code into the R console. This time allows us to build a timeline of when the code was

entered. We will make observations of student behavior based on these times. To begin

our evaluation of time we will look at what time during the class period the students

entered the code. For clarification we will define two terms:
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Time of line of code entry The number of minutes that have passed since the begin-

ning of the current day of curriculum when a line of code is input in the R console.

Time between entry The number of seconds between a line of code and the next line

of code input by the same student in the R console. This time difference is not

recorded for lines of code on different days of curriculum.

Figure 3.23 is the distribution Time of line of code entry for the two classes of teacher

A. Looking at Figure 3.23, it appears that the middle of the class is the time when students

entered the most lines of code into their logs. The peak time of code entry is around

40 minutes into the class period. It appears that students were given to opportunity to

enter code after the one hour mark in this classroom. With some of the entries occuring

after 84 minutes.

Figure 3.23: Time of line of code entry - Teacher A

Looking at Figure 3.24, we can see a very similar distribution of Time of line of code

entry. The students in the classes of teacher B entered the majority of their lines during

the first hour and twenty minutes of the class. Figure 3.24 also shows a pattern of a

few lines of code being programmed after this time. This would suggest that the times

presented for the students to program either differed from that of teacher A, or students

stayed after class to finish programming. Looking at Figure 3.25, we see that the low

number of lines from teacher C’s students have not converged to an apparent trend in

Time of line of code entry.
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Figure 3.24: Time of line of code entry - Teacher B

Figure 3.25: Time of line of code entry - Teacher C

Looking at Table 3.8, we can see that the majority of lines are entered within one

minute of the previous line.

Percentile: 25 50 75 90 95 98 99

Seconds: 10 35 119 358 650 1128 1583

Table 3.8: Percentiles of time between entry - Without View()
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Figure 3.26 reveals that the distribution of time between entry is very much right

skewed. This means that it is possible that there is clustering happening for the times of

entry. Figure 3.27 shows that the distribution of time between entry is approximately log-

normal. There is an unusual amount of lines with a difference very close to log(0). With

further inspection of these lines it appears that the function View() is responsible for this

pattern. The View() function is called immediately after some instances of uploading

data.

Figure 3.26: Time between entry - Aggregate

Figure 3.27: Log time between entry - Aggregate

30



We can remove the lines of code that had an automatic and immediate entry into the

console due to the View() function behavior from our calculations. Table 3.9 shows that

more than half of the lines of code are still entered within one minute of the previous

line.

Percentile: 25 50 75 90 95 98 99

Seconds: 20 54 160 440 751 1228 1751

Table 3.9: Percentiles of time between entry - Without View()

One possible cause of the time between entry is the length of code. Lines of code

with a larger character length would take longer to type in and would change entry

times. Looking at Figure 3.28, it appears that character length of code is not strongly

associated with the time between entry. The correlation for the association is .13. This

suggests that something outside of typing is influencing the time between entry of lines

of code.

Figure 3.28: Code character length by time between line of code entry

From looking at the time of entry for lines of code, we have seen that there are

patterns in the entry time. It appears that the students are entering the most lines of

code during the middle of the class period. We have also shown that more than half of

lines are entered within one minute of the previous line. The View() function accounts for

automatic entries into our logs, and with the View() function removed the distribution of
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time between lines is still heavily right skewed. When a log transformation is applied to

the distribution of time between entry of code we see that the times are approximately

log-normal. This suggests that there may be multiple independent variables driving the

time between entry. We tested the length of characters in the lines of code to see if it is

the main driver for the variation, but it does not appear to be. This leaves open other

factors to explain the time between lines of code such as time within the class period,

lesson structure, confusion with the assignment, and number of lines needed to complete

a cluster of data analysis.

3.5 Errors

One measure that is used in programming assessment is program errors. Because program

error would normally describe the failure of a chunk of multiple lines of code to perform a

specific task, our definition for single line error will need to have a different interpretation

than that which may be used for other courses. Our definitions will be as follows:

Error When a single line of code is input into the R console and returns an error message

after compilation.

Error Rate The proportion of lines of code that return an error. For the aggregate of

all lines of code the error rate was 27.82%.

Statistical programming in the ECS course is done with the purpose of understanding

a data set. Errors in code would hinder speed of data analysis. Consecutive errors may

result in failure of a specific analysis task due to lack of programming ability. This

failure of analysis would more closely mirror a program error from general programming

courses. To begin the evaluation of error rate we will first look at class-wide error rates.

