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Linear Optimal Regulation to Zero Dynamics
Taylor Ludeke and Tetsuya Iwasaki

Abstract—A general problem encompassing output regulation
and pattern generation can be formulated as the design of
controllers to achieve convergence to a persistent trajectory
within the zero dynamics on which an output vanishes. We
develop an optimal control theory for such design by adding the
requirement to minimize the H2 norm of a closed-loop transfer
function. Within the framework of eigenstructure assignment, the
optimal control is proven identical to the standard H2 control
in form. However, the solution to the Riccati equation for the
linear quadratic regulator is not stabilizing. Instead it partially
stabilizes the closed-loop dynamics excluding the zero dynamics.
The optimal control architecture is shown to have the feedback
of the deviation from the subspace of the zero dynamics and the
feedforward of the control input to remain in the subspace.

I. INTRODUCTION

A fundamental problem in the systems and control field is
the output regulation, where the objective is the design of a
feedback controller that makes a selected output converge to
zero in response to persistent command and/or disturbance
inputs [1], [2]. The output regulation has been extensively
studied in the literature for a general class of nonlinear systems
driven by an exogenous system [3], [4]. The problem is
essentially equivalent to achieving convergence to a trajectory
defined by the zero dynamics associated with the output
being regulated [3]. For linear systems, zero dynamics are
characterized by the regulator equation [5], which provides
a condition for solvability of the problem [1], [6].

Closely related to the output regulation is the eigenstruc-
ture assignment, where a controller is designed to assign a
prescribed set of eigenvalues and eigenvectors to the closed-
loop system [7]–[9]. The linear output regulation is a special
case of the eigenstructure assignment, where the exosystem
dynamics embedded in the generalized plant is preserved in the
closed-loop eigenstructure [6]. In general, the eigenstructure
assignment does not necessarily require the exosystem, and
can also be used as a framework for autonomous pattern gen-
eration. For instance, coordinated motion pattern of multiagent
systems can be achieved by embedding an eigenstructure in
the network [10], rather than driving each agent by a network
of exosystems that generate reference commands as in [11].

For linear systems, the best result on optimal output reg-
ulation to date appears to be the one in [12] where, in the
spirit of classical linear quadratic regulator (LQR), the L2

norm of an error is minimized in response to the initial state.
In this formulation, the sensor noise is generated through the
exosystem dynamics, rendering the optimal control problem
singular. As a result, the controller construction is nontrivial
and left to the singular optimal control theory. More recently,
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the problem of optimal pattern generation has been solved
[13], where the controller is designed to make state variables
converge to a prescribed pattern (oscillation, constant, or
combination) while minimizing a transient cost function. This
result assumes stabilizability of the generalized plant, hence
exosystems (e.g. disturbance model) cannot be augmented as
in the output regulation paradigm.

In this paper, we develop a theory that unifies the out-
put regulation and autonomous pattern generation within the
eigenstructure framework. In particular, we consider a plant
with anti-stable zero dynamics, and solve an optimal control
problem to achieve convergence to a persistent trajectory
within the zero dynamics while minimizing the H2 norm
of a closed-loop transfer function. The general formulation
captures optimal output regulation and pattern generation
problems, with or without the exosystem. Unlike [13], we do
not assume stabilizability of the generalized plant, allowing for
augmentation of exosystems if desired. Unlike [12], we impose
standard regularity assumptions on the generalized plant [14]
so that a simple state space formula can be obtained for the
optimal control. The formula is analogous to the standard
theory [14], but is based on the partially stabilizing solution
to the Riccati equation associated with the zero dynamics.

Notation: Bold face letters denote state space systems: y =
Gu means that the input u and output y are related by[

ẋ
y

]
=

[
A B
C D

] [
x
u

]
,

where (A,B,C,D) are real constant matrices specific to G,
and x is the state vector. For a transfer function H(s), the
H2 norm is denoted by ∥H∥2. For signals α and β, notation
α → β means ∥α(t)−β(t)∥ approaches zero as t goes to +∞.
The spectrum of matrix M is denoted by eig(M). We write
col(M1,M2) and row(M1,M2) to mean the matrices obtained
by stacking the arguments in a column and row, respectively.
The set of complex numbers with negative real parts is denoted
by C−. For a tall full column rank matrix X , we denote by
(X−, X⊥, X

−
⊥ ) a matrix triple such that[

X⊥
X−

] [
X−

⊥ X
]
= I, W :=

[
X−

⊥ X
]
, (1)

where W is a square matrix.
We denote by S the set of matrices (A,B,C,D) such that

(A,B) is stabilizable, (Ĉ, Â) has no unobservable mode on
the imaginary axis, and DTD = I , where Â := A−BDTC and
Ĉ := (I−DDT)C. We denote the “dual” of S by ST, which is
the set of matrices (A,B,C,D) such that (AT, CT, BT, DT) ∈
S. Conditions (A,B,C,D) ∈ S and (A,B,C,D) ∈ ST are
standard in optimal control theories [5], [14] to guarantee
existence of the stabilizing solutions to the Riccati equations
associated with the LQR and Kalman filter, respectively.
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II. PROBLEM STATEMENT

A. General Problem: Regulation to Zero Dynamics

Consider the generalized plant G described by

ẋ = Ax+B1w +B2u,
z = C1x+D1u,
y = C2x+D2w,

(2)

where x(t) ∈ Rn is the state, u(t) ∈ Rnu is the control
input, y(t) ∈ Rny is the sensor output available for feedback
control, w(t) ∈ Rnw is the exogenous input possibly including
reference commands, disturbances, and sensor noises, and
z(t) ∈ Rnz is the performance output we wish to keep small.

