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An der Narzißfigur arbeitete Goldmund mit tiefer Liebe, in dieser Arbeit fand er sich selbst, seine
Künstlerschaft und seine Seele wieder,  ...  An seinem Jünger Johannes aber, dessen geliebte
sinnende Gestalt ihm immer reiner aus dem Holz entgegentrat, arbeitete er nur in den Stunden
der Bereitschaft, mit Hingabe und Demut.  ...  Nicht er war es, der da stand und aus eigenem
Willen ein Bildnis schuf;  vielmehr war es der andere, es war Narziß, der sich seiner
Künstlerhände bediente, um aus der Vergänglichkeit und Veränderlichkeit des Lebens
herauszutreten und das reine Bild seines Wesens darzustellen.  ...  Ach, daß aus Menschenhänden
doch einzig solche Kunstwerke hervorgehen möchten, solche heilige, notwendige, von keinem
Wollen und keiner Eitelkeit befleckte Bilder!  Aber es war nicht so, er wußte es längst.  Man
konnte auch andere Bilder schaffen, hübsche und entzückende Sachen, mit großer Meisterschaft
gemacht, die Freude der Kunstliebhaber, der Schmuck der Kirchen und Ratsäle -- schöne Dinge,
ja, aber nicht heilige, nicht echte Seelenbilder.  ...  Er wußte es, zu seiner Beschämung und trauer,
auch schon im eigenen Herzen, hatte es in seinen eigenen Händen gespürt, wie ein Künstler
solche hübsche Dinge in die Welt stellen kann, aus Lust am eigenen Können, aus Ehrgeiz, aus
Tändlerei.  ...  Ach, um hübsche Engelsfigürchen oder andern Tand zu machen, und sei er noch
so hübsch, lohnte es sich nicht, Künstler zu sein.  ...  Für ihn waren Kunst und Künstlerschaft
wertlos, wenn sie nicht brannten wie die Sonne und Gewalt hatten wie Stürme, wenn sie nur
Behagen brachten, nur Angenehmes, nur kleines Glück.

Herman Hesse

Narziss und Goldmund

At this Narziss-figure Goldmund worked, finding himself again, his soul and best skill in what he
did,  ...  But this figure of St. John the Disciple, whose loved and pensive face emerged before
him, clearer and clearer from the wood, he only touched at hours when he was ready for it,
utterly self-forgetful and absorbed.  ...  It was not he that stood before a wood-block, hewing out
a portrait with his will;  far rather it was the other, was Narziss, who used the skill in his hands to
draw aside from the brittle transcience of time into the clear, abiding life of his essence.  ...  Ah,
that such shapes alone might ever emerge from human hands;  such sacred, necessary works, not
blurred by any vanity or striving!  But it was not so, he had long known it.  Men could contrive
quite different works of art--pretty figures, fashioned with intricate skill, their owners' pride, the
ornaments of church and council-house--pleasant toys, yes, but never holy, never the true-born
forms of the soul!  ...  He knew, to his own regret and shame, had felt in his own, juggling hands,
how carvers will put forth such trumpery, from idle pleasure in their cunning, vanity, and
finnicking ambition.  ...  What was the use of being a carver, to make polished angels and such
trash, no matter how masterly the workmanship?  ...  For him all art and artistry were worthless
unless they shone like the sun, had the might of storms in them--if they brought only pleasant,
narrow happiness.

Herman Hesse

Goldmund:  Translated from German "Narziss und Goldmund"  by Peter Owen Limited
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 1  Introduction

The introduction states the objective of this thesis and then relates it to problems encountered in
current GIS.  A brief description of the approach discusses how the thesis objectives can be
reached.  The terms continuous and discrete model are central to this thesis and are therefore
defined in section 1.4.  The section on scope lists the major issues that are excluded from this
study.  The final section gives an outline of the remainder of this thesis.

1.1  Objective

The objective of this thesis is the design of a spatial theory for GIS (consisting of
representation, meta data, and transfromations) that allows complete integration of
data sets that differ in resolution and format.  The scope is limited to a discrete view
of geographic reality similar to "area-class maps", "categorical coverages", and "nominal
fields" (see section 1.4 for detail).  The spatial theory consists of representations of
resolution-limited spatial knowledge, meta data that describe the knowledge content of
representations, and transformations between representations of different type,
resolution, format (raster or vector).  The spatial theory addresses the following
problems:

• What limitations does limited resolution impose on spatial knowledge that is
represented in GIS?  This models how the infinitely detailed world is mapped to a
finitely detailed, scaled GIS representation.

• How can such resolution-limited knowledge be represented in a way that keeps
precise track of the contained spatial knowledge and its limitations?  Such
representation has to capture the uncertainty introduced by approximation of the
infinitely detailed world.  Meta data has to describe what knowledge is contained in
representations.

• How can the same spatial knowledge be represented in different formats such as
raster and vector?

• How can spatial knowledge be transformed to other representation types, levels of
resolution, and formats?  Such transformations are important tools for the integration
of diverse data sets.

These issues must be integrated in a single consistent spatial theory.  This consistency
includes the following properties:
• Meta data such as "resolution" is consistent between different formats such as raster

and vector.
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• Transformations between representations are completely determined by source and
target meta data.

• Transformations correctly propagate uncertainty1.  The effects of transformations on
spatial knowledge must be completely captured by the proposed meta data.

• Representations described by the same meta data must be equivalent (up to different
degrees of uncertainty) no matter whether they were derived with a single
transformation or an alternative series of transformations.  For example, reduction of
resolution in a single or in several steps must be equivalent.

The viability of the proposed spatial theory is shown by demonstrating the
implementability of representations and transformations.  The practical applicability of
the proposed resolution concept is shown by relating it to the resolution of sensors and by
showing that resolution-limited representations can always be visualized within the
limitations of display media.

While this thesis focuses on representations and transformations, the potential impact of
the proposed consistent spatial theory on the behavior of GIS is documented with three
examples:  The first example demonstrates the possibilities of far reaching system
support in the fitness for use assessment of data sets and their conversion to a format
required by analysis.  The second example shows how a resolution-conscious overlay
operation can avoid spurious polygons.  The third example outlines the potential of the
proposed spatial theory for format-independent user interfaces that hide format issues
from the user and thus provide the highest possible degree of format integration.

1.2  Problem

This section points out the relevance of data integration and the need for system support.
It shows how some major impediments for data integration in current GIS are of
conceptual nature and how system support must rely on a consistent spatial theory with
compatible representations, meta data, transformations, and uncertainty models.

The capability of integrating diverse data sets is central to GIS [Flowerdew, 1991]
[Shepherd, 1991] and is sometimes used as the defining property of GIS:  "The benefits
of a geographical information system depend on linking different data sets together"
[DoE, 1987];  and "A GIS brings information together, it unifies and integrates that
information."  [Dangermond, 1989].

"Data integration is the process of making different data sets compatible with each other,
so that they can reasonably be displayed on the same map and so that their relationships

                                                

1 Note that the treatment of uncertainty in this thesis is limited to the kinds of uncertainty introduced by the
scaling process and finite approximation.  This excludes uncertainty introduced by, for example, remote sensing
classification or finite accuracy in the positioning of sensors.
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can sensibly be analyzed" [Rhind, 1984].  This thesis is concerned with making data sets
compatible in terms of resolution and format.  Most analysis operations require the data
sets they relate to be of the same format and comparable resolution [Abel, 1990].  For
example, raster overlay requires raster input layers of the same resolution and vector
overlay requires vector coverages of comparable "scale".  To prepare data sets for
analysis, GISs offer transformations across formats and resolution/scale.  The use of the
appropriate transformations prior to analysis is the user’s responsibility.

In current GISs, choosing the necessary transformations can be very problematic.  Some
examples of such problems are described in the following:
• Assume that two vector data sets shall be overlaid;  one being digitized from a

1:25,000, the other from a 1:100,000 map.  The GIS offers a Douglas-Poiker line
generalization algorithm [Douglas, 1973].  How much do we have to generalize to
map from a 1:25,000 to a 1:100,000 scale?  The problem is a conceptual
incompatibility of the meta data "scale" with the applied transformation.

• In case the same kind of problem requires a larger generalization step, the Douglas-
Poiker algorithm may be incapable of performing the required transformation since it
produces self-intersecting polygon boundaries that make the data set logically
inconsistent [Beard, 1991a].  The problem is that the offered transformation is not
generally applicable.

• Assume that a data set digitized from a 1:10,000 scale shall be transformed to
1:50,000 and to 1:100,000.  There are two possibilities for computing the latter data
set: by applying the generalization algorithm to either the 1:10,000 data set or the
1:50,000 data set.  While intuitively, both possibilities should yield the same results,
the resulting data sets are likely to be significantly different.  Which of the data sets is
better suited for the purpose?  The problem evident here is again the incompatibility
of meta data and transformations.  Further, since algorithms such as Douglas-Poiker
are incapable of propagating uncertainty, a comparison of the resulting data sets is
very difficult.

• Assume now that the two data sets to be overlaid differ in both "scale" and format.
Let the raster data-set be more detailed.  Users now have the choice of either (i)
generalizing the raster data set in the raster domain [Monmonier, 1983] and then
converting it to vector, or (ii) converting it first and generalizing in the vector domain.
Which of the two possibilities is better, for example in terms of uncertainty?  How
does raster resolution compare to vector scale?  The problem that users face here is
caused by the incompatibility of meta data and transformations between the raster and
vector domain.

• Assume that a data set has to be converted from a vector to a raster format.  Many
different conversion algorithms are currently used in GIS and they produce largely
different results from the same input [van der Knaap, 1992].  Which of the algorithms
is the most suited?  The most desirable algorithm would preserve the most knowledge
about the world and introduce the least additional uncertainty.  Current GIS lack a
precise notion of knowledge content that is compatible between formats and they are
incapable of propagating uncertainty.  The choice of conversion algorithm (in case
several are available) is therefore a very difficult problem for the user.
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In summary, data integration requires very difficult decisions and considerable effort
from GIS users.  The problems originate in the incompatibility of representations, meta
data, uncertainty models, and transformations.

1.3  Approach

The previous section has given examples of how current GISs provide insufficient
support for the integration of diverse data sets and that the solution is closely related with
a consistent spatial theory.  The goal of a consistent theory can be reached by an approach
that (i) models the effect of limited sensor resolution on spatial data explicitly, and (ii)
expresses spatial knowledge in a format-independent model that is implemented as raster
or vector model only in a second step.

(i) In order to study how limited resolution affects the knowledge contained in GIS
representations, this thesis explicitly models how detail is reduced from a discrete
geographic reality to different representations.  Perception with limited-resolution sensors
is used as a major mechanism for such detail reduction.  This approach allows a precise
definition of the knowledge content of a representation which is crucial for the proposed
design of well-defined transformations.  In particular, mapping a representation to a
coarser resolution becomes well-defined since the source and target knowledge content
are precisely known.  This compares to current GIS practice where the knowledge content
of a representation is only vaguely known to the user and totally inaccessible to machine
interpretation.  Figure 1.1 illustrates this with an example of two vector representations of
the same coast line.  What knowledge about the world do the representations really
contain?  For example, what is found in location p?  The vague definition of the
knowledge content is closely related to the problem of precisely defining what it means to
transform a representation from one scale to another.

1:25,000 1:100,000

waterland land water

p p

Figure 1.1:  What is the precise knowledge content of two conventional vector coverages
that show the same coastline at different scales?  Is point p land or water?
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(ii) A format-independent representation of spatial knowledge is crucial to the integration
of raster and vector formats [Breunig, 1992].  The format-independent representations
proposed in this thesis can be implemented in either raster or vector format.  The use of
the same conceptual bases in both formats allows the comparison of knowledge content
between raster and vector representations.  Transformations across formats can then be
defined to preserve the knowledge about the world up to an unavoidable increase in
uncertainty.  The single conceptual base further allows use of the same meta data in both
formats.  This avoids the problems of comparing incompatible concepts such as raster
resolution and vector "scale".

1.4  Continuous and Discrete Models

The concepts of continuous and discrete models is central to this thesis.  They are
therefore defined in this section and compared to similar terms used in the literature.  The
terms model and view of the world in conjunction with continuous and discrete are used
as synonyms.

Continuous models describe the world in terms of a property value that is a function of
the location in space.  This property value is measured on a continuous scale of
measurement2.  Examples of continuous property values include ratio values such as
elevation or temperature, or vectors of ratio values such as wind velocity or probability
vectors [Goodchild, 1992a].  Usually, a small change in location causes a small change in
the property value.  However, discontinuities are allowed, i.e., property values can
sometimes change abruptly with location.  A possible class of continuous models is that
of ratio valued fields [Goodchild, 1993a] where the location in space is specified by a
point.  Another example that is used in this thesis is the class of resolution-limited
mixture fields.  The continuous values here are mixtures (such as 24% land and 76%
water) and locations in space are specified by disks rather than points (see chapter four
for detail).

Discrete models describe the world in terms of regions that partition space and are
described by a nominal discrete value3.  Examples of nominal discrete values are landuse
classes such as "forest", "grassland", "desert", etc.  Other examples are parcel identifiers
such as "parcel 12345" or state identifiers such as "Maine".  Further, object classes such
as "residential building" can be values of discrete models.  Values can further be sets of
elements that partition element space.  For example, if element space is given by all
possible mixtures of "land" and "water", possible values are the following three intervals:

                                                

2 Values are measured on a continuous scale of measurement if the set of all possible values is topologically

equivalent to Rn.

