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Abstract

Rubin (1987) has proposed multiple imputations as a general method for

estimation in the presence of missing data. Rubin’s results only strictly apply to

Bayesian models, but Schenker and Welsh (1988) directly prove the consistency 

multiple imputations inference~ when there are missing values of the dependent

variable in linear regression models. This paper extends and modifies Schenker and

Welsh’s theorems to give conditions where multiple imputations yield consistent

inferences for both ignorable and nonignorable missing data in exogenous variables.

One key condition is that the imputed values must have the same conditional first

and second moments as the true values. Monte Carlo studies show that the

multiple imputation covariance estimates are accurate for realistic sample sizes.

They also support the applications of multiple imputations in Brownstone and

VaUetta (1991), where the multiple imputations estimates substantially changed the

qualitative conclusions implied by the model.

$
Financial support from the U.C. Irvine Research Unit in Mathematical Behavioral

Sciences is gratefully acknowledged. Cheng Hsiao, David Lilien, Ken Small,
anonymous referees, and participants at C~mp Econometrics III provided many
useful comments and suggestions, but they are not reponsible for the remaining
flaws.
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1. Introduction

Econometricians have been active in developing techniques for handling

"nonignorable" missing data such as sample selection and truncation (see Heckman,

1976). There has been far less interest in ignorable missing data (i.e. where the

missing data mechanism depends only on observed exogenous data). The two usual

methods for dealing with ignorable missing data are to use only cases with complete

data or to impute missing values and then treat the imputed values as if they were

observed. The former solution is frequently inefficient and the latter solution

almost always produces biased confidence intervals and tests.

Little and Rubin (1987) show that two general methods for consistent

inferences with ignorable missing data are maximum likelihood and multiple

imputations. This study concentrates on the latter since maxim,m likelihood

techniques are more familiar to most econometricians, frequently require strong

distributional assumptions, and are also frequently difficult to compute using

standard software packages. In contrast, multiple imputation methods are

relatively easy to implement. Moreover, some of the imputation methods described

in Section 3 of this paper do not require strong distributional assumptions. In

principle, the imputations can be done once and then used for many different

analyses. Thus, by including the multiple imputations in a public use file,

confidential information such as exact addresses could be used to improve the

quality of the imputations without sacrificing confidentiality of the data in the

publ/c use file.

Rubin (1987, Chapter 4) shows that if the data are being analyzed and missing

data being imputed using full Bayesian models, then multiple imputations provide

consistent estimates. These results can be difficult to apply in situations where the

analyst is not willing (or able) to specify a full Bayesian model. Schenker and

Welsh (1988) give a direct proof of the consistency of multiple imputations when
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here are missing values of the dependent variable in a linear regression model. This

application of multiple imputations is not practically important since the complete

data least squares estimator is the maximum likelihood estimator for this model and

therefore dominates the multiple imputations estimator. The next section of this

paper reviews the multiple imputations method and shows how Schenker and

Welsh’s results can be modified and extended to provide general conditions for the

consistency and asymptotic normality of multiple imputations estimators when

there are missing data in independent variables in linear regression models.

When there are missing data in independent variables, or, as in Brownstone

and Valletta (1991), additional information which can be used to improve

imputations for dependent variables, then multiple imputations will generally be

more efficient than the complete data least squares estimators. In these cases the

non-missing dependent variable observations correspond/ng to the observations with

missing independent variables provide additional information which is captured by

the multiple imputations procedures. However, multiple imputation estimators are

generally not fully efficient, as shown in Section 4 by comparing them with Ruud’s

(1991) Simulated EM estimators. Nevertheless, for the applications in Brownstone

and Golob (1992) and Brownstone and Valletta (1991), multiple imputations

estimators were substantially more efficient than the corresponding complete data

estimators.

The third section considers imputation methods for ignorable missing data in

both dependent and independent variables in regression models. Two methods also

analyzed by Schenker and Welsh are shown to satisfy the conditions for consistency

given in the second section. A new method which uses bootstrap iterations to draw

the imputation values is also described and shown to satisfy the consistency

conditions. This "bootstrap" imputation method has the advantage of being less

sensitive to departures from normality. Monte Carlo studies illustrate the
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consistency and small s~mple performance of multiple imputations using these

imputation methods. The results in this section justify the application of multiple

imputations in Brownstone and Valletta’s (1991) study of measurement errors 

cross-section and dynamic earnings equations.