We will formulate an optimal control problem for (2) to
achieve convergence to a trajectory within the zero dynamics.
For state space system (A,B2, C1, D1) described by (2) with
w = 0, we define the zero dynamics as the collection of
trajectories (x, u) such that z = 0. When D1 has a full column
rank, z = 0 implies

ẋ = (A−B2D
−
1 C1)x, u = −D−

1 C1x.

Hence, the zero dynamics is contained in the set of trajec-
tories (x, u) satisfying these equations. A subset is given by
trajectories residing in an invariant subspace, i.e.,

x = XeΛtηo, u = UeΛtηo, (3)

with arbitrary vector ηo, where matrix triple (X,U,Λ) satisfies

XΛ = (A−B2D
−
1 C1)X, U = −D−

1 C1X. (4)

This subset is contained in the zero dynamics if and only if
C1X +D1U = 0 holds, which enforces z = 0. It can readily
be verified that (X,U,Λ) satisfies this condition and (4) if and
only if the following regulator equations are satisfied:

AX +B2U = XΛ, (5a)
C1X +D1U = 0. (5b)

To make a formal problem statement, let us introduce:
Assumption 1: The regulator equations (5) are satisfied,

and X is a tall matrix with a full column rank.
We fix such triple (X,U,Λ) and consider the control design

to achieve convergence to (3) for some ηo. We then impose
Assumption 2: eig(Λ) ∩ C− = ∅

without loss of generality since any stable invariant subspace
does not contribute to the steady state behavior and can be
removed. The problem is the following:

Problem 1: Consider the generalized plant (2). Let matrices
(X,U,Λ) be given and suppose Assumptions 1 and 2 are
satisfied. Design a controller u = Ky that makes the closed-
loop state converge to the zero dynamics in an optimal manner,
with the following specifications:
(s1) Consider the closed-loop system with w = 0. For each

ηo, there exists an initial state such that

x(t) → XeΛtηo, u(t) → UeΛtηo. (6)

For each initial state, there exists ηo such that (6) holds.
(s2) The closed-loop transfer function from w to z, denoted by

H(s), is stable and its H2 norm is the minimum among
those achieved by any controller satisfying (s1).

Unlike classical optimal control theories, our control design
does not require internal stability of the closed-loop system.
Instead, we require that the plant state x converge to a nonzero
trajectory XeΛtηo defined by the anti-stable zero dynamics
characterized in (5). Yet, property (6) with (5b) implies that
the output z converges to zero, and the convergence should be
optimal as dictated by the minimum H2 norm of the closed-
loop transfer function H(s).

As is well known, the H2 cost is equivalent to the L2 norm
of z in response to the impulse input w(t) = woδ(t), square-
averaged over all directions of the vector wo, where δ(t) is
the Dirac delta function. In this context, setting the initial
condition is a role of w. Another interpretation of the H2

norm is the maximum peak value (L∞ norm) of the output in
response to the class of square-integrable (L2) inputs. In this
case, w is an L2 signal and its role is to drive the state over
time. In either case, convergence (6) is achieved and z decays
to zero in the H2 optimal manner.

Assumption 1 does not necessarily restrict the class of
physical plants for which the theory developed in this paper
is applicable. This is because the output z is chosen by
the designer for the purpose of optimization, and the zero
dynamics may not be inherent with the physical system. In
the subsequent sections, we will provide specific contexts in
which Problem 1 arises and justify its significance.

B. Output Regulation Problem

This section introduces the general output regulation prob-
lem and then shows that it is a special case of Problem 1.
Consider the plant

ẋp = Aoxp +Bou+ Eoη +Gow,
e = Cexp +Deu+ Feη,
y = C2x+D2w, x := col(xp, η),

(7)

where xp is the state, u is the control input, y is the measured
output available for the controller, w is the exogenous input,
e is the error output to be regulated, and η is the signal that
can be modeled by an exogenous system

η̇ = Λη +How. (8)

The general description of the plant allows for w to contain
various sources of exogenous signals such as the disturbance,
reference command, and sensor noise, each of which can be
persistent or non-persistent, with or without the knowledge of
their dynamics. For example,

w =

 w1

w2

w3

 ,

 Go

Ho

D2

 =

 ∗ 0 0
0 ∗ 0
0 0 ∗

 (9)

would generate signal η with known dynamics Λ by w2

through (8), and capture the disturbances and sensor noises
with unknown dynamics by w1 and w3, respectively. Assump-
tion 2 means that η is persistent, which can be assumed without
loss of generality by absorbing any decaying components of
Λ dynamics into Ao and making them driven by part of w1. In
this case, Λ would typically have eigenvalues on the imaginary
axis to generate nonzero constant or sinusoidal η using impulse
input w2, effectively setting the initial state η(0) through Ho.
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The output regulation problem [1] is to design a feedback
controller u = Ky such that (a) the closed-loop system is
internally stable except for the exosystem dynamics Λ, and
(b) the error converges to zero, e(t) → 0, for arbitrary
initial state when w = 0. It is well known [1], [6] that,
under mild assumptions on stabilizability and detectability, the
output regulation problem is solvable if and only if there exist
matrices (Xp, U) with the following property.