3 Values are said to be discrete if the set of all possible values is topologically equivalent to a subset of N.
Values are said to be nominal, if they are discrete and cannot be ordered.
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{• 80% land, < 20% water},  {< 80% land and > 20% water, <80% water and > 20%
land},  and {• 80% water, < 20% land}.

Discrete models known from the GIS literature are "area-class maps" [Bunge, 1966]
[Mark, 1989a], "categorical coverages" [Chrisman, 1989] [Goodchild, 1992a], and
"single-valued vector maps" [Molenaar, 1989].  "Fields with nominal values" [Goodchild,
1993a] are also discrete models since the nominal values imply a partition of space into
discrete regions.  This thesis proposes a discrete model where regions partition
resolution-limited space (rather than Euclidean space) and values are sets of mixtures
similar to the ones in the above example.  To avoid the implication of Euclidean space,
this thesis uses the term discrete model rather than one of the previously proposed terms.

1.5  Scope

To make the research topic manageable, the scope had to be limited in several respects.
The major limitation of scope is the focus on knowledge about discrete models of
geographic reality4.  This excludes continuous models of reality.  One reason for this
limitation is that often, the only available knowledge describes a discrete geographic
reality.  This is for example the case if the knowledge is extracted from maps5.  Further,
resolution limitations in knowledge about a continuous geographic reality have been
successfully modeled by linear filter theory (see e.g., [Castleman, 1979]).  In contrast,
resolution/generalization issues for discrete models of reality are only poorly understood
and lack a consistent formal treatment.  The spatial theory proposed in this thesis attempts
to overcome this shortcoming.  Continuous views of reality can be transformed into
discrete ones by classification.  Classification is common practice, for example, in remote
sensing.  While the discussion of classification is outside the scope of this thesis,
implications of the proposed discrete spatial theory on classification methods are pointed
out (see chapter eight).

For reasons of simplicity, this thesis excludes changes over time and is restricted to a
two-dimensional space.

While uncertainty is an important issue in scaled approximations of the world, only those
kinds of uncertainty are considered that are introduced by limited sensor resolution
and by finite approximation that is necessary for computer representation.  This
excludes uncertainty such as the confusion of nominal classes in the classification of
satellite images and the finite accuracy in the position of sensors.

                                                

4 Note that resolution-limited knowledge of a discrete geographic reality can be represented either in a
continuous (see section 4.3) or discrete model (see section 4.4).

5 Note that contour lines on maps are an exception since they contain knowledge about a continuous
geographic reality.
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Further, resolution is assumed to be constant within a data set.  This excludes varying
or mixed resolution data sets.

Since the thesis focuses on the effects of limited sensor resolution on the represented
knowledge, spatial objects whose geometry is defined in Euclidean space at infinite
resolution are somewhat neglected.  Such objects include land parcels, census tracts, or
states.  However, since Euclidean space is a special case of resolution-limited space, the
spatial theory allows representation of these objects.  Further, the geometry of these
objects can be generalized within the theory by artificially simulating the effect of
resolution-limited perception.  For example, the precise geometry of states can be
transformed to a resolution-limited coarser geometry that is displayable at a smaller scale.

Spatial knowledge as used in this thesis describes the spatial distribution of discrete
entities that inhabit geographic reality.  The application behavior of these entities is
excluded from the study.  For example, the proposed theory captures what mixture of
(relatively small) entities fall inside the instantaneous field of view (IFOV) of a sensor,
but excludes the problem of how the application behavior of contained entities propagates
to the observable overall behavior of the IFOV.  An example of a study that deals with
this excluded aspect is [Raffy, 1992].  Another example of such exclusions is the
modifiable areal unit problem [Openshaw, 1984] since it studies how to derive the
application behavior of one set of entities (such as census tracts) from that of another set
of entities.

The goal of cartography and thus cartographic generalization [Brassel, 1988] [McMaster,
1988] [Beard, 1988] [Mark, 1989b] [Muller, 1991] is communication of spatial
knowledge to human interpreters.  The presented study of resolution effects on
knowledge and transformations to coarser resolution are closely related to generalization.
In contrast to cartographic generalization, however, this thesis focuses on representing
spatial knowledge for machine interpretation and analysis rather than human
consumption.  Similarities of this thesis and cartographic generalization are evident in the
fact that the proposed limited-resolution representations guarantee displayability within
the limitations of graphic media (see chapter seven).  The combination of a
transformation to coarser resolution and consequent visualization as presented in this
thesis can be seen as a generalization of Perkal’s work [Perkal, 1966] that has been
applied in line generalization [Chrisman, 1992].  Differences of the approaches are for
example evident in "displacements" and "exaggerations" [Brassel, 1988] that are
important for human consumption but unsuited for machine interpretation where
locational knowledge has to be preserved.

While this thesis studies the integration of data sets that differ in resolution and format,
several other aspects of data integration are excluded.  Among them are transformations
between spatial reference systems and map projections, spatial interpolation, and
matching of map sheets [Flowerdew, 1991].
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1.6  Outline

The remainder of this thesis is organized as follows:  The second chapter discusses
related work in the field of spatial modeling.  In particular, it reviews concepts that were
adopted from the literature for use in this thesis.  Also, it points out problems in previous
approaches and outlines how these are solved in this thesis.

The third chapter gives an overview of the approach and the components of the proposed
spatial theory.  The overview provides a framework that demonstrates how different
model components that are described in detail in the following chapters fit together.  The
discussion of the design concepts that underly this thesis show in detail how the
properties of format-independence, consistency, and preserved relationship between
geometry and attributes are achieved.

The fourth chapter is the heart of the thesis and covers the problem of representing
resolution-limited spatial knowledge of a certain discrete world at the format-independent
level of infinite models.  Starting from a model of geographic reality, it derives different
kinds of resolution-limited representations by reducing knowledge content.

Since finite approximation of infinite representations introduces uncertainty, chapter five
describes how such uncertainty can be represented.  Since finitely representable models
are special cases of the infinite model, uncertainty representation is designed in the
infinite domain such that the same concepts apply to all possible finite representations.

The sixth chapter defines finite implementations of these models in the form of extended
raster and vector data models.  These data models are then special cases of infinite
uncertain representations; and different formats differ in their choice of parameters used
for finite approximation.  By demonstrating that the infinite models can be implemented
as finite representations, this chapter partly proves the viability of the concepts.

The proposed representations are not as directly related to instructions for graphical
output devices as are the classical raster and vector representations.  The seventh chapter
therefore discusses the visualization of resolution-limited knowledge.  By showing that
the proposed resolution concept guarantees that representations are displayable within the
limitations of graphical displays, the chapter further demonstrates the viability of the
proposed concepts.

Chapter eight defines transformations across representation types, levels of resolution,
and finite formats.  It shows that they are completely defined by their source and target
meta data and propagate uncertainty introduced by finite approximation.  The
transformations are defined in the domain of infinite representations.  To show the
viability of the concepts, finite implementations of transformations in raster and/or vector
models are discussed.

Three examples are used in chapter nine to demonstrate how the explicit modeling of
resolution and the consistency of the proposed theory can be used to make GIS more
intelligent.  The first example demonstrates how meta data on resolution can be used for



12

far-reaching system support in the fitness for use assessment and the preparation of data
sets for analysis.  The second example demonstrates how overlay that takes resolution
into account avoids the problem of spurious polygons.  It thus demonstrates how
resolution-conscious GISs can become more intuitive and user-friendly.  The third
example outlines the design of a format-independent user-interface that hides format
issues from the user.

A final chapter summarizes the major results, describes possible applications, and
outlines future research.
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2  Previous and Related Work

This chapter discusses previous and related work that is relevant for this thesis.  The first section
discusses previous work in the field of data integration.  The second section reviews related work
about components of a spatial theory, namely representations, meta data, transformations, and
uncertainty models.  The last section presents relevant literature on general and spatial modeling
methodology and on the conceptualization of space.

2.1  Data Integration

This section reviews the relevant literature on data integration.  It focuses on system
support for making data sets compatible in terms of scale/resolution and format.  A
general description of the integration problem can be found in [Flowerdew, 1991]
[Shepherd, 1991] [Rhind, 1984].  Practical experience with data integration is reported
for example in [Rado, 1991] [Salg, 1992].

Several papers have addressed the impact of system architecture on integration.  Among
them are [Ehlers, 1989] [Breunig, 1992] [Abel, 1990] [Piwowar, 1990] and [Stephan,
1993].  Many aspects of system architecture are complementary to the issues of the
proposed spatial theory, since they focus on implementation strategies rather than the
underlying spatial concepts.

Some conceptual issues of integration have been discussed by Davis and Simonett
[1991].  The article points out some conceptual incompatibilities between models of
remote sensing and GIS but does not address the need for a consistent spatial theory
explicitly.  While most GIS vendors claim raster-vector integration capabilities for their
products, a recent request on GIS-L asking for the relevant literature or description of the
integration concepts did not produce any conclusive answers [Wilcox, 1992].  This gives
evidence for shortcomings in the conceptual understanding that impede a complete
integration.  Similar evidence is given by Breunig and Perkhoff [1992] who point out the
need for a format-independent representation of spatial knowledge that cannot be found
in the literature.  Ehlers et al [1989]point out that a lack of conceptual understanding is a
major impediment for the integration of remote sensing and GIS.

The conceptual problems of multiple representations are very closely related to those of
data integration:  In both cases the comparison of the knowledge content of
representations is crucial.  In the field of multiple representations, comparison of
knowledge content is used for the identification of equalities among representations for
the management of redundancy, the propagation of changes to representations with
partially overlapping knowledge content, and the test of consistency among
representations.  Multiple representations have received attention during the NCGIA
research initiative 3 [Buttenfield, 1989a] [Buttenfield, 1993] and thereafter (e.g.,
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[Kidner, 1993]).  The need for a consistent spatial theory has been pointed out in a
position paper [Bruegger, 1989] for initiative 3 but has not been further investigated.

Goodchild [1993b] emphasizes the role of uncertainty models in integration.  Uncertainty
models are closely related to a certain representation model since they express uncertainty
in terms of representation entities.  Since the representation model proposed in this thesis
is not comparable to the ones discussed by Goodchild, and due to the limited scope of the
uncertainty model of this thesis, Goodchild’s framework is not directly applicable to this
thesis  (see also section 2.2.5).

Since system support for data integration is most relevant to this thesis, the sequel of this
section discusses different kinds of support and related literature.  Considering the
importance of data integration for GIS and the difficulties facing users when dealing with
different formats and levels of resolution/scale (see section 1.2), system support in these
areas can greatly improve the user-friendliness of GIS.  Such support can include (i)
fitness for use assessment, (ii) selection of the most adequate data sets, (iii) automatic
conversions of data sets in preparation of analysis, and (iv) hiding format differences
from the user.  These kinds of system support will be discussed in the following.  It is
evident that they all rely on a consistent theory of representations, meta data, uncertainty
model, and transformations.

(i) The fitness for use assessment uses minimal data requirements specified by the user in
terms of meta data and determines whether data sets can be converted to the required
state.  Goodchild addresses fitness for use assessment in one of his challenges
[Goodchild, 1992b].  He points out the relation to meta data and argues that they have to
be machine readable.  In contrast, data transfer standards such as SDTS [Fegeas, 1992]
and meta data standards [FCDC, 1992] do not contain machine readable scale/resolution
meta data that are compatible across formats and with transformations.  For example, the
scale of the original paper map is part of a free text entry on the "native data set
environment" in the latter standard.  Abel [1989] proposes a model for data set
management that includes meta data for each data set.  While his meta data are machine
interpretable, he does not address the issue of compatibility of meta data across formats
or of meta data with transformations.

(ii) As outlined in chapter nine, a system can select the most adequate data set in a
multiple representation environment [Bruegger, 1989].  Most adequate can then be
defined as an optimization that optimizes uncertainty, cost, or processing time within
certain constraints on  the other criteria.

(iii) The compatibility of meta data and transformations allows automatic preparation of
data sets for analysis.  Analysis operations typically pose certain requirements of the
input data sets.  For example, overlay requires a single format and comparable
scale/resolution.  The analysis requirements can be expressed in terms of meta data.  In a
consistent spatial theory, analysis requirements and meta data of data sets completely
determine the necessary transformations.  They can thus be automatically performed by
the system.  Examples of the automatically performed conversions are described in the



15

integration literature [Abel, 1990] [Piwowar, 1990].  However, the problem of developing
a consistent spatial theory has not been adequately addressed in the literature.

(vi) The ultimate degree of format integration is reached when format differences are
completely hidden from the user [Maguire, 1991].  This can be achieved by a user
interface that provides conceptual, format-independent GIS operations to the user.  User
commands are then automatically decomposed in a series of executable, formatted GIS
operations and, if necessary, format conversions of data sets.  For example, the user
command "overlay (landuse, planning_zones)" is translated to
"vector_overlay(raster_to_vector(landuse), planning_zones)".  The translation of
conceptual to executable commands is known in computer science as "overloading", the
automatic conversion as "coercion" [Cardelli, 1985].  They are common practice in
modern programming languages.  Applications of these concepts to raster/vector
integration in GIS has been reported by Abel and Wilson [1990].  Conceptual difficulties
have so far limited a comprehensive application of this concept, however.  For example,
there are usually several possible decompositions of a user query;  but the choice of the
one that minimizes uncertainty has not been possible due to the incompatibility of
common uncertainty models with transformations and across formats.  Further, hiding
format differences of data sets that also differ in resolution/scale cannot be solved without
a consistent theory that uses compatible resolution/scale measures in the two formats.