The fourth section discusses the application of multiple imputations to

regression models with nonignorable missing data. The key new difficulty presented

by this case is obtaining consistent parameter and standard error estimators for the

imputation model. This section shows how multiple imputations methods can be

used to obtain consistent standard errors for weighted linear regression with

estimated weights and a Feasible GLS alternative to Heckman’s (1976) two--step

estimator for sample selection models. This latter application allows for consistent

inference without the complex matrix computations given by Lee, Maddala, and

Trost (1980). The finite-sample behavior of the multiple imputations estimates 

demonstrated with a Monte Carlo example based on Brownstone and Englund’s

(1991) model of Swedish housing demand.

2. Multiple Tmputation Methods

The fully efficient approach to the problem of missing data is to specify a

model for the missing data mechanism and then jointly estimate this model together

with the analysis model using maximum likelihood techniques (see Fuller, 1087 and

Little and Rubin, 1987). A simpler approach is to somehow generate imputed

values for the missing data, and then analyze the resulting completed data set as if

there were no missing values. While this is simple, it also leads to downward biased

standard error estimates regardless of the accuracy of the imputation procedure.

The difJ~culty with this approach is that some method is needed to account for the

errors in the imputation procedure.
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Rubin (1987) has proposed multiple imputation as a general method for

generating consistent inferences from data sets with imputed values. Instead of just

generating one imputation, a number of imputations are created for each missing

observation, resulting in a number of completed data sets. Estimators and test

statistics are computed from each completed data set and then combined to

generate the final inferences. The next section gives explicit methods for obtaining

proper multiple imputations. This section summarizes the methods used for

combining estimators computed from each completed data set and shows how

Schenker and Welsh’s (1988) results can be extended to handle missing data 

exogenous variables in linear regression models.

Ass,me that we are interested in estimating some vector 0, and, in the

absence of missing data and conditional on all of the observed data, we have an
^

estimator 0 which has an asymptotic Normal distribution with mean 0 and
^

covariance fl. Suppose also that there is a consistent estimator, fl, for 12. Further

assume that we have a "proper" imputation model (to be defined later), and that 

have drawn a set of M independent (conditional on the observed data) imputations
AS

for each missing value. For each of the resulting M completed data sets compute 0i
^$

and fli" The final estimate of 9 is the average of the point estimates from the M

completed data sets:

(1)

If flM is the corresponding average of the completed data covariance estimates and

then
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o

(3) TM = l-I M -f- (1 -t- M’I)BM

is the estimate of the covariance of (0M - 0). Note that M can be heuristically

derived from:

(4)

where a are estimates of the unknown parameters in the imputation model. The

first term on the right-hand side of equation (4) is estimated by M, and it

represents the covariance within a set of imputations. The second term is estimated

by (1 + M’I)BM, and it represents the covariance across different sets 

imputations.

As both the number of imputations, M, and the sample size get large, the

Wald test statistic for the null hypothesis that 0=-0°,

o #

(@-0 M) TMI(@-OM)/K,

has an asymptotic XI~ distribution (K is the r~nk of 0). If M is finite, but still

moderately large (M>SK), then Rubin (1987) shows that a better asymptotic

approximation to the null distribution of the Wald test is given by an F distribution

with K and v degrees of freedom, where

(6) ~= (~-1)(1+r£’)~ and
rM = (I+M") Tr(SMfi£ I)/K.

Note that, if K ---- 1, then rM is the relative increase in variance due to non.response.

Li et. oA. (1991) give an alternative approximation for smaller M. In some
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applications, particularly public use files, M must be small. However, it is clear that

the variance of BM is reduced by larger M. This suggests that it is better to

compute M large enough so that u in equation (6) is large enough to use the

asymptotic XI~ distribution for inference. All of the estimations reported in this

paper used M large enough so that I., is greater than 100. The resulting M values are

between 10 and 20.

The key issue is how to generate "proper" multiple imputations; i.e.

imputation methods where 0M and TM are consistent for 0 and it. Rubin (1987)

shows that if one is using an explicit Bayesian model, then making independent

draws from the posterior predictive density function for the missing observations

will generate proper imputations. Since it can be difficult to verify that a particular

imputation procedure is proper without using a formal Bayesian model, I will

discuss conditions which are easier to verify for linear regression models.

Consider the standard linear model:

Y - x0 +

where, conditional on X, the components of E are independent and identically

distributed random variables with mean 0 and variance a2, and $ is a K--dimensional

vector of 1,r, kr, own coefficients. In the absence of missing data, 9 would be
^

estimated by ordinary least squares, 9, and inference would be based on:

(8) ($- 9) d 1 (l ira X’e) = N(0,o.2A-1)

sn= Y’(I- X(X’X)-Ix’)Y / (N-K) p o’2,

where A = lim (X’ X)/N is assumed to be positive definite. Now suppose that the
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first No observations contain missing data in either (or both) of the exogenous 

endogenous variables, but that there are no missing data in the remaining N1 (= N 

NO) observations.