Assumption 3: The following regulator equations hold:

AoXp +BoU + Eo = XpΛ, (10a)
CeXp +DeU + Fe = 0. (10b)

The equations (10) essentially mean that the solution of the
form x = Xpη and u = Uη exists for (7) when driven by
w = 0 and η satisfying η̇ = Λη, and the output e vanishes on
the solution. In this case, every output regulator achieves

xp → Xpη, u → Uη, e → 0, η(t) = eΛtη(0), (11)

for all initial state when w = 0 (see [6]).
To define an optimality criterion for output regulators, let

ζ = Coxp +Dou+ Foη (12)

be the performance output. Then, from (11), we have

ζ → Zoη, Zo := CoXp +DoU + Fo, (13)

where the steady state Zoη is not necessarily zero. The
transient part of ζ is defined by

z := ζ − Zoη = Coxp +Dou+ (Fo − Zo)η. (14)

We consider minimization of the H2 norm of the closed-
loop transfer function from w to z over the set of controllers
achieving (11) for all initial state when w = 0.

This optimal output regulation problem can be formulated as
Problem 1 as follows. Note that plant (7), exosystem (8), and
performance output (14) can be expressed as the generalized
plant (2) with state x := col(xp, η) and augmented matrices

A :=

[
Ao Eo

0 Λ

]
, B1 :=

[
Go

Ho

]
, B2 :=

[
Bo

0

]
.

C1 :=
[
Co Fo − Zo

]
, D1 := Do. (15)

When (Xp, U) satisfies (10), the regulator equation (5) is
satisfied by X := col(Xp, I) because (5a) is identical to (10a),
and (5b) holds by construction of z. The regulator equation
for the error, (10b), is not explicitly included in the description
of Problem 1 but it is implicit in the choice of (X,U).

C. Autonomous Pattern Generation Problem

Problem 1 also captures the autonomous pattern generation
[13]. Consider the plant in (2) with an additional output

h = Chx+Dhu.

Given a pair of matrices (H,Λ), the goal is to design a
feedback controller u = Ky such that every initial state
response of the closed-loop system with w = 0 satisfies
convergence to a prescribed pattern h → HeΛtηo for some
ηo, without being driven by an exogenous system. Matrices

H and Λ specify the steady state pattern in terms of the
spatial (relative phases/amplitudes) and temporal (constant,
oscillation) properties, respectively. See [10], [13], [15] for
details.

Among the controllers achieving the goal, we may select the
one that is optimal in the following sense. It has been shown
[10], [13] that a requirement for feasibility of the goal is the
existence of (X,U) satisfying

AX +B2U = XΛ,
ChX +DhU = H,

(16)

and a feasible controller achieves convergence as in (6). Since
col(x, u) converges to the range space of col(X,U), we
may choose the performance output z to be the projection
of col(x, u) onto the orthogonal complement of the range
space so that fast convergence z → 0 corresponds to fast
convergence to the desired pattern. Thus we select

C1 :=

[
X⊥

−UX−

]
, D1 :=

[
0
I

]
(17)

and minimize the H2 norm of the closed-loop transfer function
from w to z over the controllers achieving h → HeΛtηo.
This optimal pattern generation problem can be formulated as
Problem 1 since (5b) is satisfied.

III. MAIN RESULTS

This section presents the state/output feedback controllers
that solve Problem 1. We will motivate the results with
intuitive arguments in this section, followed by a rigorous
proof of the main result in Section IV. Let us first consider
the state feedback case. Under Assumption 1, using coordinate
transformation (see e.g. [16] for similar developments)[

xo

xō

]
:=

[
X⊥
X−

]
x, µ := u− Uxō, (18)

the system (2) can be described by ẋo

ẋō

z

 =

 Ao 0 Bo

∗ Λ ∗
Co 0 Do

 xo

xō

µ

+

 ∗
∗
0

w, (19)

where[
Ao Bo

Co Do

]
:=

[
X⊥AX−

⊥ X⊥B2

C1X
−
⊥ D1

]
. (20)

Consider minimization of ∥H∥2 as specified in Problem 1
(s2). In the case of the standard LQR, due to the requirement
of internal stability, the state xō must be retained although
it is unobservable from z. For Problem 1, however, we may
remove this state since the Λ dynamics should be preserved for
the closed-loop system to achieve (6). In this case, we would
design the LQR of the form µ = Koxo for the auxiliary plant
(Ao, Bo, Co, Do). It is well known that the LQR exists when

Assumption 4: (Ao, Bo, Co, Do) ∈ S
holds. The corresponding controller for the original plant,
u = Koxo+Uxō, turns out to give the solution to Problem 1.

Theorem 1: Consider the generalized plant (2), let matrices
(X,U,Λ) be given, and define (20). Suppose Assumptions 1, 2,
and 4 are satisfied, and C2 = I and D2 = 0. Then an optimal
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static state feedback control that satisfies specifications (s1)
and (s2) in Problem 1 is given by

u = Kx, K := UX− +KoX⊥, (21a)
Ko := −(BT

oPo +DT
oCo), (21b)

where Po is the stabilizing solution to the Riccati equation

PoAo +AT
oPo + CT

oCo = (PoBo + CT
oDo)(PoBo + CT

oDo)
T.

