
UNIVERSITY OF CALIFORNIA

Los Angeles

Theory, Design and Characterization of Protein Symmetry Combination Materials

A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of

Philosophy in Molecular Biology

by

Joshua Laniado

2020

© Copyright by

Joshua Laniado

2020

 ii

ABSTRACT OF THE DISSERTATION

Theory, Design and Characterization of Protein Symmetry Combination Materials

by

Joshua Laniado

Doctor of Philosophy in Molecular Biology

University of California, Los Angeles, 2020

Professor Todd O. Yeates, Chair

Nature has evolved a plethora of sophisticated protein complexes to carry out

fundamental biological processes. While most of these exquisite macromolecular machines

exhibit complex architectures, many are composed of only a few different types of subunits.

Understanding how protein molecules combine to form these remarkable self-assembling

structures only makes sense in the light of symmetry. By limiting the number of distinct

interactions required between individual subunits, symmetry offers a simpler route for the

evolution of supramolecular assemblies such as viral capsids and bacterial microcompartments.

Principles of symmetry and self-assembly have invigorated recent efforts in molecular

engineering giving rise to a growing suite of novel protein materials such as finite cages and

extended crystalline arrays. These designed assemblies are rapidly finding applications in areas

as diverse as vaccine design, atomic imaging, enzyme scaffolding and molecular delivery. Despite

significant advances in computational approaches and design strategies, constructing these

materials remains extremely challenging. Here, we address key experimental and theoretical

 iii

limitations to improve the prospects for the routine design of novel symmetric protein

materials.

In Chapter 1, we review current methodologies for designing self-assembling protein

nanomaterials. A first approach presented the idea that when two separate symmetric oligomers

associate in some geometrically defined way, a structure with higher symmetry can be obtained

through self-assembly. There, an alpha-helical linker is used to connect two oligomeric

components and to control their relative geometry. A second approach does not involve genetic

fusion but relies instead on the computational design of a novel protein-protein interface. After

reviewing the successful constructions resulting from both methods, challenges and limitations

are discussed. In the fusion approach, the inherent flexibility of the alpha helical linker can lead

to the formation of unintended assemblies. Alternatively, the interface design strategy exhibits

limited success in predicting viable protein interfaces. The prevalence of such limitations

dramatically hinders the creation of novel materials, motivating the development of alternate

strategies.

In the next chapter, we introduce a new approach for the design of symmetric self-

assembling nanomaterials. Building upon the fusion approach, the original alpha-helical linker is

replaced with a heterodimeric coiled coil as an attempt to reduce flexibility. Further, the use of a

known heterodimeric interface to combine component oligomers alleviates the challenges

associated with de novo interface design. Ten symmetric protein cages were designed using this

method among which two were structurally characterized. One design assembled as intended

while the other crystallized in an alternate form. Geometric distinctions between the two help

 iv

explain the different degrees of success, leading to crucial lessons and establishing clearer

principles for the creation of novel nanoscale protein architectures.

While some experimental aspects have been addressed, only a small fraction of the

possible design space has been explored. That space, which is anticipated to offer a multitude of

symmetry-based combinations, has not been described in theory. In Chapter 3, we articulate all

of the possible kinds of protein-based materials that can be created by combining two symmetric

oligomers. Specifically, 13 types of cages, 35 types of 2-D layers and 76 types of 3-D crystals are

identified as possible targets for design. We lay out a complete rule set for constructing all such

symmetry combination materials (SCMs) and introduce a unified system for parameterizing and

searching the construction space for each case. This theoretical and computational study

provides a blueprint for a blossoming area of macromolecular design.

Owing to the complexity and our limited understanding of the rules that govern protein

behavior, designing protein-protein interfaces remains challenging. Current approaches rely on

empirical or knowledge-based energy functions and optimization algorithms that often fail to

produce stable interfaces. On the other hand, there is growing evidence that the database of

known protein structures is now sufficiently large to cover the structural landscape of protein

interfaces. In Chapter 4, we argue that carefully-selected structural motifs can be used as

templates for interface design. We introduce Nanohedra, a fragment-based docking tool that

harnesses the power of our theoretical framework to enable the design of all possible SCMs.

Prospective designs of symmetric materials are proposed along with a retrospective analysis of

recent design studies. In this analysis, our tool recapitulates all successful designs while poorly

ranking failed ones. With a user-friendly interface and a unified protocol for symmetric protein

 v

design, Nanohedra enables the creation of a universe of novel nanomaterials and opens new

avenues for nanobiotechnology.

 vi

The dissertation of Joshua Laniado is approved.

Z. Hong Zhou

Jose A. Rodriguez

Joseph A. Loo

James U. Bowie

Todd O. Yeates, Committee Chair

University of California, Los Angeles

2020

 vii

For my mother and father who have made it all possible

 viii

Table of Contents

Title ... i

Abstract ... ii

Committee .. vi

Table of Contents .. viii

List of Figures ... x

List of Tables ... xiii

Acknowledgments ... xiv

Vita .. xvii

CHAPTER 1: The design of symmetric protein nanomaterials comes of age in theory and

practice .. 1

Abstract ... 2

Introduction .. 2

Symmetry-based design strategies ... 2

Designed protein cages ... 5

Design rules for building extended materials in two and three dimensions 5

Variations, challenges and future directions .. 8

CHAPTER 2: Geometric lessons and design strategies for nanoscale protein cages 12

Abstract ... 14

Introduction .. 15

Results ... 17

 ix

Discussion and Conclusions .. 26

Methods .. 30

Supplementary Information .. 37

CHAPTER 3: A complete rule set for designing symmetry combination materials from protein

molecules .. 53

Abstract ... 54

Introduction .. 54

Results ... 54

Discussion ... 58

Methods .. 59

Supplementary Information .. 61

CHAPTER 4: A fragment-based protein interface docking algorithm for symmetric assemblies

... 119

Introduction .. 121

Results ... 123

Discussion ... 139

Methods .. 141

Supplementary Information .. 147

EPILOGUE ... 158

APPENDIX .. 163

Nanohedra Source Code ... 164

 x

List of Figures

CHAPTER 1: The design of symmetric protein nanomaterials comes of age in theory and

practice .. 1

1.1 Assembly consequences and strategies for introducing multiple contact types into

protein building blocks .. 3

1.2 Design and validation of self-assembling protein cages with high symmetry 6

1.3 Electron micrographs of protein layers designed to assemble with high symmetry and

showing long-range order ... 8

CHAPTER 2: Geometric lessons and design strategies for nanoscale protein cages 12

2.1 Design of two-component protein cages using a coiled-coil helical fusion-based

approach ... 20

2.2 Crystal structure of the collapsed T23 design ... 23

2.3 Characterization of the ccO34-1 octahedral cage ... 25

2.S1 Omit map .. 41

2.S2 Electron density map for the ccD3 crystal structure ... 41

2.S3 3D single particle electron microscopy reconstructions produced by homogeneous

refinement with various types of symmetry imposed for the ccO34-1 octahedral cage 41

2.S4 Reference-free 2D class averages of particles for the ccO34-1 (top) and ccT23-1

(bottom) cages from negative stain EM images ... 42

2.S5 Purification and glutaraldehyde crosslinking of ccT23-01 ... 43

2.S6 Characterization of ccO34-3 and ccO23-1 designs .. 44

 xi

2.S7 Possible finite symmetries from combinations of oligomers in this study 45

CHAPTER 3: A complete rule set for designing symmetry combination materials from protein

molecules .. 53

3.1 Diagrams of symmetric oligomeric building blocks and example two-component SCMs

... 55

3.2 Procedural construction for rigid body sampling, diagrammed for three example SCMs

... 57

3.3 Illustration of the concept of ring size for three example SCMs 58

3.4 Potentially privileged SCMs for 3D crystal designs ... 59

3.S1 Two examples (of essentially countless possibilities) where symmetry combinations are

disallowed for compact shapes but mathematically allowed for elongated, interwoven

shapes ... 108

3.S2 Illustration and demonstration of constructability of the class of finite symmetry

materials possible by combinations of two point symmetries 109

3.S3 Illustration and demonstration of constructability of the class of 2D layer symmetries

possible by combinations of two point symmetries ... 110

3.S4 Illustration and demonstration of constructability of the class of 3D crystal symmetries

possible by combinations of two point symmetries ... 112

3.S5 Example of a design with a large ring size ... 115

3.S6 Detailed construction protocol for example SCM F432:{C4}{D2} according to

specifications in Table S3 .. 116

 xii

3.S7 Decision flowchart showing how the relative arrangement of symmetry elements of

the component symmetry groups of the two oligomers dictates the spatial

dimensionality of the resulting SCM materials ... 117

CHAPTER 4: A fragment-based protein interface docking algorithm for symmetric assemblies

... 119

4.1 Scheme illustrating two major aspects of the Nanohedra program for designing

symmetry combination materials (SCMs) from two oligomeric protein components . 125

4.2 Interface fragment database .. 129

4.3 Prospective SCMs .. 136

4.4 Post facto analysis of designed protein cages ... 139

4.S1 Guide Coordinates ... 148

4.S2 Ghost fragments .. 149

4.S3 Potential amino acid preferences for prospective SCMs in Figure 3 150

 xiii

List of Tables

CHAPTER 1: The design of symmetric protein nanomaterials comes of age in theory and

practice .. 1

1.1 Multiplication table for designing self-assembling protein materials from combinations

of two simpler symmetric components or interfaces ... 7

CHAPTER 2: Geometric lessons and design strategies for nanoscale protein cages 12

2.S1 Crystallographic table .. 37

2.S2 Amino Acid Sequences .. 38

CHAPTER 3: A complete rule set for designing symmetry combination materials from protein

molecules .. 53

3.1 A complete multiplication table for SCM materials created by two (chiral) oligomeric

components .. 56

3.S1 Point group combination possibilities, with orientation specifications and outcomes

... 97

3.S2 Orientational Degeneracies ... 99

3.S3 Master Table of SCMs ... 100

 xiv

Acknowledgments

Through possibly the longest, yet most impactful six years of my life, this run has been a

compilation of ethereal joy and melancholic struggles. If one thing is unequivocal, I wouldn’t be

who I am today, if it were not for the richness of my experiences and the profound impact of

those around me. The ability to take this on alone would be an impossible feat and I am

immensely grateful to have had the utmost support of such wonderful people.

I would first like to extend my immeasurable gratitude to Professor Todd Yeates for his

unwavering support and mentorship. Professor Yeates has never failed to fill me with inspiration.

He has persistently compelled me to further my growth in science and in life. Todd, thank you for

believing in me even at times when self-belief was hard to come by. Thank you for allowing me

to seek advice whenever it felt necessary and for sharing your unparalleled knowledge in the

fields of crystallography and computational biophysics. Most importantly, thank you for

bestowing upon me your love for symmetry.

I want to thank my committee members, Professors Z. Hong Zhou, Jose A. Rodriguez,

Joseph A. Loo and James U. Bowie for their invaluable insight, counsel and direction which have

helped shape the way I think about science. I also would like to thank Professor Pascal Egea who

has always so generously left his laboratory door open for me. His instrumental teachings have

given me invaluable insight in the fields of molecular biology and protein biochemistry.

A distinct thank you to Drs. Michael Sawaya and Duilio Cascio. It has been an

inconceivable privilege to learn from them and to work alongside them. Their exceptional

 xv

teachings and unrivaled expertise in the field of structural biology have helped me expand my

knowledge and formulate new ideas.

Thank you to Dr. Mark Arbing at the UCLA Protein Expression Technology Center for his

advice and suggestions regarding protein expression and purification, as well as Michael Collazo

for numerous insightful discussions and important technical assistance with protein

crystallization. Thank you to the staff members of the UCLA Electron Imaging Center for

NanoMachines, especially Ivo Atanasov and Wong Hoi Hui, who have been extremely resourceful

specifically through their guidance on electron microscopy. Thank you to Ashley Terhorst and

Cindy Chau for their constant support in administrative matters throughout my graduate studies.

I am profoundly grateful for all of the current and former members of the Yeates lab,

especially Dr. Julien Jorda, Kyle Meador, Justin Miller, Dr. Yuxi Liu, Dr. Kevin Cannon, Dr. Dan

McNamara, Jessica Ochoa and our lab manager Inna Pashkov. I thank them for their friendship,

never-ending support, insightful advice and constructive feedback. It has been an utter pleasure

and such a privilege to work alongside such brilliant minds.

I would like to extend my sincere gratitude to my friend Professor Raymond F. Schinazi

for his perpetual guidance and motivation. Professor Schinazi continuously inspires me and drives

me to apply my research and knowledge to real-world matters that require solutions.

I want to thank my siblings, Anna, Alon, and Jade for their love and support. I am thankful

for my incredible friends, Saïd, Max, Clement, Jacques, Tina, Cam, Mimi, Aditya, Preston, Jordane,

Kelly, and Matthias. Their unconditional support and patience throughout this journey mean the

 xvi

world to me. I am exceptionally grateful for my loving partner Jasmin. I thank her for her

unworldly compassion, unconditional understanding and unwavering love. I would also like to

thank my dogs Heems and Milo for their love and companionship. They have kept me grounded

and they have never failed to bring me back to the present moment.

Last but not least, I would like to thank my mother Linda and my father Arye from the

bottom of my heart. They have stood by me through all of my endeavors and have ceaselessly

encouraged me to pursue my passions. They have always done their utmost to ensure that my

dreams become reality. Thank you to my father for his relentless belief in me. He has always

inspired me and given me the confidence to chase even the wildest of my wildest dreams. Thank

you to my mother for her endless support, boundless care and unconditional love. She has always

put her own priorities aside to help me with mine. I could never thank my parents enough for

their selflessness, generosity and unfathomable love. I can only hope that one day I am able to

do for my own children half of what my parents have done for me.

 xvii

Vita

Education

2011-2014, B.S. in Biochemistry, University College London

Publications

Yeates TO, Liu Y, Laniado J. The design of symmetric protein nanomaterials comes of age in
theory and practice. Curr Opin Struct Biol. 2016 Aug;39:134-143. doi: 10.1016/j.sbi.2016.07.003.

Laniado J, Yeates TO. A complete rule set for designing symmetry combination materials from
protein molecules. Proc Natl Acad Sci U S A. 2020 Nov 25:202015183. doi:
10.1073/pnas.2015183117.

 1

CHAPTER 1

The design of symmetric protein nanomaterials comes of age

in theory and practice

 2

The design of symmetric protein nanomaterials comes
of age in theory and practice
Todd O Yeates1,2,3, Yuxi Liu1 and Joshua Laniado3

In nature, protein molecules have evolved as building blocks for

the assembly of diverse and complex structures, many of which

exhibit a high degree of symmetry. This observation has

motivated a number of recent engineering efforts in which the

advantages of symmetry have been exploited to design novel

self-assembling protein structures of great size. Materials

ranging from cages to extended two and three-dimensional

arrays have been demonstrated. Especially for extended

arrays, a vast number of geometrically different design types

are possible. A table of geometric rules is provided for

designing a universe of novel materials by combining two

component symmetries.

Addresses
1 UCLA Department of Chemistry and Biochemistry, United States
2 UCLA-DOE Institute for Genomics and Proteomics, United States
3 UCLA-Molecular Biology Institute, United States

Corresponding author: Yeates, Todd O (yeates@mbi.ucla.edu)

Current Opinion in Structural Biology 2016, 39:134–143

This review comes from a themed issue on Engineering and design

Edited by Dan S Tawfik and Raghavan Varadarajan

For a complete overview see the Issue and the Editorial

Available online 29th July 2016

http://dx.doi.org/10.1016/j.sbi.2016.07.003

0959-440X/# 2016 Elsevier Ltd. All rights reserved.

Introduction
Building blocks that have self-complimentary interfaces
can self-assemble into elaborate structures. Nature serves
as a rich source of inspiring specimens. At the macromo-
lecular scale, viral capsids are quintessential examples,
but other equally extraordinary macromolecular assem-
blies abound in nature (reviewed in [1–3]). The beauty
and functional utility of these assemblies have long-
motivated engineering efforts to create comparable struc-
tures in the laboratory. Beginning in the 1980s Ned
Seeman pioneered ideas for using DNA molecules as
building blocks for nanostructures [4]. Over the years,
those ideas and various strategic variations led to the
creation of elaborate supramolecular architectures and
design patterns built from nucleic acids (reviewed in
[5]). In nature, protein molecules have been the choice
for the evolution of large assemblies with diverse form
and function. But the engineering path to following

Nature’s lead has been challenged by the complexity
of the rules that govern protein folding and assembly. To
overcome those challenges, special strategies are needed.

In developing a strategic approach for building with protein
molecules, Nature provides a major clue. Symmetry pre-
vails in naturally evolved protein assembles. This is an
empirical fact evident in the vast database of known
macromolecular structures [6,7], but the prevalence of high
symmetry in large protein assemblies was anticipated at
least as far back as 1956 when Crick and Watson empha-
sized that viral capsids were likely able to evolve more
easily in symmetric forms because symmetric assemblies
require the fewest number of distinct interfacial contacts
between individual subunits [8]. That key observation
applies as well to designed structures, and indeed the early
history of designing protein assemblies is rich with cases of
relatively simple symmetric structures such as dimers and
helical filaments [9,10,11,12]. The push in recent years to
create very large protein assemblies has been guided even
more strongly by principles of symmetry.

Symmetry-based design strategies
The symmetry of an object is fully described by the set of
spatial operations (e.g. rotations) that leave the entire
object unchanged except for an undetectable exchange
of identical subunits. Because the symmetry of an object
obeys the properties of a mathematical group, each spe-
cific type of symmetry is often referred to as a symmetry
group. The symmetry group of a structure can be used to
understand how many structurally distinct contact types
are required to hold all the subunits together in one
connected object. Certain simple types of architecture
can be created from a building block that touches itself in
just one way; i.e. using a single contact type. The possible
outcomes are limited to structures like cyclic rings of
subunits, or head-to-tail filaments (Figure 1a). More
complex architectures require building blocks with more
than one distinct interface.

A relatively simple group theory analysis explains the
minimum number of distinct contact types required to
achieve a given target symmetry. This was articulated first
in the context of three-dimensional crystals [13] and then
in the context of designed protein assemblies by Padilla
et al. [14]. For example, if all the elements of a symmetry
group can be generated by repeated application of a single
element of the group (i.e. a rotational operation), then one
contact type is sufficient. The cyclic or head-to-tail fila-
ment architectures noted above are examples of this type.

Available online at www.sciencedirect.com

ScienceDirect

Current Opinion in Structural Biology 2016, 39:134–143 www.sciencedirect.com

 3

If two elements from the symmetry group must be chosen
in order to obtain the full symmetry group by repeated
operations, then two contact types are required, and so on.
Surprisingly, it turns out that a great many types of
symmetry — including finite cages and many extended

two and three-dimensional arrays — can be generated
using just two properly chosen symmetry elements in
combination (Figure 1 a). This key point frames the
problem of designing novel protein assemblies by pre-
scribing the number of distinct contact types that must be

Designing symmetric protein nanomaterials Yeates, Liu and Laniado 135

Figure 1

(a)

(b)

single contact type

two contact types

finite cages
extended materials in two and three dimensions

linear or helical filaments
cyclic rings

Current Opinion in Structural Biology

Assembly consequences and strategies for introducing multiple contact types into protein building blocks. (a) Illustration of varied symmetric
architectural forms and the number of distinct contact types required for connectivity between molecular building blocks. Two contact types are
sufficient to create diverse assemblies. (b) Different molecular strategies for creating a building block having two distinct contact types in a
defined orientation. Left to right (top): alpha helical fusion; 1-component interface design; 2-component interface design. Left to right (bottom):
metal or ligand bridging; coiled-coil helical fusions; designed symmetrization of DNA binding proteins.

www.sciencedirect.com Current Opinion in Structural Biology 2016, 39:134–143

 4

built into a protein building block in order for it to
assemble into the desired architecture. More than the
minimum number of contact types can be present in a
final assembly, but not fewer. The specific geometry of
the interfaces is of course crucial for obtaining the desired
result, and molecular strategies are required for creating
these oriented interfaces.

Various strategies have been developed for building
multiple distinct interfacial contact types into a protein
molecule in order to generate elaborate supramolecular
structures (Figure 1b). Padilla et al. [14] laid out a first
strategy at a time when prospects for designing de novo
interfaces into protein molecules were still remote. By
necessity, naturally evolved interfaces were exploited by
using simple natural protein oligomers (e.g. dimers and
trimers) as a starting point. To create a single molecular
building block containing two distinct interface types, a
method was developed for genetically fusing two natu-
rally oligomeric protein domains. In order to control
relative geometry, only oligomeric domains having ter-
minal alpha helices were considered, so that directly
fusing two such proteins might create a geometrically
predictable outcome if a continuous alpha helix was
preserved between the two domains. The diversity of
architectures possible by the general approach was de-
scribed, and a first demonstration was provided — a 12-
subunit assembly in the form of a tetrahedral cage was
designed from a dimer plus trimer fusion [14]. This
protein assembled into geometric structures consistent
with the design, among a range of other polymorphic
forms. Several years later, Lai et al. [15,16] showed that
introducing two or three amino acid mutations into the
originally designed protein sequence was sufficient to
produce 12-subunit assemblies in high yield, which could
be crystallized and validated in atomic detail. Not sur-
prisingly, some flexibility of the helix linker gave rise to
assemblies that were flexed or deformed from perfect
symmetry, but which otherwise conformed to the
intended tetrahedral design [16]. A different, 24-subunit
cubic cage in good agreement with its design, and closely
obeying the intended octahedral symmetry, was subse-
quently demonstrated using the same helix fusion strate-
gy [17 !].

Major leaps forward in design strategy were made by
King et al. [18] working with globular protein domains
and Lanci et al. [19] working with coiled-coil polypep-
tides; they foresaw that computational methods for in-
troducing novel interfaces into protein surfaces by amino
acid sequence design had matured to the point where
they might allow large symmetric assemblies to be cre-
ated. Grueninger et al., took an earlier step in this direc-
tion by designing double-ring assemblies from naturally
cyclic structures [20]. Following the symmetry ideas
discussed above, starting with simple oligomeric proteins
(e.g. dimers and trimers) means that only one additional

interface needs to be designed into the protein in order to
create complex architectures (Figure 1b). In King et al.,
the procedure was enabled by a special algorithm written
for the Rosetta-Design program to preserve overall sym-
metry while sampling the rigid body degrees of freedom
available to the component oligomers [21]. From 41 ini-
tial designs, two cubic cages were produced in high yield
and could be validated by crystallography [18]. One was a
tetrahedral cage built from four trimers situated at the
vertices of a tetrahedron and contacting each other pri-
marily via a designed interface with two-fold symmetry.
The other was a cubic/octahedral cage built from eight
trimers at the corners of a cube, again with the trimers
interacting primarily via a designed interface with two-
fold symmetry. The polypeptide design work by Lanci
et al. [19] relied on a trimeric coil-coil motif as the starting
point; the introduction of lateral and vertical contacts
gave a three dimensional crystalline material also vali-
dated by crystallography.

Within the bounds of symmetry-based methods of de-
sign, several strategic variations are possible beyond
those noted above. Some of the possibilities are briefly
described here (Figure 1b). Sinclair et al. [22] introduced
a variation on the oligomer fusion method that relaxed
the requirement for a continuous alpha helical linker; it
applies to certain extended two and three-dimensional
assemblies where two oligomers can be fused in a way
that preserves a rotational symmetry element they both
share. A few cases of well-ordered layers were demon-
strated with that approach. Sciore et al. created a 24-
subunit octahedral cage by fusing a naturally trimeric
protein to a sequence that forms a parallel tetrameric
coiled coil [42!]. The geometry of the connection in that
case was also uncontrolled, but the limited range of
possible outcomes from combining those two symmetries
favored assembly to a single type of structure. King et al.
[23 !!] introduced a two-component variation on the de
novo interface design strategy. Two different natural
oligomers comprise the starting materials, and computa-
tional sequence design is used to introduce a heterotypic
interface between the two subunit types. By relying on
two separate oligomeric components, the idea shares
similarity with the helix fusion method. But the helix
fusion is rendered unnecessary by the designed interface
between the two oligomers. Furthermore, the non-cova-
lent nature of the association between the two oligomeric
components enables production and purification of sep-
arate components, with full assembly occurring upon
mixing. In the first application of the two-component
strategy, a series of approximately 60 designed tetrahe-
dral cages were tested experimentally, and five were
validated in detail by crystallography [23 !!,24]. A new
application of the 2-component approach by Bale et al.
has produced a whole suite of even larger cages with
icosahedral symmetry, the largest of which is approxi-
mately 400 Å in diameter [25!!].

136 Engineering and design

Current Opinion in Structural Biology 2016, 39:134–143 www.sciencedirect.com

 5

In other design approaches, metals or bivalent ligands have
been used as a way to introduce a new interface or self-
associating interaction between oligomeric components
([26,27,28], reviewed in [29]). The addition of metals
promotes assembly when metal binding half-sites (e.g.
two suitably disposed histidine residues) are designed into
a protein surface. Without further computational design of
protein–protein interactions beyond the metal site, the
metal site approach tends to give rise to assemblies whose
outcomes are hard to predict in detail owing to alternate
possible orientations of the metal ligands. Interestingly,
despite incomplete control over geometry, various reports
[30–35,36!!,37!] have shown that the approach can be used
to create diverse and intriguing materials ranging from small
oligomers to helical structures to dynamic layers and three-
dimensional arrays. A particularly notable variation was
demonstrated recently by the introduction of a Zn-binding
site at the three-fold symmetry axis of the natural, cubically
symmetric ferritin cage. Adding a bivalent, metal-binding
organic ligand joins the cubic protein cages into a three-
dimensional body centered crystal lattice in a predictable
fashion [36!!]. In a report by Sakai et al., the authors used
bivalent organic ligands to create an additional dimeric
subunit association for linking D2 tetramers together, in
an unspecified orientation in this case. Changing the spacer
length between the binding moieties on the organic ligand
resulted in protein molecules held together in layers, which
grew into two different types of three-dimensional crystals
[38]. The design of rigid polyvalent ligands offers prospects
for connecting proteins together in geometrically controlled
ways. Particularly in view of the large number of proteins
that naturally bind rigid (e.g. multi-ring) ligands, such a
strategy remains relatively untapped.

Other strategic variations for combining symmetry ele-
ments are possible but have not been deeply explored
(Figure 1b). DNA (or RNA) provides a facile route for
directing molecular associations by complimentary base
pairing. This can be exploited in combination with DNA
binding proteins and either interface design or oligomeric
fusion to create hybrid materials composed of proteins and
nucleic acids. A strategy along that line has been taken by
Mou et al. in creating linear or helical filaments [39]. In
another study, Brodin et al. attached multiple copies of two
different DNA molecules onto the surfaces of proteins to
create two component types, which then assembled into
cubically packed crystals upon addition of a complimentary
bridging DNA molecule [40!]. DNA and RNA both offer
an easy route for introducing a symmetry element into
designed assemblies using palindromic sequences. The
construction of symmetric, hybrid protein-nucleic acid
materials using such a strategy has not been tested yet.

Designed protein cages
Designed assemblies of defined, finite size can take the
form of shells or cages or more compact clusters following
one of the three possible cubic symmetries in three

dimensions. These follow from the symmetries of the
five Platonic solids; the cube and the octahedron are duals
of each other while the icosahedron and the dodecahe-
dron are duals, so together with the tetrahedron (which is
its own dual), there are three possible symmetries: T
(order 12), O (order 24), and I (order 60). The symmetry
rules for generating these have been articulated [14,41]
(Figure 2a). For each symmetry type, nearly every com-
bination of two intersecting symmetry axes is a possible
choice for generating the final structure, but there are
some exceptions (Figure 2 legend).

Using designed protein molecules, cages or shells belong-
ing to all three of the cubic symmetry types (T, O, and I)
have been successfully produced. Those that have been
validated in atomic detail by X-ray crystallography are
shown in Figure 2b. Each of the target symmetries has
been obtained using multiple different symmetry combi-
nations. Symmetry T has been obtained by combinations
of two components or interfaces having 2-fold plus 3-fold
symmetry [14,15,18,23!!] and 3-fold plus 3-fold symmetry
[23!!]. Symmetry O has been obtained by 3-fold plus 2-fold
symmetries [17!,18,23!!] and by 4-fold plus 3-fold symme-
tries [42!]. Finally, icosahedral symmetry (I) has been
obtained in new studies, using all three possible symmetry
combinations (2 plus 3, 2 plus 5, and 3 plus 5) [25!!,43!].
Together, these designed architectures range in number of
subunits from 12 to 120, with diameters from 11 to 40 nm
and masses from 276 kDa to 2.8 MDa. They cover most of
the available symmetry options for creating cage and shell
structures. The numerous possible applications for
designed protein cages have been reviewed elsewhere
[44–47] and are not elaborated here other than to summa-
rize that practical uses are likely to include both interior
and exterior capabilities: (i) encapsulation, delivery and
release of molecular cargo [48–53], and (ii) polyvalent
display of motifs for signaling or antigenic effects, as in
synthetic vaccines [54,55].

Design rules for building extended materials in
two and three dimensions
In contrast to the finite cage designs that arise from two
intersecting symmetry axes as discussed above, when two
component symmetries are combined in an arrangement
where any of their axes are not intersecting, the result
cannot be finite and must instead be an extended or
unbounded material. Filaments are one possible out-
come, arising from two non-intersecting 2-fold axes of
symmetry [14]. But more complex outcomes are obtained
by combining higher symmetries. There, unbounded
materials that extend as either 2-dimensional layers or
3-dimensional arrays (i.e. crystals) are possible. The geo-
metric rules for a few possibilities of this type were laid
out earlier on the basis of the combination of 2-fold and
3-fold axes of symmetry [14]. Beyond those, a vast range
of possibilities arise from combinations of higher compo-
nent symmetries. A few designs within that scope have

Designing symmetric protein nanomaterials Yeates, Liu and Laniado 137

www.sciencedirect.com Current Opinion in Structural Biology 2016, 39:134–143

 6

been demonstrated in recent work [56!!,57!], but a com-
plete set of geometric rules for generating two and three-
dimensional materials has not been articulated previous-
ly. In order to promote further studies, we provide a list of
the allowable symmetry combinations here (Table 1).

Two-dimensional layers can be of two different classes
depending on their sidedness, or lack thereof. When two
symmetry axes that are both perpendicular to the layer are
combined, and at least one of those axes is of higher order
than a 2-fold, the result is a layer with distinguishable
sides (i.e. a distinct top and bottom). In that sense such
layers are oriented. The allowable symmetry combina-
tions for oriented layers are 2 + 3, 2 + 4, 2 + 6, 3 + 3, 3 + 6,

and 4 + 4 (Table 1). Layered structures of the other class,
where the top and bottom of the layer are indistinguish-
able, arise whenever one or both of the two symmetries
being combined carries a 2-fold axis of symmetry in the
plane of the layer. A total of 33 layer designs are possible
(Table 1).

Much of the design space for designed layers is unex-
plored, but a few recent successes have been reported.
Small two-dimensional assemblies with limited range
order were described in early work by Ringler et al. by
doubly biotinylating the subunits of aldolase (a C4 tetra-
mer) and then assembling those tetramers using strepta-
vidin (a D2 tetramer with a biotin binding site in each

138 Engineering and design

Figure 2

20 nm

20
 n

m

T:3(+2)

3

2

2+3 (54.7º)
3+3 (70.6º)

2+3 (35.3º)
2+4 (45º)
3+4 (54.7º)

2+3 (20.9º)
2+5 (31.7º)
3+5 (37.4º)

2 2
3

5

3
4

T O I

T:3+3 T:3+3 T:3+3

T:3+2 T:3+3

T:3+2

O:3+2

I:5+3

I:5+2

I:3+2

(a)

O:3(+2)(b)

Current Opinion in Structural Biology

Design and validation of self-assembling protein cages with high symmetry. (a) The three types of cubic symmetry (T, O, and I) are illustrated on
the framework of the Platonic solids. Angles between pairs of rotational symmetry axes that can be combined to create a self-assembling building
block with the target symmetry are listed. (b) Engineered protein cages obeying all three possible cubic symmetries have been produced; a
subset of structures that have been validated by X-ray crystallography are shown to scale. Left panel: a tetrahedral cage (PDB 4IQ4) [16] and an
octahedral cage (PDB 4QCC) [17!] designed using the alpha helical fusion strategy [14]. Natural trimers are in blue; natural dimers are in yellow;
the alpha-helical linkers are in red. Middle panel: tetrahedral cages and an octahedral cage engineered by de novo interface design with either
one or two components. Top row are one-component designs (PDB 4EGG & 3VCD, left to right) [16], with each trimer shown in a different color
for clarity. The middle and bottom rows (PDB 4NWR, 4NWP, 4NWO, 4NWN, & 4ZK7, left to right and top to bottom) are two-component designs
[23!!,24]. Natural dimers are in yellow. Natural trimers are in blue and orange to differentiate the different trimers in the same design. Right panel:
crystal structures of 2-component icosahedra obtained by all three possible symmetry combinations (PDB 5IM5 (I:5 + 3), 5IM4 (I:5 + 2), and 5IM6
(I:3 + 2)) [25!!]. Letters on the top left corner of the structure indicates the symmetry type (T: tetrahedral, O: octahedral, I: icosahedral). The
numbers in the annotation indicate the component symmetry types. Where present, parenthetical values indicate the symmetry of the main
designed interface.

Current Opinion in Structural Biology 2016, 39:134–143 www.sciencedirect.com

 7

subunit) [27]. If long range order had been achieved in this
case, the result would have corresponded to layer symme-
try p422. Longer range order in designed layers was dem-
onstrated by Sinclair et al. [22]. There the best case was
obtained by combining the D2 tetrameric streptavidin with
a D4 octameric protein that had been biotinylated. The
relative orientations of the components in that case were
not specifically designed and could have produced other
results, but a two-dimensional layer with p422 symmetry
was obtained (Figure 3). More recently, computational
interface design was used to create specifically defined
protein layers of a few different types [56!!]. A 2-fold
interface was designed between natural C6 hexameric
units to give layer symmetry p6, between natural C4
tetrameric units to give layer symmetry p421 2, and be-
tween natural C3 trimeric units to give layer symmetry
p321 (Figure 3). In another variation, two copies of a C6
hexameric protein were fused in tandem in such a way that
the short linker between them, along with a designed

2-fold interface, led to a pseudo-p6 layer [57 !]. In a most
recent study, C4 symmetric units were connected through
2-fold interactions on the basis of engineered cysteine
disulfide bonds or engineered metal binding sites [37 !].
Multiple kinds of symmetric outcomes are possible from
such a combination, and 2-D layers belonging to p4 and
p421 2 symmetry types were obtained.

For designing extended three-dimensional crystalline
materials, the possibilities are even more expansive,
and the design rules are not so obvious. Defining exactly
what symmetry type would be generated from a combi-
nation of two separate symmetries relies on two consid-
erations. The overall rotational symmetry of the resulting
material is given by the (group) product of the rotational
symmetries of the two components; this is a relatively
straightforward issue. A somewhat more complex prob-
lem is discerning the correct outcome among a set of
candidate space groups once the underlying rotational

Designing symmetric protein nanomaterials Yeates, Liu and Laniado 139

Table 1

Multiplication table for designing self-assembling protein materials from combinations of two simpler symmetric components or
interfaces.a

x C2 C3 C4 C6 D2 D3 D4 D6 T O

C2 b

D3, T,
O, I
p6,
p321
I213,
P4132

D4, O
p4,
p4212
I432

D6
p6,
p622

c222, p422,
p622
I4122, P6 222,
I432, I4132

p312, p622
R32, P6322,
F4132, I4 132,
I432, P4132

p422
I422,
P432,
I432

p622
P622

P23, F23,
F4132

P432,
F432,
I432

C3
T
p3
P213

O
F432

p6
p622
P23, F432, I4132

p321, p312
P4 132

P432 p622 F23 F432

C4 p4
P432

p422, p4212
I432, F432

I432
p422
P432

F432 P432

C6 p622 p622

D2

p222, p622
F222, P4222,
P6222, P4 232,
I4132

p622
P622, P4232,
I4132

p422
P422,
I422,
I432

p622
P622

P23,
F432,
P4 232

F432,
I432

D3
p321
P312, P6322,
P4232, P4 132

I432
p622
P622

F4132 I432

D4
p422
P422,
P432

P432

D6
T F23 F432

O P432,
F432

Finite assemblies (point group symmetries) are indicated in the blue font. 2-D layers are indicated in red, 3-D crystalline arrays in purple. In many
cases, two component symmetries can be combined in different geometries giving rise to distinct symmetry types. Gray boxes indicate symmetry
combinations that are disallowed mathematically. A few symmetry combinations are not formally disallowed but are not amenable to design using
compact building blocks. Whenever a chiral space group appears (e.g. P4132), its enantiomer (e.g. P4321) is also possible but is not listed here for
brevity.
a Additional possibilities exist but are not listed here for arrangements where more than two component symmetries are combined, or where one of
the component symmetries is a screw axis of rotation.
z Non-intersecting 2-fold axes give rise to linear or helical filaments. Linear assemblies, including rod groups, are not included here.

www.sciencedirect.com Current Opinion in Structural Biology 2016, 39:134–143

 8

symmetry is known. The correct choice can generally be
ascertained from the standard tables of crystallographic
space groups by identifying the one having Wyckoff
positions with symmetries corresponding to those of
the two components being combined. In total, more than
70 distinct types of 3D materials are possible within the
scheme of combining two types of rotation (point group)
symmetries. The majority of them have underlying cubic
(T or O) symmetries and are therefore isotropic, while the
others are dihedral.

On the experimental side, the space of designed protein
crystals is mostly unexplored, but there are a few early
examples. As discussed above, Lanci et al. [19] designed a
coiled-coil peptide to form P6 space group symmetry, and
Sontz et al. [36 !!] combined a ferritin, into which a metal
side had been engineered, with a bivalent bridging com-
pound to form a crystal whose space group symmetry was
pseudo-I432. Sinclair et al. used their fusion method to
form three-dimensional solid materials, but without suf-
ficient order to confirm the intended crystalline packing
by X-ray diffraction [22]. Beyond these few examples,
the area of designed protein crystals remains open. The
possible applications for such materials are diverse: cre-
ating materials with a very high density of reactive/cata-
lytic groups or recognition motifs, and conferring specific
physical properties on target proteins, including spacing,

dimensionality, porosity, and solid-phase separability
from solution components.

Variations, challenges and future directions
The ideas and rules formulated here are somewhat nar-
rowly constructed. They represent the simplest design
routes (i.e. the minimum requirements) for construction
by symmetric assembly. Broader outcomes are possible if
interfaces between components are designed in different
ways. For example, King’s single-component designed
interface method [18] allows for symmetries not accounted
for in Table 1 if a new contact between like oligomers
creates a screw axis of symmetry instead of a pure rotation.
Ultimately, in the absence of limits on designing protein–
protein interfaces, any symmetric architecture could be
designed, including those that require larger numbers of
distinct interaction types. The three-dimensional crystal in
space group P6 designed by Lanci et al. [19] is a case in
point using relatively simple building blocks. In addition,
other approaches for designing large protein and peptide-
based structures have been developed that rely less strictly,
or in different ways, on symmetry. Fletcher et al. [58 !]
combined a homotrimeric coiled-coil and a heterodimeric
coiled-coil that interact with each other. This resulted in
unilamellar spheres approximately 100 nanometers in di-
ameter, with overall structures that were not exactly sym-
metric though assembly was driven by local symmetry.

140 Engineering and design

Figure 3

(l)

(b) (d) (g) (j) (m)

20 nm

(a) (c) (f) (i)

(k)

p422 p321 p4212 p6 p6

(e) (h)

Current Opinion in Structural Biology

Electron micrographs of protein layers designed to assemble with high symmetry and showing long-range order. Symmetry diagrams are shown
under each micrograph, accompanied in some cases by enlarged images. Each symmetry diagram shows the repeating unit cell within which one
instance of each of the component symmetry elements is indicated using standard symbols: black arrows, 2-fold symmetry axes in the plane of
the layer; black ovals, black triangles, black squares, and black hexagons indicate 2-fold, 3-fold, 4-fold, and 6-fold axes perpendicular to the
plane of the layer, respectively. (a) a p422 layer formed by combining D4 and D2 symmetry components; (c) a p321 layer formed by combining
C3 trimers with a 2-fold de novo interface; (f) a p4212 layer formed by combining C4 tetramers with a 2-fold de novo interface; (i) a p6 layer
formed by combining C6 hexamers and a 2-fold de novo interface; (l) a pseudo p6 layer formed by combining C6 hexamers using a covalent
fusion and a pseudo 2-fold de novo interface. (e, h, k) enlarged images of (c), (f), (i), respectively. Scale bars: (a) — 20 nm; (c) — 50 nm; (f) —
50 nm; (i) — 50 nm; (l) — 20 nm.
Images reproduced with permission from: panel (a) — Sinclair et al. [22]; panels (c, e, f, h, i, and k) — Gonen et al. [56!!]; panel (l) — Matthaei et al.
[57 !]

Current Opinion in Structural Biology 2016, 39:134–143 www.sciencedirect.com

 9

Doll et al. [59] also combined coiled-coil sequences with
different symmetric properties (5-fold and 3-fold) to pro-
duce roughly spherical clusters having sizes consistent with
icosahedral assembly. In a distinctly different line of attack,
Gradišar et al. demonstrated the construction of a tetrahe-
dral architecture on the basis of asymmetric interactions
between coiled coil motifs in a long, designed protein
molecule whose folding pattern traverses the edges of
the entire polyhedron twice [60].

The different design strategies discussed here present
their own advantages and challenges. The initial design
strategy of helical fusions between oligomers presents a
relatively low barrier in the sense of not needing to create
de novo interfaces, but flexibility creates an obvious chal-
lenge. This sometimes leads to alternate assembly out-
comes [17!,61]. Strategies involving more rigid linkers
could improve the reliability of this method. A recent
report demonstrated some success in rigidifying a contin-
uous alpha helical linker between two protein components
by a specific chemical cross-link between cysteines at
positions i and i + 11 [62]. Another approach to rigidifica-
tion would be to use a coiled-coil linker as the motif joining
two separate oligomeric units, with a single helix of a hetero
coiled-coil motif extending from each of the oligomeric
components. These are avenues of ongoing study.

The main challenges with methods based on de novo
interface design relate to misfolding or unintended as-
sembly — often insoluble aggregation — most likely
caused by introduction of new regions of hydrophobicity
in a protein surface. The success rates for geometrically
specific interface design in the context of symmetric
assemblies is currently in the range of about 10%. One
case has been reported where a failed design could be
rescued by increasing the charge on the protein molecule
[24]. This suggests that optimizing certain design param-
eters and selection criteria might substantially increase
the success rates. Another notable trend is the increasing
success in designing novel protein folds and assemblies
by focusing on building blocks that are all (or mainly)
alpha helical or otherwise repetitive in structure [63–68].
New strategies for high throughput selection or screening
of designs for correct assembly could also be impactful.

As design strategies continue to improve, and with con-
struction rules in hand for building wide-ranging types of
symmetric architectures, the coming years should bring a
rich diversity of new protein based materials with useful
applications.

Conflict of interest
The authors declare no competing interests.

Acknowledgements
This work was supported by NSF grant CHE-1332907. The authors thank
Dan McNamara, Yen-Ting Lai, Kevin Cannon and other members of the

Yeates lab for their ideas, and members of the David Baker laboratory,
including Jacob Bale and Neil King, for access to their designs ahead of
publication. We thank Frank DiMaio and Will Sheffler for discussions on
symmetry rules and Dek Woolfson for discussions related to coiled-coil
polypeptides.

References and recommended reading
Papers of particular interest, published within the period of review,
have been highlighted as:

! of special interest
!! of outstanding interest

1. Goodsell DS, Olson AJ: Structural symmetry and protein
function. Annu Rev Biophys Biomol Struct 2000, 29:105-153.

2. Marsh JA, Teichmann SA: Structure, dynamics assembly, and
evolution of protein complexes. Annu Rev Biochem 2015,
84:551-575.

3. Yeates TO, Thompson MC, Bobik TA: The protein shells of
bacterial microcompartment organelles. Curr Opin Struct Biol
2011, 21:223-231.

4. Seeman NC: Nucleic acid junctions and lattices. J Theor Biol
1982, 99:237-247.

5. Jones MR, Seeman NC, Mirkin CA: Nanomaterials.
Programmable materials and the nature of the DNA bond.
Science (New York, N.Y.) 2015, 347:1260901.

6. Ispolatov I, Yuryev A, Mazo I, Maslov S: Binding properties and
evolution of homodimers in protein–protein interaction
networks. Nucl Acids Res 2005, 33:3629-3635.

7. Pereira-Leal JB, Levy ED, Kamp C, Teichmann SA: Evolution of
protein complexes by duplication of homomeric interactions.
Genom Biol 2007, 8:R51.

8. Crick FH, Watson JD: Structure of small viruses. Nature 1956,
177:473-475.

9. Pandya MJ, Spooner GM, Sunde M, Thorpe JR, Rodger A,
Woolfson DN: Sticky-end assembly of a designed peptide fiber
provides insight into protein fibrillogenesis. Biochemistry 2000,
39:8728-8734.

10. Ogihara NL, Ghirlanda G, Bryson JW, Gingery M, DeGrado WF,
Eisenberg D: Design of three-dimensional domain-swapped
dimers and fibrous oligomers. Proc Natl Acad Sci USA 2001,
98:1404-1409.

11. Robertson DE, Farid RS, Moser CC, Urbauer JL, Mulholland SE,
Pidikiti R, Lear JD, Wand AJ, DeGrado WF, Dutton PL:
Design and synthesis of multi-haem proteins. Nature 1994,
368:425-432.

12. Kuhlman B, O’Neill JW, Kim DE, Zhang KY, Baker D: Conversion
of monomeric protein L to an obligate dimer by computational
protein design. Proc Natl Acad Sci USA 2001, 98:10687-10691.

13. Wukovitz SW, Yeates TO: Why protein crystals favour some
space-groups over others. Nat Struct Biol 1995, 2:1062-1067.

14. Padilla JE, Colovos C, Yeates TO: Nanohedra: Using symmetry
to design self assembling protein cages, layers, crystals, and
filaments. Proc Natl Acad Sci USA 2001, 98:2217-2221.

15. Lai Y-T, Cascio D, Yeates TO: Structure of a 16-nm Cage
Designed by Using Protein Oligomers. Science 2012, 336:1129.

16. Lai Y-T, Tsai K-L, Sawaya MR, Asturias FJ, Yeates TO:
Structure and flexibility of nanoscale protein cages
designed by symmetric self-assembly. J Am Chem Soc 2013,
135:7738-7743.

17.
!

Lai Y-T, Reading E, Hura GL, Tsai K-L, Laganowsky A, Asturias FJ,
Tainer JA, Robinson CV, Yeates TO: Structure of a designed
protein cage that self-assembles into a highly porous cube.
Nat Chem 2014, 6:1065-1071.

Using the alpha helical oligomer fusion strategy, the authors reported the
design and crystallographic validation of a highly porous 24-subunit cubic
assembly with a large central cavity, demonstrating the feasibility of
controlling geometry over long distance while providing porosity. Helix
flexibility admitted alternative assembly forms.

Designing symmetric protein nanomaterials Yeates, Liu and Laniado 141

www.sciencedirect.com Current Opinion in Structural Biology 2016, 39:134–143

 10

18. King NP, Sheffler W, Sawaya MR, Vollmar BS, Sumida JP, André I,
Gonen T, Yeates TO, Baker D: Computational design of self-
assembling protein nanomaterials with atomic level accuracy.
Science 2012, 336:1171-1174.

19. Lanci CJ, MacDermaid CM, Kang S-g, Acharya R, North B, Yang X,
Qiu XJ, DeGrado WF, Saven JG: Computational design of a
protein crystal. Proc Natl Acad Sci USA 2012, 109:7304-7309.

20. Grueninger D, Treiber N, Ziegler MOP, Koetter JWA, Schulze M-S,
Schulz GE: Designed protein–protein association. Science
(New York, N.Y.) 2008, 319:206-209.

21. DiMaio F, Leaver-Fay A, Bradley P, Baker D, André I: Modeling
symmetric macromolecular structures in rosetta3. PLoS One
2011, 6:e20450.

22. Sinclair JC, Davies KM, Vénien-Bryan C, Noble MEM: Generation
of protein lattices by fusing proteins with matching rotational
symmetry. Nat Nanotechnol 2011, 6:558-562.

23.
!!

King NP, Bale JB, Sheffler W, McNamara DE, Gonen S, Gonen T,
Yeates TO, Baker D: Accurate design of co-assembling multi-
component protein nanomaterials. Nature 2014, 510:103-108.

Using improved algorithms in the Rosetta software suite, the authors
illustrate the design and validation of a series of novel protein cages
wherein each cage assembles from two distinct oligomeric components.
A de novo interface between the two types of oligomers drives the
symmetric assembly.

24. Bale JB, Park RU, Liu Y, Gonen S, Gonen T, Cascio D, King NP,
Yeates TO, Baker D: Structure of a designed tetrahedral protein
assembly variant engineered to have improved soluble
expression. Protein Sci 2015, 24:1695-1701.

25.
!!

Bale JB, Gonen S, Liu Y, Sheffler W, Ellis D, Thomas C, Cascio D,
Yeates TO, Gonen T, King NP et al.: Accurate design of
megadalton-scale two-component icosahedral protein
complexes. Science 2016, 353:389-394.

This study demonstrates the design and atomic level validation of the
largest geometrically specific protein cages to date using a two-compo-
nent strategy and interface design. Controlled encapsulation of cargo
proteins by charge complimentarity is demonstrated.

26. Dotan N, Arad D, Frolow F, Freeman A: Self-assembly of a
tetrahedral lectin into predesigned diamondlike protein
crystals. Angew Chem (Int Ed. in English) 1999, 38:2363-2366.

27. Ringler P, Schulz GE: Self-assembly of proteins into designed
networks. Science 2003, 302:106-109.

28. Salgado EN, Ambroggio XI, Brodin JD, Lewis RA, Kuhlman B,
Tezcan FA: Metal templated design of protein interfaces. Proc
Natl Acad Sci USA 2010, 107:1827-1832.

29. Salgado EN, Radford RJ, Tezcan FA: Metal-directed protein
self-assembly. Acc Chem Res 2010, 43:661-672.

30. Salgado EN, Lewis RA, Mossin S, Rheingold AL, Tezcan FA:
Control of protein oligomerization symmetry by metal
coordination – C2 and C3 symmetrical assemblies through
Cu(II) and Ni(II) coordination. Inorg Chem 2009, 48:2726-2728.

31. Brodin JD, Ambroggio XI, Tang C, Parent KN, Baker TS,
Tezcan FA: Metal-directed, chemically tunable assembly of
one-, two- and three-dimensional crystalline protein arrays.
Nat Chem 2012, 4:375-382.

32. Salgado EN, Lewis RA, Faraone-Mennella J, Tezcan FA: Metal-
mediated self-assembly of protein superstructures: influence
of secondary interactions on protein oligomerization and
aggregation. J Am Chem Soc 2008, 130:6082-6084.

33. Salgado EN, Faraone-Mennella J, Tezcan FA: Controlling
proteinSprotein interactions through metal coordination:
assembly of a 16-helix bundle protein. J Am Chem Soc 2007,
129:13374-13375.

34. Laganowsky A, Zhao M, Soriaga AB, Sawaya MR, Cascio D,
Yeates TO: An approach to crystallizing proteins by metal-
mediated synthetic symmetrization. Protein Sci 2011,
20:1876-1890.

35. Leibly DJ, Arbing MA, Pashkov I, DeVore N, Waldo GS,
Terwilliger TC, Yeates TO: A suite of engineered GFP molecules
for oligomeric scaffolding. Structure 2015, 23:1754-1768.

36.
!!

Sontz PA, Bailey JB, Ahn S, Tezcan FA: A metal organic framework
with spherical protein nodes: rational chemical design of 3D
protein crystals. J Am Chem Soc 2015, 137:11598-11601.

The authors constructed a three-dimensional protein crystal with a pre-
scribed lattice by introducing metal–organic linker interactions between
adjacent ferritin cages, which are naturally cubic/octahedral. This is the
first report of a designed metal–organic mediated 3-D protein crystal. Its
designed structure was shown to be accurate by X-ray diffraction at
atomic resolution.

37.
!

Suzuki Y, Cardone G, Restrepo D, Zavattieri PD, Baker TS,
Tezcan FA: Self-assembly of coherently dynamic, auxetic, two-
dimensional protein crystals. Nature 2016, 533:369-373.

The authors obtain multiple well-ordered two-dimensional arrays from a cyclic
tetrameric protein engineered to make 2-fold contacts with itself via disulfide
or metal binding motifs. The layers exhibit shrinking/expansion transitions.

38. Sakai F, Yang G, Weiss MS, Liu Y, Chen G, Jiang M: Protein
crystalline frameworks with controllable interpenetration
directed by dual supramolecular interactions. Nat Commun
2014, 5:4634.

39. Mou Y, Yu J-Y, Wannier TM, Guo C-L, Mayo SL: Computational
design of co-assembling protein-DNA nanowires. Nature 2015,
525:230-233.

40.
!

Brodin JD, Auyeung E, Mirkin CA: DNA-mediated engineering of
multicomponent enzyme crystals. Proc Natl Acad Sci U S A
2015, 112:4564-4569.

The authors create hybrid protein-DNA crystalline materials by chemically
coating proteins with DNA and then adding bridging DNA molecules to
drive association between two different types of protein particles. DNA-
coated gold nanoparticles were also used.

41. Lai Y-T, King NP, Yeates TO: Principles for designing ordered
protein assemblies. Trends Cell Biol 2012, 22:653-661.

42.
!

Sciore A, Su M, Koldewey P, Eschweiler JD, Diffley KA,
Linhares BM, Ruotolo BT, Bardwell JCA, Skiniotis G, Marsh EN: A
flexible, symmetry-directed approach to assembling protein
cages. Proc Natl Acad Sci USA 2016. (in press).

The authors create a 24-subunit assembly by fusing a trimeric protein to a
tetrameric coiled-coil motif.

43.
!

Hsia Y, Bale JB, Gonen S, Shi D, Sheffler W, Fong KK,
Nattermann U, Xu C, Huang PS, Ravichandran R et al.: Design of a
hyperstable 60-subunit protein icosahedron. Nature 2016,
535:136-139.

The authors create a 60-subunit icosahedral cage using interface design
and a one-component strategy.

44. Yeates TO, Padilla JE: Designing supramolecular protein
assemblies. Curr Opin Struct Biol 2002, 12:464-470.

45. Doll TAPF, Raman S, Dey R, Burkhard P: Nanoscale assemblies
and their biomedical applications. J R Soc Interface 2013:10.

46. López-Sagaseta J, Malito E, Rappuoli R, Bottomley MJ: Self-
assembling protein nanoparticles in the design of vaccines.
Comput Struct Biotechnol J 2015, 14:58-68.

47. Howorka S: Rationally engineering natural protein assemblies
in nanobiotechnology. Curr Opin Biotechnol 2011, 22:485-491.

48. Wörsdörfer B, Woycechowsky KJ, Hilvert D: Directed evolution of
a protein container. Science (New York, N.Y.) 2011, 331:589-592.

49. Patterson DP, Schwarz B, El-Boubbou K, Oost Jvd, Prevelige PE,
Douglas T: Virus-like particle nanoreactors: programmed
encapsulation of the thermostable CelB glycosidase inside
the P22 capsid. Soft Matter 2012, 8:10158-10166.

50. Champion CI, Kickhoefer VA, Liu G, Moniz RJ, Freed AS,
Bergmann LL, Vaccari D, Raval-Fernandes S, Chan AM, Rome LH
et al.: A vault nanoparticle vaccine induces protective mucosal
immunity. PLOS One 2009, 4:e5409.

51. Han M, Kickhoefer VA, Nemerow GR, Rome LH: Targeted vault
nanoparticles engineered with an endosomolytic peptide deliver
biomolecules to the cytoplasm. ACS Nano 2011, 5:6128-6137.

52. Kar UK, Jiang J, Champion CI, Salehi S, Srivastava M, Sharma S,
Rabizadeh S, Niazi K, Kickhoefer V, Rome LH et al.: Vault
nanocapsules as adjuvants favor cell-mediated over antibody-
mediated immune responses following immunization of mice.
PLoS One 2012, 7:e38553.

142 Engineering and design

Current Opinion in Structural Biology 2016, 39:134–143 www.sciencedirect.com

 11

53. Zschoche R, Hilvert D: Diffusion-Limited Cargo Loading of an
Engineered Protein Container. J Am Chem Soc 2015,
137:16121-16132.

54. Correia BE, Bates JT, Loomis RJ, Baneyx G, Carrico C, Jardine JG,
Rupert P, Correnti C, Kalyuzhniy O, Vittal V et al.: Proof of
principle for epitope-focused vaccine design. Nature 2014,
507:201-206.

55. Sliepen K, Ozorowski G, Burger JA, van Montfort T,
Stunnenberg M, LaBranche C, Montefiori DC, Moore JP, Ward AB,
Sanders RW: Presenting native-like HIV-1 envelope trimers on
ferritin nanoparticles improves their immunogenicity.
Retrovirology 2015, 12:82.

56.
!!

Gonen S, DiMaio F, Gonen T, Baker D: Design of ordered two-
dimensional arrays mediated by noncovalent protein–protein
interfaces. Science 2015, 348:1365-1368.

The authors report on three examples of symmetric protein layers
designed by introducing a de novo interface between symmetry-related
copies of a natural cyclic oligomer. The layers showed long range order.

57.
!

Matthaei JF, DiMaio F, Richards JJ, Pozzo LD, Baker D, Baneyx F:
Designing two-dimensional protein arrays through fusion of
multimers and interface mutations. Nano Lett 2015 http://
dx.doi.org/10.1021/acs.nanolett.5b01499.

The authors create an ordered 2-D array by genetically fusing two
monomers of a cyclic hexameric protein in an orientation that drives
extended rather than closed assembly

58.
!

Fletcher JM, Harniman RL, Barnes FRH, Boyle AL, Collins A,
Mantell J, Sharp TH, Antognozzi M, Booth PJ, Linden N et al.: Self-
assembling cages from coiled-coil peptide modules. Science
2013, 340:595-599.

The authors show that a self-assembling material can be designed by
linking trimeric and dimeric coiled-coils through disulfide bonds. Hex-
agonal networks form, which then close up to form roughly spherical
nanoparticles with diameters in the 100 nm range.

59. Doll TAPF, Dey R, Burkhard P: Design and optimization of
peptide nanoparticles. J Nanobiotechnol 2015, 13:73.

60. Gradišar H, Božič S, Doles T, Vengust D, Hafner-Bratkovič I,
Mertelj A, Webb B, Šali A, Klavžar S, Jerala R: Design of a single-
chain polypeptide tetrahedron assembled from coiled-coil
segments. Nat Chem Biol 2013, 9:362-366.

61. Lai Y-T, Jiang L, Chen W, Yeates TO: On the predictability of the
orientation of protein domains joined by a spanning alpha-
helical linker. Protein Eng Des Select 2015, 28:491-499.

62. Jeong WH, Lee H, Song DH, Eom J-H, Kim SC, Lee H-S, Lee H,
Lee J-O: Connecting two proteins using a fusion alpha helix
stabilized by a chemical cross linker. Nat Commun 2016,
7:11031.

63. Boyken SE, Chen Z, Groves B, Langan RA, Oberdorfer G, Ford A,
Gilmore JM, Xu C, DiMaio F, Pereira JH et al.: De novo design of
protein homo-oligomers with modular hydrogen-bond
network-mediated specificity. Science 2016, 352:680-687.

64. Brunette TJ, Parmeggiani F, Huang PS, Bhabha G, Ekiert DC,
Tsutakawa SE, Hura GL, Tainer JA, Baker D: Exploring the repeat
protein universe through computational protein design. Nature
2015, 528:580-584.

65. Huang PS, Oberdorfer G, Xu C, Pei XY, Nannenga BL, Rogers JM,
DiMaio F, Gonen T, Luisi B, Baker D: High thermodynamic
stability of parametrically designed helical bundles. Science
2014, 346:481-485.

66. Thomson AR, Wood CW, Burton AJ, Bartlett GJ, Sessions RB,
Brady RL, Woolfson DN: Computational design of water-
soluble alpha-helical barrels. Science 2014, 346:485-488.

67. Jacobs TM, Williams B, Williams T, Xu X, Eletsky A, Federizon JF,
Szyperski T, Kuhlman B: Design of structurally distinct
proteins using strategies inspired by evolution. Science 2016,
352:687-690.

68. Glover DJ, Giger L, Kim SS, Naik RR, Clark DS: Geometrical
assembly of ultrastable protein templates for nanomaterials.
Nat Commun 2016, 7:11771.

Designing symmetric protein nanomaterials Yeates, Liu and Laniado 143

www.sciencedirect.com Current Opinion in Structural Biology 2016, 39:134–143

 12

CHAPTER 2

Geometric lessons and design strategies for nanoscale protein

cages

 13

Geometric Lessons and Design Strategies for Nanoscale Protein Cages

Joshua Laniado1*, Kevin A. Cannon1*, Justin E. Miller2, Michael R. Sawaya3, Dan E. McNamara2 and Todd
O. Yeates1,2,3

1Molecular Biology Institute, UCLA

2UCLA-DOE Institute for Genomics and Proteomics
3UCLA Department of Chemistry and Biochemistry

*equal author contributions

Keywords: Protein Design, Nanotechnology, Symmetry, Self-Assembly, Coiled-Coil

 14

ABSTRACT

Protein molecules bring rich functionality to the field of designed nanoscale architectures.

High symmetry protein cages are rapidly finding diverse application in biomedicine,

nanotechnology and imaging, but methods for their reliable and predictable construction remain

challenging. In this study we introduce an approach for designing protein assemblies that

combines new ideas with favorable elements adapted from recent work. Cubically symmetric

cages can be created by combining two simpler symmetries, following recently established

principles. Here, two different oligomeric protein components are brought together in a

geometrically specific arrangement by their separate genetic fusion to individual components of

a heterodimeric coiled-coil polypeptide motif of known structure. Fusions between components

are made by continuous alpha helices to limit flexibility. After computational design, we tested

ten different protein cage constructions experimentally, two of which formed larger assemblies.

One produced the intended octahedral cage, approximately 26 nm in diameter, while the other

appeared to produce the intended tetrahedral cage as a minor component, crystallizing instead

in an alternate form representing a collapsed structure of lower stoichiometry and symmetry.

Geometric distinctions between the two characterized designs help explain the different degrees

of success, leading to clearer principles and improved prospects for the routine creation of novel

nanoscale protein architectures using diverse methods.

 15

INTRODUCTION

 In the last decade, developments in the field of protein design have produced a growing

suite of novel protein assemblies unseen in nature1–14. Highly symmetric, cubic and icosahedral

protein cages have drawn particular attention. Early studies laid out the essential design

requirements15. When two (or more) symmetric objects (e.g. simple protein oligomers) are held

together in a geometrically specific way, a larger and more complex architecture can be produced

by self-assembly. The resulting symmetry is dictated by the combined symmetries of the two

underlying components. For the design of high symmetry protein cages, the symmetry axes

belonging to the component oligomers must intersect at an angle according to the Platonic solids

(i.e. tetrahedron, cube, icosahedron). An example would be a homotrimer and a homodimer that

are positioned by design such that their individual symmetry axes intersect at an angle of 54.7°

at the center of a tetrahedron. While the geometric requirements for assembling diverse protein

materials using the principle of symmetry combinations have been studied for nearly 20

years2,7,8,15–19, the practical matter of how to engineer a strictly defined geometric relationship

between two complex protein molecules remains challenging, relying on advanced molecular

engineering and computational design methods.

 A successful method for holding two protein oligomers in a rigid orientation with respect

to one another was demonstrated in 2001, when Padilla and coworkers used an α-helical linker

to bring together a dimer and a trimer in order to form a protein tetrahedron15,20. This design

strategy utilizes an α-helical linker fused between terminal helices of the component oligomers,

creating a continuous intervening helix rigid enough to hold the oligomers in the correct

orientation21. Reliable application of this strategy tends to be challenged by helix flexibility22,

 16

but the approach has successfully produced a protein cube23 and icosahedron24 in addition to the

original tetrahedron.

 Other strategies for orienting oligomers to self-assemble into cages have been

demonstrated as well. More than a dozen protein cages have been characterized at near-atomic

resolution by X-ray crystallography17,20,23,25,26, with several others validated by other techniques

such as electron microscopy (EM)3,10–13,27,28. Most of the designs that have led to crystal

structures were the result of computational interface design via the Rosetta protein design

software17,25,26. In this method, natural protein oligomers are first computationally docked such

that their symmetry axes have the desired angle of intersection for a specific point group

symmetry (T, O, or I). Then mutations that could lead to a new interface between oligomers in

the specified orientation are suggested computationally by searching for amino acids

substitutions that give favorable calculated binding energies. Numerous cages have been

successfully designed by the interface design approach developed by King et al.17, yet such

methods are highly demanding computationally, and experimental success rates tend to be

limited by imperfect knowledge of how to produce tight binding interfaces (which are often

relatively hydrophobic) without causing non-specific assembly ̶ either aberrant structures or

aggregation into inclusion bodies ̶ when overexpressed in bacteria. Recent efforts to lower the

hydrophobicity and improve hydrogen bonding in designed interfaces are improving the

performance of interface design approaches29–31. Other studies have retained the idea of using

genetic fusion to connect oligomeric components but have sought to relax the requirement for

rigidity imposed by a continuous helical connection. Flexible connections between oligomers

have been used to form ordered 2-D protein layers19 and several types of protein clusters or

 17

cages32, some with approximate T, O, and I symmetry10–12. Methods based on flexible

connections have produced assemblies of the intended forms, but they have largely evaded

detailed structural characterization by crystallography or high resolution cryo-EM. Protein cages

designed by various methods are beginning to find applications in areas as diverse as enzyme

scaffolding,33,34 vaccine design,35 nucleic acid encapsulation,36,37 and imaging38,39. Thus, further

exploration of design methodologies could facilitate more routine production of novel protein

cages with applications in biomedicine and nanotechnology.

In the present study, we built on the original concept of joining symmetric proteins based

on continuous α helices, but with a variation intended to reduce the innate flexibility of a single

α helix. This new approach effectively replaces the single α-helical linker of the original fusion

design method with a (presumptively) more rigid heterodimeric α helical coiled-coil; one

component of the coiled-coil is fused to either oligomeric subunit. Like previous fusion methods,

the computational design demands are modest. Similar to methods based on interface design,

the resulting architectures are held together by a non-covalent association between proteins,

but here that association (i.e. between coiled coil components) is known in advance. We present

the structural characterization of two different cages designed by this method, with some

unexpected results that demonstrate crucial lessons about protein cage design principles.

RESULTS

Protein design methodology

In this work we set out to design 3-dimensional protein cages obeying tetrahedral (T) or

octahedral (O) point group symmetry, which would self-assemble from two different oligomeric

 18

protein components via fusion to heterodimeric coiled coils. The general design workflow closely

follows that of previous helical fusion cage designs, with some variations (see Methods). The

ultimate shape of the self-assembled cage construct is determined by the rotational symmetries

of the component oligomers and the angle of intersection between their symmetry axes.

Combinations of trimeric and dimeric components with their symmetry axes intersecting at an

angle of 54.7°, for example, should self-assemble with 12 copies of each subunit (a12b12) to form

a tetrahedron (Fig 1, top panel). On the other hand, combinations of tetrameric and trimeric

components intersecting at 54.7° should self-assemble with 24 copies of each subunit (a24b24) to

build an octahedron (Fig 1, bottom panel). Designs bearing T or O symmetry were generated

computationally. All possible pairs of candidate dimers and trimers or tetramers and trimers in

the PDB protein structure database were considered. For every candidate pair, a subunit from

each oligomer was computationally fused through its alpha helical terminus to one component

of the c-Fos/c-Jun heterodimeric coiled-coil structure. Following that step, candidate

constructions where the symmetry axes carried by the two component oligomers intersected at

or nearly at the required angle of 54.7° were identified. The favorable geometric candidates were

then screened for steric clashes that might occur upon symmetry expansion. A final visual

inspection was carried out and potentially problematic cases (e.g. membrane proteins) were

removed. Ten designs were chosen for experimental characterization.

The design approach used here takes advantage of non-covalent interfacial interactions

(between the helices of the hetero-dimeric coiled coil) to hold the two symmetric oligomeric

protein components together, as opposed to the genetic fusion or computational interface

design strategies used for other cages that have been reported. Coiled-coil motifs have been

 19

widely used for protein design, with considerable success and well-characterized principles4,5,10–

12,40–45. For our coiled-coil motif we used an engineered version of the c-Fos/c-Jun coiled coil (see

Supplement)41,46,47. Our coiled-coil interaction serves a similar role as the computationally

designed interfaces in King’s 2014 work25, namely to bring two different oligomeric components

together in a precisely defined fashion. The distinction is that here, instead of requiring novel

interface design for each computational candidate, the non-covalent interaction provided by c-

Jun/c-Fos is understood in advance. As with King, the two-component approach allows for

hierarchical assembly (e.g. of complete oligomers) en route to formation of a complete cage, with

potential benefits for robust assembly, compared to approaches where a single polypeptide

chain embodies two different oligomerizing domains.

 20

Protein expression and characterization of co-assembly

Synthetic genes encoding the designed proteins were inserted into expression vectors to

allow inducible expression in Escherichia coli (see Methods). Each design included a histidine tag

on either the N- or the C-terminus of one of the two protein subunits. For six of the designs,

either one or both of the engineered protein components were not observed in the soluble

fraction of the clarified cell lysate on SDS-PAGE. For these cases, low solubility likely arises from

non-specific aggregation or misfolding caused by the introduction of leucine rich coiled coil

sequences.

Figure 1. Design of two-component protein cages using a coiled-coil helical fusion-based approach. Two distinct
oligomeric subunits are fused to separate helices of a heterodimeric coiled-coil linker (blue and green). The T23
tetrahedral design (top panel) was constructed by combining a C2 dimer (pink) and a C3 trimer (orange). The
O34 octahedral design (bottom panel) was constructed by combining a C3 trimer (pink) and a C4 tetramer
(orange). A low-resolution surface representation of each design model is shown (top middle and bottom
middle). Simplified two-component cage assemblies with symmetry T (C2 + C3) (top right) and symmetry O (C3
+ C4) (bottom right) are diagrammed using model oligomers.

Trimer

Coiled Coil

Dimer

x12

Tetramer

Coiled Coil

Trimer

x24

T23 Tetrahedron
(design model)

O34 Octahedron
(design model)

Coiled-Coil
Fusions

Coiled-Coil
Fusions

O:{C3}{C4}

T:{C2}{C3}

 21

The four remaining designed protein pairs (ccT23-1, ccO34-1, ccO34-3 and ccO23-1)

expressed solubly and co-eluted during nickel affinity chromatography and size exclusion

chromatography (SEC) (Fig 3A, Fig S5 top, Fig S6 left and middle). Consistent with the target

architectures, SEC elution volumes were within the range expected for nanoscale assemblies.

Furthermore, negative stain electron microscopy (EM) of the SEC purified samples revealed cage-

like species in all four cases (Fig 3B, Fig S5 bottom, Fig S6 right).

Despite these initial results, further structural characterization of ccO23-1 and ccO34-3

was intractable. The trimeric component of the ccO23-1 design exhibited low levels of soluble

expression and therefore it proved to be infeasible to produce the two-component assembly for

subsequent structural studies. Similarly, only a minute fraction of the ccO34-3 sample eluted at

the volume expected for the 48-subunit assembly suggesting that the target design may have

only formed as a minor species in solution. This, in addition to issues with sample stability and

aggregation, hindered downstream biophysical analysis of ccO34-3. In contrast, with higher

yields and dominant SEC peaks in the expected regions, ccT23-1 and ccO34-1 showed more

promise. We therefore directed our attention to further characterize the structures of these two

designs.

Crystal structure of a collapsed protein cage

The ccT23-1 design is a ~20 nm cage with tetrahedral symmetry constructed by combining

a C2 dimer and a C3 trimer (Fig 1 top). Its dimeric component was derived from a putative

isomerase of the SnoaL-like family (PDB ID 3DXO, 18.3 kDa monomeric molecular weight) while

its trimeric component was derived from the Pyrococcus horikoshii OT3 PH0671 protein (PDB ID

 22

1WY1, 19.5 kDa monomeric molecular weight). When combined with the coiled-coil

components, 12 copies of the dimeric subunit and 12 copies of the trimeric subunit would give a

total molecular weight of 444 kDa.

Crystals were obtained by hanging drop vapor diffusion after 1-2 weeks, and an X-ray

diffraction data set was collected with a resolution limit of 4.32 Å (see Methods). Despite the

limited diffraction resolution, because the protein components comprising the assembly were all

separately known in advance, the structure could be determined by molecular replacement.

Based on the cubic space group of the crystals, we initially expected to find the designed

tetrahedral cage sitting at a point of symmetry T in the crystal. However, we determined that

the space group was in fact P4(3)32, which lacks any site with T symmetry, and only one copy of

the a-b heteromeric design could fit in the asymmetric unit. Ultimately, we established that the

structure crystallized as an assembly obeying D3 symmetry, sitting at a site in the crystal

conforming to that symmetry. Again, cognizant of the limited diffraction resolution, we used

omit maps to validate the resulting structure. The entire alpha helical segment between the

trimeric component and the coiled-coil was omitted from phasing, and appeared clearly in an

omit map (Fig S1).

Rather than the tetrahedron composed of 12 copies of each subunit that we had

designed, the crystal structure obtained from this data revealed a collapsed version of the

designed structure, in which only 6 copies of each subunit (a6b6) instead formed a 222 kDa

assembly obeying D3 symmetry (Fig. 2). Instead of the dimeric and trimeric symmetry axes

intersecting at an angle of 54.7°, the coiled coil linker was bent significantly such that the axes

intersected at 90° (Fig 2A). The collapsed assembly (renamed ccD3 to accurately reflect its

 23

symmetry) resembles a nearly rod-shaped structure roughly 20.6 nm long and ~10.4 nm wide

(Fig 2B and 2C).

Although the crystal structure that was obtained for this design revealed an unintended

D3 assembly, a very broad peak in the size exclusion profile that was obtained for the protein in

solution suggested a mixture of multiple different assembly species of varying molecular weights

(Fig S5A). Indeed, under negative stain EM, we observed particles of different sizes in the sample.

2D classification of manually picked particles revealed a major species with a roughly 21-nm

diameter, which corresponds closely to the designed tetrahedral cage (Fig S5C). Although

Figure 2. Crystal structure of the collapsed T23 design. A) The α-helices joining the dimeric (pink) and trimeric
(orange) subunits in the intended design (grey) are bent in the observed crystal structure (colored), with the
symmetry axes of the dimer and trimer shown. The observed crystal structure is an assembly with D3 symmetry,
viewed from the side (panel B) and down its three-fold symmetry axis (panel C). D) Diagram showing how
flexibility can allow a partial assembly intended to be tetrahedral to collapse into a D3 structure. Subunits in
the tetrahedral assembly missing from the dihedral assembly are colored in two shades of grey.

A B C

D

 24

heterogeneity and low particle density prevented us from producing 2D classes that show distinct

symmetry elements, many individual particles appear to contain approximate 3-fold symmetry

(Fig S5B). Importantly, particle species of higher and lower diameter are also present in the

sample; these likely correspond to alternate assembly forms based on different symmetries, such

as D3 (as seen in the crystal structure) or even O. Thus, while this cage design case produced a

combination of assembled species, apparently including the intended species visible by EM,

crystallization selectively favored a smaller, abundant and possibly better ordered form.

Characterization of a protein octahedron

The ccO34-1 design is a ~26 nm-wide octahedron with a large interior cavity ~10 nm in

diameter (Fig 1 bottom). Its protein components were derived from a putrescine

carbamoyltransferase trimer (PDB ID 4AM8, 40 kDa monomer) and a TraM tetramer (PDB ID

2G7O, 8 kDa monomer. When combined with the coiled-coil components, 24 copies of the

trimeric subunit plus 24 copies of the tetrameric subunit would give a total molecular weight of

1.29 MDa. The size of the openings or ‘windows’ joining the interior and exterior space has been

characterized for designed and natural protein cages3; for ccO34-1 the openings are around

∼30Å in the narrowest direction.

 Particles of roughly 25 nm in size were readily observed under negative stain EM (Fig 3B),

and reference-free 2D class averages revealed several templates corresponding to views down

the 3-fold and 4-fold axes of an octahedral assembly (Fig 3C). Despite these promising preliminary

results, the ccO34-1 cage proved resistant to freezing attempts for cryo-EM grid preparation, and

crystallization trials did not yield protein crystals suitable for X-ray diffraction experiments. Still,

 25

deeper analysis of the cage particles on negatively stained grids provided strong corroborating

evidence for formation of the intended octahedral cage, albeit with a degree of flexibility likely

responsible for preventing crystal formation.

Figure 3. Characterization of the ccO34-1 octahedral cage. (A) Purification by size exclusion chromatography
produced a major peak (red asterisk) corresponding to a high-molecular weight oligomeric species, comprising
both protein cage components, as confirmed by SDS-PAGE (inset). (B) Representative negative stain EM
micrograph of the ccO34-1 construct. Scale bar = 100 nm. (C) Selected reference-free class averages of ccO34-
1 particles, showing distinct views down the 3-fold and 4-fold axes of the octahedral point group symmetry. (D)
The design model of the ccO34-1 cage fit into a 3D reconstruction produced by homogeneous refinement from
the negatively stained particles.

 26

From a negative stained EM dataset containing ~3500 particles, 3D reconstruction of a

low-resolution electron density map of the structure was pursued. An ab initio 3D reconstruction

from these particles performed in cryoSPARC48 suggested an approximately cubic structure, but

with some deviations from perfect octahedral symmetry (Fig S3). Starting from a version of the

design model containing only the trimeric component (i.e. with the tetramer and coiled-coil

domains removed) low-pass Fourier-filtered to 20 Å resolution, homogeneous refinement was

performed in lower symmetries, D2, D4, and T. The omission of a major component from the

reference model and the imposition of lower-than-expected symmetry served to validate the

robustness of the reconstruction (Fig S3). In all cases, the reconstruction that was obtained clearly

resembled an octahedron (i.e. the higher symmetry O emerged without being imposed), fitting

the dimensions of the design model, and with density appearing for the omitted tetrameric

component. The reconstruction obtained with T symmetry imposed was then further refined by

imposing O symmetry (Fig 3D).

Although structural information for the ccO34-1 cage lacked atomic resolution, the data

still indicate successful octahedral cage formation. In contrast to the ccT23-1 design, which was

shown to favor the unintended ccD3 assembly when crystallized, there was no significant

evidence of lower-symmetry assembly species in ccO34-1 samples, despite the appearance of

some irregular species and larger aggregates in negative stain EM images (Fig 3B). Differences

between the design characteristics of the two cages that may have contributed to these

contrasting results are discussed below.

DISCUSSION AND CONCLUSIONS

 27

Experimental characterizations of the two protein cage designs presented above, along

with data from other recent design studies, suggest features of design types that tend to form

unanticipated structures11,23. Certain combinations of protein oligomers can come together in

alternative orientations to produce distinct assemblies having different point group symmetries.

This promiscuity naturally permits alternate experimental outcomes. For example, the

combination of a C2 dimer and a C3 trimer is particularly promiscuous. Even when restricted to

finite structures, this combination can lead to assemblies of I, O, T, or even D3 symmetries,

depending on the relative orientation of the components (Fig S7). Indeed, we observed

heterogeneous assembly for our C2 plus C3 construction here, despite attempts to limit

flexibility. This result parallels that of a previously reported designed protein cube, which was

also comprised by a dimer plus trimer combination, held together by a single-helix linker.23

Although a crystal structure ultimately validated the cubic design in that case, supporting

experiments indicated that smaller (i.e. T- and D3-symmetric assemblies) were also obtained in

abundance. In contrast, the C3 plus C4 combination is one that does not allow other point

symmetry combinations besides O, and indeed our design of this type led to a successful

characterization at the level of negative stain EM, and did not produce smaller species in

abundance. The favorable designability for cases where alternate symmetric outcomes are

absent has been emphasized in other studies10–12.