A reduction in error rate as the class progresses would suggest that students have reduced

their number of mistakes in individual lines of programming during their data analysis.

Looking at Figure 3.29 we see that further into students’ programming logs the error rate

slightly increases when looking at the error rate for the aggregate of all students. One

possible explanation for this increase in error rate is complexity of code.
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Figure 3.29: Aggregate error rate by proportion of programming log completed

Instead of viewing error rate over percentage of programming log completion, we can

observe how the error rate changes as the students complete lines of code. Looking at

Figure 3.30, Error rates across number of lines completed shows variability as the number

of lines completed increases.

Figure 3.30: Aggregate error rate by number of lines completed

Additionally, Figure 3.31 shows that error rate shows a slight increase as the days of

curriculum increase.
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Figure 3.31: Aggregate error rate by day of curriculum

Each of these plots focuses on the frequency of errors among entered lines of code

across the aggregate of lines. With the patterns we have found in our observation of the

descriptive statistics, it would be difficult to assume that the lines of code are perfectly

independent. To fully understand and interpret the errors there would need to be more

granularity than a aggregate view. We will now explore the distribution of errors to see if

we can find motivation for a clustering of errors to provide granularity while also maintain

context for the lines.

Looking at Table 3.10, we can see that the time between errors is quite varied. Twenty-

five percent of errors occur within 22 seconds of the previous error. However, more than

5% of the errors are thirty minutes after the previous error. We should hesitate to assume

that the relationship between errors 22 seconds apart and 30 minutes apart are the same.

Percentile: 25 50 75 90 95 98 99

Seconds: 22 74 272 828 1338 2189 2785

Table 3.10: Percentiles of time between errors - Without View()

We have plotted the distribution of time between entry of errors in Figure 3.32. The

distribution is right skewed and shows that most errors occur in close time intervals of

another error. There may be some dependence between the errors that is causing this
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skew in the distribution.

Figure 3.32: Time Between entry of lines of code with Errors

As additional information for understanding the dependence between errors, we see

that there is a 26% error rate when the previous line of code was not an error, but there

is a 52% error rate when the previous line of code was an error. This doubling of the

error rate suggests that there is a relationship between errors.

3.6 Descriptive Overview Conclusions

Our examination of the descriptive variables has led us to an interesting idea of clustering

errors. We have found that the lines of code are unequally representing the different

levels of the hierarchical context of the lines of code. This makes it difficult to explore

the individual lines of code without providing context. We saw that the characteristics

of the lines of code entered vary by teacher, classroom, and day. This makes it difficult

to compare individual lines of code without paying attention to their contents. It was

shown that the distribution of time of line of code entry varies by time during the class

period. Additionally, the time between entry is not the direct result of the length of the

code that needs to be typed into the console. This suggests that we have not recorded

all of the drivers of time between lines. Factors such as thought, and reading through

notes may be influencing the time between entry. We did not uncover information to

35



discourage us from thinking that the errors might be clustered. For these reasons, we

will construct clusters that provide context for lines of code to offer another means of

evaluation.
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CHAPTER 4

Formative Assessment of Errors via Content

Clustering of Lines of Code

To begin the section we will define a set of terms relevant to our analysis.

Content Clustering A grouping of information into clusters based on the content of

the information.

Correction Rate Proportion of error blocks in a subset that end when a student suc-

cessfully corrects the initial error.

End of Block The error block ends when a student either successfully corrects the initial

error, or stops entering lines of code that attempt to correct the error.

Error Block A content cluster that contains a line of code with an initial error, and

any additional lines of code with attempts made at correcting the initial error.

Formative assessment The evaluation of the relationship between the student, the

teacher, and the learning environment during the learning process. In this paper,

this will be the interaction between the student and the error responses they received

while programming in R. This will be measured by perseverance.

No Correction Failing to correct an error in the current error block due to time, change

in code to a different task, or change in day of curriculum.

Perseverance The number of attempts made to correct an error, or the amount of time

needed to correct an error.

Persevere Attempting to produce the correct response after receiving an error message.

Successful Correction Entry of an error free line of code that corrects the initial error

of the current error block.
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Summative Assessment Assessment which occurs at the end of a learning timeline.

A common example of summative assessment is final exams.

Time between attempts This is the same as time between entry. The time(in seconds)

between the entry of one line of code, and the entry of a proceeding line of code

that is in the same error block.

Time between errors The time(in seconds) between the entry of a line of code that

returns an error, and the entry of the next line of code that returns an error during

the same day of curriculum.

