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ABSTRACT OF THE DISSERTATION

Semantic transfer with deep neural networks

by

Mandar Dixit

Doctor of Philosophy in Electrical Engineering

(Intelligent Systems, Robotics, and Control)

University of California, San Diego, 2017

Professor Nuno Vasconcelos, Chair

Visual recognition is a problem of significant interest in computer vision.

The current solution to this problem involves training a very deep neural network

using a dataset with millions of images. Despite the recent success of this approach

on classical problems like object recognition, it seems impractical to train a large

scale neural network for every new vision task. Collecting and correctly labeling

a large amount of images is a big project in itself. The process of training a deep

network is also fraught with excessive trial and error and may require many weeks

with relatively modest hardware infrastructure. Alternatively one could leverage

the information already stored in a trained network for several other visual tasks

using transfer learning .

In this work we consider two novel scenarios of visual learning where knowl-

edge transfer is affected from off-the-shelf convolutional neural networks (CNNs).

xv



In the first case we propose a holistic scene representation derived with the help

of pre-trained object recognition neural nets. The object CNNs are used to gen-

erate a bag of semantics (BoS) description of a scene, which accurately identifies

object occurrences (semantics) in image regions. The BoS of an image is, then,

summarized into a fixed length vector with the help of the sophisticated Fisher

vector embedding from the classical vision literature. The high selectivity of object

CNNs and the natural invariance of their semantic scores facilitate the transfer

of knowledge for holitistic scene level reasoning. Embedding the CNN semantics,

however, is shown to be a difficult problem. Semantics are probability multinomi-

als that reside in a highly non-Euclidean simplex. The difficulty of modeling in

this space is shown to be a bottle-neck to implementing a discriminative Fisher

vector embedding. This problem is overcome by reversing the probability map-

ping of CNNs with a natural parameter transformation. In the natural parameter

space, the object CNN semantics are efficiently combined with a Fisher vector em-

bedding and used for scene level inference. The resulting semantic Fisher vector

achieves state-of-the-art scene classification indicating the benefits of BoS based

object-to-scene transfer.

To improve the efficacy of object-to-scene transfer, we propose an extension

of the Fisher vector embedding. Traditionally, this is implemented as a natural

gradient of Gaussian mixture models (GMMs) with diagonal covariance. A signif-

icant amount of information is lost due to the inability of these models to capture

covariance information. A mixture of Factor analyzers (MFAs) are used instead

to allow efficient modeling of a potentially non-linear data distribution in the se-

mantic manifold. The Fisher vectors derived using MFAs are shown to improve

substantially over the GMM based embedding of object CNN semantics. The im-

proved transfer-based semantic Fisher vectors are shown to outperform even the

CNNs trained on large scale scene datasets.

Next we consider a special case of transfer learning, known as few-shot

learning, where the training images available for the new task are very few in

xvi



number (typically less than 10). Extreme scarcity of data points prevents learning

a generalize-able model even in the rich feature space of pre-trained CNNs. We

present a novel approach of attribute guided data augmentation to solve this prob-

lem. Using an auxiliary dataset of object images labeled with 3D depth and pose,

we learn trajectories of variations along these attributes . To the training examples

in a few-shot dataset, we transfer these learned attribute trajectories and generate

synthetic data points. Along with the original few-shot examples, the additional

synthesized data can also be used for the target task. The proposed guided data

augmentation strategy is shown to improve both few-shot object recognition and

scene recognition performance.
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Chapter I

Introduction

1



I.A Visual Recognition

Ability to recognize visual semantics such as objects, people and stuff [1]

in scenes is critical for any autonomous intelligent system, e.g. a self driving

car or a self navigating robot. The development of visual recognition systems,

therefore, receives a significant amount of attention in computer vision commu-

nity. Earlier proposals of visual recognition, relied heavily on carefully designed

feature extractors that summarized low-level edge or texture information within

images [57, 15, 2]. Edge based descriptors were extracted from image regions and

often subject to non-linear encodings [14, 91, 63] and subsequent pooling to gen-

erate a reasonably invariant image representation. This representation was used

with a discriminative classifier to perform various tasks such as scene classifica-

tion, object recognition and object detection with a reasonable degree of success

[50, 8, 64, 73, 24, 15]. Low-level edge and texture features, however, have a lim-

ited discriminative power as well as invariance. Templates of gradient orientations

are largely unable to detect and describe meaningful semantics such as objects or

object-parts that may be related to the high-level visual tasks of interest. Features

such as SIFT and HoG, therefore, present a significant bottleneck for the visual

recognition systems that rely on them.

An alternative to feature design, was the technique of visual feature learning

or deep learning , where a sequential hierarchy of filters or templates were learned

end-to-end specifically to optimize the performance on a given high-level task [51].

The filter units in these deep networks were highly non-linear and learned with

strong supervision using the technique called back-propagation. Recently, due to

the availability of large scale labeled datasets like ImageNet [17], deep neural net-

works have achieved major breakthroughs in visual recognition. Krizhevsky et.

al. [45] were able to successfully train a deep convolutional neural network (CNN)

using millions of images from ImageNet and achieve remarkable results on object

recognition. Simonyan et. al. [76] reduced their error by more than half, with the
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Figure I.1: Types of Transfer Learning. a) depicts an example of Across dataset
transfer, b) depicts an example of Across domain transfer.

help of a CNN with an even deeper architecture. More recently, He et. al. [35]

have claimed recognition accuracies higher than those of human experts on object

recognition using a CNN that is hundreds of layers deep.

The successes of deep learning seem to have rendered the feature design

frameworks obsolete. Today the best approach to build an accurate visual recog-

nition system is to i) collect millions of labeled images, and ii) train a CNN that

is deep enough. Given the large number of possible recognition tasks, using this

recipe for each one of them seems unfeasible. Collecting datasets with tens of

millions of images and having them labeled using experts is a big project in itself.

The configuration of a deep neural network may also require extensive train-and-

error and the training may require months to finish on normal hardware. Instead
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of training a CNN for each new task, therefore, it may be worthwhile to develop

techniques of knowledge transfer from the CNNs that are already trained for other

tasks.

I.B Transfer Learning

The remarkable performance of deep CNNs can be attributed to a high

semantic selectivity exhibited by their units. For instance filters in the higher

layers of an object recognition CNNs are found to detect relevant semantics such

as faces and object parts [93]. The feature responses of such CNNs, therefore, are

clearly more discriminative than edge-based histograms, and, at the same time,

generic enough to be used in other vision tasks.

Many recent works have have leveraged the publicly available, ImageNet

trained, object recognition CNNs for other related tasks such as object detec-

tion [30, 29, 71], fine-grained recognition [54] and object localization [95] with rea-

sonable success. Since these proposals affect knowledge transfer within the same

visual domain (of objects) but across different datasets, we refer to their frame-

work as across-dataset transfer. An example of this is depicted in fig Figure I.1

a) where the transfer occurs between ImageNet object recognition and MS-COCO

object detection. Across dataset transfers are achieved by gently adapting the

ImageNet CNN on the new dataset using a modified loss and a few iterations

of back-propagation. This technique is commonly refered to as finetuning in the

recent literature [30]. Achieving knowledge transfer across dissimilar domains,

however, is not as straightforward. Consider for example, the case depicted in

fig Figure I.1 b) where a transfer is desired between object recognition CNNs and

holistic scene level inference. Most scenes are not defined by presence or absence of

one object but by co-occurrence of multiple objects in the field of view. To achieve

across domain transfer in these circumstances, we need the CNN to identify ob-

jects and an additional embedding to model their contextual co-occurrence. This
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embedding is not directly available from any ImageNet trained CNN and needs to

be learned on the limited scene dataset that is available for transfer.

Additionally the efficacy of any transfer learning method also depends on

the cardinality of the new data set available to learn, often called the target dataset.

When the available data points per class is very few, the problem is referred to as

that of few-shot learning. Few-shot learning is not easy even in the regime of deep

neural networks. This is because one cannot finetune a large network, to a handful

of examples, without overfitting. The only way out therefore, is to either collect

more data or learn to generate synthetic examples that can be used to augment

the target set.

I.C Contributions

In this thesis we consider two important cases of transfer learning. First is

the problem of across-domain transfer learning, where an object recognition CNN

is used to transfer knowledge to the domain of scenes. For this we design a bag-

of-semantics (BoS) representation of scenes generated by the object recognition

network. We design and test several embeddings of the BoS representation that

summarize the contextual interactions of objects in scenes. The second problem

we try to solve is that of one-shot or few-shot transfer. Specifically, we propose

a method to augment a dataset of very few examples using synthetic samples

generated by a network. This alleviates, to some extent, the issues of transfer in

severe data constraints.

I.C.1 Object-to-Scene Semantic Transfer

Scenes are often described as collection of objects and stuff [1]. An object

based CNN, therefore, can be used to identify the semantics present in a scene.

In our work we propose to describe a scene image, on similar lines, with a bag-

of-semantics (BoS) representation generated by a pre-trained object recognition
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CNN. A BoS consists of an orderless collection of object probability multinomials

generated by the CNN from local regions or patches of the scene. It is common

practice in vision, to summarize such representations into a fixed length image rep-

resentation typically using a non-linear embedding [91, 8, 64]. The most effective

embedding in classical visual recognition literature is known as the Fisher vector

(FV) [38, 64]. Although an FV is known to work quite well for many low-level fea-

tures, with CNN generated probabilities, we show that it performs poorly. This is

primarily due to the non-Euclidean nature of the space of probability vectors which

makes it difficult to design an FV that generalizes well. We show that this problem

can be alleviated by simply reversing the probability mapping implemented by the

object classifiers and working with the natural parameter form of multinomials.

For discriminative classifiers such as a CNN, a natural parameter transformation

can be easily achieved by simply dropping the final softmax layer that produces

probabilities. In the Euclidean space of natural parameters, we shown that a FV

can be designed very easily using standard Fisher recipe. This representation,

when used with a simple linear classifier, forms a conduit for transfer between

object and scene domains. For the task of transfer based scene classification, it is

shown to achieve very competitive results using relatively few scene images.

I.C.2 Semantic Covariance Modeling

While a classical FV embedding learned on a natural parameter form of

object semantics produces a strong enough scene classifier, we show that it can

be made even more accurate using an FV tailored for high dimensional data. The

standard FV [64] derives from a Gaussian mixture model (GMM) that assumes

a diagonal covariance per component. We argue that this approach is inefficient

for the space of CNN features and that it would be better to use a GMM that

is capable of modeling local covariances of the data manifold. Learning full co-

variance GMMs is impractical in large spaces due to the lack of enough data to

estimate the parameters. Therefore, we propose a model that approximates the
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data distribution in several local low-dimensional linear sub-spaces. This model

known as a mixture of factor analyzers (MFA) model learns a collection of local

Gaussians with approximate covariance structure that cover the data distribution

more efficiently compared to a variance-GMM. We derive a FV embedding for

the MFA model and use it to encode our natural parameter BoS for transfer based

scene classification. The ability to model covariance within an MFA, results in sub-

stantial improvements in the final scene classification. The transfer based MFA

FV scene representation, is also shown to be better than a scene classifier trained

directly from millions of labeled scene images. Upon combination with the scene

CNN, the MFA-FS is shown to improve the performance further by a non-trivial

margin.

I.C.3 Attribute Guided Data augmentation

Transfer learning becomes challenging especially when the amount of new

data available to learn is very limited. Under extreme circumstances, this could be

as little as 1-10 examples per class. We propose a solution to this so called few-shot

transfer learning problem. Generally when a classifier has little data to train from,

many works resort to cropping, flipping, rotating images to simulate the presence

of adequate data. This is however, not the same as adding new information and

the method seldom results in stable improvements. In our work we propose to

generate non-trivial variations of available data points by attempting to modify

their attributes (properties). We try to learn the trajectories of 3D pose and depth

attributes of object images using a small auxiliary dataset that provides such in-

formation. In a one-shot or few-shot transfer scenario, then, for each available

image, we generate its representation using an object CNN and regress it along

the learned trajectories of poses and depths, thereby hallucinating changes in these

properties and at the same time generating new synthetic features. The synthetic

features correspond to the objects in the image changing their pose or depth by

a specified amount. The transfer dataset with very few images is thus augmented
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with the additional samples generated by simulating attribute (pose/depth) varia-

tion. We show that the presence of additional examples improve the performance

of one-shot or few-shot transfer based object as well as scene recognition. Since,

the data augmentation is achieved using attributes as a supervisory signal, we

refer to it as attribute guided augmentation. Alternatively, the data is generated

by transferring a learned trajectory of variations in pose/depth, to the few-shot

examples. Therefore, the proposed method can also be called attribute trajectory

transfer based augmentation.

I.D Organization of the thesis

The organization of this thesis is as follows. In Chapter II we first review the

existing bag-of-features (BoF) approach for scene classification. We then introduce

the BoS image representation obtained using ImageNet trained CNNs. The design

of basic FV embeddings for the ImageNet BoS is discussed in the rest of the chapter.

In Chapter III we show that revisit the classical Fisher vector and show that it can

be derived conveniently using the EM algorithm. We then introduce the Mixture

of factor analyzers (MFA) model that can model covariances in high dimensional

spaces unlike a variance GMM often preferred in FV literature. We derive the

Fisher embedding using EM for MFA model and evaluate it for BoS based scene

classification. In Chapter IV, we describe a system to generate synthetic data

given very few examples of real data in a transfer scenario. This is shown to be

helpful in one-shot and few-shot recognition scenarios. Final summary of the work

and conclusions are presented in Chapter V.
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Chapter II
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II.A Scene Classification

Natural scene classification is a challenging problem for computer vision,

since most scenes are collections of entities (e.g. objects) organized in a highly

variable layout. This high variability in appearance has made flexible visual repre-

sentations quite popular for this problem. Many works have proposed to represent

scene images as orderless collections, or “bags,” of locally extracted visual fea-

tures, such as SIFT or HoG [57, 15]. This is known as the bag-of-features (BoF)

representation. For the purpose of classification, these features are pooled into an

invariant image representation known as the Fisher vector (FV) [38, 64], which is

then used for discriminant learning. Until very recently, bag-of-SIFT FV achieved

state-of-the-art results for scene classification [73].

Recently, there has been much excitement about alternative image repre-

sentations, learned with convolutional neural networks (CNNs) [51], which have

demonstrated impressive results on large scale object recognition [45]. This has

prompted many researchers to extend CNNs to problems such as action recogni-

tion [42], object localization [30], scene classification [31, 96] and domain adapta-

tion [21]. Current multi-layer CNNs can be decomposed into a first stage of con-

volutional layers, a second fully-connected stage, and a final classification stage.

The convolutional layers perform pixel wise transformations, followed by localized

pooling, and can be thought of as extractors of visual features. Hence, the convo-

lutional layer outputs are a BoF representation. The fully connected layers then

map these features into a vector amenable to linear classification. This is the CNN

analog of a Fisher vector mapping.

Beyond SIFT Fisher vectors and CNN layers, there exists a different class of

image mappings known as semantic representations . These mappings require vec-

tors of classifier outputs, or semantic descriptors, extracted from an image. Several

authors have argued for the potential of such representations [88, 67, 80, 48, 49,

5, 52]. For example, semantic representations have been used to describe objects
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by their attributes [49], represent scenes as collections of objects [52] and capture

contextual relations between classes [68]. For some visual tasks, such as hashing

or large scale retrieval, a global semantic descriptor is usually preferred [84, 6].

Proposals for scene classification, on the other hand, tend to rely on a collection of

locally extracted semantic image descriptors, which we refer to as bag of seman-

tics (BoS) [80, 48, 52]. While a BoS based scene representation has outperformed

low-dimensional BoF representations [48], it is usually less effective than the high

dimensional BoF-FV. This is due to the fact that, 1) local or patch-based semantic

features can be very noisy, and 2) it is harder to combine them into a global image

representation, akin to the Fisher vector.

In this work, we argue that highly accurate classifiers, such as the Ima-

geNET trained CNN of [45] eliminate the first problem. We obtain a BoS image

representation using this network by extracting semantic descriptors (object class

posterior probability vectors) from local image patches. We then consider the de-

sign of a semantic Fisher vector , which is an extension of the standard Fisher

vector to this BoS. We show that this is difficult to implement directly on the

space of probability vectors, because of its non-Euclidean nature. On the other

hand, if semantic descriptors from an image are seen as parameters of a multino-

mial distribution and subsequently mapped into their natural parameter space, a

robust semantic FV can be obtained simply using the standard Gaussian mixture

based encoding of the transformed descriptors [64]. In case of a CNN, this natural

parameter mapping is shown equivalent to the inverse of its soft-max function. It

follows that the semantic FV can be implemented as a classic (Gaussian Mixture)

FV of pre-softmax CNN outputs.

The semantic FV, represents a strong embedding of features that are fairly

abstract in nature. Due to the invariance of this representation, which is a di-

rect result of semantic abstraction, it is shown to outperform Fisher vectors of

lower layer CNN features [31] as well as a classifier obtained by fine-tuning the

CNN itself [30]. Finally, since object semantics are used to produce our image
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Figure II.1: The Bag of Features (BoF) embedding. A preliminary feature mapping
F , maps an image into a space X of retinotopic features. A non-linear embedding
E is then used to map this intermediate representation into a feature vector on an
Euclidean space D.

representation, it is complementary to the features of the scene classification net-

work (Places CNN) proposed in [96]. Experiments show that a simple combination

of the two descriptors, produces a state-of-the-art scene classifier on MIT Indoor

and MIT SUN benchmarks.

II.B Image representations

In this section, we briefly review BoF and BoS based image classification.

II.B.1 Bag of Features

Both the SIFT-FV classifier and the CNN are special cases of the general

architecture in Figure Figure II.1, commonly known as the bag of features (BoF)

classifier. For an image I(l), where l denotes spatial location, it defines an initial

mapping F into a set of retinotopic feature maps fk(l). These maps preserve the

spatial topology of the image. Common examples of mapping F include dense

SIFT, HoG and the convolutional layers of a CNN. The BoF produced by F is

subject to a highly nonlinear embedding E into a high dimensional feature space

D. This is a space with Euclidean structure, where a linear classifier C suffices for

good performance.

It could be argued that this architecture is likely to always be needed for
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scene classification. The feature mapping F can be seen as a (potentially non-

linear) local convolution of the input image with filters, such as edge detectors

or object parts. This enables the classifier to be highly selective, e.g. distinguish

pedestrians from cars. However, due to its retinotopic nature, the outputs of F are

sensitive to variations in scene layout. The embedding E into the non-retinotopic

space D is, therefore, necessary for invariance to such changes. Also, the space

D must have a Euclidean structure to support classification with a linear decision

boundary.

CNN based classifiers have recently achieved spectacular results on the Im-

ageNET object recognition challenge [45, 74]. Their success has encouraged many

researchers to use the features and embeddings learned by these networks for scene

classification, replacing the traditional SIFT-FV based architecture [21, 75, 31, 55].

It appears undisputable that their retinotopic mapping F , which is strongly non-

linear (multiple iterations of pooling and rectification) and discriminant in nature

(due to back-propagation) [93], has a degree of selectivity that cannot be matched

by shallower mappings, such as SIFT. Less clear, however, is the advantage of

using embeddings learned on ImageNET in place of the Fisher vectors for scene

representation. As scene images exhibit a greater degree of intra class variation

compared to object images, the ability to trade-off selectivity with invariance is

critical for scene classification. While Fisher vectors derived using mixture based

encoding are invariant by design, a CNN embedding learned from almost centered

object images is unlikely to cope with the variability in scenes.

II.B.2 Bag of Semantics

Semantic representations are an alternative to the architecture of Figure Fig-

ure II.1. They simply map each image into a set of classifier outputs, using these

as features for subsequent processing. The resulting feature space S is commonly

known as the semantic feature space. Since scene semantics vary across image

regions, scene classification requires a spatially localized semantic mapping. This
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is denoted as the bag-of-semantics (BoS) representation.