 A second geometric feature that appears to affect designability relates to the network

properties of different kinds of architectures. The potential geometric difficulty of a design could

be affected by the “ring size” in a network diagram describing the assembled structure. Both of

the designs results in the present study weigh in on this point. For the ccT23-1 design, the C2-

 28

and C3-symmetric oligomers form a triangular ring (or graph cycle) containing 3 subunits of each

type – hence, the ring size is 3 (Fig 1, top right). Although it was hypothesized that the hetero

coiled coil fusion design method explored here would lead to rigidly oriented component

oligomers, experimental studies showed heterogeneity, and ultimately a crystal structured

showed preferential formation of an alternate form. In the collapsed D3 version of the assembly

obtained by crystallization, the ring formed by the component oligomers is made up of only 2

subunits of each type (ring size of 2) (Fig 2D). In essence, the intended design had ring size 3, but

the crystal structure revealed a well ordered alternate assembly with a smaller ring size of 2. For

our C3 plus C4 octahedral construction, the ring size for this intended architecture is 2 (the lowest

possible value for a cage), and as noted above this case assembled with good robustness and did

not collapse into smaller architectures. Another special case published recently further supports

these ideas concerning design robustness. A genetic fusion of a pentamer and a dimer did not

give robust assembly of an icosahedron; the ring size for that network would have been 3.

However, favorable assembly was obtained by fusing three oligomeric components (C2, C3, and

C5).24 In this case, only icosahedral symmetry is jointly compatible with all the component

symmetries, and a timer plus pentamer combination gives an icosahedral network with ring size

2. Because self-assembling structures always proceed through intermediate forms, the

possibility for incomplete structures to collapse – forming smaller network rings than intended –

may be an important general consideration for design. Thus, in order to maximize the chances

of design success with somewhat flexible linkages (intentionally or otherwise) between

component oligomers, the targeted architecture should be one where the component symmetry

types cannot give rise to alternate outcomes with smaller ring sizes.

 29

In this study we explored a new strategy for designing novel symmetric protein cages,

exploiting key advantages evident in recent methods. A single alpha helical linker used in earlier

work was replaced by a coiled-coil with the goal of reducing flexibility. A heteromeric coil-coil

allowed the connection of two oligomeric components by a robust and predictable non-covalent

interface. Ten computational designs were tested experimentally, with differing degrees of

success leading to informative results. A tetrahedral design, based on a dimeric plus trimeric

symmetry combination was found experimentally to be geometrically promiscuous, forming

heterogenous assemblies. Size exclusion experiments and negative stain EM analysis suggest

that the mixture likely included structures similar to what was designed, but ultimately a

prominent component crystallized and was found to represent a smaller, collapsed structure with

D3 symmetry (a6b6 stoichiometry instead of a12b12). A second design based on a non-

promiscuous combination of trimer and cyclic tetramer to give symmetry O assembled largely as

intended. Flexibility was still evident, limiting high resolution by electron microscopy, but lower

resolution negative stain imaging confirmed the essential design. Experimental trials such as

these provide important guidance for optimizing protein design strategies. Given the overall

experimental success rates for designing novel protein assemblies, which are currently rather

modest, the heteromeric linker approach described here could be a productive new avenue,

especially when applied to favorable symmetry combinations.

 30

METHODS

Protein Construct Design

The coiled-coil fusion designs were carried out using a similar approach to the previously

described single-helix oligomer fusion method15,20,23,24 with the primary distinction that the

original α-helical linker was substituted by a heterodimeric coiled-coil linker2 based on c-Fos

(coiled-coil segment A) and c-Jun (coiled-coil segment B) (supplemental text). Briefly, homo-

oligomeric biological assemblies with C2, C3 and C4 symmetry were downloaded from the

Protein Data Bank, and Stride49 was used to analyze their secondary structure. Then, all possible

pairs of dimers and trimers or trimers and tetramers with α-helical termini underwent a multi-

step alignment procedure. First, the N-terminus of coiled-coil segment A was used to align the

entire heterodimeric Fos/Jun linker to the C-terminal helix of a subunit from oligomer 1. Then, a

subunit from oligomer 2 was aligned at its N-terminal α-helix to the C-terminus of coiled-coil

segment B. Additionally, helical extensions ranging from 1 to 4 residues were applied to the N-

and C-terminus of coiled-coil segments A and B respectively and all possible coiled-coil linker

variations were tested for each pair. For each such geometric construction, the angle and

distance between the cyclic symmetry axes of the two oligomers were then computed.

Alignments that resulted in a distance of 3 Å or less between symmetry axes and an angle within

5° of 54.7° were considered for further analysis. Candidates were then manually inspected, and

any that contained major steric clashes were removed. Those exhibiting one or two minor

sidechain clashes caused by a helical region in the native sequence of an oligomeric building block

were retained. In such cases, clashes were mitigated by alanine point mutations. Among the

remaining candidates, 10 designs were selected for experimental testing.

 31

Synthetic Gene Construction

E. coli codon optimized gene fragments encoding the different protein design constructs

were purchased from Integrated DNA Technologies. Sequences encoding the dimer and trimer

subunits of the ccT23-1 design were inserted into the pCDFDuet-1 and pET-22b expression

vectors (Novagen) respectively via Gibson Assembly. Sequences encoding the trimer and

tetramer subunits of the ccO34-1 design were both inserted into the same pET-22b plasmid

separated by the intergenic region of pETDuet-1 (Novagen).

Protein Expression and Purification

Both the ccT23-1 dimer and trimer subunits were transformed separately into E. coli BL21

(DE3) cells (New England Biolabs). Starter cultures were grown in LB with overnight shaking at

37° C and used to inoculate 1 L of LB media supplemented with spectinomycin (pCDFDuet-1) or

ampicillin (pET-22b) at 75 μg/mL. Cultures were grown with shaking at 37°C until reaching an

OD600 of 0.6, after which protein expression was induced with 0.4 mM IPTG. Cells were incubated

for a further 4 hours with shaking at 37°C before being harvested by centrifugation at 5000 x g

for 10 min. Harvested cells were suspended in lysis buffer (50 mM Tris pH 7.5, 500 mM NaCl, 2.8

mM β-mercaptoethanol, 5 mM MgCl2 and 10% Glycerol) supplemented with 10mM imidazole pH

7.5 and EDTA free protease inhibitor (Pierce; Thermo Fisher Scientific) and co-lysed with an

Emulsiflex C3 (Avestin). Lysate was clarified by centrifugation at 9500 x g for 40min at 4°C. For

nickel-affinity purification, the soluble lysate fraction was incubated at 4°C for 90 min with 4 mL

of Ni-NTA resin on a rocker before being loaded onto a gravity column and washed with 100 mL

 32

of lysis buffer containing 75mM imidazole. The protein was eluted from the column with 20 mL

of lysis buffer containing 250mM imidazole. The eluted sample was concentrated to 4 mg/mL,

then further purified by size exclusion chromatography (SEC) on a Superose 6 30/100 column (GE

Healthcare) equilibrated with SEC buffer (0.5M NaCl, 5% Glycerol, 2.8mM β-mercaptoethanol, 50

mM Tris pH 7.5 and 5mM MgCl2). Elution fractions immediately after the void volume were

evaluated by SDS-PAGE. Fractions containing both ccT23 subunits were pooled for further

characterization.

E. coli BL21 (DE3) cells (New England Biolabs) cells transformed with the ccO34-1

expression plasmid were grown in P-0.5G non-inducing minimal medium overnight.50 10 mL of

cell culture was then used to inoculate 1L of ZYP-5052 auto-inducing medium supplemented with

ampicillin at 75 μg/mL for 65 hours at 20°C (Studier 2005). Cells were harvested by centrifugation

at 4000 x g for 20 minutes, resuspended in lysis buffer (50mM HEPES pH 7.0, 5% glycerol, 250mM

NaCl and 2.8mM β-mercaptoethanol) supplemented with EDTA free protease inhibitor (Pierce;

Thermo Fisher Scientific) and lysed with an Emulsiflex C3 (Avestin). Lysate was centrifuged at

12,000 x g for 35 minutes at 4°C and the soluble fraction was applied to a 4 mL Ni-NTA gravity

column. A series of 25mL wash buffers (lysis buffer with 25 mM, 40 mM or 75 mM imidazole)

were applied to the column sequentially with increasing amounts of imidazole before eluting the

target protein with lysis buffer containing 250 mM imidazole. The eluate was dialyzed overnight

into 25 mM HEPES pH 7.0, 250 mM NaCl, 2% Glycerol and 1.4mM β-mercaptoethanol at 4°C. The

dialyzed protein was then further purified by SEC on a Superose 6 30/100 column (GE Healthcare)

equilibrated with dialysis buffer. Elution fractions were evaluated by SDS-PAGE, and fractions

containing both ccO34 subunits were pooled for further analysis.

 33

Protein Crystallization

The ccT23-1 protein sample was concentrated to 2.8 mg/mL, passed through a 0.22 µm

filter and centrifuged at 9500 x g for 10min at 4° C. The target protein was crystallized using the

hanging-drop vapor diffusion method. Crystallization trials were performed at the UCLA

Crystallization Facility in 96-well trays set with 210 nL drops using a Mosquito liquid handling

device (TPP LabTech). The crystal used for structure determination was obtained using the Silver

Bullets additive screen by Hampton Research. The reservoir contained 90 µl of crystallization

reagent (0.10 M Sodium Acetate pH 5.4, 66% MPD) and 10 µl of Silver Bullets reagent B9 (0.25%

w/v Hexamminecobalt(III) chloride, 0.25% w/v Salicylamide, 0.25% w/v Sulfanilamide, 0.25% w/v

Vanillic acid, 0.02 M HEPES sodium pH 6.8). The hanging drop contained purified protein and

reservoir solution in a 2:1 (v/v) ratio. Crystals took about 7 to 14 days to grow at 4° C.

X-ray Diffraction Data Collection and Structure Determination

X-ray diffraction data from a single ccD3 crystal were collected at beamline 24-ID-C of the

Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA, at a wavelength of

0.9790 Å and temperature of 100 K. Data were collected using 0.5° oscillations and 697 mm

detector distance with a DECTRIS PILATUS-6MF pixel detector. Indexing and integration of the

reflections were performed using XDS in space group P4332 and scaled with XSCALE to a

resolution of 4.32 Å.51 Initial molecular replacement calculations conducted in cubic space groups

appeared unreliable, so the structure was solved by molecular replacement in space group P1

using the program Phaser52 with search models 3DXO and 1WY1 corresponding to the dimer and

 34

trimer components of our ccT23 design respectively. A difference density map revealed positions

of the coiled-coils which were then modeled using Coot.53 We manually rotated and translated

the coiled-coils from 4G1E to fit the density and made adjustments to the dimer and trimer

regions. This model was refined using Phenix.54 A single heterodimer from the improved model

was retrospectively used as a search model for molecular replacement in cubic space groups

P4132 and P4332; the correct solution was evident in the latter. We proceeded with rigid body

refinement and then with simulated annealing and gradient-driven minimization. Due to the

limited resolution of the dataset we applied multiple geometric restraints including rotamer

restraints, hydrogen bond restraints for the coiled-coil region and restraints to reference models

3DXO and 1WY1. Furthermore, atomic displacement parameters were grouped throughout the

refinement process and anisotropic displacement was modeled using a single TLS group. We

alternated between Phenix refinement and manual building for several iterations. Data collection

and refinement statistics are reported in Table S1.

Glutaraldehyde Crosslinking of ccT23

After nickel-affinity purification the ccT23 sample was further purified by size exclusion

chromatography on a Superose 6 30/100 column (GE Healthcare) equilibrated with 500mM NaCl,

20mM HEPES pH 7.5, 5mM MgCl2, 10% Glycerol and 1.4 mM β-mercaptoethanol. Elution

fractions immediately after the void volume were pooled and concentrated to 1.1 mg/mL. The

purified sample was crosslinked using 0.02% glutaraldehyde (Ted Pella). The reaction was

quenched after 4 minutes with 100mM Tris pH 8. The crosslinked sample was diluted to either

 35

0.01mg/ml or 0.35mg/ml in 300mM NaCl, 15mM Tris pH 7.5, 5mM MgCl2, 2% Glycerol and 1.4

mM beta-mercaptoethanol for analysis by negative stain electron microscopy.

Negative Stain Electron Microscopy

Protein samples were applied onto a glow discharged, 300-mesh carbon-coated formvar-

supported copper grid (Ted Pella), washed with Milli-Q water and stained with 2% uranyl acetate.

Initial sample screening was performed on a Tecnai T12 transmission electron microscope.

Micrographs used for further structural characterization of ccO34-1 and ccT23-1 were collected

on an FEI TF20 transmission electron microscope at 29,000X and 50,000X magnification

respectively.

 Electron microscopy data for the ccO34-1 construct were processed using cryoSPARC

2.15.0.48 Reference free 2D class averages were obtained from 7,257 auto-picked particles.

Homogeneous refinement was performed on the particles using a reference map consisting of a

20 Å-filtered version of the design model with the tetrameric component and coiled-coil linker

removed. For the final 3D reconstruction, a first round of homogeneous refinement was

performed with T symmetry imposed, followed by subsequent rounds which imposed O

symmetry.

 Data for the ccT23-1 construct were processed using cryoSPARC and Relion 3.1.55 2,727

particles were picked manually and extracted in cryoSPARC. Reference-free 2D class averages

were produced in Relion.

 36

Acknowledgments

The authors thank Duilio Cascio and Michael Collazo for help with crystallization trials as well as

Prof. Hong Zhou and Ivo Atanasov for guidance on electron microscopy. This work was supported

by NSF grant CHE-1629214. This work used NE-CAT beamline 24-ID-C (GM124165) and a Pilatus

detector (RR029205) at the APS (DE-AC02-06CH11357). We thank the NE-CAT staff for their

assistance with data collection.

Notes

The authors declare no conflicting interests.

Data Deposition

Atomic coordinates and structure factors were deposited in the Protein Data Bank under the

accession code 6X1I.

Author Contributions

The work was conceived by TOY. Protein design was done by JL and DEM. Cloning was done by JL

and JEM with some help from DEM. Protein expression and purification was done by JL and JEM.

Crystallization and EM data collection was performed by JL. Negative stain EM 3D reconstruction

and 2D class averages were carried out by KAC. X-Ray crystal structure determination was

performed by MRS and JL. The written manuscript was prepared by KAC, TOY and JL.

 37

Supplementary Information for:

Geometric Lessons and Design Strategies for Nanoscale Protein Cages

Joshua Laniado, Kevin A. Cannon, Justin E. Miller, Michael R. Sawaya, Dan E. McNamara and Todd O.
Yeates

Contents:
• 2 Supplementary Tables
• 7 Supplementary Figures
• Supplementary Text

SUPPLEMENTAL TABLES

Table S1. Crystallographic table

Parenthetic values refer to the outer resolution shell.

Space group P4332
Cell dimensions a, b, c (Å) 146.34, 146.34, 146.34
Resolution (Å) 84.5 – 4.32
% Data completeness 99.5 (96.9)
Data redundancy 17.7 (16.8)
Rmerge 0.10 (2.37)
I/σ(I) 14.40 (1.07)
CC ½ % 100.0 (41.1)
Rwork 0.278 (0.404)
Rfree 0.293 (0.425)
Ramachandran (Favored, Allowed, Outliers) 97.8%, 2.2%, 0 %
Average B value Chain A (1354 atoms) 258 Å2
Average B value Chain B (1153 atoms) 279 Å2

 38

Table S2. Amino Acid Sequences
ccT23-1 Dimer

(based on 3DXO)
MAQLKKKLQALKKKNAQLKWKLQALKKKLAQATQHLTIAQTYLAAWNEEDNERRRH
LVGQAWAENTRYVDPLMQGEGQQGIAAMIEAARQKFPGYRFVLAGTPDGHGNFTR
FSWRLISPDGDDVAGGTDVVSLNTEGRIDNVVGFLDGAVSHHHHHH

ccT23-1 Trimer
(based on 1WY1)

MSPIIEANGTLDELTSFIGEAKHYVDEEMKGILEEIQNDIYKIMGEIGSKGKIEGISEERIK
WLEGLISRYEEMVNLKSFVLPGGTLESAKLDVCRTIARRAERKVATVLREFGIGKEALVY
LNRLSDLLFLLARVIEIAAAAQLEKELQALEKENAQLEWELQALEKELAQ

ccO34-1 Trimer
(based on 4AM8)

MKRDYVTTETYTKEEMHYLVDLSLKIKEAIKNGYYPQLLKNKSLGMIFQQSSTGTRVSF
ETAMEQLGGHGEYLAPGQIQLGGHETIEDTSRVLSRLVDILMARVERHHSIVDLANCA
TIPVINGMSDYNHPTQELGDLCTMVEHLPEGKKLEDCKVVFVGDATQVCFSLGLITTK
MGMNFVHFGPEGFQLNEEHQAKLAKNCEVSGGSFLVTDDASSVEGADFLYTDVWY
GLYEAELSEEERMKVFYPKYQVNQEMMDRAGANCKFMHCLPATRGEEVTDEVIDGK
NSICFDEAENRLTSIRGLLVYLMNDYEAKNPYDLIKQAAAKKALEVFLDTQAAAAQLEK
ELQALEKENAQLEWELQALEKELAQ

ccO34-1 Tetramer
(based on 2G7O)

MAQLKKKLQALKKKNAQLKWKLQALKKKLAQAAQTEFNKLLLECVVKTQSSVAKILGI
ESLSPHVSGNSKFEYANMVEDIREKVSSEMERFFPKNDDEHHHHHH

ccO34-2 Trimer
(based on 2V82)

MHHHHHHQWQTKLPLIAILRGITPDEALAHVGAVIDAGFDAVEIPLNSPQWEQSIPAI
VDAYGDKALIGAGTVLKPEQVDALARMGCQLIVTPNIHSEVIRRAVGYGMTVCPGCA
TATEAFTALEAGAQALKIFPSSAFGPQYIKALKAVLPSDIAVFAVGGVTPENLAQWIDA
GCAGAGLGSDLYRAGQSVERTAQQAAAFVKAYREAVQAQLEKELQALEKENAQLEW
ELQALEKELAQ

ccO34-2 Tetramer
(based on 1E4C)

MAQLKKKLQALKKKNAQLKWKLQALKKKLAQAAARNKLARQIIDTCLEMTRLGLNQ
GTAGNVSVRYADGMLITPTGIPYEKLTESHIVFIDGNGKHEEGKLPQSEWRFHMAAY
QSRPDANAVVHNHAVHCTAVSILNRSIPAIHYMIAAAGGNSIPCAPYATFGTRELSEH
VALALKNRKATLLQHHGLIACEVNLEKALWLAHEVEVLAQLYLTTLAITDPVPVLSDEEI
AVVLEKFKTFGLRIEE

ccO34-3 Trimer
(based on 4G9Q)

MHHHHHHSSGVDLGTENLYFQSMMTTSNAGAQQPNVEGRRFSPDQVRSVAPALE
QYTQQRLYGDVWQRPGLNRRDRSLVTIAALIARGEAPALTYYADQALENGVKPSEISE
TITHLAYYSGWGKAMATVGPVSEAFAKRGIGQDQLAAVESTPLPLDEEAEAQRATTV
GNQFGSVAPGLVQYTTDYLFRDLWLRPDLAPRDRSLVTIAALISVGQVEQITFHLNKAL
DNGLSEEQAAEVITHLAFYAGWPNAMSALPVAKAVFEKRRAAQLEKELQALEKENAQ
LEWELQALEKELAQ

ccO34-3 Tetramer
(based on 1KBJ)

MAQLKKKLQALKKKNAQLKWKLQALKKKLAQAAAKEDIARKEQLKSLLPPLDNIINLY
DFEYLASQTLTKQAWAYYSSGANDEVTHRENHNAYHRIFFKPKILVDVRKVDISTDML
GSHVDVPFYVSATALCKLGNPLEGEKDVARGCGQGVTKVPQMISTLASCSPEEIIEAAP
SDKQIQWYQLYVNSDRKITDDLVKNVEKLGVKALFVTVDAPSLGQREKDMKLKFSNT
KAGPKAMKKTNVEESQGASRALSKFIDPSLTWKDIEELKKKTKLPIVIKGVQRTEDVIKA
AEIGVSGVVLSNHGGRQLDFSRAPIEVLAETMPILEQRNLKDKLEVFVDGGVRRGTDV
LKALCLGAKGVGLGRPFLYANSCYGRNGVEKAIEILRDEIEMSMRLLGVTSIAELKPDLL
DLSTLKARTVGVPNDVLYNEVYEGPTLTEFEDA

ccO34-4 Trimer
(based on 2V82)

MHHHHHHQWQTKLPLIAILRGITPDEALAHVGAVIDAGFDAVEIPLNSPQWEQSIPAI
VDAYGDKALIGAGTVLKPEQVDALARMGCQLIVTPNIHSEVIRRAVGYGMTVCPGCA
TATEAFTALEAGAQALKIFPSSAFGPQYIKALKAVLPSDIAVFAVGGVTPENLAQWIDA
GCAGAGLGSDLYRAGQSVERTAQQAAAFVKAYREAVQAAAQLEKELQALEKENAQL
EWELQALEKELAQ

 39

ccO34-4 Tetramer
(based on 2FLF)

MAQLKKKLQALKKKNAQLKWKLQALKKKLAQAQRAERARLYAAFRQVGEDLFAQGL
ISATAGNFSVRTKGGFLITKSGVQKARLTPEDLLEVPLEGPIPEGASVESVVHREVYRRT
GARALVHAHPRVAVALSFHLSRLRPLDLEGQHYLKEVPVLAPKTVSATEEAALSVAEAL
REHRACLLRGHGAFAVGLKEAPEEALLEAYGLMTTLEESAQILLYHRLWQGAGPALGG
GE

ccO34-5 Trimer
(based on 4IV5)

MLELPPVASLGGKSITSAEQFSRADIYALIHLASAMQRKIDAGEVLNLLQGRIMTPLFFE
DSSRTFSSFCAAMIRLGGSVVNFKVEASSINKGETLADTIRTLDSYSDVLVMRHPRQDA
IEEALSVAQHPILNAGNGAGEHPTQALLDTLTIHSELGSVDGITIALIGDLKMGRTVHSL
LKLLVRNFSIKCVFLVAPDALQMPQDVLEPLQHEIATKGVIIHRTHALTDEVMQKSDVL
YTTRLQKERFMASTSDDAAALQSFAAKADITIDAARMRLAKEKMIVMHPLPRNDELS
TTVDADPRAAYFRQMRYGMFMRMAILWSVLAAAQLEKELQALEKENAQLEWELQA
LEKELAQ

ccO34-5 Tetramer
(based on 2FLF)

MAQLKKKLQALKKKNAQLKWKLQALKKKLAQAQRAERARLYAAFRQVGEDLFAQGLI
SATAGNFSVRTKGGFLITKSGVQKARLTPEDLLEVPLEGPIPEGASVESVVHREVYRRTG
ARALVHAHPRVAVALSFHLSRLRPLDLEGQHYLKEVPVLAPKTVSATEEAALSVAEALR
EHRACLLRGHGAFAVGLKEAPEEALLEAYGLMTTLEESAQILLYHRLWQGAGPALGG
GEHHHHHH

ccO34-6 Trimer
(based on 3Q1X)

MAQLKKKLQALKKKNAQLKWKLQALKKKLAQAADNYIYSIAHQLYEMYLQDEDAFHS
KRDYPHKKVFTELQKLRKIFFPDFFMKHQKITESHIASELTKLVDYIKDSVTAYNDELFAA
QCVMAILEKLPSIKRTLKTDLIAAYAGDPAAPGLSLIIRCYPGFQAVIVYRIAHVLYECGE
RYYCREMMESVHSYTSIDIHPGASIKGHFFIDHGVGVVIGETAIIGEWCRIYQSVTLGA
MHFQEEGGVIKRGTKRHPTVGDYVTIGTGAKVLGNIIVGSHVRIGANCWIDRDVDSN
QTVYISEHPTHFVKPCTTKGMKNDTEIIAIIPSSPLANSPSILEHHHHHH

ccO34-6 Tetramer
(based on 3RPZ)

MSNAMNVPFWTEEHVGATLPERDAESHKGTYGTALLLAGSDDMPGAALLAGLGAM
RSGLGKLVIGTSENVIPLIVPVLPEATYWRDGWKKAADAQLEETYRAIAIGPGLPQTES
VQQAVDHVLTADCPVILDAGALAKRTYPKREGPVILTPHPGEFFRMTGVPVNELQKK
RAEYAKEWAAQLQTVIVLKGNQTVIAFPDGDCWLNPTGNGALAKGGTGDTLTGMIL
GMLCCHEDPKHAVLNAVYLHGACAELWTDEHSAHTLLAHELSDILPRVWKRFEAAAA
QLEKELQALEKENAQLEWELQALEKELAQ

ccO34-7 Trimer
(based on 3OER)

MSVESSTDGQVVPQEVLNLPLEKAHEEADDYLDHLLDSLEELSEAHPDCIPDVELSHG
VMTLEIPAFGTYVINKQPPNKQIWLASPLSGPNRFDLLNGEWVSLRNGTKLTDILTEEV
EKAISEAAAQLEKELQALEKENAQLEWELQALEKELAQ

ccO34-7 Tetramer
(based on 2Z7B)

MAQLKKKLQALKKKNAQLKWKLQALKKKLAQAQARRKVFEELVTATKILLNEGIMDT
FGHISARDPEDPASFFLAQKLAPSLITVDDIQRFNLDGETSDNRPSYLERYIHSEIYKTRP
DVQCVLHTHSPAVLPYCFVDTPLRPVTHMGAFIGESVPVYEIRDKHGDETDLFGGSPD
VCADIAESLGSQTVVLMARHGVVNVGKSVREVVFRAFYLEQEAAALTAGLKIGNVKYL
SPGEIKTAGKLVGAQIDRGWNHWSQRLRQAGLAHHHHHH

ccO34-8 Trimer
(based on 2P4S)

MYTYDTLQEIATYLLERTELRPKVGIICGSGLGTLAEQLTDVDSFDYETIPHFPVSTVAG
HVGRLVFGYLAGVPVMCMQGRFHHYEGYPLAKCAMPVRVMHLIGCTHLIATNAAG
GANPKYRVGDIMLIKDHINLMGFAGNNPLQGPNDERFGPRFFGMANTYDPKLNQQ
AKVIARQIGIENELREGVYTCLGGPNFETVAEVKMLSMLGVDAIGMSTVHEIITARHC
GMTCFAFSLITNMCTMSYEEEEEHCHDSIVGVGKNREKTLGEFVSRIVKHIHYEAAQLE
KELQALEKENAQLEWELQALEKELAQ

ccO34-8 Tetramer
(based on 2R9G)

MAQLKKKLQALKKKNAQLKWKLQALKKKLAQAQHYDVISAFQKSIRGSDVDAALHYL
ARLVEAGDLASICRRLMVIGYEDIGLGNPAAAARTVNAVLAAEKLGLPEARIPLADVVV
DLCLSPKSNSAYMALDAALADIREGKAGDVPDHLRDSHYKGAKSLNRGVGYQYPHHF
DQAWVNQQYLPDKLKNAQYYQPKDTGKYEQALGQQYYRIKEWKEHHHHHH

 40

ccO23-1 Dimer
(based on 3OCU)

MAQLKKKLQALKKKNAQLKWKLQALKKKLAQAEHANMQLQQQAVLGLNWMQDS
GEYKALAYQAYNAAKVAFDHAKVAKGKKKAVVADLNETMLDNSPYAGWQVQNNK
PFDGKDWTRWVDARQSRAVPGAVEFNNYVNSHNGKVFYVTNRKDSTEKSGTIDDM
KRLGFNGVEESAFYLKKDKSAKAARFAEIEKQGYEIVLYVGDNLDDFGNTVYGKLNAD
RRAFVDQNQGKFGKTFIMLPNANYGGWEGGLAEGYFKKDTQGQIKARLDAVQAW
DGKHHHHHH

ccO23-1 Trimer
(based on 1VL0)

MKILITGANGQLGREIQKQLKGKNVEVIPTDVQDLDITNVLAVNKFFNEKKPNVVINC
AAHTAVDKCEEQYDLAYKINAIGPKNLAAAAYSVGAEIVQISTDYVFDGEAKEPITEFDE
VNPQSAYGKTKLEGENFVKALNPKYYIVRTAWLYGDGNNFVKTMINLGKTHDELKVV
HDQVGTPTSTVDLARVVLKVIDEKNYGTFHCTCKGICSWYDFAVEIFRLTGIDVKVTPC
TTEEFPRPAKRPKYSVLRNYMLELTTGDITREWKESLKEYIDLLQMAAAQLEKELQALE
KENAQLEWELQALEKELAQ

 41

SUPPLEMENTAL FIGURES

Figure S1. Electron density map of the ccD3 structure. An omit map (green mesh) was used to establish
the correctness of the molecular replacement solution. The density map, computed after omitting the
coiled-coil segment (blue) fused to the trimer subunit (orange), clearly reveals positive density for the
omitted region. The dimer subunit is shown in pink with its coiled-coil segment in green.

Figure S2. Electron density map for the ccD3 crystal structure. A 2Fo-Fc electron density map (blue
mesh) contouring the asymmetric unit of the ccD3 crystal structure at 1.1 s.

Figure S3. 3D single particle electron microscopy reconstructions produced by homogeneous refinement
with various types of symmetry imposed for the ccO34-1 octahedral cage. Regardless of the lower
symmetry that was imposed, the reconstructions conform to near-octahedral symmetry. The
reconstructions were generated using as a reference a low resolution (20 Å) map of a partial model from
which major components – the tetramer (colored in yellow) and coiled-coil components – were removed
as a test of robustness.

 42

Figure S4. Reference-free 2D class averages of particles for the ccO34-1 (top) and ccT23-1 (bottom) cages
from negative stain EM images. The ccO34-1 construct produced cages of relatively uniform size (roughly
25 nm), whereas the ccT23-1 construct showed particles with a range of sizes. Medium size particles of
ccT23-1 are in the range of 20-22 nm, which is close to the correct size for the designed tetrahedron. The
smallest class observed is 14 nm in size, which could correspond to smaller species like the D3 assembly
which was observed by X-ray crystallography. The largest classes reach about 29 nm in size, which could
correspond to assemblies with more subunits, e.g. octahedra with 24 subunits. Classes are ordered from
highest to lowest relative abundance (top left to bottom right).

 43

Figure S5. Purification and glutaraldehyde crosslinking of ccT23-01. A broad major absorbance peak
(11mL-17mL) occurs immediately after the void volume on SEC (top left). Bands for both dimer and trimer
subunits appear on SDS-PAGE in all of the 0.5 mL SEC elution fractions corresponding to the peak (top
right). The left-most lane of the gel contains the Precision Plus Protein Standard marker (Bio-Rad).
Molecular weights are in kDa. A low protein concentration (approx. 0.01 mg/mL) is required to prepare
negative stain EM grids of the ccT23-01 sample. At such concentrations, mainly small protein species are
observed under negative stain EM and cage-like particles are scarce (bottom left). The ccT23-01 sample
was crosslinked with 0.02% glutaraldehyde for 4 minutes at a higher protein concentration (approx. 1.1
mg/mL) and was then diluted to approx. 0.01 mg/mL. Cage-like particles are significantly more abundant
in the crosslinked sample under negative stain EM (bottom right). Negative stain micrographs were
collected on a Tecnai T12 transmission electron microscope. Scale bars (white) are 100 nm.

 44

Figure S6. Characterization of ccO34-3 and ccO23-1 designs. The ccO34-3 construct exhibits a small yet
narrow absorbance peak (10mL-12mL) immediately after the void volume on SEC (top left). Bands for both
trimer and tetramer subunits appear on SDS-PAGE of the pooled elution fractions of the SEC peak (top
middle). Although protein aggregates and partial assemblies are prominent under negative stain EM,
cage-like assemblies are readily observed (top right). The ccO23-1 construct exhibits a broad absorbance
peak (9mL-14mL) immediately after the void volume on SEC (bottom left). Bands for both dimer and
trimer subunits appear on SDS-PAGE of the pooled elution fractions of the SEC peak (bottom middle).
Cage-like assemblies as well as protein aggregates are readily observed under negative stain EM (bottom
right). Left SDS-PAGE lanes contain the Precision Plus Protein Standard marker (Bio-Rad). Molecular
weights are in kDa. Negative stain micrographs were collected on a Tecnai T12 transmission electron
microscope and scale bars (white) are 100 nm.

 45

Figure S7. Possible finite symmetries from combinations of oligomers in this study. (Left) The combination
of a C2 dimer and a C3 trimer can give rise to four different types of finite two-component symmetric
assemblies (D3, T, O and I). (Right) The combination of a C3 trimer and C4 tetramer can only give rise to
one (O).

C2C3 C4C3

D3 T

O I

O

 46

SUPPLEMENTAL TEXT

The model of the heterodimeric coiled-coil helical linker used in this study was generated from

the crystal structure of the AP-1 c-Fos-c-Jun transcription factor bound to DNA.56 The slight

bending of the helices as a result of their interaction with DNA was accounted for by replacing

the affected N-terminal and C-Terminal helical segments of c-Fos and c-Jun respectively with an

idealized model of a 10-residue alanine α-helix. The sequences of c-Fos and c-Jun became

AAAAAAAAAANRRRELTDTLQAETDQLEDEKSALQTEIAN and

KRKLERIARLEEKVKTLKAQNSELASTANMAAAAAAAAAA respectively. The 10-residue alanine

extensions in the resulting model were used to align the coiled-coil linker to the helical termini

of symmetric oligomers during the design procedure. Furthermore, we identified sequences of a

previously designed coiled-coil based on c-Fos-c-Jun with a significantly higher specificity for

heterodimerization over homodimerization.57,58 Therefore, in order to favor hetero over self-

association of identical subunits, before ordering the genes encoding our final designs, we

substituted the original c-Fos and c-Jun sequences for their engineered counterparts

AQLEKELQALEKENAQLEWELQALEKELAQ (ACID-p1) and AQLKKKLQALKKKNAQLKWKLQALKKKLAQ

(BASE-p1) respectively.

 47

REFERENCES

(1) Huang, P.-S.; Boyken, S. E.; Baker, D. The Coming of Age of de Novo Protein Design.
Nature 2016, 537 (7620), 320–327. https://doi.org/10.1038/nature19946.

(2) Yeates, T. O.; Liu, Y.; Laniado, J. The Design of Symmetric Protein Nanomaterials Comes
of Age in Theory and Practice. Current Opinion in Structural Biology 2016, 39, 134–143.
https://doi.org/10.1016/j.sbi.2016.07.003.

(3) Cannon, K. A.; Ochoa, J. M.; Yeates, T. O. High-Symmetry Protein Assemblies: Patterns
and Emerging Applications. Current Opinion in Structural Biology 2019, 55, 77–84.
https://doi.org/10.1016/j.sbi.2019.03.008.

(4) Fletcher, J. M.; Harniman, R. L.; Barnes, F. R. H.; Boyle, A. L.; Collins, A.; Mantell, J.;
Sharp, T. H.; Antognozzi, M.; Booth, P. J.; Linden, N.; Miles, M. J.; Sessions, R. B.; Verkade, P.;
Woolfson, D. N. Self-Assembling Cages from Coiled-Coil Peptide Modules. Science 2013, 340
(6132), 595–599. https://doi.org/10.1126/science.1233936.

(5) Ljubetič, A.; Lapenta, F.; Gradišar, H.; Drobnak, I.; Aupič, J.; Strmšek, Ž.; Lainšček, D.;
Hafner-Bratkovič, I.; Majerle, A.; Krivec, N.; Benčina, M.; Pisanski, T.; Veličković, T. Ć.; Round, A.;
Carazo, J. M.; Melero, R.; Jerala, R. Design of Coiled-Coil Protein-Origami Cages That Self-
Assemble in Vitro and in Vivo. Nature Biotechnology 2017, 35 (11), 1094–1101.
https://doi.org/10.1038/nbt.3994.

(6) Sasaki, E.; Böhringer, D.; Van De Waterbeemd, M.; Leibundgut, M.; Zschoche, R.; Heck,
A. J. R.; Ban, N.; Hilvert, D. Structure and Assembly of Scalable Porous Protein Cages. Nature
Communications 2017, 8, 1–10. https://doi.org/10.1038/ncomms14663.

(7) Suzuki, Y.; Cardone, G.; Restrepo, D.; Zavattieri, P. D.; Baker, T. S.; Tezcan, F. A. Self-
Assembly of Coherently Dynamic, Auxetic, Two-Dimensional Protein Crystals. Nature 2016, 533
(7603), 369–373. https://doi.org/10.1038/nature17633.

(8) Gonen, S.; DiMaio, F.; Gonen, T.; Baker, D. Design of Ordered Two-Dimensional Arrays
Mediated by Noncovalent Protein-Protein Interfaces. Science 2015, 348 (6241), 1365–1368.
https://doi.org/10.1126/science.aaa9897.

(9) Lanci, C. J.; MacDermaid, C. M.; Kang, S.; Acharya, R.; North, B.; Yang, X.; Qiu, X. J.;
DeGrado, W. F.; Saven, J. G. Computational Design of a Protein Crystal. PNAS 2012, 109 (19),
7304–7309. https://doi.org/10.1073/pnas.1112595109.

(10) Sciore, A.; Su, M.; Koldewey, P.; Eschweiler, J. D.; Diffley, K. A.; Linhares, B. M.; Ruotolo,
B. T.; Bardwell, J. C. A.; Skiniotis, G.; Marsh, E. N. G. Flexible, Symmetry-Directed Approach to
Assembling Protein Cages. PNAS 2016, 113 (31), 8681–8686.
https://doi.org/10.1073/pnas.1606013113.

 48

(11) Badieyan, S.; Sciore, A.; Eschweiler, J. D.; Koldewey, P.; Cristie-David, A. S.; Ruotolo, B.
T.; Bardwell, J. C. A.; Su, M.; Marsh, E. N. G. Symmetry-Directed Self-Assembly of a Tetrahedral
Protein Cage Mediated by de Novo-Designed Coiled Coils. ChemBioChem 2017, 18 (19), 1888–
1892. https://doi.org/10.1002/cbic.201700406.

(12) Cristie-David, A. S.; Chen, J.; Nowak, D. B.; Bondy, A. L.; Sun, K.; Park, S. I.; Banaszak Holl,
M. M.; Su, M.; Marsh, E. N. G. Coiled-Coil-Mediated Assembly of an Icosahedral Protein Cage
with Extremely High Thermal and Chemical Stability. J. Am. Chem. Soc. 2019, 141 (23), 9207–
9216. https://doi.org/10.1021/jacs.8b13604.

(13) Malay, A. D.; Miyazaki, N.; Biela, A.; Chakraborti, S.; Majsterkiewicz, K.; Stupka, I.;
Kaplan, C. S.; Kowalczyk, A.; Piette, B. M. A. G.; Hochberg, G. K. A.; Wu, D.; Wrobel, T. P.;
Fineberg, A.; Kushwah, M. S.; Kelemen, M.; Vavpetič, P.; Pelicon, P.; Kukura, P.; Benesch, J. L. P.;
Iwasaki, K.; Heddle, J. G. An Ultra-Stable Gold-Coordinated Protein Cage Displaying Reversible
Assembly. Nature 2019, 569 (7756), 438–442. https://doi.org/10.1038/s41586-019-1185-4.

(14) Lach, M.; Künzle, M.; Beck, T. Proteins as Sustainable Building Blocks for the Next
Generation of Bioinorganic Nanomaterials. Biochemistry 2019, 58 (3), 140–141.
https://doi.org/10.1021/acs.biochem.8b00966.

(15) Padilla, J. E.; Colovos, C.; Yeates, T. O. Nanohedra: Using Symmetry to Design Self
Assembling Protein Cages, Layers, Crystals, and Filaments. Proceedings of the National Academy
of Sciences of the United States of America 2001, 98 (5), 2217–2221.
https://doi.org/10.1073/pnas.041614998.

(16) Yeates, T. O. Geometric Principles for Designing Highly Symmetric Self-Assembling
Protein Nanomaterials. Annual Review of Biophysics 2017, 46 (1), 23–42.
https://doi.org/10.1146/annurev-biophys-070816-033928.

(17) King, N. P.; Sheffler, W.; Sawaya, M. R.; Vollmar, B. S.; Sumida, J. P.; Andre, I.; Gonen, T.;
Yeates, T. O.; Baker, D. Computational Design of Self-Assembling Protein Nanomaterials with
Atomic Level Accuracy. Science 2012, 336 (6085), 1171–1174.
https://doi.org/10.1126/science.1219364.

(18) Ringler, P.; Schulz, G. E. Self-Assembly of Proteins into Designed Networks. Science 2003,
302 (5642), 106–109. https://doi.org/10.1126/science.1088074.

(19) Sinclair, J. C.; Davies, K. M.; Vénien-Bryan, C.; Noble, M. E. M. Generation of Protein
Lattices by Fusing Proteins with Matching Rotational Symmetry. Nature Nanotechnology 2011,
6 (9), 558–562. https://doi.org/10.1038/nnano.2011.122.

(20) Lai, Y. T.; Cascio, D.; Yeates, T. O. Structure of a 16-Nm Cage Designed by Using Protein
Oligomers. Science 2012, 336 (6085), 1129–1129. https://doi.org/10.1126/science.1219351.

 49

(21) Kwon, N.-Y.; Kim, Y.; Lee, J.-O. The Application of Helix Fusion Methods in Structural
Biology. Curr. Opin. Struct. Biol. 2020, 60, 110–116. https://doi.org/10.1016/j.sbi.2019.12.007.

(22) Lai, Y.-T.; Jiang, L.; Chen, W.; Yeates, T. O. On the Predictability of the Orientation of
Protein Domains Joined by a Spanning Alpha-Helical Linker. Protein Eng Des Sel 2015, 28 (11),
491–500. https://doi.org/10.1093/protein/gzv035.

(23) Lai, Y.-T.; Reading, E.; Hura, G. L.; Tsai, K.-L.; Laganowsky, A.; Asturias, F. J.; Tainer, J. a.;
Robinson, C. V.; Yeates, T. O. Structure of a Designed Protein Cage That Self-Assembles into a
Highly Porous Cube. Nature Chemistry 2014, 6 (12), 1065–1071.
https://doi.org/10.1038/nchem.2107.

(24) Cannon, K. A.; Nguyen, V. N.; Morgan, C.; Yeates, T. O. Design and Characterization of an
Icosahedral Protein Cage Formed by a Double-Fusion Protein Containing Three Distinct
Symmetry Elements. ACS Synth. Biol. 2020, 9 (3), 517–524.
https://doi.org/10.1021/acssynbio.9b00392.

(25) King, N. P.; Bale, J. B.; Sheffler, W.; McNamara, D. E.; Gonen, S.; Gonen, T.; Yeates, T. O.;
Baker, D. Accurate Design of Co-Assembling Multi-Component Protein Nanomaterials. Nature
2014, 510 (7503), 103–108. https://doi.org/10.1038/nature13404.

(26) Bale, J. B.; Gonen, S.; Liu, Y.; Sheffler, W.; Ellis, D.; Thomas, C.; Cascio, D.; Yeates, T. O.;
Gonen, T.; King, N. P.; Baker, D. Accurate Design of Megadalton-Scale Two-Component
Icosahedral Protein Complexes. Science 2016, 353 (6297), 389–395.
https://doi.org/10.5061/dryad.8c65s.

(27) Hsia, Y.; Bale, J. B.; Gonen, S.; Shi, D.; Sheffler, W.; Fong, K. K.; Nattermann, U.; Xu, C.;
Huang, P.-S.; Ravichandran, R.; Yi, S.; Davis, T. N.; Gonen, T.; King, N. P.; Baker, D. Design of a
Hyperstable 60-Subunit Protein Icosahedron. Nature 2016, 535 (7610), 136–139.
https://doi.org/10.1038/nature18010.

(28) Ueda, G.; Antanasijevic, A.; Fallas, J. A.; Sheffler, W.; Copps, J.; Ellis, D.; Hutchinson, G.
B.; Moyer, A.; Yasmeen, A.; Tsybovsky, Y.; Park, Y.-J.; Bick, M. J.; Sankaran, B.; Gillespie, R. A.;
Brouwer, P. J.; Zwart, P. H.; Veesler, D.; Kanekiyo, M.; Graham, B. S.; Sanders, R. W.; Moore, J.
P.; Klasse, P. J.; Ward, A. B.; King, N. P.; Baker, D. Tailored Design of Protein Nanoparticle
Scaffolds for Multivalent Presentation of Viral Glycoprotein Antigens. eLife 2020, 9, e57659.
https://doi.org/10.7554/eLife.57659.

(29) Bale, J. B.; Park, R. U.; Liu, Y.; Gonen, S.; Gonen, T.; Cascio, D.; King, N. P.; Yeates, T. O.;
Baker, D. Structure of a Designed Tetrahedral Protein Assembly Variant Engineered to Have
Improved Soluble Expression. Protein Science 2015, 24 (10), 1695–1701.
https://doi.org/10.1002/pro.2748.

 50

(30) Boyken, S. E.; Chen, Z.; Groves, B.; Langan, R. A.; Oberdorfer, G.; Ford, A.; Gilmore, J. M.;
Xu, C.; DiMaio, F.; Pereira, J. H.; Sankaran, B.; Seelig, G.; Zwart, P. H.; Baker, D. De Novo Design
of Protein Homo-Oligomers with Modular Hydrogen-Bond Network–Mediated Specificity.
Science 2016, 352 (6286), 680–687. https://doi.org/10.1126/science.aad8865.

(31) Cannon, K. A.; Park, R. U.; Boyken, S. E.; Nattermann, U.; Yi, S.; Baker, D.; King, N. P.;
Yeates, T. O. Design and Structure of Two New Protein Cages Illustrate Successes and Ongoing
Challenges in Protein Engineering. Protein Science 2020, 29 (4), 919–929.
https://doi.org/10.1002/pro.3802.

(32) Miyamoto, T.; Hayashi, Y.; Yoshida, K.; Watanabe, H.; Uchihashi, T.; Yonezawa, K.;
Shimizu, N.; Kamikubo, H.; Hirota, S. Construction of a Quadrangular Tetramer and a Cage-Like
Hexamer from Three-Helix Bundle-Linked Fusion Proteins. ACS Synth. Biol. 2019, 8 (5), 1112–
1120. https://doi.org/10.1021/acssynbio.9b00019.

(33) McConnell, S. A.; Cannon, K. A.; Morgan, C.; McAllister, R.; Amer, B. R.; Clubb, R. T.;
Yeates, T. O. Designed Protein Cages as Scaffolds for Building Multienzyme Materials. ACS
Synth. Biol. 2020, 9 (2), 381–391. https://doi.org/10.1021/acssynbio.9b00407.

(34) Phippen, S. W.; Stevens, C. A.; Vance, T. D. R.; King, N. P.; Baker, D.; Davies, P. L.
Multivalent Display of Antifreeze Proteins by Fusion to Self-Assembling Protein Cages Enhances
Ice-Binding Activities. Biochemistry 2016, 55 (49), 6811–6820.
https://doi.org/10.1021/acs.biochem.6b00864.

(35) Marcandalli, J.; Fiala, B.; Ols, S.; Perotti, M.; de van der Schueren, W.; Snijder, J.; Hodge,
E.; Benhaim, M.; Ravichandran, R.; Carter, L.; Sheffler, W.; Brunner, L.; Lawrenz, M.; Dubois, P.;
Lanzavecchia, A.; Sallusto, F.; Lee, K. K.; Veesler, D.; Correnti, C. E.; Stewart, L. J.; Baker, D.; Loré,
K.; Perez, L.; King, N. P. Induction of Potent Neutralizing Antibody Responses by a Designed
Protein Nanoparticle Vaccine for Respiratory Syncytial Virus. Cell 2019, 176 (6), 1420-1431.e17.
https://doi.org/10.1016/j.cell.2019.01.046.

(36) Butterfield, G. L.; Lajoie, M. J.; Gustafson, H. H.; Sellers, D. L.; Nattermann, U.; Ellis, D.;
Bale, J. B.; Ke, S.; Lenz, G. H.; Yehdego, A.; Ravichandran, R.; Pun, S. H.; King, N. P.; Baker, D.
Evolution of a Designed Protein Assembly Encapsulating Its Own RNA Genome. Nature 2017,
552 (7685), 415–420. https://doi.org/10.1038/nature25157.

(37) Edwardson, T. G. W.; Mori, T.; Hilvert, D. Rational Engineering of a Designed Protein
Cage for SiRNA Delivery. Journal of the American Chemical Society 2018, 140 (33), 10439–
10442. https://doi.org/10.1021/jacs.8b06442.

(38) Liu, Y.; Gonen, S.; Gonen, T.; Yeates, T. O. Near-Atomic Cryo-EM Imaging of a Small
Protein Displayed on a Designed Scaffolding System. PNAS 2018, 115 (13), 3362–3367.
https://doi.org/10.1073/pnas.1718825115.

 51

(39) Liu, Y.; Huynh, D. T.; Yeates, T. O. A 3.8 Å Resolution Cryo-EM Structure of a Small
Protein Bound to an Imaging Scaffold. Nature Communications 2019, 10 (1), 1864.
https://doi.org/10.1038/s41467-019-09836-0.

(40) Fletcher, J. M.; Boyle, A. L.; Bruning, M.; Bartlett, G. J.; Vincent, T. L.; Zaccai, N. R.;
Armstrong, C. T.; Bromley, E. H. C.; Booth, P. J.; Brady, R. L.; Thomson, A. R.; Woolfson, D. N. A
Basis Set of de Novo Coiled-Coil Peptide Oligomers for Rational Protein Design and Synthetic
Biology. ACS Synth. Biol. 2012, 1 (6), 240–250. https://doi.org/10.1021/sb300028q.

(41) O’Shea, E. K.; Lumb, K. J.; Kim, P. S. Peptide ‘Velcro’: Design of a Heterodimeric Coiled
Coil. Current Biology 1993, 3 (10), 658–667. https://doi.org/10.1016/0960-9822(93)90063-T.

(42) Gradišar, H.; Božič, S.; Doles, T.; Vengust, D.; Hafner-Bratkovič, I.; Mertelj, A.; Webb, B.;
Šali, A.; Klavžar, S.; Jerala, R. Design of a Single-Chain Polypeptide Tetrahedron Assembled from
Coiled-Coil Segments. Nature Chemical Biology 2013, 9 (6), 362–366.
https://doi.org/10.1038/nchembio.1248.

(43) Reinke, A. W.; Grant, R. A.; Keating, A. E. A Synthetic Coiled-Coil Interactome Provides
Heterospecific Modules for Molecular Engineering. J. Am. Chem. Soc. 2010, 132 (17), 6025–
6031. https://doi.org/10.1021/ja907617a.

(44) Ogihara, N. L.; Weiss, M. S.; Eisenberg, D.; Degrado, W. F. The Crystal Structure of the
Designed Trimeric Coiled Coil Coil-VaLd: Implications for Engineering Crystals and
Supramolecular Assemblies. Protein Science 1997, 6 (1), 80–88.
https://doi.org/10.1002/pro.5560060109.

(45) Nautiyal, S.; Woolfson, D. N.; King, D. S.; Alber, T. A Designed Heterotrimeric Coiled Coil.
Biochemistry 1995, 34 (37), 11645–11651. https://doi.org/10.1021/bi00037a001.

(46) Glover, J. N. M.; Harrison, S. C. Crystal Structure of the Heterodimeric BZIP Transcription
Factor C-Fos–c-Jun Bound to DNA. Nature 1995, 373 (6511), 257–261.
https://doi.org/10.1038/373257a0.

(47) O’Shea, E. K.; Rutkowski, R.; Stafford, W. F.; Kim, P. S. Preferential Heterodimer
Formation by Isolated Leucine Zippers from Fos and Jun. Science 1989, 245 (4918), 646–648.
https://doi.org/10.1126/science.2503872.

(48) Punjani, A.; Rubinstein, J. L.; Fleet, D. J.; Brubaker, M. A. CryoSPARC: Algorithms for
Rapid Unsupervised Cryo-EM Structure Determination. Nature Methods 2017, 14 (3), 290–296.
https://doi.org/10.1038/nmeth.4169.

(49) Heinig, M.; Frishman, D. STRIDE: A Web Server for Secondary Structure Assignment from
Known Atomic Coordinates of Proteins. Nucleic Acids Res 2004, 32 (suppl_2), W500–W502.
https://doi.org/10.1093/nar/gkh429.

 52

(50) Studier, F. W. Protein Production by Auto-Induction in High-Density Shaking Cultures.
Protein Expression and Purification 2005, 41 (1), 207–234.
https://doi.org/10.1016/j.pep.2005.01.016.

(51) Kabsch, W. XDS. Acta Cryst D 2010, 66 (2), 125–132.
https://doi.org/10.1107/S0907444909047337.

(52) McCoy, A. J.; Grosse-Kunstleve, R. W.; Adams, P. D.; Winn, M. D.; Storoni, L. C.; Read, R.
J. Phaser Crystallographic Software. J Appl Cryst 2007, 40 (4), 658–674.
https://doi.org/10.1107/S0021889807021206.

(53) Emsley, P.; Cowtan, K. Coot: Model-Building Tools for Molecular Graphics. Acta Cryst D
2004, 60 (12), 2126–2132. https://doi.org/10.1107/S0907444904019158.

(54) Adams, P. D.; Grosse-Kunstleve, R. W.; Hung, L.-W.; Ioerger, T. R.; McCoy, A. J.; Moriarty,
N. W.; Read, R. J.; Sacchettini, J. C.; Sauter, N. K.; Terwilliger, T. C. PHENIX: Building New
Software for Automated Crystallographic Structure Determination. Acta Cryst D 2002, 58 (11),
1948–1954. https://doi.org/10.1107/S0907444902016657.

(55) Scheres, S. H. W. RELION: Implementation of a Bayesian Approach to Cryo-EM Structure
Determination. Journal of Structural Biology 2012, 180 (3), 519–530.
https://doi.org/10.1016/j.jsb.2012.09.006.

(56) Glover, J. N. M.; Harrison, S. C. Crystal Structure of the Heterodimeric BZIP Transcription
Factor C-Fos–c-Jun Bound to DNA. Nature 1995, 373 (6511), 257–261.
https://doi.org/10.1038/373257a0.

(57) O’Shea, E. K.; Rutkowski, R.; Stafford, W. F.; Kim, P. S. Preferential Heterodimer
Formation by Isolated Leucine Zippers from Fos and Jun. Science 1989, 245 (4918), 646–648.
https://doi.org/10.1126/science.2503872.

(58) O’Shea, E. K.; Lumb, K. J.; Kim, P. S. Peptide ‘Velcro’: Design of a Heterodimeric Coiled
Coil. Current Biology 1993, 3 (10), 658–667. https://doi.org/10.1016/0960-9822(93)90063-T.

 53

CHAPTER 3

A complete rule set for designing symmetry combination

materials from protein molecules

 54

A complete rule set for designing symmetry
combination materials from protein molecules
Joshua Laniadoa and Todd O. Yeatesa,b,c,1
aMolecular Biology Institute, University of California, Los Angeles, CA 90095; bDepartment of Energy Institute for Genomics and Proteomics, University of
California, Los Angeles, CA 90095; and cDepartment of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095

Edited by Edward H. Egelman, University of Virginia, Charlottesville, VA, and approved October 21, 2020 (received for review July 22, 2020)

Diverse efforts in protein engineering are beginning to produce
novel kinds of symmetric self-assembling architectures, from protein
cages to extended two-dimensional (2D) and three-dimensional (3D)
crystalline arrays. Partial theoretical frameworks for creating sym-
metric protein materials have been introduced, but no complete
system has been articulated. Only a minute fraction of the possible
design space has been explored experimentally, in part because that
space has not yet been described in theory. Here, in the form of a
multiplication table, we lay out a complete rule set for materials
that can be created by combining two chiral oligomeric components
(e.g., proteins) in precise configurations. A unified system is de-
scribed for parameterizing and searching the construction space
for all such symmetry-combination materials (SCMs). In total, 124
distinct types of SCMs are identified, and then proven by computa-
tional construction. Mathematical properties, such as minimal ring
or circuit size, are established for each case, enabling strategic pre-
dictions about potentially favorable design targets. The study lays
out the theoretical landscape and detailed computational prescrip-
tions for a rapidly growing area of protein-based nanotechnology,
with numerous underlying connections to mathematical networks
and chemical materials such as metal organic frameworks.

protein design | symmetry | nanotechnology | self-assembly | biomaterials

Acentral goal of bottom-up nanotechnology is to create ma-
terials or supramolecular architectures by self-assembly with

atomic precision (1). Experimental studies in the last two de-
cades have demonstrated considerable progress toward that goal
using diverse kinds of molecules as building blocks, including or-
ganic and metal complexes (2–5), nucleic acids (6–8), and peptides
(9–12). Recent developments have brought an increasing focus on
using oligomeric protein molecules as a basis for broad programs in
materials design. Several types of self-assembling materials have
been demonstrated using protein molecules as building blocks (11,
13–31), with principles of symmetry providing an important foun-
dation (32). The power of symmetry-based synthesis was recognized
by early work in supramolecular coordination chemistry (33). Re-
lated ideas emerged in the area of protein-based design in 2001 with
a strategy for combining simple component symmetries in the form
of small protein oligomers to create complex supramolecular ar-
chitectures, including self-assembling cubic cages and extended
materials with repeating symmetries (13). For proteins, Padilla et al.
(13) provided specific design rules for several types of symmetric
materials, but the possibilities articulated were limited in their
scope, primarily because at that time the database of known protein
structures was not so richly populated with diverse oligomeric
components. The current abundance of known protein building
blocks with diverse symmetries (34–38), and recent successful ap-
plications of symmetry-based design ideas, now motivate a deeper
question. What is the full scope of the geometric forms that can be
achieved by combining simpler oligomeric building blocks in pre-
cisely defined ways?
Systemization plays a key role in scientific exploration—evo-

lutionary phylogeny, star systems, subatomic particles, and the pe-
riodic table are just a few examples—with tables, and mathematical
trees or networks often providing the organizing framework. In the

area of protein structure, tertiary (39, 40) and quaternary structural
forms have been systematized in various contexts (41–43). The field
of symmetry-based materials design lends itself naturally to orga-
nization as a multiplication table, with each cell indicating the
outcome from combining two simpler component symmetries to
create a more complex architecture. In the present work, we pro-
vide a complete multiplication table that articulates design out-
comes, along with construction rules to cover the field of protein
materials created by combinations of two simpler symmetry types.
We introduce the name SCMs (symmetry combination materials),
to describe the broad space of materials that are possible. This
theoretical and computational study, which effectively completes
the foundation begun 20 y ago by Padilla et al. (13), provides a
blueprint and an enabling framework for a blossoming area of
macromolecular design.

Results
Group Principles for Combined Symmetries. When two (or more)
separate symmetry types are brought together in some geomet-
rically defined way, a higher symmetry is generated. What results
is the mathematical group generated by multiplying the sym-
metry operations of the separate symmetries together, repeat-
edly if necessary. Stated another way, the result is the smallest
mathematical group that contains the two component symme-
tries as subgroups. If the two components are two different
symmetric protein oligomers, and a geometrically specific con-
nection, covalent or noncovalent, can be introduced between
them, then a defined protein-based SCM can be created. It fol-
lows from the closure properties of a group that, if the protein
subunits of the first oligomer type are connected together in
some defined orientation (e.g., by noncovalent interfaces), and
likewise for the second oligomer type, and if a rigid connection

Significance

Building nanoscale materials in a predictable way is a major goal
in broad fields of molecular engineering. In pursuing that goal,
protein molecules are gaining interest as a source of structurally
defined, self-assembling building blocks, but methods and geo-
metric rules for how they might be combined into novel mate-
rials have not been fully laid out yet. This work brings together
ideas from structural biology, geometry, and group theory to
articulate a complete rule set that describes all the kinds of
protein-based materials that can be created by combining sep-
arate oligomeric components, thereby laying the foundation for
an emerging area of science and biotechnology.

Author contributions: J.L. and T.O.Y. designed research, performed research, analyzed
data, and wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

Published under the PNAS license.
1To whom correspondence may be addressed. Email: yeates@mbi.ucla.edu.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/
doi:10.1073/pnas.2015183117/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.2015183117 PNAS Latest Articles | 1 of 7

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

D
ow

nl
oa

de
d

at
 U

C
LA

 o
n

N
ov

em
be

r 2
5,

 2
02

0

 55

can be established between the two oligomeric components, then
the entire configuration—however large it may be, even extending
indefinitely—will be connected together in an architecture of de-
fined symmetry and structure. These principles were laid out by
Padilla et al. (13); there and in subsequent work, diverse strategies
for bringing protein oligomers together in defined ways have
resulted in several types of novel protein materials (11, 14, 15, 17–
21). Three geometric examples are shown in Fig. 1, one resulting
in a cubic cage (a finite assembly), another in an extended 2D
layer and the other in a three-dimensional (3D) crystal.
Combining simpler symmetries to create more highly sym-

metric products is an idea rooted in mathematics. There are
many cases, however, where this underlying mathematical idea
leads to hypothetical assemblies that are physically impossible, or
nearly impossible, for components with compact/globular shapes,
owing to unavoidable steric collisions. Such cases need to be
identified to avoid including recipes for designing many theoretical
constructions that could not be realized in the context of materials
built from typical protein molecules. Two illustrative cases where
mathematically allowed combinations of symmetries lead to
physically impossible/improbable assemblies are shown in SI Ap-
pendix, Fig. S1. In the simplest example, a twofold axis of sym-
metry is combined with a threefold axis of symmetry that is
parallel and coincident (overlapping) in space. The mathematical
result is a sixfold axis of symmetry. In other words, C2 symmetry
combined or multiplied by C3 symmetry (with coincident axes)
gives C6 symmetry. However, attempting to connect a dimeric
protein to a trimeric protein with their symmetry axes overlapping
leads to collision rather than a hexameric (a6b6) structure; three
copies of the dimer would fall on top of each other, as would two
copies of the trimer. Problematic cases such as this, of which there
are a great variety, can only be rescued by elaborate entwinement
of elongated (noncompact) shapes (SI Appendix, Fig. S1). These
complex situations had to be analyzed and systematically removed
so that the design space described would ultimately consist only of
plausible materials. A more complete description of the problem
of recognizing entwinement cases is described in Methods and SI
Appendix, Text.

We note certain caveats to the completeness of the system of
symmetry combinations to be articulated here. First, we require
the symmetries of the two oligomers to be of the ordinary point
symmetry types (i.e., with subunits related to each other by pure
rotational operations). Such cases dominate among natural
protein oligomers. Therefore, for our purposes, the possibility of
an individual component with a built-in helical symmetry is ig-
nored. The second exclusion relates to the difference between
assemblies built from one type of component vs. two different
components. Symmetry principles apply as well to building ma-
terials from a single oligomeric component (14), by considering
that creating a new mode of self-association between different
copies of a single oligomer type effectively introduces a new
symmetry operation. Such designs could involve built-in screw axis
operations. We also note that a much greater design set is possible
by considering combinations of more than two symmetric com-
ponents; one case of a three-component design has been pub-
lished recently (30). Finally, further discussions here focus on high
order point symmetries and extended materials in two and three
dimensions (i.e., molecular layers and crystals), but not on fila-
mentous assemblies that extend in only one direction. Extensions
of the symmetry ideas to those systems is discussed in SI Appendix,
Text. Accordingly, we direct our attention to the more complex
design problems in two and three dimensions.

Articulating All Symmetric Outcomes. The set of all possible sym-
metry combinations is expansive, but the analysis can be sim-
plified by first examining underlying point group symmetries, i.e.,
temporarily setting aside translational repetition that might be
present in the resulting (combined) symmetry. The number of
different point groups possible for biological molecules (i.e.,
lacking mirror operations) is small enough that the outcomes of
all pairwise combinations can be enumerated with relative ease.
A systematic approach is possible with the following rule: If
symmetry groups A and B (considered in some defined orien-
tation) are both subgroups of symmetry C, and if no lower sub-
group of C also contains A and B (orientated as before) as
subgroups, then symmetries A and B will combine to generate
symmetry C. As an example, octahedral symmetry O contains C2
and C3 symmetries at an intersecting angle of 35.3°, and no lower
symmetry group does so. Therefore, C2 and C3 intersecting at
35.3° will generate point group O. Further analysis and a com-
plete table are provided inMethods and in SI Appendix, Table S1.
In laying out all possible point group symmetry combinations

(above), the symmetry axes are taken to be intersecting (at the
center point of the finite structure). However, many more out-
comes are possible when the component symmetries are combined
with their axes or origins offset. Such cases cannot generate finite
cage structures, and instead give rise to extended materials based
on infinite symmetry groups, i.e., layer groups and space groups.
Additional levels of complexity are faced in systematically deter-
mining all of the allowable ways in which the 17 possible layer
groups or 65 possible space groups for proteins might be realized.
First, as described above, knowing the underlying point symmetry
that results from any given combination of component symmetries
limits the possibilities that need to be examined. Second, the
dimensionality (i.e., a 2D layer or 3D crystal) of the resulting
symmetry can be determined by considering the nature of any
nonintersecting symmetry axes and whether the resulting sym-
metry is isotropic (SI Appendix, Text and Fig. S7). Finally, once
the dimensionality is established for a candidate symmetry com-
bination, often the correct result must be selected from multiple
space groups having the same underlying point group symmetry.
Common cases are those of cubic space groups that differ from
each other only by screw axis designations or by lattice centering.
The correct outcomes in those cases can be discerned by exam-
ining the standard crystallographic space group tables, noting that

A

B

Fig. 1. Diagrams of symmetric oligomeric building blocks and example two-
component SCMs. (A) Illustration of point group symmetries (top row) C2,
C3, C4, C5, C6, D2, (bottom row) D3, D4, D6, T, and O with their symmetry
axes. (B) A finite assembly with octahedral symmetry constructed by com-
bining a C3 trimer (blue) and a C4 tetramer (orange)—O:{C3}{C4} (Left). An
extended p6 2D layer formed by combining a C3 trimer (blue) and a C6
hexamer (orange)—p6:{C3}{C6} (Middle). A P422 3D crystalline array assem-
bled by combining a D2 tetramer (blue) and a D4 octamer (orange)—
P422:{D2}{D4} (Right).

2 of 7 | www.pnas.org/cgi/doi/10.1073/pnas.2015183117 Laniado and Yeates

D
ow

nl
oa

de
d

at
 U

C
LA

 o
n

N
ov

em
be

r 2
5,

 2
02

0

 56

Table 1. A complete multiplication table for SCM materials created by two (chiral) oligomeric components

Finite assemblies are highlighted in green, 2D layer groups in pink, and 3D space groups in blue. For each SCM, the resulting space group (bold),
coordination numbers for the two components (top), degrees of freedom for design (bottom left), and ring size (bottom right) are provided. Coordination
numbers affected by symmetry about a shared axis between oligomers are italicized. For entries with chiral space groups, the enantiomeric space group is
allowed but not listed here to be concise. Detailed parameters for construction are provided in SI Appendix, Table S3 and Dataset S1.

Laniado and Yeates PNAS Latest Articles | 3 of 7

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

D
ow

nl
oa

de
d

at
 U

C
LA

 o
n

N
ov

em
be

r 2
5,

 2
02

0

 57

the correct symmetry must be one that has so-called “Wyckoff
positions” matching the symmetries of the separate components.
A complete set of rules for combining two separate point group

symmetries was prepared following the systematic analysis de-
scribed above. The results can be cast as a multiplication table
between two separate point group symmetries that would be
contributed by two oligomeric protein components being brought
together as building blocks (Table 1). The table of all 124 possi-
bilities includes several design cases leading to finite cage-like
assemblies; we have enumerated these before. A total of 35
different design cases lead to 2D SCMs. Of these, 6 are polar
(meaning the two sides of the layer are distinct), while the other 29
are bipolar (with no distinction possible between top and bottom
faces). Of the 35 layer possibilities, 33 are isotropic in the plane,
implying equivalent physical properties in multiple distinct direc-
tions. The table describes 76 SCMs leading to 3D crystals. Six of
these fall in chiral space groups. In total, 58 are cubic, meaning
they are isotropic in all three spatial directions. There are six cases
where a pair of distinct SCMs with the same resulting symmetry
can be created from the same types of component symmetries in
different arrangements (requiring a and b designations). Some of
the design rules are straightforward, but many are nonobvious.
Setting aside cases that could only be built from complex entan-
gled molecular shapes (which we have eliminated), the list is, as
far as we can establish from systematic study, complete and ex-
haustive. We undertook computational tests for mathematical
correctness and physical constructability and proved the validity of
the full set of SCMs (SI Appendix, Figs. S2–S4). The specific rules
for their construction have not been described until now.
The large number of possible SCMs, together with the diverse

molecular engineering methods being employed, motivate a general
system for notation. We expand on the notation system used by
King et al. (17), following principles used for describing the con-
nectivity of chemical structures by SMILE strings. Here, individual
oligomeric components (typically bearing their own internal sym-
metry) take the place of “atoms,” with curly brackets used to en-
close point symmetry designations. Different letter symbols describe
the kinds of connections established between the components,

effectively playing the role of bond types in SMILE strings: e.g., “H”
for a continuous helical linker, “I” for novel noncovalent interface,
“S” for disulfide bond, “F” for flexible fusion, “M” for metal site,
with other possibilities allowed. The resulting symmetry is denoted
first. As examples using this system: the original tetrahedrally (T)
symmetric designed cage by Padilla et al. (13) would be T:{C3}H
{C2}; the first two-component octahedron obtained by King et al.,
using interface design, would be O:{C3}I{C2}; a flexibly connected
octahedral cage obtained by Sciore et al. (25) would be O:{C4}F
{C3}, and so on. This scheme is precise but flexible enough to
describe diverse types of SCMs.

Procedural Construction for Rigid Body Sampling. The rules for de-
signing various constructions naturally take the form of restrictions—
constraints or equations that must be satisfied, e.g., by the angles
between symmetry axes, the distances between them when they do
not intersect, and so on. However, in order to enable a general
system for construction, the problem must be cast in reverse, es-
sentially as a problem in characterizing the dual space. King et al.
provided a description of that approach for the relatively
straightforward case of constructing point groups (for creating
protein cages) (14, 17) using the framework of symmetry defini-
tion files in Rosetta (14, 15, 17–19, 44). A unified system is called
for to cover the complete set of 2D and 3D SCMs defined here.
Depending on the SCM, one or more of the oligomeric compo-
nents may carry internal degrees of rigid body rotation and
translation (e.g., of a cyclic oligomer about its symmetry axis) (Fig.
2) (SI Appendix, Fig. S6). Further external degrees of freedom
apply to relative shifts between the two components. The values of
these shifts ultimately relate to unit cell parameters in the
resulting materials, sometimes in nonobvious ways. Note that be-
tween application of internal and external degrees of freedom,
certain fixed rotational settings are applied in each case. For exam-
ple, the oligomeric components are understood to begin in ca-
nonical orientations with symmetry axes along principle direction,
whereas a specific rotation matrix might be needed to rotate a
threefold axis of symmetry to fall along the body diagonal of a
resulting cubically symmetric material. For every type of symmetry

Fig. 2. Procedural construction for rigid body sampling, diagrammed for three example SCMs. The examples illustrate how the rules can be implemented in a
stepwise procedure that enables the allowed construction space to be sampled. In each case, the rigid body sampling degrees of freedom are highlighted in
red. The examples are all cases where the number of degrees of freedom is 3, although they present in different forms. The orientation setting matrices are
given in SI Appendix, Table S1. SI Appendix, Table S3 provides the full listing of degrees of freedom for sampling every construction type (available as Dataset
S1). Further construction details are provided for the middle example (F432:{C4}{D2}) in SI Appendix, Fig. S6. Construction protocols for all 124 SCMs are
described in pseudocode in SI Appendix, Text (also available as Dataset S2).

4 of 7 | www.pnas.org/cgi/doi/10.1073/pnas.2015183117 Laniado and Yeates

D
ow

nl
oa

de
d

at
 U

C
LA

 o
n

N
ov

em
be

r 2
5,

 2
02

0

 58

combination, we have articulated the available rigid body degrees
of freedom and a set of parameters (SI Appendix, Table S3) de-
scribing a stepwise procedure (SI Appendix, Fig. S6) for compu-
tationally sampling the available space of configurations. Our
encoding therefore provides the necessary framework for sampling
fully the symmetry combination design space, enabling various pro-
gram applications. To emphasize how readily the system is re-
duced to practice, we produce pseudocode (which embodies all of
the required symmetry-based information) for performing design
searches for all 124 SCMs (SI Appendix, Text and Dataset S2).

Geometric Characteristics of Symmetric Design Types. Materials cre-
ated by different symmetry combinations exhibit distinct geometric
and structural properties (described in Table 1). Some of these
properties describe important material characteristics. Material
dimensionality (e.g., cage, layer, or crystal), isotropy (uniformity in
multiple directions), and layer polarity were noted earlier. The
total degrees of freedom available for design are also an important
determinant. This value, ranging from 1 to 5 for different cases,
relates to designability. SCMs with multiple degrees of freedom
for construction offer deeper search spaces for bringing the sep-
arate components together, giving much greater chances for
finding low energy configurations. Materials created by connecting
multiple components have network-like properties that can be
understood via mathematical graphs: i.e., nodes and edges. The
connectivity or “coordination number” in these nets, is dictated by
the order of the oligomeric symmetry (divided by the rotational
symmetry at an edge in some cases). Another key property of
networks is the size of the rings, i.e., the minimum number of
edges in a closed circuit (Fig. 3). Previous experimental studies on
designed protein assemblies have suggested that designs where the
ring size is large may be practically difficult to achieve, since ac-
cidental collapse of partially formed rings might occur whenever
there is sufficient flexibility during the assembly process (21). We
have calculated the ring size mathematically for all SCMs (Meth-
ods). The possible values vary by case, remarkably, from 1 to 10
(Table 1). The special cases of ring size equal to 1 occur when two
adjacent oligomers A and B are connected (e.g., by fusion or in-
terface design) through more than one of their subunits (22). Con-
versely, several SCMs have surprisingly large ring sizes, and could
represent particularly challenging design targets (SI Appendix, Fig. S5).

Discussion
The systematization of symmetry combinations provides a blue-
print for a vast space for designed molecular materials. This
blueprint—along with thousands of known protein-based build-
ing blocks and emerging methods to connect them together in
precisely defined ways—provides a uniquely predictable system for
building nanomaterials based on symmetry principles. Our unified
system for describing and parameterizing the space of molecular

constructions enables immediate applications within diverse
computational platforms.
The completeness of the system furthermore provides a rational

basis for experimental prioritization. Based on their unique
mathematical and geometric characteristics, various SCMs offer
distinct advantages and disadvantages. One can prospect for
SCMs that might hold multiple characteristics generally expected
to be favorable. The number of degrees of freedom for design
(high being favorable) and the ring size (low anticipated to be
favorable) are two examples. Being able to predict favorable as-
sembly types for 3D crystals could be particularly important.
Symmetric protein or polypeptide oligomers have been designed
to crystallize in a few cases (11, 23), but almost all of the space for
fully predictive design of 3D crystals remains unexplored. Based
on our analysis, among the possible crystal SCMs, a few interesting
cases stand out as being potentially privileged choices. A total of
19 3D SCMs have at least three degrees of freedom for con-
struction and a ring size of no greater than 2. Among these, one
might focus on cases where the coordination numbers are greater
than 2 to favor more connected networks, but where the compo-
nents are lower than cubic symmetry (T and O) since those are not
so common among natural structures. Those criteria single out five
SCMs, all giving cubic type crystals, which could be favorable targets
for novel crystal designs. Under our proposed nomenclature, these
would be I4(1)32:{C3}x{D2}; I432:{C4}x{D2}; P432:{C4}x{D4};
P432:{C3}x{D4}; and I432:{C4}x{D3}. The latter two offer the
further advantage that the pair of component symmetries do not
allow any other alternative symmetric outcomes, as Table 1 shows;
those two SCMs are diagrammed in Fig. 4. Other criteria, weighed
differently, could of course suggest other favorable SCM targets.
The work here offers important connections to mathematics,

materials chemistry, and efforts to design ordered nanomaterials
from other kinds of molecules (4, 45, 46). Connections to
chemistry can be drawn by seeing the precisely defined orienta-
tions conferred by protein-protein interactions as an extension of
“directional bonding” ideas from early work in supramolecu-
lar coordination chemistry (47). In terms of unifying mathe-
matical ideas, foundations for describing regular nets in three
dimensions were laid out in a classic text by Wells in 1977 (48).
Delgado-Friedrichs, O’Keeffe, Yaghi, and other workers (4, 5,
49–57) began expanding on those ideas nearly 20 y ago to de-
scribe the rich diversity of symmetric materials formed by metal
organic frameworks (MOFs). Some aspects of MOF nets translate
well to our protein-based SCMs, whereas other aspects lead to
points of departure (as described in SI Appendix, Text). Our full
articulation of two-component SCMs should advance the subject
of protein-based materials design in the same way that systema-
tization of rules and components has advanced the field of MOFs
(58). Finally, the generality of the building scheme laid out here

Fig. 3. Illustration of the concept of ring size for three example SCMs. The ring size is the number of oligomers of each type in a closed circuit. I:{C2}{C5}, a
finite assembly with icosahedral symmetry constructed by combining a C2 dimer (blue) and a C5 pentamer (orange), has a ring size of 3 (Left). p4:{C2}{C4}, a 2D
layer with p4 symmetry formed by combining a C2 dimer (blue) and a C4 tetramer (orange), has a ring size of 4 (Middle). P23:{C2}{T}, a 3D crystalline array
with P23 symmetry assembled by combining a C2 dimer (blue) and a T dodecamer (orange), has a ring size of 2 (Right). For each case, a single ring is illustrated
with participating oligomers in two shades of red.

Laniado and Yeates PNAS Latest Articles | 5 of 7

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

D
ow

nl
oa

de
d

at
 U

C
LA

 o
n

N
ov

em
be

r 2
5,

 2
02

0

 59

could transcend the molecular scale, with diverse applications to
engineering novel materials across much larger length scales (1).

Methods
Enumeration of Point Group Symmetry Combinations. The symmetry combi-
nation rule is that if symmetry groups A and B (considered in some defined
orientation) are both subgroups of symmetry C, and if no lower subgroup of C
also contains A and B (orientated as before) as subgroups, then symmetries A
and B will combine to generate symmetry C. The text explains the example of
combining C2 with C3 at an angle of 35.3° to generate octahedral symmetry,
O. There is no symmetry lower than O that contains C2 and C3 at an angle of
35.3°. A further example is helpful, now considering what group is gener-
ated by C2 and C3 at an intersecting angle of 54.7°. Symmetry O contains
those elements intersecting at 54.7° (by way of the C2 axis contained as a
subgroup of the C4 axis in O), yet symmetry O is not generated. Instead,
symmetry T (tetrahedral) is generated, as it also contains C2 and C3 axes
intersecting at 54.7°, and it is lower symmetry than (i.e., a subgroup of) O. A
complete analysis, including orientation specifications, is provided in SI Ap-
pendix, Table S1. Dihedral symmetries Dn with n = 5 or n > 6, which could
contribute to filament or rod structures but not to cubic point symmetries or
extended materials in two and three dimensions, are noted in SI Appendix,
Text. Quasiperiodic packings, e.g., Penrose tilings, are not considered.

Determination of Dimensionality (2D Layer or 3D Crystal). If there is no offset
between the two components (i.e., their symmetry axes all intersect at a
single point), then the result will be a finite point group symmetry. An ex-
ample case was diagrammed in Fig. 1 comprising a protein cage or cluster
with cubic symmetry. If any symmetry axes do not intersect, then an ex-
tended material must result. If this is the case, and the underlying point
group created by the combination of component symmetries is cubic (T or
O), then the result will be a 3D crystal; this follows from the isotropy of cubic
symmetries. If, however, the resulting underlying point group symmetry is
only cyclic or dihedral, then a 3D or 2D material will arise, depending on more
complex rules, e.g., depending on whether or not the combined symmetries
present any twofold axes of symmetry (perpendicular to the unique polar axis)
that are nonintersecting. For completeness, a decision flowchart describing
how the dimensionality of the resulting material depends on the arrangement
of component symmetries is provided in SI Appendix, Fig. S7.