In summary, substantial system support is possible for the integration of data sets that
differ in scale/resolution and format.  Such automation heavily relies on a consistent
spatial theory with compatible representations, transformations, meta data, and
uncertainty model.  The results of this thesis thus enable the design of more user-
friendly GIS with significantly improved data integration capabilities.

2.2  Components of Spatial Theory

The objective of this thesis is the design of a consistent spatial theory consisting of
representation, meta data, transformations, and an uncertainty model of limited scope.
All these components of a spatial theory have received ample attention in the literature.
This section reviews the relevance and differences of previous work for the research
presented in this thesis.

2.2.1  Representation

This section reviews previous approaches to the representation of resolution-
limited knowledge of a discrete geographic reality.  The discussion is kept at a
conceptual level and points out some problems of previous approaches in the
context of resolution-limited knowledge.  Two major types of representations are
distinguished according to whether they use (i) point sets with a single nominal
valued attribute, or (ii) point sets with a more complex attribute.
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Both, raster and vector representations (see e.g., [Egenhofer, 1991]) use point sets
as basic entities:  Vector representations use polygons6, and raster models use
cells.  These point sets usually form a partition of space.  Further, they have to
fulfill certain format requirements.  Namely, vector polygons usually must have
boundaries composed of straight line segments and the boundary of raster cells
must coincide with a predefined grid.

In most (if not all) commercial GISs, representations of discrete models of the
world use point sets with a single nominal valued attribute.  Examples of such
attributes are "water", "land", "forest", "grassland", "urban", "parcel no. 1233",
"London", "Maine", etc.  Since the point sets carry only a single attribute, all their
element points are usually seen to carry the same attribute.

Assume that at infinite resolution, a single theme of the (discrete) world can be
perceived in the form of a nominal field [Goodchild, 1990]:  every point (x, y)
then carries a (single) nominal value n.  At infinite resolution, the nominal field
would directly correspond to a raster representation, since raster cells become
indistinguishable from points.  Vector representations would group contiguous
areas of the same attribute to polygons, that are general point sets at infinite
resolution.  While in raster representations, the geometry of point sets is
predefined, in vector representations, it is determined based on the observed
attribute (see section 2.3.1 for a more detailed discussion of these concepts).  At
infinite resolution, both raster and vector models capture the observed knowledge
exactly without introducing any error.

Problems of these representation models show up only at limited resolution where
cells have a given size and line segments of polygon boundaries a minimal length.
Here, the single attribute cannot capture the world as it is since (a) in the raster
domain, cells contain points that differ in their attributes, and (b) vector
boundaries are too coarse to follow the natural attribute boundaries and thus cause
polygons to contain points of mixed attributes.  Since the representations
proposed in this thesis are designed in a format-independent domain and since
there are different types of representations, this thesis has similarities to both,
raster and vector models.

(a) Raster models use point sets of predefined geometry and usually
represent the nominal value that is the modal point attribute in a cell.  This
modal attribute can be a very weak representation of what is really found
in a cell.  For example, assume that landuse is observed and that the
nominal attribute can fall in any of 10 classes.  In this case, a cell that
contains 10.1% "forest" and a little less than 10% of the other landuse
categories is assigned the modal attribute of "forest".  Modal attributes are

                                                

6 Points and lines are not important for the representation of discrete views of the world.
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also not uniquely defined.  For example, what is the modal attribute of a
cell that contains 1/3 forest, 1/3 grassland, and 1/3 water?

While GIS users may know about the limitations of knowledge associated
with modal attributes7, machines (i.e., GIS) interpret cells as if they were
homogeneous, i.e., all points in the cell are assumed to carry the modal
cell attribute.  This homogeneous interpretation of cells is used in all
analysis steps and in transformations to coarser resolution.  It is easy to
imagine how the weak representation of knowledge in the form of modal
attributes propagates through GIS operations to a result that contains only
very weak statements about the world.

While the representation proposed in this thesis includes a task
comparable to assigning an attribute to a whole cell, it avoids the use of
modal attributes and thus weak representations of knowledge about the
world.  Instead, to treat something as "forest" at a higher level of
abstraction, a minimum of for example 85% of "forest points" are
required.  Further, the presence of a maximum of 15% of "inhomogeneity"
is represented in a machine readable form.  If none of the landuse
categories in a point set reach the required 85%, the attribute becomes
"transition zone" that expresses the fact that the point set contains a
mixture of landuses (see chapter four).

(b) Vector models follow a different approach of representing resolution-
limited knowledge.  Since their point sets are not predefined, the concept
of modal attribute does not apply.  Instead, the geometry of point sets has
to be determined based on the attributes of points.  Figure 2.1 shows the
distribution of land and water at infinite resolution.  It illustrates that the
problem goes beyond just approximating the generally shaped "natural
boundaries" at infinite resolution with straight line segments.

                                                

7 My teaching experience actually shows that it is difficult to convince people that a modal landuse can cover
less than 50% of a cell.
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Figure 2.1:  A natural boundary at infinite resolution that breaks up into
islands and holes.

A major problem of vector representation of limited resolution is the
ambiguity of boundary locations.  As experienced in cartographic
generalization, different cartographers describe the same world with
different polygons.  If machines shall interpret the represented knowledge
during analysis and other GIS operations, a well-defined, objective method
for the determination of polygon boundaries is needed.

Perkal [1966] addressed this issue in his paper titled "An Attempt at
Objective Generalization"8.  (See also section 2.2.3 and chapter seven for a
more detailed review of Perkal’s work).  He derives the location of
boundaries from the attributes of points.  For example, if a disk of
diameter epsilon contains only points of attribute "forest", all these points
are part of the generalized "forest".  Points that do not fall inside such a
homogeneous disk of the required size become points of polygon "edges".
Polygon edges can thus become areas.

While Perkal’s work has found some application in cartographic
generalization [Chrisman, 1992], his concepts for an objective choice of
polygon boundaries at limited resolution has not found its way into GIS
practice.  Vector models therefore suffer still from a high degree of
subjectivity in the location of polygon boundaries.  This subjectivity
hampers human and particularly machine interpretation of what
knowledge about the world polygons actually contain.

Note that uncertainty models do not solve the problem of subjective
polygon boundaries.  In the vector domain, uncertainty is usually
expressed in terms of locational and attribute uncertainty [Chrisman,

                                                

8 Perkal’s objective generalization actually is not formulated in the raster domain but rather uses general point
sets of Euclidean space.
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1989].  Locational uncertainty is usually expressed by a band or a
probability surface that is centered on the represented polygon boundary.
Locational uncertainty relates the represented boundary with the "true"
boundary [Chrisman, 1991].  For example, a band is assumed to contain
the "true" boundary with a certain probability.  The problem of this
uncertainty model is that the "true" boundary is not really defined.  If it is
considered to be the "natural" boundary at infinite resolution, the
topological complexity of "natural" and represented boundary are largely
different (see figure 2.1) which makes the concepts of locational error
questionable.  If the "true" boundary is limited in its resolution, it is not
objectively defined as argued above.  The problem is also evident when
looking at different subjective boundaries that differ in their topology.  In
this case, bands or probability surfaces centered on the represented lines
are unfit to explain the subjective difference in topology.  A similar
critique of the discussed error model is found in [Goodchild, 1993b].

To overcome the problem of subjectively defined boundaries at limited
resolution, this thesis uses a generalization of Perkal’s concepts to
objectively derive boundaries from point attributes (see chapter four).

The remainder of this section reviews the second type of representation that uses
point sets with more complex attributes than just a single nominal value.
Namely, it has been suggested to use an attribute for raster cells that consists of a
vector of probabilities, that an arbitrary point in the cell belongs to a given
category [Goodchild, 1992a].

If these probabilities are unaffected by uncertainty introduced by data acquisition
and classification, they express the "mixture" of point attributes within a cell.
This approach obviously solves the problems of a modal, single valued attribute.
This thesis uses a very similar concept to probability vectors.  Instead of assigning
probabilities to every point, however, it represents the mixture of point attributes
for a whole instantaneous field of view that are not limited to the cells of a regular
grid (see chapter four).

It has also been suggested to apply the more sophisticated attribute representation
to the determination of boundary locations [Mark, 1989a].  Actually, Mark and
Csillag use a special case of the mentioned attribute representation, called
"probabilistic epsilon band" that was introduced by Honeycutt [1987].  It is a
special case since points in the "fuzzy boundary region" between two polygons
can belong only to the categories of these adjacent polygons.  The probability
vector thus has only two non-zero components.  Mark and Csillag [1989a] suggest
to use a "contour" of such a probability surface as polygon boundary.  Figure 2.2
visualizes the concept.
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Figure 2.2:  Probability of a point being a member of category "A", as a function
of position along a profile perpendicular to the boundary between a zone of
category "A" on the left and "not-A" on the right.  Copied from [Mark, 1989a],
figure 2(c), page 73)

This approach seems to have some problems that are pointed out in the following.
First, a point in a fuzzy boundary region may well belong to a category different
from those of the adjacent polygons.  In contrast, this thesis allows the equivalent
to general probability vectors (see chapter four).

Second, probability vectors are defined for predefined point sets such as raster
cells or instantaneous fields of view.  The vector represents the mixture of point
attributes for the whole point set.  In contrast, the probabilities of single points
belonging to a given category is given with 100% probability.  It is conceptually
unclean to attach a probability vector determined for a predefined point set to all
points in this set.  This is evident, for example when two overlapping point sets
are used to determine the probability vector.  In this case, the vectors of the two
point sets are likely to be different.  A point lying in the intersection of the two
point sets would thus be assigned different vectors depending on which point set
was selected.  If the problem of unique assignment of vectors to points is solved
by using a grid of raster cells, the problem of locating a polygon boundary is
irrelevant since it does not occur in the raster domain.  This thesis solves the
problem by assigning mixtures (similar to probability vectors) to whole
instantaneous fields of view (i.e., disks) rather than to points (see chapter four).
For this reason, resolution-limited space that is a set of disks is used rather than
Euclidean space that is a set of points.

2.2.2  Meta Data

A rapidly growing number of data sets available from government agencies and
other sources, the ever increasing networking and exchange of data, and the
realization that a single data format is not sufficient have increased the importance
of meta data in the field of GIS.  Some of the recent works in the field include
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standards such as [Fegeas, 1992] [FCDC, 1992], and discussions in other contexts
[Abel, 1989] [Kidner, 1993].

Meta data are defined in the context of a representation model.  For example, the
concept of scale is closely related to a graphical representation and is not directly
applicable to other representation models such as vector.  Similarly, raster
resolution is defined in terms of entities of the raster model.  Since this thesis
proposes a new representation model previous work on meta data is not directly
applicable.

2.2.3  Transformations to Coarser Resolution

Since the proposed consistent spatial theory includes transformations that map
knowledge to coarser levels of resolution, this section compares the proposed
transformations to other generalization approaches.

In vector GIS, cartographic generalization performs a similar purpose to the
transformation proposed in this thesis.  The most common such method in current
GIS is the Douglas-Poiker algorithm [Douglas, 1973].  A bibliography of more
recent approaches was compiled for the NCGIA initiative 3 [Buttenfield, 1989b].
Line generalization algorithms are defined for the domain of chains of points.
The problem consists of either filtering or selecting points in a chain to yield a
similar chain with less points and generalized geometry [Buttenfield, 1985].
Since points and chains do not exist as entities in the domain where this thesis
defines transformations, the results of previous research in this field are not
applicable.

An exception is the work by Perkal [1966] that defines the problem independently
of chains of points but has found application in cartographic generalization
[Chrisman, 1992].  (See also section 2.2.1 and chapter seven for a detailed
review).  Perkal’s goal was to propose a mathematically well-defined concept for
cartographic generalization to solve problems of the existing, vaguely defined
approaches.  Perkal’s model is based on manually sweeping a disk over map
graphics to construct areas of a coarser scale.  Generalized areas are defined as the
union of all disks that are completely enclosed in one of the original areas.  While
area boundaries in graphical approaches always have a finite width (i.e., line
width), Perkal’s boundaries become areas themselves.  They are either band-like
in case of small generalization effect, or larger areas, for example when
unresolvably small islands are arranged in dense groups.  Discrete views (e.g., for
landuse data) proposed in this thesis borrow some of the major concepts from
Perkal’s work, namely that attributes are determined for disks rather than points
and the concept that boundaries can become areas.  Perkal’s focus on cartographic
rather than model generalization explains the major differences of his approach
compared to this thesis:
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(i) Perkal’s disks are described by single homogeneous attributes such as "water"
or "land" that can be mapped to single color tones in graphic visualizations.  In
contrast, this thesis uses inhomogeneous attributes such as "more than 80% water"
in order to capture what is known about the world more precisely.