The minimum H2 norm achieved by this controller is

∥H∥22 = tr(BT
1PB1), P := XT

⊥PoX⊥. (22)

Proof. With the coordinate transformation (18), the plant
(2) is described by (19). In general, the static state feedback
control is of the form

u = µ+ Uxō, µ = Koxo +Kōxō (23)

with some gains Ko and Kō. Note that condition (6) in
Problem 1 is equivalent to

xo(t) → 0, xō(t) → eΛtηo, µ(t) → 0. (24)

We then see that specification (s1) is satisfied only if Kō = 0.
Therefore, the state xō can be removed from (19) and the op-
timal control µ = Koxo that minimizes ∥H∥2 is given by the
standard LQR theory applied to the system (Ao, Bo, Co, Do).
The result then follows by noting that the controller µ = Koxo

achieves convergence of xo and µ to zero for any initial
condition under w = 0, and that the state xō follows the
dynamics ẋō = Λxō in the steady state.

Theorem 1 reveals the following architecture of the optimal
state feedback control. The second term of K in (21) provides
the feedback of the error X⊥x to achieve the convergence of
x to the range space of X , i.e., xo → 0, while the first term
is the feedforward of UeΛtηo in the steady state to remain
on the zero dynamics. Note that the auxiliary system (19) is
obtained through the feedback transformation by the first term,
µ = u−Uxō, so that the eigenvalues of the zero dynamics (i.e.,
those of Λ) are eigenvalues of (19). The feedback control by
the second term then preserves the Λ eigenvalues and stabilizes
the remaining eigenvalues for the closed-loop system.

It is worth noting that P in (22) satisfies the Riccati equation
for the original plant (2):

PA+ATP+CT
1C1 = (PB2+CT

1D1)(PB2+CT
1D1)

T, (25)

and the additional properties

PX = 0, eig(A+B2K)\eig(Λ) ⊂ C−,
K := −(BT

2P+DT
1C1),

(26)

where K in (21) and (26) are identical to each other. This can
be easily verified by direct calculations to show the following
identities

W T∆W =

[
∆o 0
0 0

]
, W :=

[
X−

⊥ X
]
,

W−1(A+B2K)W =

[
Ao +BoKo 0

∗ Λ

]
,

where ∆ and ∆o are the left hand side minus the right
hand side of the Riccati equations in (25) and Theorem 1,

respectively. Among multiple solutions to the Riccati equation
(25), we shall call P given by (22) the partially stabilizing
solution with respect to (X,Λ) due to the properties in (26).
It can readily be verified that

(A+B2K)X = XΛ,
(C1 +D1K)X = 0,

holds for K in (26) by noting that (21) implies U = KX . Thus,
the partially stabilizing solution provides a state feedback gain
K that assigns the eigenstructure (X,Λ) to the closed-loop
system. The recognition of Problem 1 as an eigenstructure
assignment will be crucial for the proof of the next result.

We now generalize the result to the output feedback case.
While it cannot be assumed that a separation principle holds
for Problem 1, it turns out that it does and an optimal controller
is given by replacing x in the state feedback described in
Theorem 1 by the state estimate from the Kalman filter, which
exists when

Assumption 5: (A,B1, C2, D2) ∈ ST

is satisfied. The result is formally stated as follows.
Theorem 2: Consider the generalized plant (2), let matrices

(X,U,Λ) be given, and define (20). Suppose Assumptions 1, 2,
4, and 5 are satisfied. Let P and Q be solutions of the Riccati
equations

PA+ATP+ CT
1C1 = (PB2 + CT

1D1)(B
T
2P+DT

1C1), (27a)
AQ+ QAT +B1B

T
1 = (QCT

2 +B1D
T
2)(C2Q+DT

2B1), (27b)

where Q is the stabilizing solution and P is the partially
stabilizing solution with respect to (X,Λ). Define the cor-
responding gains by

K := −(BT
2P+DT

1C1), F := −(QCT
2 +B1D

T
2). (28)

Then an optimal controller that solves Problem 1 is given by

˙̂x = Ax̂+B2u+ F(C2x̂− y),
u = Kx̂,

(29)

and the minimum H2 norm is given by

∥H∥22 = tr(BT
1PB1) + tr(KQKT)

= tr(C1QC
T
1) + tr(FTPF).

(30)

The formula for the optimal controller in Theorem 2 appears
identical to the solution for the standard H2 control problem
[14], given in terms of the Kalman filter plus the linear
quadratic regulator (LQR). However, since P is the partially
stabilizing solution, the state feedback gain K is different from
the LQR, and the closed-loop system is not internally stable.
In particular, it is described by (18), e := x− x̂, and

ė
ẋo

ẋō

z

 =


A+ FC2 0 0 B1 + FD2

−BoK Ao +BoKo 0 X⊥B1

∗ ∗ Λ X−B1

−DoK Co +DoKo 0 0



e
xo

xō

w

 .

Clearly, the closed-loop system contains the unstable modes
associated with Λ, but the modes are unobservable and the
transfer function H(s) from w to z is stable.

When (A,B2) is stabilizable and Λ has no eigenvalues
on the imaginary axis, the stabilizing solution P = Ps to
the Riccati equation (27a) exists. In this case, (29) gives the
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standard H2 optimal controller, which internally stabilizes the
closed-loop system and achieves z(t) → 0 for any initial state
under w = 0. The H2 norm of the corresponding closed-
loop transfer function is greater than or equal to that of
H(s) achieved by (29) with the partially stabilizing solution P

because Ps ≥ P due to maximality of the stabilizing solution
[5], where the equality holds if Λ is Hurwitz. This means
that the H2 norm can possibly be made smaller by relaxing
the stability requirement and allowing for convergence to the
unstable zero dynamics when Λ has eigenvalues in the closed
right half plane.