Analysis of Practically Implausible Symmetry Combinations. Several problem-
atic categories were identified where mathematically legal symmetry group
combinations are forbidden for compact shapes. The first is described in the
text; it occurs when the combination of symmetries leads to a product group
wherein the Wykoff symmetry where one (or both) of the component
oligomers sits is higher than the symmetry of the oligomer itself. In this category,
the example case of C6:{C2}{C3} is illustrated in SI Appendix, Fig. S1A. A second
problematic category where entanglement is unavoidable arises when the two
different components fall onWykoff positions that are related to each other by
symmetry (SI Appendix, Fig. S1B). A third category arises when oligomer 1
cannot reach the necessary instance of oligomer 2 without colliding with other
unintended molecular components. These situations, which had to be system-
atically eliminated, are described in more detail in SI Appendix, Text.

Constructability Calculations. Motivated by the complexity of the process
required to lay out a complete set of design rules, we undertook compu-
tational tests for mathematical correctness and physical constructability. For
mathematical correctness, for every SCM entry in the rules table, we con-
structed the two sets of matrix and translation operations corresponding to
the component symmetries, suitably oriented and translated according to the
specified rules, and confirmed bymultiplication and expansion that symmetry
elements of the expected type were produced. For tests of constructability,
we assessed whether each combination could be plausibly realized by
packings of compact molecular components. Model oligomers based on
simple spherical subunits were used as building blocks. In each construction
case, the parameters from the rules table were applied as a search (i.e., in a
nested loop over free parameters). See the section on pseudocode in SI
Appendix, Text, for how such a search is implemented. Noncolliding con-
figurations where the two oligomeric components were in contact were
identified. We found that a few of our prospective SCMs were more difficult
to construct than others. Among a list of 125 entries that had been collated
manually according to the symmetry rules in the text and above, only one
(I432:{C4}{D2} noted above) was ultimately ruled unconstructible owing to
unavoidable collisions. In one case, F432:{C3}{C4}, packing without collisions
using spherical subunits was problematic, but model oligomers based on
elongated subunits (i.e., a subunit composed of two spheres instead of one)
could be packed successfully; this case was retained. Models illustrating
packing of compact shapes for all 124 SCMs were rendered in PyMol for
3D visualization (available at https://people.mbi.ucla.edu/yeates/SCM_files/).
These calculations validated all 124 SCMs (SI Appendix, Figs. S2–S4) along

Fig. 4. Potentially privileged SCMs for 3D crystal designs. A P432 crystal constructed by combining a C3 trimer (blue) and a D4 octamer (orange) (Top). A
crystal with space group I432 constructed by combining a C4 tetramer (blue) and a D3 hexamer (orange) (Bottom). The SCMs illustrated here have three
degrees of freedom available for construction and a ring size of 2. Furthermore, in both cases, the combination of the two symmetry types can only give
rise to a single type of 3D space group. The SCMs are illustrated as networks on the Left. A plausible protein packing is modeled for each case (Middle). A
single redesigned contact between the hypothetically docked oligomers is necessary and sufficient to hold the respective modeled architectures together
(Right). The protein constructions are shown to convey design plausibility. Additional candidates are possible with different choices for the component
oligomers; multiple plausible docking modes are sometimes possible with the same oligomers in different orientations. The examples shown are
therefore only representatives of a multitude of plausible candidates and were selected based on criteria suitable for interface design (SI Appendix, Text).
Other criteria are possible for alternate interfacial modes and connection types (Protein Data Bank ID codes: Top, 2Q0T, blue, and 4B4K, orange; Bottom,
1CUK, blue, and a D3 hexamer, 2V78, orange).

6 of 7 | www.pnas.org/cgi/doi/10.1073/pnas.2015183117 Laniado and Yeates

D
ow

nl
oa

de
d

at
 U

C
LA

 o
n

N
ov

em
be

r 2
5,

 2
02

0

 60

with the detailed parameterizations provided in the SCM table (Table 1 and
SI Appendix, Table S3 and Dataset S1).

Mathematical Evaluation of Ring Size. The value we assign for ring size de-
scribes the number of each type of oligomer traversed in the smallest ring: the
ring size would be 3 for a cycle described by –Ai–Bx–Aj–By–Ak–Bz–, where A
and B are the two oligomer types and the subscripts indicate different copies
of each oligomer. The ring size, r, is evaluated mathematically as follows:

r is the minimum value of n for which

!
Ai1Bj1

"!
Ai2Bj2

"
. . .

!
AinBjn

"
= Identity,

for some choice of operations Ai1,,...,Ain and Bj1,...,Bjn (none of them equal to

the identity operation) taken from the two symmetry groups A and B
(suitably oriented and positioned). We evaluated the ring size for every SCM
in Table 1 computationally by exhaustive matrix multiplication.

Data Availability. All study data are included in the article and SI Appendix.

ACKNOWLEDGMENTS. This work was supported by NSF Grant CHE-1629214.
We thank Kyle Meador, Kevin Cannon, members of the T.O.Y. laboratory,
Duilio Cascio, Michael Sawaya, and Alex Lisker for discussions and computing
support. We thank Neil King, Frank DiMaio, Will Sheffler, Jacob Bale, and
David Baker for discussions during early stages of this work. We also thank
Omar Yaghi, Akif Tezcan, and Sarah Teichmann for helpful comments on the
manuscript.

1. G. M. Whitesides, B. Grzybowski, Self-assembly at all scales. Science 295, 2418–2421 (2002).
2. M. Fujita, Metal-directed self-assembly of two- and three-dimensional synthetic re-

ceptors. Chem. Soc. Rev. 27, 417 (1998).
3. D. Fujita et al., Self-assembly of tetravalent Goldberg polyhedra from 144 small

components. Nature 540, 563–566 (2016).
4. M. O’Keeffe, M. A. Peskov, S. J. Ramsden, O. M. Yaghi, The reticular chemistry

structure resource (RCSR) database of, and symbols for, crystal nets. Acc. Chem. Res.
41, 1782–1789 (2008).

5. H. Li, M. Eddaoudi, M. O’Keeffe, O. M. Yaghi, Design and synthesis of an exceptionally
stable and highly porous metal-organic framework. Nature 402, 276–279 (1999).

6. J. Zheng et al., From molecular to macroscopic via the rational design of a self-
assembled 3D DNA crystal. Nature 461, 74–77 (2009).

7. E. Winfree, F. Liu, L. A. Wenzler, N. C. Seeman, Design and self-assembly of two-
dimensional DNA crystals. Nature 394, 539–544 (1998).

8. M. R. Jones, N. C. Seeman, C. A. Mirkin, Nanomaterials. Programmable materials and
the nature of the DNA bond. Science 347, 1260901 (2015).

9. J. L. Beesley, D. N. Woolfson, The de novo design of α-helical peptides for supramo-
lecular self-assembly. Curr. Opin. Biotechnol. 58 , 175–182 (2019).

10. L. Regan et al., Protein design: Past, present, and future. Biopolymers 104, 334–350
(2015).

11. C. J. Lanci et al., Computational design of a protein crystal. Proc. Natl. Acad. Sci. U.S.A.
109, 7304–7309 (2012).

12. G. Grigoryan et al., Computational design of virus-like protein assemblies on carbon
nanotube surfaces. Science 332, 1071–1076 (2011).

13. J. E. Padilla, C. Colovos, T. O. Yeates, Nanohedra: Using symmetry to design self as-
sembling protein cages, layers, crystals, and filaments. Proc. Natl. Acad. Sci. U.S.A. 98 ,
2217–2221 (2001).

14. N. P. King et al., Computational design of self-assembling protein nanomaterials with
atomic level accuracy. Science 336, 1171–1174 (2012).

15. J. B. Bale et al., Accurate design of megadalton-scale two-component icosahedral
protein complexes. Science 353, 389–394 (2016).

16. A. D. Malay et al., An ultra-stable gold-coordinated protein cage displaying reversible
assembly. Nature 569, 438–442 (2019).

17. N. P. King et al., Accurate design of co-assembling multi-component protein nano-
materials. Nature 510, 103–108 (2014).

18. Y. Hsia et al., Corrigendum: Design of a hyperstable 60-subunit protein icosahedron.
Nature 540, 150 (2016).

19. S. Gonen, F. DiMaio, T. Gonen, D. Baker, Design of ordered two-dimensional arrays
mediated by noncovalent protein-protein interfaces. Science 348 , 1365–1368 (2015).

20. Y.-T. Lai, D. Cascio, T. O. Yeates, Structure of a 16-nm cage designed by using protein
oligomers. Science 336, 1129 (2012).

21. Y.-T. Lai et al., Structure of a designed protein cage that self-assembles into a highly
porous cube. Nat. Chem. 6, 1065–1071 (2014).

22. J. C. Sinclair, K. M. Davies, C. Vénien-Bryan, M. E. M. Noble, Generation of protein
lattices by fusing proteins with matching rotational symmetry. Nat. Nanotechnol. 6,
558–562 (2011).

23. P. A. Sontz, J. B. Bailey, S. Ahn, F. A. Tezcan, A metal organic framework with
spherical protein nodes: Rational chemical design of 3D protein crystals. J. Am. Chem.
Soc. 137, 11598–11601 (2015).

24. J. M. Fletcher et al., Self-assembling cages from coiled-coil peptide modules. Science
340, 595–599 (2013).

25. A. Sciore et al., Flexible, symmetry-directed approach to assembling protein cages.
Proc. Natl. Acad. Sci. U.S.A. 113, 8681–8686 (2016).

26. P. Ringler, G. E. Schulz, Self-assembly of proteins into designed networks. Science 302,
106–109 (2003).

27. Y. Suzuki et al., Self-assembly of coherently dynamic, auxetic, two-dimensional pro-
tein crystals. Nature 533, 369–373 (2016).

28. J. F. Matthaei et al., Designing two-dimensional protein arrays through fusion of
multimers and interface mutations. Nano Lett. 15, 5235–5239 (2015).

29. E. Golub et al., Constructing protein polyhedra via orthogonal chemical interactions.
Nature 578 , 172–176 (2020).

30. K. A. Cannon, V. N. Nguyen, C. Morgan, T. O. Yeates, Design and characterization of
an icosahedral protein cage formed by a double-fusion protein containing three
distinct symmetry elements. ACS Synth. Biol. 9, 517–524 (2020).

31. Y. Azuma, T. G. W. Edwardson, D. Hilvert, Tailoring lumazine synthase assemblies for
bionanotechnology. Chem. Soc. Rev. 47, 3543–3557 (2018).

32. T. O. Yeates, Geometric principles for designing highly symmetric self-assembling
protein nanomaterials. Annu. Rev. Biophys. 46, 23–42 (2017).

33. D. L. Caulder, K. N. Raymond, The rational design of high symmetry coordination
clusters. J. Chem. Soc. Dalton Trans. 1999, 1185–1200 (1999).

34. E. Krissinel, K. Henrick, Inference of macromolecular assemblies from crystalline state.
J. Mol. Biol. 372, 774–797 (2007).

35. K. A. Cannon, J. M. Ochoa, T. O. Yeates, High-symmetry protein assemblies: Patterns
and emerging applications. Curr. Opin. Struct. Biol. 55, 77–84 (2019).

36. S. Dey, D. W. Ritchie, E. D. Levy, PDB-wide identification of biological assemblies from
conserved quaternary structure geometry. Nat. Methods 15, 67–72 (2018).

37. E. D. Levy, E. Boeri Erba, C. V. Robinson, S. A. Teichmann, Assembly reflects evolution
of protein complexes. Nature 453, 1262–1265 (2008).

38. S. Bliven, A. Lafita, A. Parker, G. Capitani, J. M. Duarte, Automated evaluation of
quaternary structures from protein crystals. PLoS Comput. Biol. 14, e1006104 (2018).

39. A. G. Murzin, S. E. Brenner, T. Hubbard, C. Chothia, SCOP: A structural classification of
proteins database for the investigation of sequences and structures. J. Mol. Biol. 247,
536–540 (1995).

40. C. A. Orengo et al., CATH–A hierarchic classification of protein domain structures.
Structure 5, 1093–1108 (1997).

41. S. E. Ahnert, J. A. Marsh, H. Hernández, C. V. Robinson, S. A. Teichmann, Principles of
assembly reveal a periodic table of protein complexes. Science 350, aaa2245 (2015).

42. D. L. Caspar, A. Klug, Physical principles in the construction of regular viruses. Cold
Spring Harb. Symp. Quant. Biol. 27, 1–24 (1962).

43. E. D. Levy, J. B. Pereira-Leal, C. Chothia, S. A. Teichmann, 3D complex: A structural
classification of protein complexes. PLoS Comput. Biol. 2, e155 (2006).

44. F. DiMaio, A. Leaver-Fay, P. Bradley, D. Baker, I. André, Modeling symmetric macro-
molecular structures in Rosetta3. PLoS One 6, e20450 (2011).

45. C. R. Simmons et al., Construction and structure determination of a three-dimensional
DNA crystal. J. Am. Chem. Soc. 138 , 10047–10054 (2016).

46. N. C. Seeman, Nucleic acid junctions and lattices. J. Theor. Biol. 99, 237–247 (1982).
47. B. J. Holliday, C. A. Mirkin, Strategies for the construction of supramolecular com-

pounds through coordination chemistry. Angew. Chem. Int. Ed. Engl. 40, 2022–2043
(2001).

48. A. F. Wells, Three-Dimensional Nets and Polyhedra (Wiley, 1977).
49. O. M. Yaghi et al., Reticular synthesis and the design of new materials. Nature 423,

705–714 (2003).
50. O. M. Yaghi, G. Li, H. Li, Selective binding and removal of guests in a microporous

metal–organic framework. Nature 378 , 703–706 (1995).
51. C. Bonneau, O. Delgado-Friedrichs, M. O’Keeffe, O. M. Yaghi, Three-periodic nets and

tilings: Minimal nets. Acta Crystallogr. A 60, 517–520 (2004).
52. O. Delgado Friedrichs, M. O’Keeffe, O. M. Yaghi, Three-periodic nets and tilings:

Regular and quasiregular nets. Acta Crystallogr. A 59, 22–27 (2003).
53. O. Delgado Friedrichs, M. O’Keeffe, O. M. Yaghi, Three-periodic nets and tilings:

Semiregular nets. Acta Crystallogr. A 59, 515–525 (2003).
54. O. Delgado-Friedrichs, M. O’Keeffe, O. M. Yaghi, Taxonomy of periodic nets and the

design of materials. Phys. Chem. Chem. Phys. 9, 1035–1043 (2007).
55. O. Delgado-Friedrichs, M. O’Keeffe, O. M. Yaghi, Three-periodic nets and tilings:

Edge-transitive binodal structures. Acta Crystallogr. A 62, 350–355 (2006).
56. N. W. Ockwig, O. Delgado-Friedrichs, M. O’Keeffe, O. M. Yaghi, Reticular chemistry:

Occurrence and taxonomy of nets and grammar for the design of frameworks. Acc.
Chem. Res. 38 , 176–182 (2005).

57. O. Delgado-Friedrichs, M. O’Keeffe, Identification of and symmetry computation for
crystal nets. Acta Crystallogr. A 59, 351–360 (2003).

58. M. J. Kalmutzki, N. Hanikel, O. M. Yaghi, Secondary building units as the turning
point in the development of the reticular chemistry of MOFs. Sci. Adv. 4, eaat9180
(2018).

Laniado and Yeates PNAS Latest Articles | 7 of 7

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

D
ow

nl
oa

de
d

at
 U

C
LA

 o
n

N
ov

em
be

r 2
5,

 2
02

0

 61

1

Supplementary Information for:

A Complete Rule Set for Designing Symmetry Combination Materials from Protein
Molecules

Joshua Laniado and Todd O. Yeates

Contact Information: Todd Yeates – yeates@mbi.ucla.edu

This PDF file includes:

Supplementary Text

Supplementary Tables S1 – S3

Supplementary Figures S1 – S7

SI References

Other supplementary materials for this manuscript include the following:

Datasets S1 to S2

 62

2

Bipolar Filament and Rod Group Symmetries

The ideas of symmetry combination apply to filaments and rods (1–5). The simplest type of
bipolar filament was described and demonstrated experimentally by Padilla et al. (1), with other
types of bipolar filaments or rods demonstrated in later studies (2, 3). The symmetry rules can
be described simply, while also allowing all possible orders n of dihedral symmetry Dn. As this
does not lend itself to a tabular form – i.e. it would require rows and columns for component
types useful for nothing other than rods – we have elected to describe the filament/rod group
symmetries as separate constructions rather than as tabular entries in the main symmetry
combination table. Two basic construction forms are possible:

Type 1
Components: Dn (any n) + C2
Construction geometry: 2-fold axis of C2 perpendicular and intersecting the n-fold axis of Dn,
and not in the plane formed by the 2-fold axes of Dn.
Degrees of freedom: 4
Ring size: 2
Special case: with n=1 for Dn, the situation becomes two dimers with non-intersecting axes, as
described by Padilla et al. (1). The degrees of freedom increase to 5, and the ring size is
undefined.

Type 2
Components: Dn + Dn (any n)
Construction geometry: Coincident n-fold axes of symmetry for the two components (refs 2, 3).
Degrees of freedom: 2
Ring size: 1

Various polar filaments and rods, not based on point group combinations but on other principles,
have also been described (4–8).

Isotropy

Here we say that a symmetry is isotropic if a second rank material tensor (e.g. stress or strain)
that is invariant under the given symmetry must be isotropic in form (i.e. a scalar times the
identity matrix) and therefore invariant under all rotations. Higher rank tensors (e.g the fourth
rank stiffness tensor) could obey the specified symmetry without being isotropic.

Generalization of the Symmetry Combination Notation System

The notation system introduced here can be generalized to cover other systems. Single
component designs, for example, could be treated as a case of zero-length ring closure as allowed
by SMILE strings, using numerical subscripts. One of King’s single component tetrahedra,

 63

3

obtained by introducing a homotypic 2-fold interface at the surface of a cyclic trimer, would be

T:{C3}1I[C2], where the subscript 1 (without recurrence) indicates a self-interaction at component

1, and the designed interface denoted by “I” carries a notation for the symmetry it introduces.
Expansion to more than two components is likewise straightforward. The 3-component

icosahedron described recently by Cannon et al. would be I:{C5}H{C2}F{C3}(ref 9). An example

from the full table of symmetry outcomes described in this study (entry 62 in Table 1) would be

the formation of a cubic 3-D crystal from a trimer and a dihedral tetramer, F432:{C3}x{D2}, with

‘x’ as a placeholder for whatever type of connection might be used to connect the trimer to the
tetramer.

Rigid body degrees of freedom

The rigid body degrees of freedom for any given SCM fall into different categories. Cyclic

oligomers carry two ‘internal’ degrees of freedom, one rotational and one translational, along
their unique symmetry axes. [Special rules apply: e.g. if both components are cyclic and their

symmetry axes are parallel, then one of the translational degrees of freedom is redundant and

must be sacrificed.] Higher symmetry component oligomers (dihedral and cubic) do not carry

internal degrees of freedom. Next, depending on the specific design type, certain ‘external’
(translational) degrees of freedom are available to specify separation distances or vectors

between symmetry axes or between symmetry centers of the components. Values for these

external degrees of freedom are ultimately related to the unit cell parameters of the repeating

SCMs that are generated. To unify the scheme, oligomers are taken to sit initially in canonical

orientations and positions (e.g. with their symmetry axis along z). Internal degrees of freedom

are applied in this starting frame of reference. Prior to applying external (translational) degrees

of freedom, specific fixed rotational settings are applied where necessary to bring the axes of a

canonically oriented oligomer into some required orientation.

Ultimately, for every design case, the number of degrees of freedom must be complementary to

the number of underlying geometric restrictions. There are 6 total degrees of freedom to

describe the relative relationship between two 3-dimensonal objects, such as two oligomeric

protein building blocks, so the number of degrees of freedom for construction must be 6 minus

the number of equations conveyed by the geometric restrictions. As an example, Table 1

describes the formation of layer symmetry p4212 from a dimer and a cyclic tetramer,

p4212:{C2}{C4}. The only geometric restriction for this construction is that the 2-fold and 4-fold

symmetry axes must be perpendicular, non-intersecting but without restriction on their

separation distance. The requirement for a 90° angle between two axes comprises a single

equation or restriction to be subtracted from 6, so working from the geometric restrictions we

conclude that the available rigid body space has dimension 5. Now, working in reverse as a

construction by sampling free rigid body parameters, above we noted that cyclic oligomers each

carry one internal rotational and one internal translational degree of freedom, so this provides 4

internal parameters together for the two cyclic oligomers. Then there is a single external degree

of freedom describing the translational separation between the non-intersecting axes; the unit

cell spacing will be twice this separation distance. Again, the calculated number of parameters

comes to 5. Similar ideas apply to every case.

 64

4

In addition to the continuous rigid body degrees of freedom, a special type of orientational

degeneracy must be considered. Point symmetry groups lower than octahedral can be

reoriented in ways that do not change the positions of the underlying symmetry axes: a cyclic

oligomer can be flipped over; a D2 tetramer can be reoriented 6 different ways by exchanging x,

y, and z axes, as examples. These orientational degeneracies must be allowed in order to execute

a complete sampling of the rigid body parameter space for any given problem. We give the

mathematical treatment of such degeneracies in Table S2.

Interpretation of SCM tables (Table S3) as procedural samplings for construction

Each SCM entry (Table S3) provides a complete description of the sampling required to evaluate

constructions for a given pair of oligomeric protein components conforming to the required

symmetries. Prior to construction, all oligomers are presumed to sit in canonical orientations

and positions, as follows. Unique symmetry axes (e.g. in the case of cyclic of dihedral symmetries)

are oriented along z. For dihedral symmetries, 2-fold symmetry axes perpendicular to the unique

axis are oriented in the x-y plane, with one such axis along x. Cubic symmetry T is oriented with

its D2 subgroup symmetry axes along x, y, and z. Symmetry O is oriented with its 4-fold symmetry

axes along x, y, and z. The oligomers are positioned with their points of central symmetry (i.e.

their centers of mass) at the origin.

‘Internal’ degrees of freedom for construction sampling (if they exist) are specified by a rotation

and a translation. The axis of rotation is z in all cases considered here, and a variable ’a’ specifies
the rotation value to be applied. We annotate that operation as r:<0,0,1,a>. The translation

belonging to the internal degrees of freedom (also along z in all cases described) is specified by

the variable quantity b. We annotate that operation as t:<0,0,b>. Following application of

rotations and translations associated with internal degrees of freedom, the oligomer is then

rotated by a setting matrix (specified in the table); in many cases this is simply the identity matrix.

Internal degrees of rotational and translational freedom may be associated with both oligomers,

or only one, or neither. In order to assign distinct variable names, internal degrees of freedom

for the second oligomer (if they exist) are annotated as r:<0,0,1,c> and t:<0,0,d>. The variables

and operations associated with the internal degrees of freedom must be applied combinatorially,

i.e. in nested loops. The final degrees of freedom (if they exist) are ‘external’ translations
associated with shifts between the oligomers (after having applied internal degrees of freedom

and setting matrices). Any external degrees of translational freedom are applied in innermost

loop(s). Depending on the number of spatial degrees of freedom, these are described by

variables e, f, and g. Each such variable quantity may express its effect through shifts in one or

both oligomers, along directions that may or may not be principle directions. For example,

<e,0,e> would indicate that the shift is along the x-z diagonal. If a shift of <e,0,0> is associate

with oligomer 1 and <0,e,0> is associated with oligomer 2, then both oligomers are shifted

according to the chosen value of e. Though the relative shift between oligomers is the primary

concern, in many cases applying separate shifts to both component oligomers is important in

order to situate the final assembly according to standard settings for crystallographic plane and

space groups. Thereafter, expanding extended assemblies is convenient using established tables

 65

5

of plane and space group operators. Relationships between the external translational variables
and the unit cell values for two or three dimensional materials are given in Table S3.

The interpretation of parameters in terms of rotations and translations to be applied to the
component oligomers is diagrammed in Figure 2 in the main text, and in further detail for one
example in Supplementary Figure S6, as it might be executed in a computer program.
[Pseudocode is included below for every SCM.]

Following construction of the appropriate nested loops, applying the rotations and translations
specified by the free loop variables will place the two oligomers in a spatial configuration
representing a mathematically legal symmetry arrangement for the desired SCM. The remaining
steps are associated with determining the suitability of each candidate configuration for a
physical design. The vast majority of configurations sampled will not represent suitable
configurations for establishing a connection between the two component oligomers, e.g. either
being too far away from each other or colliding. Tests for collision typically require application
of the full symmetry of the construction. This is relatively straightforward, since the
parameterizations have been carefully laid out so that the resulting symmetry of the SCM can be
applied in a canonical reference frame, as noted above for the crystal space groups.

Detailed tests for the designability of any given configuration will depend on the type of protein
(or other) design being considered. For example, for a design based on genetic fusion of the two
oligomeric components, the respective protein chain termini need to be proximal; if the fusion is
to involve a continuous alpha helix, then the termini would furthermore have to be oriented for
a helical connection. If a novel interface is to be designed, then an interface with sufficient area
and shape complementarity is required as a starting point for computational sequence design.
Designs based on other types of connection, such as metal coordination or disulfide bonding,
would require proximity of residues amenable to substitution with appropriate amino acid side
chains.

Pseudocode for all SCM constructions

To illustrate the enablement of SCM design calculations, we wrote a computer script that takes
the SCM data table as input, and a user-defined table entry number, and writes out pseudo code
for executing that design type. The orientational and translational sampling is fully specified
through loops over free parameters and application of necessary setting orientations.
Pseudocode for sampling the construction space for all 124 SCM types are provided here and in
readable text form in Supplementary Dataset 2.

D2:{C2}{C2}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1: [0.0,0.0,1.0][0.0,1.0,0.0][-
1.0,0.0,0.0]
 - loop over z rotations for oligomer 2
 - loop over z translations for oligomer 2

 66

6

 - apply fixed rotation setting to oligomer 2:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - test coordinates of the oligomers for a designable contact interaction &
write out candidates

p6:{C2}{C3}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - loop over z rotations for oligomer 2
 - loop over z translations for oligomer 2
 - apply fixed rotation setting to oligomer 2:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - loop over value of shift parameter e
 - apply shift to oligomer 1: <e,0,0>
 - apply shift to oligomer 2: <e,0.577350*e,0>
 - test coordinates of the oligomers for a designable contact interaction &
write out candidates

D3:{C2}{C3}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1: [0.0,0.0,1.0][0.0,1.0,0.0][-
1.0,0.0,0.0]
 - loop over z rotations for oligomer 2
 - loop over z translations for oligomer 2
 - apply fixed rotation setting to oligomer 2:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - test coordinates of the oligomers for a designable contact interaction &
write out candidates

p312:{C2}{C3}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1: [1.0,0.0,0.0][0.0,0.0,1.0][0.0,-
1.0,0.0]
 - loop over z rotations for oligomer 2
 - loop over z translations for oligomer 2
 - apply fixed rotation setting to oligomer 2:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - loop over value of shift parameter e
 - apply shift to oligomer 1: <e,0,0>
 - test coordinates of the oligomers for a designable contact interaction &
write out candidates

T:{C2}{C3}
- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - loop over z rotations for oligomer 2

 67

7

 - loop over z translations for oligomer 2
 - apply fixed rotation setting to oligomer 2: [0.707107,0.408248,0.577350][-
0.707107,0.408248,0.577350][0.0,-0.816497,0.577350]
 - test coordinates of the oligomers for a designable contact interaction &
write out candidates

I213:{C2}{C3}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - loop over z rotations for oligomer 2
 - loop over z translations for oligomer 2
 - apply fixed rotation setting to oligomer 2: [0.707107,0.408248,0.577350][-
0.707107,0.408248,0.577350][0.0,-0.816497,0.577350]
 - loop over value of shift parameter e
 - apply shift to oligomer 1: <0,e,0>
 - test coordinates of the oligomers for a designable contact interaction &
write out candidates

O:{C2}{C3}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1:
[0.707107,0.0,0.707107][0.0,1.0,0.0][-0.707107,0.0,0.707107]
 - loop over z rotations for oligomer 2
 - loop over z translations for oligomer 2
 - apply fixed rotation setting to oligomer 2: [0.707107,0.408248,0.577350][-
0.707107,0.408248,0.577350][0.0,-0.816497,0.577350]
 - test coordinates of the oligomers for a designable contact interaction &
write out candidates

P4132:{C2}{C3}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1:
[0.707107,0.0,0.707107][0.0,1.0,0.0][-0.707107,0.0,0.707107]
 - loop over z rotations for oligomer 2
 - loop over z translations for oligomer 2
 - apply fixed rotation setting to oligomer 2: [0.707107,0.408248,0.577350][-
0.707107,0.408248,0.577350][0.0,-0.816497,0.577350]
 - loop over value of shift parameter e
 - apply shift to oligomer 1: <2*e,e,0>
 - test coordinates of the oligomers for a designable contact interaction &
write out candidates

I:{C2}{C3}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]

 68

8

 - loop over z rotations for oligomer 2
 - loop over z translations for oligomer 2
 - apply fixed rotation setting to oligomer 2:
[1.0,0.0,0.0][0.0,0.934172,0.356822][0.0,-0.356822,0.934172]
 - test coordinates of the oligomers for a designable contact interaction &
write out candidates

p4:{C2}{C4}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - loop over z rotations for oligomer 2
 - loop over z translations for oligomer 2
 - apply fixed rotation setting to oligomer 2:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - loop over value of shift parameter e
 - apply shift to oligomer 1: <e,0,0>
 - test coordinates of the oligomers for a designable contact interaction &
write out candidates

D4:{C2}{C4}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1: [0.0,0.0,1.0][0.0,1.0,0.0][-
1.0,0.0,0.0]
 - loop over z rotations for oligomer 2
 - loop over z translations for oligomer 2
 - apply fixed rotation setting to oligomer 2:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - test coordinates of the oligomers for a designable contact interaction &
write out candidates

p4212:{C2}{C4}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1: [0.0,0.707107,0.707107][0.0,-
0.707107,0.707107][1.0,0.0,0.0]
 - loop over z rotations for oligomer 2
 - loop over z translations for oligomer 2
 - apply fixed rotation setting to oligomer 2:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - loop over value of shift parameter e
 - apply shift to oligomer 2: <e,0,0>
 - test coordinates of the oligomers for a designable contact interaction &
write out candidates

O:{C2}{C4}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1

 69

9

 - apply fixed rotation setting to oligomer 1:
[0.707107,0.0,0.707107][0.0,1.0,0.0][-0.707107,0.0,0.707107]
 - loop over z rotations for oligomer 2
 - loop over z translations for oligomer 2
 - apply fixed rotation setting to oligomer 2:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - test coordinates of the oligomers for a designable contact interaction &
write out candidates

I432:{C2}{C4}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1:
[0.707107,0.0,0.707107][0.0,1.0,0.0][-0.707107,0.0,0.707107]
 - loop over z rotations for oligomer 2
 - loop over z translations for oligomer 2
 - apply fixed rotation setting to oligomer 2:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - loop over value of shift parameter e
 - apply shift to oligomer 1: <2*e,e,0>
 - test coordinates of the oligomers for a designable contact interaction &
write out candidates

D5:{C2}{C5}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1: [0.0,0.0,1.0][0.0,1.0,0.0][-
1.0,0.0,0.0]
 - loop over z rotations for oligomer 2
 - loop over z translations for oligomer 2
 - apply fixed rotation setting to oligomer 2:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - test coordinates of the oligomers for a designable contact interaction &
write out candidates

I:{C2}{C5}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - loop over z rotations for oligomer 2
 - loop over z translations for oligomer 2
 - apply fixed rotation setting to oligomer 2:
[0.850651,0.0,0.525732][0.0,1.0,0.0][-0.525732,0.0,0.850651]
 - test coordinates of the oligomers for a designable contact interaction &
write out candidates

p6:{C2}{C6}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1

 70

10

 - apply fixed rotation setting to oligomer 1:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - loop over z rotations for oligomer 2
 - loop over z translations for oligomer 2
 - apply fixed rotation setting to oligomer 2:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - loop over value of shift parameter e
 - apply shift to oligomer 1: <e,0,0>
 - test coordinates of the oligomers for a designable contact interaction &
write out candidates

D6:{C2}{C6}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1: [0.0,0.0,1.0][0.0,1.0,0.0][-
1.0,0.0,0.0]
 - loop over z rotations for oligomer 2
 - loop over z translations for oligomer 2
 - apply fixed rotation setting to oligomer 2:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - test coordinates of the oligomers for a designable contact interaction &
write out candidates

p622:{C2}{C6}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1: [1.0,0.0,0.0][0.0,0.0,1.0][0.0,-
1.0,0.0]
 - loop over z rotations for oligomer 2
 - loop over z translations for oligomer 2
 - apply fixed rotation setting to oligomer 2:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - loop over value of shift parameter e
 - apply shift to oligomer 1: <e,0,0>
 - test coordinates of the oligomers for a designable contact interaction &
write out candidates

c222:{C2}{D2}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - apply fixed rotation setting to oligomer 2:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - loop over value of shift parameter e
 - loop over value of shift parameter f
 - apply shift to oligomer 1: <e,f,0>
 - test coordinates of the oligomers for a designable contact interaction &
write out candidates

p422:{C2}{D2}

 71

11

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1: [0.0,0.707107,0.707107][0.0,-
0.707107,0.707107][1.0,0.0,0.0]
 - apply fixed rotation setting to oligomer 2:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - loop over value of shift parameter e
 - apply shift to oligomer 2: <e,0,0>
 - test coordinates of the oligomers for a designable contact interaction & write
out candidates

I4122:{C2}{D2}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1: [0.0,0.0,1.0][0.0,1.0,0.0][-
1.0,0.0,0.0]
 - apply fixed rotation setting to oligomer 2: [0.707107,0.707107,0.0][-
0.707107,0.707107,0.0][0.0,0.0,1.0]
 - loop over value of shift parameter e
 - loop over value of shift parameter f
 - apply shift to oligomer 1: <0,e,f>
 - test coordinates of the oligomers for a designable contact interaction &
write out candidates

p622:{C2}{D2}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1: [0.0,0.5,0.866025][0.0,-
0.866025,0.5][1.0,0.0,0.0]
 - apply fixed rotation setting to oligomer 2:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - loop over value of shift parameter e
 - apply shift to oligomer 2: <e,0,0>
 - test coordinates of the oligomers for a designable contact interaction & write
out candidates

P6222:{C2}{D2}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1: [0.0,0.5,0.866025][0.0,-
0.866025,0.5][1.0,0.0,0.0]
 - apply fixed rotation setting to oligomer 2:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - loop over value of shift parameter e
 - loop over value of shift parameter f
 - apply shift to oligomer 1: <0,0,e>
 - apply shift to oligomer 2: <f,0,0>
 - test coordinates of the oligomers for a designable contact interaction &
write out candidates

I432:{C2}{D2}

 72

12

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1:
[0.707107,0.0,0.707107][0.0,1.0,0.0][-0.707107,0.0,0.707107]
 - apply fixed rotation setting to oligomer 2: [0.707107,0.707107,0.0][-
0.707107,0.707107,0.0][0.0,0.0,1.0]
 - loop over value of shift parameter e
 - apply shift to oligomer 2: <2*e,0,e>
 - test coordinates of the oligomers for a designable contact interaction & write
out candidates

I4132:{C2}{D2}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1:
[0.707107,0.0,0.707107][0.0,1.0,0.0][-0.707107,0.0,0.707107]
 - apply fixed rotation setting to oligomer 2: [0.707107,0.707107,0.0][-
0.707107,0.707107,0.0][0.0,0.0,1.0]
 - loop over value of shift parameter e
 - apply shift to oligomer 1: <-2*e,3*e,0>
 - apply shift to oligomer 2: <0,2*e,e>
 - test coordinates of the oligomers for a designable contact interaction & write
out candidates

p312:{C2}{D3}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1: [1.0,0.0,0.0][0.0,0.0,1.0][0.0,-
1.0,0.0]
 - apply fixed rotation setting to oligomer 2: [0.0,-
1.0,0.0][1.0,0.0,0.0][0.0,0.0,1.0]
 - loop over value of shift parameter e
 - apply shift to oligomer 1: <e,0,0>
 - test coordinates of the oligomers for a designable contact interaction & write
out candidates

R32:{C2}{D3}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1: [0.0,0.0,1.0][0.0,1.0,0.0][-
1.0,0.0,0.0]
 - apply fixed rotation setting to oligomer 2:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - loop over value of shift parameter e
 - loop over value of shift parameter f
 - apply shift to oligomer 1: <0,e,f>
 - test coordinates of the oligomers for a designable contact interaction &
write out candidates

p622:{C2}{D3} – type a

- loop over z rotations for oligomer 1

 73

13

 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - apply fixed rotation setting to oligomer 2: [0.0,-
1.0,0.0][1.0,0.0,0.0][0.0,0.0,1.0]
 - loop over value of shift parameter e
 - apply shift to oligomer 1: <e,0,0>
 - apply shift to oligomer 2: <e,0.57735*e,0>
 - test coordinates of the oligomers for a designable contact interaction & write
out candidates

p622:{C2}{D3} – type b

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1: [0.0,0.0,1.0][0.0,1.0,0.0][-
1.0,0.0,0.0]
 - apply fixed rotation setting to oligomer 2: [0.0,-
1.0,0.0][1.0,0.0,0.0][0.0,0.0,1.0]
 - loop over value of shift parameter e
 - apply shift to oligomer 2: <e,0.57735*e,0>
 - test coordinates of the oligomers for a designable contact interaction & write
out candidates

P6322:{C2}{D3}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1: [0.0,0.0,1.0][0.0,1.0,0.0][-
1.0,0.0,0.0]
 - apply fixed rotation setting to oligomer 2: [0.0,-
1.0,0.0][1.0,0.0,0.0][0.0,0.0,1.0]
 - loop over value of shift parameter e
 - loop over value of shift parameter f
 - apply shift to oligomer 2: <e,0.57735*e,f>
 - test coordinates of the oligomers for a designable contact interaction &
write out candidates

F4132:{C2}{D3}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - apply fixed rotation setting to oligomer 2: [0.707107,0.408248,0.577350][-
0.707107,0.408248,0.577350][0.0,-0.816497,0.577350]
 - loop over value of shift parameter e
 - apply shift to oligomer 2: <e,e,e>
 - test coordinates of the oligomers for a designable contact interaction & write
out candidates

I4132:{C2}{D3} – type a

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1

 74

14

 - apply fixed rotation setting to oligomer 1:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - apply fixed rotation setting to oligomer 2: [0.707107,0.408248,0.577350][-
0.707107,0.408248,0.577350][0.0,-0.816497,0.577350]
 - loop over value of shift parameter e
 - apply shift to oligomer 1: <0,2*e,0>
 - apply shift to oligomer 2: <e,e,e>
 - test coordinates of the oligomers for a designable contact interaction & write
out candidates

I432:{C2}{D3}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1:
[0.707107,0.0,0.707107][0.0,1.0,0.0][-0.707107,0.0,0.707107]
 - apply fixed rotation setting to oligomer 2: [0.707107,0.408248,0.577350][-
0.707107,0.408248,0.577350][0.0,-0.816497,0.577350]
 - loop over value of shift parameter e
 - apply shift to oligomer 2: <e,e,e>
 - test coordinates of the oligomers for a designable contact interaction & write
out candidates

I4132:{C2}{D3} – type b

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1:
[0.707107,0.0,0.707107][0.0,1.0,0.0][-0.707107,0.0,0.707107]
 - apply fixed rotation setting to oligomer 2: [0.707107,0.408248,0.577350][-
0.707107,0.408248,0.577350][0.0,-0.816497,0.577350]
 - loop over value of shift parameter e
 - apply shift to oligomer 1: <0,e,-2*e>
 - apply shift to oligomer 2: <e,e,e>
 - test coordinates of the oligomers for a designable contact interaction & write
out candidates

P4132:{C2}{D3}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1:
[0.707107,0.0,0.707107][0.0,1.0,0.0][-0.707107,0.0,0.707107]
 - apply fixed rotation setting to oligomer 2: [0.707107,0.408248,0.577350][-
0.707107,0.408248,0.577350][0.0,-0.816497,0.577350]
 - loop over value of shift parameter e
 - apply shift to oligomer 1: <0,e,-2*e>
 - apply shift to oligomer 2: <3*e,3*e,3*e>
 - test coordinates of the oligomers for a designable contact interaction & write
out candidates

p422:{C2}{D4} – type a

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1

 75

15

 - apply fixed rotation setting to oligomer 1:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - apply fixed rotation setting to oligomer 2:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - loop over value of shift parameter e
 - apply shift to oligomer 1: <e,0,0>
 - test coordinates of the oligomers for a designable contact interaction & write
out candidates

p422:{C2}{D4} – type b

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1: [0.0,0.0,1.0][0.0,1.0,0.0][-
1.0,0.0,0.0]
 - apply fixed rotation setting to oligomer 2:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - loop over value of shift parameter e
 - apply shift to oligomer 1: <0,e,0>
 - test coordinates of the oligomers for a designable contact interaction & write
out candidates

I422:{C2}{D4}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1: [0.0,0.707107,0.707107][0.0,-
0.707107,0.707107][1.0,0.0,0.0]
 - apply fixed rotation setting to oligomer 2:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - loop over value of shift parameter e
 - loop over value of shift parameter f
 - apply shift to oligomer 1: <0,e,f>
 - test coordinates of the oligomers for a designable contact interaction &
write out candidates

P432:{C2}{D4}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1:
[0.707107,0.0,0.707107][0.0,1.0,0.0][-0.707107,0.0,0.707107]
 - apply fixed rotation setting to oligomer 2:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - loop over value of shift parameter e
 - apply shift to oligomer 2: <0,0,e>
 - test coordinates of the oligomers for a designable contact interaction & write
out candidates

I432:{C2}{D4}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1:
[0.707107,0.0,0.707107][0.0,1.0,0.0][-0.707107,0.0,0.707107]

 76

16

 - apply fixed rotation setting to oligomer 2:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - loop over value of shift parameter e
 - apply shift to oligomer 1: <2*e,e,0>
 - apply shift to oligomer 2: <2*e,2*e,0>
 - test coordinates of the oligomers for a designable contact interaction & write
out candidates

p622:{C2}{D6} – type a

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - apply fixed rotation setting to oligomer 2:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - loop over value of shift parameter e
 - apply shift to oligomer 1: <e,0,0>
 - test coordinates of the oligomers for a designable contact interaction & write
out candidates

p622:{C2}{D6} – type b

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1: [1.0,0.0,0.0][0.0,0.0,1.0][0.0,-
1.0,0.0]
 - apply fixed rotation setting to oligomer 2:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - loop over value of shift parameter e
 - apply shift to oligomer 1: <e,0,0>
 - test coordinates of the oligomers for a designable contact interaction & write
out candidates

P622:{C2}{D6}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1: [1.0,0.0,0.0][0.0,0.0,1.0][0.0,-
1.0,0.0]
 - apply fixed rotation setting to oligomer 2:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - loop over value of shift parameter e
 - loop over value of shift parameter f
 - apply shift to oligomer 1: <e,0,f>
 - test coordinates of the oligomers for a designable contact interaction &
write out candidates

P23:{C2}{T}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]

 77

17

 - apply fixed rotation setting to oligomer 2:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - loop over value of shift parameter e
 - apply shift to oligomer 1: <e,0,0>
 - test coordinates of the oligomers for a designable contact interaction & write
out candidates

F23:{C2}{T}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - apply fixed rotation setting to oligomer 2:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - loop over value of shift parameter e
 - apply shift to oligomer 1: <e,e,0>
 - test coordinates of the oligomers for a designable contact interaction & write
out candidates

F4132:{C2}{T}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1:
[0.707107,0.0,0.707107][0.0,1.0,0.0][-0.707107,0.0,0.707107]
 - apply fixed rotation setting to oligomer 2:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - loop over value of shift parameter e
 - apply shift to oligomer 1: <2*e,3*e,0>
 - apply shift to oligomer 2: <0,4*e,0>
 - test coordinates of the oligomers for a designable contact interaction & write
out candidates

P432:{C2}{O} – type a

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - apply fixed rotation setting to oligomer 2:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - loop over value of shift parameter e
 - apply shift to oligomer 1: <e,0,0>
 - test coordinates of the oligomers for a designable contact interaction & write
out candidates

F432:{C2}{O} – type a

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - apply fixed rotation setting to oligomer 2:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]

 78

18

 - loop over value of shift parameter e
 - apply shift to oligomer 1: <e,e,0>
 - test coordinates of the oligomers for a designable contact interaction & write
out candidates

F432:{C2}{O} – type b

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1:
[0.707107,0.0,0.707107][0.0,1.0,0.0][-0.707107,0.0,0.707107]
 - apply fixed rotation setting to oligomer 2:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - loop over value of shift parameter e
 - apply shift to oligomer 1: <e,0,0>
 - test coordinates of the oligomers for a designable contact interaction & write
out candidates

P432:{C2}{O} – type b

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1:
[0.707107,0.0,0.707107][0.0,1.0,0.0][-0.707107,0.0,0.707107]
 - apply fixed rotation setting to oligomer 2:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - loop over value of shift parameter e
 - apply shift to oligomer 1: <0,e,0>
 - test coordinates of the oligomers for a designable contact interaction & write
out candidates

I432:{C2}{O}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1:
[0.707107,0.0,0.707107][0.0,1.0,0.0][-0.707107,0.0,0.707107]
 - apply fixed rotation setting to oligomer 2:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - loop over value of shift parameter e
 - apply shift to oligomer 1: <-e,e,e>
 - test coordinates of the oligomers for a designable contact interaction & write
out candidates

p3:{C3}{C3}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - loop over z rotations for oligomer 2
 - loop over z translations for oligomer 2
 - apply fixed rotation setting to oligomer 2:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - loop over value of shift parameter e

 79

19

 - apply shift to oligomer 2: <e,0.57735*e,0>
 - test coordinates of the oligomers for a designable contact interaction &
write out candidates

T:{C3}{C3}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1: [0.707107,0.408248,0.577350][-
0.707107,0.408248,0.577350][0.0,-0.816497,0.577350]
 - loop over z rotations for oligomer 2
 - loop over z translations for oligomer 2
 - apply fixed rotation setting to oligomer 2: [0.707107,-
0.408248,0.577350][0.707107,0.408248,-0.577350][0.0,0.816497,0.577350]
 - test coordinates of the oligomers for a designable contact interaction &
write out candidates

P213:{C3}{C3}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1: [0.707107,0.408248,0.577350][-
0.707107,0.408248,0.577350][0.0,-0.816497,0.577350]
 - loop over z rotations for oligomer 2
 - loop over z translations for oligomer 2
 - apply fixed rotation setting to oligomer 2: [0.707107,-
0.408248,0.577350][0.707107,0.408248,-0.577350][0.0,0.816497,0.577350]
 - loop over value of shift parameter e
 - apply shift to oligomer 2: <e,0,0>
 - test coordinates of the oligomers for a designable contact interaction &
write out candidates

O:{C3}{C4}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1: [0.707107,0.408248,0.577350][-
0.707107,0.408248,0.577350][0.0,-0.816497,0.577350]
 - loop over z rotations for oligomer 2
 - loop over z translations for oligomer 2
 - apply fixed rotation setting to oligomer 2:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - test coordinates of the oligomers for a designable contact interaction &
write out candidates

F432:{C3}{C4}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1: [0.707107,0.408248,0.577350][-
0.707107,0.408248,0.577350][0.0,-0.816497,0.577350]
 - loop over z rotations for oligomer 2
 - loop over z translations for oligomer 2
 - apply fixed rotation setting to oligomer 2:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]

 80

20

 - loop over value of shift parameter e
 - apply shift to oligomer 2: <e,0,0>
 - test coordinates of the oligomers for a designable contact interaction &
write out candidates

I:{C3}{C5}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1:
[1.0,0.0,0.0][0.0,0.934172,0.356822][0.0,-0.356822,0.934172]
 - loop over z rotations for oligomer 2
 - loop over z translations for oligomer 2
 - apply fixed rotation setting to oligomer 2:
[0.850651,0.0,0.525732][0.0,1.0,0.0][-0.525732,0.0,0.850651]
 - test coordinates of the oligomers for a designable contact interaction &
write out candidates

p6:{C3}{C6}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - loop over z rotations for oligomer 2
 - loop over z translations for oligomer 2
 - apply fixed rotation setting to oligomer 2:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - loop over value of shift parameter e
 - apply shift to oligomer 1: <e,0.57735*e,0>
 - test coordinates of the oligomers for a designable contact interaction &
write out candidates

p622:{C3}{D2}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - apply fixed rotation setting to oligomer 2:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - loop over value of shift parameter e
 - apply shift to oligomer 1: <e,0.57735*e,0>
 - apply shift to oligomer 2: <e,0,0>
 - test coordinates of the oligomers for a designable contact interaction & write
out candidates

P23:{C3}{D2}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1: [0.707107,0.408248,0.577350][-
0.707107,0.408248,0.577350][0.0,-0.816497,0.577350]
 - apply fixed rotation setting to oligomer 2:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]

 81

21

 - loop over value of shift parameter e
 - apply shift to oligomer 2: <e,0,0>
 - test coordinates of the oligomers for a designable contact interaction & write
out candidates

F432:{C3}{D2}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1: [0.707107,0.408248,0.577350][-
0.707107,0.408248,0.577350][0.0,-0.816497,0.577350]
 - apply fixed rotation setting to oligomer 2:
[0.707107,0.0,0.707107][0.0,1.0,0.0][-0.707107,0.0,0.707107]
 - loop over value of shift parameter e
 - apply shift to oligomer 2: <e,0,e>
 - test coordinates of the oligomers for a designable contact interaction & write
out candidates

I4132:{C3}{D2}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1: [0.707107,0.408248,0.577350][-
0.707107,0.408248,0.577350][0.0,-0.816497,0.577350]
 - apply fixed rotation setting to oligomer 2:
[0.707107,0.0,0.707107][0.0,1.0,0.0][-0.707107,0.0,0.707107]
 - loop over value of shift parameter e
 - apply shift to oligomer 2: <2*e,e,0>
 - test coordinates of the oligomers for a designable contact interaction & write
out candidates

p312:{C3}{D3}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - apply fixed rotation setting to oligomer 2: [0.0,-
1.0,0.0][1.0,0.0,0.0][0.0,0.0,1.0]
 - loop over value of shift parameter e
 - apply shift to oligomer 1: <e,0.57735*e,0>
 - test coordinates of the oligomers for a designable contact interaction & write
out candidates

p321:{C3}{D3}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - apply fixed rotation setting to oligomer 2:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - loop over value of shift parameter e
 - apply shift to oligomer 1: <e,0.57735*e,0>

 82

22

 - test coordinates of the oligomers for a designable contact interaction & write

out candidates

P4132:{C3}{D3}

- loop over z rotations for oligomer 1

 - loop over z translations for oligomer 1

 - apply fixed rotation setting to oligomer 1: [0.707107,-

0.408248,0.577350][0.707107,0.408248,-0.577350][0.0,0.816497,0.577350]

 - apply fixed rotation setting to oligomer 2: [0.707107,0.408248,0.577350][-

0.707107,0.408248,0.577350][0.0,-0.816497,0.577350]

 - loop over value of shift parameter e

 - apply shift to oligomer 1: <4*e,0,0>

 - apply shift to oligomer 2: <3*e,3*e,3*e>

 - test coordinates of the oligomers for a designable contact interaction & write

out candidates

P432:{C3}{D4}

- loop over z rotations for oligomer 1

 - loop over z translations for oligomer 1

 - apply fixed rotation setting to oligomer 1: [0.707107,0.408248,0.577350][-

0.707107,0.408248,0.577350][0.0,-0.816497,0.577350]

 - apply fixed rotation setting to oligomer 2:

[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]

 - loop over value of shift parameter e

 - apply shift to oligomer 2: <0,0,e>

 - test coordinates of the oligomers for a designable contact interaction & write

out candidates

p622:{C3}{D6}

- loop over z rotations for oligomer 1

 - loop over z translations for oligomer 1

 - apply fixed rotation setting to oligomer 1:

[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]

 - apply fixed rotation setting to oligomer 2:

[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]

 - loop over value of shift parameter e

 - apply shift to oligomer 1: <e,0.57735*e,0>

 - test coordinates of the oligomers for a designable contact interaction & write

out candidates

F23:{C3}{T}

- loop over z rotations for oligomer 1

 - loop over z translations for oligomer 1

 - apply fixed rotation setting to oligomer 1: [0.707107,0.408248,0.577350][-

0.707107,0.408248,0.577350][0.0,-0.816497,0.577350]

 - apply fixed rotation setting to oligomer 2:

[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]

 - loop over value of shift parameter e

 - apply shift to oligomer 1: <e,0,0>

 - test coordinates of the oligomers for a designable contact interaction & write

out candidates

 83

23

F432:{C3}{O}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1: [0.707107,0.408248,0.577350][-
0.707107,0.408248,0.577350][0.0,-0.816497,0.577350]
 - apply fixed rotation setting to oligomer 2:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - loop over value of shift parameter e
 - apply shift to oligomer 1: <e,0,0>
 - test coordinates of the oligomers for a designable contact interaction & write
out candidates

p4:{C4}{C4}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - loop over z rotations for oligomer 2
 - loop over z translations for oligomer 2
 - apply fixed rotation setting to oligomer 2:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - loop over value of shift parameter e
 - apply shift to oligomer 2: <e,e,0>
 - test coordinates of the oligomers for a designable contact interaction &
write out candidates

P432:{C4}{C4}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - loop over z rotations for oligomer 2
 - loop over z translations for oligomer 2
 - apply fixed rotation setting to oligomer 2: [0.0,0.0,1.0][0.0,1.0,0.0][-
1.0,0.0,0.0]
 - loop over value of shift parameter e
 - apply shift to oligomer 2: <0,e,e>
 - test coordinates of the oligomers for a designable contact interaction &
write out candidates

p422:{C4}{D2}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - apply fixed rotation setting to oligomer 2:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - loop over value of shift parameter e
 - apply shift to oligomer 2: <e,0,0>

 84

24

 - test coordinates of the oligomers for a designable contact interaction & write
out candidates

p4212:{C4}{D2}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - apply fixed rotation setting to oligomer 2: [0.707107,0.707107,0.0][-
0.707107,0.707107,0.0][0.0,0.0,1.0]
 - loop over value of shift parameter e
 - apply shift to oligomer 1: <e,0,0>
 - test coordinates of the oligomers for a designable contact interaction & write
out candidates

I432:{C4}{D2}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1: [0.0,0.0,1.0][0.0,1.0,0.0][-
1.0,0.0,0.0]
 - apply fixed rotation setting to oligomer 2:
[0.707107,0.0,0.707107][0.0,1.0,0.0][-0.707107,0.0,0.707107]
 - loop over value of shift parameter e
 - apply shift to oligomer 2: <2*e,e,0>
 - test coordinates of the oligomers for a designable contact interaction & write
out candidates

F432:{C4}{D2}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - apply fixed rotation setting to oligomer 2:
[0.707107,0.0,0.707107][0.0,1.0,0.0][-0.707107,0.0,0.707107]
 - loop over value of shift parameter e
 - apply shift to oligomer 2: <e,0,e>
 - test coordinates of the oligomers for a designable contact interaction & write
out candidates

I432:{C4}{D3}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - apply fixed rotation setting to oligomer 2: [0.707107,0.408248,0.577350][-
0.707107,0.408248,0.577350][0.0,-0.816497,0.577350]
 - loop over value of shift parameter e
 - apply shift to oligomer 2: <e,e,e>
 - test coordinates of the oligomers for a designable contact interaction & write
out candidates

 85

25

p422:{C4}{D4}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - apply fixed rotation setting to oligomer 2:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - loop over value of shift parameter e
 - apply shift to oligomer 1: <e,e,0>
 - test coordinates of the oligomers for a designable contact interaction & write
out candidates

P432:{C4}{D4}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1: [0.0,0.0,1.0][0.0,1.0,0.0][-
1.0,0.0,0.0]
 - apply fixed rotation setting to oligomer 2:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - loop over value of shift parameter e
 - apply shift to oligomer 2: <e,e,0>
 - test coordinates of the oligomers for a designable contact interaction & write
out candidates

F432:{C4}{T}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - apply fixed rotation setting to oligomer 2:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - loop over value of shift parameter e
 - apply shift to oligomer 2: <e,e,e>
 - test coordinates of the oligomers for a designable contact interaction & write
out candidates

P432:{C4}{O}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - apply fixed rotation setting to oligomer 2:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - loop over value of shift parameter e
 - apply shift to oligomer 1: <e,e,0>
 - test coordinates of the oligomers for a designable contact interaction & write
out candidates

p622:{C6}{D2}

 86

26

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - apply fixed rotation setting to oligomer 2:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - loop over value of shift parameter e
 - apply shift to oligomer 2: <e,0,0>
 - test coordinates of the oligomers for a designable contact interaction & write
out candidates

p622:{C6}{D3}

- loop over z rotations for oligomer 1
 - loop over z translations for oligomer 1
 - apply fixed rotation setting to oligomer 1:
[1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
 - apply fixed rotation setting to oligomer 2: [0.0,-
1.0,0.0][1.0,0.0,0.0][0.0,0.0,1.0]
 - loop over value of shift parameter e
 - apply shift to oligomer 2: <e,0.57735*e,0>
 - test coordinates of the oligomers for a designable contact interaction & write
out candidates

p222:{D2}{D2}

- apply fixed rotation setting to oligomer 1: [1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
- apply fixed rotation setting to oligomer 2: [1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
- loop over value of shift parameter e
 - loop over value of shift parameter f
 - apply shift to oligomer 2: <e,f,0>
 - test coordinates of the oligomers for a designable contact interaction & write
out candidates

F222:{D2}{D2}

- apply fixed rotation setting to oligomer 1: [1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
- apply fixed rotation setting to oligomer 2: [1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
- loop over value of shift parameter e
 - loop over value of shift parameter f
 - loop over value of shift parameter g
 - apply shift to oligomer 2: <e,f,g>
 - test coordinates of the oligomers for a designable contact interaction & write
out candidates

P4222:{D2}{D2}

- apply fixed rotation setting to oligomer 1: [1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
- apply fixed rotation setting to oligomer 2: [0.707107,0.707107,0.0][-
0.707107,0.707107,0.0][0.0,0.0,1.0]
- loop over value of shift parameter e
 - loop over value of shift parameter f
 - apply shift to oligomer 1: <e,0,0>
 - apply shift to oligomer 2: <0,0,f>

 87

27

 - test coordinates of the oligomers for a designable contact interaction & write
out candidates

P6222:{D2}{D2}

- apply fixed rotation setting to oligomer 1: [1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
- apply fixed rotation setting to oligomer 2: [0.5,-
0.866025,0.0][0.866025,0.5,0.0][0.0,0.0,1.0]
- loop over value of shift parameter e
 - loop over value of shift parameter f
 - apply shift to oligomer 1: <e,0,0>
 - apply shift to oligomer 2: <0,0,-f>
 - test coordinates of the oligomers for a designable contact interaction & write
out candidates

P4232:{D2}{D2}

- apply fixed rotation setting to oligomer 1: [0.707107,0.0,0.707107][0.0,1.0,0.0][-
0.707107,0.0,0.707107]
- apply fixed rotation setting to oligomer 2: [0.707107,0.707107,0.0][-
0.707107,0.707107,0.0][0.0,0.0,1.0]
- loop over value of shift parameter e
 - apply shift to oligomer 1: <0,e,2*e>
 - apply shift to oligomer 2: <0,2*e,e>
 - test coordinates of the oligomers for a designable contact interaction & write out
candidates

p622:{D2}{D3}

- apply fixed rotation setting to oligomer 1: [1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
- apply fixed rotation setting to oligomer 2: [0.0,-1.0,0.0][1.0,0.0,0.0][0.0,0.0,1.0]
- loop over value of shift parameter e
 - apply shift to oligomer 1: <e,0,0>
 - apply shift to oligomer 2: <e,0.57735*e,0>
 - test coordinates of the oligomers for a designable contact interaction & write out
candidates

P622:{D2}{D3}

- apply fixed rotation setting to oligomer 1: [1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
- apply fixed rotation setting to oligomer 2: [0.0,-1.0,0.0][1.0,0.0,0.0][0.0,0.0,1.0]
- loop over value of shift parameter e
 - loop over value of shift parameter f
 - apply shift to oligomer 1: <e,0,0>
 - apply shift to oligomer 2: <e,0.57735*e,f>
 - test coordinates of the oligomers for a designable contact interaction & write
out candidates

P4232:{D2}{D3}

- apply fixed rotation setting to oligomer 1: [1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
- apply fixed rotation setting to oligomer 2: [0.707107,0.408248,0.577350][-
0.707107,0.408248,0.577350][0.0,-0.816497,0.577350]

 88

28

- loop over value of shift parameter e
 - apply shift to oligomer 1: <0,0,2*e>
 - apply shift to oligomer 2: <e,e,e>
 - test coordinates of the oligomers for a designable contact interaction & write out
candidates

I4132:{D2}{D3}

- apply fixed rotation setting to oligomer 1: [0.707107,0.0,0.707107][0.0,1.0,0.0][-
0.707107,0.0,0.707107]
- apply fixed rotation setting to oligomer 2: [0.707107,0.408248,0.577350][-
0.707107,0.408248,0.577350][0.0,-0.816497,0.577350]
- loop over value of shift parameter e
 - apply shift to oligomer 1: <2*e,e,0>
 - apply shift to oligomer 2: <e,e,e>
 - test coordinates of the oligomers for a designable contact interaction & write out
candidates

p422:{D2}{D4}

- apply fixed rotation setting to oligomer 1: [1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
- apply fixed rotation setting to oligomer 2: [1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
- loop over value of shift parameter e
 - apply shift to oligomer 1: <e,0,0>
 - test coordinates of the oligomers for a designable contact interaction & write out
candidates

P422:{D2}{D4}

- apply fixed rotation setting to oligomer 1: [1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
- apply fixed rotation setting to oligomer 2: [1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
- loop over value of shift parameter e
 - loop over value of shift parameter f
 - apply shift to oligomer 1: <e,0,f>
 - test coordinates of the oligomers for a designable contact interaction & write
out candidates

I422:{D2}{D4}

- apply fixed rotation setting to oligomer 1: [0.707107,0.707107,0.0][-
0.707107,0.707107,0.0][0.0,0.0,1.0]
- apply fixed rotation setting to oligomer 2: [1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
- loop over value of shift parameter e
 - loop over value of shift parameter f
 - apply shift to oligomer 1: <e,0,f>
 - test coordinates of the oligomers for a designable contact interaction & write
out candidates

I432:{D2}{D4}

- apply fixed rotation setting to oligomer 1: [0.707107,0.0,0.707107][0.0,1.0,0.0][-
0.707107,0.0,0.707107]
- apply fixed rotation setting to oligomer 2: [1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]

 89

29

- loop over value of shift parameter e

 - apply shift to oligomer 1: <0,e,2*e>

 - apply shift to oligomer 2: <0,0,2*e>

 - test coordinates of the oligomers for a designable contact interaction & write out

candidates

p622:{D2}{D6}

- apply fixed rotation setting to oligomer 1: [1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]

- apply fixed rotation setting to oligomer 2: [1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]

- loop over value of shift parameter e

 - apply shift to oligomer 1: <e,0,0>

 - test coordinates of the oligomers for a designable contact interaction & write out

candidates

P622:{D2}{D6}

- apply fixed rotation setting to oligomer 1: [1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]

- apply fixed rotation setting to oligomer 2: [1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]

- loop over value of shift parameter e

 - loop over value of shift parameter f

 - apply shift to oligomer 1: <e,0,f>

 - test coordinates of the oligomers for a designable contact interaction & write

out candidates

P23:{D2}{T}

- apply fixed rotation setting to oligomer 1: [1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]

- apply fixed rotation setting to oligomer 2: [1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]

- loop over value of shift parameter e

 - apply shift to oligomer 1: <e,0,0>

 - test coordinates of the oligomers for a designable contact interaction & write out

candidates

P23:{D2}{T}

- apply fixed rotation setting to oligomer 1: [1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]

- apply fixed rotation setting to oligomer 2: [1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]

- loop over value of shift parameter e

 - apply shift to oligomer 1: <e,e,0>

 - test coordinates of the oligomers for a designable contact interaction & write out

candidates

F432:{D2}{T}

- apply fixed rotation setting to oligomer 1: [0.707107,0.0,0.707107][0.0,1.0,0.0][-

0.707107,0.0,0.707107]

- apply fixed rotation setting to oligomer 2: [1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]

- loop over value of shift parameter e

 - apply shift to oligomer 1: <e,0,e>

 - apply shift to oligomer 2: <e,e,e>

 - test coordinates of the oligomers for a designable contact interaction & write out

candidates

 90

30

P4232:{D2}{T}

- apply fixed rotation setting to oligomer 1: [0.707107,0.0,0.707107][0.0,1.0,0.0][-
0.707107,0.0,0.707107]
- apply fixed rotation setting to oligomer 2: [1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
- loop over value of shift parameter e
 - apply shift to oligomer 1: <2*e,e,0>
 - test coordinates of the oligomers for a designable contact interaction & write out
candidates

F432:{D2}{O}

- apply fixed rotation setting to oligomer 1: [0.707107,0.0,0.707107][0.0,1.0,0.0][-
0.707107,0.0,0.707107]
- apply fixed rotation setting to oligomer 2: [1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
- loop over value of shift parameter e
 - apply shift to oligomer 1: <e,0,e>
 - test coordinates of the oligomers for a designable contact interaction & write out
candidates

I432:{D2}{O}

- apply fixed rotation setting to oligomer 1: [0.707107,0.0,0.707107][0.0,1.0,0.0][-
0.707107,0.0,0.707107]
- apply fixed rotation setting to oligomer 2: [1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
- loop over value of shift parameter e
 - apply shift to oligomer 1: <2*e,e,0>
 - test coordinates of the oligomers for a designable contact interaction & write out
candidates

p312:{D3}{D3}

- apply fixed rotation setting to oligomer 1: [0.0,-1.0,0.0][1.0,0.0,0.0][0.0,0.0,1.0]
- apply fixed rotation setting to oligomer 2: [0.0,-1.0,0.0][1.0,0.0,0.0][0.0,0.0,1.0]
- loop over value of shift parameter e
 - apply shift to oligomer 2: <e,0.57735*e,0>
 - test coordinates of the oligomers for a designable contact interaction & write out
candidates

P312:{D3}{D3}

- apply fixed rotation setting to oligomer 1: [0.0,-1.0,0.0][1.0,0.0,0.0][0.0,0.0,1.0]
- apply fixed rotation setting to oligomer 2: [0.0,-1.0,0.0][1.0,0.0,0.0][0.0,0.0,1.0]
- loop over value of shift parameter e
 - loop over value of shift parameter f
 - apply shift to oligomer 2: <e,0.57735*e,f>
 - test coordinates of the oligomers for a designable contact interaction & write
out candidates

P6322:{D3}{D3}

 91

31

- apply fixed rotation setting to oligomer 1: [1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
- apply fixed rotation setting to oligomer 2: [0.0,-1.0,0.0][1.0,0.0,0.0][0.0,0.0,1.0]
- loop over value of shift parameter e
 - loop over value of shift parameter f
 - apply shift to oligomer 2: <e,0.57735*e,f>
 - test coordinates of the oligomers for a designable contact interaction & write
out candidates

P4232:{D3}{D3}

- apply fixed rotation setting to oligomer 1: [0.707107,0.408248,0.577350][-
0.707107,0.408248,0.577350][0.0,-0.816497,0.577350]
- apply fixed rotation setting to oligomer 2: [0.707107,-
0.408248,0.577350][0.707107,0.408248,-0.577350][0.0,0.816497,0.577350]
- loop over value of shift parameter e
 - apply shift to oligomer 1: <e,e,e>
 - apply shift to oligomer 2: <e,3*e,e>
 - test coordinates of the oligomers for a designable contact interaction & write out
candidates

P4132:{D3}{D3}

- apply fixed rotation setting to oligomer 1: [0.707107,0.408248,0.577350][-
0.707107,0.408248,0.577350][0.0,-0.816497,0.577350]
- apply fixed rotation setting to oligomer 2: [0.707107,-
0.408248,0.577350][0.707107,0.408248,-0.577350][0.0,0.816497,0.577350]
- loop over value of shift parameter e
 - apply shift to oligomer 1: <3*e,3*e,3*e>
 - apply shift to oligomer 2: <e,3*e,5*e>
 - test coordinates of the oligomers for a designable contact interaction & write out
candidates

I432:{D3}{D4}

- apply fixed rotation setting to oligomer 1: [0.707107,0.408248,0.577350][-
0.707107,0.408248,0.577350][0.0,-0.816497,0.577350]
- apply fixed rotation setting to oligomer 2: [1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
- loop over value of shift parameter e
 - apply shift to oligomer 1: <e,e,e>
 - apply shift to oligomer 2: <0,0,2*e>
 - test coordinates of the oligomers for a designable contact interaction & write out
candidates

p622:{D3}{D6}

- apply fixed rotation setting to oligomer 1: [0.0,-1.0,0.0][1.0,0.0,0.0][0.0,0.0,1.0]
- apply fixed rotation setting to oligomer 2: [1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
- loop over value of shift parameter e
 - apply shift to oligomer 1: <e,0.57735*e,0>
 - test coordinates of the oligomers for a designable contact interaction & write out
candidates

 92

32

P622:{D3}{D6}

- apply fixed rotation setting to oligomer 1: [0.0,-1.0,0.0][1.0,0.0,0.0][0.0,0.0,1.0]
- apply fixed rotation setting to oligomer 2: [1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
- loop over value of shift parameter e
 - loop over value of shift parameter f
 - apply shift to oligomer 1: <e,0.57735*e,f>
 - test coordinates of the oligomers for a designable contact interaction & write
out candidates

F4132:{D3}{T}

- apply fixed rotation setting to oligomer 1: [0.707107,0.408248,0.577350][-
0.707107,0.408248,0.577350][0.0,-0.816497,0.577350]
- apply fixed rotation setting to oligomer 2: [1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
- loop over value of shift parameter e
 - apply shift to oligomer 1: <e,e,e>
 - test coordinates of the oligomers for a designable contact interaction & write out
candidates

I432:{D3}{O}

- apply fixed rotation setting to oligomer 1: [0.707107,0.408248,0.577350][-
0.707107,0.408248,0.577350][0.0,-0.816497,0.577350]
- apply fixed rotation setting to oligomer 2: [1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
- loop over value of shift parameter e
 - apply shift to oligomer 1: <e,e,e>
 - test coordinates of the oligomers for a designable contact interaction & write out
candidates

p422:{D4}{D4}

- apply fixed rotation setting to oligomer 1: [1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
- apply fixed rotation setting to oligomer 2: [1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
- loop over value of shift parameter e
 - apply shift to oligomer 2: <e,e,0>
 - test coordinates of the oligomers for a designable contact interaction & write out
candidates

P422:{D4}{D4}

- apply fixed rotation setting to oligomer 1: [1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
- apply fixed rotation setting to oligomer 2: [1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
- loop over value of shift parameter e
 - loop over value of shift parameter f
 - apply shift to oligomer 2: <e,e,f>
 - test coordinates of the oligomers for a designable contact interaction & write
out candidates

P432:{D4}{D4}

- apply fixed rotation setting to oligomer 1: [1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
- apply fixed rotation setting to oligomer 2: [0.0,0.0,1.0][0.0,1.0,0.0][-1.0,0.0,0.0]

 93

33

- loop over value of shift parameter e
 - apply shift to oligomer 1: <0,0,e>
 - apply shift to oligomer 2: <0,e,e>
 - test coordinates of the oligomers for a designable contact interaction & write out
candidates

P432:{D4}{O}

- apply fixed rotation setting to oligomer 1: [1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
- apply fixed rotation setting to oligomer 2: [1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
- loop over value of shift parameter e
 - apply shift to oligomer 1: <0,0,e>
 - test coordinates of the oligomers for a designable contact interaction & write out
candidates

P432:{D4}{O}

- apply fixed rotation setting to oligomer 1: [1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
- apply fixed rotation setting to oligomer 2: [1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
- loop over value of shift parameter e
 - apply shift to oligomer 1: <e,e,0>
 - test coordinates of the oligomers for a designable contact interaction & write out
candidates

F23:{T}{T}

- apply fixed rotation setting to oligomer 1: [1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
- apply fixed rotation setting to oligomer 2: [1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
- loop over value of shift parameter e
 - apply shift to oligomer 2: <e,e,e>
 - test coordinates of the oligomers for a designable contact interaction & write out
candidates

F23:{T}{T}

- apply fixed rotation setting to oligomer 1: [1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
- apply fixed rotation setting to oligomer 2: [1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
- loop over value of shift parameter e
 - apply shift to oligomer 2: <e,0,0>
 - test coordinates of the oligomers for a designable contact interaction & write out
candidates

F432:{T}{O}

- apply fixed rotation setting to oligomer 1: [1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
- apply fixed rotation setting to oligomer 2: [1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
- loop over value of shift parameter e
 - apply shift to oligomer 1: <e,e,e>
 - test coordinates of the oligomers for a designable contact interaction & write out
candidates

 94

34

P432:{O}{O}

- apply fixed rotation setting to oligomer 1: [1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
- apply fixed rotation setting to oligomer 2: [1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
- loop over value of shift parameter e
 - apply shift to oligomer 2: <e,e,e>
 - test coordinates of the oligomers for a designable contact interaction & write out
candidates

F432:{O}{O}

- apply fixed rotation setting to oligomer 1: [1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
- apply fixed rotation setting to oligomer 2: [1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
- loop over value of shift parameter e
 - apply shift to oligomer 2: <e,0,0>
 - test coordinates of the oligomers for a designable contact interaction & write out
candidates

Entanglement and implausible symmetry combinations

The text describes one example of the simplest type of entanglement problem, wherein the
combination of symmetries elevates the symmetry of the Wykoff positions on which the
individual components sit (Supplemental Figure S1A).

A distinct type of problem occurs in multiple contexts, from finite cage symmetries to extended
two and three-dimensional arrays. The simplest example is exemplified by an attempt to
combine two different 4-fold tetrameric units together at a 90° angle. Two 4-fold symmetry axes,
perpendicular and intersecting, generate octahedral point symmetry O (i.e. 24 molecular
orientations with a cubic shape). But a physical construction based on contact between the two
different oligomeric types is problematic. According to symmetry O, all six of the cubic faces
would have to be occupied by oligomers of the first type, and also by the second type. Immediate
collision between the different oligomer types might be avoided by placing one type more central
to the overall structure and the other type more peripherally, but the resulting molecular
interfaces between the components would then have to be intricately intertwined to avoid
collision. Problems of this type arise in cases where the symmetry axes of the separate
components become equivalent (i.e. interchangeable) under the resulting combined symmetry.
In the problematic case of O:{C4}{C4}, the perpendicular 4-fold axes of the component oligomers
are indistinguishable (in position and direction) in symmetry O. Another case, occurring in two-
dimensional layers, arises in an attempt to generate layer symmetry p6 from two C6 hexameric
units displaced laterally, p6:{C6}{C6} (Figure S1B). Analyzing p6 layer symmetry one sees that all
the instances of 6-fold symmetry axes are related by unit cell translation. Therefore, two C6
oligomers will generate p6, with both oligomer types needing to occupy each 6-fold axis of
symmetry. This is impossible for compact shapes, but entwined shapes show that the result is
mathematically allowable (Figure S1B)(10). Another example arises in an attempted construction
of a 2-dimensional layer by combining two different D2 symmetric tetrameric units, rotated 30

 95

35

degree relative to each other and displaced laterally. The layer symmetry group product is p622,
but (p622:{D2}{D2}) is impossible without entwinement. The same is true for combining two
different D2 tetramers to construct a 3-dimensional crystal with I4132 symmetry
(I4132:{D2}{D2}). In these cases, the two oligomeric components sit on Wykoff positions that are
symmetry related. Numerous problematic cases in this category involve two components with
the same point group symmetry, but this is not disallowed generally; the SCM table shows many
plausible constructions based on components with the same symmetry.

A third, even more subtle problem type was identified in a smaller number of cases that appeared
at first to be allowable for compact shapes. The underlying idea for SCMs is that oligomer type
1, suitably oriented and shifted, needs to contact oligomer type 2. Among some seemingly
plausible constructions, a situation arises where oligomer 1 (as a compact shape) cannot reach
the necessary instance of oligomer 2 without colliding with an unintended copy of oligomer 2, i.e.
one with whom contact would generate a different SCM. These cases could generally be
understood by considering the distances between Wykoff positions of different types, looking for
whether the distances between the intended copies of oligomer 1 and oligomer 2 were always
greater than distances between copies that would make unintended contact. Problems in this
category were revealed by manual inspection and by our computational exercise to prove
constructability. A notable case was an attempted construction of I432:{C4}{D2}. This
construction could not be realized, even when a degree of elongation was permitted in the model
subunits; e.g. each monomer composed of two spheres instead of one.

The cases of mathematically legal symmetry combinations which are not permitted for compact
shapes is vast, and sometimes non-obvious. In fact, there are many construction types where
indefinite numbers of entwined variations can be invented based on alternate translational choices
for the components. Further exploration would be required to characterize the deep space of
mathematically possible, but practically implausible, interwoven constructions. The present study
focuses on the design space possible with compact, non-entagled, molecular shapes. This motivated
our computational studies in which we validated the constructability of all the entries within the
allowable space of SCMs (Text Table 1, Table S3, Figures S2 to S4).

Choosing Component Oligomers for Example SCMs Constructions
The following steps were taken for the purposes of illustrating candidate SCM constructions in
Figure 4. The advanced search tool in the Protein Data Bank was used to obtain sets of C3, D4,
C4 and D3 protein homo-oligomers clustered at 70% sequence identity with: 1) X-ray resolution
less than 2.5 Å, 2) Escherichia coli as the organism used for protein expression and 3) at least 30%
alpha helical. Membrane proteins were removed. Biological assemblies were identified using
QSBio (10) and were then downloaded from the Protein Data Bank. A C3 trimer and a D4 octamer
were arbitrarily chosen from the sets of curated structures as component oligomers for the P432
crystal presented in Figure 4. Similarly, a C4 tetramer and a D3 hexamer were arbitrarily selected
from the sets of curated structures to construct the I432 crystal shown in Figure 4. Other selection
criteria for choosing component oligomers are of course possible.

 96

36

Comparison to MOF Networks

In the language of MOFs, the protein-based SCMs discussed here would be described as binodal
nets with [2,1] transitivity, meaning two different types of nodes (one corresponding to each type
of oligomer) and one type of edge, all edges being identical to each other under symmetry, each
edge connecting nodes of alternate types. Thousands of MOF compounds have been structurally
characterized to date, and as a result a great many distinct three-dimensional (‘3-periodic’) nets
have been identified and categorized (11). Some 73 types of binodal MOF nets have been
described (understood to not be a complete set) but only five of those are chiral (i.e. lacking
mirror or center of inversion operations) and can be mapped to table entries for our protein
SCMs. [N.B. The vast majority of MOF materials have achiral centers, often individual metal atom
sites.] Some of the symmetric architectures we lay out for protein materials have relatives among
the bimodal MOF nets that have been described, e.g. being interconvertible by addition of a
center of inversion at an appropriate position, but others appear to be more clearly distinct from
any that have been described before. Further comparisons between MOF materials and chiral
protein-based SCMs could find fertile ground. Two additional points of distinction compared to
exploration of MOF networks are: (1) our multiplication table articulates all possible binodal
[2,1]-transitive architectures and their key properties (subject to construction from compact
molecules), and (2) the growing facility with which protein molecules can be re-engineered to
bind to each other in precisely defined configurations should enable the exploration of specific
and predictable materials outcomes.

 97

37

SUPPLEMENTARY TABLES
Table S1. Point group combination possibilities, with orientation specifications and outcomes.