Assume further that there is some method for producing imputed values of the

missing variables, denoted Y0 and X0, conditional on the observed data and the

imputation model parameters, which has the following properties:

(9)
*s $ I

Plim (Y0 X0)/N = Plim (YoX0)/N 

Plim (X0*’X )/N = Plim (XoX0)/N

These conditions, which state that the asymptotic moments of the imputed

variables match the first two asymptotic moments of the unobserved true variables,

are sufficient to establish the consistency of the multiple imputations parameter
A,

0M’ since the completed data least squares estimate, 0 , is given by:estimator,

.,
’X + (X1X1)] [(X0 Y0 + X1Y1)]’(10) O =[(X -*

Ass,mptions 9 imply that Plim 0 = Plim 0 = 0.

Establishing the asymptotic distribution of 0M requires additional

assumptions about the imputation process. Suppose that:

(ii) - N(0,z).

A,
If the stacked vector v~" (0. - 0) converges to a multivariate normal distribution

with off-diagonal correlations given by

(12)
., ^, ~), = r,c

Plim N (0i - 0) (0j 
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then for fixed M>2,

(13)

Schenker and Welsh’s (1988) Lemma 1 then implies that

(14)

N(o,~-1 + (z/M + Zc(M-1)m)).

Since it is clear that Nf~M is a consistent estimator of cr~A-I, the consistency

of NTM for the asymptotic covariance of 0M depends on N(I+M’t)BM.

Straightforward calculation shows that

(15)

(16)

Plim N (0i - 0M) (0i - 0M)

Plim N(I+M-I)BM

-- (Z - Zc)(M-1)/M, so that

= (I+M-~)(z- Zc).

Comparing equations (14) and (16), it is clear that M i s consistent only i f ~= 2Zc.

If this condition is satisfied, then a large nvmber of multiple imputations reduces

the variance component estimated by (I+M’I)BM by a factor of 2 relative to a

single imputation. The next section will examine some simple imputation methods

and demonstrate that they satisfy the P, = 2~2c condition.

Although the above analysis generalizes Schenker and Welsh (1988), there are

some important differences. The key difference is that Schenker and Welsh assume

that Y’c - 0, and they center their analysis around the least squares estimator for
^

the complete data, a1. This allows them to get the stronger results that q~ (0M - 0)

is asymptotically independent of BM and that BM converges to a Wishart
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distribution. Unfortunately, their conditions only apply to the case where there is

ignorable missing data in the endogenous variable in a regression model and the

missing values are imputed using only the observed data (i.e. Y1 and X1). These
A

conditions imply that the complete data estimator, 01, has lower variance than the

multiple imputations estimator, OM" Schenker and Welsh’s results further imply

that as M goes to infinity, the asymptotic covariance of OM converges to the
A

asymptotic covariance of 01. Therefore multiple imputations or any other attempt

to improve on 01 is not useful in this situation. The generalizations and

modifications carried out in this section justify the use of multiple imputations in

situations where OM does have lower asymptotic covariance than 01.

3. Imputation Methods

The previous sections shows that the consistency of the multiple imputations

estimators, 0M and TM, depends crucially on the properties of the methods used to

draw the imputed values. This section describes some simple imputation procedures

and shows that they satisfy all of the requirements for the consistency of the

multiple imputations estimators given in the previous section. These results will be

illustrated by a number of Monte Carlo examples. All of the methods described

here assume that the missing data process is ignorable conditional on fully observed

exogenous variables. This implies that the complete data least squares estimator,

01, is consistent. The next section will discuss extensions to cases with nonignorable

missing data.

To keep the notation simple, I will first consider the case where there is only

one exogenous variable. The general approach to generating imputations which

match the first two moments of the missing variable (and therefore satisfy

conditions 9) is given by:
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(17)
Xo = E(XoIYo) + ,

$

where 170 are independent draws from the distribution of X0 - E(X0[ YO).
$ 2 so thatrl 0 have mean 0 and variance equal to V(X01Y0) - o’rl,

Note that

(18) E(X0 Y0)= E(E(X0[Y0) ) = E(X0 Y0) and

(19)
St $ t $1 $

E(X0 X0) = E(E(X0IY0) E(X0IY0)) ÷ 0 no)lYo)
i s

= V(E(X0JY0)) + E(X0) E(X0) + E(V(X0 X0)IY0)
t / i= v(xo xo) + E(Xo) E(Xo) = E(Xo Xo)

Since the missing data process is ignorable, standard parametric or

nonparametric regression methods (see Manski, 1991) can be used to consistently

estimate E(X1 [Y1) and V(XllY1) from the observed data. These estimates 

then be used to create imputed values according to equation (17) above. If, as will

be assumed in the rest of this section, (X,Y) are jointly normally distributed, then

E(XllY1) and V(X1]Y1) can be estimated by regressing 1 on YI" N ote t hat

equations (18) and (19) still hold even if (X,Y) are not joint normal, as long as 

consistent estimators of E(X1 I Y1) and V(X1 I Y1) are available. It is crucial,

however, to condition on Y.