Table 4.1 shows an example of an actual error block from a students log that contains

a successful correction. The time between entry is shown in the table and highlights the

non-uniformity of the time between entry that is found in error blocks. Viewing the code

contents shown in Table 4.1 one can see how the student made small alterations to the

previous line of code in an attempt to fix an error. This particular error block is much

longer than average, but shows the progression students often made while dealing with

an error.
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Attempt Code Error Time Between

1 plot(long$lat) Yes 0

2 plot(bus stops$long, lat) Yes 51.00

3 plot(bus stops$long,lat) Yes 53.00

4 make plot(bus stops$long, lat) Yes 44.00

5 MakePlot(bus stops$long, lat) Yes 53.00

6 Plot(bus stops$long, lat) Yes 8.00

7 Plot (bus stops$long, lat) Yes 118.00

8 plot (bus stops$long, lat) Yes 8.00

9 plot (bus stops$longitude,latitude) Yes 34.00

10 plot (bus stops$lat, long) Yes 19.00

11 plot(bus stops$lat, long) Yes 21.00

12 plot(bus stops$lat,long) Yes 10.00

13 plot(bus stops$lat, bus stops$long) No 17.00

Table 4.1: Example of a Cluster

The R environment has a built in feedback system of errors when students input their

code into the R console. The error messages that students receive are a type of formative

assessment. The formative assessment type we will investigate in this paper is when

feedback moves learners forward during learning[9]. Students have the opportunity to

correct a mistake based on the information in the feedback, and move forward in their

analysis with a new corrected line of code. In order to correct the code, a student would

have to be able to notice the mistake in their previous line of code, or be able to use

resources to find the correction. The focus of this paper is not how to improve this

feedback, but instead to understand the way students interact with the feedback they

receive. We will consider a student attempting to input a correct line of code, after they

received an error message, as an example of perseverance. In this way, we will be able to

evaluate learning by measuring how students persevere when receiving errors messages.

Let us consider the interaction that a student in an introductory statistical program-

ming course would have with the formative feedback system of errors. When a student

enters a line of code, they would have an expectation of what the compilation of the code
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would cause. But when met with an error message, the student knows that something

occurred that they did not expect. Entry of a new line of code that corrects the error

that was just produced would show that the student was able to find the correction in

some manner. Evaluating what happens between the initial error and the final correction,

or lack thereof, will allow us the understand the students interaction with the formative

assessment. While correct lines of code measure success of the compilation, the ability to

identify and correct errors is a valuable skill when learning how to program. Comparing

how the students interact with the error messages on successive days will allows us to see

if the students are learning.

To provide context, we organized the lines of code in the logs into error-based content

clusters that we will call error blocks. In this structure it may be possible for multiple

lines of transition errors to fall between the initial error and the end of block. In a sense,

we are forming the cluster to view if a student was able to successfully correct an error

or if they moved on to other code without a correction. We will assume that, on average,

clusters that end in a successful correction of the error display a more desirable outcome

than clusters that do not lead to correction. Also, we will view error blocks that had more

time entering codes before failing to correct the error as evidence of higher Perseverance

. Through the logs, we have access to when errors were given as feedback, and the time

between lines of code. We will measure the frequency of successful corrections, time until

correction or failure, and number of lines of code (attempts) entered in the error block.

Improvement in metrics related to these blocks would be associated with learning, so we

would have a way of loosely approximating learning related to the formative assessment.

4.1 Algorithm for Formation of the Clusters

To identify the Error blocks in the LAUSD ECS logs, we used an algorithm that was

tuned to the specific variation in functions and data sets. For future use of a similar

algorithm, the number of functions and data sets would need to be considered when

deciding cut-off values for the algorithm.

There are two pieces of information that are compared to build the error block. First,

the outcome of a line of code code is determined to be either an error, or non-error.
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Second, the line is inspected to determine if it is connected to the current error block.

Lines are inspected sequentially by time of entry in the log. The initial error for an

error block is determined by order of inspection. So the first error in the log after the

completion of the previous error block is the initial error of the new error block. Error

blocks are limited to within a single day. The View() function is omitted from the logs

because of the interaction of clickable interface in Rstudio for the function.

Fortunately, for the LAUSD ECS logs the lines containing errors were identified during

the building of the dataset. To determine which lines of code are linked in an error block,

first an initial error is identified. Then the next line of code is viewed to be either an

error or correct line of code. A link function was designed to automatically determine if

the current line of code, i , was linked to the previous line of code, i-1, in the current

error block. Looking at equation 4.1, we can see that link is formed by the occurrence of

any one of three comparisons between the characters in lines i and i-1.