Resulting
point
group

Component point groups and orientational settings*

C3 {C3[#1]}{C3[#1]}
C4 {C2[#1]}{C4[#1]}; {C4[#1]}{C4[#1]}
C6 {C2[#1]}{C3[#1]}; {C2[#1]}{C6[#1]}; {C3[#1]}{C6[#1]}
D2 {C2[#1]}{D2[#1]}; {D2[#1]}{D2[#1]}
D3 {C2[#2]}{C3[#1]}; {C2[#6]}{C3[#1]}; {C2[#6]}{D3[#11]}; {C2[#2]}{D3[#1]};

{C3[#1]}{D3[#11]}; {C3[#1]}{D3[#1]}; {D3[#11]}{D3[#11]}
D4 {C2[#2]}{C4[#1]}; {C2[#8]}{C4[#1]}; {C2[#8]}{D2[#1]}; {C2[#2]}{D2[#5]};

{C2[#1]}{D4[#1]}; {C2[#2]}{D4[#1]}; {C2[#8]}{D4[#1]}; {C4[#1]}{D2[#1]};
{C4[#1]}{D2[#5]}; {C4[#1]}{D4[#1]}; {D2[#1]}{D2[#5]}; {D2[#1]}{D4[#1]};
{D2[#5]}{D4[#1]}; {D4[#1]}{D4[#1]}

D5 {C2[#2]}{C5[#1]}
D6 {C2[#2]}{C6[#1]}; {C2[#6]}{C6[#1]}; {C2[#10]}{D2[#1]}; {C2[#1]}{D3[#11]};

{C2[#2]}{D3[#11]}; {C2[#1]}{D6[#1]}; {C2[#6]}{D6[#1]}; {C3[#1]}{D2[#1]};
{C3[#1]}{D6[#1]}; {C6[#1]}{D2[#1]}; {C6[#1]}{D3[#11]}; {D2[#1]}{D2[#13]};
{D2[#1]}{D3[#11]}; {D2[#1]}{D3[#4]}; {D2[#1]}{D6[#1]}; {D3[#1]}{D3[#11]};
{D3[#11]}{D6[#1]}

T {C2[#1]}{C3[#4]}; {C2[#1]}{T[#1]}; {C3[#4]}{C3[#12]}; {C3[#4]}{D2[#1]};
{C3[#4]}{T[#1]}; {D2[#1]}{T[#1]}; {T[#1]}{T[#1]}

O {C2[#3]}{C3[#4]}; {C2[#3]}{C4[#1]}; {C2[#3]}{D2[#5]}; {C2[#1]}{D3[#4]};
{C2[#3]}{D3[#4]}; {C2[#3]}{D4[#1]}; {C2[#3]}{T[#1]}; {C2[#1]}{O[#1]};
{C2[#3]}{O[#1]}; {C3[#4]}{C4[#1]}; {C3[#4]}{D2[#3]}; {C3[#12]}{D3[#4]};
{C3[#4]}{D4[#1]}; {C3[#4]}{O[#1]}; {C4[#1]}{C4[#2]}; {C4[#1]}{D2[#3]};
{C4[#2]}{D2[#3]}; {C4[#1]}{D3[#4]}; {C4[#2]}{D4[#1]}; {C4[#1]}{T[#1]};
{C4[#1]}{O[#1]}; {D2[#3]}{D2[#5]}; {D2[#3]}{D3[#4]}; {D2[#3]}{D4[#1]};
{D2[#3]}{T[#1]}; {D2[#3]}{O[#1]}; {D3[#4]}{D3[#12]}; {D3[#4]}{D4[#1]};
{D3[#4]}{T[#1]}; {D3[#4]}{O[#1]}; {D4[#1]}{D4[#2]}; {D4[#1]}{O[#1]}; {T[#1]}{O[#1]};
{O[#1]}{O[#1]}

I {C2[#1]}{C3[#7]}; {C2[#1]}{C5[#9]}; {C3[#7]}{C5[#9]}

Setting # Setting orientation matrices $
1 [1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,1.0]
2 [0.0,0.0,1.0][0.0,1.0,0.0][-1.0,0.0,0.0]
3 [0.707107,0.0,0.707107][0.0,1.0,0.0][-0.707107,0.0,0.707107]
4 [0.707107,0.408248,0.577350][-0.707107,0.408248,0.577350][0.0,-

0.816497,0.577350]
5 [0.707107,0.707107,0.0][-0.707107,0.707107,0.0][0.0,0.0,1.0]
6 [1.0,0.0,0.0][0.0,0.0,1.0][0.0,-1.0,0.0]
7 [1.0,0.0,0.0][0.0,0.934172,0.356822][0.0,-0.356822,0.934172]

 98

38

8 [0.0,0.707107,0.707107][0.0,-0.707107,0.707107][1.0,0.0,0.0]
9 [0.850651,0.0,0.525732][0.0,1.0,0.0][-0.525732,0.0,0.850651]
10 [0.0,0.5,0.866025][0.0,-0.866025,0.5][1.0,0.0,0.0]
11 [0.0,-1.0,0.0][1.0,0.0,0.0][0.0,0.0,1.0]
12 [0.707107,-0.408248,0.577350][0.707107,0.408248,-

0.577350][0.0,0.816497,0.577350]
13 [0.5,-0.866025,0.0][0.866025,0.5,0.0][0.0,0.0,1.0]

*Setting numbers are specified in square brackets in the top section as they would be applied to
their respective component point groups, beginning in their canonical orientations. Canonical
orientations are with the unique (highest symmetry) axis along z, with the exception that
symmetry T is set with its underlying D2 symmetry along x, y, and z. In D3, a 2-fold axis is set
along x.
$Rotation matrices in the bottom section are written in rows, with matrix multiplication to occur
on the left, as in multiplying column coordinate vectors.

 99

39

Table S2. Orientational Degeneracies.
Component

Point
Group

Degeneracy Matrices Description

Cn [-1.0,0.0,0.0][0.0,1.0,0.0][0.0,0.0,-1.0] 180° rotation about y

D2 [0.0,0.0,1.0][1.0,0.0,0.0][0.0,1.0,0.0]
[0.0,1.0,0.0][0.0,0.0,1.0][1.0,0.0,0.0]
[-1.0,0.0,0.0][0.0,0.0,1.0][0.0,1.0,0.0]
[0.0,0.0,1.0][0.0,-1.0,0.0][1.0,0.0,0.0]
[0.0,1.0,0.0][1.0,0.0,0.0][0.0,0.0,-1.0]

z, x, y
y, z, x
-x, z, y
z, -y, x
y, x, -z

D3 [0.5,-0.86603,0.0][0.86603,0.5,0.0][0.0,0.0,1.0] 60° rotation about z
D4 [0.707107,0.707107,0.0][-

0.707107,0.707107,0.0][0.0,0.0,1.0]
45° rotation about z

D6 [0.86603,-0.5,0.0][0.5,0.86603,0.0][0.0,0.0,1.0] 30° rotation about z
T [0.0,-1.0,0.0][1.0,0.0,0.0][0.0,0.0,1.0] 90° rotation about z

For a given point group symmetry, this table describes the set of rotations (in addition to axial
rotations for cases of cyclic symmetry) that need to be considered for a protein oligomer of that
symmetry when performing a symmetry-based docking search in order to sample the full space
of allowable orientations. The problem of degeneracies here relates closely to two well-known
problems in crystallography: Cheshire symmetry groups for analyzing equivalent origins, and
merohedral twinning operations. Briefly, in the present case we must analyze rotations that are
not part of the underlying symmetry in question, but which leave the symmetry elements
themselves unaffected. For example, symmetry D2 has 2-fold axes of symmetry along three
perpendicular directions. A rotation by 90 degrees about any axis is not an element of D2
symmetry, yet such an operation results in an indistinguishable configuration of underlying
symmetry elements. Those operations (and others) therefore need to be considered when
sampling the allowable orientation space for a component having D2 symmetry. A precise
mathematical description of the solution is as follows. If G is the underlying point group, let H be
the supergroup of G such that for any element h in H, G is unaffected by a similarity
transformation by h, meaning hGh-1 = G. The required orientation degeneracy matrices are a
traversal (of order |H|/|G|) of the cosets of G in H. In the table above, the identity orientation
matrix is not listed but is understood. Each orientation matrix is written as a set of rows, though
the transpositional sense of the matrices (rows vs columns) is unimportant here. The matrices
are written out in reference frames consistent with their application to component point groups
in their canonical orientations (described in Table S1).

 100

40

Table S3. Master Table of SCMs

Entry

Group

1

Internal dof

(group 1)

Rotational

setting

(group 1)

Translation

dof (group 1)

Group

2

Internal dof

(group 2)

Rotational

setting

(group 2)

Translation dof

(group 2) RESULT Unit cell

Total

degrees

of

freedo

m Ring size

1 C2

r:<0,0,1,a>

t:<0,0,b> 2 <0,0,0> C2

r:<0,0,1,c>

t:<0,0,d> 1 <0,0,0> D2 N/A 4 2

2 C2

r:<0,0,1,a>

t:<0,0,b> 1 <e,0,0> C3 r:<0,0,1,c> 1

<e,0.577350*e,

0> p6

(2*e,

2*e), 120 4 6

3 C2

r:<0,0,1,a>

t:<0,0,b> 2 <0,0,0> C3

r:<0,0,1,c>

t:<0,0,d> 1 <0,0,0> D3 N/A 4 2

4 C2

r:<0,0,1,a>

t:<0,0,b> 6 <e,0,0> C3

r:<0,0,1,c>

t:<0,0,d> 1 <0,0,0> p312

(2*e,

2*e), 120 5 6

5 C2

r:<0,0,1,a>

t:<0,0,b> 1 <0,0,0> C3

r:<0,0,1,c>

t:<0,0,d> 4 <0,0,0> T N/A 4 3

6 C2

r:<0,0,1,a>

t:<0,0,b> 1 <0,e,0> C3

r:<0,0,1,c>

t:<0,0,d> 4 <0,0,0> I213

(4*e, 4*e,

4*e), (90,

90, 90) 5 10

7 C2

r:<0,0,1,a>

t:<0,0,b> 3 <0,0,0> C3

r:<0,0,1,c>

t:<0,0,d> 4 <0,0,0> O N/A 4 4

8 C2

r:<0,0,1,a>

t:<0,0,b> 3 <2*e,e,0> C3

r:<0,0,1,c>

t:<0,0,d> 4 <0,0,0> P4132

(8*e, 8*e,

8*e), (90,

90, 90) 5 10

9 C2

r:<0,0,1,a>

t:<0,0,b> 1 <0,0,0> C3

r:<0,0,1,c>

t:<0,0,d> 7 <0,0,0> I N/A 4 5

10 C2

r:<0,0,1,a>

t:<0,0,b> 1 <e,0,0> C4 r:<0,0,1,c> 1 <0,0,0> p4

(2*e,

2*e), 90 4 4

11 C2

r:<0,0,1,a>

t:<0,0,b> 2 <0,0,0> C4

r:<0,0,1,c>

t:<0,0,d> 1 <0,0,0> D4 N/A 4 2

12 C2

r:<0,0,1,a>

t:<0,0,b> 8 <0,0,0> C4

r:<0,0,1,c>

t:<0,0,d> 1 <e,0,0> p4212

(2*e,

2*e), 90 5 4

13 C2

r:<0,0,1,a>

t:<0,0,b> 3 <0,0,0> C4

r:<0,0,1,c>

t:<0,0,d> 1 <0,0,0> O N/A 4 3

14 C2

r:<0,0,1,a>

t:<0,0,b> 3 <2*e,e,0> C4

r:<0,0,1,c>

t:<0,0,d> 1 <0,0,0> I432

(4*e, 4*e,

4*e), (90,

90, 90) 5 8

15 C2

r:<0,0,1,a>

t:<0,0,b> 2 <0,0,0> C5

r:<0,0,1,c>

t:<0,0,d> 1 <0,0,0> D5 N/A 4 2

16 C2

r:<0,0,1,a>

t:<0,0,b> 1 <0,0,0> C5

r:<0,0,1,c>

t:<0,0,d> 9 <0,0,0> I N/A 4 3

 101

41

17 C2

r:<0,0,1,a>

t:<0,0,b> 1 <e,0,0> C6 r:<0,0,1,c> 1 <0,0,0> p6

(2*e,

2*e), 120 4 3

18 C2

r:<0,0,1,a>

t:<0,0,b> 2 <0,0,0> C6

r:<0,0,1,c>

t:<0,0,d> 1 <0,0,0> D6 N/A 4 2

19 C2

r:<0,0,1,a>

t:<0,0,b> 6 <e,0,0> C6

r:<0,0,1,c>

t:<0,0,d> 1 <0,0,0> p622

(2*e,

2*e), 120 5 4

20 C2

r:<0,0,1,a>

t:<0,0,b> 1 <e,f,0> D2 1 <0,0,0> c222

(4*e,

4*f), 90 4 4

21 C2

r:<0,0,1,a>

t:<0,0,b> 8 <0,0,0> D2 1 <e,0,0> p422

(2*e,

2*e), 90 3 4

22 C2

r:<0,0,1,a>

t:<0,0,b> 2 <0,e,f> D2 5 <0,0,0> I4122

(4*e, 4*e,

8*f), (90,

90, 90) 4 6

23 C2

r:<0,0,1,a>

t:<0,0,b> 10 <0,0,0> D2 1 <e,0,0> p622

(2*e,

2*e), 120 3 3

24 C2

r:<0,0,1,a>

t:<0,0,b> 10 <0,0,e> D2 1 <f,0,0> P6222

(2*f, 2*f,

6*e), (90,

90, 120) 4 6

25 C2

r:<0,0,1,a>

t:<0,0,b> 3 <0,0,0> D2 5 <2*e,0,e> I432

(4*e, 4*e,

4*e), (90,

90, 90) 3 4

26 C2

r:<0,0,1,a>

t:<0,0,b> 3 <-2*e,3*e,0> D2 5 <0,2*e,e> I4132

(8*e, 8*e,

8*e), (90,

90, 90) 3 3

27 C2

r:<0,0,1,a>

t:<0,0,b> 6 <e,0,0> D3 11 <0,0,0> p312

(2*e,

2*e), 120 3 3

28 C2

r:<0,0,1,a>

t:<0,0,b> 2 <0,e,f> D3 1 <0,0,0> R32

(3.4641*e

,

3.4641*e,

3*f), (90,

90, 120) 4 4

29 C2

r:<0,0,1,a>

t:<0,0,b> 1 <e,0,0> D3 11

<e,0.57735*e,0

> p622 (a)

(2*e,

2*e), 120 3 2

30 C2

r:<0,0,1,a>

t:<0,0,b> 2 <0,0,0> D3 11

<e,0.57735*e,0

> p622 (b)

(2*e,

2*e), 120 3 2

31 C2

r:<0,0,1,a>

t:<0,0,b> 2 <0,0,0> D3 11 <e,0.57735*e,f> P6322

(2*e, 2*e,

4*f), (90,

90, 120) 4 4

32 C2

r:<0,0,1,a>

t:<0,0,b> 1 <0,0,0> D3 4 <e,e,e> F4132

(8*e, 8*e,

8*e), (90,

90, 90) 3 3

33 C2

r:<0,0,1,a>

t:<0,0,b> 1 <0,2*e,0> D3 4 <e,e,e> I4132 (a)

(8*e, 8*e,

8*e), (90,

90, 90) 3 2

34 C2

r:<0,0,1,a>

t:<0,0,b> 3 <0,0,0> D3 4 <e,e,e> I432

(4*e, 4*e,

4*e), (90,

90, 90) 3 4

 102

42

35 C2

r:<0,0,1,a>

t:<0,0,b> 3 <0,e,-2*e> D3 4 <e,e,e> I4132 (b)

(8*e, 8*e,

8*e), (90,

90, 90) 3 2

36 C2

r:<0,0,1,a>

t:<0,0,b> 3 <0,e,-2*e> D3 4 <3*e,3*e,3*e> P4132

(8*e, 8*e,

8*e), (90,

90, 90) 3 3

37 C2

r:<0,0,1,a>

t:<0,0,b> 1 <e,0,0> D4 1 <0,0,0> p422 (a)

(2*e,

2*e), 90 3 2

38 C2

r:<0,0,1,a>

t:<0,0,b> 2 <0,e,0> D4 1 <0,0,0> p422 (b)

(2*e,

2*e), 90 3 2

39 C2

r:<0,0,1,a>

t:<0,0,b> 8 <0,e,f> D4 1 <0,0,0> I422

(2*e, 2*e,

4*f), (90,

90, 90) 4 4

40 C2

r:<0,0,1,a>

t:<0,0,b> 3 <0,0,0> D4 1 <0,0,e> P432

(2*e, 2*e,

2*e), (90,

90, 90) 3 3

41 C2

r:<0,0,1,a>

t:<0,0,b> 3 <2*e,e,0> D4 1 <2*e,2*e,0> I432

(4*e, 4*e,

4*e), (90,

90, 90) 3 2

42 C2

r:<0,0,1,a>

t:<0,0,b> 1 <e,0,0> D6 1 <0,0,0> p622 (a)

(2*e,

2*e), 120 3 2

43 C2

r:<0,0,1,a>

t:<0,0,b> 6 <e,0,0> D6 1 <0,0,0> p622 (b)

(2*e,

2*e), 120 3 2

44 C2

r:<0,0,1,a>

t:<0,0,b> 6 <e,0,f> D6 1 <0,0,0> P622

(2*e, 2*e,

2*f), (90,

90, 120) 4 4

45 C2

r:<0,0,1,a>

t:<0,0,b> 1 <e,0,0> T 1 <0,0,0> P23

(2*e, 2*e,

2*e), (90,

90, 90) 3 2

46 C2

r:<0,0,1,a>

t:<0,0,b> 1 <e,e,0> T 1 <0,0,0> F23

(4*e, 4*e,

4*e), (90,

90, 90) 3 3

47 C2

r:<0,0,1,a>

t:<0,0,b> 3 <2*e,3*e,0> T 1 <0,4*e,0> F4132

(8*e, 8*e,

8*e), (90,

90, 90) 3 2

48 C2

r:<0,0,1,a>

t:<0,0,b> 1 <e,0,0> O 1 <0,0,0> P432 (a)

(2*e, 2*e,

2*e), (90,

90, 90) 3 2

49 C2

r:<0,0,1,a>

t:<0,0,b> 1 <e,e,0> O 1 <0,0,0> F432 (a)

(4*e, 4*e,

4*e), (90,

90, 90) 3 2

50 C2

r:<0,0,1,a>

t:<0,0,b> 3 <e,0,0> O 1 <0,0,0> F432 (b)

(2*e, 2*e,

2*e), (90,

90, 90) 3 2

51 C2

r:<0,0,1,a>

t:<0,0,b> 3 <0,e,0> O 1 <0,0,0> P432 (b)

(2*e, 2*e,

2*e), (90,

90, 90) 3 2

 103

43

52 C2

r:<0,0,1,a>

t:<0,0,b> 3 <-e,e,e> O 1 <0,0,0> I432

(4*e, 4*e,

4*e), (90,

90, 90) 3 2

53 C3

r:<0,0,1,a>

t:<0,0,b> 1 <0,0,0> C3 r:<0,0,1,c> 1

<e,0.57735*e,0

> p3

(2*e,

2*e), 120 4 3

54 C3

r:<0,0,1,a>

t:<0,0,b> 4 <0,0,0> C3

r:<0,0,1,c>

t:<0,0,d> 12 <0,0,0> T N/A 4 2

55 C3

r:<0,0,1,a>

t:<0,0,b> 4 <0,0,0> C3

r:<0,0,1,c>

t:<0,0,d> 12 <e,0,0> P213

(2*e, 2*e,

2*e), (90,

90, 90) 5 5

56 C3

r:<0,0,1,a>

t:<0,0,b> 4 <0,0,0> C4

r:<0,0,1,c>

t:<0,0,d> 1 <0,0,0> O N/A 4 2

57 C3

r:<0,0,1,a>

t:<0,0,b> 4 <0,0,0> C4

r:<0,0,1,c>

t:<0,0,d> 1 <e,0,0> F432

(2*e, 2*e,

2*e), (90,

90, 90) 5 6

58 C3

r:<0,0,1,a>

t:<0,0,b> 7 <0,0,0> C5

r:<0,0,1,c>

t:<0,0,d> 9 <0,0,0> I N/A 4 2

59 C3

r:<0,0,1,a>

t:<0,0,b> 1

<e,0.57735*e

,0> C6 r:<0,0,1,c> 1 <0,0,0> p6

(2*e,

2*e), 120 4 2

60 C3

r:<0,0,1,a>

t:<0,0,b> 1

<e,0.57735*e

,0> D2 1 <e,0,0> p622

(2*e,

2*e), 120 3 2

61 C3

r:<0,0,1,a>

t:<0,0,b> 4 <0,0,0> D2 1 <e,0,0> P23

(2*e, 2*e,

2*e), (90,

90, 90) 3 3

62 C3

r:<0,0,1,a>

t:<0,0,b> 4 <0,0,0> D2 3 <e,0,e> F432

(4*e, 4*e,

4*e), (90,

90, 90) 3 3

63 C3

r:<0,0,1,a>

t:<0,0,b> 4 <0,0,0> D2 3 <2*e,e,0> I4132

(8*e,8*e,

8*e), (90,

90, 90) 3 2

64 C3

r:<0,0,1,a>

t:<0,0,b> 1

<e,0.57735*e

,0> D3 11 <0,0,0> p312

(2*e,

2*e), 120 3 2

65 C3

r:<0,0,1,a>

t:<0,0,b> 1

<e,0.57735*e

,0> D3 1 <0,0,0> p321

(2*e,

2*e), 120 3 2

66 C3

r:<0,0,1,a>

t:<0,0,b> 12 <4*e,0,0> D3 4 <3*e,3*e,3*e> P4132

(8*e, 8*e,

8*e), (90,

90, 90) 3 4

67 C3

r:<0,0,1,a>

t:<0,0,b> 4 <0,0,0> D4 1 <0,0,e> P432

(2*e, 2*e,

2*e), (90,

90, 90) 3 2

68 C3

r:<0,0,1,a>

t:<0,0,b> 1

<e,0.57735*e

,0> D6 1 <0,0,0> p622

(2*e,

2*e), 120 3 2

69 C3

r:<0,0,1,a>

t:<0,0,b> 4 <e,0,0> T 1 <0,0,0> F23

(2*e, 2*e,

2*e), (90,

90, 90) 3 2

 104

44

70 C3

r:<0,0,1,a>

t:<0,0,b> 4 <e,0,0> O 1 <0,0,0> F432

(2*e, 2*e,

2*e), (90,

90, 90) 3 2

71 C4

r:<0,0,1,a>

t:<0,0,b> 1 <0,0,0> C4 r:<0,0,1,c> 1 <e,e,0> p4

(2*e,

2*e), 90 4 2

72 C4

r:<0,0,1,a>

t:<0,0,b> 1 <0,0,0> C4

r:<0,0,1,c>

t:<0,0,d> 2 <0,e,e> P432

(2*e, 2*e,

2*e), (90,

90, 90) 5 4

73 C4

r:<0,0,1,a>

t:<0,0,b> 1 <0,0,0> D2 1 <e,0,0> p422

(2*e,

2*e), 90 3 2

74 C4

r:<0,0,1,a>

t:<0,0,b> 1 <e,0,0> D2 5 <0,0,0> p4212

(2*e,

2*e), 90 3 2

75 C4

r:<0,0,1,a>

t:<0,0,b> 2 <0,0,0> D2 3 <2*e,e,0> I432

(4*e, 4*e,

4*e), (90,

90, 90) 3 2

76 C4

r:<0,0,1,a>

t:<0,0,b> 1 <0,0,0> D2 3 <e,0,e> F432

(4*e, 4*e,

4*e), (90,

90, 90) 3 3

77 C4

r:<0,0,1,a>

t:<0,0,b> 1 <0,0,0> D3 4 <e,e,e> I432

(4*e, 4*e,

4*e), (90,

90, 90) 3 2

78 C4

r:<0,0,1,a>

t:<0,0,b> 1 <e,e,0> D4 1 <0,0,0> p422

(2*e,

2*e), 90 3 2

79 C4

r:<0,0,1,a>

t:<0,0,b> 2 <0,0,0> D4 1 <e,e,0> P432

(2*e, 2*e,

2*e), (90,

90, 90) 3 2

80 C4

r:<0,0,1,a>

t:<0,0,b> 1 <0,0,0> T 1 <e,e,e> F432

(4*e, 4*e,

4*e), (90,

90, 90) 3 2

81 C4

r:<0,0,1,a>

t:<0,0,b> 1 <e,e,0> O 1 <0,0,0> P432

(2*e, 2*e,

2*e), (90,

90, 90) 3 2

82 C6

r:<0,0,1,a>

t:<0,0,b> 1 <0,0,0> D2 1 <e,0,0> p622

(2*e,

2*e), 120 3 2

83 C6

r:<0,0,1,a>

t:<0,0,b> 1 <0,0,0> D3 11

<e,0.57735*e,0

> p622

(2*e,

2*e), 120 2 2

84 D2 1 <0,0,0> D2 1 <e,f,0> p222

(2*e,

2*f), 90 2 2

85 D2 1 <0,0,0> D2 1 <e,f,g> F222

(4*e, 4*f,

4*g), (90,

90, 90) 3 3

86 D2 1 <e,0,0> D2 5 <0,0,f> P4222

(2*e, 2*e,

4*f), (90,

90, 90) 2 2

87 D2 1 <e,0,0> D2 13 <0,0,-f> P6222

(2*e, 2*e,

6*f), (90,

90, 120) 2 2

 105

45

88 D2 3 <0,e,2*e> D2 5 <0,2*e,e> P4232

(4*e, 4*e,

4*e), (90,

90, 90) 1 2

89 D2 1 <e,0,0> D3 11

<e,0.57735*e,0

> p622

(2*e,

2*e), 120 1 1

90 D2 1 <e,0,0> D3 11 <e,0.57735*e,f> P622

(2*e, 2*e,

2*f), (90,

90, 120) 2 2

91 D2 1 <0,0,2*e> D3 4 <e,e,e> P4232

(4*e, 4*e,

4*e), (90,

90, 90) 1 2

92 D2 3 <2*e,e,0> D3 4 <e,e,e> I4132

(8*e, 8*e,

8*e), (90,

90, 90) 1 1

93 D2 1 <e,0,0> D4 1 <0,0,0> p422

(2*e,

2*e), 90 1 1

94 D2 1 <e,0,f> D4 1 <0,0,0> P422

(2*e, 2*e,

2*f), (90,

90,90) 2 2

95 D2 5 <e,0,f> D4 1 <0,0,0> I422

(2*e, 2*e,

4*f), (90,

90,90) 2 2

96 D2 3 <0,e,2*e> D4 1 <0,0,2*e> I432

(4*e, 4*e,

4*e), (90,

90, 90) 1 1

97 D2 1 <e,0,0> D6 1 <0,0,0> p622

(2*e,

2*e), 120 1 1

98 D2 1 <e,0,f> D6 1 <0,0,0> P622

(2*e, 2*e,

2*f), (90,

90, 120) 2 2

99 D2 1 <e,0,0> T 1 <0,0,0> P23

(2*e, 2*e,

2*e), (90,

90, 90) 1 1

100 D2 1 <e,e,0> T 1 <0,0,0> P23

(2*e, 2*e,

2*e), (90,

90, 90) 1 2

101 D2 3 <e,0,e> T 1 <e,e,e> F432

(4*e, 4*e,

4*e), (90,

90, 90) 1 1

102 D2 3 <2*e,e,0> T 1 <0,0,0> P4232

(4*e, 4*e,

4*e), (90,

90, 90) 1 2

103 D2 3 <e,0,e> O 1 <0,0,0> F432

(4*e, 4*e,

4*e), (90,

90, 90) 1 1

104 D2 3 <2*e,e,0> O 1 <0,0,0> I432

(4*e, 4*e,

4*e), (90,

90, 90) 1 2

 106

46

105 D3 11 <0,0,0> D3 11

<e,0.57735*e,0

> p312

(2*e,

2*e), 120 1 1

106 D3 11 <0,0,0> D3 11 <e,0.57735*e,f> P312

(2*e, 2*e,

2*f), (90,

90, 120) 2 2

107 D3 1 <0,0,0> D3 11 <e,0.57735*e,f> P6322

(2*e, 2*e,

4*f), (90,

90, 120) 2 2

108 D3 4 <e,e,e> D3 12 <e,3*e,e> P4232

(4*e, 4*e,

4*e), (90,

90, 90) 1 2

109 D3 4

<3*e,3*e,3*e

> D3 12 <e,3*e,5*e> P4132

(8*e, 8*e,

8*e), (90,

90, 90) 1 1

110 D3 4 <e,e,e> D4 1 <0,0,2*e> I432

(4*e, 4*e,

4*e), (90,

90, 90) 1 2

111 D3 11

<e,0.57735*e

,0> D6 1 <0,0,0> p622

(2*e,

2*e), 120 1 1

112 D3 11

<e,0.57735*e

,f> D6 1 <0,0,0> P622

(2*e, 2*e,

2*f), (90,

90, 120) 2 2

113 D3 4 <e,e,e> T 1 <0,0,0> F4132

(8*e, 8*e,

8*e), (90,

90, 90) 1 1

114 D3 4 <e,e,e> O 1 <0,0,0> I432

(4*e, 4*e,

4*e), (90,

90, 90) 1 1

115 D4 1 <0,0,0> D4 1 <e,e,0> p422

(2*e,

2*e), 90 1 1

116 D4 1 <0,0,0> D4 1 <e,e,f> P422

(2*e, 2*e,

2*f), (90,

90,90) 2 2

117 D4 1 <0,0,e> D4 2 <0,e,e> P432

(2*e, 2*e,

2*e), (90,

90, 90) 1 1

118 D4 1 <0,0,e> O 1 <0,0,0> P432

(2*e, 2*e,

2*e), (90,

90, 90) 1 1

119 D4 1 <e,e,0> O 1 <0,0,0> P432

(2*e, 2*e,

2*e), (90,

90, 90) 1 1

120 T 1 <0,0,0> T 1 <e,e,e> F23

(4*e, 4*e,

4*e), (90,

90, 90) 1 1

121 T 1 <0,0,0> T 1 <e,0,0> F23

(2*e, 2*e,

2*e), (90,

90, 90) 1 1

 107

47

122 T 1 <e,e,e> O 1 <0,0,0> F432

(4*e, 4*e,

4*e), (90,

90, 90) 1 1

123 O 1 <0,0,0> O 1 <e,e,e> P432

(2*e, 2*e,

2*e), (90,

90, 90) 1 1

124 O 1 <0,0,0> O 1 <e,0,0> F432

(2*e, 2*e,

2*e), (90,

90, 90) 1 1

* Parenthetical a and b values in the Results column are used to disambiguate rare cases where
the component symmetries and coordination numbers do not uniquely identify an SCM.
The table is available in readable csv format as Dataset 1.

 108

48

Supplementary Figures

Supplementary Figure S1. Two examples (of essentially countless possibilities) where symmetry
combinations are disallowed for compact shapes but mathematically allowed for elongated,
interwoven shapes. (A) C2 combined with C3 with coincident axes to give C6, C6:{C2}{C3}. (top)
Compact shapes are incompatible with this symmetry combination; collisions ensue. (bottom)
Interweaving shows that the combination is mathematically allowable. (B) C6 combined with C6
with parallel axes to give layer symmetry p6, p6:{C6}{C6}. Compact hexamers of the two types
collide immediately. Interweaving shows that the combination is mathematically allowable (12).

 109

49

Supplementary Figure S2. Illustration and demonstration of constructability of the class of finite
symmetry materials possible by combinations of two point symmetries. The corresponding
symmetry combination types, indexed by their appearance in the master SCM table, are as
follows:
D2:{C2}{C2}; D3:{C2}{C3}; T:{C2}{C3}; O:{C2}{C3};
I:{C2}{C3}; D4:{C2}{C4}; O:{C2}{C4}; D5:{C2}{C5};
I:{C2}{C5}; D6:{C2}{C6}; T:{C3}{C3}; O:{C3}{C4}; I:{C3}{C5}
An infinite set of dihedral types are of course possible but are not included here. The set shown
is restricted to components useful for building higher symmetries, i.e. cubic, icosahedral, or
extended materials in two or three dimensions. Dn with n > 6 is therefore excluded. Files for 3D
visualization are provided at (https://people.mbi.ucla.edu/yeates/SCM_files/)

 110

50

 111

51

Supplementary Figure S3. Illustration and demonstration of constructability of the class of 2D
layer symmetries possible by combinations of two point symmetries. The corresponding
symmetry combination types, indexed by their appearance in the master SCM table, are as
follows:
p6:{C2}{C3}; p312:{C2}{C3}; p4:{C2}{C4}; p4212:{C2}{C4};
p6:{C2}{C6}; p622:{C2}{C6}; c222:{C2}{D2}; p422:{C2}{D2};
p622:{C2}{D2}; p312:{C2}{D3}; p622:{C2}{D3}; p622:{C2}{D3};
p422:{C2}{D4}; p422:{C2}{D4}; p622:{C2}{D6}; p622:{C2}{D6};
p3:{C3}{C3}; p6:{C3}{C6}; p622:{C3}{D2}; p312:{C3}{D3};
p321:{C3}{D3}; p622:{C3}{D6}; p4:{C4}{C4}; p422:{C4}{D2};
p4212:{C4}{D2}; p422:{C4}{D4}; p622:{C6}{D2}; p622:{C6}{D3};
p222:{D2}{D2}; p622:{D2}{D3}; p422:{D2}{D4}; p622:{D2}{D6};
p312:{D3}{D3}; p622:{D3}{D6}; p422:{D4}{D4}
Files for 3D visualization are provided at (https://people.mbi.ucla.edu/yeates/SCM_files/)

 112

52

 113

53

 114

54

Supplementary Figure S4. Illustration and demonstration of constructability of the class of 3D
crystal symmetries possible by combinations of two point symmetries. The corresponding
symmetry combination types, indexed by their appearance in the master SCM table, are as
follows:
I213:{C2}{C3}; P4132:{C2}{C3}; I432:{C2}{C4}; I4122:{C2}{D2};
P6222:{C2}{D2}; I432:{C2}{D2}; I4132:{C2}{D2}; R32:{C2}{D3};
P6322:{C2}{D3}; F4132:{C2}{D3}; I4132:{C2}{D3}; I432:{C2}{D3};
I4132:{C2}{D3}; P4132:{C2}{D3}; I422:{C2}{D4}; P432:{C2}{D4};
I432:{C2}{D4}; P622:{C2}{D6}; P23:{C2}{T}; F23:{C2}{T};
F4132:{C2}{T}; P432:{C2}{O}; F432:{C2}{O}; F432:{C2}{O};
P432:{C2}{O}; I432:{C2}{O}; P213:{C3}{C3}; F432:{C3}{C4};
P23:{C3}{D2}; F432:{C3}{D2}; I4132:{C3}{D2}; P4132:{C3}{D3};
P432:{C3}{D4}; F23:{C3}{T}; F432:{C3}{O}; P432:{C4}{C4};
I432:{C4}{D2}; F432:{C4}{D2}; I432:{C4}{D3}; P432:{C4}{D4};
F432:{C4}{T}; P432:{C4}{O}; F222:{D2}{D2}; P4222:{D2}{D2};
P6222:{D2}{D2}; P4232:{D2}{D2}; P622:{D2}{D3}; P4232:{D2}{D3};
I4132:{D2}{D3}; P422:{D2}{D4}; I422:{D2}{D4}; I432:{D2}{D4};
P622:{D2}{D6}; P23:{D2}{T}; P23:{D2}{T}; F432:{D2}{T};
P4232:{D2}{T}; F432:{D2}{O}; I432:{D2}{O}; P312:{D3}{D3};
P6322:{D3}{D3}; P4232:{D3}{D3}; P4132:{D3}{D3}; I432:{D3}{D4};
P622:{D3}{D6}; F4132:{D3}{T}; I432:{D3}{O}; P422:{D4}{D4};
P432:{D4}{D4}; P432:{D4}{O}; P432:{D4}{O}; F23:{T}{T};
F23:{T}{T}; F432:{T}{O}; P432:{O}{O}; F432:{O}{O}
Files for 3D visualization are provided at (https://people.mbi.ucla.edu/yeates/SCM_files/)

 115

55

Supplementary Figure S5. Example of a design with a large ring size. I213:{C2}x{C3}, marble
view (left), network view (right) has a ring size of 10.

 116

56

Supplementary Figure S6. Detailed construction protocol for example SCM F432:{C4}{D2}
according to specifications in Table S3. Computational loops corresponding to search degrees of
freedom (of which there are 3 in this case) are emphasized in red. This example case expands on
the middle panel of Figure 2 (main text). Each of the 124 SCM entries in Table S3 can be
interpreted in similar fashion.

 117

57

Supplementary Figure S7. Decision flowchart showing how the relative arrangement of
symmetry elements of the component symmetry groups of the two oligomers dictates the spatial
dimensionality of the resulting SCM materials. Ai and Bj denote symmetry elements of the
component point group symmetries A and B. C denotes the point group symmetry generated by
the point groups underlying A and B. A symmetry is isotropic in the plane iff there is an axis of
symmetry of higher order than 2 perpendicular to the plane. Outcomes are colored to match the
multiplication table (Table 1 main text) for SCMs.

Dataset S1. Data table for construction parameterization of all SCMs (csv file).

Dataset S2. Pseudocode for all SCM constructions (text file).

 118

58

References

1. J. E. Padilla, C. Colovos, T. O. Yeates, Nanohedra: Using symmetry to design self assembling

protein cages, layers, crystals, and filaments. Proc. Natl. Acad. Sci. 98, 2217–2221 (2001).

2. J. C. Sinclair, K. M. Davies, C. Vénien-Bryan, M. E. M. Noble, Generation of protein lattices

by fusing proteins with matching rotational symmetry. Nat. Nanotechnol. 6, 558–562

(2011).

3. H. Garcia-Seisdedos, C. Empereur-Mot, N. Elad, E. D. Levy, Proteins evolve on the edge of

supramolecular self-assembly. Nature 548, 244–247 (2017).

4. H. Shen, et al., De novo design of self-assembling helical protein filaments. Science 362,

705–709 (2018).

5. E. H. Egelman, et al., Structural Plasticity of Helical Nanotubes Based on Coiled-Coil

Assemblies. Structure 23, 280–289 (2015).

6. M. J. Pandya, et al., Sticky-End Assembly of a Designed Peptide Fiber Provides Insight into

Protein Fibrillogenesis. Biochemistry 39, 8728–8734 (2000).

7. N. L. Ogihara, et al., Design of three-dimensional domain-swapped dimers and fibrous

oligomers. Proc. Natl. Acad. Sci. 98, 1404–1409 (2001).

8. C. J. Tsai, R. Nussinov, A unified convention for biological assemblies with helical

symmetry. Acta Crystallogr. D Biol. Crystallogr. 67, 716–728 (2011).

9. K. A. Cannon, V. N. Nguyen, C. Morgan, T. O. Yeates, Design and Characterization of an

Icosahedral Protein Cage Formed by a Double-Fusion Protein Containing Three Distinct

Symmetry Elements. ACS Synth. Biol. 9, 517–524 (2020).

10. Dey, S., Ritchie, D. & Levy, E. PDB-wide identification of biological assemblies from conserved

quaternary structure geometry. Nat Methods 15, 67–72 (2018).

 https://doi.org/10.1038/nmeth.4510

11. M. O’Keeffe, M. A. Peskov, S. J. Ramsden, O. M. Yaghi, The Reticular Chemistry Structure
Resource (RCSR) Database of, and Symbols for, Crystal Nets. Acc. Chem. Res. 41, 1782–
1789 (2008).

12. T. O. Yeates, Geometric Principles for Designing Highly Symmetric Self-Assembling Protein

Nanomaterials. Annu. Rev. Biophys. 46, 23–42 (2017).

 119

CHAPTER 4

A fragment-based protein interface docking algorithm for

symmetric assemblies

 120

A Fragment-Based Protein Interface Design Algorithm for Symmetric Assemblies

Joshua Laniado, Kyle Meador and Todd O. Yeates

UCLA Department of Chemistry and Biochemistry
UCLA DOE Institute for Genomics and Proteomics

UCLA Molecular Biology Institute

Keywords:
protein design; symmetry; docking; self-assembly; secondary structure; protein interfaces;
algorithms

 121

INTRODUCTION

A range of emerging bionanotechnology applications rely on designing protein molecules

to bind and associate with each other in a geometrically specific fashion. Among such

applications, those aimed at creating novel, self-assembling symmetric architectures, such as

protein cages and extended protein arrays, place especially strict demands on achieving

atomically precise associations. When such precision can be achieved by design, diverse protein-

based materials with tailored spatial and biochemical properties can be produced. As examples,

cubic and icosahedral protein cages 1–6, as well as extended protein arrays 7–10, are finding wide

ranging uses as biotherapeutics (e.g. for vaccines) 11–13, as scaffolds for enzyme organization or

atomic imaging 14–17, and as nanoscale containers for molecular encapsulation and delivery 18,19.

Owing to their complexity, as well as our incomplete understanding of their behavior,

protein molecules present challenging subjects for design. In protein engineering studies, these

challenges often manifest through unpredictable outcomes from mutagenesis, frequently

leading to proteins that are prone to misfolding and aggregation. Improved computational

methods are addressing those challenges, making it increasingly feasible to mutate the surface

of two suitably chosen proteins to create a binding interface between them 20,21. Similar goals

are being reached using de novo polypeptides as components 22,23. Yet, despite exciting progress,

relatively low success rates are still common in application areas where precision and

predictability are essential, generally requiring many design trials to achieve a smaller number of

correctly assembling protein designs.

 122

A general view on the current challenges in designing novel protein-protein interfaces is

that computational methods do not necessarily generate (prospective) interfaces that mimic

native protein-protein interfaces 24. The difficulty of the task is heightened in design problems

where additional spatial constraints must be met, beyond those required simply for binding. For

the design of symmetric cages and regular arrays, for instance, the novel interface must bring the

two component proteins together under exacting rules of symmetry; e.g., if each component is

part of a naturally symmetric oligomer, then the interface must cause the symmetry axes of the

separate components to intersect at a precisely prescribed angle. Such complex constraints

confound the problem of designing optimal, native-like interfaces.

In addressing the problem of interface design in the context of symmetric assembly, the

strategy introduced by King 2 prioritized the symmetric constraint part of the problem. There,

oligomeric building blocks were docked by systematically sampling the rigid body degrees of

freedom allowed by the point symmetry of the target assembly. As a result of the high

dimensionality search space and the large number of different component oligomers considered

for docking, a rapid first-pass scoring was used to identify configurations that were potentially

suitable for design: the number of beta-carbon contacts between the docked oligomeric building

blocks. Naturally, only a minute fraction of candidate poses chosen under such coarse criteria

present interfaces that are similar in atomic detail to those from natural protein-protein

complexes. Subsequent amino acid sequence design and additional filtering steps were required

to identify interfaces that might exhibit native-like properties. Newer protocols have shown the

value of considering known residue pair interactions during docking 25 and prioritizing interfacial

hydrogen bonding during sequence design 5,26.

 123

Recent exercises in protein design have begun to prioritize the consideration of secondary

structure motifs and the atomic details of how they tend to associate in native proteins 27. The

expansive database of known protein structures provides valuable empirical frameworks for

evaluating designed proteins in terms of secondary structure motifs. For instance, threading

helical fragments together produces novel fold topologies that retain features of observed

tertiary motifs 28,29. Further, sequence design using statistical models of tertiary structure

segments has competed with or outperformed physicochemical energy functions in routine

design tasks 30. The growing focus on secondary structure associations motivates an attempt to

bring those principles to bear on the class of design problems related to symmetry-based

assemblies.

Here we describe algorithms and software that expand fragment-based design

methodologies to symmetric docking applications – e.g. cubic cages and extended protein arrays.

Our new program is parameterized to exploit recent theoretical work articulating the geometric

rules for designing wide ranging nanoscale materials built from combinations of oligomeric

protein components – i.e. symmetry combination materials (SCMs) 31. Strategic choices are

discussed for program optimization based on fragment-based lookup tables and separation of

rotational vs translational subspace searches. Prospective novel designs are discussed, along

with a retrospective analysis of successfully designed protein cages.

RESULTS

Docking under symmetry constraints

 124

The goal of the program developed here was to enable fragment-based docking for the

design of self-assembling materials based on the principles of combined symmetries. The

essential idea for building highly symmetric materials from simpler protein oligomers was

described by Padilla et al. 1, with diverse variations demonstrated in recent years 3,4,6,32. A

complete articulation of all possible SCMs was recently completed 31. In addition to various cage

types based on the Platonic solids, 35 kinds of 2-D arrays and 76 kinds of 3-D arrays were

identified as targets possible for design. Each of the 124 SCMs presents a different set of rigid

body constraints, and complementary rigid body degrees of freedom, for sampling allowable

arrangements of the two oligomers to be docked. For the present work, we have integrated the

design rules for all possible SCMs within a new program, Nanohedra.

We developed a general docking framework applicable to all SCMs that performs a search

over multiple rigid body degrees of freedom relating two oligomeric building blocks (Fig. 1). The

number of degrees of freedom depends on the symmetric system being constructed, ranging

from a minimum of 1 to a maximum of 5 31. Exploiting advantages of pre-calculation methods,

we were able to factor the search problem for all scenarios into a search over rotational degrees

of freedom (for cases where they exist), followed by direct calculation of optimal translational

values by linear algebra methods, thereby avoiding the need to explicitly search translational

degrees of freedom for each rotation. Identifying favorable docking arrangements within the

allowable rigid body search space is made possible by precomputing common protein-protein

fragment configurations from known structural data.

 125

Fig. 1 Scheme illustrating two major aspects of the Nanohedra program for designing symmetry combination
materials (SCMs) from two oligomeric protein components. The top panel shows examples of two SCM types (of 124
types possible), focusing on the geometric rules that must be satisfied when bringing the two different oligomeric
components into specific contact. In each case, the red arrows indicate the rigid body degrees of freedom available,
which must be explored computationally in a search for favorable docking configurations that would be amenable
to amino acid sequence design at the emergent protein-protein interface. Nanohedra encodes the specific rigid body
parameterization required for constructing all 124 SCM types 31. The bottom panel highlights the use of protein
fragment pair libraries as the essential feature for selecting favorable design poses for subsequent interface design.
This allows Nanohedra to generate native-like interfacial backbone arrangements for design. Program operation is

C4 C3 D4
C2

54.7°
135°

O:{C3}{C4} p422:{C2}{D4}

, , . . .

Sy
m

m
et

ry
-re

st
ric

te
d

rig
id

 b
od

y
se

ar
ch

 sp
ac

e

rigid body parameterization for 124 different
symmetric combination materials (SCM)

Fr
ag

m
en

t-b
as

ed
 d

oc
ki

ng
 co

m
pa

ris
on oligomer 1 oligomer 2

search over allowed
rigid body rotational
space (d = 0 to 2)

solve (within linear
subspace) for optimal
translation between
fragments

score for overlap between
surface fragments of
oligomer 2 and ghost
fragments of oligomer 1

fragment
pair

database

vs

‘ghost’
fragments

surface
fragments

fra
gm

en
t m

at
ch

 126

made computationally tractable through various pre-calculation schemes. One of these involves the decoration of
the first oligomer with ‘ghost fragments’ (based on a library of favorable fragment pair configurations), after which
the search for suitable docking poses is reduced to a problem of identifying allowable oligomeric arrangements
wherein surface fragments belonging to oligomer 2 overlap closely with ghost fragments covering oligomer 1.

Fragment-based elements

Focusing on short segments of protein structure makes it possible to reduce

computational complexity with lookup or ‘hash’ tables. To this end, we chose to categorize local

protein structure using five residue fragments. Heuristically, a segment of five residues is long

enough to capture secondary structures types, including alpha helical and beta strand

conformations, as well as loop structures, while being short enough to capture the allowable

space of conformations with acceptable precision and coverage using a tractable number of

representatives. Using a curated set of known protein-protein interfaces (see Methods), we

computed the most highly represented fragment types found at interfaces using nearest

neighbor clustering of carbon-alpha rmsd of each candidate fragment. We experimented with

different similarity cutoff criteria, and settled on a 0.75 Å cluster inclusion limit which maximized

fragment coverage, while ensuring stringent constraints on backbone geometry.

As expected, different fragment clusters were populated to different degrees; those

representing canonical alpha helical and beta strand conformations were much more densely

populated than those representing different loop conformations, or cases where regular

secondary structure transitioned into loops. The top five clusters were sufficient to represent

61.4% of the candidate fragments; with the highest observed cluster corresponding to an alpha

helical conformation, followed by a beta strand conformation then three loop or turn

conformations. Rather than considering a larger number of individual fragment conformations,

 127

we retained a relatively small number at this stage of the analysis in order to maximize statistical

power in subsequent steps describing diverse 3-D spatial associations between pairs of the

fragment cluster types.

Following individual fragment clustering, a paired fragment-fragment clustering

procedure was applied to inter-protein contacts from the same protein-protein interface set. This

problem was simplified by a form of coordinate reduction. A set of three ‘guide coordinates’,

built on the C-alpha atom of the central residue of the 5-residue fragment (Fig. S1), was

associated with the representative fragment from each individual fragment cluster (see

Methods); note that three x,y,z coordinates (nine variables) are sufficient to specify six

dimensional rigid body orientation and position in three-dimensional space. This provided a

generalized scheme for next analyzing the relative spatial arrangement between fragment-

fragment pairs. Briefly, for every instance where a 5-residue fragment (type i) from one protein

was found in spatial contact with a 5-residue fragment (type j) from another protein, each

fragment in the i,j pair is assigned to one of the 5 individual fragment types. This allows placement

of the representatives’ guide coordinates onto the coordinate frame of the observed fragment

pair. The guide coordinate pairing was then transformed to put the i guide coordinate set in a

canonical setting (i.e. at the origin with internal axes along principle directions). The resulting

coordinates of the j guide coordinate set are then stored, providing a full representation of the

relative spatial arrangement of that instance of an i,j fragment pair. The j guide coordinates sets

were used as the basis for a final nearest neighbors clustering step where the resulting cluster

index, k, represents the different spatial modes in which the specific i,j fragment pairs tend to

organize (Fig. 2). Clustering at this pairwise stage was based on a relatively strict similarity

 128

criterion (1 Å guide coordinate rmsd). In that way we were able to establish separate

conformational and amino acid preferences for relatively finely discriminated fragment-fragment

arrangements. The resulting data structure is a triplet of (i,j,k) indices, each carrying a 9-

dimensional coordinate point that captures a frequently observed spatial relationship k, between

a specific i,j fragment pair type. In addition, owing to the cartesian nature of the embedding, a

9x9 covariance matrix (nearly though not strictly obeying rank 6) provides a quadratic description

of the spatial variation for the given i,j,k fragment pair cluster. Observed central residue amino

acid frequencies are also stored for each i,j,k cluster and can be used to guide subsequent

sequence design steps. Ultimately, a total of 97,935 i,j fragment pairs from observed structures

were grouped into 4,530 i,j,k clusters specifying geometrically defined 3-D fragment associations.

 129

Fig. 2 Interface fragment database. For each of the 25 i,j fragment pair possibilities, a single representative i fragment
is shown in grey and a subset of cluster representatives of the top 20 most populated clusters are shown in color for
the spatially clustered j fragments. N-termini are marked with black spheres. The total number of unique i,j clusters
is indicated in the top left corner of each frame.

Precoating by ‘ghost fragments’

Having established common fragment pairing conformations in advance enables a pre-

calculation protocol with important computational time savings. As a set-up to docking trials

between two oligomers, one of the component oligomers (the first oligomer) is decorated with

a large set of prospective ‘ghost fragments’ (Fig. S2 and Methods). These ghost fragments

represent preferred interaction potentials based on the orientation of the fragments on the

surface of the first oligomer. The precalculated database of representative i,j,k fragment pairs

297 426 430 286 186

442 130 124 209 107

432 112 118 55 43

268 199 52 140 49

187 102 41 48 47

J1 J2 J3 J4 J5

I3

I5

I4

I2

I1

 130

described previously serves as the source for constructing this set of ghost fragments. This ghost

fragment set is intended to be inclusive for essentially all backbone configurations of the second

oligomer that might comprise frequently observed interactions with the first. Depending on the

size of the first protein, the ghost fragments may number in the thousands. Once the ghost

fragment set is calculated, the subsequent fragment-based docking scheme is reduced to a

problem of identifying orientations which might bring surface fragments of the second oligomer

into near coincidence with the ghost fragments decorating the first.

Solving for translation

The outer loop of the docking calculations applies candidate rotation values to the two

oligomers, if those degrees of freedom exist. The symmetric construction schemes for SCMs

provide a maximum of one degree of rotational freedom for each component oligomer (e.g.

about the unique symmetry axis of a cyclic oligomer). For each choice of rotational values for the

two oligomers, a calculation is performed to test which of the possible pairs of fragments (chosen

from the surface fragments of 2 and the ghost fragments of 1) are in nearly equivalent

orientations, as would be required for near-overlap under any choice of translation. This step

involves a large number of possible fragment pairs to be considered, as well as somewhat

complex numerical calculations for orientation comparisons. We found it critical to shorten this

calculation with further pre-calculation methods and hash tables. We assign each fragment

(based on its guide coordinates) to a set of three Euler angles describing its orientation, with the

Euler angles discretized into 10° bins. With a triplet of orientation indices assigned to each

fragment, we are able to look up in a precalculated 6-dimensional Boolean (true/false) table

 131

whether or not the sets of triplets assigned to the two fragments are within a prescribed angular

discrepancy (with an accuracy of roughly 10°).

The steps described above rapidly identify pairs of fragments (a surface fragment of

oligomer 2 and a ghost fragment surrounding oligomer 1) that could be nearly coincident under

the chosen orientation values and some translational values between the oligomers. It is critical

however that the translational relationships conform to those that are prescribed by the

particular symmetry rules of the SCM being constructed. Some SCM types have 3 translational

degrees of freedom while some have as few as 1. Importantly, our program encodes those

translational restrictions for all SCM types, based on tables provided in Laniado and Yeates 31. For

every pair of candidate fragments that have compatible orientations, our program calculates the

optimal translation for overlap, within the allowable space of rigid body translations for the given

SCM type. We then store the translational parameters for cases where the rmsd for the optimal

overlap is within a prescribed cutoff (e.g. 1 Å).

Ultimately, a suitable docking arrangement between the oligomers is one where multiple

candidate fragment pairs could be brought into near coincidence for the same (or highly similar)

choices of the rotational and translational parameters. For fastest performance we found it

efficacious to perform the docking analysis in a rapid first pass over a smaller set of candidate

fragment pairs (e.g. requiring at least one helix-helix association), followed by a subsequent pass

wherein the translational values established in the first pass restricted consideration of

subsequent fragment pairs.

We found the procedures described above critical for reducing the CPU times to levels

that were compatible with docking large sets of candidate oligomer pairs. Other approaches

 132

could also be considered, though we emphasize that procedures that might appear beneficial for

certain kinds of symmetric construction choices are sometimes problematic for other types of

constructions, e.g. depending on the types and numbers of the rigid body degrees of freedom.

The system we developed applies universally to all 124 SCM types.

Heuristic scoring

For each pose, a Nanohedra score is calculated based on the collection of favorable

fragment pairs identified, with the goal of evaluating how well the docked interface is supported

by the underlying fragment observations. To compute the Nanohedra score, for each instance

where a favorable surface fragment and ghost fragment pair has been identified, a similarity

score (z) is first calculated by dividing the rmsd obtained between the surface and ghost

fragments by the mean rmsd for member fragments comprising the ghost fragment’s cluster

(precalculated during fragment database creation), with a low value of z indicating a close

similarity. If the z-score is less than a prescribed threshold value (e.g. 2), the inverse of 1 plus the

squared z-score is taken to give a match score, ranging from 0 to 1 with 1 indicating a perfect

match. This match score for each fragment is propagated to each of the five residues comprising

those fragments on oligomers 1 and 2. In this way, each residue in the protein-protein interface

might inherit multiple component scores, since each residue might belong to overlapping

fragments participating in favorable fragment-fragment pairs. For each such interfacial residue,

its assigned match score(s) are first ranked in descending order and are then weighted by 1/2rank

– 1 (rank > 0) for a final summation. This weighting scheme bounds the final score for each residue

 133

to a maximum of 2. The weighted match scores are then summed across interfacial residues to

give the final Nanohedra score for the identified docking configuration.

Program considerations

Nanohedra is a command line tool. It can be operated in one of three modes: Query, Dock

or Post-processing. The Docking mode executes the main procedures described in the present

work. The user specifies the desired symmetry material outcome, i.e. the specification of the

two component symmetries and their resulting assembly type. Directory paths are input to

specify the file locations for the oligomeric protein structures to be tested. The output provides

pdb files with candidate docked poses in various forms (asymmetric unit within the final

symmetry, docked oligomers, and an expanded symmetry). Other information includes the final

Nanohedra score and the spatial transformation matrices mapping the canonically oriented

coordinates onto the candidate pose. In order to guide subsequent design of the resulting

interface, sequence information is output in the form of amino acid frequencies based on amino

acid composition information tabulated from known structures contributing to the fragment

database (Fig. S3).

The computer time for execution depends critically on the size of the proteins (because

larger proteins carry more surface fragments), the number of rotational degrees of freedom for

sampling, and the rotational sampling interval. Times on a single CPU core (2.5 GHz) can range

from 2 to 24 hours. Computer memory requirements also depend on the sizes of the proteins

and the size of the symmetry group generated by the final assembly. Requirements range from

roughly 8 to 25GB. The user can override various default settings, e.g. for angular sampling in

 134

rotational searching or for the minimum number of fragment-fragment pairs needed for a well-

docked pose.

The program can also be operated from the command line in a Query mode. This is an

informational mode that helps the user understand different options and certain symmetry

aspects of the material to be designed: e.g., what kinds of resulting SCM materials can be

constructed from a given combination of components, and conversely what component oligomer

types would be needed to construct different SCMs according to various target criteria, such as

the dimensionality of the resulting material (cage vs layer vs three-dimensional crystal), the

underlying rotational symmetry, or specific geometric features (like network properties) of the

material to be designed. This mode captures the full space of available design materials recently

articulated 31. A final Post-processing mode provides tools for ranking output candidate poses,

with options to sort by different criteria, e.g. according to the final Nanohedra matching score or

according to the numbers of fragment pairs identified in the match.

The program is implemented in Python with the exception of one routine that is written

in Fortran (orient_oligomer). Python dependencies include biopython 33, numpy 34, and scikit-

learn (to implement the BallTree method for pairwise distance calculations and clash tests) 35.

Nanohedra also uses the freeSASA program to calculate solvent accessible surface areas 36.

Prospective SCMs

To demonstrate the universality of our fragment-based docking approach, we

constructed an array of prospective SCMs with representatives from point, layer, and space

group symmetries, composed of various component symmetries ranging from C3 to T.

 135

Nanohedra was run with default parameters, and for each combination of symmetric oligomers

a search of the rigid body degrees of freedom inherent in each system produced numerous viable

candidates with varied orientations and positions and different interfacial secondary structure

compositions. A representative high scoring structure for each of the different SCMs produced is

displayed in Figure 3. The results demonstrate the viability of the described method at producing

numerous candidate assemblies conforming to a selected symmetric material while appearing

native-like with respect to interfacial backbone-backbone associations.

In each example, the resulting interface exhibits high structural complementarity

between oligomeric surfaces as can be seen by the degree of overlap between the ghost

fragments of the first oligomer and the matched surface fragments of the second oligomer. The

interfaces vary in the extent of secondary structure involvement, with each oligomer contributing

at least one continuous secondary structure element to the interface and ranging from 8

(F23:{C3}{T}) to 20 (p222:{D2}{D2}) unique fragment matches. Matched interface fragments are

sometimes enhanced by ‘fortuitous’ contacts involving seemingly less frequent or unobserved

secondary structure interaction motifs. Many of the docked configurations comprise extensive

helical interactions, with interfaces containing anywhere from two to five helices (see F23:{C3}{T}

and I432:{C4}{D3}, respectively). The contribution from beta-strands is also apparent as both

T:{C3}{C3} and p222:{D2}{D2} designs have mixed secondary structure interaction motifs

involving helices and strands, despite prioritizing helix-helix pairs in first-pass searching.

 136

Fig. 3 Prospective SCMs. Six example SCMs generated by Nanohedra are shown: a finite tetrahedral cage (top), two
2-D layers (middle) and three 3-D crystals (bottom). Column 1 illustrates the docked oligomeric building blocks that
are required to construct the final material. Chains directly implicated in the docked interface are colored, while
symmetrically related chains are in grey. Closeups of the interfaces are shown in column 2. Oligomer 1 (blue) surface
fragments (tan) and associated ghost fragments (pink) are shown. Ghost fragments are matched with secondary

I4
32

: {
C4

}{
D3

}
F2

3:
 {C

3}
{T

}
P4

32
:{C

3}
{D

4}
p6

:{C
3}

{C
6}

p2
22

:{D
2}

{D
2}

T:
{C

3}
{C

3}

 137

structure elements on the surface of oligomer 2 (green). The resulting symmetrically expanded materials are
displayed in column 3. PDB accession codes used to generate the prospective materials shown are: 1OSC and 1NQ3
for T: {C3}{C3}, 4O5O and 1UAY for p222: {D2}{D2}, 1OSC and 1GTZ for F23: {C3}{T}, 2B34 and 3BBC for I432: {C4}{D3},
1VHC and 2A10 for p6: {C3}{C6}, 4XCW and 1DHN for P432: {C3}{D4}.

Post facto analysis of designed protein cages

The Nanohedra program provides a new tool for designing novel candidates for designed

protein materials. Prior work in designing protein assemblies has shown the challenges of

generating computational designs that produce the desired experimental outcomes; success

rates remain relatively low, as discussed earlier. The favorable features of Nanohedra in allowing

the selective construction of designs based on native-like interfaces will ultimately require

experimental tests that are ongoing and not presented here. Nonetheless, the results of several

recent design trials provide an opportunity to evaluate the prospective advantages of

Nanohedra, ahead of new experimental trials.

For a retrospective analysis, we sought to demonstrate the efficacy of Nanohedra to

prioritize computationally designed protein assemblies that went on to successful experimental

validation in our earlier work, among the larger body of computational designs that led to

experimental failure. We focused on designed protein cages, for which there are more than a

dozen successful cases validated in atomic detail, along with hundreds of computational designs

that led to experimental failure.

The available literature data provided us with a set of computational designs that had led

to experimental success and another (much larger) set that had led to experimental failure. We

ran Nanohedra on these designs to see if the two sets could be clearly distinguished; this would

argue that Nanohedra has the capacity to generate computational designs that would have an

 138

improved experimental success rate. For each prior design (in both categories of experimental

successes and failures), we took the two component oligomers in standard orientations (i.e. not

corresponding to the previously designed configurations) and ran Nanohedra to generate

prospective designs for symmetric cages of the desired symmetry. We then examined the ranked

poses output by Nanohedra to see where in the list of candidate poses (if at all) we could find a

configuration essentially matching the one that was generated and then experimentally tested

in earlier work. For the group of experimental successes (of which there were 14), we were able

to recapitulate 70% of the design targets within the top 12 scoring pose clusters and 100% of the

targets within the top 88 ranked poses (Fig. 4). For the unsuccessful design set (of which there

were 200), we repeated the same design procedure. Whereas for the successful design set we

only had to go to rank order 12 to recapitulate 70% of the designs, for the set of experimental

failures we had to go to rank 112 among output poses in order to recapitulate 70% of the

designed poses. These calculations showed clearly that earlier computational designs that went

on to experimental success are much more readily recapitulated in calculations using Nanohedra,

compared to earlier computational designs that had failed. We further note that having to go to

rank 12 or so to recapitulate most of the earlier experimental successes does preclude that poses

ranked by Nanohedra above the ones designed earlier could quite plausibly have led to successful

experimental constructions, different in orientation from the ones that were validated earlier.

 139

Fig. 4 Post facto analysis of designed protein cages. Three representative examples of successfully recapitulated
poses (top and bottom left). The crystal structures of the target designs are shown in grey and Nanohedra predictions
are shown in color. The iRMSD indicates the agreement between the docked pose and the crystal structure. The
numerical value indicates the rank of the docked pose. The crystal structure of T32-28 (4NWN) displays a 0.71 Å
iRMSD with the first ranked pose (top left). The crystal structure of T33-15 (4NWO) exhibits a 1.48 Å iRMSD with the
fifth ranked pose (top right). The crystal structure of I53-40 (5IM5) shows a 1.06 Å iRMSD with the 3rd ranked pose
(bottom left). The ROC curve for all successful and failed designs shows the percentage of targets recovered
according to the number of clustered Nanohedra poses considered (bottom right). iRMSD of 3.0 Å or less was
considered as a recovered pose.

DISCUSSION

Until now, designing symmetric protein assemblies has remained challenging to new

entrants, as the process requires somewhat expert knowledge about symmetric construction and

intertwined issues of how to sample allowable degrees of freedom in the context of docking

software. Previously successful studies in executing two-component symmetric docking have

Ranked Poses Considered

%
 Ta

rg
et

s R
ec

ov
er

ed

1s
t

-0
.7

1
Å

r.m
.s.

d.

3r
d

–
1.

06
 Å

 r.
m

.s.
d.

5t
h

-1
.4

8
Å

r.m
.s.

d.

 140

used the Rosetta TCdock protocol, which requires the user to specify the symmetry rules through

the use of symmetry definition files 3. This is possible for symmetries already enumerated, but

the majority of recently described SCM’s 31 present a remaining challenge for specifying allowable

degrees of freedom in the context of existing design software. By enumerating the allowable

degrees of freedom for each SCM into a comprehensive, simple to use framework, Nanohedra

will empower a broader group of users to explore the large space of possible symmetric designed

materials. This should accelerate the development of novel designed materials by protein and

biomaterial engineers.

Nanohedra harnesses the power of a recently established theoretical framework 31 to

enable the construction of a universe of possible protein-based nanomaterials. Nanohedra’s

docking algorithm implements a novel fragment-based approach for assessing whether docked

solutions resemble biological interfaces. Importantly, the Nanohedra score does not depend on

simplified heuristics for rapid assessment of binding likelihood (e.g. number of Cbeta-Cbeta

contacts), a notable difference from established docking methods 38–40. Instead, its statistical

representation of clustered secondary structure elements exploits empirical knowledge of typical

packing motifs utilized in native protein interfaces. The implications of this choice, as

demonstrated in our retrospective analysis of successful versus failed designs, are notable. In

agreement with previous findings 37, geometric packing of secondary structure alone captures

many essential elements of protein interaction. Furthermore, although Nanohedra is geared for

design of symmetric materials, our results point to potential opportunities for advances in

macromolecular docking and interface design in other contexts.

 141

This first version of Nanohedra will admit future improvements along various lines,

including GPU enhancements to increase speed. Critical experimental studies will be needed to

evaluate the most important assertions concerning the expected advantages of generating

assemblies with native-like interfaces. We also emphasize that successful design requires

judicious amino acid interface design as a final step. This subsequent design step is separate from

the construction of native-like (backbone-level) poses provided by Nanohedra, though as noted

above Nanohedra provides valuable information about specific amino acid preferences favored

in the fragment interfaces. This position specific frequency information can be exploited by

sequence design programs such as Rosetta in the final step of design.

METHODS

Fragment database generation

To generate the fragment library, all non-redundant, biologically relevant interfaces from

high resolution structures were gathered from the PDB. For homomers, QSBio 41 verified

structure codes and biological assemblies were referenced to pull all assemblies with a

confidence ranking of high or very high. For heteromers, biological assemblies were identified

using PISA 42. The homo- and heteromer sets were next filtered to include only representative

structures clustered at 90% sequence identity with a reported resolution <= 2.0 Å, experimental

expression in E. coli, no nucleic acids and no membrane proteins. For each identified structure,

all unique interfaces between two chains were extracted with the exclusion of chains with less

than 10 residues and if the interface contained fewer than 5 beta-carbon atoms of one chain

within 8 Å of the second chain. From the resulting chain pairs, inter-chain beta-carbon distances

 142

were computed and residues that were 8 Å or less apart were selected as residue pairs across

the interface. For each residue in the interface residue pair, the preceding and following two

residues (i.e. i-2 through i+2) were included in the observation and the resulting five residue

segments were stored, first as an individual residue segment (mono fragment), and second, as a

pair of segments across the interface (fragment pairs). For residues with multiple conformations,

the A conformation was chosen. Selenomethionine residues were not considered.

From the pool of individual fragments, a subset was chosen to perform all against all rmsd

measurements followed by nearest neighbor clustering. The top five neighbor clusters were

selected as the clustering population significantly decreased after this point. From each of the

top five clusters, the fragment with the most neighbors was selected as a cluster representative,

centered on the origin, and stored. As for the saved paired fragments, both fragments in the pair

were classified for membership to one of the top five individual fragment representatives

according to a CA RMSD of 0.75 Å. If one of the fragments in the pair was not represented by an

individual fragment representative, the pair was discarded from further classification. Next, each

fragment in the fragment pair was subjected to a structural superimposition on its corresponding

matched fragment representative. This centered one fragment in the pair at the origin aligned to

its structural representative, while maintaining the relative position of the partner fragment to

this aligned fragment. Once in this orientation, a set of three coordinates was stored, one

coordinate at the partner fragments central CA atom, and another two a unit vector away on the

x or the y axis. This coordinate set, stored for each fragment observation, describes the

transformation of the partner fragment’s central CA atom, and its relative orientation in respect

to the aligned fragment. In this way, each partner fragment marked a unique observation of the

 143

spatially encoded and secondary structure dependent interaction potential surrounding the

individual fragment representatives.

Finally, for each individual fragment representative, and for each set of secondary

structure dependent guide coordinates of that fragment representative, a subset of those guide

coordinates was subjected to all against all rmsd calculations followed by nearest neighbor

clustering. The resulting guide coordinate clusters were binned with a maximum of 1 Å

translational and rotational deviation, requiring at least 4 members in the cluster to be

considered. From this set of guide coordinate clusters, all possible guide coordinates were

subjected to membership in the resulting clusters by testing for minimal rmsd. If an rmsd below

1 A could not be located, the guide coordinates were disregarded as outliers. Search proceeded

for each partner secondary structure associated with each fragment representative.

For each i,j,k fragment pair cluster, the cluster size and the cluster representative

fragment coordinates and guide coordinates are stored. Additionally, the mean guide coordinate

rmsd and observed amino acid pair frequencies for central fragment residues are computed and

then stored. The top 75% most populated i,j,k clusters were then chosen for our final fragment

database.

Docking prospective SCMs

For each SCM, homo-oligomers matching the design criteria were curated from the PDB

by searching for the desired point group symmetry, X-ray resolution less than 2.5 Å, a helical

content greater than 30% and Escherichia coli as the organism used for protein expression.

Structures containing membrane proteins or nucleic acids were removed. Biological assemblies

 144

were identified using QSBio 41 and representatives clustered at 70% sequence identity were then

downloaded from the Protein Data Bank. A few candidate oligomeric building blocks were then

selected for pair-wise docking with Nanohedra using the default parameters.

Design recapitulation

The dataset for the design recapitulation experiments was generated by selecting all

successfully designed (structural agreement with the model) two-component tetrahedral,

octahedral and icosahedral designs from previously published work 3–5,11,13,43 as well as the failed

designs (described as insoluble or unknown oligomerization state) from King, N. et al. 2014 and

Bale J. et al. 2016 3,4.

For each successful design, the two component oligomers used for docking were

extracted from the deposited PDB structure of the protein cage. For the failed designs, the PDB

structures of the native oligomeric building blocks were used. Default Nanohedra docking

parameters were used with the exception of a 2° rotational sampling step instead of 3° for each

component oligomer. Docking proceeded until all rotational degrees of freedom had been

sampled. For 4NWN we had to modify the initial default Helix-Helix fragment search to Strand-

Helix. Since the dimeric component is mainly composed of beta-strands on its surface, suitable

docked configurations could not be identified with the default initial Helix-Helix search. Only the

default Helix-Helix fragment search was used for failed designs and designs were not considered

if they didn’t have at least one helix-helix interaction (only a very few cases).

 145

The carbon-alpha interface RMSD (iRMSD) was computed between the target design and

each Nanohedra output pose. For successfully designed structures, the coordinates deposited in

the PDB were used as a reference. Models of the failed designs were obtained from Neil King and

Jacob Bale upon request. For each design target, the 2000 docked poses with the lowest iRMSD

to the design target were selected and nearest neighbor clustering was performed using all to all

iRMSD calculations. Interfaces within 1Å iRMSD threshold were clustered, then each cluster was

ranked according to the Nanohedra score of the cluster representative.

CODE AVAILABILITY

The Nanohedra source code is freely available at https://github.com/nanohedra/nanohedra

ACKNOWLEDGEMENTS

This work was supported by NSF Grant: CHE-1629214. We thank Duilio Cascio and Alex Lisker for

computing support and Michael Sawaya for helpful discussions. We thank Neil King and Jacob

Bale for providing us with the models of their two-component cage designs.

AUTHOR CONTRIBUTIONS

The research was conceived by TOY and JL. The code was written by TOY and JL. The fragment

database was constructed by JL. The example SCMs were constructed by JL and KM. The post

facto analysis of designed protein cages was performed by KM and JL. The written manuscript

was prepared by TOY, KM and JL.

 146

NOTES

The authors declare no conflicting interests.

 147

Supplementary Information for:

A fragment-based protein interface design algorithm for symmetric assemblies

Joshua Laniado, Kyle Meador and Todd O. Yeates

Contents:

• Supplementary Figures S1 – S3

• Supplementary Text

 148

SUPPLEMENTARY FIGURES

Fig. S1. Guide Coordinates

 149

Fig. S2. Ghost fragments. Oligomer 1 (cyan), its surface fragments (tan) and associated ghost
fragments (pink).

 150

Fig. S3. Potential amino acid preferences for prospective SCMs in Figure 3

SUPPLEMENTARY TEXT

PDB IDs and design names used for recapitulation experiments

PDB IDs of the experimentally validated designs:

4NWN, 4NWO, 4NWP, 4NWR, 4ZK7, 5CY5, 5IM4, 5IM5, 5IM6, 6P6F, 6VFH, 6VFI, 6VFJ, 6VL6

Names of the ‘failed’ designs:

I32-01, I32-03, I32-05, I32-07, I32-08, I32-12, I32-13, I32-14, I32-15, I32-16, I32-17, I32-20, I32-

22, I32-23, I32-24, I32-25, I32-27, I32-31, I32-33, I32-34, I32-35, I32-36, I32-37, I32-38, I32-39,

I32-40, I32-41, I32-45, I32-46, I32-49, I32-52, I32-53, I32-54, I32-55, I32-56, I32-60, I32-62, I32-

0.0

0.5

1.0

p
ro

b
a
b
ili

ty

M
T
E
P
S
K
N

C

G

K
P
F
T
R
E
S
Y
M
L
Q
I
A
V

H

R

K

F

N

M

D
P
E
Y
Q
L
V
T
I
S
G
A

C

S

P

R
K
E
M
Q
G
N
H
T
F
Y
I
A
V
L

N

R

H

C
M
E
Y
G
V
Q
T
S
A
0.0

0.5

1.0

p
ro

b
a
b
ili

ty

M
I
L
R
Q
L
K
V
I

D21: 54 55 56 67 68 70 71 72 74 75

D22: 43 44 46 55 56 58 59 60 62 63

0.0

0.5

1.0
p

ro
b

a
b

ili
ty

T
V
R
M
H

C

G

Q
M
N
R
F
S
Y
D
K
T
A
E
I
L
V

R

Q

H
M
D
K
A
P
F
Y
T
I
V
L

T

R

I

F

E

L

D
P
V
N
Q
S
C
G
A

F

L

V

K

T

P
R
M
S
G
A
M

I

E

C

S

N

G

V
L
A
R
Y
K
M

D

N

Y

R

K

Q

E

P

L

C

T
V
F
H
S
G
A
E

R

K

W

I

V
M
T
F
L
S
G
A
Y

Q

M

N

G

S
T
A
H
R
D
L
V
I
E
K

D

Y

L

N

Q
M
T
F
H
S
G
A

0.0

0.5

1.0

p
ro

b
a

b
ili

ty

C

P

M
K
H
G
D
Y
Q
F
S
R
N
E
A
T
V
L
I

Q

M

E

W

S
N
K
C
Y
A
R
H
T
F
I
L
V

N
I
K
R
P
K
G
D
T
Q
M
C
N
R
E
L
S
V
A

L

R

E

I

V
T
M
S
G
A

F

M

T
D
A
Y
S
L
H
R
I
V
E
K

Y

T

M

Q

L
S
F
H
G
A
I

Q

E

W

T

Y

S
M
L
F
G
A
Y

F

M
T
D
A
S
L
H
R
V
I
E

P

F

R

K

V

L
D
M
Q
T
H
N
G
S
A

p222:{D2}{D2}

p6:{C3}{C6}

C3: 35 38 198 199 201 202 203 205 206
0.0

0.5

1.0

p
ro

b
a

b
ili

ty

C

G

T
Q
N
H
E
A
Y
M
D
R
V
I
L

L

E

Y
T
H
V
Q
A
I
D
W
F

P

D

I

R
Q
M
S
T
L
G
V
A

Y

Q

K

H

D

C

N

M

G

F

I
L
V
T
A
S

D

P

K

Y

E

R

C

N

M

V
T
F
H
S
G
A
Y

R

K

E

W

M

I

V
T
F
L
S
G
A
T

R

H

F

S
Q
N
M
G
I
A
L
V

D

V

E

F

L

N

Q
T
M
H
S
G
A

S

V

Y
W
M
G
A
F
L

0.0

0.5

1.0

p
ro

b
a

b
ili

ty

P
K
G
D
T
Q
M
C
N
R
E
L
S
V
A

E

P

R

L
I
M
T
V
S
G
A
I

Y
L
V
K
Y

T

Q

M
L
S
H
F
G
A
I

W

Y

T

M
S
F
L
G
A

Y

F

M
T
D
A
S
L
H
R
V
I
E

Y

K

E

R

P

F
G

D
I
M
Q
H
V
T
N
L
S
A

R

D

I

H

E

N
K
S
Y
G
Q
V
F
M
T
A
L

V

H

E

D

W
Q
N
M
L
Y
I
A
R
F

C6: 56 57 59 60 61 63 64 65 67

I432:{C4}{D3}

C4: 45 48 49 70 73 182 183

D3: 50 54 123 124 127 128 131

0.0

0.5

1.0

p
ro

b
a
b
ili

ty

Q

F

D

S

E
N

G
A
M
T
V
I
L

S

Y
V
R
M
F
E
N
A
T
L
I

Y

S

H

R

G

D
N
T
A
I
K
Q
V
L
E

T

H
A
L
K
E
N
R
Q
D

R

C

G

F

T
M
E
A
W
S
Q
Y
K
D
N
V
I
L

C

R

N

T

F
W
D
Q
E
M
I
H
Y
G
V
K
S
A
L

P

M

N
R
H
V
S
F
G
D
T
I
K
E
W
Y
L
Q
A

0.0

0.5

1.0

p
ro

b
a
b
ili

ty

K

S

G

R

W
E
D
Y
N
M
A
Q
T
V
I
L

M

F

E

A

W
V
N
D
S
K
T

N
H
F
P

P

D

W

N

Y

G

H
S
V
R
Q
K
T
E
F
I
A
L

N

H

E

Q

K

F
W

G
R
M
T
L
V
S
I
A

S

M

H

G

K

R
D
Q
E
T
N
A
L
V
I

W

E

F

M
A
Q
V
N
T
I
L

P432:{C3}{D4}

C3: 26 27 30 33 34 137 140

D4: 53 56 60 63 83 86 87

0.0

0.5

1.0
p
ro

b
a
b
ili

ty

P

D

R

H
G
C
N
W
F
E
T
L
V
I
M
S
A

H

W

C

S
D
R
N
M
Q
I
E
L
K
A
T
V

H

D

Q

M

F

K
C
Y
N
R
E
W
S
A
T
I
V
L

W

G

N

H

F

Y

S
I
M
R
V
K
D
E
Q
L
A

W

T

H

G

M

S
R
E
D
A
I
Q
V
L

T

M

G

H
K
V
Q
A
Y
E
F
S
R
N
I
D
L

Y

S

H

R
N
F
A
M
T
Q
E
K
I
V
L

0.0

0.5

1.0

p
ro

b
a
b
ili

ty

R
Y
L
S
D

M

C

Q

H

F

G
Y
E
S
N
T
A
V
I
L

D

Y

F

H

C

N

W

S
T
Q
G
M
E
I
V
K
R
L
A

D

M

G

C

P

F
R
Q
H
Y
E
N
S
V
T
I
A
L

Y

H

T
E
R
Q
K
G
S
F
M
A
N
V
D
I
L

N

Y
H
F
A
S
E
M
Q
K
T
I
V
L

N

M

S
Q
K
I
E
C
A
F
V
T
W
R
D
L

C31: 21 22 25 26 29 47 58

C32: 94 95 97 98 99
0.0

0.5

1.0

p
ro

b
a
b
ili

ty

D

N

Q

F

T

P
E
K
H
L
Y
W
G
S
R
I
M
V
A

T

F

C

S
N
H
E
Y
L
D
Q
I
G
A
V

L

K

H

D

I

N

M
R
E
Y
V
T
S
A
W

P

K

H

Q
N
R
F
T
E
M
G
Y
S
L
A
I
V

N

F

C

Y
S
L
M
V
K
D
A
T
G
Q
H

T:{C3}{C3}

F23:{C3}{T}

C3: 102 105 106 109 110

T: 38 42 45

0.0

0.5

1.0

p
ro

b
a

b
ili

ty

K

C

G

E

M

Q
R
D
H
T
S
F
Y
N
I
V
A
L

T

W

M
H
F
G
S
Y
D
K
I
V
R
L
Q
A
E

F

W

C

D

N

H

K
T

G
M
E
R
Q
S
V
L
A
I

W

G
R
E
H
S
A
M
Q
K
T
D
Y
N
V
I
L

Y

F

K
P
N
D
G
Q
E
A
V
I
T
R
L

0.0

0.5

1.0

p
ro

b
a
b
ili

ty
S

G

K

Y
W
E
D
R
N
M
A
T
Q
V
I
L

T

D

N

M
H
G
K
F
E
S
V
R
Q
A
I
L

W

K

G

D

C

M

R

Q

F
H
E
T
S
N
Y
V
A
I
L

fre
qu

en
cy

fre
qu

en
cy

fre
qu

en
cy

fre
qu

en
cy

fre
qu

en
cy

fre
qu

en
cy

fre
qu

en
cy

fre
qu

en
cy

fre
qu

en
cy

fre
qu

en
cy

fre
qu

en
cy

fre
qu

en
cy

 151

64, I32-65, I32-68, I32-70, I52-01, I52-07, I52-09, I52-10, I52-11, I52-12, I52-14, I52-17, I52-18,

I52-20, I52-22, I52-23, I52-24, I52-26, I52-27, I52-28, I52-29, I52-31, I52-34, I52-35, I52-36, I52-

38, I52-39, I52-40, I52-41, I52-42, I52-43, I52-44, I52-46, I53-06, I53-09, I53-12, I53-15, I53-16,

I53-21, I53-23, I53-25, I53-27, I53-28, I53-29, I53-33, I53-35, I53-37, I53-43, I53-48, I53-49, I53-

58, I53-61, I53-62, I53-63, I53-64, I53-67, I53-68, I53-70, I53-72, I53-74, I53-75, I53-79, I53-80,

I53-82, I53-83, T32-02, T32-03, T32-06, T32-07, T32-08, T32-09, T32-11, T32-17, T32-18, T32-20,

T32-24, T32-25, T32-26, T32-27, T33-01, T33-02, T33-03, T33-04, T33-05, T33-06, T33-07, T33-08,

T33-11, T33-12, T33-13, T33-14, T33-16, T33-17, T33-18, T33-22, T33-23, T33-24, T33-25, T33-26,

T33-27, T33-29

RPX designs were those utilizing the motif library from 4 which included I32 and I52 designs. All

others are Non-RPX designs.