The final step is to establish that the imputations satisfy ~ -- 2~c. Without

loss of generality we can further assume that E(X) -- E(Y) --0. Conditional on the
A,

observed data, which includes any estimated parameters in E(X01Y0), ~ (0i - 0)

has the same asymptotic distribution as
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(20) A-1 [(77 i -rlo) (% ~E(Xo]Yo) + r/i)]/V~,
I

a-1 (Si Ri)/V~

where r]o = Xo-E(XoIYo). Since we are assuming that (X,Y) are bivariate normal,
I

(Si,Rj) are also joint normally distributed so that i Rj) are dements ofa matrix
,

with an asymptotic Wishart distribution. Since ~/i have the s~tme distribution as ~7o

and are independent of e0 and rio,

’ I 2o’~ if i=jE(Si Sj)/N=L 2ifi#j
at/

(21)
0 if i-j

E(Si’Rj)/N 
a~ ifi#jtie

,
{ h+ O~a~ ifi=jE(Ri Rj)/N = h if i # j , where

Moment formulas for the Wishart distribution (see Press, 1982, page 115) then give:

(22) E(Si’Ri)2/N = 2Ao’~ + 20~o’~
I I

E((Si Ri) (Sj Rj))/N = h~ + ~4~.

(23)
¯ g

E(Si’Ri)2/N = 2 E((Si B.i)(Sj I:Lj))/N,
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and therefore

(24)
¯ I

2Zc = A-112 E((Si Ri)(Sj Rj))/N]A-I

=A-I[E((Si’Ri)2)/N]A -I = Z.

Thus, the multiple imputations estimator, 0M’ is consistent andasymptotically

normally distributed for fixed MY2, and TM is a consistent estimator of its

asymptotic covariance.

The computations required for multiple imputations with the imputation

procedure in equation (17) are similar to those required by the EM algorithm for

maximum likelihood described in Little and Rubin (1987, pp. 143). The 

(expectation) step calculates the two "complete data" sufficient statistics

conditional on the observed values and current parameter values according to:

(25)

A I ¯ A

S1 =XoYo + X1Y1 , Xo = E(Xo]XP Y, 0)
^ ] ^ I

S2 =XoXo + Var(XoIXr Y, 0) + xlx1

The M (maximization) step calculates a new estimate of 0 using the above sll~cient

statistics. The EM algorithm iterates between the E and M step, using the new 0

from the M step to update the sufficient statitics in equations (25).
^

If the imputed values from equation (17), X0, replace 0 and the variance

term is dropped, then the resulting simulated sufficient statistics calculated from

(25) are clearly unbiased estimates of 1 and S2. I f t his method of updating the

s,,ff~dent statistics is iterated similarly to the EM algorithm, then it becomes

Ruud’s (1991) Simulated EM estimator. Of course, the multiple imputation

algorithm does not update the parameter estimates before each imputation.
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Another difference is that, except for special cases with exponential families

(including the slope parameters in the hnear model), the completed data estimators

used in multiple imputations do not maximize the expected log-hkelihood as

required by the EM algorithm. Therefore it is clear that the multiple imputation

estimator is generally not equal to, nor as efficient as, the ma.’dm-m likelihood

estimator.

The simple model analyzed above is not very interesting from a practical

perspective since, as in Schenker and Welsh’s model, the multiple imputations
^

estimator is dominated by least squares computed from the complete data, 81.

However, if there are additional fully observed exogenous variables, Z, then, as long

as (X,Y[ Z) is bivariate normal and E(X[ Y,Z) is homoskedastic and linear in Z, 

above analysis will show the consistency of multiple imputations if everything is
A

2 isconditioned on Z. If a is the least squares estimator of X1 on Y1 and Zi and s~?

thenthe standard unbiased least squares estimator of the conditional variance, a~?,

one set of proper imputations can be generated from the following procedure: 1)

draw at/

N(~,a~*[(YI ZI)’(Y 1 Z1)]-I), then 2) construct

(26) X0 = (Y0 Z0)a + F an,

where F is a vector of N0 independent draws from a standard normal distribution.