As illustrated in Figure Figure II.2, the BoS is akin to the BoF, but based on

semantic descriptors. Its first step is the retinotopic maping F . However, instead

of the embedding E , this is followed by another retinotopic mapping N into S.

At each location l, N maps the BoF descriptors extracted from a neighborhood of

l into a semantic descriptor . The dimensions of this descriptor are probabilities

of occurrence of visual classes (e.g. object classes, attributes, etc.). A BoS is an

ensemble of retinotopic maps of these probabilities. An embedding E is used to

finally map the BoS features into a Euclidean space D.

While holistic semantic representations have been successful for applications

like image retrieval or hashing, localized representations, such as the BoS, have

proven less effective for scene classification, for a couple of reasons. First, the scene

semantics are hard to localize. They vary from image patch to image patch and it

has been difficult to build reliable scene patch classifiers. Hence, local semantics

tend to be noisy [70, 52] and most works use a single global semantic descriptor per

image [84, 4, 5]. This may be good for hashing, but it is not expressive enough for

scene classification. Second, when semantics are extracted locally, the embedding

E into an Euclidean space has been difficult to implement [48]. This is because

semantic descriptors are probability vectors, and thus inhabit a very non-Euclidean

space, the probability simplex, where commonly used descriptor statistics lose their

effectiveness. In our results we show that even the sophisticated Fisher vector

encoding [64], when directly implemented, has poor performance on this space.

We argue, that the recent availability of robust classifiers such as the CNN

of [45], trained on large scale datasets, such as ImageNET [17], effectively solves

the problem of noisy semantics. This is because an ImageNET CNN is, in fact,

trained to classify objects which may occur in local regions or patches of a scene

image. The problem of implementing an invariant embedding E in the semantic

space, however, remains to be solved.
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Figure II.2: The Bag of Semantics (BoS) embedding. The space X of retinotopic
features is first mapped into a retinotopic semantic space S, using a classifier of
image patches. A non-linear embedding E is then used to map this representation
into a feature vector on an Euclidean space D.

II.C BoF embeddings

We first try to analyze, the suitability for scene classification, of the known

BoF embeddings, namely the Fisher vector and the fully connected layers of Ima-

geNET CNNs.

II.C.1 CNN embedding

For the CNN of [45], the mapping F consists of 5 convolutional layers.

These produce an image BoF I = {x1, x2, . . . xN}, where xi’s are referred to as

the conv5 descriptors. The descriptors are max pooled in their local neighborhood

and transformed by the embedding E . The embedding is implemented using two

fully connected network stages, each performing a linear projection, and a non-

linear ReLu transformation {W × (.)}+. The resulting outputs of layer 7, which

we denote as fc7 , are the features of space D, in Figure Figure II.1.

II.C.2 FV embedding

Alternatively, a FV embedding can be implemented for the BoF of conv5

descriptors. This consists of a preliminary projection into a principal component

analysis (PCA) subspace,

x = Cz + µ, (II.1)
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where C is a low-dimensional PCA basis and z are the coefficients of projection of

the conv 5 descriptors x on it. z’s are assumed Gaussian mixture distributed.

z ∼
∑
k

wkN(µk, σk). (II.2)

A central component of the FV is the natural gradient with respect to parameters

(mean, variance and weights) of this model [73]. For conv5 features, we have found

that the gradient with respect to the mean [64]

GIµk =
1

N
√
wk

N∑
i=1

p(k|zi)
(
zi − µk
σk

)
(II.3)

suffices for good performance. Note that this gradient is an encoding and pool-

ing operation over the zi. It destroys the retinotopic topology of the BoF and

guarantees invariance to variations of scene layout.

II.C.3 Comparison

We compared the CNN and FV embeddings, on two popular object recog-

nition (Caltech 256 [33]) and scene classification (MIT Indoors [65]) datasets, with

the results shown in the top half of Table Table II.1. For the CNN embedding,

7th fully connected layer features were obtained with “Caffe” [41]. Following [21],

this 4096 dimensional feature vector was extracted globally from each image. It

was subsequently power normalized (square rooted), and L2 normalized, for better

performance [75]. The classifier trained with this representation is denoted “fc

7” in the table. For the FV embedding, the 256-dimensional conv5 descriptors

were PCA reduced to 200 dimensions and pooled with (II.3), using a 100-Gaussian

mixture. This was followed by a square root and L2 normalization, plus a second

PCA to reduce dimensionality to 4096 and is denoted “conv5 + FV” in the table.

Both representations were used with a linear SVM classifier.

The results of this experiment highlight the strengths and limitations of

16



Table II.1: Comparison of the ImageNET CNN and FV embeddings on scene and
object classification tasks.

Method MIT Indoor Caltech 256
fc 7 59.5 68.26

conv5 + FV 61.43 56.37

fc7 + FV 65.1 60.97

the two embeddings. While fc7 is vastly superior to the FV for object recognition

(a gain of almost 12% on Caltech), it is clearly worse for scene classification (a

loss of 2% on MIT Indoor). This suggests that, although invariant enough to

represent images containing single objects, the CNN embedding cannot cope with

the variability of the scene images. On the other hand, the mixture based encoding

mechanism of the FV is quite effective on the scene dataset.

FV over conv 5 , however, is an embedding of low-level CNN features. In

principle, an equivalent embedding of BoS features should have better performance,

since semantic descriptors have a higher level of abstraction than conv5 , and thus

exhibit greater invariance to changes in visual appearance. To some extent, the

image representation proposed by Gong et. al. [31] shows the benefits of such

invariance, albeit using an embedding of the intermediate 7th layer activations, not

the semantic descriptors at the network output. They represent a scene image

as a collection of fc7 activations extracted from local crops or patches. These

are summarized using an approximate form of (II.3), known as VLAD [40]. The

resulting embedding, denoted as “fc7 + FV” in Table Table II.1, is very effective

for scene classification1. However, since the representation does not derive from

semantic features, it is likely to be both less discriminant and less abstract than

the truly semantic embedding of Figure Figure II.2. The implementation of an

effective semantic embedding, on the other hand, is not trivial. We consider this

problem in the remainder of this work.

1The results reported here are based on (II.3) and 128x128 image patches. They
are slightly superior to those of VLAD, in our experiments
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Figure II.3: Example of an imageNet based Bag of Semantics. a) shows the original
image of a bedroom. The object recognition channels in ImageNet CNN related to
b) “day bed” c) “comforter” and d) “window screen” show high affinity towards
relevant local semantics of the scene

II.D Semantic FV embedding

We start with a brief review of a BoS image representation and then propose

suitable embeddings for them.

II.D.1 The BoS

Given a vocabulary V = {v1, . . . , vS} of S semantic concepts , an image I

can be described as a bag of instances from these concepts, localized within image

patches/regions. Defining an S-dimensional binary indicator vector si, such that

sir = 1 and sik = 0, k 6= r, when the ith image patch xi depicts the semantic

class r, the image can be represented as I = {s1, s2, . . . , sn}, where n is the total

number of patches. Assuming that si is sampled from a multinomial distribution
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Figure II.4: Convolutional Neural Net based semantic image representation. Each
image patch is mapped into an SMN π on the semantic space S, by combination of a
convolutional BoF mapping F and a secondary mapping N by the fully connected
network stage. The resulting BoS is a retinotopic representation, i.e. one SMN
per image patch.

of parameter πi, the log-likelihood of image I can be expressed as,

L = log
n∏
i=1

S∏
r=1

πir
sir =

N∑
i=1

S∑
r=1

sir log πir. (II.4)

Since the precise semantic labels si for image regions are usually not known, it is

common to rely instead on the expected log-likelihood

E[L] =
n∑
i=1

S∑
r=1

E[sir] log πir (II.5)

Using the fact that πir = E[sir] or P (r|xi), it follows that the expected image

log-likelihood is fully determined by the multinomial parameter vectors πi. This

is denoted the semantic multinomial (SMN) in [67]. They are usually computed

by 1) applying a classifier, trained on the semantics of V , to the image patches,
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and 2) using the resulting posterior class probabilities as SMNs πi. The process is

illustrated in Figure Figure II.4 for a CNN classifier. Each patch is thus mapped

into the probability simplex, which is denoted the semantic space S in Figure Fig-

ure II.2. The image is finally represented by the SMN collection I = {π1, . . . , πn}.
This is the bag-of-semantics (BoS) representation.

In our implementation, we use the ImageNET classes as V and the object

recognition CNN in [45] to estimate the SMNs πi. Scoring patches of a scene

individually, to generate these SMNs, is a simple but slow approach to semantic

labeling. A faster alternative is to transform a CNN into a fully convolutional net-

work and generate a BoS with one forward pass on the scene image. This requires

changing the fully connected layers, if any, in the CNN into 1x1 convolutional lay-

ers. The receptive field of a fully convolutional CNN can be altered by reshaping

the size of the input image. E.g. if the image is of size 512x512 pixels, the fully

convolutional implementation of [45], generates SMNs from 128x128 pixel patches

that are 32 pixels apart, approximately. The high quality of semantics generated

by this classifier is apparent from fig. Figure II.3, where the recognizers related

to “bed”, “window” and “quilt” are shown to exhibit high activity in areas where

these objects appear in a bedroom scene.

II.D.2 Evaluation

We evaluate the performance of the GMM Fisher vector as a BoS embed-

ding, for the task of scene classification. Experiments are performed on benchmark

scene datasets namely MIT Indoors [65] and MIT SUN [90]. The MIT Indoor

dataset consists of 100 images each from 67 indoor scene classes. The standard

protocol for scene classification, on this dataset, is to use 80 images per class for

training and the remaining 20 per class for testing. The MIT SUN dataset has

about 100K images from 397 indoor and outdoor scene categories. The authors of

this dataset provide randomly sampled image sets each with 50 images per class

for training as well as test. Performance, on both datasets, is reported as average
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Table II.2: Evaluation of different Fisher vector encoding techniques over imageNet
BoS. Fisher vectors of fully connected layer features and handcrafted SIFT are
included for reference.

Method MIT Indoor SUN
SIFT-FV 60.0 43.3
fc7-FV 65.1 48.3

SMN-FV 55.3 36.87
DMM-FV 58.8 40.86

ν(1)-FV 67.7 49.86
ν(2)-FV 68.5 49.86
ν(3)-FV 67.6 48.81

ν(4)-FV 58.95 40.6

per class classification accuracy.

To generate an image BoS, we use the object recognition CNN of [45], pre-

trained on the ImageNet dataset. The network is applied to every scene image

convolutionally, generating a 1000 dimensional SMN for every 128x128 pixel re-

gion, approximately. The 1000 dimensional probability vectors (πi’s) are reduced

to 500 dimensions using PCA. A reference Gaussian mixture model θb, with 100

components, is trained using the PCA reduced SMNs xi’s from all training im-

ages. For each scene image, using its BoS, a Fisher vector is computed as shown

in (II.3). The image FVs are power normalized and L2 normalized, as per standard

procedure [64], and used to train a linear SVM for scene classification.

The GMM-FV classifier trained on imageNet semantics is denoted as SMN-

FV in Table Table II.2. Scene classification performance of the SMN-FV is found

to be very poor on both MIT Indoor and SUN datasets. The classifier is in fact,

significantly weaker compared to even a handcrafted SIFT-based FV. The accu-

racy of SMN-FV is about 5−6% points lower than the SIFT-FV used in [73]. It is

undisputed that the mappings of a CNN, which are strongly non-linear (multiple

iterations of pooling and rectification) and discriminant (due to back-propagation),

have a degree of selectivity that cannot be matched by shallower mappings, such

as SIFT. The inferior performance of CNN based SMN-FV, therefore, is very sur-
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prising. Additionally, semantic (classifier) mappings of a CNN have a higher level

of abstraction compared to mappings of lower network layers. CNN semantics

therefore, exhibit greater invariance to visual appearance compared to activations

from pre-classification fully connected layers. The SMN-FV, therefore, in principle,

should have better performance compared to an FV embedding of fully connected

(fc7) features. A comparison on scene classification, however, shows that a SMN-

FV is substantially worse than a fc7-FV of similar complexity. Both the results

indicate that despite the demonstrable superiority of ImageNet semantics, embed-

ding them with a simple GMM-FV can adversely impact the final performance. In

order to design an FV embedding suitable for ImageNet semantics, it is therefore,

necessary to first understand the nature of the semantic space.

II.D.3 Limitations

While GMM FVs perform reasonably well with low-level feature spaces

such as SIFT, HoG etc., their failure with ImageNet SMNs can be attributed to

a very non-Euclidean nature of the space of probability vectors. In general, the

difficulty of modeling on a data space X depends on its topology. Most machine

learning assumes vector spaces with Euclidean structure, e.g. where the natural

measure of distance between examples xi ∈ X is a metric. This is not the case for

the probability simplex, which has a non-metric Kullback-Leibler divergence as its

natural distance measure, and makes model learning quite difficult.

To illustrate this issue we present two binary classification problems shown

in Figures Figure II.5 a) and b). In one case, the two classes are Gaussian, and in

the other they are Laplacian. The class-conditional distributions of both problems

are of the form P (x|y) ∝ exp{−d(x, µy)} where Y ∈ {0, 1} is the class label and

d(x, µ) = ||x− µ||p (II.6)

with p = 1 for Laplacian and p = 2 for Gaussian data. Figures Figure II.5 a) and
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b) show the iso-contours of the probability distributions under the two scenarios.

Note that both the classifiers have very different metrics.

The posterior distribution of class Y = 1 is, in both cases,

π(x) = P (y = 1|x) = σ(d(x, µ0)− d(x, µ1)) (II.7)

where σ(v) = (1 + e−v)−1 is the sigmoid function. Due to the non-linearity of the

sigmoid mapping, the projection x → (π(x), 1 − π(x)) of the samples xi into the

semantic space destroys the Euclidean structure of their original spaces X . This

is illustrated in Figure Figure II.5 c), where we show the posterior surface and the

projections π(xi) for samples xi of the Guassian classes of Figure Figure II.5 a).

On the semantic space, the shortest path between two points is not necessarily a

line. The non-linearity of the sigmoid also makes the posterior surfaces of both

classification problems very similar. The posterior surface of the Laplacian problem

in Figure Figure II.5 b) is visually indistinguishable from Figure Figure II.5 c) and

is omitted for brevity.

The example shows two very different classifiers transforming the data into

highly non-Euclidean semantic spaces that are almost indistinguishable. This sug-

gests that modeling directly in the space of probabilities with Gaussian Mixtures

can be difficult in general. This is the most likely reason for the weakness of

GMM-FVs in the semantic space of CNNs.

II.D.4 Natural parameter space

The non-Euclidean nature of a classifier’s posterior surface makes the em-

bedding E of Figure Figure II.2 very difficult to learn from SMNs. Note, for ex-

ample, that the PCA step in (II.1) or the subsequent Gaussian encoding described

in (II.3) make no sense for semantic space data, since the geodesics of the posterior

surface are not lines. This problem can be avoided by noting that SMNs are the

parameters of the multinomial, which is a member of the exponential family of
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distributions

PS(s; π) = h(s)g(π) exp
(
ηT (π)T (s)

)
, (II.8)

where T (s) is denoted a sufficient statistic. In this family, the re-parametrization

ν = η(π), makes the (log)probability distribution linear in the sufficient statistic

PS(s; ν) = h(s)g(η−1(ν)) exp
(
νTT (s)

)
. (II.9)

This is called the natural parameterization of the distribution. Under this parametriza-

tion, the multinomial log-likelihood of an image BoS in (II.5) yields a natural

parameter vector νi = η(E{si}) for each patch xi, instead of a probability vec-

tor. When the semantics are binary, the natural parameter is obtained by a logit

transform ν = log π
1−π of SMNs. This maps the high-nonlinear semantic space of

Figure Figure II.5 c) into the linear space of Figure Figure II.5 d). Similarly, by

mapping the multinomial distribution to its natural parameter space, it is possible

to obtain a one-to-one transformation of the semantic space into a space with Eu-

clidean structure. This makes the embedding E of Figure Figure II.2 substantially

easier.

II.D.5 Natural Parameter FVs

Natural parameter transformation maps an image BoS I = {π1, . . . πn} into

the natural parameter space BoS (NP-BoS) I = {ν1, . . . νn}. The main advantage

of the natural parameter space is its Euclidean nature, which allows the design an

embedding using the standard GMM FV machinery. For a multinomial distribu-

tion of parameter vector π = (π1, . . . , πS) there are actually three possible natural

parametrizations

ν
(1)
k = log πk (II.10)

ν
(2)
k = log πk + C (II.11)

ν
(3)
k = log

πk
πS

(II.12)
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where νk and πk are the kth entries of ν and π, respectively. The performance of

these parametrizations is likely to depend on the implementation of the semantic

classifier that generates the SMNs. For a discriminant classifier such as the CNN,

ν(2) will likely be the best parameterization. Note that, in this case, the vector

of entries πk = 1
C
eν , is a probability vector if and only if C =

∑
i e
νi . Hence,

the mapping from ν to π is the softmax transformation commonly implemented

at the CNN output. This implies that the CNN is learning how to discriminate

the data in the natural parameter space of the multinomial distribution, which

is a generalization of a natural binomial space shown in Figure Figure II.5 d).

We test this assertion in our experiments by comparing the parametrizations of

(II.10)-(II.12) for GMM-FV based scene classification.

II.D.6 Dirichlet Mixture FVs

An alternative to GMM based embedding of natural parameter features, is

the use of a Dirichlet mixture models (DMM) in the space of SMNs. A DMM is

the most popular model for multinomial probability vectors [59]. It was previously

proposed by Rasiwasia et. al. [68] to model scene class-specific distributions of

“theme” SMNs. The probability distribution function of a DMM is defined as,

P (π|{αk, wk}Kk=1) =
1

Z(αk)
e
∑

l(αkl−1) log πl . (II.13)

where αk is known as the Dirichlet parameter of the kth mixture component and

wk denotes the mixture weight. Z(αk) is a normalizing constant of the distribution

component and has the mathematical form
γ(

∑
l αkl)∏

l γ(αkl)
, where γ(x) =

∫∞
0
xt−1e−xdx

denotes a Gamma function. Note that the sufficient statistic of a Dirichlet distri-

bution is log π. A DMM, therefore, inherently operates in the space of the natural

parameter ν(1) shown in (II.10). The log-likelihood of an image BoS I = {π1, . . . πn}
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under the DMM is

L = logP ({πi}ni=1|{αk, wk}Kk=1) (II.14)

= log
n∏
i=1

K∑
k=1

wk
γ (
∑

l αkl)∏
l γ(αkl)

e
∑

l(αkl−1) log πil . (II.15)

The Fisher scores of this log-likelihood are

GIαk
=

1

n

∂L
∂αk

=
1

n

N∑
i=1

p(k|πi)
(
ψ(
∑
l

αkl)− ψ(αk) + log πi

)
(II.16)

where ψ(x) = ∂γ(x)
∂x

. Using some common assumptions in the FV literature [64],

we approximate the Fisher information F by the block diagonal matrix

Flm = E

[
−∂

2 logP (π|{αk, wk}Kk=1)

∂αkl∂αkm

]
≈ wk

(
ψ′(αkl)δ(l,m)− ψ′(

∑
l

αkl))

) (II.17)

where δ(l,m) = 1 if l = m. A DMM Fisher vector for image I is finally obtained

from (II.16) and (II.17) as F−1/2GIαk
.

II.D.7 Evaluation of NP Embeddings

We design a scene classification experiment to compare the performance of

the DMM-FV from section II.D.6 with the Gaussian Mixture FVs trained over

parameter mappings (II.10)-(II.12). The latter are denoted ν(i)-FVs based on the

NP mapping ν(i) used to learn them. The experimental protocol is the same as

described in section II.D.2. Local SMNs are extracted using the ImageNet CNN

of [45] from evenly spaced, 128x128 pixel patches of scene images from MIT Indoor

and SUN datasets. To obtain the ν(i)-FVs, the image SMNs are transformed into

the appropriate natural parameters and reduced to 500 dimensions using PCA.
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Figure II.5: Effects of probability mapping on Euclidean spaces. Top: Two classi-
fiers in an Euclidean feature space X , with metrics a) the L2 or b) L1 norms. Bot-
tom: c) projection of a sample from a) into the semantic space S (only P (y = 1|x)
shown). The posterior surface destroys the Euclidean structure of X and is very
similar for the Gaussian and Laplacian samples (Lapalacian omitted for brevity).
d) natural parameter space mapping of c).