While the result in Theorem 2 is simple and makes sense
intuitively, its proof is nontrivial. The main challenge is
rigorous justification of the separation principle for Problem 1.
As part of the proof, it should also be shown that the optimal
state feedback is static. Theorem 1 shows optimality of (21)
among the set of static state feedback controllers, but does
not eliminate the possibility that a dynamic state feedback
may give better performance (i.e., smaller ∥H∥2). The direct
generalization of Theorem 1 for the dynamic case is difficult
mainly because, when (23) is replaced by

u = µ+ Uxō, µ = Ko(s)xo +Kō(s)xō,

specification (s1) no longer implies Kō(s) ≡ 0. The facts
that the separation principle holds and that the optimal state
feedback is static are well known for the standard H2 control
problem. However, it is not clear if these properties hold for
Problem 1 since it is non-traditional in that the closed-loop
system is required to be internally unstable, making the state
converge to a nonzero trajectory as in (6). In fact, it has been
proven for a problem closely related to Problem 1 [13] that the
optimal state feedback is dynamic, and the separation principle
does not hold. We will show these two properties indeed
hold, and prove Theorem 2 with the aid of the eigenstructure
assignment theory [10] later in Section IV.

Let us now consider the optimal output regulation problem
as a special case of Problem 1 for the generalized plant (2)
with the specific structure (15) as described in Section II-B.
Theorem 2 is specialized to reveal the optimal output regula-
tion architecture as follows.

Corollary 1: Consider the plant (7), exosystem (8), and
performance output (12), and let matrices (Xp, U,Λ) be given.
Define Zo by (13) and system matrices by (15). Suppose
Assumptions 2 through 5 are satisfied. Let Po and Q be the
stabilizing solutions of the Riccati equations

PoAo +AT
oPo + CT

oCo = (PoBo + CT
oDo)(B

T
oPo +DT

oCo),
AQ+ QAT +B1B

T
1 = (QCT

2 +B1D
T
2)(C2Q+DT

2B1),

and define the corresponding gains by

Ko := −(BT
oPo +DT

oCo), F := −(QCT
2 +B1D

T
2).

Then, the closed-loop system with the controller
˙̂x = Ax̂+B2u+ F(C2x̂− y),
u = Uη̂ +Ko(x̂p −Xpη̂),

[
x̂p

η̂

]
:= x̂ (31)

satisfies the following convergence property: with an arbitrary
initial state under w = 0, it holds that

xp → Xpη, u → Uη, η = eΛtη(0),
e → 0, ζ → Zoη.

(32)

Moreover, this controller gives the minimum H2 norm of the
closed-loop transfer function H(s) from w to z among the set
of all controllers satisfying the convergence property, where
z := ζ − Zoη is the transient part of ζ.

Proof. The result is a special case of Theorem 2 with the
specific structure of the system matrices for the generalized
plant (2) as in (15). We note that Assumption 3 implies
Assumption 1 with X := col(Xp, I), and the matrices
(Ao, Bo, Co, Do) in (20) with[

X−
⊥ X

]
=

[
I Xp

0 I

]
,

[
X⊥
X−

]
=

[
I −Xp

0 I

]
.

coincide with the corresponding plant matrices in (15). The
result then follows from Theorem 2 using the expression of
K in (21) and the relationship between P and Po in (22),
where the stated convergence property corresponds to (s1) in
Problem 1 with ηo = η(0).

Corollary 1 shows that the optimal output regulator (31) has
the following architecture. The steady state trajectories of xp

and u in (32) guarantee output regulation e → 0 through the
regulator equation (10), and are set as the design target. The
plant state xp and the output η from the exogenous system are
estimated by the Kalman filter, and the control input u consists
of the feedback and feedforward terms. The perturbation of
xp from the target trajectory Xpη is estimated as x̂p −Xpη̂,
multiplied by the LQR gain Ko, and used in the feedback term
to stabilize the target trajectory. The feedforward term Uη̂ is
the estimate of the persistent control input u = Uη needed to
remain on the target trajectory.

IV. PROOF OF THE MAIN RESULT

This section proves Theorem 2 within the framework of
eigenstructure assignment. We will show that specification (s1)
of Problem 1 can be formalized as an eigenstructure property
(Lemma 1), parametrize feasible controllers (Lemma 2), re-
duce Problem 1 to the standard H2 optimal control problem
(Lemma 3), provide the state feedback solution (Lemma 4),
and prove the output feedback result in Theorem 2. The core
ideas for the first two lemmas are from [10], while the rest is
newly developed here. To this end, let us first introduce:

Definition 1: A controller u = Ky with a particular state
space realization is said to be admissible if it is a detectable
realization and satisfies specification (s1) of Problem 1, and
the set of all admissible controllers is denoted by A.

We first recognize that the control design with specification
(s1) is an eigenstructure assignment.

Lemma 1: Consider the plant (2), where Assumptions 1
and 2 are satisfied and D1 has a full column rank. For each
controller u = Ky with a detectable realization, let the closed-
loop system with w = 0 be described by ẋ = Acℓx with x =
col(x, xc) where xc is the controller state. Let r := col(x, u)
be an output of the closed-loop system and define Hcℓ such
that r = Hcℓx. Then K ∈ A holds if and only if

AcℓX = XΛ, HcℓX = R, eig(Acℓ)\eig(Λ) ∈ C−, (33)

hold for some matrix Xc, where

X := col(X,Xc), R := col(X,U).