(ii) Perkal uses his generalization process to transform a scaled map to a map of
coarser scale.  In contrast, this thesis uses a comparable process to transform
unscaled geographic reality into a scaled representation.  Figure 2.3 illustrates the
different uses of Perkal’s concepts.  t1 and t2 are generalization transformations
similar to Perkal’s.  Both transform an infinitely detailed model of geographic
reality to a "scaled" representation.  Transformation t3 that maps between two
scaled representations is derived from t1 and t2 such that the concatenation of t1
and t3 is equivalent to t2.  t1 and t2 are the mechanisms to reduce knowledge
content from geographic reality to a "scaled" representation.  Meta data describe
the information content of representations and are thus closely related to t1 and t2.
The figure illustrates how the described relations between transformations and
meta data allow determination of transformations such as t3 by source and target
meta data.

map of 
scale 1

map of  
scale 2

Perkal’s 
generalization

infinitely 
resolved model 
of geographic 

reality

representation 
at resolution 1

representation 
at resolution 2

t1 and t2: 
generalization 
similar to Perkal’s

t1

t2

t3

Perkal’s approach: This thesis:

Figure 2.3:  Differences of use of comparable generalization concepts by Perkal
[1966] and this thesis.

(iii) Due to his graphical focus, Perkal defines his generalization in the visually
inspectable Euclidean space:  His generalized areas are therefore unions of disks
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that are Euclidean point sets and therefore visually inspectable.  In contrast, this
thesis takes Euclidean point sets (i.e., areas) of geographic reality and transforms
them to areas of "resolution-limited space".  Resolution-limited areas are sets of
disks rather than unions thereof, and are therefore not Euclidean point sets and not
visually inspectable.

Generalization methods for the raster domain have been described by Monmonier
[1983].  These generalization methods are defined in terms of raster cells and
zones with a single nominal attribute9.  Since these entities do not have direct
equivalents in this thesis, previous work is largely inapplicable to the problem
discussed in this thesis.  A major difference in philosophy between this thesis and
Monmonier’s generalization is evident in the preservation of the relation between
geometry and attributes.  For example, Monmonier [1983, page 70] proposes to
partition and dissolve polygons.  The dissolved parts are then "absorbed" in
adjacent polygons, but the related change in the attribute of these polygons is not
accounted for.  Such a generalization procedure therefore fails to preserve the
relationship between geometry and attribute.  In contrast, this thesis strictly
preserves this relationship.  A change in geometry is inseparable from a change in
attribute (see section 3.6).

The transformation to coarser levels of resolution proposed in this thesis heavily
relies on linear filters [Castleman, 1979].  Raster GIS commonly offer finite
implementations of such filters.  However, these filters are usually applied to
images, i.e., raster layers with real or integer cell values.  They are not applicable
to the nominal cell values associated with a discrete model of the world10.

2.2.4  Raster-Vector Conversion

Among the transformations across finite formats proposed in this thesis are
conversions between raster and vector formats.  Such algorithms have been
discussed in [Franklin, 1979], [Peuquet, 1981a], [Peuquet, 1981b], [Pavlidis,
1982], [Clarke, 1985], and [van der Knaap, 1992].

One major difference of this thesis as compared to previous work is that the
proposed conversions take uncertainty introduced by finite approximation into
account.  Such uncertainty is represented in the form of a geometric container, i.e.,
the finitely representable shape totally contains the more general, non-
representable shape (see chapter five).  This means that reapproximation in a

                                                

9 While Monmonier uses integer values as cell attributes, they are codes for nominal properties since neither
order nor ratios are relevant.

10 A moving window filter that determines the modal cell value is not linear.
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different finite format must totally contain the area of the original finite
representation (see figure 2.4.a).  In contrast, format conversions described in the
literature attempt to keep the difference between the two different approximations
small (see figure 2.4.b).

(a) (b)

Figure 2.4:  Raster to vector conversion as defined in this thesis (a) versus
previous approaches [Peuquet, 1981a] (b).

Another major difference is evident in the treatment of objects that are relatively
thin or small compared to resolution.  Examples of such objects can be rivers and
cities.  While in the world, these objects are areas, conventional vector models
usually represent them at reduced dimension as lines (in the case of rivers) or
points (in the case of cities).  Since raster representations preserve the areal
character of these objects, conventional format conversion has to translate
between the different approaches of the two data models [van der Knaap, 1992].
In contrast, this thesis proposes to represent relatively thin or small objects
separately from "normal" objects as "stand-alone features" and to preserve the
areal character in both, raster and vector representations11 (see chapters four and
five).  This approach avoids the problem of possibly arbitrary decisions of how to
translate between the different approaches in the classical representation.

2.2.5  Error and Uncertainty Models

The representation and propagation of uncertainty introduced by finite
approximation is part of the thesis objective.  This section therefore discusses
similarities and differences to error and uncertainty models discussed in the
literature.  The comparison of approaches is discussed at a philosophical level
since the treatment of uncertainty in this thesis is drastically limited in scope
compared to work described in the literature and due to the difference of the data

                                                

11 Note that while the proposed vector representations preserve the objects areal character, the proposed vector
visualizations show the objects as points or lines (with a certain drawing pen width).
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models in which the uncertainty models of this thesis and the literature are
defined.

Data quality as captured in error and uncertainty models is of growing concern to
the GIS community (see e.g., [Gopal, 1989] [Chrisman, 1991] [Goodchild,
1992a]).  A recent survey and taxonomy of approaches is presented in [Goodchild,
1993b].  Due to the largely different scope of the uncertainty model in this thesis
and its description in a totally different data model, it would be meaningless to
locate the proposed approach in Goodchild’s taxonomy of uncertainty models.

The major difference to related models is the limited scope of the uncertainty
model proposed in this thesis:  This thesis considers only the uncertainty that is
introduced in the scaling process and in the finite approximation necessary
for representation.  This excludes for example attribute uncertainty introduced
by remote sensing classification or positional uncertainty caused by limited
accuracy in the positioning of sensors.  In contrast, most uncertainty models in the
literature attempt to encompass all kinds of uncertainty without isolating the
uncertainty discussed in this thesis as a separate type.

Chrisman [1991] defines error as the "forcible deviations between a
representation and actual circumstances".  Since this true error can usually not be
determined, uncertainty models often describe the probability of different error
magnitudes or of different true configurations of actual circumstances.  An
example of the former kind of probability are the error ellipses used in surveying
engineering; and an example of the latter probability is the uncertainty model by
Goodchild et al that assigns different probabilities to different nominal attribute
values of points [Goodchild, 1992a].

A second major difference to existing uncertainty models is that this thesis
represents knowledge at a limited level of detail such that the "scaling process"
does not introduce any error by Chrisman’s definition.  This is illustrated in figure
2.5.  The upper two boxes show the common point set--single nominal attribute
approach to modeling knowledge at different scales (see section 2.2.1);  the lower
two boxes illustrate the proposed representation at limited level of detail.  In the
classical approach, every point carries an attribute such as "land" or "water".  As
is shown for point p, these attributes are changed by the scaling process.  This
change of attribute results in errors according to Chrisman’s definition:  P, in the
1:100,000 map is represented to be "land", while it is "water" in actual
circumstances.  In this context, uncertainty models represent, for example, the
probability of a point being represented as "land" while the true attribute is
"water".
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Figure 2.5:  Representation at limited resolution compared to the common point-
based approach.

In the resolution-limited approach (illustrated in the lower two boxes), no error
according to Chrisman’s definition occurs.  Instead of attaching attributes to
points, they are attached to disks whose size is determined by resolution.  The
disks d and D then correspond to the point p, respectively.  Instead of using
simple nominal values such as "land" or "water", attributes in the resolution-
limited approach express the level of inhomogeneity within a disk.  For example,
the attribute of disk d is "more than 80% water", where "water" is defined in
geographic reality and is therefore invariant with scale.  Similarly, the attribute of
D is "more than 80% land".  While the classical approach showed a contradiction
between the knowledge represented at the two different scales,  the water at the
50m resolution-limited representation can easily be absorbed in the 20%
inhomogeneity of the larger disk at 200m resolution.  Due to this absence of
contradictions, the scaling process does not lead to errors or uncertainty in the
sense discussed above.  The representation at limited level of detail thus makes an
uncertainty model for scaling effects unnecessary.

While scaling does not result in uncertainty in the proposed model, finite
approximation does.  This thesis uses two kinds of finite approximations:  (i)
Continuous functions over two dimensional space that are approximated by
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sampling and interpolation;  and (ii) areas of general shape that are approximated
by vector polygons or raster zones12.  In both cases, the maximal possible
approximation error is limited.  This is obvious for case (ii) but requires some
explanation for case (i):  At infinite resolution, the approximated functions can
have discontinuities such that approximation errors are potentially unlimited.  All
finite representations operate at limited resolution, however, where the function is
guaranteed to be continuous.  Section 4.5.3 will show that this limits the maximal
rate of change (i.e., first derivation) of the function.  This, in turn, limits the
possible values the function can assume between sampling points and thus the
maximal deviation between true and interpolated value.

Goodchild states that most errors in the real world are normally distributed and
that error magnitudes are therefore potentially unlimited [Goodchild, 1994].  The
above argument has shown that errors of finite approximation are theoretically
limited and are therefore not normally distributed.  This thesis therefore proposes
to represent these errors by upper and lower bounds of the possible errors.
Alternatively, error bounds could be treated as confidence intervals similarly to
error ellipses in surveying.  For example, with 90% probability, the actual error
stays within the given bounds.  Such an extension seems rather difficult and
application dependent, however, since it involves assigning probability densities
to different configurations of geographic reality.

2.3  Spatial Modeling

This section reviews issues of spatial modeling and modeling in general that are relevant
to the presented work.  Sinton’s concepts for constructing different types of spatial
entities are discussed in the first section.  They underly the construction of spatial features
in chapter four and provides a general understanding of how attributes and geometry are
related.  The second section reviews different concepts of resolution and points out how
they are used in this thesis.  Literature on models in remote sensing, discussed in the third
section, gives evidence for the practical value of discrete models of reality.  It further
provides the terms "H- and L-resolution" that are used in this thesis.  This thesis adopts
the concepts of "objects" and "features" from cognitive research that is reviewed in
section four.  The structural similarities between the cognitive model and this thesis are
also pointed out.  The issue of finitizing the inherently infinite spatial domain is an
important component of the approach.  The review of literature on the topic is found in
section five and also gives insight in the origin of formats (raster and vector) which is a
prerequisite for the understanding of format-independent models.  Finally, in section six,
abstraction mechanisms that are used to construct higher-level objects in the model of
geograhic reality are reviewed in the last section.

                                                

12 These areas, vector polygons and raster zones are defined in resolution-limited space rather than Euclidean
space.
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2.3.1  Sinton’s Taxonomy of Spatial Knowledge

A taxonomy of discrete models of spatial knowledge proposed by Sinton [1979] is
extensively used in this thesis.  It has already been applied implicilty in section
2.2.1 and is the major mechanism to abstract continuous models used to represent
resolution-limited knowledge to discrete ones (see section 4.4).  This section
therefore reviews Sinton’s work.

Sinton proposed to distinguish different types of discrete spatial knowledge.
These types express different facts about the world and have to be treated
differently during analysis.  They are derived from the same (continuous or
discrete) model of the world by different methods.

Sinton’s model of geographic reality defines three components of spatial
informations, namely "location", "theme", and "time" [Sinton, 1979].  Figure
2.6 shows such a model with a continuous theme.  For visualization purposes,
location is shown by a single axis rather than two axes .

theme

time

location

(x and y combined)

Figure 2.6:  Continuous model of the world.

Sinton proposed that discrete representation models are obtained by (1) fixing one
of these components, (2) controlling a second, and (3) measuring the third.
Since this thesis assumes time to be fixed, only two methods for constructing
discrete models are of interest:  (i) controlling theme and measuring location, and
(ii) controlling location and measuring theme.  Examples of these two cases are
given in the following:

The first example shows how the classification of landuse from a remotely sensed
image corresponds to controlling the theme and measuring the location (see figure
2.7).  Albedo represents the theme.  It is controlled by defining intervals of albedo
values that correspond to discrete landuse classes such as "urban", "forest", and
"pasture".  These discrete classes are used to discretize the continuous variation of
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albedo:  all locations with an albedo value that falls into the interval of "forest"
are assigned the nominal value "forest".  Contiguous areas with the same nominal
value now form discrete entities (i.e., polygons) whose geometry (or location) can
be measured.

albedo 
(theme)

location

forest

pasture

urban

forest 
geometry

1. control  
     theme

2. measure  
     location

(cross-section)

Figure 2.7:  Controlling theme to measure location.

The second example shows how the temperature values reported for predefined
areal units correspond to Sinton’s method of controlling location and measuring
theme (see figure 2.8).  The theme is given by the continuous variation of
temperature over space.  In a first step, location is controlled by arbitrarily
defining reporting units.  Examples of such units are the cells of a regular grid and
administrational units such as census tracts, districts, and states.  Temperature
varies within each reporting unit.  The theme is measured by deriving statistical
descriptors of this variation.  Some of the most commonly used statistics are
average, minimum, maximum, and variance.

temperature 
(theme)

locationreporting 
unit

2. measure  
     theme

1. control  
    location (cross-section)

(average)

Figure 2.8:  Controlling location to measure theme.

Section 2.2.1 gave an example where Sinton’s methods were applied to a discrete
model of geographic reality.  In this model every point in reality was described by
a nominal value.  In a raster representation, location was first controlled by a grid
and the theme was measured in the form of a "modal value" or a "probability
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vectors".  In vector representations, the theme was controlled and the location
measured.  At infinite resolution, this means that the polygon boundaries separate
contiguous areas with the same nominal point attributes.  At limited resolution,
Sinton’s concept is not applicable anymore since the representation of location is
too coarse to follow the geometry defined by the theme.