Linki,i−1 = max


sim(functioni,i−1) ∈ (0, 1)

sim(datai,i−1) ∈ (0, 1)

match(functioni,i−1) ∈ (0, 1)

(4.1)

The first comparison checks if the functions entered in line i and i-1 are the same

or similar. Here sim() is a similarity function based on the Levenshtein edit distance as

seen in Equation 4.2 [10]. The Levenshtein edit distance used in the similarity function

is the minimum number of insertions, deletions or substitutions to transform one string

into another. If a similarity of greater than the cut-off value of .75 is achieved, then the

value of the comparison is set to 1 and a link is established between lines i and i-1. This

value of .75 was tuned to fit the strings that were present in the ECS dataset [11]. This

similarity function is used to allow for small spelling mistakes while still making correct

links.

sim(functioni,i−1) = 1− lev(functioni,i−1)

max(functioni,i−1)
(4.2)

The second comparison uses this same similarity calculation, but instead compares

the datasets that were used in lines i and i-1. Again a similarity of .75 between the named
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datasets results in the value of the comparison being set to 1 and a link is established

between lines i and i-1.

The third comparison, match(functioni,i−1) , simply checks to see if the functions

specified in line i are a substring of the functions specified in line i-1. Then the same

comparison is made again to see if instead the functions specified in line i-1 are a substring

of the functions specified in line i. This comparison is made to catch errors that result

from incorrect syntax or errors that come from adding extra prefixes to functions.

The automatic classification formed 623 error blocks for the inspection of errors. A

manual designation of error blocks in the ECS dataset was completed and 633 error

blocks were found. The incorrect results of the automatic classification resulted from 11

clusters being incorrectly linked, and one cluster being incorrectly separated. These 27

incorrectly specified clusters result in a 3.63% failure rate in the automatic clustering

approach. Tuning of the cut-off value of the sim() function was required to reach this

result. The cut-off value was decided upon to favor incorrect specifications that resulted

in incorrect links instead of incorrect separations.

4.2 Evaluation of the Error Blocks

To begin our evaluation of the error blocks, we again offer an example of one of the

error blocks that was formed in the ECS logs. While the error block shown in Table

4.2 is not representative of the average error block, it does show the merit of clustering

errors into error blocks. Looking through the code that was entered on each attempt it

is obvious that the lines of code are related. By clustering the errors into error blocks we

are able to see the progress that the student made as they worked through the errors and

eventually succeeded in correctly making the plot that they wanted. Without clustering

these lines in some way the lines would instead be viewed as separate lines of code that

were attempting a plot function. Looking at the time differences between each line we

can see that it is not uniform, and that there may be value to understanding the time

between related errors.
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Attempt Code Error Time Between

1 plot(long$lat) Yes 0

2 plot(bus stops$long, lat) Yes 51.00

3 plot(bus stops$long,lat) Yes 53.00

4 make plot(bus stops$long, lat) Yes 44.00

5 MakePlot(bus stops$long, lat) Yes 53.00

6 Plot(bus stops$long, lat) Yes 8.00

7 Plot (bus stops$long, lat) Yes 118.00

8 plot (bus stops$long, lat) Yes 8.00

9 plot (bus stops$longitude,latitude) Yes 34.00

10 plot (bus stops$lat, long) Yes 19.00

11 plot(bus stops$lat, long) Yes 21.00

12 plot(bus stops$lat,long) Yes 10.00

13 plot(bus stops$lat, bus stops$long) No 17.00

Table 4.2: Example of a Cluster

Figure 4.1 shows that on average more than 75% of error blocks end in a correction

of the original error. This is encouraging as the students are correcting their mistakes

in most cases. It appears that there may be an upward trend in the average successful

correction rate as the days of curriculum increase. The points on the figure represent an

error block where successfully corrected blocks are the points on the top of the figure, and

no corrections on the bottom. There are multiple explanations for the dip in completion

at day four such as the change in data set, or the unusually low number of lines on that

day that was highlighted earlier in the paper.
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Figure 4.1: Percent of error blocks that lead to corrected error

Looking at Figure 4.2, we see that there is an increase in the average time that was

spent by students on trying to correct an error. This same increase in average time is

shown in Figure 4.3 when the students are not able to correct an error. This displays

an increase in perseverance by spending more time to attempt at correcting an error.