In this case, the closed-loop transfer function H(s) is stable.
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Proof. It can readily be verified using the PBH test that the
pair (Hcℓ,Acℓ) is detectable since the controller is a detectable
realization. Also, the pair (R,Λ) is observable, where R :=
col(X,U), since X has a full column rank. Specification (s1)
corresponds exactly to the notion of asymptotic equivalence
between the systems (Hcℓ,Acℓ) and (R,Λ). By the proof of
Lemma 1 in [10], the asymptotic equivalence holds if and
only if there exists a full column rank matrix X satisfying
(33). The equality HcℓX = R implies that X is of the form
X = col(X,Xc) for some Xc. This proves the equivalence.
The stability of H(s) follows by observing that every impulse
response satisfies (6) and therefore z → 0 due to (5b).

With an admissible controller K ∈ A, all the modes of
the closed-loop system are stable except for unstable modes
captured by Λ, and the output z converges to zero for an
arbitrary initial state when w = 0. Lemma 1 reduces Problem 1
to an optimal eigenstructure assignment [10] to satisfy the
conditions in (33) while minimizing the H2 norm of the
closed-loop transfer function H(s) from w to z. The control
design is facilitated by a parametrization of a subset of A
containing an optimal control, given as follows.

Lemma 2: Consider the plant (2), where Assumptions 1
and 2 hold and (C2, A) is detectable. The set of admissible
controllers A is nonempty if and only if (A, B̄2) is stabilizable,
where B̄2 := row(B2,−X). A subset of A is parametrized by
detectable realizations of[

u

ξ̇

]
=

[
U
Λ

]
ξ +Θ(y − C2Xξ) (34)

where Θ is an arbitrary linear time-invariant state space sys-
tem that internally stabilizes the augmented plant (A, B̄2, C2).
Moreover, the optimal control that minimizes the H2 norm of
H(s) is an element of this subset.

Proof. The result essentially follows from Lemma 3, The-
orem 3, and their proofs in [10]. (See also [13] that provides
a brief proof for a version of this result).

The PBH test verifies that stabilizability of (A, B̄2) is
equivalent to stabilizability of (Ao, Bo) in (20), which in
turn implies existence of state feedback gain K such that the
spectrum of A + B2K contains the eigenvalues of Λ and all
the other eigenvalues are in the open left half plane (K = K

in (21a) in with Ko stabilizing Ao+BoKo). When (A,B2) is
not stabilizable, addition of columns of X to B2 may make
(A, B̄2) stabilizable. The implication for the original system
(A,B2) is the ability to assign the eigenstructure (X,Λ) and
stabilize the other eigenvalues for the closed-loop system as
in (26) so that convergence x → XeΛtηo is achieved.

Exploiting the parametrization in (34), the following result
converts Problem 1 to the traditional H2 optimal control
problem with internal stability of the closed-loop system.

Lemma 3: Consider the plant G in (2), where Assump-
tions 1 and 2 hold and (A, B̄2, C2) is a stabilizable and
detectable triple. Let a controller K be given by (34) with Θ
internally stabilizing (A, B̄2, C2). Define an augmented plant
Ḡ by

χ̇ = Aχ+B1w + B̄2µ, B̄2 :=
[
B2 −X

]
,

z = C1χ+ D̄1µ, D̄1 :=
[
D1 0

]
,

φ = C2χ+D2w,
(35)

Then the closed-loop transfer function H(s) from w to z
defined for G and u = Ky coincides with the closed-loop
transfer function H̄(s) from w to z defined for Ḡ and µ = Θφ.
Moreover, the feedback system (G,K) is not internally stable,
while the feedback system (Ḡ,Θ) is internally stable.

Proof. Consider the closed-loop system (G,K) with K
described by (34). Label the input and output of Θ as φ and µ,
i.e., µ := Θφ. Pull out Θ and define the rest of the system seen
by Θ as G̃, which has input col(w, µ), output col(z, φ), and
state col(x, ξ) (this is a standard process in robust control [5]).
Then the closed-loop system (G,K) is described as feedback
system (G̃,Θ). Using

χ := x−Xξ, φ := y − C2Xξ,

express G̃ in terms of the state col(χ, ξ) and simplify the
equations using (5) for the zero dynamics. This realization of
G̃ is given by (35) and ξ̇ = Λξ+row(0, I)µ. The Λ modes are
unobservable from col(z, φ), and ξ can be removed to obtain
Ḡ in (35). The feedback system (G,K) shares the eigenvalues
with Λ and hence is not stable. The feedback system (Ḡ,Θ)
is internally stable because Θ stabilizes (A, B̄2, C2).

For solving Problem 1, the convergence property in (s1) is
enforced by the controller structure in (34), and the optimality
in (s2) can be achieved by choosing Θ to optimize the H2

norm of H̄(s). The latter problem is a singular optimal control
problem with rank-deficient D̄1 and may be addressed by
classical results (e.g. [17]). However, the singularity is caused
by embedding of the zero dynamics in the controller (34) and it
is possible to obtain a simple and clean solution by exploiting
the special structure of Ḡ. Here is the state feedback result.