Csillag [1991] surveys some of the relevant research concerning resolution in
GIS.  He identifies some problems of knowledge representation in this context by
questioning the classic understanding of geometry and attribute: "The
conventional separation of spatial data into geometry and attributes has not left
this community yet.  Such a separation is consistent with an entity-relationship
model, with geometry defining the objects, which then have attributes and
relationships [Mark, 1989a]".

Since geometry and attribute (i.e., location and theme) cannot be treated
separately [Csillag, 1991], Sinton’s concepts that relate the two aspects are of
utmost importance for the understanding of spatial knowledge.  In the case of
limited-resolution vector representations, this relation between theme and location
is lost.  This causes the problems of subjectively defined boundary locations (see
section 2.2.1) and ill-defined generalization methods13.

2.3.2  Resolution

Resolution is a central issue for this thesis for obvious reasons.  Resolution
concepts are necessarily different for continuous and discrete models.  This
section reviews the concepts of both domains and how they relate across domains.
It further points out, which of these resolution concepts are used in this thesis.

In the domain of continuous models, resolution is most commonly modeled by
linear systems [Castleman, 1979].  The effect of resolution can then be described
by a linear filter.  For example, an optical system can be characterized by its
"optical transfer function", or by a "modulation transfer function", both of which
are basically linear filters [Castleman, 1979].  In image processing, these filters
are also called "point spread function" [Castleman, 1979].  In remote sensing,
sensor resolution can be described by a linear filter [Davis, 1991].  Here, the filter
describes the sensitivity of a sensor cell as a function of the distance from the
cell’s center point.  Figure 2.9 shows two possible filters that describe the

                                                

13 This problem is solved in this thesis by deriving "mixture fields" as a limited-resolution theme from the
original one that leads to coarser geometry of entities.  To allow polygonal approximation of this geometry, the
attribute values of the "transition zone" (similar to boundary) are slightly modified to preserve the relation between
geometry and attribute.
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resolution of an imaging system.  Filter (a) describes an actual sensor, while filter
(b) describes an "ideal sensor".

sensitivity

distance from 
center

0

sensitivity

distance from 
center

0

(b)(a)

Figure 2.9:  The resolution of an actual (a) and ideal sensor (b).

Linear system theory provides the mathematics for comparing and combining
linear filters.  For example, image restauration attempts to eliminate the effect of a
filter by using an approximation of its inverse [Castleman, 1979].  The same
concepts can be applied to estimate the image of an ideal sensor from an image
perceived by an actual sensor.

In discrete models, resolution is usually expressed in terms of a minimal size of
geometric entities.  A prime example of this concept is raster resolution, or more
generally, the resolution of regular tesselations of space, that is measured by the
size of cells.  A similar concept has been applied to irregular tessellations [Tobler,
1988].  The shortcoming of these concepts is their limitation to a single
tessellation of space.  A geometric resolution concept that is free of such
limitation is the instantaneous field of view (IFOV) used in remote sensing
[Davis, 1991].  It is the smallest area that can be resolved by a sensor cell and
variation within this area is unaccessible to the sensor.

An instantaneous field of view can be seen as a special case of a linear filter,
namely that of an ideal sensor [Davis, 1991].  This relation can be used to
interface between the resolution concepts of continuous and discrete models.

This thesis uses the resolution concepts from both domains, i.e., IFOVs and linear
filters.  IFOVs are assumed to be disks of constant size.  They form the
components of resolution-limited space that is used instead of Euclidean space.
The linear filter concept is used during the change of resolution in transformations
(see appendix B).  For compatibility with the concept of IFOV, only filters of
ideal sensors are considered.
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2.3.3  Models in Remote Sensing

This thesis uses a discrete model of geographic reality that is comparable to
discrete scene models in remote sensing.  Besides documenting the practical
importance of discrete models of reality, this section reviews the terms H- and L-
resolution that are defined for these models.

Discrete scene models are commonly used in remote sensing [Strahler, 1986].
Examples of discrete entities used in such models are leaves, branches, plants,
crop rows, trees, fields, stands, lawns, cars, streets, gardens, buildings, runways,
etc. [Strahler, 1986].  Strahler, Woodcock, and Smith state that implicitly, remote
sensing "classification is nearly always based on an H-resolution model" that is a
special case of a discrete scene model.  They give several examples of supervised
and unsupervised classification methods as evidence.  They further discuss a large
number of works on canopy models as examples of explicitly modeled discrete
scene models.  Examples of the use of a discreet scene model for theoretical
considerations in remote sensing are [Jupp, 1988] and [Jupp, 1989].

Strahler, Woodcock, and Smith [1986] propose the distinction of two different
kinds of scene models:  H- and L-resolution scene models.  This distinction is also
used in this thesis.  "An H-resolution model is defined as one in which the
elements in the scene are larger than the resolution of cells;  the L-resolution
model presents the opposite case" [Strahler, 1986].  In the context of this thesis,
"elements" are the individual discrete objects that inhabit geographic reality and
"the resolution of cells" translates to "the size of the instantaneous field of view
(or disks or resolution-limited space)" (see chapter four).  The concept is
illustrated in figure 2.10.  The individual discrete objects of geographic reality are
shown in gray14;  the disks that correspond to the instantaneous field of view of
the sensor (and thus resolution) are visualized by their boundary circles.

                                                

14 While this thesis requires objects of geographic reality to partition space, they are shown separated for
easier visualization.
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H-Resolution L-Resolution

Figure 2.10:  H- and L-resolution.

2.3.4  Cognitive Research

This section reviews recent work on spatial cognition since it shows a striking
structural similarity to the presented spatial theory and therefore provides the
definitions for the terms "object" and "feature".

A cognitive approach to spatial modeling and reasoning has increasingly gained
importance in the GIS community [Couclelis, 1992] [Mark, 1989c].  A thorough
understanding of how humans perceive and reason about space is a prerequisite
for the design of user-friendly GIS, where computer formalisms support human
reasoning.

Cognitive research distinguishes four different spaces to express the "scale" at
which the world is perceived [Mark, 1989c] [Couclelis, 1992].  Coulelis describes
that objects of A- or B-space and features of C- and D-space differ considerably in
their properties:

A- and B-space contain objects.  Typical examples are pens, cups, tables,
buildings, etc.  They are relatively small compared to the resolution of visual
perception.  A- and B-space objects are the prototypes for the object concept.
Their major properties are homogeneity and sharp boundaries.  Both these
properties are relevant when objects are physically moved as a whole.
Administrative entities15 such as parcels, census tracts, districts, or states are
modeled after objects.  They thus have the properties typical for A- and B- space
although they can be large compared to visual resolution.  Also engineering

                                                

15 or more generally everything that can be "owned"
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artifacts are A- and B-space objects since they are homogeneous, have sharp
bounaries, and often can be moved as a whole.  Objects are seen as having an
identity in their own right, independently of purpose and context.  Identifiers are
thus typical descriptors for objects.

C- and D-space contain features.  Examples of such features are forests, swamps,
etc.  They are large compared to the resolution of visual perception and cannot be
moved.  Typically, features contain a fair amount of inhomogeneities and are
separated by fuzzy boundaries or gradual transitions.  Features are usually defined
in terms of observable properties [Couclelis, 1992].  The definition of features is
highly dependent on the characteristics of perception such as resolution and the
choice of observable properties.  Feature identity is therefore very limited since it
is likely a given feature does not exist in a changed context.

This thesis adopts Couclelis’ concepts of objects and features.  The proposed
spatial theory is structurally similar to Couclelis’ model since the proposed model
of geograpic reality has the properties of A- and B- space while resolution-limited
models are closely related to C- and D-space.  In the proposed spatial theory, the
discrete entities of geographic reality are therefore called objects while features
are the entities of resolution-limited models.  While objects are homogeneous
with a sharply defined geometry, features always contain a certain degree of
inhomogeneity and their boundaries are fuzzy16.  The characteristics of perception
on which the definition of features depends is formalized by the concepts of
"resolution" and "level of homogeneity".

The identity of objects may or may not propagate from geographic reality to
features at limited resolution.  In the case where objects are large compared to
resoluton (i.e., H-resolution), the geometry of these objects is considered a feature
that varies with context.  Such features can obviously "inherit" the identifier from
the associated object.  In the L-resolution case, individual objects are too small to
be resolved.  Features then become areas that are relatively homogeneous in the
distribution of contained object classes.  Obviously, they cannot be described by
an identifier of an object.  Also, features at different levels of resolution cannot be
related by a common identifier.

Figure 2.11 illustrates the concepts of how H- and L-resolution features relate to
objects of geographic reality.  The H-resolution feature is obviously a smoothed
version of the infinitely complex geometry of the related object.  For simplicity,
the possible absorption of inhomogeneities and change of topology have been
omited in the figure.  The L-resolution feature represents an area that contains
objects of the same class.  For easier visualization, objects are simply shown as
disks and inhomogeneity that is typical for such features is neglected.

                                                

16 Such fuzzy boundaries are represented by an areal "transition zone" in the proposed spatial theory.
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Figure 2.11:  H- and L-Resolution features.

Note that an L-resolution feature has no similarities to an aggregation of objects:
The feature geometry is based on the mixtures of objects contained in IFOVs.
This mixture changes continuously with the location of the IFOV.  The definition
of the feature geometry based on this mixture continuum is obviously
incomparable to an aggregation of discrete entities.

The selection of entities17 is often used as a generalization operation in the
literature (see for example [Brassel, 1988] [Beard, 1988] [McMaster, 1988]).
Entities that are not selected are then often dissolved by subdividing the area they
occupy and absorbing the resulting segments in adjacent objects (see for example
[Monmonier, 1983]).  This procedure is incompatible with the spatial theory
proposed in this thesis:  One problem is that the limited-resolution geometry is
determined by a purely geometric method rather than being defined in terms of
observable properties or theme (see Sinton in section 2.3.1).  Further, the selection
is often applied to features rather than objects, for example, in the case of
generalizing a landuse map that contains only features.  In this case, it cannot be
assumed that feature identity is preserved at a coarser level of resolution, i.e., the
coarser features cannot be defined in terms of more detailed ones.

                                                

17 Here, the term entities includes objects and features.  The generalization literature usually does not
distinguish between the two concepts.
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2.3.5  Finitization18 of the Spatial Domain and Data Formats

Recent research has explicitly addressed the problem that spatial models are
inherently infinite and cannot be directly represented in finite computers.  For
example, Smith [1992] designed his logic-based "Term Definition Language" to
support the definition of infinite spatial domains such as point sets, and Goodchild
[1990] studied different discretizations of an infinite geographic reality that result
in different finite data models.

This thesis follows Goodchild’s example of capturing the infinite spatial domain
in the form of a (non-representable) model of geographic reality and explicitly
describing the finitization process that results in finite representations (or data
models).  The approach of this thesis differs from Goodchild’s in using the
limitation of resolution (i.e., the scaling process) as a major component of the
overall finitization process, while Goodchild’s work does not specify a
comparable mechanism.  Due to this difference, Goodchild’s finite data models
[Goodchild, 1993a] are not directly comparable to the ones proposed in this
thesis.

Goodchild’s model of geographic reality is a Euclidean space where every point
(x,y) is described by a vector of properties {z1, z2, ..., zn}.  This model obviously
contains infinitely many entities (i.e., points) and is format-independent, i.e.,
neither raster nor vector.  Goodchild [1993a] proposes different kinds of
discretization methods (or finitizations) that result in different representations that
are all formatted, i.e., either raster or vector.  While the finitization process used
in this thesis results in different, not directly comparable representations, the
thesis uses the concept implied by Goodchild’s work that infinite models of the
spatial domain can be format-independent, while different kinds of finitization
necessarily introduce formats.

2.3.6  Abstraction Mechanisms

The model of geographic reality used in this thesis is inhabited by objects.  The
objects that describe the highest level of detail are atomic, i.e., not further
dividable.  They are therefore called atoms.  For most purposes, the level of detail
of an atomic view is extensively high.  Abstraction mechanisms known from
object oriented modeling [Peckham, 1988] [Brodie, 1984] are therefore used to
define higher level objects from atoms and other lower level objects.  These
abstraction mechanisms are reviewed in this section.

                                                

18 Note that Goodchild uses the term "discretization" rather than "finitization".  I prefer the latter term since
discrete models can have infinitely many states (for example, an algebraic model of real numbers).
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Abstraction mechanisms define many:1 relationships between several lower-level
entities and a single higher-level one.  Entities here can be either objects or object
classes.  In the former case, the many:1 relation can be used to define object
hierarchies.  Four different kinds of abstraction mechanisms are distinguished:
"classification", "generalization", "association", and "aggregation" [Peckham,
1988] [Brodie, 1984].

"Classification is a form of abstraction in which a collection of objects is
considered as a higher level object class. An object class is a precise
characterization of all properties shared by each object in the collection.  An
object is an instance of an object class if it has the properties defined for the class.
Classification represents an ’instance-of’ relationship between an object class [...]
and an object [...]" [Brodie, 1984].  It thus defines a many:1 relationship between
many entities of type ’object’ and an entity of type ’class’.  The criterion for an
object to be a member of a class is to exhibit class behavior.  Behavior is
described in the form of methods and properties that describe the current state of
an object.  In GISs, classification is frequently based on properties.  For example,
spatial units can be classified based on their elevation or slope into elevation or
slope classes.  Note that most programming languages limit the support of
classification to that based on methods19.  In contrast, this thesis uses
classification in its most general definition.