Reference or background GMMs θb = {µbk, σbk, wk}Kk=1 with K = 100 components,

are learned using the PCA reduced natural parameters obtained from the training

images. Natural parameter FVs are computed for these models using (II.3). For

the DMM-FV, a reference Dirichlet model θb = {αbk, wbk}Kk=1 with 100 components,

is trained on the space of training SMNs πi’s. The FV embedding is computed

using gradient scores in (II.16) and the Fisher scaling of (II.17). The DMM-FV

and the ν(i) − FV s are Power normalized, L2 normalized and used to train linear

SVMs for scene classification.

Results reported in table Table II.2, show that the natural parameter ν(i)-

FVs improve significantly over GMM-FVs obtained directly from SMNs (denoted
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SMN-FVs). The gain of about 13 − 14% points in accuracy demonstrates the

impact of learning an FV embedding in a Euclidean space, or, conversely, high-

lights the adverse effects of working directly in the probability space. Unlike the

SMN-FV, the ν(i)-FVs are able to leverage the full discriminative power as well

as the invariance properties of CNN semantics. Due to these qualities, they eas-

ily outperform the baseline SIFT-FVs [73] or FV’s of lower CNN layer features

(e.g. conv5-FV). The DMM-FV, on the other hand, performs very poorly. Despite

acting in the same natural parameter space ν(1) = log π, the DMM-FV is out-

performed by the ν(1)-FV by a margin of about 9-10 % points on both datasets.

This suggests that it is better to learn a simple Gaussian mixture in the space

of Dirichlet sufficient statistics, instead of directly learning a Dirichlet mixture.

Failure of the DMM-FV perhaps stems from the in-flexibility inherent to Dirichlet

modeling. The discriminative power of a GMM and it’s FV is known to increase

proportionally with the mixture size. A DMM-FV, on the other hand, deteriorates

with increasing mixture cardinality. The best performance, using a DMM-FV, is

achieved when the distribution is unimodal, as seen in fig Figure II.6. To under-

stand the reasons behind the disparity between the ν(i)-FVs and the DMM-FV,

we perform an ablation study in the following section.

II.D.8 Ablation Analysis

Consider a Dirichlet mixture {wk, αk}Kk=1 learned from the SMNs and a

Gaussian mixture {wk, µk,Σk}Kk=1 learned using natural parameter points log π.

Both the distributions specify a distinct set of K codewords {ck}Kk=1 in the common

space of ν(1)s. From the M-step of the EM algorithm, it is evident that the both

sets of codewords are of the following form.

ck =
1

nk

∑
{πi∈D}

qik log πi (II.18)
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Figure II.6: The scene classification performance of a DMM-FV varying with the
number of mixture components. The experiment is performed on MIT Indoor
scenes.

The weights qik are the posterior assignment probabilities of points πi from the

training set D and nk equals the sum of these weights
∑

i qik, estimated during the

E-step. In case of a GMM, the centroids ck equal the maximum likelihood (ML)

estimates of its means µk, upon convergence of EM. For the Dirichlet mixture, these

centroids provide an ML estimate of the function fk(α) = ψ (αk)− ψ (
∑

k αk).

Since both the codebooks reside in the same natural parameter space, the

Gaussian codewords can be used to construct a valid Dirichlet model and vice

versa. The means {µk}Kk=1 of a Gaussian in the log π space, can be mapped to a

set of Dirichlet parameters by solving the equation µk = ψ (α̃k) − ψ (
∑

k α̃k) for

α̃k’s. Thus, a GMM {wk, µk,Σk}Kk=1 in ν(1) can be mapped to a DMM {wk, α̃k}Kk=1

by estimating the α̃k’s and copying the mixture weights wk. Similarly, a mixture

of Gaussians can be anchored at the centroids µ̃k = fk(α) of a known DMM. The

mixture weights wk can be copied from the Dirichlet model. The covariances of

the Gaussian components Σk can be initialized to the global covariance matrix Σ
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estimated from the training data.

The ability to map a Dirichlet mixture into a Gaussian mixture and vice

versa, helps us design experiments to probe the Fisher vector representations of the

two models. In the first of these experiments, we evaluate the impact of a codebook

on the performance of a GMM or a DMM FV. Using SMNs extracted from MIT

Indoor scenes, we train a Dirichlet Mixture model {wk, αk}Kk=1 of K = 100 compo-

nents as well as a Gaussian mixture model {wk, µk,Σ}Kk=1 of the same size in the

log π space. We denote these models as DMM1 and GMM1 respectively. A second

Dirichlet model, DMM2 is constructed using means of GMM1 as {wk, α̃k}Kk=1. A

Fisher vector is derived using both the learned and the constructed Dirichlet mod-

els and evaluated independently for classification. Similarly, using the centroids

of the Dirichlet model DMM1, we construct a second Gaussian mixture model

GMM2 with parameters {wk, µ̃k,Σ}Kk=1. Both the Gaussian models, GMM1 and

GMM2 are used to obtain FVs in the ν(1) space that are tested for classifica-

tion. Results in table Table II.3 indicate that the performance of a Dirichlet

model (DMM1) trained from scratch is virtually similar to the performance of a

Dirichlet model (DMM2) derived from a GMM. The DMM1-FV and DMM2-FV

embeddings achieve accuracies of within 0.5% of each other (58.8% v 58.4%). Same

is the case with the Gaussian mixtures, GMM1 and GMM2. FV of the trained

GMM1 achieves an accuracy of 68.5% whereas an FV of the derived GMM2 per-

forms at 68.6%. These results suggest that the mixture model quality is perhaps

not as important as the FV encoding it is used to generate. A GMM in the natu-

ral parameter space, seems to produce a better classifier than a Dirichlet mixture

primarily, perhaps due to the way it encodes a descriptor into an FV. If the same

Gaussian mixture is used to generate a DMM-FV encoding, its performance is seen

dropping drastically (by about 10% points). On the other hand, if a learned Dirich-

let mixture model is used to produce a GMM-FV instead of its natural DMM-FV

encoding, its performance improves by the same margin. To further examine the

impact of model quality on the power of an FV derived from it, we perform an ad-
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Table II.3: Impact of codebook selection on DMM and GMM FVs in ν(1) space. Ta-
ble reports a comparison of FVs obtained using a learned DMM, denoted DMM1, a
DMM constructed from a learned GMM, denotedDMM2 and one that is initialized
from randomly sampled data points, denoted DMM3 is shown above. A similar
comparison is reported between GMM1 trained on ν(1), a GMM2 constructed us-
ing DMM1 and a GMM3 initialized from randomly sampled datapoints in ν(1).
The experiments are performed on MIT Indoor.

Fisher Vector Accuracy
DMM1-FV 58.8
DMM2-FV 58.4
DMM3-FV 58.0

GMM1-FV 68.5
GMM2-FV 68.6
GMM3-FV 61.3

ditional experiment with randomly initialized model centroids. A set of K natural

parameter points {log πi}Ki=1 are sampled randomly from the training set and used

as our codewords {ck}Kk=1. Using this clearly sub-optimal codebook, we construct

a Dirichlet mixture DMM3 and a Gaussian mixture GMM3 with uniform mix-

ture weights. For the GMM, the component covariances are again set to Σ. Both

the models are used to generate Fisher vectors denoted, DMM3-FV and GMM3-

FV, and tested for scene classification. The accuracy of the DMM3-FV from

table Table II.3 is 58.0%, which is not very far from the Dirichlet-FVs obtained

from learned codebooks (Gaussian or Dirichlet). The performance of the Gaussian

mixture GMM3-FV is, however, found to be much worse than GMM-FVs derived

using properly learned mixtures. The poor performance of a GMM initialized with

random means is no surprise. The centroids are not at all adapted to the data

distribution and the model is not expected to informative at all. The total lack of

impact this has on the performance of a DMM-FV is perhaps the more surprising

result. Even a randomly initialized Dirichlet model produces a DMM-FV that is

on par with the DMM-FVs of more systematically mixtures. This must mean that

the Dirichlet mixture FV is inherently deficient as a descriptor encoding, compared

to say a Gaussian mixture FV.
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To understand what makes it so weak, we perform a component wise analy-

sis of the DMM Fisher vector encoding. For this, we consider the learned Gaussian

mixture GMM1 in log π space and the Dirichlet mixture DMM2 constructed from

it. The FVs of these models produce a non-linear transformation of a data point

π, that can be summarized as,

Gk(π) = F−
1
2

k qk{T (π)− ck} (II.19)

Here, Fk denotes the Fisher information matrix (FIM), qk the posterior assignment

probability and rk(π) = T (π)− ck the residual of the kth component of the under-

lying mixture. By construction, the codewords of the Gaussian mixture GMM1

are the same as those used by the Dirichlet model DMM2 (ck = µk = fk(α̃)).

The descriptor residuals log π− ck generated by the models, therefore, are exactly

the same. The difference between the two encodings stems from their different

mixture assignment functions qk and Fisher scalings Fk. The DMM2 model uses

a Fisher matrix of the form (II.17), which we denote as Hk(α̃), whereas GMM1’s

Fisher information equals Σ. The point assignment probability under the GMM1

is q(log π;µ,Σ, w) ∝ wk exp{‖ log π−µk‖Σ}, whereas under the DMM2 model, it is

q(π; α̃, w) ∝ wk exp{α̃Tk log π}. Both the differences contribute to a cumulative gap

of about 10% points in their classification performance. Starting from a GMM1-

FV, therefore, if we change its assignment function to q(π; α̃, w) or Fisher scaling

to Hk(α̃), we can verify the individual impact of the two components. Note that if

we change both, the GMM1-FV transforms into a DMM2-FV. The results of this

ablation are reported in table Table II.4. When the assignment function of the

GMM1-FV is changed to Dirichlet, its performance reduces by %. One the other

hand, when the fisher scaling is changed from Σ to Hk(α̃), a substantial loss of % is

observed. We perform a similar experient, trying to replace the scaling and assign-

ment of the DMM1-FV with those of the constructed model GMM2. The results

again indicate only a moderate change in performance due to change of assignment
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Table II.4: Ablation analysis of the DMM-FV and the GMM-FV embeddings on
ν(1) space.

Mixture FV Encoding
Model Scaling Assignment Accuracy

DMM
H(α)

q(π;α,w) 58.8

q(log π; (̃µ),Σ, w) 57.7

Σ
q(π;α,w) 67.1

q(log π; (̃µ),Σ, w) 68.6

GMM
Σ

q(log π;µ,Σ, w) 68.5
q(π; α̃, w) 68.7

H(α̃)
q(log π;µ,Σ, w) 57.7
q(π; α̃, w) 58.4

function. A big improvement is observed, however, when the Gaussian scaling Σ

is used in place of the Dirichlet scaling of Hk(α). The evidence, therefore, support

the conclusion that its Fisher information based scaling is the biggest drawback

of the DMM-FV. The structure of this matrix as shown in (II.17) is restrictive, in

that its off-diagonal elements are a scalar constant equal to −ψ′(∑l αkl). There-

fore, it resides in a subspace of the space of symmetric positive definite matrices

S+
d and affords very few degrees of freedom (roughly equal to the dimensionality of

α). The most important effect of any Fisher information based scaling is the decor-

relation of an FV, which is known to improve its performance significantly [73].

The DMM Fisher matrix, however, seems to fail in producing this effect. Fisher

information of a model represents the local metric on the tangent space T θb to the

model manifold. Using the analysis, one can say that a Dirichlet model manifold

is not conducive for FV based classification.

II.D.9 NP-BoS v.s. Comparable Transformations

For our BoS based scene classifier, a simple Gaussian Mixture FV con-

structed on one of the natural parameter spaces (II.10)-(II.12) seems to be the

best candidate for a Euclidean embedding E . As seen in table Table II.2, the

performance of all three ν(i) Fisher vectors is very close to each other, although
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ν(2) is slightly better than the other two. This is perhaps, because ν(2) represents

the natural parameter space that almost all known discriminant classifiers learn

in, e.g. CNN (see explanation in II.D.5). We, therefore, prefer ν(2) over others to

learn our scene classifiers.

The proposed natural parameter transformations ν(i), are the best known

solution for the problems of semantic space classification. There have been propos-

als, in the past, along similar lines to transform semantic or non-semantic prob-

ability vectors for bag-of-features style classification. Kwitt et. al. [48], propose

projecting the SMNs on the great circle using a square root embedding
√
π. This

helps alleviate the difficulty of modeling on the complex semantic simplex, to some

extent. The non-Euclidean nature of the simplex and the resulting non-linearity

of its geodesics is also noted by the authors as a major source of difficulty for

SMN based classification. The use of square root embedding was also proposed

in [16] over low-level SIFT descriptors. Instead of L2 normalizing the classical

SIFT histogram, the authors propose to L1 normalize it into a probability multi-

nomial. The, L1 normalized SIFT probabilities are transformed into “Root-SIFT”

descriptors and encoded using a Gaussian mixture FV. It is unclear whether the

distribution of low-level probabilities such as “Root-SIFT” are similar to seman-

tic multinomials. The square-root trick, nevertheless, helps them achieve some

moderate improvements over standard SIFT. We compare the square root embed-

ding of SMNs with our NP transformations for FV based scene classification. The

Root-BoS scene classifier is denoted ν(4) in table Table II.2. Its performance on

MIT Indoor and MIT SUN scene datasets , at 58.95% and 40.6% respectively, is

quite close to that of the DMM-FV but much worse than any of the natural pa-

rameter embeddings. This indicates that a square root transformation is perhaps

not enough to reverse the effects of non-linear probability transformations such as

a sigmoid or a softmax. Another approach for transforming low-level probability

descriptors was proposed by Kobayashi et. al. in [44]. Their use a log based trans-

formation on L1 normalized SIFT descriptors is also inspired from the Dirichlet
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sufficient statistics. In their work, a SIFT probability vector p is subjected to

a von-Mises transformation ν(5) = log(p+ε)−log ε
‖ log(p+ε)−log ε‖2 and summarized using a Gaus-

sian Mixture FV. The resulting image classifier was shown to improve over the

Root-SIFT FV of [16]. Except for its L2 normalization, the von-Mises embedding

proposed in [44] is somewhat similar to one of our natural parameter transforma-

tions ν(3) = log pi− log pN . When used with our SMNs for FV based classification,

we find that its performance is better than the square root embedding ν(4) but

worse than all three of our NP transformations (II.10)-(II.12). The most likely

reason for this is the projection onto the great circle through an L2 normalization,

which may work for SIFT, but doesn’t quite help CNN based semantics.

II.E Related work

The proposed semantic FV has relations with a number of works in the

recent literature.

II.E.1 FVs of lower layer activations

The proposed representation, when computed with mapping ν(2) of (II.11),

as discussed above, acts directly on the outputs of the 8th layer (fc8) of ImageNET

CNN [45]. In that sense, it is similar to the Fisher vectors of [55, 31], which are

computed using the activations from the fully connected 6th (fc6) and 7th lay-

ers (fc7). The most important difference between these and fc8 outputs, however,

is that the latter are semantic features obtained as a result of a discriminant pro-

jection on fc7 and fc6. They are, therefore, likely to be more selective. Besides

their explicit semantic nature also ensures a higher level of abstraction, as a result

of which they can generalize better than lower CNN layer features. We compare

with the two representations to validate these assertions.
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II.E.2 Fine Tuning

Beyond its success on ImageNET classification, the CNN of [45] has been

shown to be highly adaptable to other classification tasks. A popular adaptation

strategy, known as “fine tuning” [30], involves performing additional iterations of

back-propagation on the new datasets. This is, however, an heuristic and time

consuming process, which needs to be monitored carefully in order to prevent

the network from over-fitting. The proposed semantic Fisher vector can also be

seen as an adaptation mechanism that fully leverages the original CNN, to extract

features, augmenting it with a Fisher vector layer that enables its application to

other tasks. This process is without heuristics and consumes much less time than

“fine-tuning”. We compare the performance of the two in Section II.F.3.

II.E.3 The Places CNN

Recent efforts of improving scene classification have relied on a pre-trained

imageNET CNN [21, 75, 31, 55]. mainly because of the superior quality of its

feature responses [93]. Our work focusses on using object semantics generated

by this network to obtain a high level representation for scene images. Zhou et.

al. propose a more direct approach that does not rely on the ImageNET CNN

at all. They simply learn a new CNN on a large scale database of scene images

known as the “Places” dataset [96]. Although the basic architecture of their Places

CNN is the same as that of the ImageNET CNN, the type of features learned

are very different. While the convolutional units of ImageNET CNN respond

to object-like occurrences, those in Places CNN are selective of landscapes with

more spatial features. The embedding of the Places CNN, therefore, produces a

holistic representation of scenes that is complementary to our semantic FV. We

demonstrate the effect of combining the two representations in our classification

experiments.
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Table II.5: Impact of semantic feature extraction at different scales.

Dataset Feat full img 160 128 96 80 Best 3 Best 4

Indoor
fc8 48.5 66.6 68.5 67.8 67.38 71.24 72.86
fc7 59.5 64.7 65.1 65.4 65.37 68.8 69.7

SUN
fc8 32.6 47.5 49.61 50.03 49.39 53.24 54.4
fc7 43.76 48.08 48.3 48.46 47.32 51.8 53.0

II.F Evaluation

In this section we report on a number of experiments designed to evaluate

the performance of the semantic FV.

II.F.1 Experimental setup

All experiments were conducted on the 67 class MIT Indoor Scenes [65] and

the 397 class SUN Scenes [90] datasets. The CNN features were extracted with the

Caffe library [41]. For FVs, the relevant CNN features (fc7 or fc8) were extracted

from local P × P image patches on a uniform grid. For simplicity, the prelimi-

nary experiments were performed with P = 128. A final round of experiments

used multiple scale features, with P ∈ {96, 80, 128, 160}. For all GMM-FVs the

local features were first reduced to 500 dimensions, using a PCA, and then pooled

using (II.3) and a 100 component mixture. The DMM-FV of Section II.D.6 was

learned with a 50 component mixture on the 1,000 dimensional SMN space. As is

common in the literature,all Fisher vectors were power normalized and L2 normal-

ized. This resulted in DMM and GMM FVs of size of 50000, dimensions of which

were further reduced to 4096, by PCA. In some experiments, we also evaluate

classifiers based on fc7 and SMN features extracted globally, as in [21]. The global

fc7 features were square-rooted and L2 normalized, whereas the global SMNs were

simply square rooted. Scene classifiers trained on all image representations were

implemented with a linear SVM.
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II.F.2 The role of invariance

To test the hypothesis that the semantic FV is both more discriminant and

invariant than FVs extracted from lower network layers, we compared its perfor-

mance with that of the fc7 FV of [31]. In this experiment, the CNN features were

extracted at multiple scales (globally as well as from patches of size 80, 96, 128

and 160 pixels). Table Table II.5 shows the results of the semantic FV (denoted

fc8) and the fc7 FV. Several remarks are worth making, in light of previous reports

on similar experiments [30, 21, 31]. First, when compared to the approach of ex-

tracting CNN features globally [21], the localized representations have far better

performance. Second, while fc7 features extracted globally are known to perform

poorly [31], the use of global 8th layer features leads to even worse performance.

This could suggest the conclusion that layer 8 somehow extracts “worse features”

for scene classification. The remaining columns, however, clearly indicate other-

wise. When extracted locally, semantic descriptors are highly effective, achieving

a gain of up to 3 points with respect to the fc7 features. The gap in performance

between the localized and global semantic descriptors is explained by the localized

nature of scene semantics, which vary from patch to patch. A global semantic

descriptors is just not expressive enough to capture this diversity. Third, recent

arguments for the use of intermediate CNN features should be revised. On the

contrary, the results of the table support the conclusion that these features are

both less discriminant and invariant than semantic descriptors. When combined

with a proper encoding, such as the semantic FV, the latter achieve the best scene

classification results.