Additional sets of imputations needed for multiple imputations can be constructed

by repeating the above procedure. Schenker and Welsh call this method, which is a

simple extension of a method used in Herzog and Rubin (1983), the "normal

imputation" procedure.
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The "normal imputation" procedure can be easily modified to accommodate

multivariate missing data. If J is the number of variables to be imputed, X0 is now
^

a N0~,J matrix, c~ is a matrix of least squares (or seemingly unrelated regression)
2 is a jxj estimated residual correlation matrix. ~*

estimates with J col-runs, and s~7
. ~7

is drawn from a Wishart(s~,J,(N1-K)) distribution, vec(a ) is drawn 

2* ’ ’
N(vec(a), #~7 ®[(Y1 Z1) (Y1 Z1)]-I) distribution, and F is a N0xJ matrix 

independent standard normal random variables. This multivariate imputation

procedure clearly also works for imputing missing values of the endogenous variable,

Y0" In this case, the regression(s) used to impute Y0 only contain Z as right hand

(exogenous) variables.

The practical usefulness of the normal imputation procedure is illustrated here

with a small Monte Carlo study. The data are generated according to:

(27)

where the ~oi are each composed of 200 independent draws from a standard normal

distribution and ~ is also drawn from a standard normal but held fixed throughout

the Monte Carlo repetitions. The last 100 observations of l/s and r.s are treated as

missing, and they are replace by (multiply) imputed values using the multivariate

normal imputation procedure described in the previous paragraphs. This design is a

simplified version of a model used in Brownstone and Valletta (1991), where t/s and

represent true values of primary job earnings and tenure respectively. The true

values, obtained from employer administrative records, are only observed in a

relatively small validation study, but the reported values, l/and x, are observed in

both the validation and main samples.
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The Monte Carlo results for the slope coefficient, given in Table 1, are based

on 400 Monte Carlo repetitions. As expected, all of the slope estimates are very

close to the true value, 1. The multiple imputations variance estimator, TM, is also

quite close to its true value. Table 1 also illustrates the general conclusion that the

variance of the multiple imputations estimator lies between the variance of the
A

complete data estimator, 01, and the estimator computed using the true values of

the missing observations, 8 (which is not available except in a Monte Carlo study).
A,

Although the completed data estimator, 0 (least squares treating one set of

imputed values as fixed) is only slightly less efficient than multiple imputations in

this example, the standard error estimates computed using the usual least squares

formulas are downward biased by almost 50 percent.

Table 1: Monte Carlo Results For Slope Coefficient and SE
Estimators in Regression of ys on a constant and

Estimator Mean Standard Deviation

0M 0.99 .088

vff; M 0.084 .008

8 0.99 .094
^#

fiE(8 0.067 .005
81 1.00 .I00

SE(; 1) 0.99 .004
^

8 1.00 .065

SE(0) O.O69 .003

Note: SE(. ) denotes the standard error of the least squares coefficient estimator

using the usual formula (s~(X’X)-I).
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When faced with data generated from equations (27), many applied
A

econometricians would use the complete data estimator, 01, which is consistent, but

inefficient. Some would use a single imputation, which, if proper in the sense

defined at the beginning of this section, would also yield a consistent estimator.

Unfortunately, treating the imputed values aa fixed leads to biased inferences. The

multiple imputations estimator is relatively easy to compute, more efficient than 01

^,
and 0 , and yields consistent inferences. Finally, some would treat y and z as proxy

variables and estimate the slope coefficient by regressing y on z and a constant.

This would be disastrous for the design used here, yielding an average estimate of

.41 with a standard deviation of .07.

Additional Monte Carlo experiments were performed using variations on the

design in equations (27). As the measurement error (~o2 and ~a3) variances increase,
^,

the variances of the imputation estimators (0M and 0 ) increase towards the

complete data estimator, 01" Also, as the number of multiplevariance of the

imputations, M, is reduced to 5 or 10, the variance of the multiple imputations

variance estimator, TM, increases, but its mean value over the Monte Carlo

repetitions remains close to the true values. The results of these additional Monte

Carlo experiments are reported in a separate appendix available from the author.