 152

REFERENCES

(1) Padilla, J. E.; Colovos, C.; Yeates, T. O. Nanohedra: Using Symmetry to Design Self
Assembling Protein Cages, Layers, Crystals, and Filaments. Proceedings of the National Academy
of Sciences 2001, 98 (5), 2217–2221. https://doi.org/10.1073/pnas.041614998.

(2) King, N. P.; Sheffler, W.; Sawaya, M. R.; Vollmar, B. S.; Sumida, J. P.; André, I.; Gonen, T.;
Yeates, T. O.; Baker, D. Computational Design of Self-Assembling Protein Nanomaterials with
Atomic Level Accuracy. Science 2012, 336 (6085), 1171–1174.
https://doi.org/10.1126/science.1219364.

(3) King, N. P.; Bale, J. B.; Sheffler, W.; McNamara, D. E.; Gonen, S.; Gonen, T.; Yeates, T. O.;
Baker, D. Accurate Design of Co-Assembling Multi-Component Protein Nanomaterials. Nature
2014, 510 (7503), nature13404. https://doi.org/10.1038/nature13404.

(4) Bale, J. B.; Gonen, S.; Liu, Y.; Sheffler, W.; Ellis, D.; Thomas, C.; Cascio, D.; Yeates, T. O.;
Gonen, T.; King, N. P.; Baker, D. Accurate Design of Megadalton-Scale Two-Component
Icosahedral Protein Complexes. Science 2016, 353 (6297), 389–394.
https://doi.org/10.1126/science.aaf8818.

(5) Cannon, K. A.; Park, R. U.; Boyken, S. E.; Nattermann, U.; Yi, S.; Baker, D.; King, N. P.; Yeates,
T. O. Design and Structure of Two New Protein Cages Illustrate Successes and Ongoing
Challenges in Protein Engineering. Protein Sci 2020, 29 (4), 919–929.
https://doi.org/10.1002/pro.3802.

(6) Cannon, K. A.; Nguyen, V. N.; Morgan, C.; Yeates, T. O. Design and Characterization of an
Icosahedral Protein Cage Formed by a Double-Fusion Protein Containing Three Distinct
Symmetry Elements. Acs Synth Biol 2020. https://doi.org/10.1021/acssynbio.9b00392.

(7) Sinclair, J. C.; Davies, K. M.; Vénien-Bryan, C.; Noble, M. E. Generation of Protein Lattices by
Fusing Proteins with Matching Rotational Symmetry. Nature Nanotechnology 2011, 6 (9), 558.
https://doi.org/10.1038/nnano.2011.122.

(8) Gonen, S.; DiMaio, F.; Gonen, T.; Baker, D. Design of Ordered Two-Dimensional Arrays
Mediated by Noncovalent Protein-Protein Interfaces. Science 2015, 348 (6241), 1365–1368.
https://doi.org/10.1126/science.aaa9897.

(9) Ben-Sasson, A. J.; Watson, J.; Sheffler, W.; Johnson, M. C.; Bittleston, A.; Somasundaram, L.;

 153

Decarreau, J.; Jiao, F.; Chen, J.; Drabek, A. A.; Jarrett, S. M.; Kollman, J. M.; Blacklow, S. C.;
Yoreo, J. J. D.; Ruohola-Baker, H.; Derivery, E.; Baker, D. Design of Biologically Active Binary
Protein 2D Materials. https://doi.org/10.1101/2020.09.19.304253.

(10) Suzuki, Y.; Cardone, G.; Restrepo, D.; Zavattieri, P. D.; Baker, T. S.; Tezcan, F. A. Self-
Assembly of Coherently Dynamic, Auxetic, Two-Dimensional Protein Crystals. Nature 2016, 533
(7603), 369. https://doi.org/10.1038/nature17633.

(11) Ueda, G.; Antanasijevic, A.; Fallas, J. A.; Sheffler, W.; Copps, J.; Ellis, D.; Hutchinson, G. B.;
Moyer, A.; Yasmeen, A.; Tsybovsky, Y.; Park, Y.-J.; Bick, M. J.; Sankaran, B.; Gillespie, R. A.;
Brouwer, P. J.; Zwart, P. H.; Veesler, D.; Kanekiyo, M.; Graham, B. S.; Sanders, R. W.; Moore, J.
P.; Klasse, P. J.; Ward, A. B.; King, N. P.; Baker, D. Tailored Design of Protein Nanoparticle
Scaffolds for Multivalent Presentation of Viral Glycoprotein Antigens. eLife 2020.
https://doi.org/10.7554/eLife.57659.

(12) Marcandalli, J.; Fiala, B.; Ols, S.; Perotti, M.; Schueren, W. de van der; Snijder, J.; Hodge, E.;
Benhaim, M.; Ravichandran, R.; Carter, L.; Sheffler, W.; Brunner, L.; Lawrenz, M.; Dubois, P.;
Lanzavecchia, A.; Sallusto, F.; Lee, K. K.; Veesler, D.; Correnti, C. E.; Stewart, L. J.; Baker, D.; Loré,
K.; Perez, L.; King, N. P. Induction of Potent Neutralizing Antibody Responses by a Designed
Protein Nanoparticle Vaccine for Respiratory Syncytial Virus. Cell 2019, 176 (6), 1420-1431.e17.
https://doi.org/10.1016/j.cell.2019.01.046.

(13) Brouwer, P. J. M.; Antanasijevic, A.; Berndsen, Z.; Yasmeen, A.; Fiala, B.; Bijl, T. P. L.;
Bontjer, I.; Bale, J. B.; Sheffler, W.; Allen, J. D.; Schorcht, A.; Burger, J. A.; Camacho, M.; Ellis, D.;
Cottrell, C. A.; Behrens, A.-J.; Catalano, M.; Moral-Sánchez, I. del; Ketas, T. J.; LaBranche, C.; Gils,
M. J. van; Sliepen, K.; Stewart, L. J.; Crispin, M.; Montefiori, D. C.; Baker, D.; Moore, J. P.; Klasse,
P. J.; Ward, A. B.; King, N. P.; Sanders, R. W. Enhancing and Shaping the Immunogenicity of
Native-like HIV-1 Envelope Trimers with a Two-Component Protein Nanoparticle. Nat Commun
2019, 10 (1), 4272. https://doi.org/10.1038/s41467-019-12080-1.

(14) Heater, B. S.; Yang, Z.; Lee, M. M.; Chan, M. K. In Vivo Enzyme Entrapment in a Protein
Crystal. J Am Chem Soc 2020. https://doi.org/10.1021/jacs.9b13462.

(15) Ernst, P.; Plückthun, A.; Mittl, P. R. E. Structural Analysis of Biological Targets by
Host:Guest Crystal Lattice Engineering. Sci Rep-uk 2019, 9 (1), 15199.
https://doi.org/10.1038/s41598-019-51017-y.

(16) McConnell, S. A.; Cannon, K. A.; Morgan, C.; McAllister, R.; Amer, B. R.; Clubb, R. T.; Yeates,
T. O. Designed Protein Cages as Scaffolds for Building Multienzyme Materials. Acs Synth Biol

 154

2020. https://doi.org/10.1021/acssynbio.9b00407.

(17) Liu, Y.; Huynh, D. T.; Yeates, T. O. A 3.8 Å Resolution Cryo-EM Structure of a Small Protein
Bound to an Imaging Scaffold. Nat Commun 2019, 10 (1), 1864.
https://doi.org/10.1038/s41467-019-09836-0.

(18) Liang, M.; Fan, K.; Zhou, M.; Duan, D.; Zheng, J.; Yang, D.; Feng, J.; Yan, X. H-Ferritin–
Nanocaged Doxorubicin Nanoparticles Specifically Target and Kill Tumors with a Single-Dose
Injection. Proc National Acad Sci 2014, 111 (41), 14900–14905.
https://doi.org/10.1073/pnas.1407808111.

(19) Edwardson, T. G. W.; Tetter, S.; Hilvert, D. Two-Tier Supramolecular Encapsulation of Small
Molecules in a Protein Cage. Nat Commun 2020, 11 (1), 5410. https://doi.org/10.1038/s41467-
020-19112-1.

(20) Fleishman, S. J.; Whitehead, T. A.; Ekiert, D. C.; Dreyfus, C.; Corn, J. E.; Strauch, E.-M.;
Wilson, I. A.; Baker, D. Computational Design of Proteins Targeting the Conserved Stem Region
of Influenza Hemagglutinin. Science 2011, 332 (6031), 816–821.
https://doi.org/10.1126/science.1202617.

(21) Pearce, R.; Huang, X.; Setiawan, D.; Zhang, Y. EvoDesign: Designing Protein–Protein
Binding Interactions Using Evolutionary Interface Profiles in Conjunction with an Optimized
Physical Energy Function. J Mol Biol 2019, 431 (13), 2467–2476.
https://doi.org/10.1016/j.jmb.2019.02.028.

(22) Adihou, H.; Gopalakrishnan, R.; Förster, T.; Guéret, S. M.; Gasper, R.; Geschwindner, S.;
García, C. C.; Karatas, H.; Pobbati, A. V.; Vazquez-Chantada, M.; Davey, P.; Wassvik, C. M.; Pang,
J. K. S.; Soh, B. S.; Hong, W.; Chiarparin, E.; Schade, D.; Plowright, A. T.; Valeur, E.; Lemurell, M.;
Grossmann, T. N.; Waldmann, H. A Protein Tertiary Structure Mimetic Modulator of the Hippo
Signalling Pathway. Nat Commun 2020, 11 (1), 5425. https://doi.org/10.1038/s41467-020-
19224-8.

(23) Chevalier, A.; Silva, D.-A.; Rocklin, G. J.; Hicks, D. R.; Vergara, R.; Murapa, P.; Bernard, S.
M.; Zhang, L.; Lam, K.-H.; Yao, G.; Bahl, C. D.; Miyashita, S.-I.; Goreshnik, I.; Fuller, J. T.; Koday,
M. T.; Jenkins, C. M.; Colvin, T.; Carter, L.; Bohn, A.; Bryan, C. M.; Fernández-Velasco, D. A.;
Stewart, L.; Dong, M.; Huang, X.; Jin, R.; Wilson, I. A.; Fuller, D. H.; Baker, D. Massively Parallel
de Novo Protein Design for Targeted Therapeutics. Nature 2017, 550 (7674), nature23912.
https://doi.org/10.1038/nature23912.

 155

(24) Stranges, P. B.; Kuhlman, B. A Comparison of Successful and Failed Protein Interface
Designs Highlights the Challenges of Designing Buried Hydrogen Bonds. Protein Sci 2013, 22 (1),
74–82. https://doi.org/10.1002/pro.2187.

(25) Fallas, J. A.; Ueda, G.; Sheffler, W.; Nguyen, V.; McNamara, D. E.; Sankaran, B.; Pereira, J.
H.; Parmeggiani, F.; Brunette, T. J.; Cascio, D.; Yeates, T. R.; Zwart, P.; Baker, D. Computational
Design of Self-Assembling Cyclic Protein Homo-Oligomers. Nat Chem 2017, 9 (4), 353–360.
https://doi.org/10.1038/nchem.2673.

(26) Boyken, S. E.; Chen, Z.; Groves, B.; Langan, R. A.; Oberdorfer, G.; Ford, A.; Gilmore, J. M.;
Xu, C.; DiMaio, F.; Pereira, J. H.; Sankaran, B.; Seelig, G.; Zwart, P. H.; Baker, D. De Novo Design
of Protein Homo-Oligomers with Modular Hydrogen-Bond Network–Mediated Specificity.
Science 2016, 352 (6286), 680–687. https://doi.org/10.1126/science.aad8865.

(27) Guharoy, M.; Chakrabarti, P. Secondary Structure Based Analysis and Classification of
Biological Interfaces: Identification of Binding Motifs in Protein–Protein Interactions.
Bioinformatics 2007, 23 (15), 1909–1918. https://doi.org/10.1093/bioinformatics/btm274.

(28) Brunette, T. J.; Bick, M. J.; Hansen, J. M.; Chow, C. M.; Kollman, J. M.; Baker, D. Modular
Repeat Protein Sculpting Using Rigid Helical Junctions. P Natl Acad Sci Usa 2020, 201908768.
https://doi.org/10.1073/pnas.1908768117.

(29) Jacobs, T.; Williams, B.; Williams, T.; Xu, X.; Eletsky, A.; Federizon, J.; Szyperski, T.;
Kuhlman, B. Design of Structurally Distinct Proteins Using Strategies Inspired by Evolution.
Science 2016, 352 (6286), 687–690. https://doi.org/10.1126/science.aad8036.

(30) Zhou, J.; Panaitiu, A. E.; Grigoryan, G. A General-Purpose Protein Design Framework Based
on Mining Sequence–Structure Relationships in Known Protein Structures. Proc National Acad
Sci 2020, 117 (2), 1059–1068. https://doi.org/10.1073/pnas.1908723117.

(31) Laniado, J.; Yeates, T. O. A Complete Rule Set for Designing Symmetry Combination
Materials from Protein Molecules. Proc National Acad Sci 2020, 202015183.
https://doi.org/10.1073/pnas.2015183117.

(32) Lai, Y.-T.; Reading, E.; Hura, G. L.; Tsai, K.-L.; Laganowsky, A.; Asturias, F. J.; Tainer, J. A.;
Robinson, C. V.; Yeates, T. O. Structure of a Designed Protein Cage That Self-Assembles into a
Highly Porous Cube. Nature Chemistry 2014, 6 (12), nchem.2107.

 156

https://doi.org/10.1038/nchem.2107.

(33) Cock, P. J. A.; Antao, T.; Chang, J. T.; Chapman, B. A.; Cox, C. J.; Dalke, A.; Friedberg, I.;
Hamelryck, T.; Kauff, F.; Wilczynski, B.; Hoon, M. J. L. de. Biopython: Freely Available Python
Tools for Computational Molecular Biology and Bioinformatics. Bioinformatics 2009, 25 (11),
1422–1423. https://doi.org/10.1093/bioinformatics/btp163.

(34) Harris, C. R.; Millman, K. J.; Walt, S. J. van der; Gommers, R.; Virtanen, P.; Cournapeau, D.;
Wieser, E.; Taylor, J.; Berg, S.; Smith, N. J.; Kern, R.; Picus, M.; Hoyer, S.; Kerkwijk, M. H. van;
Brett, M.; Haldane, A.; Río, J. F. del; Wiebe, M.; Peterson, P.; Gérard-Marchant, P.; Sheppard, K.;
Reddy, T.; Weckesser, W.; Abbasi, H.; Gohlke, C.; Oliphant, T. E. Array Programming with
NumPy. Nature 2020, 585 (7825), 357–362. https://doi.org/10.1038/s41586-020-2649-2.

(35) Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.;
Prettenhofer, P.; Weiss, R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.; Brucher, M.;
Perrot, M.; Duchesnay, E. Scikit-Learn: Machine Learning in Python. Journal of Machine
Learning Research 2011, 12, 2825--2830.

(36) Mitternacht, S. FreeSASA: An Open Source C Library for Solvent Accessible Surface Area
Calculations. F1000research 2016, 5, 189. https://doi.org/10.12688/f1000research.7931.1.

(37) Jiang, S.; Tovchigrechko, A.; Vakser, I. A. The Role of Geometric Complementarity in
Secondary Structure Packing: A Systematic Docking Study. Protein Sci 2003, 12 (8), 1646–1651.
https://doi.org/10.1110/ps.0304503.

(38) Padhorny, D.; Kazennov, A.; Zerbe, B. S.; Porter, K. A.; Xia, B.; Mottarella, S. E.; Kholodov,
Y.; Ritchie, D. W.; Vajda, S.; Kozakov, D. Protein–Protein Docking by Fast Generalized Fourier
Transforms on 5D Rotational Manifolds. Proc National Acad Sci 2016, 113 (30), E4286–E4293.
https://doi.org/10.1073/pnas.1603929113.

(39) Marze, N. A.; Burman, S. S. R.; Sheffler, W.; Gray, J. J. Efficient Flexible Backbone Protein–
Protein Docking for Challenging Targets. Bioinformatics 2018, 34 (20), 3461–3469.
https://doi.org/10.1093/bioinformatics/bty355.

(40) Mintseris, J.; Pierce, B.; Wiehe, K.; Anderson, R.; Chen, R.; Weng, Z. Integrating Statistical
Pair Potentials into Protein Complex Prediction. Proteins Struct Funct Bioinform 2007, 69 (3),
511–520. https://doi.org/10.1002/prot.21502.

 157

(41) Dey, S.; Ritchie, D. W.; Levy, E. D. PDB-Wide Identification of Biological Assemblies from
Conserved Quaternary Structure Geometry. Nature Methods 2018, 15 (1), 67.
https://doi.org/10.1038/nmeth.4510.

(42) Krissinel, E.; Henrick, K. Inference of Macromolecular Assemblies from Crystalline State. J
Mol Biol 2007, 372 (3), 774–797. https://doi.org/10.1016/j.jmb.2007.05.022.

(43) Bale, J. B.; Park, R. U.; Liu, Y.; Gonen, S.; Gonen, T.; Cascio, D.; King, N. P.; Yeates, T. O.;
Baker, D. Structure of a Designed Tetrahedral Protein Assembly Variant Engineered to Have
Improved Soluble Expression. Protein Sci 2015, 24 (10), 1695–1701.
https://doi.org/10.1002/pro.2748.

 158

EPILOGUE

 159

In this body of work, we explore different experimental, theoretical and computational

avenues with the central goal of advancing the field of symmetric protein design. First, we

introduce a novel approach for designing nanoscale protein cages. Then, for the first time, we lay

out a complete rule set for constructing all the kinds of protein-based materials that can be

created by combining two symmetric oligomers. Finally, we implement a user-friendly

computational design tool that integrates the entire rule set to enable the construction of a

universe of novel protein nanomaterials. Despite our contributions and other recent advances in

molecular engineering, designing self-assembling protein architectures remains challenging.

In Chapter 2, we sought to address the limitations of the oligomer fusion and interface

design methodologies with the coiled coil approach. Although differing degrees of success

ultimately led to crucial design lessons, problems associated with linker flexibility have yet to be

solved. Additionally, a non-negligible fraction of the design candidates exhibited low solubility,

most likely as a result of non-specific aggregation or misfolding caused by the leucine rich coiled

coils. Alternate linkers with increased rigidity, solubility and specificity could improve the

reliability of this approach. Other known heterotypic associations such as heterotrimeric coiled

coils and heteromeric helical bundles might constitute good candidates. Additionally, combining

fusion approaches with punctual interface design could mitigate issues associated with linker

flexibility while alleviating challenges inherent to de novo interface design. Alternatively, with the

complete rule set now in hand, negative design could improve prospects for strategies that rely

on non-rigid linkers. For instance, when combining a C2 dimer and a C3 trimer to construct a

tetrahedral cage, alternate D3, O and I assemblies could be modeled in advance with carefully-

selected mutations that would disfavor these outcomes. Specifically, in the crystal structure of

 160

the collapsed ccT23-1 design, adjacent dimers in the D3 assembly were found to be in close

proximity. These could be redesigned to shift the equilibrium to favor the intended tetrahedral

assembly state.

Many of the possible symmetry combinations can give rise to multiple symmetric

outcomes, many of which have large rings sizes. However, our findings illustrate that design

targets that have large rings and that are the result of a geometrically promiscuous symmetry

combination, can form alternate assemblies when the linkage between component oligomers is

somewhat flexible. Thus, improving the reliability of the coiled coil design approach could open

the door to an array of novel materials that are currently considered as difficult design targets.

In Chapter 3, we note several caveats to the completeness of our symmetry combination

rule set. The oligomeric building blocks are required to obey one of the ordinary point group

symmetry types. While such cases dominate among natural protein oligomers, helical assemblies

are apparent in nature and can be used in combination with other symmetric components to

construct various types of materials. In addition, while we direct our attention to two-component

SCMs, symmetric materials can also be built from a single type of oligomeric component. By

designing a new mode of self-association between multiple copies of the same oligomer type, a

new symmetry operation can be introduced, such that a new one-component material forms

upon self-assembly. Further, a vast number of different design types are possible when

combining more than two symmetric components. On a slightly separate note, our current

system does not consider quasiperiodic packings like Penrose tilings. Extending our theoretical

framework to account for all of these possibilities could enable the design of an even greater

range of nanoscale protein materials.

 161

In Chapter 4, we address the problem of designing interfaces in the context of symmetric

assembly. Central to our fragment-based docking approach is the use of known protein-protein

interaction motifs to generate poses that exhibit native-like interfacial backbone arrangements.

Our current interface fragment database only contains pairs of five residue segments. While

these fragments capture some of the essential elements of local secondary structure interaction,

additional features that cover different aspects of quaternary structure could be considered.

Future versions of our database might include several distinct fragment sets that capture a

hierarchy of diverse interaction motifs.

While Nanohedra identifies favorable poses and provides valuable information regarding

interfacial amino acid preferences, a final step of sequence design is required to produce a

complete model of a new biomaterial. Hence, further integration with existing amino acid

sequence design programs would enable a seamless design pipeline.

Nanohedra exploits the advantages of pre-calculation methods and hash tables,

nevertheless the program can be sped up in numerous ways. For instance, transformations

during the docking procedure are currently applied to the coordinates of both oligomeric

components. With the appropriate operations, this step can be performed on a single

component. Doing so also removes the need for rebuilding a balltree when searching for

potential clashes for each of the sampled degrees of freedom. Substantial accelerations can also

be achieved by executing parts of the program, such as all-to-all distance calculations and

transformations, on a GPU. Further, to avoid sampling redundant configurations, a system that

treats orientational degeneracies is set in place for many of the possible construction types.

 162

Completing this system would prevent potential oversampling for the remaining unhandled cases

and could reduce program execution times.

Other areas of improvement include accounting for fortuitous interfaces that can emerge

upon symmetry expansion, optimizing the Nanohedra score and implementing a graphical user

interface to enable an even wider group of users to explore the large space of possible symmetric

materials. From a broader perspective, while Nanohedra is geared for the design of symmetric

assemblies, our fragment-based docking strategy could help advance protein docking and

interface design in wider contexts.

 163

APPENDIX

 164

Nanohedra Source Code

 165

LICENSE

README

CODE AVAILABILITY

The entire Nanohedra source code is available at: https://github.com/nanohedra/nanohedra

PYTHON SOURCE CODE

 LICENSE

MIT License

Copyright (c) 2020 Joshua Laniado and Todd O. Yeates

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

README

NANOHEDRA: A FRAGMENT-BASED PROTEIN DOCKING TOOL FOR CONSTRUCTING SYMMETRY COMBINATION MATERIALS

NANOHEDRA IS LICENSED UNDER THE MIT LICENSE (SEE: LICENSE)

NANOHEDRA SETUP

STEP 1 - COMPILE 'orient_oligomer.f'
cd orient
gfortran -o orient_oligomer orient_oligomer.f

STEP 2 - INSTALL 'FreeSASA 2.0.3'
go to: https://freesasa.github.io for a quick installation guide

STEP 3 - INSTALL the following Python modules that support Python 2.7
'sklearn' version 0.20.1 (https://scikit-learn.org/0.20)
'biopython' version 1.72 (https://biopython.org/wiki/Download)

RUNNING NANOHEDRA
to access the user manual page:
python nanohedra.py

NOTES
nanohedra currently only supports Python 2.7
nanohedra currently runs on Linux/Unix and Mac

 166

main

 167

nanohedra.py

 168

nanohedra.py

from classes.FragDock import dock
from classes.EulerLookup import EulerLookup
from classes.Fragment import *
from classes.SymEntry import *
from utils.SamplingUtils import get_degeneracy_matrices
from utils.CmdLineArgParseUtils import *
from utils.NanohedraManualUtils import *
from utils.ExpandAssemblyUtils import *
import sys
import os
import subprocess

Copyright 2020 Joshua Laniado and Todd O. Yeates.
__author__ = "Joshua Laniado and Todd O. Yeates"
__copyright__ = "Copyright 2020, Nanohedra"
__version__ = "1.0"

def main():
 cmd_line_in_params = sys.argv

 if len(cmd_line_in_params) > 1 and cmd_line_in_params[1] == '-dock':

 # Parse Command Line Input
 sym_entry_number, pdb_dir1_path, pdb_dir2_path, rot_step_deg1, rot_step_deg2, master_outdir,
output_exp_assembly, output_uc, output_surrounding_uc, min_matched, init_match_type = get_docking_parameters(
cmd_line_in_params)

 # Master Log File
 master_log_filepath = master_outdir + "/nanohedra_master_logfile.txt"

 # Making Master Output Directory
 if not os.path.exists(master_outdir):
 os.makedirs(master_outdir)

 # Getting PDB1 File paths
 pdb1_filepaths = []
 for root1, dirs1, files1 in os.walk(pdb_dir1_path):
 for file1 in files1:
 if '.pdb' in file1:
 pdb1_filepaths.append(pdb_dir1_path + "/" + file1)
 if len(pdb1_filepaths) == 0:
 master_log_file = open(master_log_filepath, "a+")
 master_log_file.write("\nCOULD NOT FIND PDB FILE(S) IN THE INPUT DIRECTORY SPECIFIED FOR OLIGOMER 1:\n")
 master_log_file.write("%s\n" % pdb_dir1_path)
 master_log_file.write("NANOHEDRA DOCKING RUN ENDED\n")
 master_log_file.close()
 sys.exit()

 # Getting PDB2 File paths
 pdb2_filepaths = []
 for root2, dirs2, files2 in os.walk(pdb_dir2_path):
 for file2 in files2:
 if '.pdb' in file2:
 pdb2_filepaths.append(pdb_dir2_path + "/" + file2)
 if len(pdb2_filepaths) == 0:
 master_log_file = open(master_log_filepath, "a+")
 master_log_file.write("\nCOULD NOT FIND PDB FILE(S) IN THE INPUT DIRECTORY SPECIFIED FOR OLIGOMER 2:\n")
 master_log_file.write("%s\n" % pdb_dir2_path)
 master_log_file.write("NANOHEDRA DOCKING RUN ENDED\n")
 master_log_file.close()
 sys.exit()

 try:
 # Nanohedra.py Path
 main_script_dir = os.path.dirname(os.path.realpath(__file__))

 # Free SASA Executable Path
 free_sasa_exe_path = "/usr/local/bin/freesasa"
 sasa_assert_error_message = "Could not locate freesasa executable here: %s\n" \
 "FreeSASA might not be (correctly) installed.\n" \
 "Go to: https://freesasa.github.io for a quick " \
 "installation guide." % free_sasa_exe_path
 assert os.path.exists(free_sasa_exe_path), sasa_assert_error_message

 sasa_v_proc = subprocess.Popen(['%s' % free_sasa_exe_path, '--version'], stdout=subprocess.PIPE,
 stderr=subprocess.PIPE)
 (sasa_v_out, sasa_v_err) = sasa_v_proc.communicate()
 free_sasa_v = sasa_v_out.split("\n")[0]
 assert_free_sasa_v_message = free_sasa_v + " not supported.\nInstall supported version: " \

 169

nanohedra.py

 "FreeSASA 2.0.3 at https://freesasa.github.io"
 assert free_sasa_v == "FreeSASA 2.0.3", assert_free_sasa_v_message

 # Orient Oligomer Fortran Executable Path
 orient_executable_path = main_script_dir + "/orient/orient_oligomer"
 orient_assert_error_message = "Could not locate orient_oligomer executable here: %s\n" \
 "Check README file for instructions on how to compile " \
 "orient_oligomer.f" % orient_executable_path
 assert os.path.exists(orient_executable_path), orient_assert_error_message
 orient_executable_dir = os.path.dirname(orient_executable_path)

 # Fragment Database Directory Paths
 monofrag_cluster_rep_dirpath = main_script_dir + "/fragment_database/
Top5MonoFragClustersRepresentativeCentered"
 ijk_intfrag_cluster_rep_dirpath = main_script_dir + "/fragment_database/
Top75percent_IJK_ClusterRepresentatives_1A"
 intfrag_cluster_info_dirpath = main_script_dir + "/fragment_database/
IJK_ClusteredInterfaceFragmentDBInfo_1A"

 # SymEntry Parameters
 sym_entry = SymEntry(sym_entry_number)

 oligomer_symmetry_1 = sym_entry.get_group1_sym()
 oligomer_symmetry_2 = sym_entry.get_group2_sym()
 design_symmetry = sym_entry.get_pt_grp_sym()

 rot_range_deg_pdb1 = sym_entry.get_rot_range_deg_1()
 rot_range_deg_pdb2 = sym_entry.get_rot_range_deg_2()

 set_mat1 = sym_entry.get_rot_set_mat_group1()
 set_mat2 = sym_entry.get_rot_set_mat_group2()

 is_internal_zshift1 = sym_entry.is_internal_tx1()
 is_internal_zshift2 = sym_entry.is_internal_tx2()

 is_internal_rot1 = sym_entry.is_internal_rot1()
 is_internal_rot2 = sym_entry.is_internal_rot2()

 design_dim = sym_entry.get_design_dim()

 ref_frame_tx_dof1 = sym_entry.get_ref_frame_tx_dof_group1()
 ref_frame_tx_dof2 = sym_entry.get_ref_frame_tx_dof_group2()

 result_design_sym = sym_entry.get_result_design_sym()
 uc_spec_string = sym_entry.get_uc_spec_string()

 # Default Fragment Guide Atom Overlap Z-Value Threshold For Initial Matches
 init_max_z_val = 1.0

 # Default Fragment Guide Atom Overlap Z-Value Threshold For All Subsequent Matches
 subseq_max_z_val = 2.0

 master_log_file = open(master_log_filepath, "a+")

 # Default Rotation Step
 if is_internal_rot1 and rot_step_deg1 is None:
 rot_step_deg1 = 3 # If rotation step not provided but required, set rotation step to default
 if is_internal_rot2 and rot_step_deg2 is None:
 rot_step_deg2 = 3 # If rotation step not provided but required, set rotation step to default

 if not is_internal_rot1 and rot_step_deg1 is not None:
 rot_step_deg1 = 1
 master_log_file.write(
 "Warning: Rotation Step 1 Specified Was Ignored. Oligomer 1 Does Not Have Internal Rotational DOF
\n\n")
 if not is_internal_rot2 and rot_step_deg2 is not None:
 rot_step_deg2 = 1
 master_log_file.write(
 "Warning: Rotation Step 2 Specified Was Ignored. Oligomer 2 Does Not Have Internal Rotational DOF
\n\n")

 if not is_internal_rot1 and rot_step_deg1 is None:
 rot_step_deg1 = 1
 if not is_internal_rot2 and rot_step_deg2 is None:
 rot_step_deg2 = 1

 # For SCMs where the two oligomeric components have the same point group symmetry
 # make sure that there is at least 2 PDB files in the input PDB directory
 if (oligomer_symmetry_1 == oligomer_symmetry_2) and len(pdb1_filepaths) < 2:
 master_log_file.write("\nAT LEAST 2 OLIGOMERS ARE REQUIRED TO BE IN THE SPECIFIED INPUT DIRECTORY,\n"
)

 170

nanohedra.py

 master_log_file.write("WHEN THE 2 COMPONENTS OF A SCM OBEY THE SAME POINT GROUP SYMMETRY ")
 master_log_file.write("(IN THIS CASE %s)\n" % oligomer_symmetry_1)
 master_log_file.write("%s PDB FILE(S) FOUND IN: %s\n" % (str(len(pdb1_filepaths)), pdb_dir1_path))
 master_log_file.write("NANOHEDRA DOCKING RUN ENDED\n")
 master_log_file.close()
 sys.exit()

 master_log_file.write("NANOHEDRA PROJECT INFORMATION\n")
 master_log_file.write("Oligomer 1 Input Directory: %s\n" % pdb_dir1_path)
 master_log_file.write("Oligomer 2 Input Directory: %s\n" % pdb_dir2_path)
 master_log_file.write("Master Output Directory: %s\n\n" % master_outdir)

 master_log_file.write("SYMMETRY COMBINATION MATERIAL INFORMATION\n")
 master_log_file.write("Nanohedra Entry Number: %s\n" % str(sym_entry_number))
 master_log_file.write("Oligomer 1 Point Group Symmetry: %s\n" % oligomer_symmetry_1)
 master_log_file.write("Oligomer 2 Point Group Symmetry: %s\n" % oligomer_symmetry_2)
 master_log_file.write("SCM Point Group Symmetry: %s\n" % design_symmetry)
 master_log_file.write("Oligomer 1 Internal ROT DOF: %s\n" % str(sym_entry.get_internal_rot1()))
 master_log_file.write("Oligomer 2 Internal ROT DOF: %s\n" % str(sym_entry.get_internal_rot2()))
 master_log_file.write("Oligomer 1 Internal Tx DOF: %s\n" % str(sym_entry.get_internal_tx1()))
 master_log_file.write("Oligomer 2 Internal Tx DOF: %s\n" % str(sym_entry.get_internal_tx2()))
 master_log_file.write("Oligomer 1 Setting Matrix: %s\n" % str(set_mat1))
 master_log_file.write("Oligomer 2 Setting Matrix: %s\n" % str(set_mat2))
 master_log_file.write("Oligomer 1 Reference Frame Tx DOF: %s\n" % (str(ref_frame_tx_dof1) if sym_entry.
is_ref_frame_tx_dof1() else str(None)))
 master_log_file.write("Oligomer 2 Reference Frame Tx DOF: %s\n" % (str(ref_frame_tx_dof2) if sym_entry.
is_ref_frame_tx_dof2() else str(None)))
 master_log_file.write("Resulting SCM Symmetry: %s\n" % result_design_sym)
 master_log_file.write("SCM Dimension: %s\n" % str(design_dim))
 master_log_file.write("SCM Unit Cell Specification: %s\n\n" % uc_spec_string)

 master_log_file.write("ROTATIONAL SAMPLING INFORMATION\n")
 master_log_file.write("Oligomer 1 ROT Sampling Range: %s\n" % (str(rot_range_deg_pdb1) if
is_internal_rot1 else "N/A"))
 master_log_file.write("Oligomer 2 ROT Sampling Range: %s\n" % (str(rot_range_deg_pdb2) if
is_internal_rot2 else "N/A"))
 master_log_file.write("Oligomer 1 ROT Sampling Step: %s\n" % (str(rot_step_deg1) if is_internal_rot1 else
 "N/A"))
 master_log_file.write("Oligomer 2 ROT Sampling Step: %s\n\n" % (str(rot_step_deg2) if is_internal_rot2
else "N/A"))

 # Orient Input Oligomers to Canonical Orientation
 if oligomer_symmetry_1 == oligomer_symmetry_2:
 master_log_file.write("ORIENTING INPUT OLIGOMER PDB FILES\n")
 master_log_file.close()
 oriented_pdb1_outdir = master_outdir + "/" + oligomer_symmetry_1 + "_oriented"
 if not os.path.exists(oriented_pdb1_outdir):
 os.makedirs(oriented_pdb1_outdir)
 pdb1_oriented_filepaths = []
 pdb2_oriented_filepaths = []
 for pdb1_path in pdb1_filepaths:
 pdb1 = PDB()
 pdb1.readfile(pdb1_path, remove_alt_location=True)
 pdb1_filename = os.path.basename(pdb1_path)
 try:
 pdb1.orient(oligomer_symmetry_1, oriented_pdb1_outdir, orient_executable_dir)
 pdb1_oriented_filepaths.append(oriented_pdb1_outdir + "/" + pdb1_filename)
 master_log_file = open(master_log_filepath, 'a+')
 master_log_file.write("oriented: %s\n" % pdb1_filename)
 master_log_file.close()
 except ValueError as val_err:
 master_log_file = open(master_log_filepath, 'a+')
 master_log_file.write(str(val_err))
 master_log_file.close()
 except RuntimeError as rt_err:
 master_log_file = open(master_log_filepath, 'a+')
 master_log_file.write(str(rt_err))
 master_log_file.close()
 if len(pdb1_oriented_filepaths) == 0:
 master_log_file = open(master_log_filepath, "a+")
 master_log_file.write("\nCOULD NOT ORIENT OLIGOMER INPUT PDB FILES\n")
 master_log_file.write(
 "CHECK %s/orient_oligomer_log.txt FOR MORE INFORMATION\n" % oriented_pdb1_outdir)
 master_log_file.write("NANOHEDRA DOCKING RUN ENDED\n")
 master_log_file.close()
 sys.exit()
 elif len(pdb1_oriented_filepaths) == 1:
 master_log_file = open(master_log_filepath, "a+")
 master_log_file.write("\nAT LEAST 2 OLIGOMERS ARE REQUIRED WHEN THE ")
 master_log_file.write("2 OLIGOMERIC COMPONENTS OF A SCM OBEY THE SAME POINT GROUP SYMMETRY ")
 master_log_file.write("(IN THIS CASE: %s)\n" % oligomer_symmetry_1)

 171

nanohedra.py

 master_log_file.write("HOWEVER ONLY 1 INPUT OLIGOMER PDB FILE COULD BE ORIENTED\n")
 master_log_file.write(
 "CHECK %s/orient_oligomer_log.txt FOR MORE INFORMATION\n" % oriented_pdb1_outdir)
 master_log_file.write("NANOHEDRA DOCKING RUN ENDED\n")
 master_log_file.close()
 sys.exit()
 else:
 master_log_file = open(master_log_filepath, "a+")
 master_log_file.write(
 "Successfully Oriented %s out of the %s Oligomer Input PDB Files\n==> %s\n\n"
 % (str(len(pdb1_oriented_filepaths)), str(len(pdb1_filepaths)), oriented_pdb1_outdir))
 master_log_file.close()
 else:
 master_log_file.write("ORIENTING OLIGOMER 1 INPUT PDB FILE(S)\n")
 master_log_file.close()
 oriented_pdb1_outdir = master_outdir + "/" + oligomer_symmetry_1 + "_oriented"
 if not os.path.exists(oriented_pdb1_outdir):
 os.makedirs(oriented_pdb1_outdir)
 pdb1_oriented_filepaths = []
 for pdb1_path in pdb1_filepaths:
 pdb1 = PDB()
 pdb1.readfile(pdb1_path, remove_alt_location=True)
 pdb1_filename = os.path.basename(pdb1_path)
 try:
 pdb1.orient(oligomer_symmetry_1, oriented_pdb1_outdir, orient_executable_dir)
 pdb1_oriented_filepaths.append(oriented_pdb1_outdir + "/" + pdb1_filename)
 master_log_file = open(master_log_filepath, 'a+')
 master_log_file.write("oriented: %s\n" % pdb1_filename)
 master_log_file.close()
 except ValueError as val_err:
 master_log_file = open(master_log_filepath, 'a+')
 master_log_file.write(str(val_err))
 master_log_file.close()
 except RuntimeError as rt_err:
 master_log_file = open(master_log_filepath, 'a+')
 master_log_file.write(str(rt_err))
 master_log_file.close()
 if len(pdb1_oriented_filepaths) == 0:
 master_log_file = open(master_log_filepath, "a+")
 master_log_file.write("\nCOULD NOT ORIENT OLIGOMER 1 INPUT PDB FILE(S)\n")
 master_log_file.write(
 "CHECK %s/orient_oligomer_log.txt FOR MORE INFORMATION\n" % oriented_pdb1_outdir)
 master_log_file.write("NANOHEDRA DOCKING RUN ENDED\n")
 master_log_file.close()
 sys.exit()
 else:
 master_log_file = open(master_log_filepath, "a+")
 master_log_file.write(
 "Successfully Oriented %s out of the %s Oligomer 1 Input PDB File(s)\n==> %s\n"
 % (str(len(pdb1_oriented_filepaths)), str(len(pdb1_filepaths)), oriented_pdb1_outdir))
 master_log_file.close()

 master_log_file = open(master_log_filepath, 'a+')
 master_log_file.write("\nORIENTING OLIGOMER 2 INPUT PDB FILE(S)\n")
 master_log_file.close()
 oriented_pdb2_outdir = master_outdir + "/" + oligomer_symmetry_2 + "_oriented"
 if not os.path.exists(oriented_pdb2_outdir):
 os.makedirs(oriented_pdb2_outdir)
 pdb2_oriented_filepaths = []
 for pdb2_path in pdb2_filepaths:
 pdb2 = PDB()
 pdb2.readfile(pdb2_path, remove_alt_location=True)
 pdb2_filename = os.path.basename(pdb2_path)
 try:
 pdb2.orient(oligomer_symmetry_2, oriented_pdb2_outdir, orient_executable_dir)
 pdb2_oriented_filepaths.append(oriented_pdb2_outdir + "/" + pdb2_filename)
 master_log_file = open(master_log_filepath, 'a+')
 master_log_file.write("oriented: %s\n" % pdb2_filename)
 master_log_file.close()
 except ValueError as val_err:
 master_log_file = open(master_log_filepath, 'a+')
 master_log_file.write(str(val_err))
 master_log_file.close()
 except RuntimeError as rt_err:
 master_log_file = open(master_log_filepath, 'a+')
 master_log_file.write(str(rt_err))
 master_log_file.close()
 if len(pdb2_oriented_filepaths) == 0:
 master_log_file = open(master_log_filepath, "a+")
 master_log_file.write("\nCOULD NOT ORIENT OLIGOMER 2 INPUT PDB FILE(S)\n")
 master_log_file.write(

 172

nanohedra.py

 "CHECK %s/orient_oligomer_log.txt FOR MORE INFORMATION\n" % oriented_pdb2_outdir)
 master_log_file.write("NANOHEDRA DOCKING RUN ENDED\n")
 master_log_file.close()
 sys.exit()
 else:
 master_log_file = open(master_log_filepath, "a+")
 master_log_file.write(
 "Successfully Oriented %s out of the %s Oligomer 2 Input PDB File(s)\n==> %s\n\n"
 % (str(len(pdb2_oriented_filepaths)), str(len(pdb2_filepaths)), oriented_pdb2_outdir))
 master_log_file.close()

 # Get Degeneracy Matrices
 master_log_file = open(master_log_filepath, "a+")
 master_log_file.write("SEARCHING FOR POSSIBLE DEGENERACIES\n")
 degeneracy_matrices_1, degeneracy_matrices_2 = get_degeneracy_matrices(oligomer_symmetry_1,
 oligomer_symmetry_2,
 design_dim,
 design_symmetry)
 if degeneracy_matrices_1 is None:
 master_log_file.write("No Degeneracies Found for Oligomer 1\n")
 elif len(degeneracy_matrices_1) == 1:
 master_log_file.write("1 Degeneracy Found for Oligomer 1\n")
 master_log_file.write("%s\n\n" % str(degeneracy_matrices_1[0]))
 else:
 master_log_file.write("%s Degeneracies Found for Oligomer 1\n" % str(len(degeneracy_matrices_1)))
 for degen_mat_1 in degeneracy_matrices_1:
 master_log_file.write("%s\n" % str(degen_mat_1))
 master_log_file.write("\n")

 if degeneracy_matrices_2 is None:
 master_log_file.write("No Degeneracies Found for Oligomer 2\n\n")
 elif len(degeneracy_matrices_2) == 1:
 master_log_file.write("1 Degeneracy Found for Oligomer 2\n")
 master_log_file.write("%s\n\n" % str(degeneracy_matrices_2[0]))
 else:
 master_log_file.write("%s Degeneracies Found for Oligomer 2\n" % str(len(degeneracy_matrices_2)))
 for degen_mat_2 in degeneracy_matrices_2:
 master_log_file.write("%s\n" % str(degen_mat_2))
 master_log_file.write("\n")

 master_log_file.write("LOADING COMPLETE INTERFACE FRAGMENT REPRESENTATIVES DATABASE\n")
 # Create fragment database for all ijk cluster representatives
 ijk_frag_db = FragmentDB(monofrag_cluster_rep_dirpath,
 ijk_intfrag_cluster_rep_dirpath,
 intfrag_cluster_info_dirpath)
 # Get complete IJK fragment representatives database dictionaries
 ijk_monofrag_cluster_rep_pdb_dict = ijk_frag_db.get_monofrag_cluster_rep_dict()
 ijk_intfrag_cluster_rep_dict = ijk_frag_db.get_intfrag_cluster_rep_dict()
 ijk_intfrag_cluster_info_dict = ijk_frag_db.get_intfrag_cluster_info_dict()

 if init_match_type == "1_2":
 master_log_file.write("RETRIEVING HELIX-STRAND INTERFACE FRAGMENT REPRESENTATIVES FOR INITIAL MATCH\n
\n")
 # Get Helix-Strand fragment representatives database dictionaries for initial interface fragment
matching
 init_monofrag_cluster_rep_pdb_dict_1 = {"1": ijk_monofrag_cluster_rep_pdb_dict["1"]}
 init_monofrag_cluster_rep_pdb_dict_2 = {"2": ijk_monofrag_cluster_rep_pdb_dict["2"]}
 init_intfrag_cluster_rep_dict = {"1": {"2": ijk_intfrag_cluster_rep_dict["1"]["2"]}}
 init_intfrag_cluster_info_dict = {"1": {"2": ijk_intfrag_cluster_info_dict["1"]["2"]}}
 elif init_match_type == "2_1":
 master_log_file.write("RETRIEVING STRAND-HELIX INTERFACE FRAGMENT REPRESENTATIVES FOR INITIAL MATCH\n
\n")
 # Get Strand-Helix fragment representatives database dictionaries for initial interface fragment
matching
 init_monofrag_cluster_rep_pdb_dict_1 = {"2": ijk_monofrag_cluster_rep_pdb_dict["2"]}
 init_monofrag_cluster_rep_pdb_dict_2 = {"1": ijk_monofrag_cluster_rep_pdb_dict["1"]}
 init_intfrag_cluster_rep_dict = {"2": {"1": ijk_intfrag_cluster_rep_dict["2"]["1"]}}
 init_intfrag_cluster_info_dict = {"2": {"1": ijk_intfrag_cluster_info_dict["2"]["1"]}}
 elif init_match_type == "2_2":
 master_log_file.write("RETRIEVING STRAND-STRAND INTERFACE FRAGMENT REPRESENTATIVES FOR INITIAL MATCH\
n\n")
 # Get Strand-Strand fragment representatives database dictionaries for initial interface fragment
matching
 init_monofrag_cluster_rep_pdb_dict_1 = {"2": ijk_monofrag_cluster_rep_pdb_dict["2"]}
 init_monofrag_cluster_rep_pdb_dict_2 = {"2": ijk_monofrag_cluster_rep_pdb_dict["2"]}
 init_intfrag_cluster_rep_dict = {"2": {"2": ijk_intfrag_cluster_rep_dict["2"]["2"]}}
 init_intfrag_cluster_info_dict = {"2": {"2": ijk_intfrag_cluster_info_dict["2"]["2"]}}
 else:
 master_log_file.write("RETRIEVING HELIX-HELIX INTERFACE FRAGMENT REPRESENTATIVES FOR INITIAL MATCH\n\
n")
 # Get Helix-Helix fragment representatives database dictionaries for initial interface fragment

 173

nanohedra.py

matching
 init_monofrag_cluster_rep_pdb_dict_1 = {"1": ijk_monofrag_cluster_rep_pdb_dict["1"]}
 init_monofrag_cluster_rep_pdb_dict_2 = {"1": ijk_monofrag_cluster_rep_pdb_dict["1"]}
 init_intfrag_cluster_rep_dict = {"1": {"1": ijk_intfrag_cluster_rep_dict["1"]["1"]}}
 init_intfrag_cluster_info_dict = {"1": {"1": ijk_intfrag_cluster_info_dict["1"]["1"]}}
 master_log_file.close()

 # Initialize Euler Lookup Class
 eul_lookup = EulerLookup()

 # Get Expand Matrices
 if design_dim == 0:
 expand_matrices = get_ptgrp_sym_op(result_design_sym)
 elif design_dim == 2:
 expand_matrices = get_sg_sym_op(result_design_sym.upper())
 elif design_dim == 3:
 expand_matrices = get_sg_sym_op(result_design_sym)
 else:
 master_log_file = open(master_log_filepath, "a+")
 master_log_file.write(
 "\n%s is an Invalid Design Dimension. The Only Valid Dimensions are: 0, 2, 3\n" % str(design_dim)
)
 master_log_file.close()
 sys.exit()

 master_log_file = open(master_log_filepath, "a+")
 master_log_file.write("\nSTARTING FRAGMENT-BASED SYMMETRY DOCKING PROTOCOL\n\n")
 master_log_file.close()

 if oligomer_symmetry_1 == oligomer_symmetry_2:
 n = len(pdb1_oriented_filepaths)
 for i in range(n - 1):
 pdb1_oriented_path = pdb1_oriented_filepaths[i]
 pdb1_oriented_filename = os.path.splitext(os.path.basename(pdb1_oriented_path))[0]

 for j in range(i + 1, n):
 pdb2_oriented_path = pdb1_oriented_filepaths[j]
 pdb2_oriented_filename = os.path.splitext(os.path.basename(pdb2_oriented_path))[0]

 master_log_file = open(master_log_filepath, "a+")
 master_log_file.write("DOCKING %s | %s\n" % (pdb1_oriented_filename, pdb2_oriented_filename))
 master_log_file.close()

 dock(init_intfrag_cluster_rep_dict, ijk_intfrag_cluster_rep_dict,
 init_monofrag_cluster_rep_pdb_dict_1, init_monofrag_cluster_rep_pdb_dict_2,
 init_intfrag_cluster_info_dict, ijk_monofrag_cluster_rep_pdb_dict,
 ijk_intfrag_cluster_info_dict, free_sasa_exe_path, master_outdir, pdb1_oriented_path,
 pdb2_oriented_path, set_mat1, set_mat2, ref_frame_tx_dof1, ref_frame_tx_dof2,
 is_internal_zshift1, is_internal_zshift2, result_design_sym, uc_spec_string,
 design_dim, expand_matrices, eul_lookup, init_max_z_val, subseq_max_z_val,
 degeneracy_matrices_1, degeneracy_matrices_2, rot_step_deg1,
 rot_range_deg_pdb1, rot_step_deg2, rot_range_deg_pdb2, output_exp_assembly,
 output_uc, output_surrounding_uc, min_matched)

 master_log_file = open(master_log_filepath, "a+")
 master_log_file.write(
 "COMPLETE ==> %s\n\n" %
 (master_outdir + "/" + pdb1_oriented_filename + "_" + pdb2_oriented_filename))
 master_log_file.close()

 else:
 for pdb1_oriented_path in pdb1_oriented_filepaths:
 pdb1_oriented_filename = os.path.splitext(os.path.basename(pdb1_oriented_path))[0]

 for pdb2_oriented_path in pdb2_oriented_filepaths:
 pdb2_oriented_filename = os.path.splitext(os.path.basename(pdb2_oriented_path))[0]

 master_log_file = open(master_log_filepath, "a+")
 master_log_file.write("DOCKING %s | %s\n" % (pdb1_oriented_filename, pdb2_oriented_filename))
 master_log_file.close()

 dock(init_intfrag_cluster_rep_dict, ijk_intfrag_cluster_rep_dict,
 init_monofrag_cluster_rep_pdb_dict_1, init_monofrag_cluster_rep_pdb_dict_2,
 init_intfrag_cluster_info_dict, ijk_monofrag_cluster_rep_pdb_dict,
 ijk_intfrag_cluster_info_dict, free_sasa_exe_path, master_outdir, pdb1_oriented_path,
 pdb2_oriented_path, set_mat1, set_mat2, ref_frame_tx_dof1, ref_frame_tx_dof2,
 is_internal_zshift1, is_internal_zshift2, result_design_sym, uc_spec_string,
 design_dim, expand_matrices, eul_lookup, init_max_z_val, subseq_max_z_val,
 degeneracy_matrices_1, degeneracy_matrices_2, rot_step_deg1,
 rot_range_deg_pdb1, rot_step_deg2, rot_range_deg_pdb2, output_exp_assembly,
 output_uc, output_surrounding_uc, min_matched)

 174

nanohedra.py

 master_log_file = open(master_log_filepath, "a+")
 master_log_file.write(
 "COMPLETE ==> %s\n\n" %
 (master_outdir + "/" + pdb1_oriented_filename + "_" + pdb2_oriented_filename))
 master_log_file.close()

 master_log_file = open(master_log_filepath, "a+")
 master_log_file.write("\nCOMPLETED FRAGMENT-BASED SYMMETRY DOCKING PROTOCOL\n\n")
 master_log_file.write("DONE\n")
 master_log_file.close()
 return 0

 except KeyboardInterrupt:
 master_log_file = open(master_log_filepath, "a+")
 master_log_file.write("\nRun Ended By KeyboardInterrupt\n")
 master_log_file.close()
 sys.exit()

 elif len(cmd_line_in_params) > 1 and cmd_line_in_params[1] == '-query':
 query_mode(cmd_line_in_params)

 elif len(cmd_line_in_params) > 1 and cmd_line_in_params[1] == '-postprocess':
 postprocess_mode(cmd_line_in_params)

 else:
 print_usage()

if __name__ == "__main__":
 main()

 175

classes

 176

Atom.py

 177

classes/Atom.py

Copyright 2020 Joshua Laniado and Todd O. Yeates.
__author__ = "Joshua Laniado and Todd O. Yeates"
__copyright__ = "Copyright 2020, Nanohedra"
__version__ = "1.0"

class Atom:
 def __init__(self, number, type, alt_location, residue_type, chain, residue_number, code_for_insertion, x, y, z,
occ, temp_fact, element_symbol, atom_charge):
 self.number = number
 self.type = type
 self.alt_location = alt_location
 self.residue_type = residue_type
 self.chain = chain
 self.residue_number = residue_number
 self.code_for_insertion = code_for_insertion
 self.x = x
 self.y = y
 self.z = z
 self.occ = occ
 self.temp_fact = temp_fact
 self.element_symbol = element_symbol
 self.atom_charge = atom_charge

 def __str__(self):
 # prints Atom in PDB format
 return "{:6s}{:5d} {:^4s}{:1s}{:3s} {:1s}{:4d}{:1s} {:8.3f}{:8.3f}{:8.3f}{:6.2f}{:6.2f} {:>2s}{:2s
}\n".format("ATOM", self.number, self.type, self.alt_location, self.residue_type, self.chain, self.residue_number,
self.code_for_insertion, self.x, self.y, self.z, self.occ, self.temp_fact, self.element_symbol, self.atom_charge)

 def is_backbone(self):
 # returns True if atom is part of the proteins backbone and False otherwise
 backbone_specific_atom_type = ["N", "CA", "C", "O"]
 if self.type in backbone_specific_atom_type:
 return True
 else:
 return False

 def is_CB(self, InclGlyCA=False):
 if InclGlyCA:
 return self.type == "CB" or (self.type == "CA" and self.residue_type == "GLY")
 else:
 return self.type == "CB" or (self.type == "H" and self.residue_type == "GLY")

 def is_CA(self):
 return self.type == "CA"

 def coords(self):
 return [self.x, self.y, self.z]

 def __eq__(self, other):
 return (self.number == other.number and self.chain == other.chain and self.type == other.type and self.
residue_type == other.residue_type)

 def get_number(self):
 return self.number

 def get_type(self):
 return self.type

 def get_alt_location(self):
 return self.alt_location

 def get_residue_type(self):
 return self.residue_type

 def get_chain(self):
 return self.chain

 def get_residue_number(self):
 return self.residue_number

 def get_code_for_insertion(self):
 return self.code_for_insertion

 def get_x(self):
 return self.x

 def get_y(self):
 return self.y

 178

classes/Atom.py

 def get_z(self):
 return self.z

 def get_occ(self):
 return self.occ

 def get_temp_fact(self):
 return self.temp_fact

 def get_element_symbol(self):
 return self.element_symbol

 def get_atom_charge(self):
 return self.atom_charge

 179

PDB.py

 180

classes/PDB.py

from Atom import Atom
import subprocess
import os
from shutil import copyfile
from shutil import move

Copyright 2020 Joshua Laniado and Todd O. Yeates.
__author__ = "Joshua Laniado and Todd O. Yeates"
__copyright__ = "Copyright 2020, Nanohedra"
__version__ = "1.0"

class PDB:
 def __init__(self):
 self.all_atoms = [] # python list of Atoms
 self.filepath = None # PDB filepath if instance is read from PDB file
 self.chain_id_list = [] # list of unique chain IDs in PDB
 self.cb_coords = []
 self.bb_coords = []

 def set_all_atoms(self, atom_list):
 self.all_atoms = atom_list

 def set_chain_id_list(self, chain_id_list):
 self.chain_id_list = chain_id_list

 def set_filepath(self, filepath):
 self.filepath = filepath

 def get_all_atoms(self):
 return self.all_atoms

 def get_chain_id_list(self):
 return self.chain_id_list

 def get_filepath(self):
 return self.filepath

 def readfile(self, filepath, remove_alt_location=False):
 # reads PDB file and feeds PDB instance
 self.filepath = filepath

 f = open(filepath, "r")
 pdb = f.readlines()
 f.close()

 available_chain_ids = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', '
R',
 'S', 'T',
 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', '
l',
 'm', 'n',
 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '0', '1', '2', '3', '4']

 chain_ids = []
 multimodel = False
 start_of_new_model = False
 model_chain_index = -1
 model_chain_id = None
 curr_chain_id = None
 for line in pdb:
 line = line.rstrip()
 if line[0:5] == "MODEL":
 start_of_new_model = True
 multimodel = True
 model_chain_index += 1
 model_chain_id = available_chain_ids[model_chain_index]
 elif line[0:4] == "ATOM":
 number = int(line[6:11].strip())
 type = line[12:16].strip()
 alt_location = line[16:17].strip()
 residue_type = line[17:20].strip()
 if multimodel:
 if line[21:22].strip() != curr_chain_id:
 curr_chain_id = line[21:22].strip()
 if not start_of_new_model:
 model_chain_index += 1
 model_chain_id = available_chain_ids[model_chain_index]
 start_of_new_model = False
 chain = model_chain_id

 181

classes/PDB.py

 else:
 chain = line[21:22].strip()
 residue_number = int(line[22:26].strip())
 code_for_insertion = line[26:27].strip()
 x = float(line[30:38].strip())
 y = float(line[38:46].strip())
 z = float(line[46:54].strip())
 occ = float(line[54:60].strip())
 temp_fact = float(line[60:66].strip())
 element_symbol = line[76:78].strip()
 atom_charge = line[78:80].strip()
 atom = Atom(number, type, alt_location, residue_type, chain, residue_number, code_for_insertion, x, y
, z, occ, temp_fact, element_symbol, atom_charge)
 if remove_alt_location:
 if alt_location == "" or alt_location == "A":
 if atom.chain not in chain_ids:
 chain_ids.append(atom.chain)
 self.all_atoms.append(atom)
 else:
 if atom.chain not in chain_ids:
 chain_ids.append(atom.chain)
 self.all_atoms.append(atom)
 self.chain_id_list = chain_ids

 def read_atom_list(self, atom_list, store_cb_and_bb_coords=False):
 # reads a python list of Atoms and feeds PDB instance
 if store_cb_and_bb_coords:
 chain_ids = []
 for atom in atom_list:
 self.all_atoms.append(atom)
 if atom.is_backbone():
 [x, y, z] = [atom.x, atom.y, atom.z]
 self.bb_coords.append([x, y, z])
 if atom.is_CB(InclGlyCA=False):
 [x, y, z] = [atom.x, atom.y, atom.z]
 self.cb_coords.append([x, y, z])
 if atom.chain not in chain_ids:
 chain_ids.append(atom.chain)
 self.chain_id_list = chain_ids
 else:
 chain_ids = []
 for atom in atom_list:
 self.all_atoms.append(atom)
 if atom.chain not in chain_ids:
 chain_ids.append(atom.chain)
 self.chain_id_list = chain_ids

 def chain(self, chain_id):
 # returns a python list of Atoms containing the subset of Atoms in the PDB instance that belong to the
selected chain ID
 selected_atoms = []
 for atom in self.all_atoms:
 if atom.chain == chain_id:
 selected_atoms.append(atom)
 return selected_atoms

 def extract_all_coords(self):
 coords = []
 for atom in self.all_atoms:
 [x, y, z] = [atom.x, atom.y, atom.z]
 coords.append([x, y, z])
 return coords

 def extract_backbone_coords(self):
 coords = []
 for atom in self.all_atoms:
 if atom.is_backbone():
 [x, y, z] = [atom.x, atom.y, atom.z]
 coords.append([x, y, z])
 return coords

 def get_CA_atoms(self):
 ca_atoms = []
 for atom in self.all_atoms:
 if atom.is_CA():
 ca_atoms.append(atom)
 return ca_atoms

 def get_backbone_atoms(self):
 bb_atoms = []
 for atom in self.all_atoms:

 182

classes/PDB.py

 if atom.is_backbone():
 bb_atoms.append(atom)
 return bb_atoms

 def get_CB_coords(self, ReturnWithCBIndices=False, InclGlyCA=False):
 coords = []
 cb_indices = []
 for i in range(len(self.all_atoms)):
 if self.all_atoms[i].is_CB(InclGlyCA=InclGlyCA):
 [x, y, z] = [self.all_atoms[i].x, self.all_atoms[i].y, self.all_atoms[i].z]
 coords.append([x, y, z])
 if ReturnWithCBIndices:
 cb_indices.append(i)
 if ReturnWithCBIndices:
 return coords, cb_indices
 else:
 return coords

 def replace_coords(self, new_cords):
 for i in range(len(self.all_atoms)):
 self.all_atoms[i].x, self.all_atoms[i].y, self.all_atoms[i].z = new_cords[i][0], new_cords[i][1],
new_cords[i][2]

 def mat_vec_mul3(self, a, b):
 c = [0. for i in range(3)]
 for i in range(3):
 c[i] = 0.
 for j in range(3):
 c[i] += a[i][j] * b[j]
 return c

 def rotate_translate(self, rot, tx):
 for atom in self.all_atoms:
 coord = [atom.x, atom.y, atom.z]
 coord_rot = self.mat_vec_mul3(rot, coord)
 newX = coord_rot[0] + tx[0]
 newY = coord_rot[1] + tx[1]
 newZ = coord_rot[2] + tx[2]
 atom.x, atom.y, atom.z = newX, newY, newZ

 def write(self, out_path, cryst1=None):
 outfile = open(out_path, "w")
 if cryst1 is not None and isinstance(cryst1, str) and cryst1.startswith("CRYST1"):
 outfile.write(str(cryst1))
 for atom in self.all_atoms:
 outfile.write(str(atom))
 outfile.close()

 def orient(self, symm, output_dir, orient_executable_dir):
 valid_subunit_number = {"C2": 2, "C3": 3, "C4": 4, "C5": 5, "C6": 6,
 "D2": 4, "D3": 6, "D4": 8, "D5": 10, "D6": 12,
 "I": 60, "O": 24, "T": 12}

 number_of_subunits = len(self.chain_id_list)

 pdb_file_name = os.path.basename(self.filepath)

 if number_of_subunits != valid_subunit_number[symm]:
 orient_log = open('%s/%s' % (output_dir, 'orient_oligomer_log.txt'), 'a+')
 orient_log.write("%s\n Oligomer could not be oriented: It has %s subunits while %s are expected "
 "for %s symmetry\n\n" % (pdb_file_name, str(number_of_subunits),
 str(valid_subunit_number[symm]), symm))
 orient_log.close()

 raise ValueError('orient_oligomer could not orient %s '
 'check %s/orient_oligomer_log.txt for more information\n' % (pdb_file_name, output_dir))

 if not os.path.exists(output_dir):
 os.makedirs(output_dir)

 if os.path.exists(orient_executable_dir + "/input.pdb"):
 os.remove(orient_executable_dir + "/input.pdb")
 if os.path.exists(orient_executable_dir + "/output.pdb"):
 os.remove(orient_executable_dir + "/output.pdb")

 copyfile('%s' % self.filepath, '%s/input.pdb' % orient_executable_dir)

 process = subprocess.Popen(['%s/orient_oligomer' % orient_executable_dir],
 stdin=subprocess.PIPE,
 stdout=subprocess.PIPE,
 stderr=subprocess.PIPE,

 183

classes/PDB.py

 cwd=orient_executable_dir)
 in_symm_file = '%s/symm_files/%s_symm.txt' % (orient_executable_dir, symm)
 stdout, stderr = process.communicate(input=in_symm_file)
 stdout = pdb_file_name + stdout[28:]

 orient_log = open('%s/%s' % (output_dir, 'orient_oligomer_log.txt'), 'a+')
 orient_log.write(stdout)
 if stderr != '':
 orient_log.write(stderr + "\n")
 else:
 orient_log.write('\n')
 orient_log.close()

 if os.path.exists(orient_executable_dir + "/output.pdb") and os.stat(orient_executable_dir + "/output.pdb").
st_size != 0:
 move('%s/output.pdb' % orient_executable_dir, '%s/%s' % (output_dir, pdb_file_name))

 if os.path.exists(orient_executable_dir + "/input.pdb"):
 os.remove(orient_executable_dir + "/input.pdb")
 if os.path.exists(orient_executable_dir + "/output.pdb"):
 os.remove(orient_executable_dir + "/output.pdb")

 if not os.path.exists('%s/%s' % (output_dir, pdb_file_name)):
 raise RuntimeError('orient_oligomer could not orient %s '
 'check %s/orient_oligomer_log.txt for more information\n' % (pdb_file_name, output_dir
))

 def get_surface_resdiue_info(self, free_sasa_exe_path, probe_radius=2.2, sasa_thresh=0):
 # only works for monomers or homo-oligomers
 assert_error_message = "Could not locate freesasa executable here: %s" % free_sasa_exe_path
 assert os.path.exists(free_sasa_exe_path), assert_error_message

 proc = subprocess.Popen([free_sasa_exe_path, '--format=seq', '--probe-radius', str(probe_radius), self.
filepath]
 , stdout=subprocess.PIPE, stderr=subprocess.PIPE)
 (out, err) = proc.communicate()
 out_lines = out.split("\n")
 sasa_out = []
 for line in out_lines:
 if line != "\n" and line != "" and not line.startswith("#"):
 chain_id = line[4:5]
 res_num = int(line[5:10])
 sasa = float(line[17:])
 if sasa > sasa_thresh:
 sasa_out.append((chain_id, res_num))
 return sasa_out

 184

SymEntry.py

 185

classes/SymEntry.py

Copyright 2020 Joshua Laniado and Todd O. Yeates.
__author__ = "Joshua Laniado and Todd O. Yeates"
__copyright__ = "Copyright 2020, Nanohedra"
__version__ = "1.0"

SYMMETRY COMBINATION MATERIAL TABLE (T.O.Y and J.L, 2020)
sym_comb_dict = {
 1: [1, 'C2', 1, ['r:<0,0,1,a>', 't:<0,0,b>'], 2, '<0,0,0>', 'C2', 1, ['r:<0,0,1,c>', 't:<0,0,d>'], 1, '<0,0,0>',
'D2', 'D2', 0, 'N/A', 4, 2],
 2: [2, 'C2', 1, ['r:<0,0,1,a>', 't:<0,0,b>'], 1, '<e,0,0>', 'C3', 2, ['r:<0,0,1,c>'], 1, '<e,0.577350*e,0>', 'C6'
, 'p6', 2, '(2*e, 2*e), 120', 4, 6],
 3: [3, 'C2', 1, ['r:<0,0,1,a>', 't:<0,0,b>'], 2, '<0,0,0>', 'C3', 2, ['r:<0,0,1,c>', 't:<0,0,d>'], 1, '<0,0,0>',
'D3', 'D3', 0, 'N/A', 4, 2],
 4: [4, 'C2', 1, ['r:<0,0,1,a>', 't:<0,0,b>'], 6, '<e,0,0>', 'C3', 2, ['r:<0,0,1,c>', 't:<0,0,d>'], 1, '<0,0,0>',
'D3', 'p312', 2, '(2*e, 2*e), 120', 5, 6],
 5: [5, 'C2', 1, ['r:<0,0,1,a>', 't:<0,0,b>'], 1, '<0,0,0>', 'C3', 2, ['r:<0,0,1,c>', 't:<0,0,d>'], 4, '<0,0,0>',
'T', 'T', 0, 'N/A', 4, 3],
 6: [6, 'C2', 1, ['r:<0,0,1,a>', 't:<0,0,b>'], 1, '<0,e,0>', 'C3', 2, ['r:<0,0,1,c>', 't:<0,0,d>'], 4, '<0,0,0>',
'T', 'I213', 3, '(4*e, 4*e, 4*e), (90, 90, 90)', 5, 10],
 7: [7, 'C2', 1, ['r:<0,0,1,a>', 't:<0,0,b>'], 3, '<0,0,0>', 'C3', 2, ['r:<0,0,1,c>', 't:<0,0,d>'], 4, '<0,0,0>',
'O', 'O', 0, 'N/A', 4, 4],
 8: [8, 'C2', 1, ['r:<0,0,1,a>', 't:<0,0,b>'], 3, '<2*e,e,0>', 'C3', 2, ['r:<0,0,1,c>', 't:<0,0,d>'], 4, '<0,0,0>'
, 'O', 'P4132', 3, '(8*e, 8*e, 8*e), (90, 90, 90)', 5, 10],
 9: [9, 'C2', 1, ['r:<0,0,1,a>', 't:<0,0,b>'], 1, '<0,0,0>', 'C3', 2, ['r:<0,0,1,c>', 't:<0,0,d>'], 7, '<0,0,0>',
'I', 'I', 0, 'N/A', 4, 5],
 10: [10, 'C2', 1, ['r:<0,0,1,a>', 't:<0,0,b>'], 1, '<e,0,0>', 'C4', 3, ['r:<0,0,1,c>'], 1, '<0,0,0>', 'C4', 'p4',
 2, '(2*e, 2*e), 90', 4, 4],
 11: [11, 'C2', 1, ['r:<0,0,1,a>', 't:<0,0,b>'], 2, '<0,0,0>', 'C4', 3, ['r:<0,0,1,c>', 't:<0,0,d>'], 1, '<0,0,0>'
, 'D4', 'D4', 0, 'N/A', 4, 2],
 12: [12, 'C2', 1, ['r:<0,0,1,a>', 't:<0,0,b>'], 8, '<0,0,0>', 'C4', 3, ['r:<0,0,1,c>', 't:<0,0,d>'], 1, '<e,0,0>'
, 'D4', 'p4212', 2, '(2*e, 2*e), 90', 5, 4],
 13: [13, 'C2', 1, ['r:<0,0,1,a>', 't:<0,0,b>'], 3, '<0,0,0>', 'C4', 3, ['r:<0,0,1,c>', 't:<0,0,d>'], 1, '<0,0,0>'
, 'O', 'O', 0, 'N/A', 4, 3],
 14: [14, 'C2', 1, ['r:<0,0,1,a>', 't:<0,0,b>'], 3, '<2*e,e,0>', 'C4', 3, ['r:<0,0,1,c>', 't:<0,0,d>'], 1, '<0,0,0
>', 'O', 'I432', 3, '(4*e, 4*e, 4*e), (90, 90, 90)', 5, 8],
 15: [15, 'C2', 1, ['r:<0,0,1,a>', 't:<0,0,b>'], 2, '<0,0,0>', 'C5', 4, ['r:<0,0,1,c>', 't:<0,0,d>'], 1, '<0,0,0>'
, 'D5', 'D5', 0, 'N/A', 4, 2],
 16: [16, 'C2', 1, ['r:<0,0,1,a>', 't:<0,0,b>'], 1, '<0,0,0>', 'C5', 4, ['r:<0,0,1,c>', 't:<0,0,d>'], 9, '<0,0,0>'
, 'I', 'I', 0, 'N/A', 4, 3],
 17: [17, 'C2', 1, ['r:<0,0,1,a>', 't:<0,0,b>'], 1, '<e,0,0>', 'C6', 5, ['r:<0,0,1,c>'], 1, '<0,0,0>', 'C6', 'p6',
 2, '(2*e, 2*e), 120', 4, 3],
 18: [18, 'C2', 1, ['r:<0,0,1,a>', 't:<0,0,b>'], 2, '<0,0,0>', 'C6', 5, ['r:<0,0,1,c>', 't:<0,0,d>'], 1, '<0,0,0>'
, 'D6', 'D6', 0, 'N/A', 4, 2],
 19: [19, 'C2', 1, ['r:<0,0,1,a>', 't:<0,0,b>'], 6, '<e,0,0>', 'C6', 5, ['r:<0,0,1,c>', 't:<0,0,d>'], 1, '<0,0,0>'
, 'D6', 'p622', 2, '(2*e, 2*e), 120', 5, 4],
 20: [20, 'C2', 1, ['r:<0,0,1,a>', 't:<0,0,b>'], 1, '<e,f,0>', 'D2', 6, ['None'], 1, '<0,0,0>', 'D2', 'c222', 2,
'(4*e, 4*f), 90', 4, 4],
 21: [21, 'C2', 1, ['r:<0,0,1,a>', 't:<0,0,b>'], 8, '<0,0,0>', 'D2', 6, ['None'], 1, '<e,0,0>', 'D4', 'p422', 2,
'(2*e, 2*e), 90', 3, 4],
 22: [22, 'C2', 1, ['r:<0,0,1,a>', 't:<0,0,b>'], 2, '<0,e,f>', 'D2', 6, ['None'], 5, '<0,0,0>', 'D4', 'I4122', 3,
'(4*e, 4*e, 8*f), (90, 90, 90)', 4, 6],
 23: [23, 'C2', 1, ['r:<0,0,1,a>', 't:<0,0,b>'], 10, '<0,0,0>', 'D2', 6, ['None'], 1, '<e,0,0>', 'D6', 'p622', 2,
'(2*e, 2*e), 120', 3, 3],
 24: [24, 'C2', 1, ['r:<0,0,1,a>', 't:<0,0,b>'], 10, '<0,0,e>', 'D2', 6, ['None'], 1, '<f,0,0>', 'D6', 'P6222', 3,
 '(2*f, 2*f, 6*e), (90, 90, 120)', 4, 6],
 25: [25, 'C2', 1, ['r:<0,0,1,a>', 't:<0,0,b>'], 3, '<0,0,0>', 'D2', 6, ['None'], 5, '<2*e,0,e>', 'O', 'I432', 3,
'(4*e, 4*e, 4*e), (90, 90, 90)', 3, 4],
 26: [26, 'C2', 1, ['r:<0,0,1,a>', 't:<0,0,b>'], 3, '<-2*e,3*e,0>', 'D2', 6, ['None'], 5, '<0,2*e,e>', 'O', 'I4132
', 3, '(8*e, 8*e, 8*e), (90, 90, 90)', 3, 3],
 27: [27, 'C2', 1, ['r:<0,0,1,a>', 't:<0,0,b>'], 6, '<e,0,0>', 'D3', 7, ['None'], 11, '<0,0,0>', 'D3', 'p312', 2,
'(2*e, 2*e), 120', 3, 3],
 28: [28, 'C2', 1, ['r:<0,0,1,a>', 't:<0,0,b>'], 2, '<0,e,f>', 'D3', 7, ['None'], 1, '<0,0,0>', 'D3', 'R32', 3, '(
3.4641*e, 3.4641*e, 3*f), (90, 90, 120)', 4, 4],
 29: [29, 'C2', 1, ['r:<0,0,1,a>', 't:<0,0,b>'], 1, '<e,0,0>', 'D3', 7, ['None'], 11, '<e,0.57735*e,0>', 'D6', '
p622', 2, '(2*e, 2*e), 120', 3, 2],
 30: [30, 'C2', 1, ['r:<0,0,1,a>', 't:<0,0,b>'], 2, '<0,0,0>', 'D3', 7, ['None'], 11, '<e,0.57735*e,0>', 'D6', '
p622', 2, '(2*e, 2*e), 120', 3, 2],
 31: [31, 'C2', 1, ['r:<0,0,1,a>', 't:<0,0,b>'], 2, '<0,0,0>', 'D3', 7, ['None'], 11, '<e,0.57735*e,f>', 'D6', '
P6322', 3, '(2*e, 2*e, 4*f), (90, 90, 120)', 4, 4],
 32: [32, 'C2', 1, ['r:<0,0,1,a>', 't:<0,0,b>'], 1, '<0,0,0>', 'D3', 7, ['None'], 4, '<e,e,e>', 'O', 'F4132', 3,
'(8*e, 8*e, 8*e), (90, 90, 90)', 3, 3],
 33: [33, 'C2', 1, ['r:<0,0,1,a>', 't:<0,0,b>'], 1, '<0,2*e,0>', 'D3', 7, ['None'], 4, '<e,e,e>', 'O', 'I4132', 3,
 '(8*e, 8*e, 8*e), (90, 90, 90)', 3, 2],
 34: [34, 'C2', 1, ['r:<0,0,1,a>', 't:<0,0,b>'], 3, '<0,0,0>', 'D3', 7, ['None'], 4, '<e,e,e>', 'O', 'I432', 3, '(
4*e, 4*e, 4*e), (90, 90, 90)', 3, 4],
 35: [35, 'C2', 1, ['r:<0,0,1,a>', 't:<0,0,b>'], 3, '<0,e,-2*e>', 'D3', 7, ['None'], 4, '<e,e,e>', 'O', 'I4132', 3
, '(8*e, 8*e, 8*e), (90, 90, 90)', 3, 2],
 36: [36, 'C2', 1, ['r:<0,0,1,a>', 't:<0,0,b>'], 3, '<0,e,-2*e>', 'D3', 7, ['None'], 4, '<3*e,3*e,3*e>', 'O', '
P4132', 3, '(8*e, 8*e, 8*e), (90, 90, 90)', 3, 3],
 37: [37, 'C2', 1, ['r:<0,0,1,a>', 't:<0,0,b>'], 1, '<e,0,0>', 'D4', 8, ['None'], 1, '<0,0,0>', 'D4', 'p422', 2,
'(2*e, 2*e), 90', 3, 2],