Finally, to ensure that the gains of the semantic FV are not just due to

the use of the transformation of (II.11), we applied the transformation to the fc7

features as well. Rather than a gain, this resulted in a substantial performance

decrease (58% compared to the 65.1% of the fc7-FV on MIT Indoors at patch

size 128). This was expected, since the natural parameter space arguments do not

apply in this case.
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II.F.3 Comparison to the state of the art

Concatenating Fisher vectors of fc7 features computed at multiple patch

scales was shown to produce substantial gains in [31]. We implemented this strat-

egy for both the fc7-FV and the semantic FV, with the results shown in Table Table

II.5. Combining the fc7-FVs at three patch scales resulted in classification accu-

racies of 68.8% on MIT Indoor and 51.8% on SUN. While this is a non-trivial

improvement over any of the single-scale classifiers, the concatenation of semantic-

FVs at 3 scales produced even better results (accuracies of 71.24% on MIT Indoor

and 53.24% on SUN). Similar gains were observed when using 4 patch scales, as

reported in the table.

A comparison of our multiscale semantic FV with other leading representa-

tions derived from the ImageNET CNNs is shown in table Table II.6. As expected,

the pioneering DeCaf [21] representation is vastly inferior to all other methods

since it describes complex scene images with a globally extracted descriptor using

an object CNN [45]. Among techniques that rely on local feature extraction are

the proposals of Liu et. al. [55] and Razavian et. al. [75]. The scene representation

in [55] is a sparse code derived from the 6th layer activations (fc6) of the CNN.

Razavian et. al. [75], use features from the penultimate layer of the OverFeat net-

work [74] extracted from coarser spatial scales.Since, the features used in both [55]

and [75] lack the invariance of semantics, their classifiers are easily outperformed

by our semantic FV classifier. We also compare with the technique referred to as

fine-tuning [30] which adapts the imageNET CNNs directly to the task of scene

classification. The process requires a few tens of thousands of back-propagation

iterations on the scene dataset of interest and lasts about 5-10 hours on a single

GPU. The resulting classifier, however, is significantly worse than our semantic

FV classifier.

An alternative to using pre-trained object classification CNNs [45, 74] for

scenes is to learn a CNN directly on a large scale scene dataset. This was recently

performed by Zhou et. al. using a 2 million image Places dataset [96]. Table Table
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Table II.6: Comparison with the state-of-the-art methods using ImageNET trained
features. *-Indicates our implementation.

Method MIT Indoor MIT SUN
fc8-FV (Our) 72.86 54.4 + 0.3
fc7-FV [31]* 69.7 53.0 + 0.4

fc7-VLAD [31] 68.88 51.98
ImgNET finetune 63.9 48.04 + 0.19

OverFeat + SVM [75] 69 -
fc6 + SC [55] 68.2 -
MidLevel [20] 66.87 -
DeCaF [21]* 59.5 43.76

Table II.7: Comparison with a CNN trained on Scenes [96]

Method MIT Indoor MIT SUN
ImgNET fc8-FV (Our) 72.86 54.4 + 0.3

Places fc7 [96] 68.24 54.34 + 0.14
Combined 79.0 61.72 + 0.13

II.7 indicates a comparison between a scene representation obtained with the Places

CNN and our ImageNET based semantic FV. The results of semantic FV are

slightly better that theirs on the Indoor scenes dataset, whereas, on SUN, both

the descriptors perform comparably. More importantly, a simple concatenation of

the two produces a gain of almost 7% in accuracy on both datasets, indicating

that the embeddings are, in fact, complimentary. These results are, to the best of

our knowledge, state-of-the-art on scene classification.

II.G Conclusions

In this chapter we discussed the benefits of modeling scene images as bags

of object semantics from an ImageNET CNN instead of its lower layer activations.

To leverage the superior quality of semantic descriptors, we propose an effective

approach to summarize them with a Fisher vector, which is non-trivial. The se-

mantic FV provides a better classification architecture than an FV of low-level

features or a even fine-tuned classifier. When combined with features from a scene
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classification CNN, our semantic FV produces state-of-the-art results.
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Chapter III

Improving Transfer with semantic

covariance model
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III.A Introduction

In this chapter we propose improvements to the ImageNet based semantic

Fisher vectors introduced in Chapter II for scene classification. Like in the clas-

sifical FV literature [63], the semantic FVs were derived using Gaussian mixtures

learned with a diagonal covariance per component. We refer to such a model as

a variance-GMM. While variance only modeling in GMMs has been sufficient for

lower dimensional SIFT descriptors [73], it may not necessarily be the case for

much higher dimensional CNN features. The ImageNet semantics or natural pa-

rameter features, for instance, most likely reside in a non-linear manifold of the

ambient high dimensional semantic space. A relatively inflexible variance-GMM

will require large number of components to cover such a data distribution. On

the other hand, a GMM that is capable of modeling full covariance, locally, will

certainly be more efficient. However, full covariance modeling in large spaces is

not very easy. The number of parameters to be estimated increase quadratically

with the dimensionality of the space. The amount of data available is always in-

sufficient for learning such large mixture models. One could, however, resort to

approximate covariance modeling using models such as a mixture of factor analyz-

ers (MFA) [27, 87]. The MFA model covers a non-linear data manifold with local

linear approximations. The data is assumed to be generated by a simpler Gaussian

distribution in localized low dimensional latent spaces and then projected linearly

into the high dimensional observation space. The MFA effectively provides a low

rank approximation for the full covariance of a Gaussian and can, therefore, be

learned with reasonably less data available in transfer learning scenarios. It also

generates higher dimensional covariance statistics, which we show to be better

than the gradient scores with respect to variances, for semantic classification. The

MFA generated Fisher scores, in fact, outperform the semantic fisher vectors of

Chapter II further improving the efficacy of CNN based cross-domain (object to

scene) knowledge transfer.
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We first begin with a re-interpretation of Fisher vectors that were intro-

duced in Chapter II and show that they are in fact obtained in the popular Expec-

tation maximization (EM) algorithm. This is result is used to obtain Fisher scores

for the MFA model. The MFA Fisher information is derived using an old result

related to higher order moments of zero mean Gaussian random variables. The

MFA based Fisher vectors are then evaluated for transfer based scene classification

on the MIT Indoor and SUN benchmarks.

III.B Fisher scores

In computer vision, an image is frequently interpreted as a set of descriptors

D = {x1, . . . , xn} sampled i.i.d. from some generative model p(x; θ). Since most

classifiers require fixed-length inputs, it is common to map the bag of descriptors I
into a fixed-length vector. A popular mapping consists of computing the gradient

(with respect to θ) of the log-likelihood ∇θL(θ) = ∂
∂θ

log p(D; θ) for a model θb.

This is known as the Fisher score of θ. This gradient vector is often normalized

by the square root of the Fisher information matrix F of p(x; θ), according to

F− 1
2∇θL(θ). This is referred to as a Fisher vector (FV) [38] representation of D.

Strength of a Fisher vector depends on the expressiveness of the generative

model p(x; θ). An FV derived for a sophisticated probabilistic model can capture

higher order trends of the feature distribution within images. E.g., a Fisher vector

of a large enough mixture of Gaussians (GMM) is known to be a strong descrip-

tor of image context [63, 73]. For complex distributions like GMMs and hidden

Markov models, directly deriving Fisher scores is not always easy. We show, how-

ever, that scores can be trivially obtained using a single step of the expectation

maximization (EM) algorithm commonly used to learn such models.
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III.B.1 Fisher Scores from EM

Consider the log-likelihood of D under a latent-variable model log p(D; θ) =

log
∫
p(D, z; θ)dz of hidden variable z. Since the left-hand side does not depend

on the hidden variable, this can be written in an alternate form, which is widely

used in the EM literature,

log p(D; θ) = log p(D, z; θ)− log p(z|D; θ)

=

∫
q(z) log p(D, z; θ)dz −

∫
q(z) log p(z|D; θ)dz

=

∫
q(z) log p(D, z; θ)dz −

∫
q(z) log q(z)dz

+

∫
q(z) log

q(z)

p(z|D; θ)
dz

= Q(q; θ) +H(q) +KL(q||p; θ) (III.1)

where Q(q; θ) is the “Q” function, q(z) a general probability distribution, H(q) its

differential entropy and KL(q||p; θ) the Kullback Liebler divergence between the

posterior p(z|D; θ) and q(z). Hence,

∂

∂θ
log p(D; θ) =

∂

∂θ
Q(q; θ) +

∂

∂θ
KL(q||p; θ) (III.2)

where

∂

∂θ
KL(q||p; θ) = −

∫
q(z)

p(z|D; θ)

∂

∂θ
p(z|D; θ)dz. (III.3)

In each iteration of the EM algorithm the q distribution is chosen as q(z) =

p(z|D; θb), where θb is a reference parameter vector (the parameter estimates from

the previous EM iteration) and

Q(q; θ) =
∫
p(z|D; θb) log p(D, z; θ)dz (III.4)

= Ez|D;θb [log p(D, z; θ)]. (III.5)

45



It follows that

∂

∂θ
KL(q||p; θ)

∣∣∣∣
θb

= −
∫
p(z|D; θb)

p(z|D; θb)

∂

∂θ
p(z|D; θ)

∣∣∣∣
θb
dz

= − ∂

∂θ

∫
p(z|D; θ)

∣∣∣∣
θb
dz

= 0

and

∂

∂θ
log p(D; θ)

∣∣∣∣
θb

=
∂

∂θ
Q(p(z|D; θb); θ)

∣∣∣∣
θb

(III.6)

Thus, the Fisher score ∇θL(θ)|{θ=θb} of background model θb is the gradient of the

Q-function of EM evaluated at reference model θb.

An alternative approach to the same result, requires analysis of the KL

divergence between q = p(z|D; θb) and p(z|D; θ). By rearranging terms in (III.1)

it can be written as,

KL(θb; θ) = log p(D; θ)−Q(θb; θ)−Hq(θ
b)

For models that allow exact inference, this expression is mathematically tractable

and continuously differentiable with respect to θ. The divergence, therefore, smoothly

reduces to 0 as θ approaches θb from any direction. The slope of a tangent to

KL(θb; θ) (it’s derivative) at θ = θb, therefore, equals 0. It follows that

∂

∂θ
KL(θb; θ)

∣∣∣∣
θ=θb

= 0

∂

∂θ
log p(D; θ)

∣∣∣∣
θb
− ∂

∂θ
Q(p; θ)

∣∣∣∣
θb

= 0

∂

∂θ
log p(D; θ)

∣∣∣∣
θb

=
∂

∂θ
Q(p; θ)

∣∣∣∣
θb

The computation of the Fisher score thus simplifies into the two steps of

EM. First, the E step computes the Q function Q(p(z|x; θb); θ) at the reference θb.
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Second, the M-step evaluates the gradient of the Q function with respect to θ at

θ = θb. This interpretation of the Fisher score is particularly helpful when efficient

implementations of the EM algorithm are available, e.g. the recursive Baum-Welch

computations commonly used to learn hidden Markov models [66].

III.B.2 Bag of features

Fisher scores are usually combined with the bag-of-features representation,

where an image is described as an orderless collection of localized descriptors

D = {x1, x2, . . . xn}. These were traditionally SIFT descriptors, but have more

recently been replaced with responses of object recognition CNNs [31, 12]. In this

work we use the semantic features proposed in Chapter II, which are obtained by

transforming softmax probability vectors pi, obtained for image patches, into their

natural parameter form.

III.B.3 Gaussian Mixture Fisher Vectors

A GMM is a model with a discrete hidden variable that determines the

mixture component which explains the observed data. The generative process is

as follows. A mixture component zi is first sampled from a multinomial distribution

p(z = k) = wk. An observation xi is then sampled from the Gaussian component

p(x|z = k) ∼ G(x, µk, σk) of mean µk and variance σk. Both the hidden and

observed variables are sampled independently, and the Q function simplifies to

Q(p(z|D; θb); θ) =
∑

i
Ezi|xi;θb

[∑
k
I(zi, k) log p(xi, k; θ)

]
=

∑
i,k
hik log p(xi|zi = k; θ)wk (III.7)

where I(.) is the indicator function and hik is the posterior probability p(k|xi; θb).
The probability vectors hi are the only quantities computed in the E-step.

In the Fisher vector literature [64, 73], the GMM is assumed to have diag-

onal covariances. This is denoted as the variance-GMM. Substituting the expres-
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sions of p(xi|zi = k; θ) and differentiating the Q function with respect to parameters

θ = {µk, σk} leads to the two components of the Fisher score

Gµdk(I) =
∂

∂µdk
L(θ) =

∑
i
p(k|xi)

(
xdi − µdk
(σdk)

2

)
(III.8)

Gσd
k
(I) =

∂

∂σdk
L(θ) =

∑
i
p(k|xi)

[
(xdi − µdk)2

(σdk)
3
− 1

σdk

]
. (III.9)

These quantities are evaluated using a reference model θb = {µbk, σbk} learned (with

EM) from all training data. To compute the Fisher vectors, scores in (III.8)

and (III.9) are often scaled by an approximate Fisher information matrix, as de-

tailed in [73]. When used with SIFT descriptors, these mean and variance scores

usually capture complimentary discriminative information, useful for image classi-

fication [64]. Yet, FVs computed from CNN features only use the mean gradients

similar to (III.8), ignoring second-order statistics [31]. In the experimental section,

we show that the variance statistics of CNN features perform poorly compared to

the mean gradients. This is perhaps due to the inability of the variance-GMM to

accurately model data in high dimensions. We test this hypothesis by considering

a model better suited for this task.

III.B.4 Fisher Scores for the Mixture of Factor Analyzers

A factor analyzer (FA) is a type of a Gaussian distribution that models high

dimensional observations x ∈ RD in terms of latent variables or “factors” z ∈ RR

defined on a low-dimensional subspace R << D [27]. The process can be written

as x = Λz + ε, where Λ is known as the factor loading matrix and ε models the

additive noise in dimensions of x. Factors z are assumed distributed as G(z, 0, I)

and the noise is assumed to be G(ε, 0, ψ), where ψ is a diagonal matrix. It can be

shown that x has full covariance S = ΛΛT + ψ, making the FA better suited for

high dimensional modeling than a Gaussian of diagonal covariance.

A mixture of factor analyzers (MFA) is an extension of the FA that allows
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a piece-wise linear approximation of a non-linear data manifold. Unlike the GMM,

it has two hidden variables: a discrete variable s, p(s = k) = wk, which determines

the mixture assignments and a continuous latent variable z ∈ RR, p(z|s = k) =

G(z, 0, I), which is a low dimensional projection of the observation variable x ∈ RD,

p(x|z, s = k) = G(x,Λkz+µk, ψ). Hence, the kth MFA component is a FA of mean

µk and subspace defined by Λk. Overall, the MFA components approximate the

distribution of the observations x by a set of sub-spaces in observation space. The

Q function is

Q(θb; θ) =
∑

iEzi,si|xi;θb [
∑

k I(si, k) log p(xi, zi, si = k; θ)]

=
∑

i,k
hikEzi|xi;θb

[
logG(xi,Λkzi + µk, ψ)

+ logG(zi, 0, I) + logwk

]
where hik = p(si = k|xi; θb). After some simplifications, the E step reduces to

computing

hik = p(k|xi; θb) ∝ wbkN (xi, µ
b
k, S

b
k) (III.10)

Ezi|xi;θb [zi] = βbk(xi − µbk) (III.11)

Ezi|xi;θb [ziz
T
i ] = βbk(xi − µbk)(xi − µbk)Tβb

T

k

−
(
βbkΛ

b
k − I

) (III.12)

with Sbk = Λb
kΛ

bT

k +ψb and βbk = ΛbT

k

(
Sbk
)−1

. The M-step then evaluates the Fisher

score of θ = {µbk,Λb
k}. With some algebraic manipulations, this can be shown to

have components

Gµk(I) =
∑

i
p(k|xi; θb){Sbk}−1

(
xi − µbk

)
(III.13)

GΛk
(I) =

∑
i
p(k|xi; θb)

[
{Sbk}−1(xi − µbk)(xi − µbk)Tβb

T

k

− {Sbk}−1Λb
k

] (III.14)
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For a detailed discussion of the Q function, the reader is referred to the EM deriva-

tion in [27]. Note that the scores with respect to the means are functionally similar

to the first order residuals in (III.8). However, the scores with respect to the fac-

tor loading matrices Λk account for covariance statistics of the observations xi,

not just variances. We refer to the representations (III.13) and (III.14) as MFA

Fisher scores (MFA-FS). The mean scores (III.13) are scaled with the Fisher infor-

mation matrix Sbk which equals the component covariance. For the factor loading

scores in (III.14), the derivation of Fisher information is presented in the following

section.

III.B.5 Fisher Information

For a mixture distribution, the Fisher information is often approximated as

a block-diagonal matrix that scales the Fisher scores of the kth mixture component

with inverse square-root of the sub-matrix

Fk = wkCov (Gk(x)) (III.15)

Here wk is the weight of the kth mixture and Gk(x) is the data term of its Fisher

score. Therefore, to approximate the Fisher information with respect to Λks, we

need to compute the covariance of the data term in (III.14). This term is a D×R
matrix, every (i, j)th entry of which is a product of two Gaussian random variables,

G(i,j)
k (x) = figj

= b{Sbk}−1(x− µbk)cibβbk(x− µbk)cj (III.16)

Here bW ci denotes the ith element of the vector W . The covariance matrix of the

vectorized Fisher score then contains the following terms,

Cov(G(x))(i,j),(k,l) = E [figjfkgl]− E[figj]E[fkgl]
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This can be simplified using the expectation property of Gaussian random vari-

ables 1 as

Cov(G(x))(i,j),(k,l) = E [figl]E [fkgj] + E [fifk]E [gjgl]

(III.17)

where the individual expectation terms can be computed as

E [figl]E [fkgj] = b(Sbk)−1Λb
kc(i,l)b(Sbk)−1Λb

kc(k,j) (III.18)

E [fifk]E [gjgl] = b(Sbk)−1c(i,k)bβbkΛb
kc(j,l) (III.19)

The Fisher scaling for the kth MFA component can be obtained by combining (III.15),

(III.17) and (III.18). While this derivation of the MFA information has a tutorial

value, in practice it did not result in any gains over simply using the scores of Λ

as our image representation. Therefore, we avoid scaling the scores in (III.14) for

our image classification experiments, although they may be useful in some other

scenarios.

III.B.6 Evaluating MFA embeddings

In this section we present an extensive evaluation of the MFA based Fisher

embedding for BoS classification.

Impact of Covariance Modeling

We begin with an experiment to compare the modeling power of MFAs to

variance-GMMs. This was based on ImageNet SMNs extracted using the CNN

in [45] on a 128x128 patch scale. An MFA of K = 50 components, and a la-

tent space dimension of R = 10 was learned on the natural parameters ν(2). To

make the learning manageable, the descriptors were first reduced using PCA to

1For Gaussian random variables {x1, x2, x3, x4}, the property E[x1x2x3x4] =
E[x1x2]E[x3x4] + E[x1x3]E[x2x4] + E[x1x4]E[x2x3] holds true.
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Figure III.1: Performance of Latent space statistics of (III.12) for different latent
space dimensions. The accuracy of MFA-FS (III.14) for K=50, R=10 included for
reference.

500 dimensions. Classification is performed on both MIT Indoor and SUN scene

datasets. Table Table III.2 presents the classification accuracy of a GMM-FV that

only considers the mean - GMM-FV(µ) - or variance - GMM-FV(σ) - parame-

ters and a MFA-FS that only considers the mean - MFA-FS(µ) - or covariance -

MFA-FS(Λ) - parameters. The most interesting observation is the complete failure

of the GMM-FV (σ), which under-performs the GMM-FV(µ) by more than 10%.