Although the above analysis of the normal imputation procedure assumed

joint normality of (X,Y), all that is necessary is that the moment conditions 

equations (21) and (22) are satisfied. Schenker and Welsh suggest a modification 

the normal imputation procedure which is less sensitive to the normality

assumption. Their "adjusted normal imputation" method replaces F in equation

(26) with O i ndependent draws with r eplacement from the studentized residuals

from the regression of X1 on (Y1,Z1). They then use Freedman’s (1981) results 

the consistency of bootstrap distributions to show that this adjusted method has the

same asymptotic properties as the normal imputation procedure.
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One difficulty with the "adjusted normal imputation" method is that it still

2 follow a normal and chi--squared distribution, which is onlyassumes that a and s~?

asymptotically correct. This suggests further modifying the imputation procedure
$

to also draw a and a2 from their bootstrap distributions. This "bootstrap
~7

imputation" procedure is implemented by:

a) Draw a 1 element vector of s imulated residuals by drawing i ndependently

with replacement from the least squares residual vector from the regression of

XI on (YI,ZI), r/l.
$

b) Generate a simulated vector of observed 1 values, Xp by adding the
^

simulated residuals in a) to (YpZ1)a.
,

c) Calculate a by regressing 1 on (Y1,Z1).
, $

d) Calculate imputed values, 0 =(Y0 Z0)a + r/ 0 ’ where ~70
$ $

is a NO element

vector drawn independently with replacement from r} 1 as in a).

Each loop through these four steps creates another set of imputations. Freedman’s

(1081) results also imply that this bootstrap imputation procedure has the same

asymptotic properties as the normal imputation procedure. Small sample biases in

the bootstrap can be removed by multiplying the residual vector, 171, by

(N1/(N1-K))-I/2 before resampling in steps a) and d). Although this bootstrap

method does not require normality, it is crucial that the residual vector, 17, be

homoskedastic.

When the Monte Carlo study leading to Table 1 is replicated using the above

bootstrap imputation procedure, then the results are almost identical to Table 1. It

would be interesting to examine the behavior of these different imputation schemes

when the data generating process is not normally distributed, since that is where

differences should arise. The bootstrap imputation procedure may also be easier to

implement in existing statistical software packages, since it does not require explicit

sampling from parametric distributions.
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If the regression function, E(X[ Y,Z), is nonlinear, then none of the above

techniques will yield proper imputations. Ass,,m~ng that E(Y[ X,Z) is still linear

and homoskedastic, the imputation methods could be modified by replacing the

least squares approximation to E(X[Y,Z) with some other consistent estimator.

Manski (1991) gives a recent review of possible estimators. As long as imputations

generated according to equation (17) asymptotically satisfy the moment conditions

in equations (18), (19), (21) and (22), the resulting multiple imputations estimators

should still be consistent. In practice, most models with E(X[Y,Z) nonlinear will

also have E(Y[ X,Z) nonlinear. Brownstone and Golob (1992) used multiple

imputations in a model where (X,Y[ Z) follow a joint ordered probit distribution.

Monte Carlo studies and internal consistency checks suggest that multiple

imputations yields consistent inferences in their application.

One possible difficulty with all of the imputation procedures discussed above

is that when (Y0’ Z0) contains outliers relative to (YI’ Z1)’ regression predictions

can be far outside the range of the observed values, X0. In many cases this means

that the imputed values are the ones with the highest leverage in the completed case

estimations. Little (1988) has proposed a method, called predictive mean

matching, which avoids imputing extreme values. Predictive mean matching uses

the output from one of the other imputation procedures and then assigns the

observed value in X1 which is closest to the imputed value as the final imputed

value. This method can introduce large biases unless the range of the observed

values, X1, includes the range of the unobserved true values, X0.

Multiple imputations using either Little’s predictive matching or the new

bootstrap imputation procedure should be more robust to departures from normality

than maximum likelihood methods.
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4. Multiple Imputations for Nonignorable Missing Data

The previous sections of this paper have all assumed that the missing data

process is ignorable, which means that, conditioned on Z, (X1,Y1) is a simple
^

random sample from (X,Y). In this case the complete data estimator, 01, 

consistent and the main issues are efficiency and consistent inference. If the missing
^

data process is nonignorable, then 01 and all of the imputation procedures discussed

in the previous section are inconsistent. One common approach (see Heckman,

1976) in applied econometrics is to postulate a joint model for the response

probability and the regression equation (7) and then jointly estimate the model

using the observed data. If the response probabilities are known, such as with

deliberate choice-based sampling, then weighted least squares with weights

proportional to the inverse response probabilities will yield consistent estimates

using the observed data~. Once some method of consistently estimating

E(X01Y0,Z0) is adopted, then any of the methods discussed in Section 3 can be used

to generate proper multiple imputations for the missing observations. This section

shows how multiple imputations can also be useful for consistently estimating the

imputation models when there are non--ignorable missing data.