Lemma 4: Let the generalized plant (2) be given, where
Assumptions 1, 2, and 4 are satisfied, and C2 = I and D2 = 0.
For the augmented plant (35) and possibly dynamic controller
µ = Θχ, let H̄(s) be the closed-loop transfer function from w
to z. Then, an optimal Θ that internally stabilizes the closed-
loop system with the smallest ∥H̄∥2 is a static gain given by

µ = K̄χ, K̄ := col(K, EX−)

where K is defined by (21) and E is an arbitrary matrix such
that Λ−E is Hurwitz. Moreover, the static controller in (21)
is the minimal realization of (34) with the optimal Θ, and
solves Problem 1 with optimality in (s2) among all static and
dynamic controllers satisfying (s1).

Proof. Direct substitution verifies that the controller (21)
can be expressed as (34) with system µ = Θφ given by
constant gain µ = K̄φ, where ξ is unobservable in u and
can be removed. We show that µ = K̄χ is an optimal state
feedback that minimizes ∥H̄∥2. First note that K̄ stabilizes the
augmented plant (35) since

W−1(A+ B̄2K̄)W =

[
A+BoKo 0

∗ Λ− E

]
,

where W and (Ao, Bo) are defined in (1) and (20). It is well
known [18] that the optimal state feedback for the standard
H2 control problem is given by a static gain. Hence, it
suffices to prove that µ = K̄χ gives the smallest H2 norm
achievable by any static state feedback with internal stability.
Let K̄ be an arbitrary matrix such that A+ B̄2K̄ is Hurwitz.
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From the standard linear system theory, the H2 norm squared
of the closed-loop transfer function H̄(s) for the controller
µ = K̄χ is given by tr(BT

1PB1) where P is the solution to
the Lyapunov equation

P (A+B̄2K̄)+(A+B̄2K̄)TP+(C1+D̄1K̄)T(C1+D̄1K̄) = 0.

Note that P = P is the solution when K̄ = K̄. We complete
the proof by showing that P ≥ P holds for any K̄ and hence
we have tr(BT

1PB1) ≥ tr(BT
1PB1), implying that µ = K̄χ

gives the smallest H2 cost. To see this, subtract the Riccati
equation (25) from the above Lyapunov equation to get

P∆(A+ B̄2K̄) + (A+ B̄2K̄)TP∆ +KT
∆D̄

T
1D̄1K∆ = 0,

P∆ := P − P, K∆ := K∗ − K̄, K∗ := col(K, 0).

This implies P ≥ P when A+ B̄2K̄ is stable because P∆ is
an integral of the positive semidefinite forcing term.

Lemma 4 shows that the solution K̄ to the singular optimal
control for (35) is characterized by the partially stabilizing
Riccati solution P, and is not unique due to the freedom in E.
This freedom does not affect the optimal controller (21) for
the original plant since u in (34) is independent of E. There
are two roles of Lemma 4. One is to show that the static state
feedback (21) is indeed the optimal solution to Problem 1 and
dynamic state feedback does not help to improve the ∥H∥2
performance. The other role is to set a basis for the proof of
the general output feedback solution presented next.

Proof of Theorem 2. Based on the separation principle
(Theorem 4.1 of [18]), the optimal control µ = Θφ for the
augmented plant (35) to minimize the H2 norm of H̄(s) is
given by the optimal state feedback plus the Kalman filter:

µ = K̄χ̂, ˙̂χ = Aχ̂+ B̄2µ+ F(C2χ̂− φ).

By Lemmas 2 and 3, an optimal control solving Problem 1 is
given by substituting this Θ into (34), resulting in

u = Uξ +Kχ̂,

ξ̇ = Λξ + EX−χ̂,
˙̂χ = (A+ B̄2K̄)χ̂+ F(C2χ̂− y + C2Xξ).

Introducing the new state coordinate

x̂ := χ̂+Xξ,

this controller is described by (29), where we used U = KX
and the regulator equation (5), and noted that the state ξ is
unobservable from u and can be eliminated. The minimum
H2 norm in (30) follows from a formula in [18] and its dual,
applied to the augmented closed-loop system H̄(s).

V. DESIGN EXAMPLE

Consider a mass-spring system subject to actuator force f
and disturbance force η, which is described by mp̈ = f+η−kp
where m and k are the mass and stiffness, and p is the position.
The force f is generated by the control input u through the
actuator dynamics f + τ ḟ = u, where τ is the time constant.
With m = τ = 1 and k = 4, the system is described by the
first equation in (7) with xp := col(p, ṗ, f), Go = 0, and

Ao =

 0 1 0
−k 0 1
0 0 −1

 , Bo =

 0
0
1

 , Eo =

 0
1
0

 .

The measured output is y = p + wv, where wv is the sensor
noise. The force η is modeled by (8) with Λ = Λd and

Λd = 0, Ho =
[
α 0

]
, w := col(wd, wv),

where α is a design weight representing the magnitude of the
disturbance, which is a constant when wd is an impulse.

We will design a controller u = Ky such that the position
or velocity converges to zero under the constant disturbance.
The design will minimize the L2 norm of the transient part of
ζ := col(βp, u), where β is a design weight. The design can be
formulated as Problem 1 with (15) and solved by Theorem 2.
The solution to the regulator equation (10a) is given by

Xp = col(ρ, 0, kρ− 1), U = kρ− 1,

where ρ is an arbitrary parameter. If ρ = 0, then the position
p is regulated at zero. If ρ ̸= 0, then the velocity ṗ is regulated
at zero with the position p and control input u converging to
αρ and α(kρ− 1), respectively, to maintain the force balance
in the steady state. The design result is shown in Fig. 1, where
the impulse responses under wd = δ(t) and wv = 0 are shown
for three cases ρ = 0, 1, 2 (blue, red, yellow) with the design
weights α = 2, β = 5. When ρ = 0, the controller has an
integrator as an internal model and makes p converge to zero
while u balances η = 2 in the steady state. We see that the
choice of ρ in Xp specifies the steady state position.