The difference between the two components of the GMM-FV is not as startling

for lower dimensional SIFT features [64]. However, for CNN features, the dis-

criminative power of variance statistics is exceptionally low. This explains why

previous FV representations for CNNs [31] only consider gradients with respect

to the means. A second observation of importance is that the improved model-

ing of covariances by the MFA eliminates this problem. In fact, MFA-FS(Λ) is

significantly better than both GMM-FVs. It could be argued that a fair compar-

ison requires an increase in the GMM modeling capacity. Fig. Table III.3 tests
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this hypothesis by comparing GMM-FVs(σ) and MFA-FS (Λ) for various numbers

of GMM components (K ∈ {50, . . . , 500}) and MFA hidden sub-spaces dimen-

sions (R ∈ {1, . . . , 10}). For comparable vector dimensions, the covariance based

scores always significantly outperforms the variance statistics on both datasets. A

final observation is that, due to covariance modeling in MFAs, the MFA-FS(µ)

performs better the GMM-FV(µ). The first order residuals pooled to obtain the

MFA-FS(µ) (III.13) are scaled by covariance matrices instead of variances. This lo-

cal de-correlation provides a non-trivial improvement for the MFA-FS(µ) over the

GMM-FV(µ)(∼ 1.5% points). Covariance modeling was previously used in [82] to

obtain FVs w.r.t. Gaussian means and local subspace variances (eigen-values of

covariance). Their subspace variance FV, derived with our MFAs, performs much

better than the variance GMM-FV (σ), due to a better underlying model (60.7% v

53.86% on Indoor). It is, however, still inferior to the MFA-FS(Λ) which captures

full covariance within local subspaces.

While a combination of the MFA-FS(µ) and MFA-FS(Λ) produces a small

improvement (∼ 1%), we restrict to using the latter in the remainder of this work.

Local v Global Codebook

We experiment here with the structure of the MFA model and evaluate its

impact on the MFA-FS embedding. We learn multiple MFA models such that the

size of the second order MFA-FS (Λ) obtained from each of them remains fixed

at 250K dimensions. Specifically, the mixture cardinality is varied from K = 250

to K = 10, and at each step a reduction in K is traded off for an increase in the

latent space dimensions R (R varies from 2 to 50). The MFA-FS obtained from

each of these models is evaluated for MIT Indoor scene classification.

The results in fig Figure III.2 indicate a steady increase in accuracy of the

representation as K decreases from 250 to 50 and latent space dimensions increase

simultaneously from 2 to 10. This confirms our earlier assumption about the MFA

model, that if adequate parameters are allowed to approximate the local covariance
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Figure III.2: Comparison of MFA-FS obtained with different mixture models. The
size of the MFA-FS (K ×R) is kept constant. From left to right, the latent space
dimensions R are incraesed while decreasing the number of mixture components
K. Optimal result is obtained when the model combines adequate representation
power in the latent space as well as the ability to model spatially (K = 50, R =
10).

of data, the model can be economical in the number of mixture components. On

the other hand, if the latent space dimensions R are increased further in exchange

of decreasing number of mixture components, the performance of the FS decreases

steadily. Trying to improving the covariance approximation by increasing R at the

cost of the model’s ability to cover the manifold impacts the final performance.

Best results are achieved when the MFA combines a sufficient number of Gaussians

that implement a reasonable linear approximation of the local manifold (e.g. K =

50, R = 10).

Latent Space Statistics

The scores MFA-FS(Λ) incorporate second order sufficient statistics of di-

mensions K × D × R, where K is the number of components, D is the size of
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Table III.1: Comparison of MFA-FS with semantic “gist” embeddings learned
using ImageNet BoS and the Places dataset.

Descriptor MIT Indoor SUN
MFA FS (Λ) 71.11 53.38

BoS-fc1 64.84 47.47
BoS-fc2 69.36 50.9
BoS-fc3 70.6 53.12

the observation space and R, the size of the latent space. Alternatively we could

use the latent space second order statistics in (III.12) as an image representation.

These are directly obtained using the E-step and their dimensionality is approxi-

mately K × R2

2
. For a moderately small latent space R << D, the representation

in (III.12) can be used as a low-dimensional alternative to MFA-FS(Λ).

We evaluate (III.12), which we refer to as Latent Fisher statistics (LFS)

on MIT Indoor scene classification. As features, we again use the 128x128 patch

ImageNet BoS generated by [45]. The MFA models used to obtain LFS, have a

fixed mixture size of K = 50. The latent space size is increased from R = 50

to R = 120 to increase the dimensionality of the LFS. Results in fig Figure III.1

shows that for a moderate size of 60K dimensions, the LFS achieves about 69.4%

accuracy which is only 1.6% worse than the accuracy of the 250K dimensional

MFA-FS(Λ). Increasing the latent space dimensions R to {80, 100, 120} increases

the accuracy above 70%. The LFS, however, never outperforms an MFA-FS of a

comparable size, perhaps, because a larger model is neede to generate the former.

Under the constrains of transfer learning, the data may not be enough to properly

learn such large MFAs.

MFA-FS v BoS “gist”

The MFA-FS embedding derives from a bag-of-descriptors model of an im-

age, which was used very often in classical vision literature [86, 14, 50, 64]. Due

to the i.i.d. assumptions in these models, the embeddings derived from them are

very flexible and do not exhibit template like rigidity. On the other hand, neu-
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ral networks have a tendency to learn “gist”-style image representations that are

more holistic non-linear templates of a visual concept. To compare our MFA-FS

representation with NN based “gist embeddings”, we propose to learn an MLP

with one or more fully connected layers and ReLu non-linearities on top of the

ImageNet BoS generated by the pre-trained network in [45]. The BoS map is of a

fixed size (10 x 10 x 1000), with the ImageNet CNN generating a 1000 dimensional

ν(2) descriptor for roughly every 128x128 pixel region. A fully connected layer

on top of this map maps it into 4096 dimensions and is followed by a ReLu non-

linearlity. Successive fully connected layers with input v output channels (4096 x

4096) and ReLu stages can be added to make the embedding deeper before the

final classification layer. In the fc layers we employ “drop-out” with a probability

of 0.2. The network embeddings are denoted BoS-fc1, BoS-fc2 or BoS-fc3 based

on the number of fc layers used on top of the semantic map. We propose to train

the “gist” embeddings directly with a scene classification loss and the ImageNet.

The most immediate problem faced during training is the insufficiency of

data in a transfer scenario. The total number of parameters in the embedding is

almost equal to the ImageNet CNN itself. A dataset of the size of MIT Indoor, for

example, proves to be highly inadequate to train such a heavy embedding. The

resulting accuracy of scene classification drops as low as 33%. The only way to learn

this embedding, therefore, is using a dataset that is as large as ImageNet itself. We

use the large scale scene classification dataset named Places, introduces recently by

Zhou et. al. [96]. It consists of 2.4 M training images distributed across 200 scene

categories. The training of the “gist” embeddings on this data takes many days

on a GPU, as opposed to the MFA-FS training which takes a couple hours. The

complexity of these embeddings also far exceeds that of the MFA-FS which is based

on a PCA and a moderately sized mixture. We use the learned BoS-fc embeddings

from Places dataset, and use them as image representations for transfer based

scene classification on MIT Indoor and SUN. As seen in table Table III.1, despite

the complexity of these BoS-fc embeddings and the relatively large amount of data
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required to learn them (2.4M Places images v 5K Indoor or 20K SUN images),

the performance is not much better than the MFA-FS. The BoS-fc representation

can of course be made deeper by adding more layers, and the performance may

become better than the MFA-FS. It is not possible, however, without millions of

additional images and days of training, none of which are needed for our transfer

based MFA-FS image representation. In a later section, we show that our MFA-FS

classifier is also competitive with very deep CNNs are trained end-to-end on the

Places dataset for scene classification.

III.C Related work

Although most methods using pre-trained ImageNet CNN features default

to the GMM FV embedding [31, 12], some recent works have tried to explore

different pooling strategies [55, 54, 26]. We briefly introduce these methods here

and compare to their results in our experimental section.

III.C.1 Gradients based on Sparse Coding

The work of Liu et. al. [55] is motivated by the assumption that a Gaussian

mixture of finite size may not be effective in modeling high dimensional features

such as those generated by a CNN. Their proposal is a generative Gaussian distri-

bution p(x|u) ∼ N (Bu,Σ) with a random mean that resides in the span of basis

vectors B. The mean vector is indexed by a code u sampled from a zero mean

Laplace distribution. The approximate marginal log likelihood of features reduces

to a standard sparse coding objective [91] which is differentiated with respect to

dictionary B to obtain their final image representation. We compare their scene

classification performance with our proposed MFA gradient representation.
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III.C.2 Bilinear Pooling

Lin et. al. [54] have recently proposed a simple bilinear pooling of CNN

features for the task of image classification. Their classifier makes predictions in

the space of an image representation obtained by aggregating outer products xix
T
i

of CNN features. The representation was shown to be fine-tunable to the task

along with the CNN layers. Gao et. al. [26] recently proposed a learnable low-

dimensional projection for these bilinear descriptors to make them more compact.

Since a bilinear pooled representation captures correlation between CNN features,

it is, in some sense, similar to our MFA gradients. In our experiments, therefore,

we compare with the scene classification results presented in these works.

III.D Scene Image Classification

We finally compare the proposed MFA-FS representation in (III.14) with

the state-of-the-art methods in scene classification. We build these classifiers using

image BoS obtained from three different ImageNet CNNs, namely, the 8 layer

network of [45] (denoted as AlexNet) and the deeper 16 and 19 layer networks

of [76] (denoted VGG-16 and VGG-19, respectively). These CNNs assign 1000

dimensional object recognition probabilities to P × P patches (sampled on a grid

of fixed spacing) of the scene images, with P ∈ {128, 160, 96}. For the MFA-

FS representation, image SMNs are used in their natural parameter form ν(2)

and PCA-reduced to 500 dimensions as in Chapter II. The scene image BoS

is mapped into the embedding, using (III.13), (III.14) and a background MFA

of size K = 50, R = 10. Note that a separate MFA-FS is generated for every

imageNet CNN (AlexNet, VGG16 and VGG19) for every fixed patch scale P of

SMN extraction. As usual in the FV literature, the MFA-FS vectors are power

normalized, L2 normalized, and classified with a cross-validated linear SVM.

The proposed classifiers are compared to scene CNNs, trained on the large

scale Places dataset. In this case, the features from the penultimate CNN layer are
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Table III.2: Classification accuracy (K = 50, R = 10).

Descriptor MIT Indoor SUN
GMM FV (µ) 66.08 50.01
GMM FV (σ) 53.86 37.71
MFA FS (µ) 67.68 51.43
MFA FS (Λ) 71.11 53.38

Table III.3: Classification accuracy vs. descriptor size for MFA-FS(Λ) and a com-
parable GMM-FV(σ). The MFA model uses K = 50 components and R factor
dimensions. Left: MIT Indoor. Right: SUN.
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used as a holistic scene representation and classified with a linear SVM, as in [96].

We use the places CNNs trained with the AlexNet and the VGG-16 architectures

provided by the authors. We also compare our performance with ImageNet based

transfer learning methods that combine FV-like embeddings with different CNN

features [32, 55, 56, 12, 89, 26, 53] for scene classification.

III.D.1 Multi-scale learning and Deep CNNs

First we employ a well known trick to improve the performance of our

MFA based classifiers. Recent works have demonstrated gains due to combining

deep CNN features extracted at multiple-scales. Table Table III.4 presents the

classification accuracies of the MFA-FS (Λ) based on AlexNet, and 16 and 19 layer

VGG features extracted from 96x96, 128x128 and 160x160 pixel image patches, as

well as their concatenation (3 scales). These results confirm the benefits of multi-
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Table III.4: MFA-FS classification accuracy as a function of patch scale.

MIT Indoor SUN

AlexNet

160x160 69.83 52.36
128x128 71.11 53.38
96x96 70.51 53.54

3 scales 73.58 55.95

VGG-16

160x160 77.26 59.77
128x128 77.28 60.99
96x96 79.57 61.71

3 scales 80.1 63.31

VGG-19

160x160 77.21 -
128x128 79.39 -
96x96 79.9 -

3 scales 81.43 -

scale feature combination, which achieves the best performance for all CNNs and

datasets.

III.D.2 Comparison with ImageNet based Classifiers

We next compared the MFA-FS to state of the art scene classifiers also based

on transfer from ImageNet CNN features [55, 12, 26]. Since all these methods only

report results for MIT Indoor, we limited the comparison to this dataset, with the

results of Table Table III.6. The GMM FV in [12] is computed using convolutional

features from AlexNet or VGG-16 extracted in a large multi-scale setting. Liu et.

al. proposed a gradient representation based on sparse codes. Their initial results

were reported on a single patch scale of 128x128 using AlexNet features [55]. More

recently, they have proposed an improved H-Sparse representation, combined mul-

tiple patch scales and used VGG features in [56]. The recently proposed bilinear

(BN) descriptor pooling of [54] is similar to the MFA-FS in the sense that it cap-

tures global second order descriptor statistics. The simplicity of these descriptors
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Table III.5: Comparison with scene classification state-of-the-art. *-combination
of patch scales (128, 96, 160).

Method MIT Indoor SUN
MFA-FS + Places (VGG) 87.23 71.06

MFA-FS + Places (AlexNet) 79.86 63.16
MFA-FS (VGG) 81.43 63.31

MFA-FS (AlexNet) 73.58 55.95

Full BN (VGG) [26] 77.55 -
Compact BN (VGG) [26] 76.17 -

H-Sparse (VGG) [56] 79.5 -
Sparse Coding (VGG) [56] 77.6 -

Sparse Coding (AlexNet) [55] 68.2

MetaClass (AlexNet) + Places [89] 78.9 58.11
VLAD (AlexNet) [31] 68.88 51.98
FV+FC (VGG) [12] 81.0 -

FV+FC (AlexNet) [12] 71.6 -
Mid Level [53] 70.46 -

DAG-CNN (VGG) [92] 77.5 56.2

enables the fine-tuning of the CNN layers to the scene classification task. However,

their results, reproduced in [26] for VGG-16 features, are clearly inferior to those of

the MFA-FS without fine-tuning. Gao et. al. [26] propose a way to compress these

bilinear statistics with trainable transformations. For a compact image represen-

tation of size 8K, their accuracy is inferior to a representation of 5K dimensions

obtained by combining the MFA-FS with a simple PCA.

These experiments show that the MFA-FS is a state of the art procedure for

task transfer from object recognition (on ImageNet) to scene classification (e.g. on

MIT Indoor or SUN). Its closest competitor is the classifier of [12], which combines

CNN features in a massive multiscale setting ( 10 image sizes). While MFA-FS

outperforms [12] with only 3 image scales, its performance improves even further

with addition of more scales (82% with VGG, 4 patch sizes).
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Table III.6: Comparison to task transfer methods using ImageNet CNNs on MIT
Indoor.

Method 1 scale mscale

AlexNet
MFA-FS 71.11 73.58

FV+FC [12] - 71.6
Sparse Coding [55] 68.2 -

VGG

MFA-FS 79.9 81.43
Sparse Coding [56] - 77.6

H-Sparse [56] - 79.5
BN [26] 77.55 -

FV+FC [12] - 81.0

VGG + dim. reduction

MFA-FS + PCA (5k) 79.3 -
BN (8k) [26] 76.17 -

III.D.3 Task transfer performance

The next question is how object-to-scene transfer compares to the much

more intensive process, pursued by [96], of collecting a large scale labeled Places

scene dataset and training a deep CNN from it. The dataset, consists of 2.4M

images, from which the authors train both AlexNet and VGG Net CNNs were

trained for scene classification. The fully connected features from the networks are

used as scene representations and classified with linear SVMs on Indoor scenes and

SUN. The Places CNN features are a direct alternatives to the MFA-FS. While the

use of the former is an example of dataset transfer (features trained on scenes to

classify scenes) the use of the latter is an example of task transfer (features trained

on objects to classify scenes).

A comparison between the two transfer approaches is shown in table Table

III.7. Somewhat surprisingly, task transfer with the MFA-FS outperformed dataset

transfer with the Places CNN, on both MIT Indoors and SUN and for both the

AlexNet and VGG architectures. This supports the hypothesis that the variability

of configurations of most scenes makes scene classification much harder than ob-
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Table III.7: Comparison with the Places trained Scene CNNs.

Method SUN Indoor

AlexNet

MFA-FS 55.95 73.58
Places 54.3 68.24

Combined 63.16 79.86

VGG

MFA-FS 63.31 81.43
Places 61.32 79.47

Combined 71.06 87.23

AlexNet + VGG

Places (VGG + Alex) 65.91 81.29
MFA-FS(Alex) + Places(VGG) 68.8 85.6
MFA-FS(VGG) + Places(Alex) 67.34 82.82

ject recognition, to the point where CNN architectures that have close-to or above

human performance for object recognition are much less effective for scenes. It is,

instead, preferable to pool object detections across the scene image, using a pooling

mechanism such as the MFA-FS. We also show that the object-based MFA-FS and

the scene-based representation from Places CNN are complementary in nature.

When we train a classifier on a concatenation of the two descriptors, the perfor-

mance improves by about 6− 8% which is significant margin. The improvements

are observed while using both the AlexNet and the VGG CNN architectures on

both MIT Indoor and SUN datasets. To the best of our knowledge, no method us-

ing these or deeper CNNs has reported better results than the combined MFA-FS

and Places VGG features of Table Table III.7.

It could be argued that this improvement is just an effect of the often ob-

served benefits of fusing different classifiers. Many works even resort to “bagging”

of multiple CNNs to achieve performance improvements [76]. To test this hypoth-

esis we also implemented a classifier that combines two Places CNNs with the

AlexNet and VGG architectures. This is shown as Places (VGG+AlexNet) in the

last section of Table Table III.7. While improving on the performance of both

MFA-FS and Places, its performance is not as good as that of the combination of
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Table III.8: Classification accuracy (K = 50, R = 10).

Descriptor MIT Indoor SUN
GMM FV (µ) 66.08 50.01
GMM FV (σ) 53.86 37.71
MFA FS (µ) 67.68 51.43
MFA FS (Λ) 71.11 53.38

the object-based and scene-based representations (MFA-FS + Places). As shown

in the remainder of the last section of the table, any combination of an object CNN

with MFA-FS based transfer and a scene CNN outperforms this classifier.

Finally, table Table III.5 compares results to the best recent scene classifi-

cation methods in the literature. This comparison shows that MFA-FS + Places

combination is a state-of-the-art classifier with substantial gains over all other pro-

posals. The results of 71.06% on SUN and 87.23% on Indoor scenes substantially

outperform the previous best results reported on both scene datasets.

III.E Conclusion

Object based scene representation was addressed with traditional GMM FV

in Chapter II, which we have shown to be very ineffective for the high-dimensional

CNN features. The reason is the limited flexibility of the GMM in modeling

feature covariances. We have addressed this problem by adopting a better model,

the MFA, which approximates the non-linear data manifold by a set of local sub-

spaces. We then introduced the Fisher score with respect to this model, denoted

as the MFA-FS. Through extensive experiments, we have shown that the MFA-

FS has state of the art performance for object-to-scene transfer and this transfer

actually outperforms a scene CNN trained on a large scene dataset. These results

are significant given that 1) MFA training takes only a few hours versus training

a CNN, and 2) transfer requires a much smaller scene dataset.
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Chapter IV

Attribute Trajectory Transfer for

Data Augmentation

66



learn φ(·, t0, t)

Chairs with depth in the range t0 ∈ [1, 2] meters.

Chairs

Table

Training
data

Training
data

(using a pretrained γ)
x x 7→ x̂ = φ(x, t0, t)

γ(x) = 1.3 [m]

Tables with depth in the range of t0 ∈ [1, 2] meters.