"Generalization is a form of abstraction in which a relationship between category
objects is considered a higher level generic object.  This is the ’is-a’ relationship"
[Brodie, 1984].   Generalization therefore defines a many:1 relationship between
many subclasses and a single superclass.  All related entities are thus of type
’class’.   All subclasses share the class behavior of their superclass.  An example of
the use of generalization in GISs is the mapping of the classes ’corn fields’, ’potato
fields’, etc. to the class of ’agricultural areas’.

"Association is a form of abstraction in which a relationship between member
objects is considered as a higher level set object.  This is the ’member-of’
relationship" [Brodie, 1984].     Association defines a many:1 relationship
between entities of type ’object’.  The definition of association puts no restrictions
whatsoever on the criteria for membership; it could be expressed in terms of a
predicate or come from outside the system [Peckham, 1988].  An example of
association is the grouping of all instances of the class ’agricultural area’ to a

                                                

19 Examples for programming languages that support only method-based classification/generalization are
Pascal, C, Eiffel, etc.  The reason for this restriction seems to be that only method-based classification/generalization
can be supported at compile time while property-based classification/generalization would require run-time support.
While method- and property-based classification/generalization is indistinguishable at a conceptual level, they
require different mechanisms in a programming language.  Note that fields other than programming languages
frequently use property based generalization.  Examples are climatic classes that are defined in terms of properties
such as precipitation, temperature, etc.
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single object.  Note that in this example, the criterion for membership is defined
by a classification.

"Aggregation is a form of abstraction in which a relationship between component
objects is considered as a higher level aggregate object.  This is a ’part-of’
relationship" [Brodie, 1984].   Like association, aggregation defines a many:1
relationship between entities of type ’object’.  Aggregation is normally used to
form composed objects, i.e., objects which consist of several other objects [Smith,
1977].  While an association can be interpreted as an unstructured set of member
objects, the set of component objects in an aggregation can be seen to be
structured by "labels" which define the components’ function in the aggregate
object.  For example, the aggregate object "car" is composed of wheels, a body, an
engine, etc.  Each of these components carries a label such as "front-left-wheel",
etc.

The behavior of entities related by abstraction mechanisms are often related.
"Inheritance" of superclass behavior to subclasses is the best known example.
More important for this thesis is behavior propagation defined by aggregations
and associations [Egenhofer, 1989a].  In propagation, new methods for the higher-
level objects are defined in terms of methods and properties of the related lower-
level objects.  Then, object properties observed by higher-level methods depend
fully on the properties of related lower-level objects.  For example, the method
"mass" of a higher level physical object returns the sum of the masses of all
component objects at the lower level.  Higher-level behavior is often a statistical
measure of the behavior of component or member objects.  Examples of such
statistics are sums, averages, minima, maxima, and densities.
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3  Overview of Approach and Spatial Theory

This chapter gives an overview of approach and model components.  The first section discusses
modeling in the infinite domain since it is the basis for format-independency.  The second
section proposes to compose spatial representations from three components.  Possible choices for
these components and their properties are discussed.  This framework is used in section three to
define the representations proposed by this thesis.  Section four shows how representations and
their components are related by abstraction mechanisms.  This outlines the structure of how
different parts of this work fit together.  The abstraction concept is then used in section five to
describe the approach of how representations, meta data, transformations, and uncertainty model
are defined.  The section shows how the approach integrates these model components in a
consistent spatial theory.  Preserving the relation between attributes and geometry in
representations is a crucial consistency requirement.  Based on the concepts described in the
previous sections, section six shows how this consistency is strictly enforced in the proposed
spatial theory.

3.1  Modeling in the Infinite

A major characteristic of the described modeling effort is the use of infinite models.  This
section compares modeling in the infinite to current GIS modeling practice.  In particular,
it compares modeling in the infinite to modeling in (finite) spatial data models (or high
level spatial data structures) [Egenhofer, 1991].  This allows avoidance of a data model
dependent definition of concepts.  In this thesis, finite format or simply format is used as
a synonym of data model.

Modeling attempts to describe certain aspects of the world in a formal, and therefore
precise language.  Conceptual modeling uses languages that are independent of specific
hardware and software configurations.  Examples of such languages are found in the field
of software specification [Liskov, 1986] [Thomas, 1988] [Horebeek, 1989] [Woodcock,
1988].  Applied to spatial knowledge, conceptual modeling is usually related to spatial
data models (or high-level spatial data structures) [Egenhofer, 1991] that are unaffected
by implementation issues.  Spatial data models are explicitly required to be finite for
computer implementation [Egenhofer, 1991].

In contrast, the spatial domain is inherently infinite [Smith, 1992] and finitization results
in formatted data models [Goodchild, 1990] (see also section 2.3.5).  Data formats such
as raster and vector can be considered low level artifacts, similarly to implementation
issues.  In order to exclude low level influences and be format-independent, this thesis
therefore initially designs all models in an infinite domain.

Spatial modeling in the infinite is not as radically new as it may seem.  Rather, the design
of finite data models has always relied on Euclidean geometry as a conceptual basis.
Examples of spatial modeling work that explicitly uses the infinite domain of Euclidean
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space are Goodchild’s geographic reality [Goodchild, 1990], and Egenhofer’s point-set
topological relations [Egenhofer, 1993].  Also, the design of format conversions has
always relied on Euclidean space to embed the finite domains of raster and vector
models.

The use of "off the shelf" mathematics such as Euclidean geometry has been seen as the
underlying mathematical basis rather than modeling in the infinite.  This thesis uses an
infinite model (i.e., resolution-limited space) that is similar to Euclidean space but not
commonly used in mathematical geometry.  While this approach definitely differs from
most previous spatial modeling, the use of an infinite modeling domain is not new.

A fair deal of spatial modeling work is performed in the finite domain of a spatial data
model such as raster or vector.  Examples are vector line generalization methods (see
[Buttenfield, 1989b] for a bibliography) that are expressed in terms of the entities of a
finite model.  Another example is Goodchild’s error model that is defined in the raster
domain [Goodchild, 1992a].  Models that are developed in a finite domain are restricted
to the format of their data models.  In contrast, this thesis models in the infinite and
explicitly includes different finitizations in its modeling effort.  This guarantees that
concepts defined in the infinite domain are compatible across different finite domains.
For example, the resolution concept defined in raster is compatible with its vector counter
part.

The computer implementation of an infinite model requires two major steps.  The first
finitizes the infinite model to a finite data model.  The second step implements this data
model in a low-level data structure, which is common practice in modern GIS
development [Egenhofer, 1991].  This thesis describes infinite spatial models in chapters
four and five, and describes different finitization options in chapter six.

3.2  Components of Spatial Representations

In the context of this thesis, representations of spatial knowledge can be seen as
consisting of three components (see figure 3.1):  (i) a model of space that defines
geometric entities, (ii) a model of geographic content that defines (geographic) entities
that inhabit the world, and (iii) relations between geographic objects and geometric
entities.  This section discusses different choices and characteristics of these three
components.  Section 3.4 will use the framework introduced here for the definition of the
representations proposed in this thesis.

Figure 3.1 visualizes the framework of spatial representations.  The entities defined by
the models of space and geographic content are shown as disks.  A set of relations links
certain (but generally not all) geometric entities with geographic entities.
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Figure 3.1:  The three components of a spatial representation.

The goal of models of space is the definition of geometric entities and operations on
them.  Examples of geometric entities are points, point sets, raster cells, raster zones, etc.
Operations include the distance between two points, the area of a point sets, and a test for
contiguity of a raster zone.  Models of space thus describe purely geometric aspects
without dealing with the geographic world itself.  Examples of models of space are
Euclidean space, regular tessellations such as raster models [Peuquet, 1984], and irregular
tessellations such as simplicial complexes [Egenhofer, 1989b].  This thesis proposes an
alternative model of space called "resolution-limited space".  It is similar to Euclidean
space but is composed of infinitely many disks of constant radius rather than Euclidean
points.

The geometric entities defined by models of space are either atomic or sets of atomic
entities.  Examples of atomic entities are points in Euclidean space, cells in raster models,
or simplices in simplicial complices.  Sets of such entities are then point sets, raster
zones, and simplicial complices, respectively.  Since resolution-limited space uses disks
of constant radius as atomic entities, it similarly defines sets of disks that are called
"regions".

Models of geographic content define the geographic entities that can inhabit geometric
space and their behavior.  Geographic entities can be either objects or features (see
section 2.3.4 for a definition of these terms).  Examples of geographic objects are trees
and background that are used in remote sensing scene models for forestry [Jupp, 1988], or
land parcels in cadastral applications.  Examples of geographic features are landuse
classes such as "residential", "agricultural", and "industrial".  The choice of geographic
entities is obviously highly application dependent.
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In case of using objects (rather than features), geographic content can be defined at
multiple levels of abstraction20.  The objects that compose the lowest level of abstraction
are called "atomic objects" or simply "atoms".  Higher-levels of abstraction describe
geographic content in terms of higher-level objects that are defined by abstraction
mechanisms (see section 2.3.6) in terms of atoms.  Models that use multiple-levels of
abstraction are sometimes called "nested models" [Strahler, 1986].  While atoms are
usually considered to be mutually exclusive, higher-level objects can be allowed to share
atoms.

The behavior of geographic entities can either be described by a simple nominal value or
by a set of methods and properties as is common in an object-oriented approach [Meyer,
1988].  Examples of a nominal behavior description of objects are the identification
numbers of land parcels or the vegetation type of features in area class maps [Mark,
1989a].  Examples of objects with an object-oriented behavior description are "land
parcel" with methods such as "split", "neighbor", etc. and properties such as
"identification number", "owner", "value", "area", etc.  Further, the properties of
vegetation features can include identifiers such as "spruce forest", "grassland", etc. (that
are comparable to a single nominal value) and additional properties such as "associated
albedo range", "susceptibility to wild fire", or "suitability potential for urban
development".  Since behavior description with a single nominal value is a special case of
the object-oriented approach, this thesis will use the latter approach.

Relations between geographic and geometric entities describe how geographic entities
inhabit geometric space.  Two kinds of relations are possible:  (i) those that relate every
atomic geometric entity in space to geographic entities, and (ii) those that relate selected
sets of atomic geometric entities to geographic entities.

(i) The former kind of relations describe a view where every location in space is
inspectable and inspection determines the (potentially several) geographic entities found.
For example, in a nominal field, every point (x,y) of Euclidean space is related to a single
geographic entity that is identified by a nominal property value [Goodchild, 1990].

(ii) In the second case, only a subset of all possible sets of atomic geometric entities are
related to geographic entities.  According to Sinton (see section 2.3.1), this subset can
either be defined (1) arbitrarily in the geometric domain, or (2) derived as the geometries
of geographic entities from the domain of geographic content21.  An example of case (1)
are raster cells (defined as point sets in Euclidean space).  An example of case (2) are the
geometries of objects such as "parcels" or features such as "forest".

                                                

20 Abstraction mechanisms are incompatible with the feature concept since they rely on the universal identity
of objects that exists independently of levels of abstraction.  Features in contrast are defined in terms of resolution-
dependent observable properties and their identity is therefore restricted to a single level of abstraction.

21 Called "thematic" domain by Sinton.
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Relations between geometric and geographic entities can assume different formats
depending on the cases distinguished above and the number of geographic entities
attached to a relation.  The different possibilities are described in the following:

If a geometric entity is atomic and attaches to only a single geographic entity, the relation
takes the form of containment.  Such a relation expresses that the geometric entity is
contained in the geographic one, or inversely, that the geographic entity contains the
geometric one.  For example, in the model of geographic reality proposed in this thesis
where atoms are mutually exclusive, Euclidean points relate to atoms by containment.

If relations link atomic or arbitrary non-atomic geometric entities with (generally) several
geographic entities, they take the form of mixtures.  The concept of mixtures is similar to
probability vectors [Goodchild, 1992a] (see also section 2.2.1).  They describe what
percentage of the geometric entity’s area each geographic entity covers.  For example, if
the model of geographic content contains the two entities "land" and "water", a possible
mixture would be (21.7% land,  78.3% water).  In case of non-atomic arbitrary geometric
entities, relations of type "mixture" are related to those of type "containment" since the
area covered by a geographic entity is usually determined by an integral over all atomic
geometric entities that are "contained" in the geographic entity.

The third kind of relation links a single geographic entity to its geometry which is a non-
atomic geometric entity.  Relations of type "geometry" are related to those of type
"containment", since every atomic geometric entity contained in the "geometry" of a
geographic entity is "contained" in this geographic entity.

3.3  Overview of Representations

This section uses the framework of the previous section to define the representations used
in this thesis.  These representations differ in their choices of model of space and
geographic content, and their kinds of relations.  The following defines the
representations "geographic reality", "mixture field", "feature partition", and "stand-alone
feature" (see chapter four for more detail and appendix C for an algebraic specification):

Geographic reality is a representation that uses Euclidean space and a multi-abstraction
model of geographic content called "content of geographic reality".  The geometric
entities are points and point sets;  and the geographic entities are atoms and higher-level
objects.  Relations of type "containment" link every point in space with a single atom.
Relations of type "mixture" and "geometry" can be derived from these basic relations.
Since each point is contained in a single atom, the atom geometries partition Euclidean
space.  Figure 3.2 illustrates the model of geographic reality.
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Figure 3.2:  Basic relations in geographic reality.