Although weighted regression methods are simple to use, inferences from these

procedures are only valid for known fixed s~-rnpling weights. In many cases it may

be possible to consistently estimate the sampling weights, but then inference

procedures need to be modified to account for the estimation error in the sampling

t See DuMouchel and Duncan (1983). Note that this is just the Weighted Exogenous
Sample Max~mllrn Likelihood Estimator (Manski and Lerman, 1977) applied to the
linear regression model. DuMouchel and Duncan point out that the correct
covariance estimator for weighted least squares in this situation is given by

s2(X’ DX)’I(X’ D~)(X’DX)’I. Unfortunately, most weighted least squares

packages use the GLS formula s2(X’ DX)’I which is inconsistent here.
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weights. Suppose it is possible to generate multiple sets of imputed sampling

weights, then consider multiple imputation estimators given in equations (1) - (3)
^$ AS

with $i and ~i being the weighted regression coefficient and covariance estimators
^$

for the ith set of imputed weights. Since conditional on the i th set of weights, 0i and
$

~i are clearly consistent, 0M and ~M are consistent for 0 and E(Cov(0MIweights))
AS

(at least as M -~ ®)~ Since E(0Mlith set of weights) = 0i, as M goes to infinity M i s

consistent for Cov(E(0MI weights)). Therefore, by equation (4), M i s consistent f or

Cov(0M) when both N and M go to infinity.

P,.ubin (1986) gives a method for estimating and multiply imputing weights for

statistical file matching. Brownstone and Golob (1992) use this method to multiply

impute weights needed to predict the number of commuters who would carpool to

work as a function of the level of various carpooling incentives. A small Monte

Carlo study established the validity of the multiple imputations inferences for this

example. However, since the estimation error in the weights is very small in this

application (i.e. M i s 5% of TM), this i s not avery demanding test of the

methodology.

Since the Weighted Exogenous Sample Maximum Likelihood Estimator

(WESMLE, see Manski and Lerman, 1977) is a linear function of the weights,

multiple imputations should yield consistent inferences for the WESMLE applied to

nonlinear models. This application might prove useful in handling attrition from

panel data, where the attrition probabilities (and therefore response probabilities

and weights) could be estimated using pre--attrition wave data. Since most large

surveys produce estimated final weights (called "post-stratification" or

"non-response reweighting"), the multiply imputed WESMLE developed here

should have broad applicability.

Multiple imputations can also be useful for estimating standard sample

selection models. It is common to use Heckman’s (1976) two-step procedure 
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estimate these models. Unfortunately, it is sufficiently difficult to obtain consistent

standard errors (see Lee, Maddala, and Trost, 1980) for the two-step procedure that

they are rarely computed in applied work. Multiply imputing values for the Mill’s

Patio yields a computationally simpler consistent variance estimate. This technique

will be illustrated by a Monte Carlo study closely based on Brownstone and

En~und’s (1991) model of Swedish housing demand.

The standard sample selection model is given by:

(2s)

(29)
z* = Wa -4- ~7, z = 1 if z*>0 and = 0 otherwise,

y = X0 + e, observed only if z = 1,

where (~7 ~) are bivariate normal [0,0,1,a2,p]. Therefore:

(30) Prob (z:: I) = ~(W 

where ~ is the standard normal cumulative distribution function, and

(31)

where the Mill’s Patio is defined as

(32) =

(¢ is the standard normal density function). It is more efficient to estimate this

model by maximum likelihood, but it is usually estimated estimated with a two
A

stage procedure: 1) estimate a from the probit selection equation (30) to get a, then

2) estimate 0 and pa by regressing y on X and -~(Wa).
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Heckman (1976) shows that these two stage estimates axe consistent and

derives a consistent estimator for their sampling covaxiances. Unfortunately, these

consistent covariances axe raxely computed because of their complexity. However,
^

conditional on a, the regression of y on X and A(Wa) is consistent with

heteroskedastic residuals. If ej is the residual corresponding to the jth observation,

then, conditional on a

(33) Vat(ej) = s- ( pa)2),(Wj(~)(A(Wja)+ W

Therefore,

(34) e e ] (N1-K) 4" (po’)2N )~(W ~(Wj(2) 

is a consistent estimator of as, which can be used to get a consistent estimator, a~,

for Vax(ej).

Feasible GLS estimation of equation (31) can then be implemented 

regressing yj/#j on Xj/aj and-~(Wja)[aj yielding consistent estimates 0 and 

conditional on a. If multiple imputations of A ate drawn by making independent
A

draws of a from the asymptotic normal distribution of a, then the same ar~ment

used previously in this section shows that the resulting multiple imputations

estimators 0M and TM axe consistent for 0 and the asymptotic covariance of as

M and N go to infinity. This multiply-imputed feasible GLS estimator is

asymptotically mote efficient than Heclcman’s 2--step estimator, and it is easier to

compute than Lee, Maddala, and Trost’s (1980) consistent covariance estimator for

Heclcman)s procedure.