Instance x ∈ X ⊂ RD

from a new object class

γ(x̂) ≈ t[m]

Figure IV.1: An illustration of the proposed trajectory learning and transfer
method. Given a predictor γ : X → R+ of some object attribute (e. g., depth or
pose), we propose to learn a mapping of object features x ∈ X , such that (1) the
new synthetic feature x̂ is “close” to x (to preserve object identity) and (2) the
predicted attribute value γ(x̂) = t̂ of x̂ matches a desired object attribute value
t, i. e., t − t̂ is small. In this illustration, we learn a mapping for features with
associated depth values in the range of 1-2 [m] to t [m] and apply this mapping to
an instance of a new object class. In our approach, this mapping is learned in an
object-agnostic manner. With respect to our example, this means that all training
data from ‘chairs’ and ‘tables’ is used to a learn feature synthesis function φ.

IV.A Introduction

Cnvolutional neural networks (CNNs), trained on large scale data, have

significantly advanced the state-of-the-art on traditional vision problems such as

object recognition [45, 76, 81] and object detection [29, 71]. Success of these net-

works is mainly due to their high selectivity for semantically meaningful visual

concepts, e. g., objects and object parts [93]. In addition to ensuring good perfor-

mance on the problem of interest, this property of CNNs also allows for transfer

of knowledge to several other vision tasks [21, 31, 12, 19]. The object recognition

network of [45], e. g., has been successfully used for object detection [29, 71], scene

classification [31, 19], texture classification [12] and domain adaptation [21], using

various transfer mechanisms.

CNN-based transfer is generally achieved either by finetuning a pre-trained

network, such as in [45], on a new image dataset or by designing a new image
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representation on such a dataset based on the activations of the pre-trained network

layers [21, 31, 19, 12]. Recent proposals of transfer have shown highly competitive

performance on different predictive tasks with a modest amount of new data (as

few as 50 images per class). The effectiveness of transfer-based methods, however,

has not yet been tested under more severe constraints such as in a few-shot or a

one-shot learning scenario. In these problems, the number of examples available

for learning may be as few as one per class. Fine-tuning a pre-trained CNN with

millions of parameters to such inadequate datasets is clearly not a viable option. A

one-shot classifier trained on CNN activations will also be prone to over-fitting due

to the high dimensionality of the feature space. The only way to solve the problem

of limited data is to augment the training corpus by obtaining more examples for

the given classes.

While augmentation techniques can be as simple as flipping, rotating, adding

noise, or extracting random crops from images [45, 11, 94], task-specific, or guided

augmentation strategies [10, 34, 72, 62] have the potential to generate more realis-

tic synthetic samples. This is a particularly important issue, since performance of

CNNs heavily relies on sufficient coverage of the variability that we expect in un-

seen testing data. In scene recognition, we desire, for example, sufficient variability

in the constellation and transient states of scene categories (c. f. [47]), whereas

in object recognition, we desire variability in the specific incarnations of certain

objects, lighting conditions, pose, or depth, just to name a few. Unfortunately, this

variability is often dataset-specific and can cause substantial bias in recognition

results [83].

An important observation in the context of our work is that augmentation is

typically performed on the image, or video level. While this is not a problem with

simple techniques, such as flipping or cropping, it can become computationally

expensive if more elaborate augmentation techniques are used. We argue that,

in specific problem settings, augmentation might as well be performed in feature

space, especially in situations where features are input to subsequent learning steps.
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This is common, e. g., in recognition tasks, where the softmax output of trained

CNNs is often not used directly, but activations at earlier layers are input to an

external discriminant classifier.

Contribution: We propose an approach to augment the training set with

feature descriptors instead of images. Specifically, we advocate an augmentation

technique that learns to synthesize features, guided by desired values for a set of

object attributes, such as depth or pose. An illustration of this concept is shown

in Fig. Figure IV.1. We first train a fast RCNN [29] detector to identify objects in

2D images. This is followed by training a neural network regressor which predicts

the 3D attributes of a detected object, namely its depth from the camera plane

and pose. An encoder-decoder network is then trained which, for a detected object

at a certain depth and pose, will “hallucinate” the changes in its RCNN features

for a set of desired depths/poses. Using this architecture, for a new image, we are

able to augment existing feature descriptors by an auxiliary set of features that

correspond to the object changing its 3D position.

Organization: Sec. IV.B reviews prior work. Sec. IV.C presents the basic

idea of attribute trajectory transfer that motivates our work. In sec. IV.D we intro-

duce a novel architecture that approximates attribute-trajectories with incomplete

data and allows their transfer for the purpose of augmentation. The key compo-

nent of this architecture is the encoder-decoder MLP which is introduced as feature

regressor in this section. Sec. IV.E demonstrates that AGA in feature space im-

proves one-shot object recognition and object-based scene recognition performance

on previously unseen classes. Sec. IV.F delves deeper into the proposed feature

augmentation method. Extensive analysis regarding the quality of synthetic data

generated by our algorithm is provided. Sec. IV.G concludes the paper with a

discussion and an outlook on potential future directions.
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Figure IV.2: Schematic illustration of data augmentation by transferring an ap-
proximated attribute trajectory (here, for variation in object pose).

IV.B Related work

Our review of related work primarily focuses on data augmentation strate-

gies. While many techniques have been proposed in the context of training deep

neural networks to avoid over-fitting and to increase variability in the data, other

(sometimes closely related) techniques have previously appeared in the context

of one-shot and transfer learning. We can roughly group existing techniques into

(1) generic, computationally cheap approaches and (2) task-specific, or guided

approaches that are typically more computationally involved.

As a representative of the first group, Krizhevsky et. al. [45] leverage a

set of label-preserving transformations, such as patch extraction + reflections, and

PCA-based intensity transformations, to increase training sample size. Similar

techniques are used by Zeiler and Fergus [94]. In [11], Chatfield and Zisserman

demonstrate that the augmentation techniques of [45] are not only beneficial for

training deep architectures, but shallow learning approaches equally benefit from

such simple and generic schemes.

In the second category of guided-augmentation techniques, many approaches

have recently been proposed. In [10], e. g., Charalambous and Bharath employ

guided-augmentation in the context of gait recognition. The authors suggest to

simulate synthetic gait video data (obtained from avatars) with respect to various

confounding factors (such as clothing, hair, etc.) to extend the training corpus.

Similar in spirit, Rogez and Schmid [72] propose an image-based synthesis engine

for augmenting existing 2D human pose data by photorealistic images with greater
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pose variability. This is done by leveraging 3D motion capture (MoCap) data. In

[62], Peng et. al. also use 3D data, in the form of CAD models, to render synthetic

images of objects (with varying pose, texture, background) that are then used to

train CNNs for object detection. It is shown that synthetic data is beneficial, es-

pecially in situations where few (or no) training instances are available, but 3D

CAD models are. Su et. al. [79] follow a similar pipeline of rendering images from

3D models for viewpoint estimation, however, with substantially more synthetic

data obtained, e. g., by deforming existing 3D models before rendering.

Another (data-driven) guided augmentation technique is introduced by [34].

The authors propose to learn class-specific transformations from external training

data, instead of manually specifying transformations as in [45, 94, 11]. The learned

transformations are then applied to the samples of each class. Specifically, diffeo-

morphisms are learned from data and encouraging results are demonstrated in

the context of digit recognition on MNIST. Notably, this strategy is conceptually

similar to earlier work by Miller et. al. [58] on one-shot learning, where the au-

thors synthesize additional data for digit images via an iterative process, called

congealing. During that process, external images of a given category are aligned

by optimizing over a class of geometric transforms (e. g., affine transforms). These

transformations are then applied to single instances of the new classes to increase

data for one-shot learning.

Marginally related to our work, we remark that alternative approaches to

implicitly learn spatial transformations have been proposed. For instance, Jader-

berg et. al. [39] introduce spatial transformer modules that can be injected into

existing deep architectures to implicitly capture spatial transformations inherent

in the data, thereby improving invariance to this class of transformations.

While all previously discussed methods essentially propose image-level aug-

mentation to train CNNs, our approach is different in that we perform augmen-

tation in feature space. Along these lines, the approach of Kwitt et. al. [47]

is conceptually similar to our work. In detail, the authors suggest to learn how
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features change as a function of the strength of certain transient attributes (such

as sunny, cloudy, or foggy) in a scene-recognition context. These models are then

transferred to previously unseen data for one-shot recognition. There are, however,

two key differences between their approach and ours. First, they require datasets

labeled with attribute trajectories, i. e., all variations of an attribute for every

instance of a class. We, on the other hand, make use of conventional datasets

that seldom carry such extensive labeling. We elaborate on this point in the next

section. Second important difference is that, the augmenters in [47] are simple

linear regressors trained in a scene-class specific manner. This imposes limits on

the capacity of the model as well as complicates knowledge transfer across different

classes. We, in contrast, learn deep non-linear models in a class-agnostic manner

which enables a straightforward application to recognition in transfer settings.

IV.C Attribute Trajectory Transfer

The proposed data augmentation method implements a visual attribute

trajectory transfer to generate non-trivial copies from a given image. A visual

attribute, in this case, represents a common property of objects that manifests

visually and can be quantified with a scalar value s ∈ R, e.g. object pose (in

degrees) or depth from camera (in meters). In a predefined visual feature space

X ⊂ RD, variations in object attributes can be learned as a smooth trajectory.

The learned trajectory of attributes, e.g. pose, can then be transferred to an un-

seen object to simulate pose transformations. Fig Figure IV.2 demonstrates this

process where pose trajectory for a “chair” is learned in X using a sequence of

chair images captured in multiple poses. The learned trajectory of chair poses can

be used to hallucinate pose transformations in a previously unseen object such as

a “couch”. The process of trajectory transfer, thus, naturally generates synthetic

data points x̂ ∈ X which correspond to deterministic changes in an attribute of

the original image x.
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Attribute trajectory transfer is used with some success by Kwitt et. al. [47]

for the purpose of guided data augmentation. They propose to generate synthetic

examples from real scene images by regressing along simple trajectories of tran-

sient scene attributes such as degree of “sunny-ness”, “foggy-ness”, “amount of

snow” etc in a CNN generated feature space X [96]. An obvious limitation of

this approach, however, is the massive amount of data needed to properly learn

feature trajectories. Ideally, trajectory learning requires a sufficiently large labeled

dataset D = {(T 1, y1) , (T 2, y2) , . . . , (T N , yN)}, where each T i = {(I ik, sik)}tk=0

denotes a trajectory or sequence of images I ik captured for an instance of class

yi ∈ {1, 2, . . . C} while steadily varying one of its attributes (e. g., orientation,

illumination etc.) in steps of ∆s according to sik = si0 + k∆s. An example of a

pose trajectory in image space is shown in Fig Figure IV.3 for a chair. Availability

of image trajectories, theoretically, ensures a simple implementation of guided data

augmentation. In [47], for example, trajectories captured from a set of fixed web-

cams are used to learn scene-specific linear mappings x = Ws+ b from attributes

s to features x. Synthetic feature points x̂ are then obtained given a new example

x∗ for a desired shift in the attribute value t − s∗ using the regression function

φ(x∗, s∗, t) = W (t−s∗)+x∗. Adequately sized datasets of image trajectories, how-

ever, are very difficult to obtain. Known natural image datasets in vision seldom

capture extensive attribute variations for all instances of different visual classes.

Even the recently introduced large scale corpora only provide millions of still im-

ages and no trajectories for class instances. An ImageNet [17] “chair” class, for

example, has a thousand images, each from a different chair captured in a single

pose and position. Similarly, in the Places scene dataset [96], a “street” scene

class, contains a single image each of different street scenes. Attribute trajectory

learning and transfer on standard vision datasets, therefore, is not straightforward

at all.

In this work we reformulate the problem of trajectory transfer so that it can

be extended to standard vision datasets. Datasets of natural images are generally
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of the form D = {(I1, s1, y1) , (I2, s2, y2) , . . . , (IN , sN , yN)}, where each image Ik
represents an instance of a class yk ∈ {1, 2, . . . , C} captured in a condition (at-

tribute) that can be quantified by a scalar sk ∈ R (attribute value). Since the first

step of trajectory transfer is trajectory learning, the absence of image sequences

poses an immediate problem. We overcome this with the help of a two step at-

tribute trajectory approximation approach. First, using a suitable feature space X
generated by an object CNN, we train a predictor of attribute values γ(x),x ∈ X .

Next we train a feature synthesizer function φ(x, γ(·), t) which perturbs the image

representation x such that the new data point x̂ achieves a specified change in the

attribute value from t0 = γ(x) to t = γ(x̂) for the smallest displacement in an

L2 sense. The synthesis function φ(.), therefore, effectively learns to translate a

data point (x, t0) to another location (x̂, t) on the attribute trajectory. A sufficient

number of such φ(·, t0, t)’s learned between different pairs of current and desired

attribute values (t0, t) can be used to traverse the entire trajectory of attribute

variations. The proposed idea of attribute trajectory approximation is illustrated

in Fig Figure IV.5. The architectural details of our framework as well as the

learning procedure is discussed in the following section.

IV.D Architecture

The architecture for attribute trajectory approximation, as depicted in

Fig. Figure IV.5, comprises of an object CNN stage, an attribute value predic-

tor and a feature generator module. Activations from the higher layers of any,

off-the-shelf, object detection or recognition network may be used as the space

X ⊂ RD for image description. The representation x ∈ X of an image I is then

processed by an attribute predictor that predicts the pose or depth t0 of the ex-

ample. The feature generator implements a transformation of the current feature

x such that the new point matches a specified pose or depth t. Implementation

of the attribute predictor and the feature synthesis module is described in this
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Figure IV.3: Distinction between class instances in standard natural image datasets
(top) and image trajectories (bottom).

section.

IV.D.1 Attribute regression

Let A be the set of all attributes that are available as labels for a dataset

of object images. As mentioned earlier, these could be object properties such as

pose, depth, volume, height etc. An attribute A ∈ A takes on scalar values s ∈ R

which, we assume, can be accurately predicted using the image representation

x ∈ X ⊂ RD. We train an attribute regressor function γ : X → R for every

attribute A in the set A. Each regressor takes as input the image descriptor x

and predicts its strength or value, i. e., γ(x) = t0. While γ could, in principle, be

implemented by a variety of approaches, such as support vector regression [22] or

Gaussian processes [9], we use a two-layer neural network instead, to accomplish

this task. This is not an arbitrary choice, as it will later enable us to easily re-

use this building block in the learning stage of the synthesis function(s) φ. The
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Figure IV.4: Architecture of the attribute regressor γ.

architecture of the attribute regressor is shown in Fig. Figure IV.4, consisting of

two linear layers, interleaved by batch normalization (BN) [36] and rectified linear

units (ReLU) [60]. While this architecture is admittedly simple, adding more layers

did not lead to significantly better results in our experiments. Nevertheless, the

design of this component is problem-specific and could easily be replaced by more

complex variants, depending on the characteristics of the attributes that need to

be predicted.

Learning. The attribute regressor can easily be trained from a collection of

N training tuples {(xi, si)}Ni=1 for each attribute using an L2 loss objective between

γ(x) and ground truth s.

IV.D.2 Feature regression

The key component of our data augmentation framework is the feature

synthesis function φ which implements a mapping,

φ : X × R× R→ X , (x, γ(x), t) 7→ x̂, s.t. γ(x̂) ≈ t . (IV.1)

This mapping accepts, as input, the image representation x ∈ X , the predicted

value t0 = γ(x) for an attribute A and a desired scalar value t, at which we want the

attribute A to be. The function φ(x, t0, t), then, generates a new representation x̂,

such that its predicted γ(x̂) matches the desired t. A bank of functions φ learned
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Figure IV.5: Illustration of attribute-guided trajectory approximation. For a given
image, the object CNN generates a feature x and the attribute predictor generates
the current pose/depth t0. The feature generator function φ(x, t0, t) translates
the data point x to another point x̂ in the CNN feature space such that the
pose/depth of the new sample matches a desired value t. The entire trajectory of
pose/depth variations can be approximated by learning one feature generator φ
for every possible pair of (t0, t) in the attribute range.

for sufficient pairs of (t0, t), will allow translation from a given location x to any

other location on X that lies on the trajectory of variation in attribute A. For

ease of implementation, therefore, we quantize the range s ∈ R of attribute A

into I intervals [li, hi], where li, hi denote the lower and upper bounds of the i-th

interval. A function φki is trained to translate x such that the current attribute

t0 ∈ [li, hi] changes to the desired attribute t ∈ [lk, hk]. In our illustration of

Fig. Figure IV.1, e. g., we show a φ learned for depth attribute from interval

[l, h] = [1, 2] to a desired value 3[m] representing the interval [2.5, 3.5]. While

learning separate synthesis functions simplifies the problem, it requires a good a-
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priori attribute (strength) predictor, since, otherwise, we could not decide which φki

to use. During testing, we (1) predict the object’s attribute value from its original

feature x, i. e., γ(x) = t0, identify the input interval t0 ∈ [li, hi] and then (2)

synthesize additional features as x̂ = φki (x) for translation to all other intervals

[lk, hk], i 6= k.

To implement1 φ, we design an encoder-decoder architecture, reminiscent

of a conventional autoencoder [3]. Our objective, however, is not to encode and

then reconstruct the input, but to produce an output that resembles a feature

descriptor of an object at a desired attribute value. In other words, the encoder

essentially learns to extract the essence of features; the decoder then takes the

encoding and decodes it to the desired result. In general, we can formulate the

optimization problem as

min
φ∈C

L(x, t;φ) = (γ(φ(x))− t)2 , (IV.2)

where the minimization is over a suitable class of functions C. Notably, when

implementing φ as an encoder-decoder network with an appended (pre-trained)

attribute predictor (see Fig. Figure IV.6) and loss (γ(φ(x)) − t)2, we have little

control over the decoding result in the sense that we cannot guarantee that the

identity of the input is preserved. This means that features from a particular

object class might map to features that are no longer recognizable as this class, as

the encoder-decoder will only learn to “fool” the attribute predictor γ. For that

reason, we add a regularizer to the objective of Eq. (IV.2), i. e., we require the

decoding result to be close, e. g., in the 2-norm, to the input. This changes the

optimization problem of Eq. (IV.2) to

min
φ∈C

L(x, t;φ) = (1− α) (γ(φ(x))− t)2︸ ︷︷ ︸
Mismatch penalty

+α ‖φ(x)− x‖2︸ ︷︷ ︸
Regularizer

. (IV.3)

1We omit the sub-/superscripts for readability.
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Figure IV.6: Illustration of the encoder-decoder network for AGA. During training,
the attribute regressor γ is appended to the network, whereas, for testing (i. e.,
feature synthesis) this part is removed. When learning φki , the input x is such that
the associated attribute value t0 is within [li, hi] and one φki is learned per desired
attribute value t ∈ [lk, hk].

Interpreted differently, this resembles the loss of an autoencoder network with

an added target attribute mismatch penalty. The encoder-decoder network that

implements the function class C to learn φ is shown in Fig. Figure IV.6. The core

building block is a combination of a linear layer, batch normalization, ELU [13],

followed by dropout [78]. After the final linear layer, we add one ReLU layer to

enforce x̂ ∈ RD
+ .

Learning. Training the encoder-decoder network of Fig. Figure IV.6 re-

quires an a-priori trained attribute regressor γ for each given attribute A ∈ A.
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During training, this attribute regressor is appended to the network and its weights

are frozen. Hence, only the encoder-decoder weights are updated. To train one φki

for each interval [li, hi] of the object attribute range and a desired object attribute

value tk, we partition the training data from the external corpus into subsets Si,
such that ∀(xn, sn) ∈ Si : sn ∈ [li, hi]. One φki is learned from Si for each de-

sired object attribute value t ∈ [lk, hk]. As training is in feature space X , we have

no convolutional layers and consequently training is computationally cheap. For

testing, the attribute regressor is removed and only the trained encoder-decoder

network (implementing φki ) is used to synthesize features. Consequently, given |A|
attributes, I intervals per attribute, we obtain |A| · I2 synthesis functions.