 186

classes/SymEntry.py

 38: [38, 'C2', 1, ['r:<0,0,1,a>', 't:<0,0,b>'], 2, '<0,e,0>', 'D4', 8, ['None'], 1, '<0,0,0>', 'D4', 'p422', 2,
'(2*e, 2*e), 90', 3, 2],
 39: [39, 'C2', 1, ['r:<0,0,1,a>', 't:<0,0,b>'], 8, '<0,e,f>', 'D4', 8, ['None'], 1, '<0,0,0>', 'D4', 'I422', 3,
'(2*e, 2*e, 4*f), (90, 90, 90)', 4, 4],
 40: [40, 'C2', 1, ['r:<0,0,1,a>', 't:<0,0,b>'], 3, '<0,0,0>', 'D4', 8, ['None'], 1, '<0,0,e>', 'O', 'P432', 3, '(
2*e, 2*e, 2*e), (90, 90, 90)', 3, 3],
 41: [41, 'C2', 1, ['r:<0,0,1,a>', 't:<0,0,b>'], 3, '<2*e,e,0>', 'D4', 8, ['None'], 1, '<2*e,2*e,0>', 'O', 'I432',
 3, '(4*e, 4*e, 4*e), (90, 90, 90)', 3, 2],
 42: [42, 'C2', 1, ['r:<0,0,1,a>', 't:<0,0,b>'], 1, '<e,0,0>', 'D6', 9, ['None'], 1, '<0,0,0>', 'D6', 'p622', 2,
'(2*e, 2*e), 120', 3, 2],
 43: [43, 'C2', 1, ['r:<0,0,1,a>', 't:<0,0,b>'], 6, '<e,0,0>', 'D6', 9, ['None'], 1, '<0,0,0>', 'D6', 'p622', 2,
'(2*e, 2*e), 120', 3, 2],
 44: [44, 'C2', 1, ['r:<0,0,1,a>', 't:<0,0,b>'], 6, '<e,0,f>', 'D6', 9, ['None'], 1, '<0,0,0>', 'D6', 'P622', 3,
'(2*e, 2*e, 2*f), (90, 90, 120)', 4, 4],
 45: [45, 'C2', 1, ['r:<0,0,1,a>', 't:<0,0,b>'], 1, '<e,0,0>', 'T', 10, ['None'], 1, '<0,0,0>', 'T', 'P23', 3, '(2
*e, 2*e, 2*e), (90, 90, 90)', 3, 2],
 46: [46, 'C2', 1, ['r:<0,0,1,a>', 't:<0,0,b>'], 1, '<e,e,0>', 'T', 10, ['None'], 1, '<0,0,0>', 'T', 'F23', 3, '(4
*e, 4*e, 4*e), (90, 90, 90)', 3, 3],
 47: [47, 'C2', 1, ['r:<0,0,1,a>', 't:<0,0,b>'], 3, '<2*e,3*e,0>', 'T', 10, ['None'], 1, '<0,4*e,0>', 'O', 'F4132'
, 3, '(8*e, 8*e, 8*e), (90, 90, 90)', 3, 2],
 48: [48, 'C2', 1, ['r:<0,0,1,a>', 't:<0,0,b>'], 1, '<e,0,0>', 'O', 11, ['None'], 1, '<0,0,0>', 'O', 'P432', 3, '(
2*e, 2*e, 2*e), (90, 90, 90)', 3, 2],
 49: [49, 'C2', 1, ['r:<0,0,1,a>', 't:<0,0,b>'], 1, '<e,e,0>', 'O', 11, ['None'], 1, '<0,0,0>', 'O', 'F432', 3, '(
4*e, 4*e, 4*e), (90, 90, 90)', 3, 2],
 50: [50, 'C2', 1, ['r:<0,0,1,a>', 't:<0,0,b>'], 3, '<e,0,0>', 'O', 11, ['None'], 1, '<0,0,0>', 'O', 'F432', 3, '(
2*e, 2*e, 2*e), (90, 90, 90)', 3, 2],
 51: [51, 'C2', 1, ['r:<0,0,1,a>', 't:<0,0,b>'], 3, '<0,e,0>', 'O', 11, ['None'], 1, '<0,0,0>', 'O', 'P432', 3, '(
2*e, 2*e, 2*e), (90, 90, 90)', 3, 2],
 52: [52, 'C2', 1, ['r:<0,0,1,a>', 't:<0,0,b>'], 3, '<-e,e,e>', 'O', 11, ['None'], 1, '<0,0,0>', 'O', 'I432', 3,
'(4*e, 4*e, 4*e), (90, 90, 90)', 3, 2],
 53: [53, 'C3', 2, ['r:<0,0,1,a>', 't:<0,0,b>'], 1, '<0,0,0>', 'C3', 2, ['r:<0,0,1,c>'], 1, '<e,0.57735*e,0>', 'C3
', 'p3', 2, '(2*e, 2*e), 120', 4, 3],
 54: [54, 'C3', 2, ['r:<0,0,1,a>', 't:<0,0,b>'], 4, '<0,0,0>', 'C3', 2, ['r:<0,0,1,c>', 't:<0,0,d>'], 12, '<0,0,0
>', 'T', 'T', 0, 'N/A', 4, 2],
 55: [55, 'C3', 2, ['r:<0,0,1,a>', 't:<0,0,b>'], 4, '<0,0,0>', 'C3', 2, ['r:<0,0,1,c>', 't:<0,0,d>'], 12, '<e,0,0
>', 'T', 'P213', 3, '(2*e, 2*e, 2*e), (90, 90, 90)', 5, 5],
 56: [56, 'C3', 2, ['r:<0,0,1,a>', 't:<0,0,b>'], 4, '<0,0,0>', 'C4', 3, ['r:<0,0,1,c>', 't:<0,0,d>'], 1, '<0,0,0>'
, 'O', 'O', 0, 'N/A', 4, 2],
 57: [57, 'C3', 2, ['r:<0,0,1,a>', 't:<0,0,b>'], 4, '<0,0,0>', 'C4', 3, ['r:<0,0,1,c>', 't:<0,0,d>'], 1, '<e,0,0>'
, 'O', 'F432', 3, '(2*e, 2*e, 2*e), (90, 90, 90)', 5, 6],
 58: [58, 'C3', 2, ['r:<0,0,1,a>', 't:<0,0,b>'], 7, '<0,0,0>', 'C5', 4, ['r:<0,0,1,c>', 't:<0,0,d>'], 9, '<0,0,0>'
, 'I', 'I', 0, 'N/A', 4, 2],
 59: [59, 'C3', 2, ['r:<0,0,1,a>', 't:<0,0,b>'], 1, '<e,0.57735*e,0>', 'C6', 5, ['r:<0,0,1,c>'], 1, '<0,0,0>', 'C6
', 'p6', 2, '(2*e, 2*e), 120', 4, 2],
 60: [60, 'C3', 2, ['r:<0,0,1,a>', 't:<0,0,b>'], 1, '<e,0.57735*e,0>', 'D2', 6, ['None'], 1, '<e,0,0>', 'D6', '
p622', 2, '(2*e, 2*e), 120', 3, 2],
 61: [61, 'C3', 2, ['r:<0,0,1,a>', 't:<0,0,b>'], 4, '<0,0,0>', 'D2', 6, ['None'], 1, '<e,0,0>', 'T', 'P23', 3, '(2
*e, 2*e, 2*e), (90, 90, 90)', 3, 3],
 62: [62, 'C3', 2, ['r:<0,0,1,a>', 't:<0,0,b>'], 4, '<0,0,0>', 'D2', 6, ['None'], 3, '<e,0,e>', 'O', 'F432', 3, '(
4*e, 4*e, 4*e), (90, 90, 90)', 3, 3],
 63: [63, 'C3', 2, ['r:<0,0,1,a>', 't:<0,0,b>'], 4, '<0,0,0>', 'D2', 6, ['None'], 3, '<2*e,e,0>', 'O', 'I4132', 3,
 '(8*e,8*e, 8*e), (90, 90, 90)', 3, 2],
 64: [64, 'C3', 2, ['r:<0,0,1,a>', 't:<0,0,b>'], 1, '<e,0.57735*e,0>', 'D3', 7, ['None'], 11, '<0,0,0>', 'D3', '
p312', 2, '(2*e, 2*e), 120', 3, 2],
 65: [65, 'C3', 2, ['r:<0,0,1,a>', 't:<0,0,b>'], 1, '<e,0.57735*e,0>', 'D3', 7, ['None'], 1, '<0,0,0>', 'D3', '
p321', 2, '(2*e, 2*e), 120', 3, 2],
 66: [66, 'C3', 2, ['r:<0,0,1,a>', 't:<0,0,b>'], 12, '<4*e,0,0>', 'D3', 7, ['None'], 4, '<3*e,3*e,3*e>', 'O', '
P4132', 3, '(8*e, 8*e, 8*e), (90, 90, 90)', 3, 4],
 67: [67, 'C3', 2, ['r:<0,0,1,a>', 't:<0,0,b>'], 4, '<0,0,0>', 'D4', 8, ['None'], 1, '<0,0,e>', 'O', 'P432', 3, '(
2*e, 2*e, 2*e), (90, 90, 90)', 3, 2],
 68: [68, 'C3', 2, ['r:<0,0,1,a>', 't:<0,0,b>'], 1, '<e,0.57735*e,0>', 'D6', 9, ['None'], 1, '<0,0,0>', 'D6', '
p622', 2, '(2*e, 2*e), 120', 3, 2],
 69: [69, 'C3', 2, ['r:<0,0,1,a>', 't:<0,0,b>'], 4, '<e,0,0>', 'T', 10, ['None'], 1, '<0,0,0>', 'T', 'F23', 3, '(2
*e, 2*e, 2*e), (90, 90, 90)', 3, 2],
 70: [70, 'C3', 2, ['r:<0,0,1,a>', 't:<0,0,b>'], 4, '<e,0,0>', 'O', 11, ['None'], 1, '<0,0,0>', 'O', 'F432', 3, '(
2*e, 2*e, 2*e), (90, 90, 90)', 3, 2],
 71: [71, 'C4', 3, ['r:<0,0,1,a>', 't:<0,0,b>'], 1, '<0,0,0>', 'C4', 3, ['r:<0,0,1,c>'], 1, '<e,e,0>', 'C4', 'p4',
 2, '(2*e, 2*e), 90', 4, 2],
 72: [72, 'C4', 3, ['r:<0,0,1,a>', 't:<0,0,b>'], 1, '<0,0,0>', 'C4', 3, ['r:<0,0,1,c>', 't:<0,0,d>'], 2, '<0,e,e>'
, 'O', 'P432', 3, '(2*e, 2*e, 2*e), (90, 90, 90)', 5, 4],
 73: [73, 'C4', 3, ['r:<0,0,1,a>', 't:<0,0,b>'], 1, '<0,0,0>', 'D2', 6, ['None'], 1, '<e,0,0>', 'D4', 'p422', 2,
'(2*e, 2*e), 90', 3, 2],
 74: [74, 'C4', 3, ['r:<0,0,1,a>', 't:<0,0,b>'], 1, '<e,0,0>', 'D2', 6, ['None'], 5, '<0,0,0>', 'D4', 'p4212', 2,
'(2*e, 2*e), 90', 3, 2],
 75: [75, 'C4', 3, ['r:<0,0,1,a>', 't:<0,0,b>'], 2, '<0,0,0>', 'D2', 6, ['None'], 3, '<2*e,e,0>', 'O', 'I432', 3,
'(4*e, 4*e, 4*e), (90, 90, 90)', 3, 2],
 76: [76, 'C4', 3, ['r:<0,0,1,a>', 't:<0,0,b>'], 1, '<0,0,0>', 'D2', 6, ['None'], 3, '<e,0,e>', 'O', 'F432', 3, '(
4*e, 4*e, 4*e), (90, 90, 90)', 3, 3],
 77: [77, 'C4', 3, ['r:<0,0,1,a>', 't:<0,0,b>'], 1, '<0,0,0>', 'D3', 7, ['None'], 4, '<e,e,e>', 'O', 'I432', 3, '(
4*e, 4*e, 4*e), (90, 90, 90)', 3, 2],
 78: [78, 'C4', 3, ['r:<0,0,1,a>', 't:<0,0,b>'], 1, '<e,e,0>', 'D4', 8, ['None'], 1, '<0,0,0>', 'D4', 'p422', 2,

 187

classes/SymEntry.py

'(2*e, 2*e), 90', 3, 2],
 79: [79, 'C4', 3, ['r:<0,0,1,a>', 't:<0,0,b>'], 2, '<0,0,0>', 'D4', 8, ['None'], 1, '<e,e,0>', 'O', 'P432', 3, '(
2*e, 2*e, 2*e), (90, 90, 90)', 3, 2],
 80: [80, 'C4', 3, ['r:<0,0,1,a>', 't:<0,0,b>'], 1, '<0,0,0>', 'T', 10, ['None'], 1, '<e,e,e>', 'O', 'F432', 3, '(
4*e, 4*e, 4*e), (90, 90, 90)', 3, 2],
 81: [81, 'C4', 3, ['r:<0,0,1,a>', 't:<0,0,b>'], 1, '<e,e,0>', 'O', 11, ['None'], 1, '<0,0,0>', 'O', 'P432', 3, '(
2*e, 2*e, 2*e), (90, 90, 90)', 3, 2],
 82: [82, 'C6', 5, ['r:<0,0,1,a>', 't:<0,0,b>'], 1, '<0,0,0>', 'D2', 6, ['None'], 1, '<e,0,0>', 'D6', 'p622', 2,
'(2*e, 2*e), 120', 3, 2],
 83: [83, 'C6', 5, ['r:<0,0,1,a>', 't:<0,0,b>'], 1, '<0,0,0>', 'D3', 7, ['None'], 11, '<e,0.57735*e,0>', 'D6', '
p622', 2, '(2*e, 2*e), 120', 2, 2],
 84: [84, 'D2', 6, ['None'], 1, '<0,0,0>', 'D2', 6, ['None'], 1, '<e,f,0>', 'D2', 'p222', 2, '(2*e, 2*f), 90', 2,
2],
 85: [85, 'D2', 6, ['None'], 1, '<0,0,0>', 'D2', 6, ['None'], 1, '<e,f,g>', 'D2', 'F222', 3, '(4*e, 4*f, 4*g), (90
, 90, 90)', 3, 3],
 86: [86, 'D2', 6, ['None'], 1, '<e,0,0>', 'D2', 6, ['None'], 5, '<0,0,f>', 'D4', 'P4222', 3, '(2*e, 2*e, 4*f), (
90, 90, 90)', 2, 2],
 87: [87, 'D2', 6, ['None'], 1, '<e,0,0>', 'D2', 6, ['None'], 13, '<0,0,-f>', 'D6', 'P6222', 3, '(2*e, 2*e, 6*f
), (90, 90, 120)', 2, 2],
 88: [88, 'D2', 6, ['None'], 3, '<0,e,2*e>', 'D2', 6, ['None'], 5, '<0,2*e,e>', 'O', 'P4232', 3, '(4*e, 4*e, 4*e
), (90, 90, 90)', 1, 2],
 89: [89, 'D2', 6, ['None'], 1, '<e,0,0>', 'D3', 7, ['None'], 11, '<e,0.57735*e,0>', 'D6', 'p622', 2, '(2*e, 2*e
), 120', 1, 1],
 90: [90, 'D2', 6, ['None'], 1, '<e,0,0>', 'D3', 7, ['None'], 11, '<e,0.57735*e,f>', 'D6', 'P622', 3, '(2*e, 2*e,
2*f), (90, 90, 120)', 2, 2],
 91: [91, 'D2', 6, ['None'], 1, '<0,0,2*e>', 'D3', 7, ['None'], 4, '<e,e,e>', 'D6', 'P4232', 3, '(4*e, 4*e, 4*e
), (90, 90, 90)', 1, 2],
 92: [92, 'D2', 6, ['None'], 3, '<2*e,e,0>', 'D3', 7, ['None'], 4, '<e,e,e>', 'O', 'I4132', 3, '(8*e, 8*e, 8*e), (
90, 90, 90)', 1, 1],
 93: [93, 'D2', 6, ['None'], 1, '<e,0,0>', 'D4', 8, ['None'], 1, '<0,0,0>', 'D4', 'p422', 2, '(2*e, 2*e), 90', 1,
1],
 94: [94, 'D2', 6, ['None'], 1, '<e,0,f>', 'D4', 8, ['None'], 1, '<0,0,0>', 'D4', 'P422', 3, '(2*e, 2*e, 2*f), (90
, 90,90)', 2, 2],
 95: [95, 'D2', 6, ['None'], 5, '<e,0,f>', 'D4', 8, ['None'], 1, '<0,0,0>', 'D4', 'I422', 3, '(2*e, 2*e, 4*f), (90
, 90,90)', 2, 2],
 96: [96, 'D2', 6, ['None'], 3, '<0,e,2*e>', 'D4', 8, ['None'], 1, '<0,0,2*e>', 'O', 'I432', 3, '(4*e, 4*e, 4*e
), (90, 90, 90)', 1, 1],
 97: [97, 'D2', 6, ['None'], 1, '<e,0,0>', 'D6', 9, ['None'], 1, '<0,0,0>', 'D6', 'p622', 2, '(2*e, 2*e), 120', 1,
 1],
 98: [98, 'D2', 6, ['None'], 1, '<e,0,f>', 'D6', 9, ['None'], 1, '<0,0,0>', 'D6', 'P622', 3, '(2*e, 2*e, 2*f), (90
, 90, 120)', 2, 2],
 99: [99, 'D2', 6, ['None'], 1, '<e,0,0>', 'T', 10, ['None'], 1, '<0,0,0>', 'T', 'P23', 3, '(2*e, 2*e, 2*e), (90,
90, 90)', 1, 1],
 100: [100, 'D2', 6, ['None'], 1, '<e,e,0>', 'T', 10, ['None'], 1, '<0,0,0>', 'T', 'P23', 3, '(2*e, 2*e, 2*e), (90
, 90, 90)', 1, 2],
 101: [101, 'D2', 6, ['None'], 3, '<e,0,e>', 'T', 10, ['None'], 1, '<e,e,e>', 'O', 'F432', 3, '(4*e, 4*e, 4*e), (
90, 90, 90)', 1, 1],
 102: [102, 'D2', 6, ['None'], 3, '<2*e,e,0>', 'T', 10, ['None'], 1, '<0,0,0>', 'O', 'P4232', 3, '(4*e, 4*e, 4*e
), (90, 90, 90)', 1, 2],
 103: [103, 'D2', 6, ['None'], 3, '<e,0,e>', 'O', 11, ['None'], 1, '<0,0,0>', 'O', 'F432', 3, '(4*e, 4*e, 4*e), (
90, 90, 90)', 1, 1],
 104: [104, 'D2', 6, ['None'], 3, '<2*e,e,0>', 'O', 11, ['None'], 1, '<0,0,0>', 'O', 'I432', 3, '(4*e, 4*e, 4*e
), (90, 90, 90)', 1, 2],
 105: [105, 'D3', 7, ['None'], 11, '<0,0,0>', 'D3', 7, ['None'], 11, '<e,0.57735*e,0>', 'D3', 'p312', 2, '(2*e, 2*
e), 120', 1, 1],
 106: [106, 'D3', 7, ['None'], 11, '<0,0,0>', 'D3', 7, ['None'], 11, '<e,0.57735*e,f>', 'D3', 'P312', 3, '(2*e, 2*
e, 2*f), (90, 90, 120)', 2, 2],
 107: [107, 'D3', 7, ['None'], 1, '<0,0,0>', 'D3', 7, ['None'], 11, '<e,0.57735*e,f>', 'D6', 'P6322', 3, '(2*e, 2*
e, 4*f), (90, 90, 120)', 2, 2],
 108: [108, 'D3', 7, ['None'], 4, '<e,e,e>', 'D3', 7, ['None'], 12, '<e,3*e,e>', 'O', 'P4232', 3, '(4*e, 4*e, 4*e
), (90, 90, 90)', 1, 2],
 109: [109, 'D3', 7, ['None'], 4, '<3*e,3*e,3*e>', 'D3', 7, ['None'], 12, '<e,3*e,5*e>', 'O', 'P4132', 3, '(8*e, 8
*e, 8*e), (90, 90, 90)', 1, 1],
 110: [110, 'D3', 7, ['None'], 4, '<e,e,e>', 'D4', 8, ['None'], 1, '<0,0,2*e>', 'O', 'I432', 3, '(4*e, 4*e, 4*e
), (90, 90, 90)', 1, 2],
 111: [111, 'D3', 7, ['None'], 11, '<e,0.57735*e,0>', 'D6', 9, ['None'], 1, '<0,0,0>', 'D6', 'p622', 2, '(2*e, 2*e
), 120', 1, 1],
 112: [112, 'D3', 7, ['None'], 11, '<e,0.57735*e,f>', 'D6', 9, ['None'], 1, '<0,0,0>', 'D6', 'P622', 3, '(2*e, 2*e
, 2*f), (90, 90, 120)', 2, 2],
 113: [113, 'D3', 7, ['None'], 4, '<e,e,e>', 'T', 10, ['None'], 1, '<0,0,0>', 'O', 'F4132', 3, '(8*e, 8*e, 8*e), (
90, 90, 90)', 1, 1],
 114: [114, 'D3', 7, ['None'], 4, '<e,e,e>', 'O', 11, ['None'], 1, '<0,0,0>', 'O', 'I432', 3, '(4*e, 4*e, 4*e), (
90, 90, 90)', 1, 1],
 115: [115, 'D4', 8, ['None'], 1, '<0,0,0>', 'D4', 8, ['None'], 1, '<e,e,0>', 'D4', 'p422', 2, '(2*e, 2*e), 90', 1
, 1],
 116: [116, 'D4', 8, ['None'], 1, '<0,0,0>', 'D4', 8, ['None'], 1, '<e,e,f>', 'D4', 'P422', 3, '(2*e, 2*e, 2*f), (
90, 90,90)', 2, 2],
 117: [117, 'D4', 8, ['None'], 1, '<0,0,e>', 'D4', 8, ['None'], 2, '<0,e,e>', 'O', 'P432', 3, '(2*e, 2*e, 2*e), (
90, 90, 90)', 1, 1],
 118: [118, 'D4', 8, ['None'], 1, '<0,0,e>', 'O', 11, ['None'], 1, '<0,0,0>', 'O', 'P432', 3, '(2*e, 2*e, 2*e), (
90, 90, 90)', 1, 1],

 188

classes/SymEntry.py

 119: [119, 'D4', 8, ['None'], 1, '<e,e,0>', 'O', 11, ['None'], 1, '<0,0,0>', 'O', 'P432', 3, '(2*e, 2*e, 2*e), (
90, 90, 90)', 1, 1],
 120: [120, 'T', 10, ['None'], 1, '<0,0,0>', 'T', 10, ['None'], 1, '<e,e,e>', 'T', 'F23', 3, '(4*e, 4*e, 4*e), (90
, 90, 90)', 1, 1],
 121: [121, 'T', 10, ['None'], 1, '<0,0,0>', 'T', 10, ['None'], 1, '<e,0,0>', 'T', 'F23', 3, '(2*e, 2*e, 2*e), (90
, 90, 90)', 1, 1],
 122: [122, 'T', 10, ['None'], 1, '<e,e,e>', 'O', 11, ['None'], 1, '<0,0,0>', 'O', 'F432', 3, '(4*e, 4*e, 4*e), (
90, 90, 90)', 1, 1],
 123: [123, 'O', 11, ['None'], 1, '<0,0,0>', 'O', 11, ['None'], 1, '<e,e,e>', 'O', 'P432', 3, '(2*e, 2*e, 2*e), (
90, 90, 90)', 1, 1],
 124: [124, 'O', 11, ['None'], 1, '<0,0,0>', 'O', 11, ['None'], 1, '<e,0,0>', 'O', 'F432', 3, '(2*e, 2*e, 2*e), (
90, 90, 90)', 1, 1]}

ROTATION RANGE DEG
C2 = 180
C3 = 120
C4 = 90
C5 = 72
C6 = 60
RotRangeDict = {"C2": C2, "C3": C3, "C4": C4, "C5": C5, "C6": C6}

ROTATION SETTING MATRICES
RotMat1 = [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]
RotMat2 = [[0.0, 0.0, 1.0], [0.0, 1.0, 0.0], [-1.0, 0.0, 0.0]]
RotMat3 = [[0.707107, 0.0, 0.707107], [0.0, 1.0, 0.0], [-0.707107, 0.0, 0.707107]]
RotMat4 = [[0.707107, 0.408248, 0.577350], [-0.707107, 0.408248, 0.577350], [0.0, -0.816497, 0.577350]]
RotMat5 = [[0.707107, 0.707107, 0.0], [-0.707107, 0.707107, 0.0], [0.0, 0.0, 1.0]]
RotMat6 = [[1.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, -1.0, 0.0]]
RotMat7 = [[1.0, 0.0, 0.0], [0.0, 0.934172, 0.356822], [0.0, -0.356822, 0.934172]]
RotMat8 = [[0.0, 0.707107, 0.707107], [0.0, -0.707107, 0.707107], [1.0, 0.0, 0.0]]
RotMat9 = [[0.850651, 0.0, 0.525732], [0.0, 1.0, 0.0], [-0.525732, 0.0, 0.850651]]
RotMat10 = [[0.0, 0.5, 0.866025], [0.0, -0.866025, 0.5], [1.0, 0.0, 0.0]]
RotMat11 = [[0.0, -1.0, 0.0], [1.0, 0.0, 0.0], [0.0, 0.0, 1.0]]
RotMat12 = [[0.707107, -0.408248, 0.577350], [0.707107, 0.408248, -0.577350], [0.0, 0.816497, 0.577350]]
RotMat13 = [[0.5, -0.866025, 0.0], [0.866025, 0.5, 0.0], [0.0, 0.0, 1.0]]

RotSetDict = {1: RotMat1,
 2: RotMat2,
 3: RotMat3,
 4: RotMat4,
 5: RotMat5,
 6: RotMat6,
 7: RotMat7,
 8: RotMat8,
 9: RotMat9,
 10: RotMat10,
 11: RotMat11,
 12: RotMat12,
 13: RotMat13}

class SymEntry:

 def __init__(self, entry):
 if type(entry) == int and entry in range(1, 125):
 # GETTING ENTRY INFORMATION FROM sym_comb_dict
 self.entry_number = entry
 sym_comb_info = sym_comb_dict[self.entry_number]

 # ASSIGNING CLASS VARIABLES
 self.group1 = sym_comb_info[1]
 self.group1_indx = sym_comb_info[2]
 self.int_dof_group1 = sym_comb_info[3]
 self.rot_set_group1 = sym_comb_info[4]
 self.ref_frame_tx_dof_group1 = sym_comb_info[5]
 self.group2 = sym_comb_info[6]
 self.group2_indx = sym_comb_info[7]
 self.int_dof_group2 = sym_comb_info[8]
 self.rot_set_group2 = sym_comb_info[9]
 self.ref_frame_tx_dof_group2 = sym_comb_info[10]
 self.pt_grp = sym_comb_info[11]
 self.result = sym_comb_info[12]
 self.dim = sym_comb_info[13]
 self.unit_cell = sym_comb_info[14]
 self.tot_dof = sym_comb_info[15]
 self.cycle_size = sym_comb_info[16]

 else:
 raise ValueError("\nINVALID SYMMETRY ENTRY. SUPPORTED VALUES ARE: 1 to 124\n")

 189

classes/SymEntry.py

 def get_group1_sym(self):
 return self.group1

 def get_group2_sym(self):
 return self.group2

 def get_pt_grp_sym(self):
 return self.pt_grp

 def get_rot_range_deg_1(self):
 if self.group1 in RotRangeDict:
 return RotRangeDict[self.group1]
 else:
 return 0

 def get_rot_range_deg_2(self):
 if self.group2 in RotRangeDict:
 return RotRangeDict[self.group2]
 else:
 return 0

 def get_rot_set_mat_group1(self):
 return RotSetDict[self.rot_set_group1]

 def get_ref_frame_tx_dof_group1(self):
 return self.ref_frame_tx_dof_group1

 def get_rot_set_mat_group2(self):
 return RotSetDict[self.rot_set_group2]

 def get_ref_frame_tx_dof_group2(self):
 return self.ref_frame_tx_dof_group2

 def get_result_design_sym(self):
 return self.result

 def get_design_dim(self):
 return self.dim

 def get_uc_spec_string(self):
 return self.unit_cell

 def is_internal_tx1(self):
 if 't:<0,0,b>' in self.int_dof_group1:
 return True
 else:
 return False

 def is_internal_tx2(self):
 if 't:<0,0,d>' in self.int_dof_group2:
 return True
 else:
 return False

 def get_internal_tx1(self):
 if 't:<0,0,b>' in self.int_dof_group1:
 return 't:<0,0,b>'
 else:
 return None

 def get_internal_tx2(self):
 if 't:<0,0,d>' in self.int_dof_group2:
 return 't:<0,0,d>'
 else:
 return None

 def is_internal_rot1(self):
 if 'r:<0,0,1,a>' in self.int_dof_group1:
 return True
 else:
 return False

 def is_internal_rot2(self):
 if 'r:<0,0,1,c>' in self.int_dof_group2:
 return True
 else:
 return False

 def get_internal_rot1(self):
 if 'r:<0,0,1,a>' in self.int_dof_group1:

 190

classes/SymEntry.py

 return 'r:<0,0,1,a>'
 else:
 return None

 def get_internal_rot2(self):
 if 'r:<0,0,1,c>' in self.int_dof_group2:
 return 'r:<0,0,1,c>'
 else:
 return None

 def is_ref_frame_tx_dof1(self):
 if self.ref_frame_tx_dof_group1 != '<0,0,0>':
 return True
 else:
 return False

 def is_ref_frame_tx_dof2(self):
 if self.ref_frame_tx_dof_group2 != '<0,0,0>':
 return True
 else:
 return False

 191

Fragment.py

 192

classes/Fragment.py

from PDB import PDB
from Atom import Atom
from utils.BioPDBUtils import biopdb_aligned_chain
from utils.BioPDBUtils import biopdb_superimposer
import numpy as np
import sys
import os

Copyright 2020 Joshua Laniado and Todd O. Yeates.
__author__ = "Joshua Laniado and Todd O. Yeates"
__copyright__ = "Copyright 2020, Nanohedra"
__version__ = "1.0"

def get_surface_fragments(pdb, free_sasa_exe_path):
 surface_frags = []
 surf_res_info = pdb.get_surface_resdiue_info(free_sasa_exe_path)

 for (chain, res_num) in surf_res_info:
 frag_atoms = []
 frag_res_nums = [res_num - 2, res_num - 1, res_num, res_num + 1, res_num + 2]
 ca_count = 0
 for atom in pdb.chain(chain):
 if atom.residue_number in frag_res_nums:
 frag_atoms.append(atom)
 if atom.is_CA():
 ca_count += 1
 if ca_count == 5:
 surf_frag_pdb = PDB()
 surf_frag_pdb.read_atom_list(frag_atoms)
 surface_frags.append(surf_frag_pdb)

 return surface_frags

def get_surface_fragments_chain(pdb, chain_id, free_sasa_exe_path):
 surface_frags = []
 surf_res_info = pdb.get_surface_resdiue_info(free_sasa_exe_path)

 for (chain, res_num) in surf_res_info:
 if chain == chain_id:
 frag_atoms = []
 frag_res_nums = [res_num - 2, res_num - 1, res_num, res_num + 1, res_num + 2]
 ca_count = 0
 for atom in pdb.chain(chain):
 if atom.residue_number in frag_res_nums:
 frag_atoms.append(atom)
 if atom.is_CA():
 ca_count += 1
 if ca_count == 5:
 surf_frag_pdb = PDB()
 surf_frag_pdb.read_atom_list(frag_atoms)
 surface_frags.append(surf_frag_pdb)

 return surface_frags

class GhostFragment:
 def __init__(self, pdb, i_frag_type, j_frag_type, k_frag_type, ghostfrag_central_res_tup,
aligned_surf_frag_central_res_tup, guide_atoms=None, guide_coords=None, pdb_coords=None):
 self.pdb = pdb
 self.i_frag_type = i_frag_type
 self.j_frag_type = j_frag_type
 self.k_frag_type = k_frag_type
 self.central_res_tup = ghostfrag_central_res_tup
 self.aligned_surf_frag_central_res_tup = aligned_surf_frag_central_res_tup

 if [guide_atoms, guide_coords, pdb_coords] == [None, None, None]:
 self.guide_atoms = []
 self.guide_coords = []
 self.pdb_coords = []
 for atom in self.pdb.all_atoms:
 self.pdb_coords.append([atom.x, atom.y, atom.z])
 if atom.chain == "9":
 self.guide_atoms.append(atom)
 self.guide_coords.append([atom.x, atom.y, atom.z])

 else:
 self.guide_atoms = guide_atoms
 self.guide_coords = guide_coords

 193

classes/Fragment.py

 self.pdb_coords = pdb_coords

 def get_central_res_tup(self):
 return self.central_res_tup

 def get_aligned_surf_frag_central_res_tup(self):
 return self.aligned_surf_frag_central_res_tup

 def get_aligned_central_res_info(self):
 return self.central_res_tup + self.aligned_surf_frag_central_res_tup

 def get_i_frag_type(self):
 return self.i_frag_type

 def get_j_frag_type(self):
 return self.j_frag_type

 def get_k_frag_type(self):
 return self.k_frag_type

 def get_pdb(self):
 return self.pdb

 def get_pdb_coords(self):
 return self.pdb_coords

 def get_guide_atoms(self):
 return self.guide_atoms

 def get_guide_coords(self):
 return self.guide_coords

 def get_center_of_mass(self):
 return np.matmul(np.array([0.33333, 0.33333, 0.33333]), np.array(self.guide_coords))

class MonoFragment:
 def __init__(self, pdb, monofrag_cluster_rep_dict=None, type=None, guide_coords=None, central_res_num=None,
central_res_chain_id=None, pdb_coords=None, rmsd_thresh=0.75):
 self.pdb = None
 self.pdb_coords = None
 self.type = None
 self.guide_coords = None
 self.guide_atoms = None
 self.central_res_num = None
 self.central_res_chain_id = None

 if monofrag_cluster_rep_dict is None and type is not None and guide_coords is not None and central_res_num is
 not None and central_res_chain_id is not None and pdb_coords is not None:
 self.pdb = pdb
 self.pdb_coords = pdb_coords
 self.type = type
 self.guide_coords = guide_coords
 a1 = Atom(1, "CA", " ", "GLY", "9", 0, " ", guide_coords[0][0], guide_coords[0][1], guide_coords[0][2], 1
.00, 20.00, "C", "")
 a2 = Atom(2, "N", " ", "GLY", "9", 0, " ", guide_coords[1][0], guide_coords[1][1], guide_coords[1][2], 1.
00, 20.00, "N", "")
 a3 = Atom(3, "O", " ", "GLY", "9", 0, " ", guide_coords[2][0], guide_coords[2][1], guide_coords[2][2], 1.
00, 20.00, "O", "")
 self.guide_atoms = [a1, a2, a3]
 self.central_res_num = central_res_num
 self.central_res_chain_id = central_res_chain_id

 elif monofrag_cluster_rep_dict is not None and type is None and guide_coords is None and central_res_num is
None and central_res_chain_id is None and pdb_coords is None:
 self.pdb = pdb
 self.pdb_coords = self.pdb.extract_all_coords()
 frag_ca_atoms = self.pdb.get_CA_atoms()
 self.central_res_num = frag_ca_atoms[2].residue_number
 self.central_res_chain_id = self.pdb.chain_id_list[0]

 a1 = Atom(1, "CA", " ", "GLY", "9", 0, " ", 0.0, 0.0, 0.0, 1.00, 20.00, "C", "")
 a2 = Atom(2, "N", " ", "GLY", "9", 0, " ", 3.0, 0.0, 0.0, 1.00, 20.00, "N", "")
 a3 = Atom(3, "O", " ", "GLY", "9", 0, " ", 0.0, 3.0, 0.0, 1.00, 20.00, "O", "")

 min_rmsd = sys.maxint
 min_rmsd_cluster_rep_rot_tx = None
 min_rmsd_cluster_rep_type = None
 for cluster_type in monofrag_cluster_rep_dict:
 cluster_rep = monofrag_cluster_rep_dict[cluster_type]
 cluster_rep_ca_atoms = cluster_rep.get_CA_atoms()

 194

classes/Fragment.py

 rmsd, rot, tx = biopdb_superimposer(frag_ca_atoms, cluster_rep_ca_atoms)

 if rmsd <= min_rmsd and rmsd <= rmsd_thresh:
 min_rmsd = rmsd
 min_rmsd_cluster_rep_rot_tx = rot, tx
 min_rmsd_cluster_rep_type = cluster_type

 if min_rmsd_cluster_rep_rot_tx is not None:
 guide_atoms_pdb = PDB()
 guide_atoms_pdb.read_atom_list([a1, a2, a3])
 guide_atoms_pdb.rotate_translate(min_rmsd_cluster_rep_rot_tx[0], min_rmsd_cluster_rep_rot_tx[1])

 self.type = min_rmsd_cluster_rep_type
 self.guide_atoms = guide_atoms_pdb.all_atoms
 self.guide_coords = guide_atoms_pdb.extract_all_coords()

 def get_central_res_tup(self):
 return self.central_res_chain_id, self.central_res_num

 def get_guide_coords(self):
 return self.guide_coords

 def get_center_of_mass(self):
 if self.guide_coords is not None:
 return np.matmul(np.array([0.33333, 0.33333, 0.33333]), np.array(self.guide_coords))
 else:
 return None

 def get_type(self):
 return self.type

 def get_pdb(self):
 return self.pdb

 def get_pdb_coords(self):
 return self.pdb_coords

 def get_central_res_num(self):
 return self.central_res_num

 def get_central_res_chain_id(self):
 return self.central_res_chain_id

 def set_pdb(self, pdb):
 self.pdb = pdb
 self.pdb_coords = pdb.extract_all_coords()

 def set_guide_atoms(self, guide_coords):
 self.guide_coords = guide_coords
 a1 = Atom(1, "CA", " ", "GLY", "9", 0, " ", guide_coords[0][0], guide_coords[0][1], guide_coords[0][2], 1.00,
 20.00, "C", "")
 a2 = Atom(2, "N", " ", "GLY", "9", 0, " ", guide_coords[1][0], guide_coords[1][1], guide_coords[1][2], 1.00,
20.00, "N", "")
 a3 = Atom(3, "O", " ", "GLY", "9", 0, " ", guide_coords[2][0], guide_coords[2][1], guide_coords[2][2], 1.00,
20.00, "O", "")
 self.guide_atoms = [a1, a2, a3]

 def get_ghost_fragments(self, intfrag_cluster_rep_dict, kdtree_oligomer_backbone, clash_dist=2.2):
 if self.type in intfrag_cluster_rep_dict:
 ghost_fragments = []
 for j_type in intfrag_cluster_rep_dict[self.type]:
 for k_type in intfrag_cluster_rep_dict[self.type][j_type]:
 intfrag = intfrag_cluster_rep_dict[self.type][j_type][k_type]
 intfrag_pdb = intfrag[0]
 intfrag_mapped_chain_id = intfrag[1]
 intfrag_mapped_chain_central_res_num = intfrag[2]
 intfrag_partner_chain_id = intfrag[3]
 intfrag_partner_chain_central_res_num = intfrag[4]

 aligned_ghost_frag_pdb = biopdb_aligned_chain(self.pdb, self.pdb.chain_id_list[0],
intfrag_pdb, intfrag_mapped_chain_id)

 # Ghost Fragment Mapped Chain ID, Central Residue Number and Partner Chain ID, Partner
Central Residue Number
 ghostfrag_central_res_tup = (intfrag_mapped_chain_id, intfrag_mapped_chain_central_res_num,
intfrag_partner_chain_id, intfrag_partner_chain_central_res_num)

 # Only keep ghost fragments that don't clash with oligomer backbone
 # Note: guide atoms, mapped chain atoms and non-backbone atoms not included
 g_frag_bb_coords = []

 195

classes/Fragment.py

 for atom in aligned_ghost_frag_pdb.all_atoms:
 if atom.chain != "9" and atom.chain != intfrag_mapped_chain_id and atom.is_backbone():
 g_frag_bb_coords.append([atom.x, atom.y, atom.z])

 cb_clash_count = kdtree_oligomer_backbone.two_point_correlation(g_frag_bb_coords, [clash_dist
])

 if cb_clash_count[0] == 0:
 ghost_fragments.append(GhostFragment(aligned_ghost_frag_pdb, self.type, j_type, k_type,
ghostfrag_central_res_tup, self.get_central_res_tup()))

 return ghost_fragments

 else:
 return None

class ClusterInfoFile:
 def __init__(self, infofile_path):
 self.infofile_path = infofile_path
 self.name = None
 self.size = None
 self.rmsd = None
 self.representative_filename = None
 self.central_residue_pair_freqs = []
 self.central_residue_pair_counts = []
 self.load_info()

 def load_info(self):
 infofile = open(self.infofile_path, "r")
 info_lines = infofile.readlines()
 infofile.close()
 is_res_freq_line = False
 for line in info_lines:

 if line.startswith("CLUSTER NAME:"):
 self.name = line.split()[2]
 if line.startswith("CLUSTER SIZE:"):
 self.size = int(line.split()[2])
 if line.startswith("CLUSTER RMSD:"):
 self.rmsd = float(line.split()[2])
 if line.startswith("CLUSTER REPRESENTATIVE NAME:"):
 self.representative_filename = line.split()[3]

 if line.startswith("CENTRAL RESIDUE PAIR COUNT:"):
 is_res_freq_line = False
 if is_res_freq_line:
 res_pair_type = (line.split()[0][0], line.split()[0][1])
 res_pair_freq = float(line.split()[1])
 self.central_residue_pair_freqs.append((res_pair_type, res_pair_freq))
 if line.startswith("CENTRAL RESIDUE PAIR FREQUENCY:"):
 is_res_freq_line = True

 def get_name(self):
 return self.name

 def get_size(self):
 return self.size

 def get_rmsd(self):
 return self.rmsd

 def get_representative_filename(self):
 return self.representative_filename

 def get_central_residue_pair_freqs(self):
 return self.central_residue_pair_freqs

class FragmentDB:
 def __init__(self, monofrag_cluster_rep_dirpath, intfrag_cluster_rep_dirpath, intfrag_cluster_info_dirpath):
 self.monofrag_cluster_rep_dirpath = monofrag_cluster_rep_dirpath
 self.intfrag_cluster_rep_dirpath = intfrag_cluster_rep_dirpath
 self.intfrag_cluster_info_dirpath = intfrag_cluster_info_dirpath

 def get_monofrag_cluster_rep_dict(self):
 cluster_rep_pdb_dict = {}
 for root, dirs, files in os.walk(self.monofrag_cluster_rep_dirpath):
 for filename in files:
 if filename.endswith(".pdb"):
 pdb = PDB()

 196

classes/Fragment.py

 pdb.readfile(self.monofrag_cluster_rep_dirpath + "/" + filename, remove_alt_location=True)
 cluster_rep_pdb_dict[os.path.splitext(filename)[0]] = pdb

 return cluster_rep_pdb_dict

 def get_intfrag_cluster_rep_dict(self):
 i_j_k_intfrag_cluster_rep_dict = {}
 for dirpath1, dirnames1, filenames1 in os.walk(self.intfrag_cluster_rep_dirpath):
 if not dirnames1:
 ijk_cluster_name = dirpath1.split("/")[-1]
 i_cluster_type = ijk_cluster_name.split("_")[0]
 j_cluster_type = ijk_cluster_name.split("_")[1]
 k_cluster_type = ijk_cluster_name.split("_")[2]

 if i_cluster_type not in i_j_k_intfrag_cluster_rep_dict:
 i_j_k_intfrag_cluster_rep_dict[i_cluster_type] = {}

 if j_cluster_type not in i_j_k_intfrag_cluster_rep_dict[i_cluster_type]:
 i_j_k_intfrag_cluster_rep_dict[i_cluster_type][j_cluster_type] = {}

 for dirpath2, dirnames2, filenames2 in os.walk(dirpath1):
 for filename in filenames2:
 if filename.endswith(".pdb"):
 ijk_frag_cluster_rep_pdb = PDB()
 ijk_frag_cluster_rep_pdb.readfile(dirpath1 + "/" + filename)
 ijk_frag_cluster_rep_mapped_chain_id = filename[filename.find("mappedchain") + 12:
filename.find("mappedchain") + 13]
 ijk_frag_cluster_rep_partner_chain_id = filename[filename.find("partnerchain") + 13:
filename.find("partnerchain") + 14]

 # Get central residue number of mapped interface fragment chain
 intfrag_mapped_chain_central_res_num = None
 mapped_chain_res_count = 0
 for atom in ijk_frag_cluster_rep_pdb.chain(ijk_frag_cluster_rep_mapped_chain_id):
 if atom.is_CA():
 mapped_chain_res_count += 1
 if mapped_chain_res_count == 3:
 intfrag_mapped_chain_central_res_num = atom.residue_number

 # Get central residue number of partner interface fragment chain
 intfrag_partner_chain_central_res_num = None
 partner_chain_res_count = 0
 for atom in ijk_frag_cluster_rep_pdb.chain(ijk_frag_cluster_rep_partner_chain_id):
 if atom.is_CA():
 partner_chain_res_count += 1
 if partner_chain_res_count == 3:
 intfrag_partner_chain_central_res_num = atom.residue_number

 i_j_k_intfrag_cluster_rep_dict[i_cluster_type][j_cluster_type][k_cluster_type] = (
ijk_frag_cluster_rep_pdb, ijk_frag_cluster_rep_mapped_chain_id, intfrag_mapped_chain_central_res_num,
ijk_frag_cluster_rep_partner_chain_id, intfrag_partner_chain_central_res_num)

 return i_j_k_intfrag_cluster_rep_dict

 def get_intfrag_cluster_info_dict(self):
 intfrag_cluster_info_dict = {}
 for dirpath1, dirnames1, filenames1 in os.walk(self.intfrag_cluster_info_dirpath):
 if not dirnames1:
 ijk_cluster_name = dirpath1.split("/")[-1]
 i_cluster_type = ijk_cluster_name.split("_")[0]
 j_cluster_type = ijk_cluster_name.split("_")[1]
 k_cluster_type = ijk_cluster_name.split("_")[2]

 if i_cluster_type not in intfrag_cluster_info_dict:
 intfrag_cluster_info_dict[i_cluster_type] = {}

 if j_cluster_type not in intfrag_cluster_info_dict[i_cluster_type]:
 intfrag_cluster_info_dict[i_cluster_type][j_cluster_type] = {}

 for dirpath2, dirnames2, filenames2 in os.walk(dirpath1):
 for filename in filenames2:
 if filename.endswith(".txt"):
 intfrag_cluster_info_dict[i_cluster_type][j_cluster_type][k_cluster_type] =
ClusterInfoFile(dirpath1 + "/" + filename)

 return intfrag_cluster_info_dict

 197

EulerLookup.py

 198

classes/EulerLookup.py

import numpy as np
import os

Copyright 2020 Joshua Laniado and Todd O. Yeates.
__author__ = "Joshua Laniado and Todd O. Yeates"
__copyright__ = "Copyright 2020, Nanohedra"
__version__ = "1.0"

class EulerLookup:
 def __init__(self, scale=3.0):

 nanohedra_dirpath = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
 binary_lookup_table_path = nanohedra_dirpath + "/euler_lookup/euler_lookup_40.npz"

 self.eul_lookup_40 = np.load(binary_lookup_table_path)['a']
 self.scale = scale

 @staticmethod
 def get_eulerint10_from_rot(rot):
 # convert rotation matrix to euler angles in the form of an integer triplet
 # (integer values are degrees divided by 10; these become indices for a lookup table)
 tolerance = 1.e-6
 eulint = np.zeros(3, dtype=int)
 rot[2, 2] = min(rot[2, 2], 1.)
 rot[2, 2] = max(rot[2, 2], -1.)

 # if |rot[2,2]|~1, let the 3rd angle (which becomes degernate with the 1st) be zero
 if rot[2, 2] > 1. - tolerance:
 e3 = 0.
 e1 = np.arctan2(rot[1, 0], rot[0, 0])
 e2 = 0.
 else:
 if rot[2, 2] < -(1. - tolerance):
 e3 = 0.
 e1 = np.arctan2(rot[1, 0], rot[0, 0])
 e2 = np.pi
 else:
 e2 = np.arccos(rot[2, 2])
 e1 = np.arctan2(rot[0, 2], -rot[1, 2])
 e3 = np.arctan2(rot[2, 0], rot[2, 1])

 eulint[0] = (np.rint(e1 * 180. / np.pi * 0.1 * 0.999999) + 36) % 36
 eulint[1] = np.rint(e2 * 180. / np.pi * 0.1 * 0.999999)
 eulint[2] = (np.rint(e3 * 180. / np.pi * 0.1 * 0.999999) + 36) % 36

 return eulint

 def get_eulint_from_guides(self, guide_ats):
 # take a set of guide atoms (3 xyz positions) and return integer indices
 # for the euler angles describing the orientations of the axes they form
 # Note that the positions are in a 3D array. Each guide_ats[i,:,:] is a
 # 3x3 array with the vectors stored *in columns*, i.e. one vector is in [i,:,j]
 # use known scale value to normalize, to save repeated sqrt calculations

 if guide_ats.ndim != 3 or guide_ats.shape[1] != 3 or guide_ats.shape[2] != 3:
 print ('ERROR: guide atom array with wrong dimensions')

 nfrags = guide_ats.shape[0]
 rot = np.zeros((3, 3))
 eulintarray = np.zeros((nfrags, 3), dtype=int)

 # form the 2 difference vectors, normalize, then cross product
 for i in range(nfrags):
 v1 = (guide_ats[i, :, 1] - guide_ats[i, :, 0]) * 1. / self.scale
 v2 = (guide_ats[i, :, 2] - guide_ats[i, :, 0]) * 1. / self.scale
 v3 = np.cross(v1, v2)
 rot = np.array([v1, v2, v3])

 # get the euler indices
 eulintarray[i, :] = self.get_eulerint10_from_rot(rot)

 return eulintarray

 def check_lookup_table(self, guide_coords_list1, guide_coords_list2):
 return_tup_list = []

 guide_list_1_np = np.array(guide_coords_list1)
 guide_list_1_np_T = np.array([atoms_coords_1.T for atoms_coords_1 in guide_list_1_np])

 199

classes/EulerLookup.py

 guide_list_2_np = np.array(guide_coords_list2)
 guide_list_2_np_T = np.array([atoms_coords_2.T for atoms_coords_2 in guide_list_2_np])

 eulintarray1 = self.get_eulint_from_guides(guide_list_1_np_T)
 eulintarray2 = self.get_eulint_from_guides(guide_list_2_np_T)

 # check lookup table
 for i in range(len(eulintarray1)):
 for j in range(len(eulintarray2)):
 (e1, e2, e3) = eulintarray1[i, :].flatten()
 (f1, f2, f3) = eulintarray2[j, :].flatten()
 return_tup_list.append((i, j, self.eul_lookup_40[e1, e2, e3, f1, f2, f3]))

 return return_tup_list

 200

OptimalTx.py

 201

classes/OptimalTx.py

import numpy as np
import sys
from math import sqrt

Copyright 2020 Joshua Laniado and Todd O. Yeates.
__author__ = "Joshua Laniado and Todd O. Yeates"
__copyright__ = "Copyright 2020, Nanohedra"
__version__ = "1.0"

class OptimalTx:
 def __init__(self, setting1, setting2, is_zshift1, is_zshift2, cluster_rmsd, guide_atom_coods1, guide_atom_coods2
, dof_ext):
 self.setting1 = np.array(setting1)
 self.setting2 = np.array(setting2)
 self.is_zshift1 = is_zshift1
 self.is_zshift2 = is_zshift2
 self.dof_ext = np.array(dof_ext)
 self.n_dof_external = len(self.dof_ext)
 self.cluster_rmsd = cluster_rmsd
 self.guide_atom_coods1 = guide_atom_coods1
 self.guide_atom_coods2 = guide_atom_coods2

 self.n_dof_internal = [self.is_zshift1, self.is_zshift2].count(True)
 self.optimal_tx = (np.array([]), sys.maxint) # (shift, error_zvalue)
 self.guide_atom_coods1_set = []
 self.guide_atom_coods2_set = []

 def dof_convert9(self):
 # convert input degrees of freedom to 9-dim arrays
 ndof = len(self.dof_ext)
 dof = np.zeros((ndof, 9))
 for i in range(ndof):
 dof[i] = (np.array(3 * [self.dof_ext[i]])).flatten()
 return np.transpose(dof)

 def solve_optimal_shift(self):
 # This routine does the work to solve the optimal shift problem

 # form the guide atoms into a matrix (column vectors)
 guide_target_10 = np.transpose(np.array(self.guide_atom_coods1_set))
 guide_query_10 = np.transpose(np.array(self.guide_atom_coods2_set))

 # calculate the initial difference between query and target (9 dim vector)
 guide_delta = np.transpose([guide_target_10.flatten('F') - guide_query_10.flatten('F')])

 # isotropic case based on simple rmsd
 self.cluster_rmsd = max(self.cluster_rmsd, 0.01)
 diagval = 1. / (3. * self.cluster_rmsd ** 2)
 var_tot_inv = np.zeros([9, 9])
 for i in range(9):
 var_tot_inv[i, i] = diagval

 # add internal z-shift degrees of freedom to 9-dim arrays if they exist
 if self.is_zshift1:
 self.dof_ext = np.append(self.dof_ext, -self.setting1[:, 2:3].T, axis=0)
 if self.is_zshift2:
 self.dof_ext = np.append(self.dof_ext, self.setting2[:, 2:3].T, axis=0)

 # convert degrees of freedom to 9-dim array
 dof = self.dof_convert9()

 # solve the problem
 dofT = np.transpose(dof)
 dinvv = np.matmul(var_tot_inv, dof)
 vtdinvv = np.matmul(dofT, dinvv)
 vtdinvvinv = np.linalg.inv(vtdinvv)

 dinvdelta = np.matmul(var_tot_inv, guide_delta)
 vtdinvdelta = np.matmul(dofT, dinvdelta)

 shift = np.matmul(vtdinvvinv, vtdinvdelta)

 # get error value
 resid = np.matmul(dof, shift) - guide_delta
 residT = np.transpose(resid)

 error = sqrt(np.matmul(residT, resid) / float(3.0)) / self.cluster_rmsd # sqrt(variance / 3) / cluster_rmsd
 # NEW ERROR

 202

classes/OptimalTx.py

 self.optimal_tx = (shift[:, 0], error) # (shift, error_zvalue)

 @staticmethod
 def mat_vec_mul3(a, b):
 c = [0. for i in range(3)]

 for i in range(3):
 c[i] = 0.
 for j in range(3):
 c[i] += a[i][j] * b[j]

 return c

 def set_guide_atoms(self, rot_mat, coords):
 rotated_coords = []

 for coord in coords:
 x, y, z = self.mat_vec_mul3(rot_mat, [coord[0], coord[1], coord[2]])
 rotated_coords.append([x, y, z])

 return rotated_coords

 def apply(self):
 # Apply Setting Matrix to Guide Atoms
 self.guide_atom_coods1_set = self.set_guide_atoms(self.setting1, self.guide_atom_coods1)
 self.guide_atom_coods2_set = self.set_guide_atoms(self.setting2, self.guide_atom_coods2)

 # solve for shifts and resulting error
 self.solve_optimal_shift()

 def get_optimal_tx_dof_int(self):
 tx_dof_int = []

 shift, error_zvalue = self.optimal_tx
 index = self.n_dof_external

 if self.is_zshift1:
 tx_dof_int.append(shift[index:index + 1][0])
 index += 1

 if self.is_zshift2:
 tx_dof_int.append(shift[index:index + 1][0])

 return tx_dof_int

 def get_optimal_tx_dof_ext(self):
 shift, error_zvalue = self.optimal_tx
 return shift[0:self.n_dof_external].tolist()

 def get_all_optimal_shifts(self):
 shift, error_zvalue = self.optimal_tx
 return shift.tolist()

 def get_n_dof_external(self):
 return self.n_dof_external

 def get_n_dof_internal(self):
 return self.n_dof_internal

 def get_zvalue(self):
 shift, error_zvalue = self.optimal_tx
 return error_zvalue

 203

FragDock.py

 204

classes/FragDock.py

import os
from classes.OptimalTx import *
from classes.Fragment import *
from classes.WeightedSeqFreq import FragMatchInfo
from classes.WeightedSeqFreq import SeqFreqInfo
from utils.GeneralUtils import *
from utils.SamplingUtils import *
from utils.PDBUtils import *
from utils.SymmUtils import get_uc_dimensions
from utils.ExpandAssemblyUtils import generate_cryst1_record
from utils.ExpandAssemblyUtils import expanded_design_is_clash
import math
import sklearn.neighbors
import numpy as np
import time

Copyright 2020 Joshua Laniado and Todd O. Yeates.
__author__ = "Joshua Laniado and Todd O. Yeates"
__copyright__ = "Copyright 2020, Nanohedra"
__version__ = "1.0"

def write_frag_match_info_file(ghost_frag, surf_frag, z_value, cluster_id, match_count, res_freq_list,
 cluster_rmsd, outdir_path, pose_id, match_number, is_initial_match=False):

 out_info_file_path = outdir_path + "/frag_match_info_file.txt"
 out_info_file = open(out_info_file_path, "a+")

 aligned_central_res_info = ghost_frag.get_aligned_central_res_info()
 surf_frag_oligomer2_central_res_tup = surf_frag.get_central_res_tup()

 if is_initial_match:
 out_info_file.write("DOCKED POSE ID: %s\n\n" % pose_id)
 out_info_file.write("***** INITIAL MATCH FROM REPRESENTATIVES OF INITIAL FRAGMENT CLUSTERS *****\n\n")

 out_info_file.write("MATCH %s\n" % str(match_number))
 out_info_file.write("z-val: %s\n" % str(z_value))
 out_info_file.write("CENTRAL RESIDUES\n")
 out_info_file.write("oligomer1 ch, resnum: %s, %s\n" %
 (str(aligned_central_res_info[4]), str(aligned_central_res_info[5])))
 out_info_file.write("oligomer2 ch, resnum: %s, %s\n" %
 (str(surf_frag_oligomer2_central_res_tup[0]), str(surf_frag_oligomer2_central_res_tup[1])))
 out_info_file.write("FRAGMENT CLUSTER\n")
 out_info_file.write("id: %s\n" % cluster_id)
 out_info_file.write("mean rmsd: %s\n" % str(cluster_rmsd))
 out_info_file.write("aligned rep: int_frag_%s_%s.pdb\n" % (cluster_id, str(match_count)))
 out_info_file.write("central res pair freqs:\n%s\n\n" % str(res_freq_list))

 if is_initial_match:
 out_info_file.write("***** ALL MATCH(ES) FROM REPRESENTATIVES OF ALL FRAGMENT CLUSTERS *****\n\n")

 out_info_file.close()

def write_docked_pose_info(outdir_path, res_lev_sum_score, high_qual_match_count,
 unique_matched_interface_monofrag_count, unique_total_interface_monofrags_count,
 percent_of_interface_covered, rot_mat1, representative_int_dof_tx_param_1, set_mat1,
 representative_ext_dof_tx_params_1, rot_mat2, representative_int_dof_tx_param_2, set_mat2,
 representative_ext_dof_tx_params_2, cryst1_record, pdb1_path, pdb2_path, pose_id):

 out_info_file_path = outdir_path + "/docked_pose_info_file.txt"
 out_info_file = open(out_info_file_path, "w")

 out_info_file.write("DOCKED POSE ID: %s\n\n" % pose_id)

 out_info_file.write("Nanohedra Score: %s\n\n" % str(res_lev_sum_score))

 out_info_file.write("Unique Mono Fragments Matched (z<=1): %s\n" % str(high_qual_match_count))
 out_info_file.write("Unique Mono Fragments Matched: %s\n" % str(unique_matched_interface_monofrag_count))
 out_info_file.write("Unique Mono Fragments at Interface: %s\n" % str(unique_total_interface_monofrags_count))
 out_info_file.write("Interface Matched (%s): %s\n\n" % ("%", str(percent_of_interface_covered * 100)))

 out_info_file.write("ROT/DEGEN MATRIX PDB1: %s\n" % str(rot_mat1))
 if representative_int_dof_tx_param_1 is not None:
 int_dof_tx_vec_1 = representative_int_dof_tx_param_1
 else:
 int_dof_tx_vec_1 = None
 out_info_file.write("INTERNAL Tx PDB1: " + str(int_dof_tx_vec_1) + "\n")
 out_info_file.write("SETTING MATRIX PDB1: " + str(set_mat1) + "\n")
 if representative_ext_dof_tx_params_1 == [0, 0, 0]:

 205

classes/FragDock.py

 ref_frame_tx_vec_1 = None
 else:
 ref_frame_tx_vec_1 = representative_ext_dof_tx_params_1
 out_info_file.write("REFERENCE FRAME Tx PDB1: " + str(ref_frame_tx_vec_1) + "\n\n")

 out_info_file.write("ROT/DEGEN MATRIX PDB2: %s\n" % str(rot_mat2))
 if representative_int_dof_tx_param_2 is not None:
 int_dof_tx_vec_2 = representative_int_dof_tx_param_2
 else:
 int_dof_tx_vec_2 = None
 out_info_file.write("INTERNAL Tx PDB2: " + str(int_dof_tx_vec_2) + "\n")
 out_info_file.write("SETTING MATRIX PDB2: " + str(set_mat2) + "\n")
 if representative_ext_dof_tx_params_2 == [0, 0, 0]:
 ref_frame_tx_vec_2 = None
 else:
 ref_frame_tx_vec_2 = representative_ext_dof_tx_params_2
 out_info_file.write("REFERENCE FRAME Tx PDB2: " + str(ref_frame_tx_vec_2) + "\n\n")

 out_info_file.write("CRYST1 RECORD: %s\n\n" % str(cryst1_record))

 out_info_file.write('Canonical Orientation PDB1 Path: %s\n' % pdb1_path)
 out_info_file.write('Canonical Orientation PDB2 Path: %s\n\n' % pdb2_path)

 out_info_file.close()

def out(pdb1, pdb2, set_mat1, set_mat2, ref_frame_tx_dof1, ref_frame_tx_dof2, is_zshift1, is_zshift2, tx_param_list,
 ghostfrag_surffrag_pair_list, complete_ghost_frag_list, complete_surf_frag_list, log_filepath,
 degen_subdir_out_path, rot_subdir_out_path, ijk_intfrag_cluster_info_dict, result_design_sym, uc_spec_string,
 design_dim, pdb1_path, pdb2_path, expand_matrices, eul_lookup,
 rot_mat1=None, rot_mat2=None, max_z_val=2.0, output_exp_assembly=False, output_uc=False,
 output_surrounding_uc=False, clash_dist=2.2, min_matched=3):

 for i in range(len(tx_param_list)):

 log_file = open(log_filepath, "a+")
 log_file.write("Optimal Shift %s" % str(i) + "\n")
 log_file.close()

 # Dictionaries for PDB1 and PDB2 with (ch_id, res_num) tuples as keys for every residue that is covered by at
 # least 1 matched fragment. Dictionary values are lists containing 1 / (1 + z^2) values for every fragment
match
 # that covers the (ch_id, res_num) residue.
 chid_resnum_scores_dict_pdb1 = {}
 chid_resnum_scores_dict_pdb2 = {}

 # Lists of unique (pdb1/2 chain id, pdb1/2 central residue number) tuples for pdb1/pdb2 interface mono
fragments
 # that were matched to an i,j,k fragment in the database with a z value <= 1.
 # This is to keep track of and to count unique 'high quality' matches.
 unique_interface_monofrags_infolist_highqual_pdb1 = []
 unique_interface_monofrags_infolist_highqual_pdb2 = []

 # Number of unique interface mono fragments matched with a z value <= 1 ('high quality match')
 # This value has to be >= min_matched (minimum number of high quality matches required)
 # for a pose to be selected
 high_qual_match_count = 0

 unique_matched_interface_monofrag_count = 0
 unique_total_interface_monofrags_count = 0
 frag_match_info_list = []
 unique_interface_monofrags_infolist_pdb1 = []
 unique_interface_monofrags_infolist_pdb2 = []
 percent_of_interface_covered = 0.0

 # Keep track of match information and residue pair frequencies for each fragment match
 # this information will be used to calculate a weighted frequency average
 # for all central residues of matched fragments
 res_pair_freq_info_list = []

 tx_parameters = tx_param_list[i][0]
 initial_overlap_z_val = tx_param_list[i][1]
 ghostfrag_surffrag_pair = ghostfrag_surffrag_pair_list[i]

 # Get Optimal External DOF shifts
 n_dof_external = len(get_ext_dof(ref_frame_tx_dof1, ref_frame_tx_dof2))
 optimal_ext_dof_shifts = None
 if n_dof_external > 0:
 optimal_ext_dof_shifts = tx_parameters[0:n_dof_external]

 copy_rot_tr_set_time_start = time.time()

 206

classes/FragDock.py

 # Get Oligomer1 Optimal Internal Translation vector
 representative_int_dof_tx_param_1 = None
 if is_zshift1:
 representative_int_dof_tx_param_1 = [0, 0, tx_parameters[n_dof_external: n_dof_external + 1][0]]

 # Get Oligomer1 Optimal External Translation vector
 representative_ext_dof_tx_params_1 = None
 if optimal_ext_dof_shifts is not None:
 representative_ext_dof_tx_params_1 = get_optimal_external_tx_vector(ref_frame_tx_dof1,
 optimal_ext_dof_shifts)

 # Get Oligomer2 Optimal Internal Translation vector
 representative_int_dof_tx_param_2 = None
 if is_zshift2:
 representative_int_dof_tx_param_2 = [0, 0, tx_parameters[n_dof_external + 1: n_dof_external + 2][0]]

 # Get Oligomer2 Optimal External Translation vector
 representative_ext_dof_tx_params_2 = None
 if optimal_ext_dof_shifts is not None:
 representative_ext_dof_tx_params_2 = get_optimal_external_tx_vector(ref_frame_tx_dof2,
 optimal_ext_dof_shifts)

 # Get Unit Cell Dimensions for 2D and 3D SCMs
 # Restrict all reference frame translation parameters to > 0 for SCMs with reference frame translational d.o.
f.
 ref_frame_var_is_pos = False
 uc_dimensions = None
 if optimal_ext_dof_shifts is not None:
 ref_frame_tx_dof_e = 0
 ref_frame_tx_dof_f = 0
 ref_frame_tx_dof_g = 0
 if len(optimal_ext_dof_shifts) == 1:
 ref_frame_tx_dof_e = optimal_ext_dof_shifts[0]
 if ref_frame_tx_dof_e > 0:
 ref_frame_var_is_pos = True
 if len(optimal_ext_dof_shifts) == 2:
 ref_frame_tx_dof_e = optimal_ext_dof_shifts[0]
 ref_frame_tx_dof_f = optimal_ext_dof_shifts[1]
 if ref_frame_tx_dof_e > 0 and ref_frame_tx_dof_f > 0:
 ref_frame_var_is_pos = True
 if len(optimal_ext_dof_shifts) == 3:
 ref_frame_tx_dof_e = optimal_ext_dof_shifts[0]
 ref_frame_tx_dof_f = optimal_ext_dof_shifts[1]
 ref_frame_tx_dof_g = optimal_ext_dof_shifts[2]
 if ref_frame_tx_dof_e > 0 and ref_frame_tx_dof_f > 0 and ref_frame_tx_dof_g > 0:
 ref_frame_var_is_pos = True

 uc_dimensions = get_uc_dimensions(uc_spec_string,
 ref_frame_tx_dof_e,
 ref_frame_tx_dof_f,
 ref_frame_tx_dof_g)

 if (optimal_ext_dof_shifts is not None and ref_frame_var_is_pos) or (optimal_ext_dof_shifts is None):

 # Rotate, Translate and Set PDB1
 pdb1_copy = rot_txint_set_txext_pdb(pdb1,
 rot_mat=rot_mat1,
 internal_tx_vec=representative_int_dof_tx_param_1,
 set_mat=set_mat1,
 ext_tx_vec=representative_ext_dof_tx_params_1)

 # Rotate, Translate and Set PDB2
 pdb2_copy = rot_txint_set_txext_pdb(pdb2,
 rot_mat=rot_mat2,
 internal_tx_vec=representative_int_dof_tx_param_2,
 set_mat=set_mat2,
 ext_tx_vec=representative_ext_dof_tx_params_2)

 copy_rot_tr_set_time_stop = time.time()
 copy_rot_tr_set_time = copy_rot_tr_set_time_stop - copy_rot_tr_set_time_start
 log_file = open(log_filepath, "a+")
 log_file.write("\tCopy and Transform Oligomer1 and Oligomer2 (took: %s s)\n" % str(copy_rot_tr_set_time))
 log_file.close()

 # Check if PDB1 and PDB2 backbones clash
 oligomer1_oligomer2_clash_time_start = time.time()
 kdtree_oligomer1_backbone = sklearn.neighbors.BallTree(np.array(pdb1_copy.extract_backbone_coords()))
 cb_clash_count = kdtree_oligomer1_backbone.two_point_correlation(pdb2_copy.extract_backbone_coords(),
 [clash_dist])
 oligomer1_oligomer2_clash_time_end = time.time()

 207

classes/FragDock.py

 oligomer1_oligomer2_clash_time = oligomer1_oligomer2_clash_time_end -
oligomer1_oligomer2_clash_time_start

 if cb_clash_count[0] == 0:

 log_file = open(log_filepath, "a+")
 log_file.write("\tNO Backbone Clash when Oligomer1 and Oligomer2 are Docked (took: %s s)"
 % str(oligomer1_oligomer2_clash_time) + "\n")
 log_file.close()

 # Full Interface Fragment Match
 get_int_ghost_surf_frags_time_start = time.time()
 interface_ghostfrag_list, int_monofrag2_list, interface_ghostfrag_guide_coords_list,
int_monofrag2_guide_coords_list, unique_interface_frag_count_pdb1, unique_interface_frag_count_pdb2 =
get_interface_ghost_surf_frags(pdb1_copy, pdb2_copy, complete_ghost_frag_list, complete_surf_frag_list, rot_mat1,
rot_mat2, representative_int_dof_tx_param_1, representative_int_dof_tx_param_2, set_mat1, set_mat2,
representative_ext_dof_tx_params_1, representative_ext_dof_tx_params_2)
 get_int_ghost_surf_frags_time_end = time.time()
 get_int_ghost_surf_frags_time = get_int_ghost_surf_frags_time_end -
get_int_ghost_surf_frags_time_start

 unique_total_interface_monofrags_count = unique_interface_frag_count_pdb1 +
unique_interface_frag_count_pdb2

 if unique_total_interface_monofrags_count > 0:

 log_file = open(log_filepath, "a+")
 log_file.write("\tNewly Formed Interface Contains %s "
 "Unique Fragments on Oligomer 1 and %s on Oligomer 2\n"
 % (str(unique_interface_frag_count_pdb1), str(unique_interface_frag_count_pdb2)))
 log_file.write("\t(took: %s s to get interface surface fragments and interface ghost fragments"
 " with their guide atoms)\n" % str(get_int_ghost_surf_frags_time))
 log_file.close()

 # Get (Oligomer1 Interface Ghost Fragment, Oligomer2 Interface Mono Fragment) guide
 # coordinate pairs in the same Euler rotational space bucket
 eul_lookup_start_time = time.time()
 eul_lookup_all_to_all_list = eul_lookup.check_lookup_table(interface_ghostfrag_guide_coords_list,
 int_monofrag2_guide_coords_list)
 eul_lookup_true_list = [(true_tup[0], true_tup[1]) for true_tup in eul_lookup_all_to_all_list if
true_tup[2]]
 eul_lookup_end_time = time.time()
 eul_lookup_time = eul_lookup_end_time - eul_lookup_start_time

 # Get RMSD and z-value for the selected (Ghost Fragment, Interface Fragment) guide coodinate
pairs
 pair_count = 0
 total_overlap_count = 0
 overlap_score_time_start = time.time()
 for index_pair in eul_lookup_true_list:
 interface_ghost_frag = interface_ghostfrag_list[index_pair[0]]
 interface_ghost_frag_guide_coords = interface_ghostfrag_guide_coords_list[index_pair[0]]
 ghost_frag_i_type = interface_ghost_frag.get_i_frag_type()
 ghost_frag_j_type = interface_ghost_frag.get_j_frag_type()
 ghost_frag_k_type = interface_ghost_frag.get_k_frag_type()
 cluster_id = "i%s_j%s_k%s" % (ghost_frag_i_type, ghost_frag_j_type, ghost_frag_k_type)
 interface_ghost_frag_cluster_rmsd = ijk_intfrag_cluster_info_dict[ghost_frag_i_type][
ghost_frag_j_type][ghost_frag_k_type].get_rmsd()
 interface_ghost_frag_cluster_res_freq_list = ijk_intfrag_cluster_info_dict[ghost_frag_i_type]
[ghost_frag_j_type][ghost_frag_k_type].get_central_residue_pair_freqs()

 interface_mono_frag_guide_coords = int_monofrag2_guide_coords_list[index_pair[1]]
 interface_mono_frag = int_monofrag2_list[index_pair[1]]
 interface_mono_frag_type = interface_mono_frag.get_type()

 if (interface_mono_frag_type == ghost_frag_j_type) and (interface_ghost_frag_cluster_rmsd > 0
):
 # Calculate RMSD
 total_overlap_count += 1
 e1 = euclidean_squared_3d(interface_mono_frag_guide_coords[0],
 interface_ghost_frag_guide_coords[0])
 e2 = euclidean_squared_3d(interface_mono_frag_guide_coords[1],
 interface_ghost_frag_guide_coords[1])
 e3 = euclidean_squared_3d(interface_mono_frag_guide_coords[2],
 interface_ghost_frag_guide_coords[2])
 sum = e1 + e2 + e3
 mean = sum / float(3)
 rmsd = math.sqrt(mean)

 # Calculate Guide Atom Overlap Z-Value
 # and Calculate Score Term for Nanohedra Residue Level Summation Score

 208

classes/FragDock.py

 z_val = rmsd / float(interface_ghost_frag_cluster_rmsd)

 if z_val <= max_z_val:

 pair_count += 1

 pdb1_interface_surffrag_ch_id, pdb1_interface_surffrag_central_res_num =
interface_ghost_frag.get_aligned_surf_frag_central_res_tup()
 pdb2_interface_surffrag_ch_id, pdb2_interface_surffrag_central_res_num =
interface_mono_frag.get_central_res_tup()

 score_term = 1 / float(1 + (z_val ** 2))

 covered_residues_pdb1 = [(pdb1_interface_surffrag_ch_id,
pdb1_interface_surffrag_central_res_num + j) for j in range(-2, 3)]
 covered_residues_pdb2 = [(pdb2_interface_surffrag_ch_id,
pdb2_interface_surffrag_central_res_num + j) for j in range(-2, 3)]
 for k in range(5):
 chid1, resnum1 = covered_residues_pdb1[k]
 chid2, resnum2 = covered_residues_pdb2[k]
 if (chid1, resnum1) not in chid_resnum_scores_dict_pdb1:
 chid_resnum_scores_dict_pdb1[(chid1, resnum1)] = [score_term]
 else:
 chid_resnum_scores_dict_pdb1[(chid1, resnum1)].append(score_term)

 if (chid2, resnum2) not in chid_resnum_scores_dict_pdb2:
 chid_resnum_scores_dict_pdb2[(chid2, resnum2)] = [score_term]
 else:
 chid_resnum_scores_dict_pdb2[(chid2, resnum2)].append(score_term)

 if z_val <= 1:
 if (pdb1_interface_surffrag_ch_id, pdb1_interface_surffrag_central_res_num) not
in unique_interface_monofrags_infolist_highqual_pdb1:
 unique_interface_monofrags_infolist_highqual_pdb1.append((
pdb1_interface_surffrag_ch_id, pdb1_interface_surffrag_central_res_num))
 if (pdb2_interface_surffrag_ch_id, pdb2_interface_surffrag_central_res_num) not
in unique_interface_monofrags_infolist_highqual_pdb2:
 unique_interface_monofrags_infolist_highqual_pdb2.append((
pdb2_interface_surffrag_ch_id, pdb2_interface_surffrag_central_res_num))

 if (pdb1_interface_surffrag_ch_id, pdb1_interface_surffrag_central_res_num) not in
unique_interface_monofrags_infolist_pdb1:
 unique_interface_monofrags_infolist_pdb1.append((pdb1_interface_surffrag_ch_id,
pdb1_interface_surffrag_central_res_num))

 if (pdb2_interface_surffrag_ch_id, pdb2_interface_surffrag_central_res_num) not in
unique_interface_monofrags_infolist_pdb2:
 unique_interface_monofrags_infolist_pdb2.append((pdb2_interface_surffrag_ch_id,
pdb2_interface_surffrag_central_res_num))

 frag_match_info_list.append((interface_ghost_frag, interface_mono_frag, z_val,
cluster_id,
 pair_count, interface_ghost_frag_cluster_res_freq_list,
 interface_ghost_frag_cluster_rmsd))

 unique_matched_interface_monofrag_count = len(unique_interface_monofrags_infolist_pdb1) + len(
unique_interface_monofrags_infolist_pdb2)
 percent_of_interface_covered = unique_matched_interface_monofrag_count / float(
unique_total_interface_monofrags_count)

 overlap_score_time_stop = time.time()
 overlap_score_time = overlap_score_time_stop - overlap_score_time_start

 log_file = open(log_filepath, "a+")
 log_file.write("\t%s Fragment Match(es) Found in Complete Cluster "
 "Representative Fragment Library\n" % str(pair_count))
 log_file.write("\t(Euler Lookup took %s s for %s fragment pairs and Overlap Score Calculation
took"
 " %s for %s fragment pairs)" %
 (str(eul_lookup_time), str(len(eul_lookup_all_to_all_list)), str(
overlap_score_time),
 str(total_overlap_count)) + "\n")
 log_file.close()

 high_qual_match_count = len(unique_interface_monofrags_infolist_highqual_pdb1) + len(
unique_interface_monofrags_infolist_highqual_pdb2)
 if high_qual_match_count >= min_matched:

 # Get contacting PDB 1 ASU and PDB 2 ASU
 asu_pdb_1, asu_pdb_2 = get_contacting_asu(pdb1_copy, pdb2_copy)

 209

classes/FragDock.py

 # Check if design has any clashes when expanded
 tx_subdir_out_path = rot_subdir_out_path + "/tx_%s" % str(i)
 oligomers_subdir = rot_subdir_out_path.split("/")[-3]
 degen_subdir = rot_subdir_out_path.split("/")[-2]
 rot_subdir = rot_subdir_out_path.split("/")[-1]
 pose_id = oligomers_subdir + "_" + degen_subdir + "_" + rot_subdir + "_TX_%s" % str(i)
 sampling_id = degen_subdir + "_" + rot_subdir + "_TX_%s" % str(i)
 if asu_pdb_1 is not None and asu_pdb_2 is not None:
 exp_des_clash_time_start = time.time()
 exp_des_is_clash = expanded_design_is_clash(asu_pdb_1,
 asu_pdb_2,
 design_dim,
 result_design_sym,
 expand_matrices,
 uc_dimensions,
 tx_subdir_out_path,
 output_exp_assembly,
 output_uc,
 output_surrounding_uc)
 exp_des_clash_time_stop = time.time()
 exp_des_clash_time = exp_des_clash_time_stop - exp_des_clash_time_start

 if not exp_des_is_clash:

 if not os.path.exists(degen_subdir_out_path):
 os.makedirs(degen_subdir_out_path)

 if not os.path.exists(rot_subdir_out_path):
 os.makedirs(rot_subdir_out_path)

 if not os.path.exists(tx_subdir_out_path):
 os.makedirs(tx_subdir_out_path)

 log_file = open(log_filepath, "a+")
 log_file.write("\tNO Backbone Clash when Designed Assembly is Expanded "
 "(took: %s s including writing)\n" % str(exp_des_clash_time))
 log_file.write("\tSUCCESSFUL DOCKED POSE: %s\n" % tx_subdir_out_path)
 log_file.close()

 # Write PDB1 and PDB2 files
 cryst1_record = None
 if optimal_ext_dof_shifts is not None:
 cryst1_record = generate_cryst1_record(uc_dimensions, result_design_sym)
 pdb1_fname = os.path.splitext(os.path.basename(pdb1.get_filepath()))[0]
 pdb2_fname = os.path.splitext(os.path.basename(pdb2.get_filepath()))[0]
 pdb1_copy.write(tx_subdir_out_path + "/" + pdb1_fname + "_" + sampling_id + ".pdb")
 pdb2_copy.write(tx_subdir_out_path + "/" + pdb2_fname + "_" + sampling_id + ".pdb")

 # Initial Interface Fragment Match
 # Rotate, translate and set initial match interface fragment
 init_match_ghost_frag = ghostfrag_surffrag_pair[0]
 init_match_ghost_frag_pdb = init_match_ghost_frag.get_pdb()
 init_match_ghost_frag_pdb_copy = rot_txint_set_txext_pdb(
 init_match_ghost_frag_pdb, rot_mat=rot_mat1,
 internal_tx_vec=representative_int_dof_tx_param_1,
 set_mat=set_mat1, ext_tx_vec=representative_ext_dof_tx_params_1)

 # Make directories to output matched fragment PDB files
 # initial_match for the initial matched fragment
 # high_qual_match for fragments that were matched with z values <= 1
 # low_qual_match for fragments that were matched with z values > 1
 matched_frag_reps_outdir_path = tx_subdir_out_path + "/matched_fragments"
 if not os.path.exists(matched_frag_reps_outdir_path):
 os.makedirs(matched_frag_reps_outdir_path)

 init_match_outdir_path = matched_frag_reps_outdir_path + "/initial_match"
 if not os.path.exists(init_match_outdir_path):
 os.makedirs(init_match_outdir_path)

 high_qual_matches_outdir_path = matched_frag_reps_outdir_path + "/high_qual_match"
 if not os.path.exists(high_qual_matches_outdir_path):
 os.makedirs(high_qual_matches_outdir_path)

 low_qual_matches_outdir_path = matched_frag_reps_outdir_path + "/low_qual_match"
 if not os.path.exists(low_qual_matches_outdir_path):
 os.makedirs(low_qual_matches_outdir_path)

 # Write out initial match interface fragment
 match_number = 0
 init_match_surf_frag = ghostfrag_surffrag_pair[1]
 init_match_ghost_frag_i_type = init_match_ghost_frag.get_i_frag_type()

 210

classes/FragDock.py

 init_match_ghost_frag_j_type = init_match_ghost_frag.get_j_frag_type()
 init_match_ghost_frag_k_type = init_match_ghost_frag.get_k_frag_type()
 init_match_ghost_frag_cluster_res_freq_list = ijk_intfrag_cluster_info_dict[
init_match_ghost_frag_i_type][init_match_ghost_frag_j_type][init_match_ghost_frag_k_type].
get_central_residue_pair_freqs()
 init_match_cluster_id = "i%s_j%s_k%s" % (init_match_ghost_frag_i_type,
init_match_ghost_frag_j_type, init_match_ghost_frag_k_type)
 init_match_ghost_frag_pdb_copy.write(
 init_match_outdir_path + "/int_frag_i%s_j%s_k%s_0.pdb"
 % (init_match_ghost_frag_i_type,
 init_match_ghost_frag_j_type,
 init_match_ghost_frag_k_type))
 init_match_ghost_frag_cluster_rmsd = ijk_intfrag_cluster_info_dict[
init_match_ghost_frag_i_type][init_match_ghost_frag_j_type][init_match_ghost_frag_k_type].get_rmsd()
 write_frag_match_info_file(init_match_ghost_frag, init_match_surf_frag,
 initial_overlap_z_val, init_match_cluster_id,
 0, init_match_ghost_frag_cluster_res_freq_list,
 init_match_ghost_frag_cluster_rmsd,
 matched_frag_reps_outdir_path,
 pose_id, match_number, is_initial_match=True)

 # For all matched interface fragments
 # write out aligned cluster representative fragment
 # write out associated match information to frag_match_info_file.txt
 # calculate weighted frequency for central residues
 # write out weighted frequencies to frag_match_info_file.txt
 for matched_frag in frag_match_info_list:
 match_number += 1
 interface_ghost_frag = matched_frag[0]
 ghost_frag_i_type = interface_ghost_frag.get_i_frag_type()
 ghost_frag_j_type = interface_ghost_frag.get_j_frag_type()
 ghost_frag_k_type = interface_ghost_frag.get_k_frag_type()
 if matched_frag[2] <= 1:
 matched_frag_outdir_path = high_qual_matches_outdir_path
 else:
 matched_frag_outdir_path = low_qual_matches_outdir_path
 interface_ghost_frag.get_pdb().write(
 matched_frag_outdir_path + "/int_frag_i%s_j%s_k%s_%s.pdb"
 % (ghost_frag_i_type, ghost_frag_j_type, ghost_frag_k_type, str(matched_frag[
4])))
 write_frag_match_info_file(matched_frag[0], matched_frag[1], matched_frag[2],
 matched_frag[3], matched_frag[4], matched_frag[5],
 matched_frag[6],
 matched_frag_reps_outdir_path,
 pose_id, match_number)

 match_res_pair_freq_list = matched_frag[5]
 match_cnt_chid1, match_cnt_resnum1 = matched_frag[0].
get_aligned_surf_frag_central_res_tup()
 match_cnt_chid2, match_cnt_resnum2 = matched_frag[1].get_central_res_tup()
 match_z_val = matched_frag[2]
 match_res_pair_freq_info = FragMatchInfo(match_res_pair_freq_list,
 match_cnt_chid1,
 match_cnt_resnum1,
 match_cnt_chid2,
 match_cnt_resnum2,
 match_z_val)
 res_pair_freq_info_list.append(match_res_pair_freq_info)

 weighted_seq_freq_info = SeqFreqInfo(res_pair_freq_info_list)
 weighted_seq_freq_info.write(matched_frag_reps_outdir_path + "/frag_match_info_file.
txt")

 # Calculate Nanohedra Residue Level Summation Score
 res_lev_sum_score = 0
 for res_scores_list1 in chid_resnum_scores_dict_pdb1.values():
 n1 = 1
 res_scores_list_sorted1 = sorted(res_scores_list1, reverse=True)
 for sc1 in res_scores_list_sorted1:
 res_lev_sum_score += sc1 * (1/float(n1))
 n1 = n1 * 2
 for res_scores_list2 in chid_resnum_scores_dict_pdb2.values():
 n2 = 1
 res_scores_list_sorted2 = sorted(res_scores_list2, reverse=True)
 for sc2 in res_scores_list_sorted2:
 res_lev_sum_score += sc2 * (1/float(n2))
 n2 = n2 * 2

 # Write Out Docked Pose Info to docked_pose_info_file.txt
 write_docked_pose_info(tx_subdir_out_path, res_lev_sum_score, high_qual_match_count,
 unique_matched_interface_monofrag_count,

 211

classes/FragDock.py

 unique_total_interface_monofrags_count,
 percent_of_interface_covered, rot_mat1,
 representative_int_dof_tx_param_1, set_mat1,
 representative_ext_dof_tx_params_1, rot_mat2,
 representative_int_dof_tx_param_2, set_mat2,
 representative_ext_dof_tx_params_2, cryst1_record, pdb1_path,
 pdb2_path, pose_id)

 else:
 log_file = open(log_filepath, "a+")
 log_file.write("\tBackbone Clash when Designed Assembly is Expanded "
 "(took: %s s)" % str(exp_des_clash_time) + "\n")
 log_file.close()

 else:
 log_file = open(log_filepath, "a+")
 log_file.write("\tNO Design ASU Found" + "\n")
 log_file.close()

 else:
 log_file = open(log_filepath, "a+")
 log_file.write("\t%s < %s Which is Set as the Minimal Required Amount of High Quality "
 "Fragment Matches" %(str(high_qual_match_count), str(min_matched)) + "\n")
 log_file.close()

 else:
 log_file = open(log_filepath, "a+")
 log_file.write("\tNO Interface Mono Fragments Found" + "\n")
 log_file.close()

 else:
 log_file = open(log_filepath, "a+")
 log_file.write("\tBackbone Clash when Oligomer1 and Oligomer2 are Docked "
 "(took: %s s)" % str(oligomer1_oligomer2_clash_time) + "\n")
 log_file.close()
 else:
 efg_tx_params_str = [str(None), str(None), str(None)]
 for param_index in range(len(optimal_ext_dof_shifts)):
 efg_tx_params_str[param_index] = str(optimal_ext_dof_shifts[param_index])
 log_file = open(log_filepath, "a+")
 log_file.write(
 "\tReference Frame Shift Parameter(s) is/are Negative: e: %s, f: %s, g: %s\n\n"
 % (efg_tx_params_str[0], efg_tx_params_str[1], efg_tx_params_str[2]))
 log_file.close()

def dock(init_intfrag_cluster_rep_dict, ijk_intfrag_cluster_rep_dict, init_monofrag_cluster_rep_pdb_dict_1,
 init_monofrag_cluster_rep_pdb_dict_2, init_intfrag_cluster_info_dict, ijk_monofrag_cluster_rep_pdb_dict,
 ijk_intfrag_cluster_info_dict, free_sasa_exe_path, master_outdir, pdb1_path, pdb2_path, set_mat1, set_mat2,
 ref_frame_tx_dof1, ref_frame_tx_dof2, is_zshift1, is_zshift2, result_design_sym, uc_spec_string, design_dim,
 expand_matrices, eul_lookup, init_max_z_val, subseq_max_z_val, degeneracy_matrices_1=None,
 degeneracy_matrices_2=None, rot_step_deg_pdb1=1, rot_range_deg_pdb1=0, rot_step_deg_pdb2=1,
 rot_range_deg_pdb2=0, output_exp_assembly=False, output_uc=False, output_surrounding_uc=False, min_matched=3
):

 # Output Directory
 pdb1_filename = os.path.splitext(os.path.basename(pdb1_path))[0]
 pdb2_filename = os.path.splitext(os.path.basename(pdb2_path))[0]
 outdir = master_outdir + "/" + pdb1_filename + "_" + pdb2_filename
 if not os.path.exists(outdir):
 os.makedirs(outdir)
 log_filepath = outdir + "/" + pdb1_filename + "_" + pdb2_filename + "_" + "log.txt"

 # Write to Logfile
 log_file = open(log_filepath, "a+")
 log_file.write("DOCKING %s TO %s\n\n" % (pdb1_filename, pdb2_filename))
 log_file.write("Oligomer 1 Path: " + pdb1_path + "\n")
 log_file.write("Oligomer 2 Path: " + pdb2_path + "\n")
 log_file.write("Output Directory: " + outdir + "\n\n")
 log_file.close()

 # Get PDB1 Symmetric Building Block
 pdb1 = PDB()
 pdb1.readfile(pdb1_path)

 # Get Oligomer 1 Ghost Fragments With Guide Coordinates Using Initial Match Fragment Database
 log_file = open(log_filepath, "a+")
 log_file.write("Getting %s Oligomer 1 Ghost Fragments Using INITIAL Fragment Database" % pdb1_filename)
 log_file.close()
 get_init_ghost_frags_time_start = time.time()
 kdtree_oligomer1_backbone = sklearn.neighbors.BallTree(np.array(pdb1.extract_backbone_coords()))

 212

classes/FragDock.py

 surf_frags_1 = get_surface_fragments(pdb1, free_sasa_exe_path)
 ghost_frag_list = []
 ghost_frag_guide_coords_list = []
 for frag1 in surf_frags_1:
 monofrag1 = MonoFragment(frag1, init_monofrag_cluster_rep_pdb_dict_1)
 monofrag_ghostfrag_list = monofrag1.get_ghost_fragments(init_intfrag_cluster_rep_dict,
 kdtree_oligomer1_backbone)
 if monofrag_ghostfrag_list is not None:
 for ghostfrag in monofrag_ghostfrag_list:
 ghost_frag_list.append(ghostfrag)
 ghost_frag_guide_coords_list.append(ghostfrag.get_guide_coords())
 get_init_ghost_frags_time_stop = time.time()
 get_init_ghost_frags_time = get_init_ghost_frags_time_stop - get_init_ghost_frags_time_start
 log_file = open(log_filepath, "a+")
 log_file.write(" (took: %s s)\n" % str(get_init_ghost_frags_time))
 log_file.close()

 # Get Oligomer1 Ghost Fragments With Guide Coordinates Using COMPLETE Fragment Database
 log_file = open(log_filepath, "a+")
 log_file.write("Getting %s Oligomer 1 Ghost Fragments Using COMPLETE Fragment Database" % pdb1_filename)
 log_file.close()
 get_complete_ghost_frags_time_start = time.time()
 complete_ghost_frag_list = []
 for frag1 in surf_frags_1:
 complete_monofrag1 = MonoFragment(frag1, ijk_monofrag_cluster_rep_pdb_dict)
 complete_monofrag1_ghostfrag_list = complete_monofrag1.get_ghost_fragments(
 ijk_intfrag_cluster_rep_dict, kdtree_oligomer1_backbone)
 if complete_monofrag1_ghostfrag_list is not None:
 for complete_ghostfrag in complete_monofrag1_ghostfrag_list:
 complete_ghost_frag_list.append(complete_ghostfrag)
 get_complete_ghost_frags_time_stop = time.time()
 get_complete_ghost_frags_time = get_complete_ghost_frags_time_stop - get_complete_ghost_frags_time_start
 log_file = open(log_filepath, "a+")
 log_file.write(" (took: %s s)\n" % str(get_complete_ghost_frags_time))
 log_file.close()

 # Get PDB2 Symmetric Building Block
 pdb2 = PDB()
 pdb2.readfile(pdb2_path)

 # Get Oligomer 2 Surface (Mono) Fragments With Guide Coordinates Using Initial Match Fragment Database
 get_init_surf_frags_time_start = time.time()
 log_file = open(log_filepath, "a+")
 log_file.write("Getting Oligomer 2 Surface Fragments Using INITIAL Fragment Database")
 log_file.close()
 surf_frags_2 = get_surface_fragments(pdb2, free_sasa_exe_path)
 surf_frag_list = []
 surf_frags_oligomer_2_guide_coords_list = []
 for frag2 in surf_frags_2:
 monofrag2 = MonoFragment(frag2, init_monofrag_cluster_rep_pdb_dict_2)
 monofrag2_guide_coords = monofrag2.get_guide_coords()
 if monofrag2_guide_coords is not None:
 surf_frag_list.append(monofrag2)
 surf_frags_oligomer_2_guide_coords_list.append(monofrag2_guide_coords)
 get_init_surf_frags_time_stop = time.time()
 get_init_surf_frags_time = get_init_surf_frags_time_stop - get_init_surf_frags_time_start
 log_file = open(log_filepath, "a+")
 log_file.write(" (took: %s s)\n" % str(get_init_surf_frags_time))
 log_file.close()

 # Get Oligomer 2 Surface (Mono) Fragments With Guide Coordinates Using COMPLETE Fragment Database
 get_complete_surf_frags_time_start = time.time()
 log_file = open(log_filepath, "a+")
 log_file.write("Getting Oligomer 2 Surface Fragments Using COMPLETE Fragment Database")
 log_file.close()
 complete_surf_frag_list = []
 for frag2 in surf_frags_2:
 complete_monofrag2 = MonoFragment(frag2, ijk_monofrag_cluster_rep_pdb_dict)
 complete_monofrag2_guide_coords = complete_monofrag2.get_guide_coords()
 if complete_monofrag2_guide_coords is not None:
 complete_surf_frag_list.append(complete_monofrag2)
 get_complete_surf_frags_time_stop = time.time()
 get_complete_surf_frags_time = get_complete_surf_frags_time_stop - get_complete_surf_frags_time_start
 log_file = open(log_filepath, "a+")
 log_file.write(" (took: %s s)\n\n" % str(get_complete_surf_frags_time))
 log_file.close()

 # Oligomer 1 Has Interior Rotational Degree of Freedom True or False
 has_int_rot_dof_1 = False
 if rot_range_deg_pdb1 != 0:
 has_int_rot_dof_1 = True

 213

classes/FragDock.py

 # Oligomer 2 Has Interior Rotational Degree of Freedom True or False
 has_int_rot_dof_2 = False
 if rot_range_deg_pdb2 != 0:
 has_int_rot_dof_2 = True

 # Obtain Reference Frame Translation Info
 parsed_ref_frame_tx_dof1 = parse_ref_tx_dof_str_to_list(ref_frame_tx_dof1)
 parsed_ref_frame_tx_dof2 = parse_ref_tx_dof_str_to_list(ref_frame_tx_dof2)

 if parsed_ref_frame_tx_dof1 == ['0', '0', '0'] and parsed_ref_frame_tx_dof2 == ['0', '0', '0']:
 dof_ext = np.empty((0, 3), float)

 else:
 dof_ext = get_ext_dof(ref_frame_tx_dof1, ref_frame_tx_dof2)

 # Transpose Setting Matrices to Set Guide Coordinates Just for Euler Lookup Using np.matmul
 set_mat1_np_t = np.transpose(set_mat1)
 set_mat2_np_t = np.transpose(set_mat2)

 if (degeneracy_matrices_1 is None and has_int_rot_dof_1 is False) and (degeneracy_matrices_2 is None and
has_int_rot_dof_2 is False):

 # No Degeneracies/Rotation Matrices to get for Oligomer1
 rot1_mat = None
 degen1_count = 0
 rot1_count = 0
 log_file = open(log_filepath, "a+")
 log_file.write("No Rotation/Degeneracy Matrices for Oligomer 1" + "\n")

 # No Degeneracies/Rotation Matrices to get for Oligomer2
 rot2_mat = None
 degen2_count = 0
 rot2_count = 0
 log_file.write("No Rotation/Degeneracy Matrices for Oligomer 2\n" + "\n")

 log_file.write("\n***** OLIGOMER 1: Degeneracy %s Rotation %s | OLIGOMER 2: Degeneracy %s Rotation %s *****"
 % (str(degen1_count), str(rot1_count), str(degen2_count), str(rot2_count)) + "\n")

 # Get (Oligomer1 Ghost Fragment, Oligomer2 Surface Fragment)
 # guide coodinate pairs in the same Euler rotational space bucket
 log_file.write(
 "Get Ghost Fragment/Surface Fragment guide coordinate pairs in the same Euler rotational space bucket\n")
 log_file.close()

 ghost_frag_guide_coords_list_set_for_eul = np.matmul(ghost_frag_guide_coords_list, set_mat1_np_t)
 surf_frags_2_guide_coords_list_set_for_eul = np.matmul(surf_frags_oligomer_2_guide_coords_list, set_mat2_np_t
)

 eul_lookup_all_to_all_list = eul_lookup.check_lookup_table(ghost_frag_guide_coords_list_set_for_eul,
 surf_frags_2_guide_coords_list_set_for_eul)
 eul_lookup_true_list = [(true_tup[0], true_tup[1]) for true_tup in eul_lookup_all_to_all_list if true_tup[2]]

 # Get optimal shift parameters for the selected (Ghost Fragment, Surface Fragment) guide coodinate pairs
 log_file = open(log_filepath, "a+")
 log_file.write(
 "Get optimal shift parameters for the selected Ghost Fragment/Surface Fragment guide coordinate pairs\n")
 log_file.close()

 ghostfrag_surffrag_pair_list = []
 tx_param_list = []
 for index_pair in eul_lookup_true_list:
 ghost_frag = ghost_frag_list[index_pair[0]]
 ghost_frag_guide_coords = ghost_frag_guide_coords_list[index_pair[0]]
 i_type = ghost_frag.get_i_frag_type()
 j_type = ghost_frag.get_j_frag_type()
 k_type = ghost_frag.get_k_frag_type()
 ghost_frag_cluster_rmsd = init_intfrag_cluster_info_dict[i_type][j_type][k_type].get_rmsd()

 surf_frag_guide_coords = surf_frags_oligomer_2_guide_coords_list[index_pair[1]]
 surf_frag = surf_frag_list[index_pair[1]]
 surf_frag_type = surf_frag.get_type()

 if surf_frag_type == j_type:
 o = OptimalTx(set_mat1, set_mat2, is_zshift1, is_zshift2, ghost_frag_cluster_rmsd,
 ghost_frag_guide_coords, surf_frag_guide_coords, dof_ext)
 o.apply()

 if o.get_zvalue() <= init_max_z_val:
 ghostfrag_surffrag_pair_list.append((ghost_frag, surf_frag))
 # [OptimalExternalDOFShifts, OptimalInternalDOFShifts]

 214

classes/FragDock.py

 all_optimal_shifts = o.get_all_optimal_shifts()
 tx_param_list.append((all_optimal_shifts, o.get_zvalue()))

 if len(tx_param_list) == 0:
 log_file = open(log_filepath, "a+")
 log_file.write("No Initial Interface Fragment Matches Found\n\n")
 log_file.close()
 elif len(tx_param_list) == 1:
 log_file = open(log_filepath, "a+")
 log_file.write("1 Initial Interface Fragment Match Found\n")
 log_file.close()
 else:
 log_file = open(log_filepath, "a+")
 log_file.write(
 "%s Initial Interface Fragment Matches Found\n"
 % str(len(tx_param_list)))
 log_file.close()

 degen_subdir_out_path = outdir + "/DEGEN_" + str(degen1_count) + "_" + str(degen2_count)
 rot_subdir_out_path = degen_subdir_out_path + "/ROT_" + str(rot1_count) + "_" + str(rot2_count)

 out(pdb1, pdb2, set_mat1, set_mat2, ref_frame_tx_dof1, ref_frame_tx_dof2, is_zshift1, is_zshift2,
tx_param_list,
 ghostfrag_surffrag_pair_list, complete_ghost_frag_list, complete_surf_frag_list, log_filepath,
 degen_subdir_out_path, rot_subdir_out_path, ijk_intfrag_cluster_info_dict, result_design_sym,
 uc_spec_string, design_dim, pdb1_path, pdb2_path, expand_matrices,
 eul_lookup, rot1_mat, rot2_mat, max_z_val=subseq_max_z_val, output_exp_assembly=output_exp_assembly,
 output_uc=output_uc, output_surrounding_uc=output_surrounding_uc, min_matched=min_matched)

 elif (degeneracy_matrices_1 is not None or has_int_rot_dof_1 is True) and (degeneracy_matrices_2 is None and
has_int_rot_dof_2 is False):
 # Get Degeneracies/Rotation Matrices for Oligomer1: degen_rot_mat_1
 log_file = open(log_filepath, "a+")
 log_file.write("Obtaining Rotation/Degeneracy Matrices for Oligomer 1" + "\n")
 log_file.close()
 rotation_matrices_1 = get_rot_matrices(rot_step_deg_pdb1, "z", rot_range_deg_pdb1)
 degen_rot_mat_1 = get_degen_rotmatrices(degeneracy_matrices_1, rotation_matrices_1)

 # No Degeneracies/Rotation Matrices to get for Oligomer2
 rot2_mat = None
 degen2_count = 0
 rot2_count = 0
 log_file = open(log_filepath, "a+")
 log_file.write("No Rotation/Degeneracy Matrices for Oligomer 2\n" + "\n")
 log_file.close()
 surf_frags_2_guide_coords_list_set_for_eul = np.matmul(surf_frags_oligomer_2_guide_coords_list, set_mat2_np_t
)

 degen1_count = 0
 for degen1 in degen_rot_mat_1:
 degen1_count += 1
 rot1_count = 0
 for rot1_mat in degen1:
 rot1_count += 1

 # Rotate Oligomer1 Ghost Fragment Guide Coodinates using rot1_mat
 rot1_mat_np_t = np.transpose(rot1_mat)
 ghost_frag_guide_coords_list_rot_np = np.matmul(ghost_frag_guide_coords_list, rot1_mat_np_t)
 ghost_frag_guide_coords_list_rot = ghost_frag_guide_coords_list_rot_np.tolist()

 log_file = open(log_filepath, "a+")
 log_file.write(
 "\n***** OLIGOMER 1: Degeneracy %s Rotation %s | OLIGOMER 2: Degeneracy %s Rotation %s *****"
 % (str(degen1_count), str(rot1_count), str(degen2_count), str(rot2_count)) + "\n")
 log_file.close()

 # Get (Oligomer1 Ghost Fragment (rotated), Oligomer2 Surface Fragment)
 # guide coodinate pairs in the same Euler rotational space bucket
 log_file = open(log_filepath, "a+")
 log_file.write(
 "Get Ghost Fragment/Surface Fragment guide coordinate "
 "pairs in the same Euler rotational space bucket\n")
 log_file.close()

 ghost_frag_guide_coords_list_rot_and_set_for_eul = np.matmul(ghost_frag_guide_coords_list_rot,
 set_mat1_np_t)

 eul_lookup_all_to_all_list = eul_lookup.check_lookup_table(
 ghost_frag_guide_coords_list_rot_and_set_for_eul,
 surf_frags_2_guide_coords_list_set_for_eul)
 eul_lookup_true_list = [(true_tup[0], true_tup[1]) for true_tup in eul_lookup_all_to_all_list if

 215

classes/FragDock.py

true_tup[2]]

 # Get optimal shift parameters for the selected (Ghost Fragment, Surface Fragment) guide coodinate
pairs
 log_file = open(log_filepath, "a+")
 log_file.write(
 "Get optimal shift parameters for the selected "
 "Ghost Fragment/Surface Fragment guide coordinate pairs\n")
 log_file.close()

 ghostfrag_surffrag_pair_list = []
 tx_param_list = []
 for index_pair in eul_lookup_true_list:
 ghost_frag = ghost_frag_list[index_pair[0]]
 ghost_frag_guide_coords = ghost_frag_guide_coords_list_rot[index_pair[0]]
 i_type = ghost_frag.get_i_frag_type()
 j_type = ghost_frag.get_j_frag_type()
 k_type = ghost_frag.get_k_frag_type()
 ghost_frag_cluster_rmsd = init_intfrag_cluster_info_dict[i_type][j_type][k_type].get_rmsd()

 surf_frag_guide_coords = surf_frags_oligomer_2_guide_coords_list[index_pair[1]]
 surf_frag = surf_frag_list[index_pair[1]]
 surf_frag_type = surf_frag.get_type()

 if surf_frag_type == j_type:
 o = OptimalTx(set_mat1, set_mat2, is_zshift1, is_zshift2, ghost_frag_cluster_rmsd,
 ghost_frag_guide_coords, surf_frag_guide_coords, dof_ext)
 o.apply()

 if o.get_zvalue() <= init_max_z_val:
 ghostfrag_surffrag_pair_list.append((ghost_frag, surf_frag))
 # [OptimalExternalDOFShifts, OptimalInternalDOFShifts]
 all_optimal_shifts = o.get_all_optimal_shifts()
 tx_param_list.append((all_optimal_shifts, o.get_zvalue()))

 if len(tx_param_list) == 0:
 log_file = open(log_filepath, "a+")
 log_file.write(
 "No Initial Interface Fragment Matches Found\n\n")
 log_file.close()
 elif len(tx_param_list) == 1:
 log_file = open(log_filepath, "a+")
 log_file.write(
 "1 Initial Interface Fragment Match Found\n")
 log_file.close()
 else:
 log_file = open(log_filepath, "a+")
 log_file.write(
 "%s Initial Interface Fragment Matches Found" % str(
 len(tx_param_list)) + "\n")
 log_file.close()

 degen_subdir_out_path = outdir + "/DEGEN_" + str(degen1_count) + "_" + str(degen2_count)
 rot_subdir_out_path = degen_subdir_out_path + "/ROT_" + str(rot1_count) + "_" + str(rot2_count)

 out(pdb1, pdb2, set_mat1, set_mat2, ref_frame_tx_dof1, ref_frame_tx_dof2, is_zshift1, is_zshift2,
 tx_param_list, ghostfrag_surffrag_pair_list, complete_ghost_frag_list, complete_surf_frag_list,
 log_filepath, degen_subdir_out_path, rot_subdir_out_path, ijk_intfrag_cluster_info_dict,
 result_design_sym, uc_spec_string, design_dim, pdb1_path,
 pdb2_path, expand_matrices, eul_lookup, rot1_mat, rot2_mat, max_z_val=subseq_max_z_val,
 output_exp_assembly=output_exp_assembly, output_uc=output_uc,
 output_surrounding_uc=output_surrounding_uc, min_matched=min_matched)

 elif (degeneracy_matrices_1 is None and has_int_rot_dof_1 is False) and (degeneracy_matrices_2 is not None or
has_int_rot_dof_2 is True):
 # No Degeneracies/Rotation Matrices to get for Oligomer1
 rot1_mat = None
 degen1_count = 0
 rot1_count = 0
 log_file = open(log_filepath, "a+")
 log_file.write("No Rotation/Degeneracy Matrices for Oligomer 1" + "\n")
 log_file.close()
 ghost_frag_guide_coords_list_set_for_eul = np.matmul(ghost_frag_guide_coords_list, set_mat1_np_t)

 # Get Degeneracies/Rotation Matrices for Oligomer2: degen_rot_mat_2
 log_file = open(log_filepath, "a+")
 log_file.write("Obtaining Rotation/Degeneracy Matrices for Oligomer 2\n" + "\n")
 log_file.close()
 rotation_matrices_2 = get_rot_matrices(rot_step_deg_pdb2, "z", rot_range_deg_pdb2)
 degen_rot_mat_2 = get_degen_rotmatrices(degeneracy_matrices_2, rotation_matrices_2)

 216

classes/FragDock.py

 degen2_count = 0
 for degen2 in degen_rot_mat_2:
 degen2_count += 1
 rot2_count = 0
 for rot2_mat in degen2:
 rot2_count += 1

 # Rotate Oligomer2 Surface Fragment Guide Coodinates using rot2_mat
 rot2_mat_np_t = np.transpose(rot2_mat)
 surf_frags_2_guide_coords_list_rot_np = np.matmul(surf_frags_oligomer_2_guide_coords_list,
 rot2_mat_np_t)
 surf_frags_2_guide_coords_list_rot = surf_frags_2_guide_coords_list_rot_np.tolist()

 log_file = open(log_filepath, "a+")
 log_file.write(
 "\n***** OLIGOMER 1: Degeneracy %s Rotation %s | OLIGOMER 2: Degeneracy %s Rotation %s *****"
 % (str(degen1_count), str(rot1_count), str(degen2_count), str(rot2_count)) + "\n")
 log_file.close()

 # Get (Oligomer1 Ghost Fragment, Oligomer2 (rotated) Surface Fragment) guide
 # coodinate pairs in the same Euler rotational space bucket
 log_file = open(log_filepath, "a+")
 log_file.write(
 "Get Ghost Fragment/Surface Fragment guide coordinate "
 "pairs in the same Euler rotational space bucket" + "\n")
 log_file.close()

 surf_frags_2_guide_coords_list_rot_and_set_for_eul = np.matmul(surf_frags_2_guide_coords_list_rot,
 set_mat2_np_t)

 eul_lookup_all_to_all_list = eul_lookup.check_lookup_table(
 ghost_frag_guide_coords_list_set_for_eul,
 surf_frags_2_guide_coords_list_rot_and_set_for_eul)
 eul_lookup_true_list = [(true_tup[0], true_tup[1]) for true_tup in eul_lookup_all_to_all_list if
true_tup[2]]

 # Get optimal shift parameters for the selected (Ghost Fragment, Surface Fragment) guide coodinate
pairs
 log_file = open(log_filepath, "a+")
 log_file.write(
 "Get optimal shift parameters for the selected "
 "Ghost Fragment/Surface Fragment guide coordinate pairs\n")
 log_file.close()

 ghostfrag_surffrag_pair_list = []
 tx_param_list = []
 for index_pair in eul_lookup_true_list:
 ghost_frag = ghost_frag_list[index_pair[0]]
 ghost_frag_guide_coords = ghost_frag_guide_coords_list[index_pair[0]]
 i_type = ghost_frag.get_i_frag_type()
 j_type = ghost_frag.get_j_frag_type()
 k_type = ghost_frag.get_k_frag_type()
 ghost_frag_cluster_rmsd = init_intfrag_cluster_info_dict[i_type][j_type][k_type].get_rmsd()

 surf_frag_guide_coords = surf_frags_2_guide_coords_list_rot[index_pair[1]]
 surf_frag = surf_frag_list[index_pair[1]]
 surf_frag_type = surf_frag.get_type()

 if surf_frag_type == j_type:
 o = OptimalTx(set_mat1, set_mat2, is_zshift1, is_zshift2, ghost_frag_cluster_rmsd,
 ghost_frag_guide_coords, surf_frag_guide_coords, dof_ext)
 o.apply()

 if o.get_zvalue() <= init_max_z_val:
 ghostfrag_surffrag_pair_list.append((ghost_frag, surf_frag))
 # [OptimalExternalDOFShifts, OptimalInternalDOFShifts]
 all_optimal_shifts = o.get_all_optimal_shifts()
 tx_param_list.append((all_optimal_shifts, o.get_zvalue()))

 if len(tx_param_list) == 0:
 log_file = open(log_filepath, "a+")
 log_file.write("No Initial Interface Fragment Matches Found\n\n")
 log_file.close()
 elif len(tx_param_list) == 1:
 log_file = open(log_filepath, "a+")
 log_file.write("1 Initial Interface Fragment Match Found\n")
 log_file.close()
 else:
 log_file = open(log_filepath, "a+")
 log_file.write("%s Initial Interface Fragment Matches Found\n"
 % str(len(tx_param_list)))

 217

classes/FragDock.py

 log_file.close()

 degen_subdir_out_path = outdir + "/DEGEN_" + str(degen1_count) + "_" + str(degen2_count)
 rot_subdir_out_path = degen_subdir_out_path + "/ROT_" + str(rot1_count) + "_" + str(rot2_count)

 out(pdb1, pdb2, set_mat1, set_mat2, ref_frame_tx_dof1, ref_frame_tx_dof2, is_zshift1, is_zshift2,
 tx_param_list, ghostfrag_surffrag_pair_list, complete_ghost_frag_list, complete_surf_frag_list,
 log_filepath, degen_subdir_out_path, rot_subdir_out_path, ijk_intfrag_cluster_info_dict,
 result_design_sym, uc_spec_string, design_dim, pdb1_path,
 pdb2_path, expand_matrices, eul_lookup, rot1_mat, rot2_mat, max_z_val=subseq_max_z_val,
 output_exp_assembly=output_exp_assembly, output_uc=output_uc,
 output_surrounding_uc=output_surrounding_uc, min_matched=min_matched)

 elif (degeneracy_matrices_1 is not None or has_int_rot_dof_1 is True) and (degeneracy_matrices_2 is not None or
has_int_rot_dof_2 is True):

 log_file = open(log_filepath, "a+")
 log_file.write("Obtaining Rotation/Degeneracy Matrices for Oligomer 1" + "\n")
 log_file.close()

 # Get Degeneracies/Rotation Matrices for Oligomer1: degen_rot_mat_1
 rotation_matrices_1 = get_rot_matrices(rot_step_deg_pdb1, "z", rot_range_deg_pdb1)
 degen_rot_mat_1 = get_degen_rotmatrices(degeneracy_matrices_1, rotation_matrices_1)

 log_file = open(log_filepath, "a+")
 log_file.write("Obtaining Rotation/Degeneracy Matrices for Oligomer 2\n" + "\n")
 log_file.close()
 # Get Degeneracies/Rotation Matrices for Oligomer2: degen_rot_mat_2
 rotation_matrices_2 = get_rot_matrices(rot_step_deg_pdb2, "z", rot_range_deg_pdb2)
 degen_rot_mat_2 = get_degen_rotmatrices(degeneracy_matrices_2, rotation_matrices_2)

 degen1_count = 0
 for degen1 in degen_rot_mat_1:
 degen1_count += 1

 rot1_count = 0
 for rot1_mat in degen1:
 rot1_count += 1

 # Rotate Oligomer1 Ghost Fragment Guide Coordinates using rot1_mat
 rot1_mat_np_t = np.transpose(rot1_mat)
 ghost_frag_guide_coords_list_rot_np = np.matmul(ghost_frag_guide_coords_list, rot1_mat_np_t)
 ghost_frag_guide_coords_list_rot = ghost_frag_guide_coords_list_rot_np.tolist()

 ghost_frag_guide_coords_list_rot_and_set_for_eul = np.matmul(ghost_frag_guide_coords_list_rot,
 set_mat1_np_t)

 degen2_count = 0
 for degen2 in degen_rot_mat_2:
 degen2_count += 1

 rot2_count = 0
 for rot2_mat in degen2:
 rot2_count += 1

 # Rotate Oligomer2 Surface Fragment Guide Coordinates using rot2_mat
 rot2_mat_np_t = np.transpose(rot2_mat)
 surf_frags_2_guide_coords_list_rot_np = np.matmul(surf_frags_oligomer_2_guide_coords_list,
 rot2_mat_np_t)
 surf_frags_2_guide_coords_list_rot = surf_frags_2_guide_coords_list_rot_np.tolist()

 log_file = open(log_filepath, "a+")
 log_file.write(
 "\n***** OLIGOMER 1: Degeneracy %s Rotation %s "
 "| OLIGOMER 2: Degeneracy %s Rotation %s *****"
 % (str(degen1_count), str(rot1_count), str(degen2_count), str(rot2_count)) + "\n")
 log_file.close()

 # Get (Oligomer1 Ghost Fragment (rotated), Oligomer2 (rotated) Surface Fragment) guide
 # coodinate pairs in the same Euler rotational space bucket
 log_file = open(log_filepath, "a+")
 log_file.write(
 "Get Ghost Fragment/Surface Fragment guide coordinate pairs "
 "in the same Euler rotational space bucket\n")
 log_file.close()

 eul_time_start = time.time()
 surf_frags_2_guide_coords_list_rot_and_set_for_eul = np.matmul(
 surf_frags_2_guide_coords_list_rot, set_mat2_np_t)

 eul_lookup_all_to_all_list = eul_lookup.check_lookup_table(

 218

classes/FragDock.py

 ghost_frag_guide_coords_list_rot_and_set_for_eul,
 surf_frags_2_guide_coords_list_rot_and_set_for_eul)
 eul_lookup_true_list = [(true_tup[0], true_tup[1]) for true_tup in eul_lookup_all_to_all_list
 if true_tup[2]]
 eul_time_stop = time.time()
 eul_time = eul_time_stop - eul_time_start

 # Euler TIME TEST
 log_file = open(log_filepath, "a+")
 log_file.write("Euler Search Took: %s s for %s ghost/surf pairs\n"
 % (str(eul_time), str(len(eul_lookup_all_to_all_list))))
 log_file.close()

 # Get optimal shift parameters for the selected (Ghost Fragment, Surface Fragment)
 # guide coodinate pairs
 log_file = open(log_filepath, "a+")
 log_file.write(
 "Get optimal shift parameters for the selected "
 "Ghost Fragment/Surface Fragment guide coordinate pairs\n")
 log_file.close()

 ghostfrag_surffrag_pair_list = []
 tx_param_list = []
 opt_tx_time_start = time.time()
 opt_tx_count = 0
 for index_pair in eul_lookup_true_list:
 ghost_frag = ghost_frag_list[index_pair[0]]
 ghost_frag_guide_coords = ghost_frag_guide_coords_list_rot[index_pair[0]]
 i_type = ghost_frag.get_i_frag_type()
 j_type = ghost_frag.get_j_frag_type()
 k_type = ghost_frag.get_k_frag_type()
 ghost_frag_cluster_rmsd = init_intfrag_cluster_info_dict[i_type][j_type][k_type].get_rmsd
()

 surf_frag_guide_coords = surf_frags_2_guide_coords_list_rot[index_pair[1]]
 surf_frag = surf_frag_list[index_pair[1]]
 surf_frag_type = surf_frag.get_type()

 if surf_frag_type == j_type:
 opt_tx_count += 1
 o = OptimalTx(set_mat1, set_mat2, is_zshift1, is_zshift2, ghost_frag_cluster_rmsd,
 ghost_frag_guide_coords, surf_frag_guide_coords, dof_ext)
 o.apply()

 if o.get_zvalue() <= init_max_z_val:
 ghostfrag_surffrag_pair_list.append((ghost_frag, surf_frag))
 # [OptimalExternalDOFShifts, OptimalInternalDOFShifts]
 all_optimal_shifts = o.get_all_optimal_shifts()
 tx_param_list.append((all_optimal_shifts, o.get_zvalue()))

 # Optimal Shift Time Test
 opt_tx_time_stop = time.time()
 opt_tx_time = opt_tx_time_stop - opt_tx_time_start
 log_file = open(log_filepath, "a+")
 log_file.write("Optimal Shift Search Took: %s s for %s guide coordinate pairs\n"
 % (str(opt_tx_time), str(opt_tx_count)))
 log_file.close()

 if len(tx_param_list) == 0:
 log_file = open(log_filepath, "a+")
 log_file.write(
 "No Initial Interface Fragment Matches Found\n\n")
 log_file.close()
 elif len(tx_param_list) == 1:
 log_file = open(log_filepath, "a+")
 log_file.write(
 "1 Initial Interface Fragment Match Found\n")
 log_file.close()
 else:
 log_file = open(log_filepath, "a+")
 log_file.write(
 "%s Initial Interface Fragment Matches Found\n"
 % str(len(tx_param_list)))
 log_file.close()

 degen_subdir_out_path = outdir + "/DEGEN_" + str(degen1_count) + "_" + str(degen2_count)
 rot_subdir_out_path = degen_subdir_out_path + "/ROT_" + str(rot1_count) + "_" + str(
rot2_count)

 out(pdb1, pdb2, set_mat1, set_mat2, ref_frame_tx_dof1, ref_frame_tx_dof2, is_zshift1,
 is_zshift2, tx_param_list, ghostfrag_surffrag_pair_list, complete_ghost_frag_list,

 219

classes/FragDock.py

 complete_surf_frag_list, log_filepath, degen_subdir_out_path, rot_subdir_out_path,
 ijk_intfrag_cluster_info_dict, result_design_sym, uc_spec_string, design_dim,
 pdb1_path, pdb2_path, expand_matrices, eul_lookup,
 rot1_mat, rot2_mat, max_z_val=subseq_max_z_val, output_exp_assembly=output_exp_assembly,
 output_uc=output_uc, output_surrounding_uc=output_surrounding_uc, min_matched=min_matched
)

 220

WeightedSeqFreq.py

 221

classes/WeightedSeqFreq.py

Copyright 2020 Joshua Laniado and Todd O. Yeates.
__author__ = "Joshua Laniado and Todd O. Yeates"
__copyright__ = "Copyright 2020, Nanohedra"
__version__ = "1.0"

class FragMatchInfo:
 def __init__(self, res_pair_freqs, oligomer_1_ch_id, oligomer_1_res_num, oligomer_2_ch_id, oligomer_2_res_num,
z_val):
 self.res_pair_freqs = res_pair_freqs
 self.oligomer_1_ch_id = oligomer_1_ch_id
 self.oligomer_1_res_num = oligomer_1_res_num
 self.oligomer_2_ch_id = oligomer_2_ch_id
 self.oligomer_2_res_num = oligomer_2_res_num
 self.z_val = z_val

 self.score = 1 / float(1 + (z_val ** 2))

 self.oligomer_1_res_freqs = {}
 self.oligomer_2_res_freqs = {}
 for res_pair in self.res_pair_freqs:
 res1_type, res2_type = res_pair[0]
 res_freq = res_pair[1]

 if res1_type in self.oligomer_1_res_freqs:
 self.oligomer_1_res_freqs[res1_type] += res_freq
 else:
 self.oligomer_1_res_freqs[res1_type] = res_freq

 if res2_type in self.oligomer_2_res_freqs:
 self.oligomer_2_res_freqs[res2_type] += res_freq
 else:
 self.oligomer_2_res_freqs[res2_type] = res_freq

 def get_res_pair_freqs(self):
 return self.res_pair_freqs

 def get_oligomer_1_ch_id(self):
 return self.oligomer_1_ch_id

 def get_oligomer_1_res_num(self):
 return self.oligomer_1_res_num

 def get_oligomer_2_ch_id(self):
 return self.oligomer_2_ch_id

 def get_oligomer_2_res_num(self):
 return self.oligomer_2_res_num

 def get_z_val(self):
 return self.z_val

 def get_oligomer_1_res_freqs(self):
 return self.oligomer_1_res_freqs

 def get_oligomer_2_res_freqs(self):
 return self.oligomer_2_res_freqs

 def get_score(self):
 return self.score

class SeqFreqInfo:
 def __init__(self, frag_match_info_list):
 self.frag_match_info_list = frag_match_info_list

 self.oligomer_1 = []
 self.oligomer_2 = []

 oligomer_1_freqs_w_sum = {}
 oligomer_2_freqs_w_sum = {}
 score_sum_dict_1 = {}
 score_sum_dict_2 = {}
 for frag_match_info in frag_match_info_list:
 # get information from specific match
 match_score = frag_match_info.get_score()
 match_oligomer_1_ch_id = frag_match_info.get_oligomer_1_ch_id()
 match_oligomer_1_res_num = frag_match_info.get_oligomer_1_res_num()
 match_oligomer_1_freqs = frag_match_info.get_oligomer_1_res_freqs()
 match_oligomer_2_ch_id = frag_match_info.get_oligomer_2_ch_id()

 222

classes/WeightedSeqFreq.py

 match_oligomer_2_res_num = frag_match_info.get_oligomer_2_res_num()
 match_oligomer_2_freqs = frag_match_info.get_oligomer_2_res_freqs()

 # weigh matched residue frequencies by match score
 # do so for the matched residue on oligomer 1 and the matched residue on oligomer 2
 match_oligomer_1_freqs_w = {res_type: freq*match_score for (res_type, freq) in match_oligomer_1_freqs.
items()}
 match_oligomer_2_freqs_w = {res_type: freq*match_score for (res_type, freq) in match_oligomer_2_freqs.
items()}

 # add match score to sum of the residue match scores
 # do so for the matched residue on oligomer 1 and the matched residue on oligomer 2
 if match_oligomer_1_ch_id in score_sum_dict_1:
 if match_oligomer_1_res_num in score_sum_dict_1[match_oligomer_1_ch_id]:
 score_sum_dict_1[match_oligomer_1_ch_id][match_oligomer_1_res_num] += match_score
 else:
 score_sum_dict_1[match_oligomer_1_ch_id][match_oligomer_1_res_num] = match_score
 else:
 score_sum_dict_1[match_oligomer_1_ch_id] = {match_oligomer_1_res_num: match_score}

 if match_oligomer_2_ch_id in score_sum_dict_2:
 if match_oligomer_2_res_num in score_sum_dict_2[match_oligomer_2_ch_id]:
 score_sum_dict_2[match_oligomer_2_ch_id][match_oligomer_2_res_num] += match_score
 else:
 score_sum_dict_2[match_oligomer_2_ch_id][match_oligomer_2_res_num] = match_score
 else:
 score_sum_dict_2[match_oligomer_2_ch_id] = {match_oligomer_2_res_num: match_score}

 # for each residue type add the weighted residue frequency to the sum of weighted residue type
frequencies
 # do so for the matched residue on oligomer 1 and the matched residue on oligomer 2
 if match_oligomer_1_ch_id in oligomer_1_freqs_w_sum:
 if match_oligomer_1_res_num in oligomer_1_freqs_w_sum[match_oligomer_1_ch_id]:
 for (match_res_type, match_freq) in match_oligomer_1_freqs_w.items():
 if match_res_type in oligomer_1_freqs_w_sum[match_oligomer_1_ch_id][match_oligomer_1_res_num]
:
 oligomer_1_freqs_w_sum[match_oligomer_1_ch_id][match_oligomer_1_res_num][match_res_type]
+= match_freq
 else:
 oligomer_1_freqs_w_sum[match_oligomer_1_ch_id][match_oligomer_1_res_num][match_res_type]
= match_freq
 else:
 oligomer_1_freqs_w_sum[match_oligomer_1_ch_id][match_oligomer_1_res_num] =
match_oligomer_1_freqs_w
 else:
 oligomer_1_freqs_w_sum[match_oligomer_1_ch_id] = {match_oligomer_1_res_num: match_oligomer_1_freqs_w}

 if match_oligomer_2_ch_id in oligomer_2_freqs_w_sum:
 if match_oligomer_2_res_num in oligomer_2_freqs_w_sum[match_oligomer_2_ch_id]:
 for (match_res_type, match_freq) in match_oligomer_2_freqs_w.items():
 if match_res_type in oligomer_2_freqs_w_sum[match_oligomer_2_ch_id][match_oligomer_2_res_num]
:
 oligomer_2_freqs_w_sum[match_oligomer_2_ch_id][match_oligomer_2_res_num][match_res_type]
+= match_freq
 else:
 oligomer_2_freqs_w_sum[match_oligomer_2_ch_id][match_oligomer_2_res_num][match_res_type]
= match_freq
 else:
 oligomer_2_freqs_w_sum[match_oligomer_2_ch_id][match_oligomer_2_res_num] =
match_oligomer_2_freqs_w
 else:
 oligomer_2_freqs_w_sum[match_oligomer_2_ch_id] = {match_oligomer_2_res_num: match_oligomer_2_freqs_w}

 # for each residue calculate the weighted average frequency for the different residue types
 for ch_id_1 in oligomer_1_freqs_w_sum:
 for res_num_1 in oligomer_1_freqs_w_sum[ch_id_1]:
 res_score_sum_1 = score_sum_dict_1[ch_id_1][res_num_1]
 for res_type_1 in oligomer_1_freqs_w_sum[ch_id_1][res_num_1]:
 oligomer_1_freqs_w_sum[ch_id_1][res_num_1][res_type_1] /= float(res_score_sum_1)

 for ch_id_2 in oligomer_2_freqs_w_sum:
 for res_num_2 in oligomer_2_freqs_w_sum[ch_id_2]:
 res_score_sum_2 = score_sum_dict_2[ch_id_2][res_num_2]
 for res_type_2 in oligomer_2_freqs_w_sum[ch_id_2][res_num_2]:
 oligomer_2_freqs_w_sum[ch_id_2][res_num_2][res_type_2] /= float(res_score_sum_2)

 # sort sequence frequency information by chain ID, residue number and frequency
 # for oligomer 1 and oligomer 2
 for (ch_id_1, ch_id_1_resnums) in sorted(oligomer_1_freqs_w_sum.items(), key=lambda kv: kv[0]):
 sorted_freqs_1 = []
 for (res_num_1, res_num_1_freqs) in sorted(oligomer_1_freqs_w_sum[ch_id_1].items(), key=lambda kv: kv[0])

 223

classes/WeightedSeqFreq.py

:
 sorted_freqs_1.append((res_num_1, sorted(oligomer_1_freqs_w_sum[ch_id_1][res_num_1].items(), key=
lambda kv: kv[1], reverse=True)))
 self.oligomer_1.append((ch_id_1, sorted_freqs_1))

 for (ch_id_2, ch_id_2_resnums) in sorted(oligomer_2_freqs_w_sum.items(), key=lambda kv: kv[0]):
 sorted_freqs_2 = []
 for (res_num_2, res_num_2_freqs) in sorted(oligomer_2_freqs_w_sum[ch_id_2].items(), key=lambda kv: kv[0])
:
 sorted_freqs_2.append((res_num_2, sorted(oligomer_2_freqs_w_sum[ch_id_2][res_num_2].items(), key=
lambda kv: kv[1], reverse=True)))
 self.oligomer_2.append((ch_id_2, sorted_freqs_2))

 def get_oligomer_1(self):
 return self.oligomer_1

 def get_oligomer_2(self):
 return self.oligomer_2

 def write(self, output_file_path):

 outfile = open(output_file_path, "a+")
 outfile.write("***** WEIGHTED RESIDUE FREQUENCIES *****\n\n")
 outfile.close()

 oligomers_seq_freqs = (self.get_oligomer_1(), self.get_oligomer_2())

 # write output for oligomers 1 and 2 to output file
 for oligomer in range(2):
 for (ch_id, ch_id_resnums) in oligomers_seq_freqs[oligomer]:
 outfile = open(output_file_path, "a+")
 outfile.write("OLIGOMER %s | CHAIN %s\n" % (str(oligomer + 1), ch_id))
 ch_id_res_freqs = []
 for (res_num, res_num_freqs) in ch_id_resnums:
 res_num_freqs_rounded = [(res_type, round(res_freq, 3)) for (res_type, res_freq) in res_num_freqs
]
 outfile.write("RES NUM " + str(res_num) + "\n" + str(res_num_freqs_rounded) + "\n\n")
 ch_id_res_freqs.append(res_num_freqs)
 outfile.write("\n")
 outfile.close()

 224

utils

 225

SamplingUtils.py

 226

utils/SamplingUtils.py

import numpy as np
import math

Copyright 2020 Joshua Laniado and Todd O. Yeates.
__author__ = "Joshua Laniado and Todd O. Yeates"
__copyright__ = "Copyright 2020, Nanohedra"
__version__ = "1.0"

ROTATION RANGE DEG
C2 = 180
C3 = 120
C4 = 90
C5 = 72
C6 = 60
RotRangeDict = {"C2": C2, "C3": C3, "C4": C4, "C5": C5, "C6": C6}

def get_degeneracy_matrices(oligomer_symmetry_1, oligomer_symmetry_2, design_dimension, design_symmetry):
 valid_pt_gp_symm_list = ["C2", "C3", "C4", "C5", "C6", "D2", "D3", "D4", "D6", "T", "O", "I"]

 if oligomer_symmetry_1 not in valid_pt_gp_symm_list:
 raise ValueError("Invalid Point Group Symmetry")

 if oligomer_symmetry_2 not in valid_pt_gp_symm_list:
 raise ValueError("Invalid Point Group Symmetry")

 if design_symmetry not in valid_pt_gp_symm_list:
 raise ValueError("Invalid Point Group Symmetry")

 if design_dimension not in [0, 2, 3]:
 raise ValueError("Invalid Design Dimension")

 degeneracies = [None, None]

 for i in range(2):

 degeneracy_matrices = None

 oligomer_symmetry = oligomer_symmetry_1 if i == 0 else oligomer_symmetry_2

 # For cages, only one of the two oligomers need to be flipped. By convention we flip oligomer 2.
 if design_dimension == 0 and i == 1:
 degeneracy_matrices = [[[-1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, -1.0]]] # ROT180y

 # For layers that obey a cyclic point group symmetry
 # and that are constructed from two oligomers that both obey cyclic symmetry
 # only one of the two oligomers need to be flipped. By convention we flip oligomer 2.
 elif design_dimension == 2 and i == 1 and (oligomer_symmetry_1[0], oligomer_symmetry_2[0], design_symmetry[0]
) == ("C", "C", "C"):
 degeneracy_matrices = [[[-1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, -1.0]]] # ROT180y

 elif oligomer_symmetry in ["D3", "D4", "D6"] and design_symmetry in ["D3", "D4", "D6", "T", "O"]:
 if oligomer_symmetry == "D3":
 degeneracy_matrices = [[[0.5, -0.86603, 0.0], [0.86603, 0.5, 0.0], [0.0, 0.0, 1.0]]] # ROT60z
 elif oligomer_symmetry == "D4":
 # 45 degrees about z; z unaffected; x goes to [1,-1,0] direction
 degeneracy_matrices = [[[0.707107, 0.707107, 0.0], [-0.707107, 0.707107, 0.0], [0.0, 0.0, 1.0]]]
 elif oligomer_symmetry == "D6":
 degeneracy_matrices = [[[0.86603, -0.5, 0.0], [0.5, 0.86603, 0.0], [0.0, 0.0, 1.0]]] # ROT30z

 elif oligomer_symmetry == "D2" and design_symmetry != "O":
 if design_symmetry == "T":
 degeneracy_matrices = [[[0.0, -1.0, 0.0], [1.0, 0.0, 0.0], [0.0, 0.0, 1.0]]] # ROT90z

 elif design_symmetry == "D4":
 degeneracy_matrices = [[[0.0, 0.0, 1.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0]],
 [[0.0, 1.0, 0.0], [0.0, 0.0, 1.0], [1.0, 0.0, 0.0]]] # z,x,y and y,z,x

 elif design_symmetry == "D2" or design_symmetry == "D6":
 degeneracy_matrices = [[[0.0, 0.0, 1.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0]],
 [[0.0, 1.0, 0.0], [0.0, 0.0, 1.0], [1.0, 0.0, 0.0]],
 [[-1.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, 1.0, 0.0]],
 [[0.0, 0.0, 1.0], [0.0, -1.0, 0.0], [1.0, 0.0, 0.0]],
 [[0.0, 1.0, 0.0], [1.0, 0.0, 0.0], [0.0, 0.0, -1.0]]]

 elif oligomer_symmetry == "T" and design_symmetry == "T":
 degeneracy_matrices = [[[0.0, -1.0, 0.0], [1.0, 0.0, 0.0], [0.0, 0.0, 1.0]]] # ROT90z

 degeneracies[i] = degeneracy_matrices

 227

utils/SamplingUtils.py

 return degeneracies

def parse_ref_tx_dof_str_to_list(ref_frame_tx_dof_string):
 s1 = ref_frame_tx_dof_string.replace('<', '')
 s2 = s1.replace('>', '')
 l1 = s2.split(',')
 l2 = [x.replace(' ', '') for x in l1]
 return l2

def get_tx_dof_ref_frame_var_vec(string_vec, var):
 return_vec = [0.0, 0.0, 0.0]
 for i in range(3):
 if var in string_vec[i] and '*' in string_vec[i]:
 return_vec[i] = float(string_vec[i].split('*')[0])
 elif "-" + var in string_vec[i]:
 return_vec[i] = -1.0
 elif var == string_vec[i]:
 return_vec[i] = 1.0
 return return_vec

def get_ext_dof(ref_frame_tx_dof1, ref_frame_tx_dof2):

 ext_dof = []

 parsed_1 = parse_ref_tx_dof_str_to_list(ref_frame_tx_dof1)
 parsed_2 = parse_ref_tx_dof_str_to_list(ref_frame_tx_dof2)

 e1_var_vec = get_tx_dof_ref_frame_var_vec(parsed_1, 'e')
 f1_var_vec = get_tx_dof_ref_frame_var_vec(parsed_1, 'f')
 g1_var_vec = get_tx_dof_ref_frame_var_vec(parsed_1, 'g')

 e2_var_vec = get_tx_dof_ref_frame_var_vec(parsed_2, 'e')
 f2_var_vec = get_tx_dof_ref_frame_var_vec(parsed_2, 'f')
 g2_var_vec = get_tx_dof_ref_frame_var_vec(parsed_2, 'g')

 e2e1_diff = (np.array(e2_var_vec) - np.array(e1_var_vec)).tolist()
 f2f1_diff = (np.array(f2_var_vec) - np.array(f1_var_vec)).tolist()
 g2g1_diff = (np.array(g2_var_vec) - np.array(g1_var_vec)).tolist()

 if e2e1_diff != [0, 0, 0]:
 ext_dof.append(e2e1_diff)

 if f2f1_diff != [0, 0, 0]:
 ext_dof.append(f2f1_diff)

 if g2g1_diff != [0, 0, 0]:
 ext_dof.append(g2g1_diff)

 return ext_dof

def get_optimal_external_tx_vector(ref_frame_tx_dof, optimal_ext_dof_shifts):

 ext_dof_variables = ['e', 'f', 'g']

 parsed_ref_tx_vec = parse_ref_tx_dof_str_to_list(ref_frame_tx_dof)

 optimal_external_tx_vector = np.array([0.0, 0.0, 0.0])
 for dof_shift_index in range(len(optimal_ext_dof_shifts)):
 dof_shift = optimal_ext_dof_shifts[dof_shift_index]
 var_vec = get_tx_dof_ref_frame_var_vec(parsed_ref_tx_vec, ext_dof_variables[dof_shift_index])
 shifted_var_vec = np.array(var_vec) * dof_shift
 optimal_external_tx_vector += shifted_var_vec

 return optimal_external_tx_vector.tolist()

def get_rot_matrices(step_deg, axis, rot_range_deg):
 rot_matrices = []
 if axis == 'x':
 for angle_deg in range(0, rot_range_deg, step_deg):
 rad = math.radians(float(angle_deg))
 rotmatrix = [[1, 0, 0], [0, math.cos(rad), -1 * math.sin(rad)], [0, math.sin(rad), math.cos(rad)]]
 rot_matrices.append(rotmatrix)
 return rot_matrices

 elif axis == 'y':

 228

utils/SamplingUtils.py

 for angle_deg in range(0, rot_range_deg, step_deg):
 rad = math.radians(float(angle_deg))
 rotmatrix = [[math.cos(rad), 0, math.sin(rad)], [0, 1, 0], [-1 * math.sin(rad), 0, math.cos(rad)]]
 rot_matrices.append(rotmatrix)
 return rot_matrices

 elif axis == 'z':
 for angle_deg in range(0, rot_range_deg, step_deg):
 rad = math.radians(float(angle_deg))
 rotmatrix = [[math.cos(rad), -1 * math.sin(rad), 0], [math.sin(rad), math.cos(rad), 0], [0, 0, 1]]
 rot_matrices.append(rotmatrix)
 return rot_matrices

 else:
 print "AXIS SELECTED FOR SAMPLING IS NOT SUPPORTED"
 return None

def get_degen_rotmatrices(degeneracy_matrices, rotation_matrices):
 if rotation_matrices == list() and degeneracy_matrices is not None:
 identity_matrix = [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]
 return [[identity_matrix]] + [[degen_mat] for degen_mat in degeneracy_matrices]

 elif rotation_matrices != list() and degeneracy_matrices is None:
 return [rotation_matrices]

 elif rotation_matrices != list() and degeneracy_matrices is not None:
 degen_rotmatrices = [rotation_matrices]
 for degen in degeneracy_matrices:
 degen_list = []
 for rot in rotation_matrices:
 combined = np.matmul(rot, degen)
 degen_list.append(combined.tolist())
 degen_rotmatrices.append(degen_list)
 return degen_rotmatrices
 else:
 identity_matrix = [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]
 return [[identity_matrix]]

 229

ExpandAssemblyUtils.py

 230

utils/ExpandAssemblyUtils.py

import os
import numpy as np
import copy
import pickle
import sys
from classes.PDB import PDB
from classes.Atom import Atom
from utils.GeneralUtils import center_of_mass_3d
import sklearn.neighbors

Copyright 2020 Joshua Laniado and Todd O. Yeates.
__author__ = "Joshua Laniado and Todd O. Yeates"
__copyright__ = "Copyright 2020, Nanohedra"
__version__ = "1.0"

def generate_cryst1_record(dimensions, spacegroup):
 # dimensions is a python list containing a, b, c (Angstroms) alpha, beta, gamma (degrees)
 sg_cryst1_fmt_dict = {'F222': 'F 2 2 2', 'P6222': 'P 62 2 2', 'I4132': 'I 41 3 2', 'P432': 'P 4 3 2', 'P6322': 'P
 63 2 2', 'I4122': 'I 41 2 2', 'I213': 'I 21 3', 'I422': 'I 4 2 2', 'I432': 'I 4 3 2', 'P4222': 'P 42 2 2', 'F23': 'F
 2 3', 'P23': 'P 2 3', 'P213': 'P 21 3', 'F432': 'F 4 3 2', 'P622': 'P 6 2 2', 'P4232': 'P 42 3 2', 'F4132': 'F 41 3
2', 'P4132': 'P 41 3 2', 'P422': 'P 4 2 2', 'P312': 'P 3 1 2', 'R32': 'R 3 2'}
 pg_cryst1_fmt_dict = {'p3': 'P 3', 'p321': 'P 3 2 1', 'p622': 'P 6 2 2', 'p4': 'P 4', 'p222': 'P 2 2 2', 'p422':
'P 4 2 2', 'p4212': 'P 4 21 2', 'p6': 'P 6', 'p312': 'P 3 1 2', 'c222': 'C 2 2 2'}
 zvalue_dict = {'P 2 3': 12, 'P 42 2 2': 8, 'P 3 2 1': 6, 'P 63 2 2': 12, 'P 3 1 2': 12, 'P 6 2 2': 12, 'F 2 3':
48, 'F 2 2 2': 16, 'P 62 2 2': 12, 'I 4 2 2': 16, 'I 21 3': 24, 'R 3 2': 6, 'P 4 21 2': 8, 'I 4 3 2': 48, 'P 41 3 2':
 24, 'I 41 3 2': 48, 'P 3': 3, 'P 6': 6, 'I 41 2 2': 16, 'P 4': 4, 'C 2 2 2': 8, 'P 2 2 2': 4, 'P 21 3': 12, 'F 41 3
2': 96, 'P 4 2 2': 8, 'P 4 3 2': 24, 'F 4 3 2': 96, 'P 42 3 2': 24}

 if spacegroup in sg_cryst1_fmt_dict:
 fmt_spacegroup = sg_cryst1_fmt_dict[spacegroup]
 zvalue = zvalue_dict[fmt_spacegroup]
 elif spacegroup in pg_cryst1_fmt_dict:
 fmt_spacegroup = pg_cryst1_fmt_dict[spacegroup]
 zvalue = zvalue_dict[fmt_spacegroup]
 dimensions[2] = 1.0
 dimensions[3] = 90.0
 dimensions[4] = 90.0
 else:
 raise ValueError("SPACEGROUP NOT SUPPORTED")

 cryst1_fmt = "CRYST1{box[0]:9.3f}{box[1]:9.3f}{box[2]:9.3f}""{ang[0]:7.2f}{ang[1]:7.2f}{ang[2]:7.2f} ""{
spacegroup:<11s}{zvalue:4d}\n"
 return cryst1_fmt.format(box=dimensions[:3], ang=dimensions[3:], spacegroup=fmt_spacegroup, zvalue=zvalue)

def get_ptgrp_sym_op(sym_type, expand_matrix_dir=os.path.dirname(os.path.dirname(os.path.realpath(__file__))) + "/
symmetry_operators/POINT_GROUP_SYMM_OPERATORS"):
 expand_matrix_filepath = expand_matrix_dir + "/" + sym_type + ".txt"
 expand_matrix_file = open(expand_matrix_filepath, "r")
 expand_matrix_lines = expand_matrix_file.readlines()
 expand_matrix_file.close()
 line_count = 0
 expand_matrices = []
 mat = []
 for line in expand_matrix_lines:
 line = line.split()
 if len(line) == 3:
 line_float = [float(s) for s in line]
 mat.append(line_float)
 line_count += 1
 if line_count % 3 == 0:
 expand_matrices.append(mat)
 mat = []
 return expand_matrices

def get_expanded_ptgrp_pdbs(pdb1_asu, pdb2_asu, expand_matrices):
 asu_symm_mates = []

 pdb_asu = PDB()
 pdb_asu.set_all_atoms(pdb1_asu.get_all_atoms() + pdb2_asu.get_all_atoms())

 asu_coords = pdb_asu.extract_all_coords()

 for r in expand_matrices:

 r_mat = np.transpose(np.array(r))
 r_asu_coords = np.matmul(asu_coords, r_mat)

 231

utils/ExpandAssemblyUtils.py

 asu_sym_mate_pdb = PDB()
 asu_sym_mate_pdb_atom_list = []
 atom_count = 0
 for atom in pdb_asu.get_all_atoms():
 x_transformed = r_asu_coords[atom_count][0]
 y_transformed = r_asu_coords[atom_count][1]
 z_transformed = r_asu_coords[atom_count][2]
 atom_transformed = Atom(atom_count, atom.get_type(), atom.get_alt_location(),
 atom.get_residue_type(), atom.get_chain(),
 atom.get_residue_number(),
 atom.get_code_for_insertion(), x_transformed, y_transformed,
 z_transformed,
 atom.get_occ(), atom.get_temp_fact(), atom.get_element_symbol(),
 atom.get_atom_charge())
 atom_count += 1
 asu_sym_mate_pdb_atom_list.append(atom_transformed)

 asu_sym_mate_pdb.set_all_atoms(asu_sym_mate_pdb_atom_list)
 asu_symm_mates.append(asu_sym_mate_pdb)

 return asu_symm_mates

def write_expanded_ptgrp(expanded_ptgrp_pdbs, outfile_path):
 outfile = open(outfile_path, "w")
 model_count = 1
 for pdb in expanded_ptgrp_pdbs:
 outfile.write("MODEL {:>4s}\n".format(str(model_count)))
 model_count += 1
 for atom in pdb.all_atoms:
 outfile.write(str(atom))
 outfile.write("ENDMDL\n")
 outfile.close()

def expanded_ptgrp_is_clash(expanded_ptgrp_pdbs, clash_distance=2.2):

 asu = expanded_ptgrp_pdbs[0]
 symm_mates_wo_asu = expanded_ptgrp_pdbs[1:]

 asu_bb_coords = asu.extract_backbone_coords()
 symm_mates_wo_asu_bb_coords = []
 for sym_mate_pdb in symm_mates_wo_asu:
 symm_mates_wo_asu_bb_coords.extend(sym_mate_pdb.extract_backbone_coords())

 kdtree_central_asu_bb = sklearn.neighbors.BallTree(np.array(asu_bb_coords))
 cb_clash_count = kdtree_central_asu_bb.two_point_correlation(symm_mates_wo_asu_bb_coords, [clash_distance])

 if cb_clash_count[0] == 0:
 return False # "NO CLASH"

 else:
 return True # "CLASH!!"

def get_sg_sym_op(sym_type, space_group_operator_dir=os.path.dirname(os.path.dirname(os.path.realpath(__file__))) +
"/symmetry_operators/SPACE_GROUP_SYMM_OPERATORS"):
 sg_op_filepath = space_group_operator_dir + "/" + sym_type + ".pickle"
 sg_op_file = open(sg_op_filepath, "r")
 sg_sym_op = pickle.load(sg_op_file)
 sg_op_file.close()

 return sg_sym_op

def cart_to_frac(cart_coords, dimensions):
 # http://www.ruppweb.org/Xray/tutorial/Coordinate%20system%20transformation.htm
 if len(dimensions) == 6:
 a2r = np.pi / 180.0
 a, b, c, alpha, beta, gamma = dimensions
 alpha *= a2r
 beta *= a2r
 gamma *= a2r

 # volume
 v = a*b*c*np.sqrt((1 - np.cos(alpha)**2 - np.cos(beta)**2 - np.cos(gamma)**2 + 2*(np.cos(alpha) * np.cos(beta
) *np.cos(gamma))))

 # deorthogonalization matrix M
 M_0 = [1/a, -(np.cos(gamma)/float(a*np.sin(gamma))), (((b*np.cos(gamma)*c*(np.cos(alpha)-(np.cos(beta)*np.cos
(gamma)))) / float(np.sin(gamma)))-(b*c*np.cos(beta)*np.sin(gamma)))*(1/float(v))]

 232

utils/ExpandAssemblyUtils.py

 M_1 = [0, 1/(b*np.sin(gamma)), -((a*c*(np.cos(alpha)-(np.cos(beta)*np.cos(gamma))))/float(v*np.sin(gamma)))]
 M_2 = [0, 0, (a*b*np.sin(gamma))/float(v)]
 M = np.array([M_0, M_1, M_2])

 frac_coords = np.matmul(np.array(cart_coords), np.transpose(M))

 return frac_coords

 else:
 raise ValueError("UNIT CELL DIMENSIONS INCORRECTLY SPECIFIED. CORRECT FORMAT IS: [a, b, c, alpha, beta,
gamma]")

def frac_to_cart(frac_coords, dimensions):
 # http://www.ruppweb.org/Xray/tutorial/Coordinate%20system%20transformation.htm
 if len(dimensions) == 6:
 a2r = np.pi / 180.0
 a, b, c, alpha, beta, gamma = dimensions
 alpha *= a2r
 beta *= a2r
 gamma *= a2r

 # volume
 v = a*b*c*np.sqrt((1 - np.cos(alpha) ** 2 - np.cos(beta) ** 2 - np.cos(gamma) ** 2 + 2 * (np.cos(alpha) * np.
cos(beta) * np.cos(gamma))))

 # orthogonalization matrix M_inv
 M_inv_0 = [a, b * np.cos(gamma), c * np.cos(beta)]
 M_inv_1 = [0, b * np.sin(gamma), (c * (np.cos(alpha) - (np.cos(beta) * np.cos(gamma)))) / float(np.sin(gamma)
)]
 M_inv_2 = [0, 0, v / float(a * b * np.sin(gamma))]
 M_inv = np.array([M_inv_0, M_inv_1, M_inv_2])

 cart_coords = np.matmul(np.array(frac_coords), np.transpose(M_inv))

 return cart_coords

 else:
 raise ValueError("UNIT CELL DIMENSIONS INCORRECTLY SPECIFIED. CORRECT FORMAT IS: [a, b, c, alpha, beta,
gamma]")

def get_central_asu_pdb_2d(pdb1, pdb2, uc_dimensions):
 pdb_asu = PDB()
 pdb_asu.read_atom_list(pdb1.get_all_atoms() + pdb2.get_all_atoms())

 pdb_asu_coords_cart = pdb_asu.extract_all_coords()

 asu_com_cart = center_of_mass_3d(pdb_asu_coords_cart)
 asu_com_frac = cart_to_frac(asu_com_cart, uc_dimensions)

 asu_com_x_min_cart = sys.maxint
 x_min_shift_vec_frac = None
 for x in range(-10, 11):
 asu_com_x_shifted_coords_frac = asu_com_frac + [x, 0, 0]
 asu_com_x_shifted_coords_cart = frac_to_cart(asu_com_x_shifted_coords_frac, uc_dimensions)
 if abs(asu_com_x_shifted_coords_cart[0]) < abs(asu_com_x_min_cart):
 asu_com_x_min_cart = asu_com_x_shifted_coords_cart[0]
 x_min_shift_vec_frac = [x, 0, 0]

 asu_com_y_min_cart = sys.maxint
 y_min_shift_vec_frac = None
 for y in range(-10, 11):
 asu_com_y_shifted_coords_frac = asu_com_frac + [0, y, 0]
 asu_com_y_shifted_coords_cart = frac_to_cart(asu_com_y_shifted_coords_frac, uc_dimensions)
 if abs(asu_com_y_shifted_coords_cart[1]) < abs(asu_com_y_min_cart):
 asu_com_y_min_cart = asu_com_y_shifted_coords_cart[1]
 y_min_shift_vec_frac = [0, y, 0]

 if x_min_shift_vec_frac is not None and y_min_shift_vec_frac is not None:
 xyz_min_shift_vec_frac = [x_min_shift_vec_frac[0], y_min_shift_vec_frac[1], 0]

 if xyz_min_shift_vec_frac == [0, 0, 0]:
 return pdb_asu

 else:
 pdb_asu_coords_frac = cart_to_frac(pdb_asu_coords_cart, uc_dimensions)
 xyz_min_shifted_pdb_asu_coords_frac = pdb_asu_coords_frac + xyz_min_shift_vec_frac
 xyz_min_shifted_pdb_asu_coords_cart = frac_to_cart(xyz_min_shifted_pdb_asu_coords_frac, uc_dimensions)

 xyz_min_shifted_asu_pdb = copy.deepcopy(pdb_asu)

 233

utils/ExpandAssemblyUtils.py

 xyz_min_shifted_asu_pdb.replace_coords(xyz_min_shifted_pdb_asu_coords_cart)

 return xyz_min_shifted_asu_pdb

 else:
 return pdb_asu

def get_central_asu_pdb_3d(pdb1, pdb2, uc_dimensions):
 pdb_asu = PDB()
 pdb_asu.read_atom_list(pdb1.get_all_atoms() + pdb2.get_all_atoms())

 pdb_asu_coords_cart = pdb_asu.extract_all_coords()

 asu_com_cart = center_of_mass_3d(pdb_asu_coords_cart)
 asu_com_frac = cart_to_frac(asu_com_cart, uc_dimensions)

 asu_com_x_min_cart = sys.maxint
 x_min_shift_vec_frac = None
 for x in range(-10, 11):
 asu_com_x_shifted_coords_frac = asu_com_frac + [x, 0, 0]
 asu_com_x_shifted_coords_cart = frac_to_cart(asu_com_x_shifted_coords_frac, uc_dimensions)
 if abs(asu_com_x_shifted_coords_cart[0]) < abs(asu_com_x_min_cart):
 asu_com_x_min_cart = asu_com_x_shifted_coords_cart[0]
 x_min_shift_vec_frac = [x, 0, 0]

 asu_com_y_min_cart = sys.maxint
 y_min_shift_vec_frac = None
 for y in range(-10, 11):
 asu_com_y_shifted_coords_frac = asu_com_frac + [0, y, 0]
 asu_com_y_shifted_coords_cart = frac_to_cart(asu_com_y_shifted_coords_frac, uc_dimensions)
 if abs(asu_com_y_shifted_coords_cart[1]) < abs(asu_com_y_min_cart):
 asu_com_y_min_cart = asu_com_y_shifted_coords_cart[1]
 y_min_shift_vec_frac = [0, y, 0]

 asu_com_z_min_cart = sys.maxint
 z_min_shift_vec_frac = None
 for z in range(-10, 11):
 asu_com_z_shifted_coords_frac = asu_com_frac + [0, 0, z]
 asu_com_z_shifted_coords_cart = frac_to_cart(asu_com_z_shifted_coords_frac, uc_dimensions)
 if abs(asu_com_z_shifted_coords_cart[2]) < abs(asu_com_z_min_cart):
 asu_com_z_min_cart = asu_com_z_shifted_coords_cart[2]
 z_min_shift_vec_frac = [0, 0, z]

 if x_min_shift_vec_frac is not None and y_min_shift_vec_frac is not None and z_min_shift_vec_frac is not None:
 xyz_min_shift_vec_frac = [x_min_shift_vec_frac[0], y_min_shift_vec_frac[1], z_min_shift_vec_frac[2]]

 if xyz_min_shift_vec_frac == [0, 0, 0]:
 return pdb_asu

 else:
 pdb_asu_coords_frac = cart_to_frac(pdb_asu_coords_cart, uc_dimensions)
 xyz_min_shifted_pdb_asu_coords_frac = pdb_asu_coords_frac + xyz_min_shift_vec_frac
 xyz_min_shifted_pdb_asu_coords_cart = frac_to_cart(xyz_min_shifted_pdb_asu_coords_frac, uc_dimensions)

 xyz_min_shifted_asu_pdb = copy.deepcopy(pdb_asu)
 xyz_min_shifted_asu_pdb.replace_coords(xyz_min_shifted_pdb_asu_coords_cart)

 return xyz_min_shifted_asu_pdb

 else:
 return pdb_asu

def get_unit_cell_sym_mates(pdb_asu, expand_matrices, uc_dimensions):
 unit_cell_sym_mates = [pdb_asu]

 asu_cart_coords = pdb_asu.extract_all_coords()
 asu_frac_coords = cart_to_frac(asu_cart_coords, uc_dimensions)

 for r, t in expand_matrices:
 t_vec = np.array(t)
 r_mat = np.transpose(np.array(r))

 r_asu_frac_coords = np.matmul(asu_frac_coords, r_mat)
 tr_asu_frac_coords = r_asu_frac_coords + t_vec

 tr_asu_cart_coords = frac_to_cart(tr_asu_frac_coords, uc_dimensions).tolist()

 unit_cell_sym_mate_pdb = PDB()
 unit_cell_sym_mate_pdb_atom_list = []