Mixture fields use a Euclidean model of space.  Their model of geographic content is a
subset of that of geographic reality:  It only contains a subset of higher-level objects that
form a partition of Euclidean space.  This model of geographic content is therefore
called "object partition".  The relations of mixture fields link point sets that are disks of
a given, constant size to the geographic objects.  The relations thus are mixtures.  The
combination of a geometric disk and a mixture can be seen as a disk-shaped
instantaneous field of view (IFOV) of an imaginory sensor that can directly observe
mixtures22.  Note that in mixture fields, the mixture changes continuously with location
of the IFOV (or disk).  Mixture fields are therefore continuous models23.  Figure 3.3
illustrates the structure of mixture fields.

An equivalent but more compact representation of mixture fields uses resolution-limited
space rather than Euclidean space (see section 4.2 for detail).  In resolution-limited space,
disks are the atomic geometric entities.  Resolution-limited space thus defines only a
subset of the Euclidean geometric entities.  The atomic entities of this subset are exactly
those entities that are used by the relations of mixture fields.

                                                

22 Such an imaginary sensors can be implemented with an actual sensors and a module that classifies the
vector of observable properties to a mixture of geographic entities.

23 To clarify the claim of mixture fields being continuous, the following compares them to elevation models
where every point in space is described by an elevation:  Such elevation models contain infinitely many discrete
entities, namely points, and are comparable to IFOVs in mixture fields.  The property of points, namely elevation,
changes continuously with location and is comparable to the mixtures of IFOVs.
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Figure 3.3:  Mixture field.

Feature partitions are representations that use resolution-limited space as models of
space and "mixture partitions" as models of geographic content.  Mixture partitions
consist of sets of mixtures called "mixture classes".  A mixture class is the defining (non-
spatial) attribute of a feature.  The mixture classes of a mixture partition form a partition
of the set of all possible mixtures.  In consequence, also the geometry of the related
features forms a partition of geometric space.  Examples of mixture classes are defined by
the mixture classes [more than 80% water], [between 80%  and 20% water/land], and
[more than 80% land].  They are comparable to the categories "water", "transition
zone"24, and "land" in scaled maps where small inhomogeneities in the theme can be
absorbed.  The relations of feature partitions link mixture classes to their geometries.  In
resolution-limited space, these geometries are sets of disks whose mixtures belong to the
same mixture class.  Sets of disks rather than point sets are used since disks, not points,
are described by a mixture.  While mixture fields were continuous models, feature
partitions are discrete models.  Figure 3.4 visualizes the structure of feature partitions.

geographic 
content

geometric 
space

relations

resolution-limited 
space

regionsmixture 
classes 

mixture partition

geometry

Figure 3.4:  Feature partition.

In the infinite domain, stand-alone features are special cases of feature partitions (see
chapter four).  They are treated as entities of their own since in the domain of finite
representations, they significantly differ from the partitioning features of feature

                                                

24 In the context of maps, the transition zone is equivalent to feature boundaries.
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partitions.  The major difference between partitioning and stand-alone features are their
approaches to modeling the uncertainty introduced by finite approximation25 (see chapter
five for detail).  In the context of the discussion in this chapter, stand-alone features are
parts of feature partitions that use a mixture partition with only two mixture classes,
namely that composed of mixtures containing a non-zero percentage of a certain
geographic object, and the class of mixtures that does not contain this object at all.

3.4  Reduction of Knowledge Content

The representations used in the proposed spatial theory are related by an abstraction
process.  This process reduces the content of represented knowledge from geographic
reality to more abstract representations.  Since knowledge content is an important concept
for fitting representations, meta data, and transformations into a single consistent theory,
the related abstraction process is discussed in this section and visualized in figure 3.5.

                                                

25 The uncertainty model used for feature partitions is designed to only represent the knowledge that is certain.
This characterizes a worst-case approach.  Stand-alone features are designed for the representation of relatively small
or thin objects that would disappear (be absorbed) at low resolution in ordinary feature partitions.  In order to
preserve the knowledge about such small features at these low resolutions, a best- (rather than a worst-) case
approach to uncertainty modeling has to be used.
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Figure 3.5:  Abstraction in the proposed spatial theory.

The highest level of detail is represented by geographic reality.  Here, geographic
content is described by atoms and higher-level objects.  Their spatial distribution is
known "point sharp" since it is expressed by basic relations that link every point of
Euclidean space to the atom that contains this point.

Mixture fields are derived from geographic reality by the abstraction mechanisms A1
and A2.  A1 defines higher-level objects by aggregation and/or association of atoms.
While higher-level objects already exist in geographic reality, the reduction of knowledge
content is caused by "forgetting" atoms and other lower-level objects and relating only
the remaining higher-level objects to geometric entities26.  A2 abstracts in the geometric
domain by defining disks as associations of points.  Note that disks are entities of both,
Euclidean and resolution-limited space.

The reduced knowledge content of mixture fields is evident in several aspects:  Both, the
number of geometric entities and geographic objects are reduced compared to geographic
reality.  While in geographic reality, an unlimited number of relations between arbitrary
point sets and geographic objects can be derived from the basic relations, mixture fields
contain only a largely reduced number of possible relations.  These reductions of entities

                                                

26 This argument is based on the philosophy that the derivation of knowledge from represented (basic)
knowledge does not increase the knowledge content of a representation.  Methods used for such derivations are thus
not treated as knowledge.  Instead, the whole set of possible methods is assumed to be available at all times.
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result in "forgetting" the "point sharp" distribution of geographic objects.  For example,
the point sharp geometry of an object cannot be derived from knowledge contained in a
mixture field.

Feature partitions are derived from mixture fields by the abstraction mechanisms A3
and A4.  A3 creates mixture classes from individual mixture values.  It can be seen as an
association of mixture values that is defined by a classification based on mixture
properties (see section 4.1 for detail).  While mixture fields distinguish individual
mixtures, only mixture classes are distinguished at the level of feature partitions; and
individual mixtures of the same class are considered to be equivalent.  Abstraction
mechanism A4 is an association of disks to regions, i.e., sets of disks.  The relations of
feature partitions link mixture classes to their geometries.  These geometries are a small
subset of all possible regions (i.e., sets of disks) of resolution-limited space.  Again, the
reduction of information content is evident in a decrease of geometric and geographic
entities,  as well as relations between them.

3.5  Approach to Consistent Spatial Theory

This section describes how representations, meta data, and transformations are integrated
in a consistent spatial theory.  The argument is based on the abstraction process
introduced in the previous section.  The first part of this section discusses consistency in
the context of infinite models where no uncertainty caused by finite approximation is
present.  The second part describes the extension that allows the representation of such
uncertainty.

Figure 3.6 visualizes the situation of certain, infinite models.  R1, R2, and R3 are three
different resolution-limited representations, i.e., either mixture fields or feature partitions.
A1, A2, and A3 are the abstraction processes that map geographic reality in the
corresponding representation (see previous section).  The level of abstraction is defined
by the parameters of the abstraction process.  Among others, these parameters include the
resolution, i.e., size of disks, and the representation type (i.e., mixture field or feature
partition).
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Figure 3.6:  Approach to a consistent spatial theory.

In this thesis, representations are defined as the result of an abstraction process (see
chapter four for a detailed discussion).  The abstraction processes used in chapter four can
be described by parameters that are used as meta data (see chapter eight for an overview
of parameters).  Since this meta data uniquely determines the abstraction process
associated with a representation, it precisely specifies its knowledge content.  The
complete consistency of meta data and representations is evident from the design of these
two components.

Resolution-limited representations are related by transformations such as T12, T23, and
T13 in figure 3.6.  These transformations are defined to map from the knowledge content
of the source representation to that of the target representation.  For example, T12 is
defined such that T12(A1(geographic reality)) is equal to A2(geographic reality).  It is
obvious from this definition, that transformations are uniquely determined by the source
and target meta data of the related representations.

One problem observed in current GISs is that a series of transformations yields a different
result from that of a single transformation that is conceptually equivalent.  For example,
using a Douglas-Poiker algorithm [Douglas, 1973] to generalize from a "1:25,000" to a
"1:100,000 scale" in a single step yields different results than using the same algorithm



50

twice with an intermediate result at a scale of 1:50,00027.  In contrast, the proposed
transformations always yield the same result, no matter whether a single or multi-step
approach is taken.  This is evident when looking at the transformations T12, T23, and
T13 of the above figure:  A two-step transformation composed of T12 and T23 is then
equivalent to the single-step transformation T13.  In the proposed spatial theory, these
transformations are defined by the following equations:  (i) T12(A1) = A2,  (ii) T23(A2)
= A3, and (iii) T13(A1) = A3.  Using (i) to substitute A2 by T12(A1) in (ii) yields:
T23(T12(A1)) = A3.  This shows that  T23(T12) is really equivalent to T13.

So far the discussion has shown how representations, meta data, and transformations
combine to a consistent spatial theory.  The remainder of this section discusses how the
uncertainty model fits in.  In the proposed spatial theory, all uncertainty is caused by
finite approximation of the infinite domain.  The certain spatial theory is extended to
handle uncertainty in three steps:  (i) add finite approximation as an additional step of the
abstraction process (see chapter five), (ii) modify the certain representations such that
they incorporate uncertainty in the entities used for representation (see chapter five), and
(iii) modify the definitions of transformations such that they propagate this uncertainty
(see chapter eight).  It is evident from these steps that the extension with uncertainty
modifies components of the certain spatial theory rather than defining additional ones.

The above approach to achieving a consistent theory thus still applies.  However, one
additional issue deserves attention, namely the transitive closure of uncertainty
representation under transformations.  It does not go without saying that the uncertainty
introduced by (finite implementations of) transformations can be completely captured by
the uncertainty model of representations.  If it cannot, uncertainty has to be represented in
the form of lineage data that represents the uncertainty of the initial representation and a
history of transformations that this representation was subjected to.  Obviously, such
uncertainty data increases in volume over time.  The longer the history, the more difficult
human and machine interpretation of the uncertainty data becomes.  Considering these
potential difficulties, the uncertainty model in this thesis was defined to be compatible
with transformations such that their effect on uncertainty can be completely captured by
the proposed representations.  This property is sometimes called transitive closure [Gill,
1976].  Transitive closure is achieved by keeping precise track of the effect that
transformations have on the knowledge content of target representations.

                                                

27 More precisely, the Douglas-Poiker algorithm uses the width of strips as control, rather than map scales.
The algorithm then finds subchains of points that are completely contained by strips centered on subchain endpoints
and limited in width.  In the single step generalization, all points of the original chain have to be contained in such
strips.  In the second step of the two-step procedure, only those points that were not eliminated in the first step have
to fit in the strips.  Obviously, this can lead to narrower strips for equivalent subchains, or longer subchains that still
fit into strips of the same width.
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3.6  Approach to Format Integration

This section describes how representation concepts can be designed format-independently
and compatible with both raster and vector representations.  For this purpose, the
abstraction process from geographic reality to representations (see previous section)
consists of two steps.  Figure 3.7 shows the situation using the example of a feature
partition.  The first step of the abstraction process is solely concerned with the
resolution-limiting scaling process.  It results in an intermediate representation that can
only be described with an infinite number of parameters and thus cannot be implemented
in finite computers.  The figure illustrates the situation by showing a feature geometry of
general shape.

geographic 
reality

Approximation  
(approximation uncertainty)

Resolution limitation

certain feature partition 
(not finitely representable)

uncertain feature partition 
(finitely representable)

raster approx.

vector approx.

meta data of 
scaling process

Figure 3.7:  Two-step abstraction process to achieve format integration.

The second step of the abstraction process approximates the intermediate representation.
Approximation allows transformation of the general feature geometries to shapes that
can be represented by a finite number of parameters.  The resulting representations are
thus suited for computer implementation.  Different kinds of approximations are possible
that result in different finite parametrizations.  The most prominent examples are raster
and vector approximations.

This approximation process introduces approximation uncertainty--the only kind of
uncertainty modeled in this thesis.  Since the intermediate representation lacks such
uncertainty, it is called a certain feature partition;  the result of the approximation is
accordingly called uncertain feature partition.  Certain representations will be
discussed in detail in chapter four, uncertain ones in chapter five.
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Compatibility between finite formats requires use of the same concepts in both, the
raster and vector domain.  These concepts include entities used for the representation of
spatial knowledge (for example, disks) and meta data (for example, resolution).  In the
proposed spatial theory, all these concepts are defined in the first step of the abstraction
process and are unaffected by the abstraction process.  They therefore apply equally to
raster and vector representations and total compatibility between formats is achieved.

3.7  Preserving the Relation between Geometry and Attibute

The discipline of spatial modeling has become increasingly aware of the dangers of
treating geometry and attributes separately [Csillag, 1991].  Sinton [1979] has shown that
to preserve the relation between geometry and attribute, one has to be defined in terms of
the other (see section 2.3.1).  This section describes how Sinton’s concepts are strictly
applied in this thesis to preserve the relation between geometry and attributes.  Namely,
two kinds of entities are constructed with Sinton’s concepts:  instantaneous fields of view
in mixture fields, and features in feature partitions (see section 3.3).  Further, the relation
between geometry and attribute is strictly preserved in approximations that are necessary
for finite representation.

Mixture fields are composed of (infinitely many) instantaneous fields of view (IFOV)
whose geometries are disks and whose attributes are mixtures such as (21.6% water,
78.4% land).  These IFOVs are defined by Sinton’s concept where location is controlled
and theme measured.  Control and measurement is performed in the model of geographic
reality.  In more detail, the control of location defines the disk shaped geometries of all
potentially possible IFOVs28 in Euclidean space.  Potentially, several objects of
geographic reality fall partly or completely inside the geometry of each IFOV.  This
theme is measured by determining the mixture of objects inside the disk.