Attribute based Feature Extrapolation

The approach for training shown in (IV.3) is unique, in that it facilitates

learning transformations φ without special image sets (pairs, trajectories etc). The

primary goal of φ’s is to learn a mapping from a data point (x, t0) to another point

(x̂, t). In an ideal case, this could be framed as an alignment problem between

sample pairs (x, t0) and (x̂, t) available in the training database. Our setting,

however, does not assume the availability of special data with paired images or

image sequences (e.g. two or more images of the same couch in different poses). We

cannot, therefore, avail of the point-to-point alignment/translation formulations

often used in domain adaptation problems [46, 69] and, more recently, in image-

to-image generation [37]. In our case, the desired output x̂ to which original

point x must be translated, is hidden. All we have, for training, is x, its current

attribute value t0 and the final desired attribute value t. To estimate the unknown

x̂ under these constraints, we leverage the trained attribute predictor γ(.) which

induces a measure on the feature space X . The feature synthesizers φ essentially

learn to translate the original sample x by the smallest amount so as to affect the

specified change in its attribute, as measured by γ(.). Functions φ, thus, learn to

imagine changes to an item (an image) without having explicit images depicting
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these change. The transformation is, by nature, an extrapolation along X guided

by γ(·).
Another important feature of our approach is that it allows modularity .

The feature space X and the attribute predictors γ can be learned on a completely

different generic dataset of objects. A pre-trained CNN space X as well as attribute

predictors γ trained on it can be plugged in to the objective (IV.3) for feature

synthesis. A γ that predicts “pose” of a generic collection of common indoor

objects, can be easily used to train a pose guided data synthesizer (φ) for a set

of “unseen” objects. The construction, thus, naturally allows transfer of attribute

trajectories across object datasets.

Relation to Direct Gradient Ascent

The objective in (IV.2) is the same as the loss for which the attribute

regressor γ(.) is trained with on space X . Theoretically x may be modified to

achieve the desired attribute value of t, using backpropagated gradient updates

within γ(.). These are,
∂E

∂x
= −2(1− α)ε

∂γ

∂x
(IV.4)

where ε stands for t − γ(x). Such a simplistic update rule, however, will most

likely lead to spurious results. It is, after all a well known tendency among deep

neural networks to be fooled by noisy inputs generated with uncontrolled gradient

ascent [61]. Adding an L2 constraint on the objective as in (IV.3) could help soften

the gradient steps as follows,

∂E

∂x
= −2(1− α)ε

∂γ

∂x
− 2αδ (IV.5)

where δ = |x0 − x|, where x0 is an anchor point for the features. Notice that

both components of the loss counteract each other. These updates may be seen as

inference of the hidden x̂ for every given data point x and a scalar t. All that is

required is a pre-trained γ() that computes and propagates the gradients in (IV.4)
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or (IV.5). Our method introduces a feature regressor stage in between input x

and the attribute predictor. Its role is to allow learningability of traversal in X .

The regressor is designed as an encoder decoder with input x and output x̂ with

parameters that can be tuned for the transformation. The procedure of learning

the regressor can be seen as involving inference of the hidden x̂ that achieves the

desired pose/depth t as well as estimation of the parameters θ of the module.

While x̂ is updated using (IV.5), the parameters are updated with,

∂E

∂θ
=

[
−2(1− α)ε

∂γ

∂x̂
− 2αδ

]
� ∂x̂

∂θ
(IV.6)

Advantage of a trainable system over backprop based feature updates is that the

former can produce generalizable data points which are necessary for the success

of the few-shot transfer task.

IV.E Experiments

We first discuss the generation of adequate training data for the encoder-

decoder network, then evaluate every component of our architecture separately and

eventually demonstrate its utility on (1) one-shot object recognition in a transfer

learning setting and (2) one-shot scene recognition.

Dataset. We use the SUN RGB-D dataset from Song et. al. [77]. This

dataset contains 10335 RGB images with depth maps, as well as detailed annota-

tions for more than 1000 objects in the form of 2D and 3D bounding boxes. In our

setup, we use object depth and pose as our attributes, i. e., A = {Depth, Pose}.
For each ground-truth 3D bounding box, we extract the depth value at its cen-

troid and obtain pose information as the rotation of the 3D bounding box about

the vertical y-axis. In all experiments, we use the first 5335 images as our external

database, i. e., the database for which we assume availability of attribute anno-

tations. The remaining 5000 images are used for testing/evaluation; more details

are given in the specific experiments.
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Figure IV.7: Illustration of training data generation for AGA training. First,
we obtain fast RCNN [29] activations (e. g., FC7 layer) of Selective Search [85]
proposals that overlap with 2D ground-truth bounding boxes (IoU > 0.5) and
scores> 0.7 (for a particular object class) to generate a sufficient amount of training
data. Second, attribute values (i. e., depth D and pose P) of the corresponding
3D ground-truth bounding boxes are associated with the proposals (best-viewed
in color).
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Training data. Notably, in SUN RGB-D, the number of instances of

each object class are not evenly distributed, simply because this dataset was not

specifically designed for object recognition tasks. Consequently, images are also

not object-centric, meaning that there is substantial variation in the location of

objects, as well as the depth and pose at which they occur. This makes it difficult

to extract a sufficient and balanced number of feature descriptors per object class,

if we would only use the ground-truth bounding boxes to extract training data. We

circumvent this problem by leveraging the fast RCNN detector of [29] with object

proposals generated by Selective Search [85]. In detail, we finetune the ImageNet

model from [29] to SUN RGB-D, using the same 19 objects as in [77]. We then

run the detector on all images from our training split and keep the proposals with

detection scores > 0.7 and a sufficient overlap (measured by the IoU >0.5) with

the 2D ground-truth bounding boxes. This is a simple augmentation technique to

increase the amount of available training data. The activations for these proposals

generated by a suitable layer of the RCNN are used as our features x. Each

proposal that remains after overlap and score thresholding is annotated by the

attribute information of the corresponding ground-truth bounding box in 3D. As

this strategy generates a larger number of descriptors (compared to the number

of ground-truth bounding boxes), we can evenly balance the training data in the

sense that we can select an equal number of detections per object class to train

(1) the attribute regressor and (2) the encoder-decoder network. Training data

generation is illustrated in Fig. Figure IV.7 on four example images.

Implementation. The attribute regressor and the encoder-decoder net-

work are implemented in PyTorch2. All models are trained using Adam [43]. For

the attribute regressor, we train for 150 epochs with a batch size of 300 and an

initial learning rate of 0.001. The learning rate drops by 10 every 50th epoch. The

encoder-decoder network is also trained for 150 epochs with the same learning rate

schedule, but with a batch size of 64. The dropout probability during training is

2http://pytorch.org/
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set to 0.25. No dropout is used for testing. For our classification experiments, we

use a linear C-SVM, as implemented in liblinear [23]. On a Linux system, run-

ning Ubuntu 16.04, with 128 GB of memory and one NVIDIA Titan X, training

one model (i. e., one φ(·, t0, t) for a specific choice of t, t0) takes ≈ 30 seconds.

The relatively low demand on computational resources highlights the advantage

of AGA in feature space, as no convolutional layers need to be trained. As the

feature space X , any of the higher layers of the RCNN can be due to their se-

mantic nature which is critical for problems of transfer [21, 31, 19]. In the initial

few experiments, therefore, we train and evaluate our system using the last fully

connected layer of the RCNN network denoted FC7. All trained models+source

code are publicly available online3.

IV.E.1 Attribute regression

Our strategy to augment data requires training of attribute regressors γ in a

manner agnostic to the object class. Since attribute value γ is the only supervisory

signal that guides the proposed augmentation, performance of AGA is tied to the

accuracy of attribute prediction. In this section, we evaluate the performance of

our object agnostic depth and pose predictors trained using the architecture in

sec. IV.D.1.

Table Table IV.1 lists the median-absolute-error (MAE) of depth (in [m])

and pose (in [deg]) prediction per object. We train on instances of 19 object classes

(S) in our training split of SUN RGB-D and test on instances of the same object

classes, but extracted from the testing split. As feature representation we use

two top level activations of the RCNN namely FC6 and FC7. We observe that the

accuracy of depth prediction is quite high with an MAE of only 0.45 m for both

features. Pose predictor on the other hand is a little more erroneous with an MAE

of 45 deg. Pose estimation from 2D data, in general, is a substantially harder

problem than depth estimation (which works remarkably well, even on a per-pixel

3https://github.com/rkwitt/AGA
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Table IV.1: Median-Absolute-Error (MAE), for depth / pose, of the attribute
regressor, evaluated on left-out (during training) instances of 19 objects from SUN
RGBD. In our setup, the pose estimation error quantifies the error in predicting a
rotation around the z-axis. For reference, the range of of the object attributes in
the training data is [0.2m, 7.5m] for Depth and [0◦, 180◦] for Pose.

Object Depth (MAE [m]) Pose (MAE [deg])
Class FC7 FC6 FC7 FC6

bathtub 0.21 0.28 48.60 48.96
bed 0.43 0.46 54.76 53.77

bookshelf 0.62 0.73 53.56 50.88
box 0.77 0.71 46.84 41.50

chair 0.48 0.45 42.44 45.48
counter 0.57 0.23 48.78 39.34

desk 0.52 0.47 45.80 49.96
door 0.62 0.41 68.36 48.66

dresser 0.38 0.41 67.96 66.89
garbage bin 0.47 0.48 50.71 44.08

lamp 0.56 0.68 36.63 34.35
monitor 0.36 0.40 41.98 36.27

night stand 0.51 0.61 46.20 44.53
pillow 0.43 0.57 54.35 41.86

sink 0.26 0.25 60.08 54.09
sofa 0.48 0.43 46.42 41.94

table 0.47 0.43 43.29 44.12
tv 0.51 0.56 40.25 34.58

toilet 0.25 0.24 40.24 32.79
∅ 0.47 0.46 44.45 44.95

level, c. f. [55]). Nevertheless, our recognition experiments (in Secs. IV.E.3 and

IV.E.4) show that even with mediocre performance of the pose predictor (due

to symmetry issues, etc.), augmentation along this dimension is still beneficial.

Finally, we note that there isn’t a significant difference between the performances

using either FC6 or FC7 feature spaces. Therefore, unless otherwise specified, we

use FC7 as our feature representation in the remainder of this work.
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IV.E.2 Feature regression

We assess the performance of our regressor(s) φki , shown in Fig. Figure IV.6,

that are used for synthetic feature generation. In all experiments, we use an

overlapping sliding window to bin the range of each attribute A ∈ A into I intervals

[li, hi]. In case of Depth, we set [l0, h0] = [0, 1] and shift each interval by 0.5 meter;

in case of Pose, we set [l0, h0] = [0◦, 45◦] and shift by 25◦. We generate as many

intervals as needed to cover the full range of the attribute values in the training

data. The bin-width / step-size were set to ensure a roughly equal number of

features in each bin. For augmentation, we choose 0.5, 1, . . . ,max(Depth) as target

attribute values for Depth and 45◦, 70◦, . . . , 180◦ for Pose. This results in T = 11

target values for Depth and T = 7 for Pose.

We use two separate evaluation metrics to assess the performance of φki .

First, we are interested in how well the feature regressor can generate features

that correspond to the desired attribute target values. To accomplish this, we run

each synthetic feature x̂ through the attribute predictor and assess the MAE, i.

e., |γ(x̂)− t|, over all attribute targets t. Table Table IV.2 lists the average MAE,

per object, for (1) features from object classes that were seen in the training data

and (2) features from objects that we have never seen before. As wee can see from

Table Table IV.2, MAE’s for seen and unseen objects are similar, indicating that

the encoder-decoder has learned to synthesize features, such that γ(x̂) ≈ t.

Second, we are interested in how much synthesized features differ from

original features. While we cannot evaluate this directly (as we do not have data

from one particular object instance at multiple depths and poses), we can assess

how “close” synthesized features are to the original features. The intuition here

is that closeness in feature space is indicative of an object-identity preserving

synthesis. In principle, we could simply evaluate ‖φki (x) − x‖2, however, the 2-

norm is hard to interpret. Instead, we compute the Pearson correlation coefficient

ρ between each original feature and its synthesized variants, i. e., ρ(x, φki (x)). As ρ

ranges from [−1, 1], high values indicate a strong linear relationship to the original
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features. Results are reported in Table Table IV.2. Similar to our previous results

for MAE, we observe that ρ, when averaged over all objects, is slightly lower for

objects that did not appear in the training data. This decrease in correlation,

however, is relatively small.

In summary, we conclude that these results warrant the use of φki on feature

descriptors from object classes that have not appeared in the training corpus. This

enables us to test φki in transfer learning setups, as we will see in the following one-

shot experiments of Secs. IV.E.3 and IV.E.4.

IV.E.3 One-shot object recognition

First, we demonstrate the utility of our approach on the task of one-shot ob-

ject recognition in a transfer learning setup. Specifically, we aim to learn attribute-

guided augmenters φki from instances of object classes that are available in an ex-

ternal, annotated database (in our case, SUN RGB-D). We denote this collection

of object classes as our source classes S. Given one instance from a collection

of completely different object classes, denoted as the target classes T , we aim to

train a discriminant classifier C on T , i. e., C : X → {1, . . . , |T |}. In this setting,

S ∩ T = ∅. Note that no attribute annotations for instances of object classes in

T are available. This can be considered a variant of transfer learning, since we

transfer knowledge from object classes in S to instances of object classes in T ,

without any prior knowledge about T .

Setup. We evaluate one-shot object recognition performance on three col-

lections of previously unseen object classes in the following setup: First, we ran-

domly select two sets of 10 object classes and ensure that each object class has at

least 100 samples in the testing split of SUN RGB-D. We further ensure that no

object class is in S. This guarantees (1) that we have never seen the image, nor (2)

the object class during training. Since, SUN RGB-D does not have object-centric

images, we use the ground-truth bounding boxes to obtain the actual object crops.

This allows us to tease out the benefit of augmentation without having to deal
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Table IV.2: Quality assessment of feature regressor φki . Evaluation is presented
in terms of (1) Pearson correlation (ρ) of synthesized and original features and (2)
mean MAE of predicted attribute values of synthesized features, γ(φki (x)), w. r.
t. the desired attribute values t. D indicates Depth-aug. features (MAE in [m]);
P indicates Pose-aug. features (MAE in [deg]).

Object ρ D (MAE) ρ P (MAE)

Seen objects

bathtub 0.75 0.10 0.68 3.99
bed 0.81 0.07 0.82 3.30

bookshelf 0.80 0.06 0.79 3.36
box 0.74 0.08 0.74 4.44

chair 0.73 0.07 0.71 3.93
counter 0.76 0.08 0.77 3.90

desk 0.75 0.07 0.74 3.93
door 0.67 0.10 0.63 4.71

dresser 0.79 0.08 0.77 4.12
garbage bin 0.76 0.07 0.76 5.30

lamp 0.82 0.08 0.79 4.83
monitor 0.82 0.06 0.80 3.34

night stand 0.80 0.07 0.78 4.00
pillow 0.80 0.08 0.81 3.87

sink 0.75 0.11 0.76 4.00
sofa 0.78 0.08 0.78 4.29

table 0.75 0.07 0.74 4.10
tv 0.78 0.08 0.72 4.66

toilet 0.80 0.10 0.81 3.70
∅ 0.77 0.08 0.76 4.10

Unseen objects

picture 0.67 0.08 0.65 5.13
ottoman 0.70 0.09 0.70 4.41

whiteboard 0.67 0.12 0.65 4.43
fridge 0.69 0.10 0.68 4.48

counter 0.76 0.08 0.77 3.98
books 0.74 0.08 0.73 4.26
stove 0.71 0.10 0.71 4.50

cabinet 0.74 0.09 0.72 3.99
printer 0.73 0.08 0.72 4.59

computer 0.81 0.06 0.80 3.73
∅ 0.72 0.09 0.71 4.35

with confounding factors such as background noise. The two sets of object classes
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are denoted T1
4 and T2

5. We additionally compile a third set of target classes

T3 = T1 ∪ T2 and remark that T1 ∩ T2 = ∅. Consequently, we have two 10-class

problems and one 20-class problem. For each object image in Ti, we then collect

RCNN FC7 features.

As a Baseline, we “train” a linear C-SVM (on 1-norm normalized features)

using only the single instances of each object class in Ti (SVM cost fixed to 10).

Exactly the same parameter settings of the SVM are then used to train on the

single instances + features synthesized by AGA. We repeat the selection of one-shot

instances 500 times and report the average recognition accuracy. For comparison,

we additionally list 5-shot recognition results in the same setup.

Remark. The design of this experiment is similar to [62, Section 4.3.], with

the exceptions that we (1) do not detect objects, (2) augmentation is performed

in feature space and (3) no object-specific information is available. The latter is

important, since [62] assumes the existence of 3D CAD models for objects in Ti
from which synthetic images can be rendered. In our case, augmentation does not

require any a-priori information about the objects classes.

Results. Table Table IV.3 lists the classification accuracy for the different

sets of one-shot training data. First, using original one-shot instances augmented

by Depth-guided features (+D); second, using original features + Pose-guided fea-

tures (+P) and third, a combination of both (+D, P); In general, we observe that

adding AGA-synthesized features improves recognition accuracy over the Baseline

in all cases. For Depth-augmented features, gains range from 3-5 percentage points,

for Pose-augmented features, gains range from 2-4 percentage points on average.

We attribute this effect to the difficulty in predicting object pose from 2D data,

as can be seen from Table Table IV.1. Nevertheless, in both augmentation set-

tings, the gains are statistically significant (w. r. t. the Baseline), as evaluated

4T1 = {picture, whiteboard, fridge, counter, books, stove, cabinet,
printer, computer, ottoman}

5T2 = {mug, telephone, bowl, bottle, scanner, microwave, coffee table,
recycle bin, cart, bench}
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Table IV.3: One / few shot recognition accuracy (over 500 trials) for three object
recognition tasks; top: one-shot, bottom: five-shot. Numbers in parentheses indi-
cate the #classes. A ’X’ indicates that the result is statistically different (at 5%
sig.) from the Baseline. +D indicates adding Depth-aug. features to the one-shot
instances; +P indicates addition of Pose-aug. features and +D, P denotes adding
a combination of Depth-/Pose-aug. features.

Baseline AGA+D AGA+P AGA+D+P
One-shot

T1 (10) 33.74 38.32 37.25 39.10
T2 (10) 23.76 28.49 27.15 30.12
T3 (20) 22.84 25.52 24.34 26.67

Five-shot
T1 (10) 50.03 55.04 53.83 56.92
T2 (10) 36.76 44.57 42.68 47.04
T3 (20) 37.37 40.46 39.36 42.87

by a Wilcoxn rank sum test for equal medians [28] at 5% significance (indicated

by ’X’ in Table Table IV.3). Adding both Depth- and Pose-augmented features

to the original one-shot features achieves the greatest improvement in recognition

accuracy, ranging from 4-6 percentage points. This indicates that information

from depth and pose is complementary and allows for better coverage of the fea-

ture space. Notably, we also experimented with the metric-learning approach of

Fink [25] which only led to negligible gains over the Baseline (e. g., 33.85% on

T1).

Feature analysis/visualization. To assess the nature of feature synthe-

sis, we backpropagate through RCNN layers the gradient w. r. t. the 2-norm

between an original and a synthesized feature vector. The strength of the input

gradient indicates how much each pixel of the object must change to produce a

proportional change in depth/pose of the sample. As can be seen in the example

of Fig. Figure IV.8, a greater desired change in depth invokes a stronger gradient

on the monitor. Second, we ran a retrieval experiment : we sampled 1300 instances

of 10 (unseen) object classes (T1) and synthesized features for each instance w. r.
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Figure IV.8: Visualizing gradients generated by the AGA network to affect depth
change. Figure depicts the difference in gradient magnitude when backpropagating
(through RCNN) the 2-norm of the difference between an original and a synthesized
feature vector for an increasing desired change in depth, i. e., 3[m] v. s. 4[m]
(middle) and 3[m] v. s. 4.5[m] (right).

t. depth. Synthesized features were then used for retrieval on the original 1300

features. This allows to assess if synthesized features (1) allow to retrieve instances

of the same class (Top-1 acc.) and (2) of the desired attribute value. The latter

is measured by the coefficient of determination (R2). As seen in Table Table IV.5,

the R2 scores indicate that we can actually retrieve instances with the desired at-

tribute values. Notably, even in cases where R2 ≈ 0 (i. e., the linear model does

not explain the variability), the results still show decent Top-1 acc., revealing that

synthesis does not alter class membership.