The practical utility of the above multiple imputations approach is illustrated

using a simplified version of Brownstone and Englund’s (199I) model of Swedish
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housing tenure choice and "quantity" of housing demanded by owners. In the

notation of equations (28) and (29), ~1 if the household owns a home and 

represents quantity of owner-occupied housing measured by regionally--deflated

assessed value. W and X contain age of household head, size of household, housing

price measures, and measures of household income which are constructed to avoid

endogeneity problems caused by the asymmetric tax treatment of owner and

renter-occupied housing. To keep this example simple, I will only report results

here for various estimates of the coefficients of the disposable income and the

negative of the Mill’s Ratio variables in the conditional demand equation. Table 2

gives results from applying various estimators to the same 665 observations used in

Brownstone and Englund (1991), which includes 425 owners.

Table 2: Conditional Housing Demand Estimators

Estimator Income Coefficient p~

MLE 2.26 0.27
(0.39) (0.069)

Heckman 2.40 0.20
2-Step (0.92) (0.19)

Feasible GLS 2.40 0.15
(0.91) (0.15)

Note: Asymptotic standard errors in parentheses are computed using: Berndt)
Hall, Hall and Hausman (1974) estimator for MLE, Lee, Maddala, and Trost
(1980) estimator for 2--step, and multiple imputations described above for
Feasible GLS.

The MLE appears much more efficient than the other estimators, but there

does not seem to be much difference between the 2--step and Feasible GLS

estimators in this example. The usual least squares standard error estimates from
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the second step of either the 2-step or Feasible GLS estimator are approximately

50% of the consistent values given in Table 2, which highlights the importance of

getting consistent standard errors for these estimators. This downward bias is

expected from the asymptotic results in Lee, Maddala, and Trost (1980).

To guard against the possibility that the results in Table 2 are contaminated

by model misspecification, a Monte Carlo study of the 2-step and Feasible GLS

estimator was performed using the MLE estimates applied to equations (28) and

(29) as the data generating process. The MLE itself is not included in this study

because of convergence problems with some of the Monte Carlo samples. These

Monte Carlo estimates, given in Table 3, can also be interpreted as parametric

bootstrap estimates of the sampling variability of the two estimators.

Table 3: Monte Carlo Results for Conditional Housing Demand Estimators

Income Coefficient p~r
Estimator Mean Std. Dev. Mean Std. Dev.

2--Step 1.91 0.78 0.27 0.16
SE(2---Step) 0.92 0.25 0.19 0.068

Feasible GLS 1.54 0.72 0.25 0.16
SE(FGLS) 0.81 0.18 0.19 0.062

Note: SE(. ) represent the same consistent standard error estimators used in Table
2.

Table 3 shows the same similarity between the estimators as in Table 2,

although there is some indication that the variability of the multiple imputations

standard error estimator is lower than Lee, Maddala and Trost’s estimator. The

main difference between these estimators is computational; Lee, Maddala and

Trost’s estimator requires manipulation of N~’K matrices, while the multiple
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imputations estimator requires repetitive manipulation of KxK matrices.

5. Conclusions

Econometricians have avoided imputing values for missing data since this can

lead to seriously biased inferences. Multiple imputations is a general method for

consistent inferences with imputed values. This paper has modified and extended

Schenker and Welsh’s (1988) results to directly prove asymptotic normality of the

multiple imputations point estimator and consistency of the covariance estimator

for uuivariate and multivariate endogenous or exogenous missing data in linear

regression models. Similar methods, together with linearization, should yield

similar results for nonlinear models estimated by maximum likelihood or minimum

distance techniques. In addition to these theoretical results and Rubin’s (1987)

Bayesian analysis, the Monte Carlo studies and empirical examples described here

show that multiple imputations is a useful addition to applied econometricians’

toolkits.

Although typically not fully efficient, multiple imputations estimators are

relatively easy to compute for a wide variety of problems. When the the new

bootstrap imputation methods discussed in Section 3 are used, multiple imputations

are also less sensitive to distributional assumptions than parametric likelihood

methods. As Rubin (1987) and Schenker, Treiman, and Weidman (1988) 

pointed out, distribution of multiply-imputed public use data sets provides a new

approach for communicating the accuracy of the data collected in large surveys like

the PSID and CPS. This would provide much more quantitative information than

the currently available imputation flags or accuracy codes.
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The multiple imputations technique is no substitute for careful joint modeling

of the missing data process and all variables affected by missing data. The

strengths of the method are computational simplicity, flexibility, and, when

bootstrap-type imputation methods are used, robustness against small--s~-mple

normality assumptions. In addition to their use in missing data problems, Section 4

also shows how multiple imputations can be used to get consistent covariance

estimators for Heckman’s 2-step estimator in the sample selection model and for the

WESMLE with estimated weights.
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