Next, we design a controller u = Ky such that the position
h := p oscillates with frequency ω in the steady state in the
presence of the persistent constant disturbance. Choose

Hπ :=
[
1 0

]
, Λπ =

[
0 ω

−ω 0

]
,

and consider the target behavior h → Hπe
Λπtηπ for some ηπ .

Then, for the augmented plant (15) with Λ := Λd, the solution
to the regulator equations (16) with Λ := Λπ and H := Hπ

is given by (X,U) = (Xπ, Uπ) where

Xπ =


1 0
0 ω
kω 0
0 0

 ,
Uπ = kω

[
1 ω

]
,

kω := k − ω2.

The choice X := Xπ leads to not-stabilizable (Ao, Bo) in
(20), violating Assumption 4 and making Problem 1 infeasible.
This is because A contains uncontrollable mode Λd, which has
to remain in the closed-loop system. Therefore, we redefine
X := row(Xπ, Xd) and U := row(Uπ, Ud), where (Xd, Ud)
is equal to (X,U) in the previous design, i.e., Xd = col(Xp, 1)
and Ud = kρ − 1. In this case, (X,U) satisfies (16) with
Λ := diag(Λπ,Λd) and H := row(Hπ, ρ), and the target
behavior is modified as h → HeΛπtηπ + αρ.

Using Theorem 2, the optimal controller is designed for
the cost defined by (17) with X⊥ replaced by βX⊥ with
normalization X⊥X

T
⊥ = I . The design result is shown in

Fig. 1 for two cases (ρ, ω) = (1, 1) and (1, 2) with α = 2
and β = 5. When ω = 1, both p and u converge to sinusoids
with period 2π, where the average values coincide with the
steady state values in the previous output regulation design
with ρ = 1. When ω = 2, which is equal to the natural
frequency

√
k/m of the mechanical system, u converges to a



8

constant that balances with the disturbance and average spring
force, while p converges to the natural oscillation.

These design problems cannot be solved by existing meth-
ods; not by [12] due to the presence of sensor noise wv , and
not by [13] due to the lack of (A,B2) stabilizability.
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Fig. 1. Time responses. The legend indicates (ρ, ω).

VI. DISCUSSION AND CONCLUSION

We have considered an optimal regulation problem to
achieve convergence to the zero dynamics (Section II-A),
which unifies the classical output regulation with exosys-
tem (Section II-B) and the autonomous pattern generation
without exosystem (Section II-C). The problem is solved
within the general framework of the eigenstructure assign-
ment (Section IV), and the optimal control is characterized
using the partially stabilizing solution to the Riccati equation
(Section III), which arises due to the requirement that the
closed-loop system embed eigenvalues of the anti-stable zero
dynamics.

Theorem 2 solves a version of the optimal eigenstructure
assignment, while another closely related version has recently
been solved in [13]. They both solve Problem 1, but in
different settings in terms of the cost function and the plant
class. They compare as follows.

A general cost function is considered in [13], where the
performance output ζ can be arbitrary and its transient part z
is penalized. In our formulation, this is also the case when the
output regulation is considered (see Section II-B), but is not the
case in general since the transient part z of an arbitrary plant
output ζ cannot always be defined as a linear combination of
x and u. However, convergence to the subspace spanned by
col(X,U) can be optimized (Section II-C), which is effective
as demonstrated by a design example (Section V).

Our result has provided a new insight into the optimal
control architecture. In particular, Theorem 2 revealed that,
when the performance signal z is associated with the zero
dynamics, the optimal controller does not explicitly contain
an internal model of the zero dynamics Λ and the controller
order is equal to the plant order n. This is in contrast with the
optimal control with a general cost function in [13], which
explicitly embeds an internal model of Λ ∈ Rℓ×ℓ and the
order of the controller is n+ ℓ.

Finally, the class of plants is larger in Theorem 2 than
in [13], where the latter assumes stabilizability of (A,B2)
and excludes the output regulation case with an unstable
exosystem; see (15). Our result assumes stabilizability of
(Ao, Bo) instead, which is a weaker condition associated with

convergence to the range space of X , governed by the zero
dynamics. This allows for integration of the output regulation
and pattern generation to give more design flexibility, as
illustrated by a design example in Section V.

For the optimal output regulation problem, our result com-
pares with the state-of-the-art result in [12] as follows. The
problem formulated in Section II-B is more general in the
sense that the performance output ζ can be different from the
regulated output e and does not have to converge to zero, and
exogenous signals with unknown (unmodeled) dynamics can
represent multiple channels of plant disturbances and sensor
noises. Moreover, unlike the singular optimal control problem
in [12], regularity conditions (full control penalty in ζ and no
noise-free measurements in y) lead to the optimal controllers
characterized by standard Riccati equations. This feature re-
veals an optimal control architecture comprising the Kalman
filter, the LQR, and a disturbance/reference feedforward as
in Corollary 1. While this architecture may be crafted from
intuition, its optimality has not been previously proven in the
literature.
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