IV.E.4 Object-based one-shot scene recognition

We can also use AGA for a different type of transfer, namely the transfer

from object detection networks to one-shot scene recognition. Although, object

detection is a challenging task in itself, significant progress is made, every year,

in competitions such as the ImageNet challenge. Extending the gains in object

detection to other related problems, such as scene recognition, is therefore quite

appealing. A system that uses an accurate object detector such as an RCNN [29] to

perform scene recognition, could generate comprehensive annotations for an image

in one forward pass. An object detector that supports one-shot scene recognition

could do so with the least amount of additional data. It must be noted that such
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Table IV.4: One-shot classification on indoor scenes from [65]. The classes include:
{auditorium, bakery, bedroom, bookstore, children room, classroom, computer
room, concert hall, corridor, dental office, dining room, hospital room, laboratory,
library, living room, lobby, meeting room, movie theater, nursery, office, operat-
ing room, pantry, restaurant}. For Sem-FV [19], we use ImageNet CNN features
extracted at one image scale.

Method Accuracy [%]
max. pool (Baseline) 13.97
AGA FV (+D) 15.13
AGA FV (+P) 14.63
AGA CL-1 (+D, max.) 16.04
AGA CL-2 (+P, max.) 15.52
AGA CL-3 (+D, +P, max.) 16.32
Sem-FV [19] 32.75
AGA Sem-FV 34.36
Places [96] 51.28
AGA Places 52.11

systems are different from object recognition based methods such as [31, 19, 12],

where explicit detection of objects is not necessary. They apply filters from object

recognition CNNs to several regions of images and extract features from all of

them, whether or not an object is found. The data available to them is therefore

enough to learn complex descriptors such as Fisher vectors (FVs). A detector,

on the other hand, may produce very few features from an image, based on the

number of objects found. AGA is tailor-made for such scenarios where features

from an RCNN-detected object can be augmented.

Setup. To evaluate AGA in this setting, we select a 25-class subset of MIT

Indoor [65], which may contain objects that the RCNN is trained for. The reason

for this choice is our reliance on a detection CNN, which has a vocabulary of 19

objects from SUN RGB-D. At present, this is the largest such dataset that provides

objects and their 3D attributes. The system can be extended easily to accommo-

date more scene classes if a larger RGB-D object dataset becomes available. As the

RCNN produces very few detections per scene image, the best approach, without
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Table IV.5: Retrieval results for unseen objects (T1) when querying with syn-
thesized features of varying depth. Larger R2 values indicate a stronger linear
relationship (R2 ∈ [0, 1]) to the depth values of retrieved instances.

Object Top-1 R2 Object Top-1 R2

picture 0.33 0.36 whiteboard 0.12 0.30
fridge 0.26 0.08 counter 0.64 0.18
books 0.52 0.07 stove 0.20 0.13

cabinet 0.57 0.27 printer 0.31 0.02
computer 0.94 0.26 ottoman 0.60 0.12

augmentation, is to perform pooling of RCNN features from proposals into a fixed-

size representation. We used max-pooling as our baseline. Upon augmentation,

using predicted depth/ pose, an image has enough RCNN features to compute a

GMM-based FV. For this, we use the experimental settings in [19]. The FVs are

denoted as AGA FV(+D) and AGA FV(+P), based on the attribute used to guide the

augmentation. As classifier, we use a linear C-SVM with fixed parameter (C).

Results. Table Table IV.4 lists the avgerage one-shot recognition accuracy

over multiple iterations. The benefits of AGA are clear, as both aug. FVs perform

better than the max-pooling baseline by 0.5-1% points. Training on a combination

(concatenated vector) of the augmented FVs and max-pooling, denoted as AGA

CL-1, AGA CL-2 and AGA CL-3 further improves by about 1-2% points. Finally, we

combined our aug. FVs with the state-of-the-art semantic FV of [19] and Places

CNN features [96] for one-shot classification. Both combinations, denoted AGA

Sem-FV and AGA Places, improved by a non-trivial margin (∼1% points).

IV.F Analyzing AGA

In the previous section, we demonstrated the use of our AGA method to

improve one-shot learning in case of object recognition. Here, we provide a detailed

analysis of the parameter choices made during system training and their effect on

the performance. Specifically, we highlight the interplay between the terms of
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the loss used in (IV.3) and the impact of trading one off for the other on the

quality of synthetic data. Additionally, we explicitly demonstrate the selectivity

of the synthesized data points by using them directly for classification. Finally,

we provide ways to improve the AGA baseline by exploiting multiple levels of

information from the object CNN.

Impact of regularization

The training objective for synthesis functions φ, shown in (IV.3), consists

of two opposing losses: (1) the regularization loss penalizes displacement of the

synthetic point x̂ from the original point x. The attribute mismatch term, on the

other hand, encourages x̂ to move so that the attribute changes from the current

t0 = γ(x) to t. The two, therefore, act as adversaries during the optimization steps.

The regularization parameter α controls the trade-off between the two losses and

its value affects the selectivity of the synthesized data points. To study this effect,

as well as to determine the optimal value for α, we perform more experiments in

the object recognition framework described in Sec. IV.E.3. Specifically, for the

dataset T1, we use our augmentation strategy to produce synthetic data points

with different values of α in (IV.3). For every alpha, the resulting augmented

dataset is used for one-shot object recognition. To get a better understanding of

the quality of augmented data, in this experiment, we use a nearest neighbor (NN),

as well as a linear SVM (as in Sec. IV.E.3).

Fig. Figure IV.9 shows the variation in results achieved with pose, depth,

and pose+depth based augmentation for different values of parameter α. It is

clear that for the SVM classifier, increasing α improves the performance of AGA

based object recognition over the one-shot baseline. For 1-NN classification, less

regularization tends to work better. Overall, the SVM classifier obtains the best

accuracy when synthetic features are combined. Also, the results indicate that

large-margin classification clearly prefers points closer to the original samples. If

a “chair” image is used to produce a synthetic point that is nearby in X , the
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Figure IV.9: One-shot regularization experiment where the weight α is varied
from 0.01 to 0.99. Lower α prefers minimizing attribute mismatch but generates
a (possible) less informative data-point. Higher α maintains the discriminative
power of the synthetic data. The Baseline represents a linear SVM trained on the
1-shot instances only.

generated example is likely to also be a “chair”. For a very low α, the discrimina-

tive power of the synthetic examples seems to be very low. As a result the final

SVM classifier fails to generalize, resulting in poor performance. In a one-shot

scenario it is impossible for any classifier to correctly estimate class distributions

(or boundaries). Augmentation, therefore, can be seen as equivalent to introduc-

ing pseudo-examples to regularize them. Using a lower weight α in (IV.3), results

in such examples being largely non-informative. Another key observation is the

disparity between the performance of the NN and the SVM classifiers. An SVM is

learned discriminatively and is known to be more robust in limited data scenarios.

A NN classifier, which relies on a generative model, performs well when sufficient

amount of data is available. The results of our experiments, however, indicate that

the NN is more robust than an SVM for a range of different α’s. This is perhaps

because of the tendency of the latter to overfit . Especially at lower α’s, the SVM

is seen overfitting to the poor collection of synthetic data points generated by our

algorithm and performing much worse than the parameter-less NN classifier.
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Quality of synthetic features

Next, we assess the discriminative power of features synthesized by our

algorithm more explicitly. In Sec. IV.E.3, we tried to do so by evaluating the

synthesized data for retrieval of real image features from T1. The results show that

AGA generated data correlates semantically with the examples retrieved. Instead

of proxy-retrieval, here, we perform a proxy recognition experiment to evaluate

the quality of our data synthesis. Using the original one-shot training image from

each class of T1, we first synthesize additional data points with depth and pose

attribute guidance. We remove the original one-shot example and use, simply,

only the synthesized data to train a classifier for object recognition. The same

procedure is repeated for 5-shot recognition.

The results of proxy based recognition are shown in Fig Figure IV.10. Many

conclusions are possible from these. First, it is clear that the performance of

the proxy classifier is not much worse than the classifier trained with original as

well as synthesized data. It is also, in some cases, better than the one-shot or

few-shot baseline. This finding is very significant in itself. The implication is

that AGA-based synthetic examples carry enough “clean” information from the

original data-point and the latter can, in some cases, be even omitted without a

huge loss. It is, thus, apparent that the synthetic data does not simply serve as

a non-informative prior that regularizes the one-shot or low-shot SVM. Another

interesting observation from Fig Figure IV.10 is that the proxy classifier performs

better when the weight α in the AGA objective is higher, consistent with the

experiments of Sec. IV.F. Since, a higher α incentivizes the synthetic data to be

close to the original in an L2 sense, the former seems to distill semantic information

from the latter. The improved disciminative power of synthetic examples for a

higher α also vindicates our claim that the L2 loss term in (IV.3) preserves object

identity.
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Figure IV.10: One-shot and five-shot recognition with only augmented data (orig-
inal omitted). Recognition performance reported ( on y-axis in [%]) with (w Org.)
and without (wo Org.) original features (FC7) for a linear SVM classifier, de-
pending on the regularization weight α (x-axis). The Baseline result denotes the
recognition performance of a linear SVM trained on the original features only (i.e.,
1 example/class in case of 1-shot and 5 examples/class in case of 5-shot.

Few-shot performance

To understand the limits of our algorithm, we steadily increased the number

of training points available to the (linear-SVM) few-shot classifier (from 1 to 10).

In each case, using our method, we generated synthetic points (FC7) from each

example in the training set. The result is shown in Fig. Figure IV.11 (gray and

red bars). We find that the improvements due to augmentation sustain until we

increase the training examples over 10 per class. It is also worth noting that AGA

does not quite match having real image data. In particular, for each real data

point, our augmentation method generates≈ 18 synthetic points. The performance

achieved using one real example and 18 AGA generated ones is much less than using

10 real examples. However, AGA clearly helps to achieve meaningful improvements

when real data is not available.

Optimizing the feature space X

The main motivation behind the proposed guided augmentation strategy is

the unavailability of adequate training data in few-shot transfer learning scenarios.

For transfer problems, in general, it is also essential to avail of a semantic feature

representation for data that acts as a conduit for the said transfer. E.g. the
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activations of top layers in a pre-trained object recognition CNN, such as [45], are

shown to be highly selective of meaningful visual concepts. In many recent works,

therefore, top layers of a CNN have been used for image representation for various

vision tasks with remarkable success [21, 31, 19, 18]. In the proposed framework

also, we use the activations of the penultimate layer of the RCNN (before the

classifier), denoted FC7, for data representation as well as generation. One may

argue that the higher layers of a network are too invariant for pose/depth modeling.

Our main objective, however, is to generate discriminative data points in a feature

space that is conducive to knowledge transfer. Therefore, the use of higher CNN

layer activations is imperative for good performance. Initial layers of a network

may preserve detailed visual variations, however, they lack the semantic selectivity

necessary to help transfer of high level information such as detected objects in an

image. In fact, the experimental analysis with synthesized FC7 features presented

in section IV.E, shows that despite its supposed invariance, the feature space

still allows AGA to sensibly capture attribute variations. First, the accuracy of

attribute prediction is reasonable as shown in table Table IV.1. Second, according

to the retrieval experiment in IV.E.3, synthesized FC7 feature points are able to

recall database examples that match it in object class as well as attribute value

(pose/depth) accurately.

Although we use FC7 as the representation space X in our few-shot experi-

ments, it is certainly not the only choice as far as semantic activations of a CNN

are concerned. In some works, conv5 outputs [12], fc6 outputs [55] and even fc8

features [19] have been used for transfer. All these layers appear in the final stage

of a CNN and their units are demonstrably semantic in nature. In order to im-

prove our AGA system we experimented with combinations of these features. In

particular, we found the addition of FC6 activations to FC7 helped improve the

quality of the synthetic data as well as the few-shot performance substantially.

We achieved the combination in two different ways. The first approach is referred

to as late fusion, where an AGA system is trained for each representation inde-
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Figure IV.11: Performance of few shot (1-10) object recognition on T1 using AGA.
Shown are the results of a linear SVM classifier trained (a) on FC7 features of the
original examples; (b) on FC7 features for pose & depth; (c) on a concatenation
of FC6 and FC7 features for depth & pose (each AGA synthesis function trained
separately; (d) on FC6 and FC7 features for depth & pose when the AGA synthesis
function is retrained on the concatenation of FC6 and FC7. The bold horizontal
lines show the baseline(s) for (c) and (d).

pendently. At the one-shot/few-shot transfer learning stage, then, the FC7 and

FC6 descriptors synthesized from an image for the same desired attribute value

t are concatenated. The extended feature representation is used instead of just

FC7 for few-shot SVM training and testing. The second approach of feature fusion

is referred to as paired training . This entails relearning the AGA system, which

involves re-training the attribute predictor γ as well as feature synthesizers φ, on

the joint [FC7, FC6] space. Augmentation as well as one-shot/few-shot learning is

performed on this larger space. The performance is shown in fig Figure IV.11.

Results indicate very little to no improvement due to both feature fusion

methods over FC7 for one shot AGA. Perhaps a large feature space is not sufficient

to learn a generalizable SVM with only 19 examples (one real and 17 synthetic). As
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we steadily increase the number of real training images, the feature fusion methods

start gaining over the use of just FC7. The improvement of 5-shot AGA with feature

fusion is about 1.5−2.0% over FC7 AGA classifier. In the 10 shot case the accuracy

increases by 2 − 3%. The most important observation is that the late fusion

method performs convincingly better than FC7 AGA as well as paired training

on both spaces. This implies that individual AGA networks could be learned on

different feature spaces X perhaps even originating from different RCNNs and their

synthesized points could be concatenated to produce a better representation during

final transfer learning. This allows the system to more scalable than with the paired

training alternative, which requires complete retraining in order to extend X .

IV.G Discussion

We presented an approach toward attribute-guided augmentation in feature

space. Experiments show that object attributes, such as pose / depth, are beneficial

in the context of one-shot recognition, i. e., an extreme case of limited training

data. Notably, even in case of mediocre performance of the attribute regressor

(e. g., on pose), results indicate that synthesized features can still supply useful

information to the classification process. While we do use bounding boxes to

extract object crops from SUN RGB-D in our object-recognition experiments, this

is only done to clearly tease out the effect of augmentation. In principle, as our

encoder-decoder is trained in an object-agnostic manner, no external knowledge

about classes is required.

As SUN RGB-D exhibits high variability in the range of both attributes,

augmentation along these dimensions can indeed help classifier training. However,

when variability is limited, e. g., under controlled acquisition settings, the gains

may be less apparent. In that case, augmentation with respect to other object

attributes might be required.

Two aspects are specifically interesting for future work. First, replacing the
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attribute regressor for pose with a specifically tailored component will potentially

improve learning of the synthesis function(s) φki and lead to more realistic synthetic

samples. Second, we conjecture that, as additional data with more annotated

object classes and attributes becomes available (e. g., [7]), the encoder-decoder

can leverage more diverse samples and thus model feature changes with respect to

the attribute values more accurately.
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Figure V.1: Map of CNN based transfer learning: across dataset, class and do-
mains. Our contributions are represented as “Semantic Representations” and “Se-
mantic Trajectory Transfer”. The former denotes contributions in Chapter II and
Chapter III, while latter denotes contributions made in Chapter IV.

It is well known that deep convolutional neural networks trained on large

scale vision datasets achieve spectacular results. A more important virtue of these

networks, perhaps, is their ability to capture information that is useful and trans-

ferable to other vision tasks. The entire spectrum of neural network based transfer

learning methods is represented by the figure Figure V.1. Consider, for example, a

CNN trained on object recognition. To use this network on the same set of object

classes, one can either deploy it in a zero-shot manner (in the inference mode) or

adapt it to a dataset of 1000s of images if the task is slight different (e.e. object

detection or localization). To use the same recognition network, instead, on a set

of different, previously unseen, object categories, one can resort to finetuning the

recognition CNN to a moderate size dataset of new object classes. This method
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of transfer is often employed in object detection literature [30, 29, 71]. In this

work, we propose solutions to two alternate scenarios of transfer learning where

the knowledge transfer must either be achieved using very few new data points

(few-shot transfer) or across to a completely different domain (from objects to

scenes).

As an example of transfer across visual domains, we choose the example of

object to scene transfer. We use off-the-shelf object recognition CNNs trained on

large scale datasets to generate a Bag-of-semantics (BoS) representation of scene

images. Under a BoS, a scene is described as a collection of object probability

multinomials obtained from its local regions. The probabilities are referred to as

semantics because of their inherent meaning (dog-ness or car-ness of a patch). We

propose to embed a scene BoS into an invariant scene representation known as

a semantic Fisher vector. The design of a Fisher vector (FV) embedding is not

very straight-forward in the space of multinomial probability vectors, due to its

non-Euclidean nature. We solve this problem by transforming the multinomials

into their natural parameter form, thereby projecting them into a Euclidean space

without any loss of their object selectivity. The semantic Fisher vectors derived

from the natural parameter space of object CNNs represents a conduit for object-

to-scene knowledge transfer. This representation combined with a simple linear

classifier, is shown to achieve state-of-the-art scene classification on well known

benchmarks. Next we, present a technique to improve the performance of seman-

tic transfer by perfecting the design of the classical Fisher vector embedding [64]

itself. These are generally derived as scores or gradients of a Gaussian mixture

model that uses a diagonal covariance matrix. While, this was never a problem

with low-dimensional feature spaces before, it may not be sufficient for high dimen-

sional CNN features. To cover the manifold of CNN features efficiently we propose

the use of mixture of factor analyzers (MFA) [27, 87], a model that locally approxi-

mates the distribution with full-covariance Gaussians. We derive the Fisher vector

embedding under this model and show that it captures richer descriptor statistics
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compared to a variance Gaussian. The MFA based Fisher vector improves the per-

formance of object based semantic scene classification as expected. Despite being a

transfer learning method with relatively modest data requirements ( 50 images per

class), we show that the MFA FV is comparable to even a scene classification CNN

trained from scratch on millions of new labeled images. When combined, the two

techniques also result in a surprising 6 − 8% improvement in accuracy. The pro-

posed object-based scene representations are denoted as semantic representations

on the transfer learning spectrum in fig. Figure V.1 and generally applicable to a

case when the categories in the target domain (e.g. scenes) are loose combinations

of those in source domain (e.g. objects).

We next, consider a situation when transfer learning must be achieved with

a very small target dataset with not more than 10 examples per class. We refer to

this as few-shot transfer. Despite the high quality of representations that can be

generated using an off-the-shelf neural network such as the ImageNet CNN [45],

such acute scarcity of new data prevents learning a sufficiently generalize-able

classifier for the new task. To solve the problem, we propose the idea of attribue

guided data augmentation. Standard data augmentation involves making flipped,

rotated or cropped copies of a training image in order to simulate a sufficient

training dataset. These copies however are very trivial and do not add any new

information. We propose to generate non-trivial data for few-shot or even one-shot

transfer learning with the help of attribute trajectory learning and transfer. Using

a small auxiliary dataset labeled with objects and their attributes (properties)

such as 3D pose and depth, we learn trajectories of variation in these attributes on

the feature space of a pre-trained CNN. For an image of a new, previously unseen

object (during transfer), its feature representation is obtained from the network

and regressed along the learned pose and depth trajectories to generate additional

features. This technique of attribute guided data augmentation helps us generate

synthetic examples from original data, which helps improve the performance of one-

shot and few-shot object and scene recognition. The process of attribute guided
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augmentation is alternatively denoted in fig Figure V.1 as semantic trajectory

transfer, since the generation of data requires transfer of trajectories of learned

variations to the new example.
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