Additionally, we see that error blocks that had a successful correction had more time

spent attempting to correct the error. This is encouraging, because it shows that students

were able to persevere by spending time and completing attempts without giving up on

fixing the error.

Figure 4.2: Time spent working on error block that lead to corrected error
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Figure 4.3: Time spent working on error block that did not lead to corrected error

The average time between each attempt at correction also shows an association with

the increase in day of curriculum. Figure 4.4 & Figure 4.5 show that the students were

willing to spend more time between attempts as the day of curriculum increased.

Figure 4.4: Time between attempts in an error block that lead to corrected error
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Figure 4.5: Time between attempts in an error block that did not lead to corrected error

Figure 4.6,4.7, and 4.8 highlight an encouraging fact. The majority of students tried

at least one time to correct their errors. Of the errors that were never corrected, most

of the students did not have a single attempted correction. Because we cannot declare

directionality, this may hint at the difficulty of the initial error. Alternatively, it could

suggest that encouraging students to attempt correcting errors will reduce the number of

clusters that end in errors.

Figure 4.6: Number of attempts to correct an error
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Figure 4.7: Number of attempts to correct an error - error blocks that lead to corrected

error

Figure 4.8: Number of attempts to correct an error - error blocks that did not lead to

corrected error

Figure 4.9 shows that there is an increase in number of attempts to correct an error,

as the day of curriculum increases. Again, we see that students appear to be showing

more perseverance as the day of curriculum increases.
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Figure 4.9: Number of attempts to correct error by day of curriculum

Earlier in the paper, Figure 3.31 showed that when each line of code was viewed

independently the error rate by day showed an increase. The reason that we constructed

error blocks was to provide context for each line of code, and to gather more information,

so we do not have to view the lines of code independently. By rejoining the error blocks

to the original data set, we can revisit this graph. Instead of viewing the error rate as

a by line error rate, we can view it as a by error block error rate. For clarification, this

would mean that an error block that does not end with a correction is similar to an error,

and one that ends in a correction is similar to a correct line. Figure 4.10 shows that when

viewed as error blocks we see a decrease in errors(error blocks that have no correction) as

the day of curriculum increases. This is an important finding, because it gives value to

our metric of perseverance. Instead of more errors and more time spent fixing an error

meaning that the students are struggling as the day of curriculum increased, we have

some justification in saying that the students are learning to fix their errors.
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Figure 4.10: Number of attempts to correct error by day of curriculum

Eventually the knowledge learned from these clusters needs to be applied to the for-

mative process. The student behavior when dealing with the errors can lead us to possible

recommendations. If we were to recommend encouraging students to attempt to always

correct their errors, what would be a good number of attempts to recommend before

they are just wasting time? It appears that in Figure 4.11, four attempts at fixing an

error are enough before the students experience significant drop off in success rate. This

would encourage something like a ”Five tries” rule before declaring themselves stuck and

moving on or seeking instructor assistance.

Figure 4.11: Proportion of Errors Corrected by Attempt Number
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The formative assessment facilitated by the clusters does not measure learning in a

summative sense. We do not receive a score for the learning a student did, but instead

receive the amount of time they spent learning how to fix a code, or how long they spent

trying to figure out a code before giving up. The formative assessment offers the chance

to improve the syllabus with behavioral observations instead of rate the students. This

behavioral framework provided by the content clusters is most importantly a valuable

source of context.
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CHAPTER 5

Concluding Remarks

Through multiple views we have deconstructed the student logs of the ECS introductory

statistical programming course. By identifying characteristics we were able learn that

there are differences between classes taught by different teachers, and even between two

classes taught by the same teacher. Using time stamps we were able to discover the

distribution of programming time during a class period.

Measuring learning in the classroom is a difficult task, and many metrics need to be

considered when evaluating a course. Perseverance was highlighted as an important part

of formative learning in this analysis. We were able to construct a content clustering

approach called error blocks that provided a context to view the formative learning pro-

cess. Measurement of these error blocks allowed us to assess how the students learned

when trying to correct their errors. We saw that students showed increased perseverance

as the days of curriculum increased by spending more time working to correct errors,

and attempting more corrections. Additionally, we saw that students who successfully

corrected their errors displayed increased perseverance.

Specific advice for improving the ECS curriculum, and other introductory statistical

programming courses in R, can be achieved using the error blocks. For example, a rule

such as ”five tries” may reduce the number of errors that go without correction in a

student’s analysis. When the errors are viewed within the proper context the recommen-

dations that are made are more likely to address student behaviors than when the errors

are viewed as individual lines of code.
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