 234

utils/ExpandAssemblyUtils.py

 atom_count = 0
 for atom in pdb_asu.get_all_atoms():
 x_transformed = tr_asu_cart_coords[atom_count][0]
 y_transformed = tr_asu_cart_coords[atom_count][1]
 z_transformed = tr_asu_cart_coords[atom_count][2]
 atom_transformed = Atom(atom_count, atom.get_type(), atom.get_alt_location(),
 atom.get_residue_type(), atom.get_chain(),
 atom.get_residue_number(),
 atom.get_code_for_insertion(), x_transformed, y_transformed,
 z_transformed,
 atom.get_occ(), atom.get_temp_fact(), atom.get_element_symbol(),
 atom.get_atom_charge())
 atom_count += 1
 unit_cell_sym_mate_pdb_atom_list.append(atom_transformed)

 unit_cell_sym_mate_pdb.set_all_atoms(unit_cell_sym_mate_pdb_atom_list)
 unit_cell_sym_mates.append(unit_cell_sym_mate_pdb)

 return unit_cell_sym_mates

def get_surrounding_unit_cells_2d(unit_cell_sym_mates, uc_dimensions):
 all_surrounding_unit_cells = []

 asu_bb_atom_template = unit_cell_sym_mates[0].get_backbone_atoms()
 unit_cell_sym_mates_len = len(unit_cell_sym_mates)

 central_uc_bb_cart_coords = []
 for unit_cell_sym_mate_pdb in unit_cell_sym_mates:
 central_uc_bb_cart_coords.extend(unit_cell_sym_mate_pdb.extract_backbone_coords())
 central_uc_bb_frac_coords = cart_to_frac(central_uc_bb_cart_coords, uc_dimensions)

 all_surrounding_uc_bb_frac_coords = []
 for x_shift in [-1, 0, 1]:
 for y_shift in [-1, 0, 1]:
 if [x_shift, y_shift] != [0, 0]:
 shifted_uc_bb_frac_coords = central_uc_bb_frac_coords + [x_shift, y_shift, 0]
 all_surrounding_uc_bb_frac_coords.extend(shifted_uc_bb_frac_coords)

 all_surrounding_uc_bb_cart_coords = frac_to_cart(all_surrounding_uc_bb_frac_coords, uc_dimensions)
 all_surrounding_uc_bb_cart_coords = np.split(all_surrounding_uc_bb_cart_coords, 8)

 for surrounding_uc_bb_cart_coords in all_surrounding_uc_bb_cart_coords:
 all_uc_sym_mates_bb_cart_coords = np.split(surrounding_uc_bb_cart_coords, unit_cell_sym_mates_len)
 one_surrounding_unit_cell = []
 for uc_sym_mate_bb_cart_coords in all_uc_sym_mates_bb_cart_coords:
 uc_sym_mate_bb_pdb = PDB()
 uc_sym_mate_bb_atoms = []
 atom_count = 0
 for atom in asu_bb_atom_template:
 x_transformed = uc_sym_mate_bb_cart_coords[atom_count][0]
 y_transformed = uc_sym_mate_bb_cart_coords[atom_count][1]
 z_transformed = uc_sym_mate_bb_cart_coords[atom_count][2]
 atom_transformed = Atom(atom.get_number(), atom.get_type(), atom.get_alt_location(),
 atom.get_residue_type(), atom.get_chain(),
 atom.get_residue_number(),
 atom.get_code_for_insertion(), x_transformed, y_transformed,
 z_transformed,
 atom.get_occ(), atom.get_temp_fact(), atom.get_element_symbol(),
 atom.get_atom_charge())
 uc_sym_mate_bb_atoms.append(atom_transformed)
 atom_count += 1

 uc_sym_mate_bb_pdb.set_all_atoms(uc_sym_mate_bb_atoms)
 one_surrounding_unit_cell.append(uc_sym_mate_bb_pdb)

 all_surrounding_unit_cells.append(one_surrounding_unit_cell)

 return all_surrounding_unit_cells

def get_surrounding_unit_cells_3d(unit_cell_sym_mates, uc_dimensions):
 all_surrounding_unit_cells = []

 asu_bb_atom_template = unit_cell_sym_mates[0].get_backbone_atoms()
 unit_cell_sym_mates_len = len(unit_cell_sym_mates)

 central_uc_bb_cart_coords = []
 for unit_cell_sym_mate_pdb in unit_cell_sym_mates:
 central_uc_bb_cart_coords.extend(unit_cell_sym_mate_pdb.extract_backbone_coords())
 central_uc_bb_frac_coords = cart_to_frac(central_uc_bb_cart_coords, uc_dimensions)

 235

utils/ExpandAssemblyUtils.py

 all_surrounding_uc_bb_frac_coords = []
 for x_shift in [-1, 0, 1]:
 for y_shift in [-1, 0, 1]:
 for z_shift in [-1, 0, 1]:
 if [x_shift, y_shift, z_shift] != [0, 0, 0]:
 shifted_uc_bb_frac_coords = central_uc_bb_frac_coords + [x_shift, y_shift, z_shift]
 all_surrounding_uc_bb_frac_coords.extend(shifted_uc_bb_frac_coords)

 all_surrounding_uc_bb_cart_coords = frac_to_cart(all_surrounding_uc_bb_frac_coords, uc_dimensions)
 all_surrounding_uc_bb_cart_coords = np.split(all_surrounding_uc_bb_cart_coords, 26)

 for surrounding_uc_bb_cart_coords in all_surrounding_uc_bb_cart_coords:
 all_uc_sym_mates_bb_cart_coords = np.split(surrounding_uc_bb_cart_coords, unit_cell_sym_mates_len)
 one_surrounding_unit_cell = []
 for uc_sym_mate_bb_cart_coords in all_uc_sym_mates_bb_cart_coords:
 uc_sym_mate_bb_pdb = PDB()
 uc_sym_mate_bb_atoms = []
 atom_count = 0
 for atom in asu_bb_atom_template:
 x_transformed = uc_sym_mate_bb_cart_coords[atom_count][0]
 y_transformed = uc_sym_mate_bb_cart_coords[atom_count][1]
 z_transformed = uc_sym_mate_bb_cart_coords[atom_count][2]
 atom_transformed = Atom(atom.get_number(), atom.get_type(), atom.get_alt_location(),
 atom.get_residue_type(), atom.get_chain(),
 atom.get_residue_number(),
 atom.get_code_for_insertion(), x_transformed, y_transformed,
 z_transformed,
 atom.get_occ(), atom.get_temp_fact(), atom.get_element_symbol(),
 atom.get_atom_charge())
 uc_sym_mate_bb_atoms.append(atom_transformed)
 atom_count += 1

 uc_sym_mate_bb_pdb.set_all_atoms(uc_sym_mate_bb_atoms)
 one_surrounding_unit_cell.append(uc_sym_mate_bb_pdb)

 all_surrounding_unit_cells.append(one_surrounding_unit_cell)

 return all_surrounding_unit_cells

def write_unit_cell_sym_mates(unit_cell_sym_mates, outfile_path):
 f = open(outfile_path, "a+")
 model_count = 0
 for unit_cell_sym_mate_pdb in unit_cell_sym_mates:
 model_count += 1
 model_line = "MODEL {:>4s}\n".format(str(model_count))
 end_model_line = "ENDMDL\n"

 f.write(model_line)
 for atom in unit_cell_sym_mate_pdb.get_all_atoms():
 f.write(str(atom))
 f.write(end_model_line)
 f.close()

def write_surrounding_unit_cells(surrounding_unit_cells, outfile_path):
 f = open(outfile_path, "a+")

 model_count = 0
 for unit_cell in surrounding_unit_cells:
 for unit_cell_sym_mate_pdb in unit_cell:
 model_count += 1
 model_line = "MODEL {:>4s}\n".format(str(model_count))
 end_model_line = "ENDMDL\n"

 f.write(model_line)
 for atom in unit_cell_sym_mate_pdb.get_all_atoms():
 f.write(str(atom))
 f.write(end_model_line)

 f.close()

def uc_expansion_is_clash(central_unit_cell, clash_distance=2.2):
 central_asu_pdb = central_unit_cell[0]
 central_unit_cell_wo_central_asu = central_unit_cell[1:]

 central_asu_pdb_bb_coords = central_asu_pdb.extract_backbone_coords()
 central_unit_cell_wo_central_asu_bb_coords = []
 for unit_cell_sym_mate_pdb in central_unit_cell_wo_central_asu:

 236

utils/ExpandAssemblyUtils.py

 central_unit_cell_wo_central_asu_bb_coords.extend(unit_cell_sym_mate_pdb.extract_backbone_coords())

 kdtree_central_asu_bb = sklearn.neighbors.BallTree(np.array(central_asu_pdb_bb_coords))
 cb_clash_count = kdtree_central_asu_bb.two_point_correlation(central_unit_cell_wo_central_asu_bb_coords, [
clash_distance])

 if cb_clash_count[0] == 0:
 return False # "NO CLASH"

 else:
 return True # "CLASH!!"

def surrounding_uc_is_clash(central_unit_cell, surrounding_unit_cells, clash_distance=2.2):
 central_asu_pdb = central_unit_cell[0]
 all_unit_cells_wo_central_asu = surrounding_unit_cells + [central_unit_cell[1:]]

 central_asu_pdb_bb_coords = central_asu_pdb.extract_backbone_coords()
 all_unit_cells_wo_central_asu_bb_coords = []
 for unit_cell in all_unit_cells_wo_central_asu:
 for unit_cell_sym_mate_pdb in unit_cell:
 all_unit_cells_wo_central_asu_bb_coords.extend(unit_cell_sym_mate_pdb.extract_backbone_coords())

 kdtree_central_asu_bb = sklearn.neighbors.BallTree(np.array(central_asu_pdb_bb_coords))
 cb_clash_count = kdtree_central_asu_bb.two_point_correlation(all_unit_cells_wo_central_asu_bb_coords, [
clash_distance])

 if cb_clash_count[0] == 0:
 return False # "NO CLASH"

 else:
 return True # "CLASH!!"

def expanded_design_is_clash(asu_pdb_1, asu_pdb_2, design_dim, result_design_sym, expand_matrices, uc_dimensions=None
,
 outdir=None, output_exp_assembly=False, output_uc=False, output_surrounding_uc=False):

 if design_dim == 0:
 expanded_ptgrp_pdbs = get_expanded_ptgrp_pdbs(asu_pdb_1, asu_pdb_2, expand_matrices)

 is_clash = expanded_ptgrp_is_clash(expanded_ptgrp_pdbs)

 if not is_clash and outdir is not None:
 if not os.path.exists(outdir):
 os.makedirs(outdir)
 if output_exp_assembly:
 write_expanded_ptgrp(expanded_ptgrp_pdbs, outdir + "/expanded_assembly.pdb")
 pdb_asu = expanded_ptgrp_pdbs[0]
 pdb_asu.write(outdir + "/asu.pdb")

 return is_clash

 elif design_dim == 2:
 pdb_asu = get_central_asu_pdb_2d(asu_pdb_1, asu_pdb_2, uc_dimensions)

 cryst1_record = generate_cryst1_record(uc_dimensions, result_design_sym)

 unit_cell_pdbs = get_unit_cell_sym_mates(pdb_asu, expand_matrices, uc_dimensions)

 is_uc_exp_clash = uc_expansion_is_clash(unit_cell_pdbs)
 if is_uc_exp_clash:
 return is_uc_exp_clash

 all_surrounding_unit_cells = get_surrounding_unit_cells_2d(unit_cell_pdbs, uc_dimensions)
 is_clash = surrounding_uc_is_clash(unit_cell_pdbs, all_surrounding_unit_cells)

 if not is_clash and outdir is not None:
 if not os.path.exists(outdir):
 os.makedirs(outdir)
 if output_uc:
 write_unit_cell_sym_mates(unit_cell_pdbs, outdir + "/central_uc.pdb")
 if output_surrounding_uc:
 write_surrounding_unit_cells(all_surrounding_unit_cells, outdir + "/surrounding_unit_cells.pdb")
 pdb_asu.write(outdir + "/central_asu.pdb", cryst1=cryst1_record)

 return is_clash

 elif design_dim == 3:

 cryst1_record = generate_cryst1_record(uc_dimensions, result_design_sym)

 237

utils/ExpandAssemblyUtils.py

 pdb_asu = get_central_asu_pdb_3d(asu_pdb_1, asu_pdb_2, uc_dimensions)

 unit_cell_pdbs = get_unit_cell_sym_mates(pdb_asu, expand_matrices, uc_dimensions)

 is_uc_exp_clash = uc_expansion_is_clash(unit_cell_pdbs)

 if is_uc_exp_clash:
 return is_uc_exp_clash

 all_surrounding_unit_cells = get_surrounding_unit_cells_3d(unit_cell_pdbs, uc_dimensions)

 is_clash = surrounding_uc_is_clash(unit_cell_pdbs, all_surrounding_unit_cells)

 if not is_clash and outdir is not None:
 if not os.path.exists(outdir):
 os.makedirs(outdir)
 if output_uc:
 write_unit_cell_sym_mates(unit_cell_pdbs, outdir + "/central_uc.pdb")
 if output_surrounding_uc:
 write_surrounding_unit_cells(all_surrounding_unit_cells, outdir + "/surrounding_unit_cells.pdb")
 pdb_asu.write(outdir + "/central_asu.pdb", cryst1=cryst1_record)

 return is_clash

 else:
 raise ValueError("%s is an Invalid Design Dimension. The Only Valid Dimensions are: 0, 2, 3\n" %str(
design_dim))

 238

PDBUtils.py

 239

utils/PDBUtils.py

import sklearn.neighbors
from classes.PDB import *
import numpy as np
from classes.Fragment import GhostFragment
from classes.Fragment import MonoFragment
from utils.GeneralUtils import rot_txint_set_txext_frag_coord_sets

Copyright 2020 Joshua Laniado and Todd O. Yeates.
__author__ = "Joshua Laniado and Todd O. Yeates"
__copyright__ = "Copyright 2020, Nanohedra"
__version__ = "1.0"

def rot_txint_set_txext_pdb(pdb, rot_mat=None, internal_tx_vec=None, set_mat=None, ext_tx_vec=None):
 pdb_coords = np.array(pdb.extract_all_coords())

 if pdb_coords.size != 0:

 # Rotate coordinates if rotation matrix is provided
 if rot_mat is not None:
 rot_mat_T = np.transpose(rot_mat)
 pdb_coords = np.matmul(pdb_coords, rot_mat_T)

 # Translate coordinates if internal translation vector is provided
 if internal_tx_vec is not None:
 pdb_coords = pdb_coords + internal_tx_vec

 # Set coordinates if setting matrix is provided
 if set_mat is not None:
 set_mat_T = np.transpose(set_mat)
 pdb_coords = np.matmul(pdb_coords, set_mat_T)

 # Translate coordinates if external translation vector is provided
 if ext_tx_vec is not None:
 pdb_coords = pdb_coords + ext_tx_vec

 transformed_pdb = PDB()
 transformed_atoms = []
 atom_index = 0
 for atom in pdb.get_all_atoms():
 x_transformed = pdb_coords[atom_index][0]
 y_transformed = pdb_coords[atom_index][1]
 z_transformed = pdb_coords[atom_index][2]
 atom_transformed = Atom(atom.get_number(), atom.get_type(), atom.get_alt_location(),
 atom.get_residue_type(), atom.get_chain(), atom.get_residue_number(),
 atom.get_code_for_insertion(), x_transformed, y_transformed, z_transformed,
 atom.get_occ(), atom.get_temp_fact(), atom.get_element_symbol(),
 atom.get_atom_charge())
 transformed_atoms.append(atom_transformed)
 atom_index += 1

 transformed_pdb.set_all_atoms(transformed_atoms)
 transformed_pdb.set_chain_id_list(pdb.get_chain_id_list())
 transformed_pdb.set_filepath(pdb.get_filepath())

 return transformed_pdb

 else:
 return []

def get_contacting_asu(pdb1, pdb2, contact_dist=8):
 pdb1_ca_coords_chain_dict = {}
 for atom in pdb1.get_all_atoms():
 if atom.chain not in pdb1_ca_coords_chain_dict:
 pdb1_ca_coords_chain_dict[atom.chain] = [atom.coords()]
 else:
 pdb1_ca_coords_chain_dict[atom.chain].append(atom.coords())

 pdb2_ca_coords_chain_dict = {}
 for atom in pdb2.get_all_atoms():
 if atom.chain not in pdb2_ca_coords_chain_dict:
 pdb2_ca_coords_chain_dict[atom.chain] = [atom.coords()]
 else:
 pdb2_ca_coords_chain_dict[atom.chain].append(atom.coords())

 max_contact_count = 0
 max_contact_chain1 = None
 max_contact_chain2 = None
 for chain1 in pdb1_ca_coords_chain_dict:

 240

utils/PDBUtils.py

 for chain2 in pdb2_ca_coords_chain_dict:
 pdb1_ca_coords = pdb1_ca_coords_chain_dict[chain1]
 pdb2_ca_coords = pdb2_ca_coords_chain_dict[chain2]

 pdb1_ca_coords_kdtree = sklearn.neighbors.BallTree(np.array(pdb1_ca_coords))
 contact_count = pdb1_ca_coords_kdtree.two_point_correlation(pdb2_ca_coords, [contact_dist])[0]

 if contact_count > max_contact_count:
 max_contact_count = contact_count
 max_contact_chain1 = chain1
 max_contact_chain2 = chain2

 if max_contact_count > 0 and max_contact_chain1 is not None and max_contact_chain2 is not None:
 pdb1_asu = PDB()
 pdb1_asu.read_atom_list(pdb1.chain(max_contact_chain1))

 pdb2_asu = PDB()
 pdb2_asu.read_atom_list(pdb2.chain(max_contact_chain2))

 return pdb1_asu, pdb2_asu

 else:
 return None, None

def get_interface_ghost_surf_frags(pdb1, pdb2, pdb1_ghost_frag_list, pdb2_surf_frag_list, rot_mat1, rot_mat2,
internal_tx_vec1, internal_tx_vec2, set_mat1, set_mat2, ext_tx_vec1, ext_tx_vec2, cb_distance=9.0):

 interface_ghost_frag_list = []
 interface_ghost_frag_transformed_list = []

 interface_ghost_frag_pdb_coords_list = []
 interface_ghost_frag_pdb_coords_list_transformed = []
 interface_ghost_frag_guide_coords_list_transformed = []

 interface_surf_frag_list = []
 interface_surf_frag_transformed_list = []

 interface_surf_frag_pdb_coords_list = []
 interface_surf_frag_pdb_coords_list_transformed = []
 interface_surf_frag_guide_coords_list = []
 interface_surf_frag_guide_coords_list_transformed = []

 pdb1_cb_coords, pdb1_cb_indices = pdb1.get_CB_coords(ReturnWithCBIndices=True, InclGlyCA=True)
 pdb2_cb_coords, pdb2_cb_indices = pdb2.get_CB_coords(ReturnWithCBIndices=True, InclGlyCA=True)

 pdb1_cb_kdtree = sklearn.neighbors.BallTree(np.array(pdb1_cb_coords))

 # Query PDB1 CB Tree for all PDB2 CB Atoms within "cb_distance" in A of a PDB1 CB Atom
 query = pdb1_cb_kdtree.query_radius(pdb2_cb_coords, cb_distance)

 # Get ResidueNumber, ChainID for all Interacting PDB1 CB, PDB2 CB Pairs
 interacting_pairs = []
 for pdb2_query_index in range(len(query)):
 if query[pdb2_query_index].tolist() != list():
 pdb2_cb_res_num = pdb2.all_atoms[pdb2_cb_indices[pdb2_query_index]].residue_number
 pdb2_cb_chain_id = pdb2.all_atoms[pdb2_cb_indices[pdb2_query_index]].chain
 for pdb1_query_index in query[pdb2_query_index]:
 pdb1_cb_res_num = pdb1.all_atoms[pdb1_cb_indices[pdb1_query_index]].residue_number
 pdb1_cb_chain_id = pdb1.all_atoms[pdb1_cb_indices[pdb1_query_index]].chain
 interacting_pairs.append(((pdb1_cb_res_num, pdb1_cb_chain_id), (pdb2_cb_res_num, pdb2_cb_chain_id)))

 pdb1_central_resnum_chainid_unique_list = []
 pdb2_central_resnum_chainid_unique_list = []
 for pair in interacting_pairs:

 pdb1_central_res_num = pair[0][0]
 pdb1_central_chain_id = pair[0][1]
 pdb2_central_res_num = pair[1][0]
 pdb2_central_chain_id = pair[1][1]

 pdb1_res_num_list = [pdb1_central_res_num - 2, pdb1_central_res_num - 1, pdb1_central_res_num,
 pdb1_central_res_num + 1, pdb1_central_res_num + 2]
 pdb2_res_num_list = [pdb2_central_res_num - 2, pdb2_central_res_num - 1, pdb2_central_res_num,
 pdb2_central_res_num + 1, pdb2_central_res_num + 2]

 frag1_ca_count = 0
 for atom in pdb1.all_atoms:
 if atom.chain == pdb1_central_chain_id:
 if atom.residue_number in pdb1_res_num_list:
 if atom.is_CA():

 241

utils/PDBUtils.py

 frag1_ca_count += 1

 frag2_ca_count = 0
 for atom in pdb2.all_atoms:
 if atom.chain == pdb2_central_chain_id:
 if atom.residue_number in pdb2_res_num_list:
 if atom.is_CA():
 frag2_ca_count += 1

 if frag1_ca_count == 5 and frag2_ca_count == 5:
 if (pdb1_central_chain_id, pdb1_central_res_num) not in pdb1_central_resnum_chainid_unique_list:
 pdb1_central_resnum_chainid_unique_list.append((pdb1_central_chain_id, pdb1_central_res_num))

 if (pdb2_central_chain_id, pdb2_central_res_num) not in pdb2_central_resnum_chainid_unique_list:
 pdb2_central_resnum_chainid_unique_list.append((pdb2_central_chain_id, pdb2_central_res_num))

 for ghost_frag in pdb1_ghost_frag_list:
 if ghost_frag.get_aligned_surf_frag_central_res_tup() in pdb1_central_resnum_chainid_unique_list:
 interface_ghost_frag_list.append(ghost_frag)
 interface_ghost_frag_pdb_coords_list.append(ghost_frag.get_pdb_coords())

 for surf_frag in pdb2_surf_frag_list:
 if surf_frag.get_central_res_tup() in pdb2_central_resnum_chainid_unique_list:
 interface_surf_frag_list.append(surf_frag)
 interface_surf_frag_pdb_coords_list.append(surf_frag.get_pdb_coords())
 interface_surf_frag_guide_coords_list.append(surf_frag.get_guide_coords())

 # Rotate, Translate and Set Ghost Fragment Guide Coordinates

 interface_ghost_frag_pdb_coords_list_transformed = rot_txint_set_txext_frag_coord_sets(
interface_ghost_frag_pdb_coords_list, rot_mat=rot_mat1, internal_tx_vec=internal_tx_vec1, set_mat=set_mat1,
ext_tx_vec=ext_tx_vec1)

 for int_ghost_frag_index in range(len(interface_ghost_frag_list)):
 int_ghost_frag = interface_ghost_frag_list[int_ghost_frag_index]
 int_ghost_frag_pdb = int_ghost_frag.get_pdb()
 int_ghost_frag_pdb_atoms = int_ghost_frag_pdb.get_all_atoms()

 int_ghost_frag_transformed_pdb_coords = interface_ghost_frag_pdb_coords_list_transformed[int_ghost_frag_index
]
 int_ghost_frag_pdb_transformed = PDB()
 int_ghost_frag_pdb_transformed_atoms = []
 for atom_index in range(len(int_ghost_frag_pdb_atoms)):
 atom = int_ghost_frag_pdb_atoms[atom_index]
 x_transformed = int_ghost_frag_transformed_pdb_coords[atom_index][0]
 y_transformed = int_ghost_frag_transformed_pdb_coords[atom_index][1]
 z_transformed = int_ghost_frag_transformed_pdb_coords[atom_index][2]
 atom_transformed = Atom(atom.get_number(), atom.get_type(), atom.get_alt_location(),
 atom.get_residue_type(), atom.get_chain(), atom.get_residue_number(),
 atom.get_code_for_insertion(), x_transformed, y_transformed, z_transformed,
 atom.get_occ(), atom.get_temp_fact(), atom.get_element_symbol(),
 atom.get_atom_charge())
 int_ghost_frag_pdb_transformed_atoms.append(atom_transformed)
 int_ghost_frag_pdb_transformed.set_all_atoms(int_ghost_frag_pdb_transformed_atoms)

 int_ghost_frag_transformed = GhostFragment(int_ghost_frag_pdb_transformed, int_ghost_frag.get_i_frag_type(),
 int_ghost_frag.get_j_frag_type(), int_ghost_frag.get_k_frag_type()
,
 int_ghost_frag.get_central_res_tup(),
 int_ghost_frag.get_aligned_surf_frag_central_res_tup(),
 guide_atoms=int_ghost_frag_pdb_transformed_atoms[-3:],
 guide_coords=int_ghost_frag_transformed_pdb_coords[-3:],
 pdb_coords=int_ghost_frag_transformed_pdb_coords)

 interface_ghost_frag_transformed_list.append(int_ghost_frag_transformed)
 interface_ghost_frag_guide_coords_list_transformed.append(int_ghost_frag_transformed.get_guide_coords())

 # Rotate, Translate and Set Surface Fragment Guide Coordinates
 interface_surf_frag_pdb_coords_list_transformed = rot_txint_set_txext_frag_coord_sets(
interface_surf_frag_pdb_coords_list, rot_mat=rot_mat2, internal_tx_vec=internal_tx_vec2, set_mat=set_mat2, ext_tx_vec
=ext_tx_vec2)
 interface_surf_frag_guide_coords_list_transformed = rot_txint_set_txext_frag_coord_sets(
interface_surf_frag_guide_coords_list, rot_mat=rot_mat2, internal_tx_vec=internal_tx_vec2, set_mat=set_mat2,
ext_tx_vec=ext_tx_vec2)

 for int_surf_frag_index in range(len(interface_surf_frag_list)):
 int_surf_frag = interface_surf_frag_list[int_surf_frag_index]

 int_surf_frag_pdb = int_surf_frag.get_pdb()
 int_surf_frag_pdb_transformed = PDB()
 int_surf_frag_transformed_pdb_coords = interface_surf_frag_pdb_coords_list_transformed[int_surf_frag_index]

 242

utils/PDBUtils.py

 int_surf_frag_transformed_pdb_atoms = []
 int_surf_frag_pdb_atoms = int_surf_frag_pdb.get_all_atoms()
 for atom_index in range(len(int_surf_frag_pdb_atoms)):
 atom = int_surf_frag_pdb_atoms[atom_index]
 x_transformed = int_surf_frag_transformed_pdb_coords[atom_index][0]
 y_transformed = int_surf_frag_transformed_pdb_coords[atom_index][1]
 z_transformed = int_surf_frag_transformed_pdb_coords[atom_index][2]
 atom_transformed = Atom(atom.get_number(), atom.get_type(), atom.get_alt_location(),
 atom.get_residue_type(), atom.get_chain(), atom.get_residue_number(),
 atom.get_code_for_insertion(), x_transformed, y_transformed, z_transformed,
 atom.get_occ(), atom.get_temp_fact(), atom.get_element_symbol(),
 atom.get_atom_charge())
 int_surf_frag_transformed_pdb_atoms.append(atom_transformed)
 int_surf_frag_pdb_transformed.set_all_atoms(int_surf_frag_transformed_pdb_atoms)

 int_surf_frag_guide_coords_transformed = interface_surf_frag_guide_coords_list_transformed[
int_surf_frag_index]

 int_surf_frag_transformed = MonoFragment(int_surf_frag_pdb_transformed, type=int_surf_frag.get_type(),
 guide_coords=int_surf_frag_guide_coords_transformed,
 central_res_num=int_surf_frag.get_central_res_num(),
 central_res_chain_id=int_surf_frag.get_central_res_chain_id(),
 pdb_coords=int_surf_frag_transformed_pdb_coords)

 interface_surf_frag_transformed_list.append(int_surf_frag_transformed)

 return interface_ghost_frag_transformed_list, interface_surf_frag_transformed_list,
interface_ghost_frag_guide_coords_list_transformed, interface_surf_frag_guide_coords_list_transformed, len(
pdb1_central_resnum_chainid_unique_list), len(pdb2_central_resnum_chainid_unique_list)

 243

BioPDBUtils.py

 244

utils/BioPDBUtils.py

import Bio.PDB.Superimposer
from Bio.PDB.Atom import Atom as BioPDBAtom
import numpy as np
import warnings
from Bio.PDB.Atom import PDBConstructionWarning
from classes.PDB import PDB
from classes.Atom import Atom
warnings.simplefilter('ignore', PDBConstructionWarning)

def biopdb_aligned_chain(pdb_fixed, chain_id_fixed, pdb_moving, chain_id_moving):
 biopdb_atom_fixed = []
 biopdb_atom_moving = []

 for atom in pdb_fixed.get_CA_atoms():
 if atom.chain == chain_id_fixed:
 biopdb_atom_fixed.append(
 BioPDBAtom(atom.type, (atom.x, atom.y, atom.z), atom.temp_fact, atom.occ, atom.alt_location,
 " %s " % atom.type, atom.number, element=atom.element_symbol))

 pdb_moving_coords = []
 for atom in pdb_moving.get_all_atoms():
 pdb_moving_coords.append([atom.get_x(), atom.get_y(), atom.get_z()])
 if atom.is_CA():
 if atom.chain == chain_id_moving:
 biopdb_atom_moving.append(
 BioPDBAtom(atom.type, (atom.x, atom.y, atom.z), atom.temp_fact, atom.occ, atom.alt_location,
 " %s " % atom.type, atom.number, element=atom.element_symbol))

 sup = Bio.PDB.Superimposer()
 sup.set_atoms(biopdb_atom_fixed, biopdb_atom_moving)
 # no need to transpose rotation matrix as Bio.PDB.Superimposer() generates correct matrix to rotate using np.
matmul
 rot, tr = sup.rotran[0], sup.rotran[1]

 pdb_moving_coords_rot = np.matmul(pdb_moving_coords, rot)
 pdb_moving_coords_rot_tx = pdb_moving_coords_rot + tr

 pdb_moving_copy = PDB()
 pdb_moving_copy.set_chain_id_list(pdb_moving.get_chain_id_list())
 pdb_moving_copy_atom_list = []
 atom_count = 0
 for atom in pdb_moving.get_all_atoms():
 x_transformed = pdb_moving_coords_rot_tx[atom_count][0]
 y_transformed = pdb_moving_coords_rot_tx[atom_count][1]
 z_transformed = pdb_moving_coords_rot_tx[atom_count][2]
 atom_transformed = Atom(atom.get_number(), atom.get_type(), atom.get_alt_location(),
 atom.get_residue_type(), atom.get_chain(),
 atom.get_residue_number(),
 atom.get_code_for_insertion(), x_transformed, y_transformed,
 z_transformed,
 atom.get_occ(), atom.get_temp_fact(), atom.get_element_symbol(),
 atom.get_atom_charge())
 pdb_moving_copy_atom_list.append(atom_transformed)
 atom_count += 1

 pdb_moving_copy.set_all_atoms(pdb_moving_copy_atom_list)

 return pdb_moving_copy

def biopdb_superimposer(atoms_fixed, atoms_moving):

 biopdb_atom_fixed = []
 for atom in atoms_fixed:
 biopdb_atom_fixed.append(
 BioPDBAtom(atom.type, (atom.x, atom.y, atom.z), atom.temp_fact, atom.occ, atom.alt_location,
 " %s " % atom.type, atom.number, element=atom.element_symbol))

 biopdb_atom_moving = []
 for atom in atoms_moving:
 biopdb_atom_moving.append(
 BioPDBAtom(atom.type, (atom.x, atom.y, atom.z), atom.temp_fact, atom.occ, atom.alt_location,
 " %s " % atom.type, atom.number, element=atom.element_symbol))

 sup = Bio.PDB.Superimposer()
 sup.set_atoms(biopdb_atom_fixed, biopdb_atom_moving)

 rmsd = sup.rms
 rot = np.transpose(sup.rotran[0]).tolist()
 tx = sup.rotran[1].tolist()

 245

utils/BioPDBUtils.py

 return rmsd, rot, tx

 246

GeneralUtils.py

 247

utils/GeneralUtils.py

import numpy as np

Copyright 2020 Joshua Laniado and Todd O. Yeates.
__author__ = "Joshua Laniado and Todd O. Yeates"
__copyright__ = "Copyright 2020, Nanohedra"
__version__ = "1.0"

def euclidean_squared_3d(coordinates_1, coordinates_2):
 if len(coordinates_1) != 3 or len(coordinates_2) != 3:
 raise ValueError("len(coordinate list) != 3")

 elif type(coordinates_1) is not list or type(coordinates_2) is not list:
 raise TypeError("input parameters are not of type list")

 else:
 x1, y1, z1 = coordinates_1[0], coordinates_1[1], coordinates_1[2]
 x2, y2, z2 = coordinates_2[0], coordinates_2[1], coordinates_2[2]
 return (x1 - x2) ** 2 + (y1 - y2) ** 2 + (z1 - z2) ** 2

def center_of_mass_3d(coordinates):
 n = len(coordinates)
 if n != 0:
 cm = [0. for j in range(3)]
 for i in range(n):
 for j in range(3):
 cm[j] = cm[j] + coordinates[i][j]
 for j in range(3):
 cm[j] = cm[j] / n
 return cm
 else:
 print "ERROR CALCULATING CENTER OF MASS"
 return None

def rot_txint_set_txext_frag_coord_sets(coord_sets, rot_mat=None, internal_tx_vec=None, set_mat=None, ext_tx_vec=None
):

 if coord_sets != list():
 # Get the length of each coordinate set
 coord_set_lens = []
 for coord_set in coord_sets:
 coord_set_lens.append(len(coord_set))

 # Stack coordinate set arrays in sequence vertically (row wise)
 coord_sets_vstacked = np.vstack(coord_sets)

 # Rotate stacked coordinates if rotation matrix is provided
 if rot_mat is not None:
 rot_mat_T = np.transpose(rot_mat)
 coord_sets_vstacked = np.matmul(coord_sets_vstacked, rot_mat_T)

 # Translate stacked coordinates if internal translation vector is provided
 if internal_tx_vec is not None:
 coord_sets_vstacked = coord_sets_vstacked + internal_tx_vec

 # Set stacked coordinates if setting matrix is provided
 if set_mat is not None:
 set_mat_T = np.transpose(set_mat)
 coord_sets_vstacked = np.matmul(coord_sets_vstacked, set_mat_T)

 # Translate stacked coordinates if external translation vector is provided
 if ext_tx_vec is not None:
 coord_sets_vstacked = coord_sets_vstacked + ext_tx_vec

 # Slice stacked coordinates back into coordinate sets
 transformed_coord_sets = []
 slice_index_1 = 0
 for coord_set_len in coord_set_lens:
 slice_index_2 = slice_index_1 + coord_set_len

 transformed_coord_sets.append(coord_sets_vstacked[slice_index_1:slice_index_2].tolist())

 slice_index_1 += coord_set_len

 return transformed_coord_sets

 else:
 return []

 248

SymmUtils.py

 249

utils/SymmUtils.py

Copyright 2020 Joshua Laniado and Todd O. Yeates.
__author__ = "Joshua Laniado and Todd O. Yeates"
__copyright__ = "Copyright 2020, Nanohedra"
__version__ = "1.0"

def parse_uc_str_to_tuples(uc_string):
 return_list = []

 def s_to_l(string):
 s1 = string.replace('(', '')
 s2 = s1.replace(')', '')
 l1 = s2.split(',')
 l2 = [x.replace(' ', '') for x in l1]
 return l2

 if '),' in uc_string:
 l = uc_string.split('),')
 else:
 l = [uc_string]
 for s in l:
 return_list.append(s_to_l(s))
 return return_list

def get_uc_var_vec(string_vec, var):
 return_vec = [0.0, 0.0, 0.0]
 for i in range(len(string_vec)):
 if var in string_vec[i] and '*' in string_vec[i]:
 return_vec[i] = (float(string_vec[i].split('*')[0]))
 elif var == string_vec[i]:
 return_vec.append(1.0)
 return return_vec

def get_uc_dimensions(uc_string, e=1, f=0, g=0):
 uc_string_vec = parse_uc_str_to_tuples(uc_string)

 lengths = [0.0, 0.0, 0.0]
 string_vec_lens = uc_string_vec[0]
 e_vec = get_uc_var_vec(string_vec_lens, 'e')
 f_vec = get_uc_var_vec(string_vec_lens, 'f')
 g_vec = get_uc_var_vec(string_vec_lens, 'g')
 e1 = [e_vec_val * e for e_vec_val in e_vec]
 f1 = [f_vec_val * f for f_vec_val in f_vec]
 g1 = [g_vec_val * g for g_vec_val in g_vec]
 for i in range(len(string_vec_lens)):
 lengths[i] = abs((e1[i] + f1[i] + g1[i]))
 if len(string_vec_lens) == 2:
 lengths[2] = 1.0

 string_vec_angles = uc_string_vec[1]
 if len(string_vec_angles) == 1:
 angles = [90.0, 90.0, float(string_vec_angles[0])]
 else:
 angles = [0.0, 0.0, 0.0]
 for i in range(len(string_vec_angles)):
 angles[i] = float(string_vec_angles[i])

 uc_dimensions = lengths + angles

 return uc_dimensions

 250

SymQueryUtils.py

 251

utils/SymQueryUtils.py

from classes.SymEntry import sym_comb_dict

Copyright 2020 Joshua Laniado and Todd O. Yeates.
__author__ = "Joshua Laniado and Todd O. Yeates"
__copyright__ = "Copyright 2020, Nanohedra"
__version__ = "1.0"

query_out_format_str = "{:>5s} {:>6s} {:^9s} {:^9s} {:^20s} {:>6s} {:^9s} {:^9s} {:^20s} {:>6s} {:>3s} {:>4s} {:>4s}"

def print_query_header():
 header_format_str = "{:5s} {:6s} {:^9s} {:^9s} {:^20s} {:6s} {:^9s} {:^9s} {:^20s} {:6s} {:3s} {:4s} {:4s}"
 print header_format_str.format("ENTRY",
 "PtGrp1",
 "IntRtDOF1",
 "IntTxDOF1",
 "ReferenceFrameDOF1",
 "PtGrp2",
 "IntRtDOF2",
 "IntTxDOF2",
 "ReferenceFrameDOF2",
 "RESULT",
 "DIM",
 "#DOF",
 "RING")

def query_combination(combination_list):
 if type(combination_list) == list and len(combination_list) == 2:
 matching_entries = []
 for entry_number in sym_comb_dict:
 group1 = sym_comb_dict[entry_number][1]
 group2 = sym_comb_dict[entry_number][6]
 if combination_list == [group1, group2] or combination_list == [group2, group1]:
 int_rot1 = "none"
 int_tx1 = "none"
 int_rot2 = "none"
 int_tx2 = "none"
 int_dof_group1 = sym_comb_dict[entry_number][3]
 int_dof_group2 = sym_comb_dict[entry_number][8]
 for int_dof in int_dof_group1:
 if int_dof.startswith('r'):
 int_rot1 = int_dof[2:]
 if int_dof.startswith('t'):
 int_tx1 = int_dof[2:]
 for int_dof in int_dof_group2:
 if int_dof.startswith('r'):
 int_rot2 = int_dof[2:]
 if int_dof.startswith('t'):
 int_tx2 = int_dof[2:]
 ref_frame_tx_dof_group1 = sym_comb_dict[entry_number][5]
 ref_frame_tx_dof_group2 = sym_comb_dict[entry_number][10]
 if ref_frame_tx_dof_group1 == '<0,0,0>':
 ref_frame_tx_dof_group1 = 'none'
 if ref_frame_tx_dof_group2 == '<0,0,0>':
 ref_frame_tx_dof_group2 = 'none'
 result = sym_comb_dict[entry_number][12]
 dim = sym_comb_dict[entry_number][13]
 tot_num_dof = sym_comb_dict[entry_number][15]
 ring_size = sym_comb_dict[entry_number][16]
 matching_entries.append(query_out_format_str.format(str(entry_number),
 group1,
 int_rot1,
 int_tx1,
 ref_frame_tx_dof_group1,
 group2,
 int_rot2,
 int_tx2,
 ref_frame_tx_dof_group2,
 result,
 str(dim),
 str(tot_num_dof),
 str(ring_size)))
 if matching_entries == list():
 print '\033[1m' + "NO MATCHING ENTRY FOUND" + '\033[0m'
 print ''
 else:
 print '\033[1m' + "POSSIBLE COMBINATION(S) FOR: %s & %s" % (combination_list[0], combination_list[1]) + '
\033[0m'

 252

utils/SymQueryUtils.py

 print_query_header()
 for match in matching_entries:
 print match
 else:
 print "INVALID ENTRY"

def query_result(desired_result):
 if type(desired_result) == str:
 matching_entries = []
 for entry_number in sym_comb_dict:
 result = sym_comb_dict[entry_number][12]
 if desired_result == result:
 group1 = sym_comb_dict[entry_number][1]
 group2 = sym_comb_dict[entry_number][6]
 int_rot1 = "none"
 int_tx1 = "none"
 int_rot2 = "none"
 int_tx2 = "none"
 int_dof_group1 = sym_comb_dict[entry_number][3]
 int_dof_group2 = sym_comb_dict[entry_number][8]
 for int_dof in int_dof_group1:
 if int_dof.startswith('r'):
 int_rot1 = int_dof[2:]
 if int_dof.startswith('t'):
 int_tx1 = int_dof[2:]
 for int_dof in int_dof_group2:
 if int_dof.startswith('r'):
 int_rot2 = int_dof[2:]
 if int_dof.startswith('t'):
 int_tx2 = int_dof[2:]
 ref_frame_tx_dof_group1 = sym_comb_dict[entry_number][5]
 ref_frame_tx_dof_group2 = sym_comb_dict[entry_number][10]
 if ref_frame_tx_dof_group1 == '<0,0,0>':
 ref_frame_tx_dof_group1 = 'none'
 if ref_frame_tx_dof_group2 == '<0,0,0>':
 ref_frame_tx_dof_group2 = 'none'
 dim = sym_comb_dict[entry_number][13]
 tot_num_dof = sym_comb_dict[entry_number][15]
 ring_size = sym_comb_dict[entry_number][16]
 matching_entries.append(query_out_format_str.format(str(entry_number),
 group1,
 int_rot1,
 int_tx1,
 ref_frame_tx_dof_group1,
 group2,
 int_rot2,
 int_tx2,
 ref_frame_tx_dof_group2,
 result,
 str(dim),
 str(tot_num_dof),
 str(ring_size)))
 if matching_entries == list():
 print '\033[1m' + "NO MATCHING ENTRY FOUND" + '\033[0m'
 print ''
 else:
 print '\033[1m' + "POSSIBLE COMBINATION(S) FOR: %s" % desired_result + '\033[0m'
 print_query_header()
 for match in matching_entries:
 print match
 else:
 print "INVALID ENTRY"

def query_counterpart(query_group):
 if type(query_group) == str:
 matching_entries = []
 for entry_number in sym_comb_dict:
 group1 = sym_comb_dict[entry_number][1]
 group2 = sym_comb_dict[entry_number][6]
 if query_group in [group1, group2]:
 int_rot1 = "none"
 int_tx1 = "none"
 int_rot2 = "none"
 int_tx2 = "none"
 int_dof_group1 = sym_comb_dict[entry_number][3]
 int_dof_group2 = sym_comb_dict[entry_number][8]
 for int_dof in int_dof_group1:
 if int_dof.startswith('r'):
 int_rot1 = int_dof[2:]

 253

utils/SymQueryUtils.py

 if int_dof.startswith('t'):
 int_tx1 = int_dof[2:]
 for int_dof in int_dof_group2:
 if int_dof.startswith('r'):
 int_rot2 = int_dof[2:]
 if int_dof.startswith('t'):
 int_tx2 = int_dof[2:]
 ref_frame_tx_dof_group1 = sym_comb_dict[entry_number][5]
 ref_frame_tx_dof_group2 = sym_comb_dict[entry_number][10]
 if ref_frame_tx_dof_group1 == '<0,0,0>':
 ref_frame_tx_dof_group1 = 'none'
 if ref_frame_tx_dof_group2 == '<0,0,0>':
 ref_frame_tx_dof_group2 = 'none'
 result = sym_comb_dict[entry_number][12]
 dim = sym_comb_dict[entry_number][13]
 tot_num_dof = sym_comb_dict[entry_number][15]
 ring_size = sym_comb_dict[entry_number][16]
 matching_entries.append(query_out_format_str.format(str(entry_number),
 group1,
 int_rot1,
 int_tx1,
 ref_frame_tx_dof_group1,
 group2,
 int_rot2,
 int_tx2,
 ref_frame_tx_dof_group2,
 result,
 str(dim),
 str(tot_num_dof),
 str(ring_size)))
 if matching_entries == list():
 print '\033[1m' + "NO MATCHING ENTRY FOUND" + '\033[0m'
 print ''
 else:
 print '\033[1m' + "POSSIBLE COMBINATION(S) FOR: %s" % query_group + '\033[0m'
 print_query_header()
 for match in matching_entries:
 print match
 else:
 print "INVALID ENTRY"

def all_entries():
 all_entries_list = []
 for entry_number in sym_comb_dict:
 group1 = sym_comb_dict[entry_number][1]
 group2 = sym_comb_dict[entry_number][6]
 int_rot1 = "none"
 int_tx1 = "none"
 int_rot2 = "none"
 int_tx2 = "none"
 int_dof_group1 = sym_comb_dict[entry_number][3]
 int_dof_group2 = sym_comb_dict[entry_number][8]
 for int_dof in int_dof_group1:
 if int_dof.startswith('r'):
 int_rot1 = int_dof[2:]
 if int_dof.startswith('t'):
 int_tx1 = int_dof[2:]
 for int_dof in int_dof_group2:
 if int_dof.startswith('r'):
 int_rot2 = int_dof[2:]
 if int_dof.startswith('t'):
 int_tx2 = int_dof[2:]
 ref_frame_tx_dof_group1 = sym_comb_dict[entry_number][5]
 ref_frame_tx_dof_group2 = sym_comb_dict[entry_number][10]
 if ref_frame_tx_dof_group1 == '<0,0,0>':
 ref_frame_tx_dof_group1 = 'none'
 if ref_frame_tx_dof_group2 == '<0,0,0>':
 ref_frame_tx_dof_group2 = 'none'
 result = sym_comb_dict[entry_number][12]
 dim = sym_comb_dict[entry_number][13]
 tot_num_dof = sym_comb_dict[entry_number][15]
 ring_size = sym_comb_dict[entry_number][16]
 all_entries_list.append(query_out_format_str.format(str(entry_number),
 group1,
 int_rot1,
 int_tx1,
 ref_frame_tx_dof_group1,
 group2,
 int_rot2,
 int_tx2,

 254

utils/SymQueryUtils.py

 ref_frame_tx_dof_group2,
 result,
 str(dim),
 str(tot_num_dof),
 str(ring_size)))
 print '\033[1m' + "ALL ENTRIES" + '\033[0m'
 print_query_header()
 for entry in all_entries_list:
 print entry

def dimension(dim):
 if dim in [0, 2, 3]:
 matching_entries = []
 for entry_number in sym_comb_dict:
 if sym_comb_dict[entry_number][13] == dim:
 group1 = sym_comb_dict[entry_number][1]
 group2 = sym_comb_dict[entry_number][6]
 int_rot1 = "none"
 int_tx1 = "none"
 int_rot2 = "none"
 int_tx2 = "none"
 int_dof_group1 = sym_comb_dict[entry_number][3]
 int_dof_group2 = sym_comb_dict[entry_number][8]
 for int_dof in int_dof_group1:
 if int_dof.startswith('r'):
 int_rot1 = int_dof[2:]
 if int_dof.startswith('t'):
 int_tx1 = int_dof[2:]
 for int_dof in int_dof_group2:
 if int_dof.startswith('r'):
 int_rot2 = int_dof[2:]
 if int_dof.startswith('t'):
 int_tx2 = int_dof[2:]
 ref_frame_tx_dof_group1 = sym_comb_dict[entry_number][5]
 ref_frame_tx_dof_group2 = sym_comb_dict[entry_number][10]
 if ref_frame_tx_dof_group1 == '<0,0,0>':
 ref_frame_tx_dof_group1 = 'none'
 if ref_frame_tx_dof_group2 == '<0,0,0>':
 ref_frame_tx_dof_group2 = 'none'
 result = sym_comb_dict[entry_number][12]
 dim = sym_comb_dict[entry_number][13]
 tot_num_dof = sym_comb_dict[entry_number][15]
 ring_size = sym_comb_dict[entry_number][16]
 matching_entries.append(query_out_format_str.format(str(entry_number),
 group1,
 int_rot1,
 int_tx1,
 ref_frame_tx_dof_group1,
 group2,
 int_rot2,
 int_tx2,
 ref_frame_tx_dof_group2,
 result,
 str(dim),
 str(tot_num_dof),
 str(ring_size)))

 print '\033[1m' + "ALL ENTRIES FOUND WITH DIMENSION " + str(dim) + ": " + '\033[0m'
 print_query_header()
 for entry in matching_entries:
 print entry
 else:
 print "DIMENSION NOT SUPPORTED, VALID DIMENSIONS ARE: 0, 2 or 3 "

 255

CmdLineArgParseUtils.py

 256

utils/CmdLineArgParseUtils.py

from utils import SymQueryUtils
from utils import PostProcessUtils
import os
import sys
from classes.SymEntry import SymEntry

Copyright 2020 Joshua Laniado and Todd O. Yeates.
__author__ = "Joshua Laniado and Todd O. Yeates"
__copyright__ = "Copyright 2020, Nanohedra"
__version__ = "1.0"

def query_mode(arg_list):
 valid_query_flags = ["-all_entries", "-combination", "-result", "-counterpart", "-dimension"]
 if len(arg_list) >= 3 and arg_list[1] == "-query" and arg_list[2] in valid_query_flags:
 print '\033[32m' + '\033[1m' + "NANOHEDRA\n" + '\033[0m'
 print '\033[32m' + '\033[1m' + "Copyright 2020 Joshua Laniado and Todd O. Yeates\n\n" + '\033[0m'
 print '\033[1m' + '\033[95m' + "QUERY MODE" + '\033[95m' + '\033[0m' + '\n'
 if arg_list[2] == "-all_entries":
 if len(arg_list) == 3:
 SymQueryUtils.all_entries()
 else:
 sys.exit('\033[91m' + '\033[1m' + "ERROR: INVALID QUERY" + '\033[0m')

 elif arg_list[2] == "-combination":
 if len(arg_list) == 5:
 query = [arg_list[3], arg_list[4]]
 SymQueryUtils.query_combination(query)
 else:
 sys.exit('\033[91m' + '\033[1m' + "ERROR: INVALID COMBINATION QUERY" + '\033[0m')

 elif arg_list[2] == "-result":
 if len(arg_list) == 4:
 query = arg_list[3]
 SymQueryUtils.query_result(query)
 else:
 sys.exit('\033[91m' + '\033[1m' + "ERROR: INVALID RESULT QUERY" + '\033[0m')

 elif arg_list[2] == "-counterpart":
 if len(arg_list) == 4:
 query = arg_list[3]
 SymQueryUtils.query_counterpart(query)
 else:
 sys.exit('\033[91m' + '\033[1m' + "ERROR: INVALID COUNTERPART QUERY" + '\033[0m')

 elif arg_list[2] == "-dimension":
 if len(arg_list) == 4 and arg_list[3].isdigit():
 query = int(arg_list[3])
 SymQueryUtils.dimension(query)
 else:
 sys.exit('\033[91m' + '\033[1m' + "ERROR: INVALID QUERY" + '\033[0m')

 else:
 sys.exit('\033[91m' + '\033[1m' + "ERROR: INVALID QUERY, CHOOSE ONE OF THE FOLLOWING QUERY FLAGS: -
all_entries, -combination, -result, -counterpart, -dimension" + '\033[0m')

def get_docking_parameters(arg_list):

 if "-outdir" in arg_list:
 outdir_index = arg_list.index('-outdir') + 1
 if outdir_index < len(arg_list):
 outdir = arg_list[outdir_index]
 else:
 log_filepath = os.getcwd() + "/Nanohedra_log.txt"
 logfile = open(log_filepath, "a+")
 logfile.write("ERROR: OUTPUT DIRECTORY NOT SPECIFIED" + '\n')
 logfile.close()
 sys.exit()
 else:
 log_filepath = os.getcwd() + "/Nanohedra_log.txt"
 logfile = open(log_filepath, "a+")
 logfile.write("ERROR: OUTPUT DIRECTORY NOT SPECIFIED" + '\n')
 logfile.close()
 sys.exit()

 master_log_filepath = outdir + "/nanohedra_master_logfile.txt"
 if not os.path.exists(outdir):
 os.makedirs(outdir)
 master_logfile = open(master_log_filepath, "w")

 257

utils/CmdLineArgParseUtils.py

 valid_flags = ["-dock", "-entry", "-oligomer1", "-oligomer2", "-rot_step1", "-rot_step2", "-outdir",
 "-output_uc", "-output_surrounding_uc", "-min_matched", "-output_exp_assembly", "-init_match_type"
]

 # CHECK INPUT FLAGS
 for sys_input in arg_list:
 if sys_input.startswith('-') and sys_input not in valid_flags:
 master_logfile.write("ERROR: " + sys_input + " IS AN INVALID FLAG" + "\n")
 master_logfile.write("VALID FLAGS FOR DOCKING ARE:" + "\n")
 for flag in valid_flags:
 master_logfile.write(flag + "\n")
 master_logfile.close()
 sys.exit()

 # DOCK MODE
 master_logfile.write("NANOHEDRA" + "\n")
 master_logfile.write("DOCKING MODE" + '\n\n')

 # SymEntry PARAMETER
 if "-entry" in arg_list:
 entry_index = arg_list.index('-entry') + 1
 if entry_index < len(arg_list):
 if arg_list[entry_index].isdigit() and (int(arg_list[entry_index]) in range(1, 125)):
 entry = int(arg_list[arg_list.index('-entry') + 1])
 else:
 master_logfile.write("ERROR: INVALID SYMMETRY ENTRY. SUPPORTED VALUES ARE: 1 to 124\n")
 master_logfile.close()
 sys.exit()
 else:
 master_logfile.write("ERROR: SYMMETRY ENTRY NOT SPECIFIED\n")
 master_logfile.close()
 sys.exit()
 else:
 master_logfile.write("ERROR: SYMMETRY ENTRY NOT SPECIFIED\n")
 master_logfile.close()
 sys.exit()

 # GENERAL INPUT PARAMETERS

 # determine whether or not both components needed to construct the SCM have the same point group symmetry
 # if so, only one input PDB directory should be provided, otherwise two are required
 sym_entry = SymEntry(entry)
 oligomer_symmetry_1 = sym_entry.get_group1_sym()
 oligomer_symmetry_2 = sym_entry.get_group2_sym()

 if oligomer_symmetry_1 == oligomer_symmetry_2:
 if ("-oligomer1" in arg_list) and ("-oligomer2" in arg_list):
 master_logfile.write("ERROR\nONLY ONE INPUT PDB DIRECTORY IS ACCEPTED FOR ENTRY %s\n" % str(entry))
 master_logfile.write("BOTH COMPONENTS NEEDED TO CONSTRUCT THIS SCM HAVE THE SAME POINT GROUP SYMMETRY ")
 master_logfile.write("(%s)\n" % oligomer_symmetry_1)
 master_logfile.write("THE INPUT PDB FILES FOR THIS ENTRY SHOULD BE IN A SINGLE DIRECTORY\n")
 master_logfile.write("AND ONLY '-oligomer1' SHOULD BE USED TO SPECIFY THE INPUT PDB DIRECTORY\n")
 master_logfile.close()
 sys.exit()
 elif ("-oligomer1" not in arg_list) and ("-oligomer2" in arg_list):
 master_logfile.write("ERROR\nONLY ONE INPUT PDB DIRECTORY IS ACCEPTED FOR ENTRY %s\n" % str(entry))
 master_logfile.write("BOTH COMPONENTS NEEDED TO CONSTRUCT THIS SCM HAVE THE SAME POINT GROUP SYMMETRY ")
 master_logfile.write("(%s)\n" % oligomer_symmetry_1)
 master_logfile.write("THE INPUT PDB FILES FOR THIS ENTRY SHOULD BE IN A SINGLE DIRECTORY\n")
 master_logfile.write("AND ONLY '-oligomer1' SHOULD BE USED TO SPECIFY THE INPUT PDB DIRECTORY\n")
 master_logfile.close()
 sys.exit()
 elif ("-oligomer1" in arg_list) and ("-oligomer2" not in arg_list):
 path1_index = arg_list.index('-oligomer1') + 1

 if path1_index < len(arg_list):
 path1 = arg_list[arg_list.index('-oligomer1') + 1]
 if os.path.exists(path1):
 pdb_dir1_path = path1
 pdb_dir2_path = path1
 else:
 master_logfile.write("ERROR: SPECIFIED PDB DIRECTORY PATH DOES NOT EXIST\n")
 master_logfile.close()
 sys.exit()
 else:
 master_logfile.write("ERROR: PDB DIRECTORY PATH NOT SPECIFIED\n")
 master_logfile.close()
 sys.exit()
 else:
 master_logfile.write("ERROR: PDB DIRECTORY PATH NOT SPECIFIED\n")

 258

utils/CmdLineArgParseUtils.py

 master_logfile.close()
 sys.exit()

 else:
 if ("-oligomer1" in arg_list) and ("-oligomer2" in arg_list):
 path1_index = arg_list.index('-oligomer1') + 1
 path2_index = arg_list.index('-oligomer2') + 1

 if (path1_index < len(arg_list)) and (path2_index < len(arg_list)):
 path1 = arg_list[arg_list.index('-oligomer1') + 1]
 path2 = arg_list[arg_list.index('-oligomer2') + 1]
 if os.path.exists(path1) and os.path.exists(path2):
 pdb_dir1_path = path1
 pdb_dir2_path = path2
 else:
 master_logfile.write("ERROR: SPECIFIED PDB DIRECTORY PATH(S) DO(ES) NOT EXIST" + "\n")
 master_logfile.close()
 sys.exit()
 else:
 master_logfile.write("ERROR: PDB DIRECTORY PATH(S) NOT SPECIFIED" + "\n")
 master_logfile.close()
 sys.exit()
 else:
 master_logfile.write("ERROR: PDB DIRECTORY PATH(S) NOT SPECIFIED" + "\n")
 master_logfile.close()
 sys.exit()

 if "-init_match_type" in arg_list:
 init_match_type_index = arg_list.index('-init_match_type') + 1

 if init_match_type_index < len(arg_list):
 if arg_list[init_match_type_index] in ["1_1", "1_2", "2_1", "2_2"]:
 init_match_type = str(arg_list[init_match_type_index])
 else:
 master_logfile.write("ERROR: INITIAL FRAGMENT MATCH TYPE SPECIFIED NOT RECOGNIZED" + "\n")
 master_logfile.close()
 sys.exit()
 else:
 master_logfile.write("ERROR: INITIAL FRAGMENT MATCH TYPE NOT SPECIFIED" + "\n")
 master_logfile.close()
 sys.exit()
 else:
 init_match_type = "1_1" # default initial fragment match type is set to helix-helix interactions ==> "1_1"

 # FragDock PARAMETERS
 if "-rot_step1" in arg_list:
 rot_step_index1 = arg_list.index('-rot_step1') + 1
 if rot_step_index1 < len(arg_list):
 if arg_list[rot_step_index1].isdigit():
 rot_step_deg1 = int(arg_list[rot_step_index1])
 else:
 master_logfile.write("ERROR: ROTATION STEP SPECIFIED IS NOT AN INTEGER" + "\n")
 master_logfile.close()
 sys.exit()
 else:
 master_logfile.write("ERROR: ROTATION STEP NOT SPECIFIED" + "\n")
 master_logfile.close()
 sys.exit()
 else:
 rot_step_deg1 = None

 if "-rot_step2" in arg_list:
 rot_step_index2 = arg_list.index('-rot_step2') + 1
 if rot_step_index2 < len(arg_list):
 if arg_list[rot_step_index2].isdigit():
 rot_step_deg2 = int(arg_list[rot_step_index2])
 else:
 master_logfile.write("ERROR: ROTATION STEP SPECIFIED IS NOT AN INTEGER" + "\n")
 master_logfile.close()
 sys.exit()
 else:
 master_logfile.write("ERROR: ROTATION STEP NOT SPECIFIED" + "\n")
 master_logfile.close()
 sys.exit()
 else:
 rot_step_deg2 = None

 if "-output_exp_assembly" in arg_list:
 output_exp_assembly = True
 else:
 output_exp_assembly = False

 259

utils/CmdLineArgParseUtils.py

 if "-output_uc" in arg_list:
 output_uc = True
 else:
 output_uc = False

 if "-output_surrounding_uc" in arg_list:
 output_surrounding_uc = True
 else:
 output_surrounding_uc = False

 if "-min_matched" in arg_list:
 min_matched_index = arg_list.index('-min_matched') + 1
 if min_matched_index < len(arg_list):
 if arg_list[min_matched_index].isdigit():
 min_matched = int(arg_list[min_matched_index])
 else:
 master_logfile.write("ERROR: MINIMUM NUMBER OF REQUIRED MATCHED FRAGMENT(S) SPECIFIED IS NOT AN
INTEGER" + "\n")
 master_logfile.close()
 sys.exit()
 else:
 master_logfile.write("ERROR: MINIMUM NUMBER OF REQUIRED MATCHED FRAGMENT(S) NOT SPECIFIED" + "\n")
 master_logfile.close()
 sys.exit()
 else:
 min_matched = 3

 master_logfile.close()

 return entry, pdb_dir1_path, pdb_dir2_path, rot_step_deg1, rot_step_deg2, outdir, output_exp_assembly, output_uc,
 output_surrounding_uc, min_matched, init_match_type

def postprocess_mode(arg_list):

 valid_flags = ["-outdir", "-design_dir", "-min_score", "-min_matched", "-postprocess", "-rank"]
 for arg in arg_list:
 if arg[0] == '-' and arg not in valid_flags:
 log_filepath = os.getcwd() + "/Nanohedra_PostProcess_log.txt"
 logfile = open(log_filepath, "a+")
 logfile.write("ERROR: %s IS AN INVALID FLAG\n" %arg)
 logfile.write("VALID FLAGS ARE: -outdir, -design_dir, -min_score, -min_matched, -rank, -postprocess\n")
 logfile.close()
 sys.exit()

 if "-outdir" in arg_list:
 outdir_index = arg_list.index('-outdir') + 1
 if outdir_index < len(arg_list):
 outdir = arg_list[outdir_index]
 else:
 log_filepath = os.getcwd() + "/Nanohedra_PostProcess_log.txt"
 logfile = open(log_filepath, "a+")
 logfile.write("ERROR: OUTPUT DIRECTORY NOT SPECIFIED\n")
 logfile.close()
 sys.exit()
 else:
 log_filepath = os.getcwd() + "/Nanohedra_PostProcess_log.txt"
 logfile = open(log_filepath, "a+")
 logfile.write("ERROR: OUTPUT DIRECTORY NOT SPECIFIED\n")
 logfile.close()
 sys.exit()

 log_filepath = outdir + "/Nanohedra_PostProcess_log.txt"
 if not os.path.exists(outdir):
 os.makedirs(outdir)

 try:
 design_dir_path_index = arg_list.index("-design_dir") + 1
 try:
 design_dir_path = arg_list[design_dir_path_index]
 if not os.path.exists(design_dir_path):
 logfile = open(log_filepath, "w")
 logfile.write("ERROR: DESIGN DIRECTORY PATH SPECIFIED DOES NOT EXIST\n")
 logfile.close()
 sys.exit()
 except IndexError:
 logfile = open(log_filepath, "w")
 logfile.write("ERROR: -design_dir FLAG FOLLOWED BY DESIGN DIRECTORY PATH IS REQUIRED\n")
 logfile.close()
 sys.exit()

 260

utils/CmdLineArgParseUtils.py

 except ValueError:
 logfile = open(log_filepath, "w")
 logfile.write("ERROR: -design_dir FLAG FOLLOWED BY DESIGN DIRECTORY PATH IS REQUIRED\n")
 logfile.close()
 sys.exit()

 if "-min_score" in arg_list and "-min_matched" not in arg_list and "-rank" not in arg_list:
 try:
 min_score_index = arg_list.index("-min_score") + 1
 try:
 min_score_str = arg_list[min_score_index]
 try:
 min_score = float(min_score_str)
 PostProcessUtils.score_filter(design_dir_path, min_score, outdir)
 except ValueError:
 logfile = open(log_filepath, "w")
 logfile.write("ERROR: MINIMUM SCORE SPECIFIED IS NOT A FLOAT\n")
 logfile.close()
 sys.exit()
 except IndexError:
 logfile = open(log_filepath, "w")
 logfile.write("ERROR: -min_score FLAG FOLLOWED BY A MINIMUM SCORE IS REQUIRED\n")
 logfile.close()
 sys.exit()
 except ValueError:
 logfile = open(log_filepath, "w")
 logfile.write("ERROR: -min_score FLAG FOLLOWED BY A MINIMUM SCORE IS REQUIRED\n")
 logfile.close()
 sys.exit()

 if "-min_matched" in arg_list and "-min_score" not in arg_list and "-rank" not in arg_list:
 try:
 min_matched_index = arg_list.index("-min_matched") + 1
 try:
 min_matched_str = arg_list[min_matched_index]
 try:
 min_matched = int(min_matched_str)
 PostProcessUtils.frag_match_count_filter(design_dir_path, min_matched, outdir)
 except ValueError:
 logfile = open(log_filepath, "w")
 logfile.write("ERROR: MINIMUM MATCHED FRAGMENT COUNT SPECIFIED IS NOT AN INTEGER\n")
 logfile.close()
 sys.exit()
 except IndexError:
 logfile = open(log_filepath, "w")
 logfile.write("ERROR: -min_matched FLAG FOLLOWED BY A MINIMUM MATCHED FRAGMENT COUNT IS REQUIRED\n")
 logfile.close()
 sys.exit()
 except ValueError:
 logfile = open(log_filepath, "w")
 logfile.write("ERROR: -min_matched FLAG FOLLOWED BY A MINIMUM MATCHED FRAGMENT COUNT IS REQUIRED\n")
 logfile.close()
 sys.exit()

 if "-min_matched" in arg_list and "-min_score" in arg_list and "-rank" not in arg_list:
 min_matched_index = arg_list.index("-min_matched") + 1
 min_score_index = arg_list.index("-min_score") + 1
 try:
 min_matched_str = arg_list[min_matched_index]
 min_score_str = arg_list[min_score_index]

 try:
 min_matched = int(min_matched_str)
 except ValueError:
 logfile = open(log_filepath, "w")
 logfile.write("ERROR: MINIMUM MATCHED FRAGMENT COUNT SPECIFIED IS NOT AN INTEGER\n")
 logfile.close()
 sys.exit()

 try:
 min_score = float(min_score_str)
 except ValueError:
 logfile = open(log_filepath, "w")
 logfile.write("ERROR: MINIMUM SCORE SPECIFIED IS NOT A FLOAT\n")
 logfile.close()
 sys.exit()

 PostProcessUtils.score_and_frag_match_count_filter(design_dir_path, min_score, min_matched, outdir)

 except IndexError:
 logfile = open(log_filepath, "w")

 261

utils/CmdLineArgParseUtils.py

 logfile.write("ERROR: -min_matched FLAG FOLLOWED BY A MINIMUM MATCHED FRAGMENT COUNT IS REQUIRED\n")
 logfile.write("ERROR: -min_score FLAG FOLLOWED BY A MINIMUM SCORE IS REQUIRED\n")
 logfile.close()
 sys.exit()

 if "-rank" in arg_list and "-min_matched" not in arg_list and "-min_score" not in arg_list:
 try:
 rank_index = arg_list.index("-rank") + 1
 try:
 metric = arg_list[rank_index]
 try:
 metric_str = str(metric)
 if metric_str in ["score", "matched"]:
 PostProcessUtils.rank(design_dir_path, metric_str, outdir)
 else:
 logfile = open(log_filepath, "w")
 logfile.write("ERROR: RANKING METRIC SPECIFIED IS NOT RECOGNIZED\n")
 logfile.close()
 sys.exit()
 except ValueError:
 logfile = open(log_filepath, "w")
 logfile.write("ERROR: RANKING METRIC SPECIFIED IS NOT A STRING\n")
 logfile.close()
 sys.exit()
 except IndexError:
 logfile = open(log_filepath, "w")
 logfile.write("ERROR: -rank FLAG FOLLOWED BY A RANKING METRIC IS REQUIRED\n")
 logfile.close()
 sys.exit()
 except ValueError:
 logfile = open(log_filepath, "w")
 logfile.write("ERROR: -rank FLAG FOLLOWED BY A RANKING METRIC IS REQUIRED\n")
 logfile.close()
 sys.exit()

 if ("-min_matched" in arg_list or "-min_score" in arg_list) and "-rank" in arg_list:
 logfile = open(log_filepath, "w")
 logfile.write("ERROR:\n")
 logfile.write("EITHER: FILTER BY SCORE AND/OR BY MINIMUM FRAGMENT(S) MATCHED\n")
 logfile.write("OR: PERFORM RANKING BY SCORE\n")
 logfile.write("OR: PERFORM RANKING BY NUMBER OF FRAGMENT(S) MATCHED\n")
 logfile.close()
 sys.exit()

 if "-min_matched" not in arg_list and "-min_score" not in arg_list and "-rank" not in arg_list:
 logfile = open(log_filepath, "w")
 logfile.write("ERROR: POST PROCESSING FLAG REQUIRED\n")
 logfile.close()
 sys.exit()

 262

PostProcessUtils.py

 263

utils/PostProcessUtils.py

import os
import shutil

Copyright 2020 Joshua Laniado and Todd O. Yeates.
__author__ = "Joshua Laniado and Todd O. Yeates"
__copyright__ = "Copyright 2020, Nanohedra"
__version__ = "1.0"

def frag_match_count_filter(master_design_dirpath, min_frag_match_count, master_design_outdir_path):
 for root1, dirs1, files1 in os.walk(master_design_dirpath):
 for file1 in files1:
 if "docked_pose_info_file.txt" in file1:
 info_file_filepath = root1 + "/" + file1

 tx_filepath = root1
 rot_filepath= os.path.dirname(tx_filepath)
 degen_filepath = os.path.dirname(rot_filepath)
 design_filepath = os.path.dirname(degen_filepath)

 tx_fname = tx_filepath.split("/")[-1]
 rot_fname = rot_filepath.split("/")[-1]
 degen_fname = degen_filepath.split("/")[-1]
 design_fname = design_filepath.split("/")[-1]

 outdir = master_design_outdir_path + "/" + design_fname + "/" + degen_fname + "/" + rot_fname + "/" +
 tx_fname

 info_file = open(info_file_filepath, 'r')
 for line in info_file.readlines():
 if "Unique Mono Fragments Matched:" in line:
 frag_match_count = int(line[30:])
 if frag_match_count >= min_frag_match_count:
 shutil.copytree(tx_filepath, outdir)
 info_file.close()

def score_filter(master_design_dirpath, min_score, master_design_outdir_path):
 for root1, dirs1, files1 in os.walk(master_design_dirpath):
 for file1 in files1:
 if "docked_pose_info_file.txt" in file1:
 info_file_filepath = root1 + "/" + file1

 tx_filepath = root1
 rot_filepath = os.path.dirname(tx_filepath)
 degen_filepath = os.path.dirname(rot_filepath)
 design_filepath = os.path.dirname(degen_filepath)

 tx_fname = tx_filepath.split("/")[-1]
 rot_fname = rot_filepath.split("/")[-1]
 degen_fname = degen_filepath.split("/")[-1]
 design_fname = design_filepath.split("/")[-1]

 outdir = master_design_outdir_path + "/" + design_fname + "/" + degen_fname + "/" + rot_fname + "/" +
 tx_fname

 info_file = open(info_file_filepath, 'r')
 for line in info_file.readlines():
 if "Nanohedra Score:" in line:
 score = float(line[17:])
 if score >= min_score:
 shutil.copytree(tx_filepath, outdir)
 info_file.close()

def score_and_frag_match_count_filter(master_design_dirpath, min_score, min_frag_match_count,
master_design_outdir_path):
 for root1, dirs1, files1 in os.walk(master_design_dirpath):
 for file1 in files1:
 if "docked_pose_info_file.txt" in file1:
 info_file_filepath = root1 + "/" + file1

 tx_filepath = root1
 rot_filepath = os.path.dirname(tx_filepath)
 degen_filepath = os.path.dirname(rot_filepath)
 design_filepath = os.path.dirname(degen_filepath)

 tx_fname = tx_filepath.split("/")[-1]
 rot_fname = rot_filepath.split("/")[-1]
 degen_fname = degen_filepath.split("/")[-1]

 264

utils/PostProcessUtils.py

 design_fname = design_filepath.split("/")[-1]

 outdir = master_design_outdir_path + "/" + design_fname + "/" + degen_fname + "/" + rot_fname + "/" +
 tx_fname

 score = None
 frag_match_count = None
 info_file = open(info_file_filepath, 'r')
 for line in info_file.readlines():
 if "Nanohedra Score:" in line:
 score = float(line[17:])
 if "Unique Mono Fragments Matched:" in line:
 frag_match_count = int(line[30:])
 info_file.close()

 if score is not None and frag_match_count is not None:
 if score >= min_score and frag_match_count >= min_frag_match_count:
 shutil.copytree(tx_filepath, outdir)

def rank(master_design_dirpath, metric, outdir):

 if metric == 'score':
 metric_str = "Nanohedra Score:"
 elif metric == 'matched':
 metric_str = "Unique Mono Fragments Matched:"
 else:
 raise ValueError('\n%s is not a recognized ranking metric. '
 'Recognized ranking metrics are: score and matched.\n' %str(metric))

 designpath_metric_tup_list = []

 for root1, dirs1, files1 in os.walk(master_design_dirpath):
 for file1 in files1:
 if "docked_pose_info_file.txt" in file1:
 info_file_filepath = root1 + "/" + file1

 tx_filepath = root1
 rot_filepath = os.path.dirname(tx_filepath)
 degen_filepath = os.path.dirname(rot_filepath)
 design_filepath = os.path.dirname(degen_filepath)

 tx_fname = tx_filepath.split("/")[-1]
 rot_fname = rot_filepath.split("/")[-1]
 degen_fname = degen_filepath.split("/")[-1]
 design_fname = design_filepath.split("/")[-1]

 design_path = "/" + design_fname + "/" + degen_fname + "/" + rot_fname + "/" + tx_fname

 if metric == 'score':
 info_file = open(info_file_filepath, 'r')
 for line in info_file.readlines():
 if metric_str in line:
 score = float(line[17:])
 designpath_metric_tup_list.append((design_path, score))
 info_file.close()

 elif metric == 'matched':
 info_file = open(info_file_filepath, 'r')
 for line in info_file.readlines():
 if metric_str in line:
 frag_match_count = int(line[30:])
 designpath_metric_tup_list.append((design_path, frag_match_count))
 info_file.close()

 designpath_metric_tup_list_sorted = sorted(designpath_metric_tup_list, key=lambda tup: tup[1], reverse=True)

 if not os.path.exists(outdir):
 os.makedirs(outdir)

 outfile = open(outdir + "/ranked_designs_%s.txt" % metric, 'w')
 for p, m in designpath_metric_tup_list_sorted:
 outfile.write("%s\t%s\n" % (str(p), str(m)))
 outfile.close()

 265

NanohedraManualUtils.py

 266

utils/NanohedraManualUtils.py

def print_usage():
 print '\033[32m' + '\033[1m' + "NANOHEDRA\n" + '\033[0m'
 print '\033[32m' + '\033[1m' + "Copyright 2020 Joshua Laniado and Todd O. Yeates\n" + '\033[0m'
 print ''
 print '\033[1m' + '\033[95m' + "USER MANUAL" + '\033[95m' + '\033[0m'
 print ''
 print '\033[1m' + "QUERY MODE" + '\033[0m'
 print "REQUIRED FLAG"
 print "-query: used to enter query mode"
 print ''
 print "SELECT FROM ONE OF THE FOLLOWING QUERY OPTIONS"
 print "-all_entries: show all symmetry combination materials (SCMs)"
 print "-query_combination: show all SCMs that can be constructed by combining the two specified point groups"
 print "-query_result: show all SCMs that display the point group, layer group or space group symmetry specified"
 print "-query_counterpart: show all SCMs that can be constructed with the specified point group"
 print "-dimension: show all zero-dimensional, two-dimensional or three-dimensional SCMs"
 print ''
 print '\033[1m' + "DOCKING MODE" + '\033[0m'
 print "REQUIRED FLAGS"
 print "-dock: used to enter docking mode"
 print "-entry: specify symmetry combination material entry number"
 print "-oligomer1: specify path to directory containing the input PDB file(s) for the LOWER symmetry oligomer"
 print "-oligomer2: specify path to directory containing the input PDB file(s) for the HIGHER symmetry oligomer"
 print " this flag is only used when both oligomeric components do not obey the SAME point group
symmetry"
 print " for SCMs where both oligomeric components obey the SAME point group symmetry only the -
oligomer1"
 print " flag is used to specify a path to a single directory containing the input PDB file(s)"
 print "-outdir: specify project output directory"
 print ''
 print "OPTIONAL FLAGS"
 print "-rot_step1: PDB1 rotation sampling step in degrees [default value is 3 degrees]"
 print "-rot_step2: PDB2 rotation sampling step in degrees [default value is 3 degrees]"
 print "-output_uc: output central unit cell for 2D and 3D symmetry combination materials"
 print "-output_surrounding_uc: output surrounding unit cells for 2D and 3D symmetry combination materials"
 print "-output_exp_assembly: output expanded cage assembly"
 print "-min_matched: specify a minimum amount of unique high quality surface fragment matches [default value is 3
]"
 print "-init_match_type: Specify type i_j fragment pair type used for initial fragment matching."
 print " Default is helix_helix: 1_1. Other options are:"
 print " helix_strand, strand_helix and strand_strand: 1_2, 2_1 and 2_2 respectively."
 print ''
 print '\033[1m' + "POST PROCESSING MODE" + '\033[0m'
 print "REQUIRED FLAGS"
 print "-postprocess: used to enter post processing mode"
 print "-design_dir: specify path to project directory (i.e. path to output directory specified in DOCKING MODE)"
 print "-outdir: specify output directory for post processing output file(s)"
 print ''
 print "1) USE ONE OR BOTH OF THE FOLLOWING POST PROCESSING FILTERS"
 print "-min_matched: specify a minimum number of matched fragments"
 print "-min_score: specify a minimum score"
 print "2) OR USE THE FOLLOWING FLAG TO RANK DOCKED POSES"
 print "-rank: followed by 'score' to rank by score or 'matched' to rank by the number of unique surface fragment
matches"
 print ''
 print '\033[1m' + "EXAMPLES" + '\033[0m'
 print 'python nanohedra.py -query -all_entries'
 print 'python nanohedra.py -query -combination C3 D4'
 print 'python nanohedra.py -query -result F432'
 print 'python nanohedra.py -query -counterpart C5'
 print 'python nanohedra.py -query -dimension 3'
 print 'python nanohedra.py -dock -entry 54 -oligomer1 /home/user/C3oligomers -outdir /home/user/T33Project'
 print 'python nanohedra.py -dock -entry 67 -oligomer1 /home/user/C3oligomers -oligomer2 /home/user/D4oligomers -
outdir /home/user/P432Project'
 print 'python nanohedra.py -postprocess -design_dir /home/user/P432Project -min_score 20.0 -outdir /home/user/
P432Project/PostProcess'
 print 'python nanohedra.py -postprocess -design_dir /home/user/P432Project -min_matched 7 -min_score 20.0 -outdir
 /home/user/P432Project/PostProcess'
 print 'python nanohedra.py -postprocess -design_dir /home/user/P432Project -rank score -outdir /home/user/
P432Project/PostProcess'
 print ''

 267

NANOHEDRA MANUAL

 268

fin