The second kind of discrete entities constructed by one of Sinton’s concepts are
"features".  Feature geometry consists of a set of disks in resolution-limited space and
the attribute of a feature is a mixture class.  Here, Sinton’s control and measurement are
performed in a mixture field.  In more detail, the theme is controlled by defining sets of
mixtures.  The location is then measured by determining the sets of disks whose mixtures
fall into the defined mixture class.  Note that the geometries of features consist of sets of
disks rather than point sets like in previous approaches.

Chapter five describes approximations of mixture fields and feature partitions in order to
model physical representations in finite computers.  The relationship between geometry
and attribute is strictly preserved in the proposed approximation process.  This is most

                                                

28 of a single sensor with constant resolution.
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evident in feature partitions where a change in the feature geometry due to approximation
always goes along with a change of attribute (namely the attribute of the transition zone).
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4  Representation of Resolution-Limited Knowledge

This chapter describes in more detail the representations that were outlined in the previous
chapter.  An algebraic specification of these representations is given in appendix C.  The
proposed representations are infinite models that are format-independent (see sections 3.1 and
2.3.5).  The representations are therefore unaffected by uncertainty introduced by finite
approximation (that will be discussed in chapter five).  The following three representation types
are discussed:  geographic reality (section 4.1), mixture fields (section 4.3), and feature
partitions (section 4.4).  In the absence of uncertainty that is assumed in this chapter, stand-
alone features are the features of a special case of feature partitions29.

Geographic reality is considered to be infinitely resolved since it represents spatial knowledge
"point sharp".  In contrast, mixture fields, feature partitions, and stand-alone features are
considered resolution-limited since they are based on disks rather than points.  Resolution-
limited space is proposed in this chapter (section 4.2) since it is a major component of
resolution-limited representations.  Geographic reality serves as source of all knowledge since
the resolution-limited representations are derived from it by abstraction processes (see sections
3.4 and 3.5).  Since these abstraction processes are inseparable from the representations they
result in, abstraction and related representations are discussed together.

The chapter is structured as follows:   (the major concepts are shown in bold)
• Section 4.1 describes geographic reality.  Its components are geographic objects that are

either atoms, crisp objects, class associations, or administrative objects.  Object
Partitions are defined as sets of geographic objects that partition space.

• Section 4.2 defines resolution-limited space that will be used in the design of the resolution-
limited representations "mixture field" and "feature partition".  The geometric entities defined
by resolution-limited space are disks and regions, i.e., sets of disks.

• Section 4.3 defines mixture fields.  They represent knowledge about the spatial distribution
of the geographic objects of an object partition in the form of a continuous model.  The
representation is based on mixtures that measure the percentage of disk area covered by each
geographic object in the related object partition.  This thesis distinguishes between classified
and unclassified mixture fields.

• Section 4.4 derives the discrete models called feature partitions from mixture fields by an
abstraction process modeled after Sinton's concepts.  Sinton's theme control takes the form of
defining sets of mixtures, called mixture classes, that define the geometries of features.
Sets of mixture classes that partition mixture space (i.e., the set of all possible mixtures) are
called mixture partitions and define sets of features that compose feature partitions.  A
special kind of mixture partition can be defined by a single value called level of

                                                

29 This is only the case when no uncertainty is present.  In chapter 5, feature partitions and stand-alone features
will be treated differently.
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homogeneity.  The transition zone is a mixture class that separates all other mixture classes
in a mixture partition.  Stand-alone features are defined as a special case of features.

• Section 4.5 investigates some quantitative properties of mixture fields and feature partitions.
For this purpose, it defines a distance function for mixtures called mixture-distance.  The
discussed properties will be used in later chapters of the thesis.

4.1  Model of Geographic Reality

This section describes geographic reality by first illustrating its role in the spatial theory
and then discussing its components, namely "atoms", and the higher-level object types
"crisp objects", "class associations", and "administrative objects".  These higher-level
objects are derived from atoms by abstraction mechanisms (see sections 2.3.6 and 3.4).
The final section defines "object partitions" that are used later in the definition of
mixtures.

4.1.1  Purpose

The model of geographic reality has a central role in the proposed spatial theory
and is important for data integration that is based on this theory.  It represents the
most detailed knowledge about the world available in the spatial theory.  Since all
resolution-limited representations are derived from it, geographic reality can be
seen as the "parent" of all possible representations.

Geographic reality (and parts thereof) are only rarely physically represented in
computers.  Examples of such representations are remote sensing scene models
used for analytical simulations (see, for example, [Jupp, 1988] [Jupp, 1989]) and
administrative objects (see section 4.1.5).  In the majority of cases, the model of
geographic reality is only of theoretical relevance:  It is assumed that a geographic
reality exists and that all representations are derived from it.  How this geographic
reality actually looks is irrelevant.  The assumption of its existence is sufficient
for the definition of meta data and transformations (see section 3.5).

Data integration is based on a notion of how different representations relate to
each other.  In the proposed theory, these relations are modeled by
transformations and determined by meta data.  They are based on the assumption,
that data sets result from the same geographic reality.  Only under this assumption
are meta data comparable and transformations meaningful.
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4.1.2  Atoms

The smallest granularity in geographic reality is defined by atoms.  Atoms are
discrete objects that are not further dividable in the spatial theory.  In this thesis,
they are assumed to be mutually exclusive.  Since they are not further dividable,
they are considered to be pure (rather than a mixture of smaller entities).

In the model of geographic reality, atoms are characterized by the following
properties:
• a unique identifier,
• their geometry or location that is defined by a point set in Euclidean space,
• a certain behavior that can be expressed in the form of methods and

properties.  Part of this behavior consists of relations and interactions with
other atoms.

The geometry of atoms is required to form a partition30 of Euclidean space.

This model of atoms is very general and can represent the needs of many
applications.  The following examples illustrate this:

An application that studies bio-diversity may use point sets that are described by a
habitat type as atoms.  In order to satisfy the requirements of atoms, the regions
must form a partition and for the purposes of the application, the habitat type must
be considered absolutely homogeneous in a region.

In a cadastral application, atoms could be land parcels.  Higher level objects such
as school districts, election districts, census tracts, townships, counties, states, and
countries, are all composed from these atoms.  The limitations of this model are
evident when the change of ownership splits parcels, which is not allowed for
atoms since they are considered to be undividable.

A more flexible model of geographic reality could therefore consider every point
in space as an atom31.  This model could support cadastral applications where
ownership is expressed in terms of Euclidean geometry (for example, by polygons
with known vertex coordinates).

The model of geographic reality proposed by Goodchild [1993a] also uses points
as atoms.  They carry observable properties that can be represented by a vector
(z1, z2, ..., zn).  These points can then be grouped to (finitely many) discrete
objects based on their observable properties, as is done, for example, in remote
sensing classification.

                                                

30 A set X is said to be partitioned by a family of sets {Si} if (i) the sets in this family are mutually disjoint and
(ii) the union of the sets in the family is equal to X  [Gill, 1976].

31 More precisely, the atom geometry would be a singleton point set.
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Jupp, Strahler, and Woodcock [1988] [1989] use individual trees and
"background" as atoms of their scene model.  While the geometries of trees do not
form a partition of space, this requirement is satisfied by using "background" as
an atom of its own.

Similarly, a model of geographic reality could use physical atoms and "void" as
model atoms.  The physical atoms could then have the geometry of disks, in
accordance with Bohr’s atom model.

These examples illustrate that the choice of model of geographic reality is highly
application dependent, and that the concept of geographic reality is general
enough to accommodate a wide variety of models.

4.1.3  Crisp Objects

Abstraction mechanisms (see section 2.3.6) are used to define higher-level objects
from lower-level ones.  The lower-level objects used in abstraction mechanisms
can either be atoms or objects defined by abstraction mechanisms indirectly in
terms of atoms.  This thesis distinguishes three kinds of higher-level objects:
crisp objects, class associations, and administrative objects.  This section
discusses crisp objects.

Crisp objects are aggregations (or sometimes associations) of objects that are
based on relations or interactions between component objects.  It is these
relations and interactions that are used as "glue" to form a higher-level object
from its components.  Figure 4.1 illustrates the concept of crisp objects.  Lower-
level objects are visualized as disks.  Relations/interactions between these objects
are shown as lines.  The components of the crisp object are marked by a black
filling.

Figure 4.1:  Crisp object.  The black component objects form a crisp object based
on relations/interactions that are visualized by lines.
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Examples of crisp objects are houses that are composed of walls, a roof, doors,
windows, etc.  In this case, the relations between components is one of physical
attachment.  Another example are trees that are composed of leaves, branches, etc.
These components interact, for example, by exchanging liquids and physical
attachment.  Finally, "Sherwood forest" is a crisp object that consists of trees that
interact due to their mutual proximity.

A typical property of crisp objects is their limited spatial extent.  In contrast,
class associations such as the set of all trees usually have an unlimited spatial
extent (see section 4.1.3).  This limited spatial extent is caused by the fact that
relations and interaction often go hand in hand with spatial proximity.  Limited
spatial extent is a requirement for the concept of geometry of an object.

Due to their character of individual spatially limited entities, crisp objects are
typically used for H-resolution representations (see section 2.3.3) where the
limited-resolution geometry is represented by features (see section 4.4) of the
same identifier.  Figure 4.2.a illustrates this case by showing a crisp object with its
(infinitely resolved) geometry and identification number, and an instantaneous
field of view that is used to derive the simplified feature geometry.  L-resolution
representations usually do not use crisp objects since it is too cumbersome to
describe the content of an instantaneous field of view in terms of many individual
objects (rather than a mixture of object classes).  Figure 4.2.b illustrates this by
showing some crisp objects with their identification numbers in relation to an
instantaneous field of view.
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crisp object

IFOV IFOV

(b)(a)

120
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Figure 4.2:  H- (a) and L-Resolution (b) representation that uses crisp objects.

4.1.4  Class Associations

A class association is an association of all crisp objects that belong to the same
class.  This association is thus based on (class) behavior rather than relations
between components.  Examples of class associations are associations based on
the classes of "buildings", "agricultural fields", "trees", "lakes", etc.  Figure 4.3
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illustrates the concept.  The black disks visualize the component objects that
belong to a single class.

Figure 4.3:  Class Association.  The black disks visualize objects that belong to
the same class.  The association of these objects forms the higher-level object of a
class association.

While crisp objects correspond to the typical objects of human cognition, class
objects are not usually used in cognition and therefore not seen as individual
objects.  However, in the sense of object-oriented modeling, they are individual
objects.  The spatial extent of class associations is often unlimited.  It is often
not meaningful to speak of the geometry of a class association.  This is evident
from figure 4.3 above.  Class associations are therefore usually not used for H-
resolution representations, but are ideally suited for L-resolution
representations.  There, the content of an instantaneous field of view is expressed
as a mixture of object classes (or more precisely class associations) rather than
individual crisp objects (see figure 4.2.b above).

4.1.5  Administrative Objects

Administrative objects are associations of atoms based on containment in a
defining point set.  Their name is motivated in administrative units such as
parcels, districts, counties, or states that are defined by point sets such as
polygons.  While in the context of this thesis, they behave similar to crisp objects,
they are distinguished since they are defined geometrically rather than in terms of
non-spatial interactions between components.

If atoms are points, containment in the defining point set is always determined.  If
atom geometries are larger point sets, containment is not determined for atoms
whose geometries only partly intersect the defining point set.  In this case, they
are contained if their center of gravity lies in the defining point set (see algebraic
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specification in appendix C).  However, applications that use administrative
objects usually use points as atoms that avoid the discussed problem.

Administrative objects are a rare examples of entities of geographic reality that
can be physically represented in GIS.  Most other objects have a geometry that is
too complex to be represented on finite machines.  Administrative objects are an
exception since they are defined by point sets such as polygons that are
representable with a small number of parameters.  Since this thesis focuses on the
effects of limited resolution, the physical representation of administrative objects
is not of interest.  The generalization of administrative objects to resolution-
limited representations is relevant, however.  For this purpose, administrative
objects can be treated like crisp objects.

4.1.6  Object Partitions

This section shows how higher-level objects in geographic reality can overlap and
defines object partitions as subsets of objects that partition space.

The previous three sections have shown different applications of abstraction
mechanisms that define higher-level objects.  Recursive application of abstraction
mechanisms defines object hierarchies.  Figure 4.4 shows the possibility of
multiple such hierarchies co-existing in geographic reality32:  The lower row
shows a set of lower-level objects.  They are the components of higher-level
objects shown in the upper row and connected to their components by lines.
Although the figure shows only two levels of the hierarchies, it is obvious that
multiple, overlapping hierarchies exist.  The objects of different hierarchies
overlap since they share lower level atoms.  This is evident in the figure for
adjacent pairs of white and gray higher-level objects.

Figure 4.4:  Multiple object hierarchies.

Object partitions are subsets of all geographic objects that partition space.
This partition is evident in both the geometric and content domain:  In the
geometric domain, the geometries of objects contained in an object partition form

                                                

32 In set theory this would be expressed as a "partial order" [Gill, 1976].  The related theory is not relevant for
this thesis, however.
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a partition of Euclidean space.  Since objects are (indirectly) defined as sets of
atoms, an object partition also partitions the set of all atoms.

Figure 4.4 above shows two object partitions, one consisting of the white, the
other of the gray disks.  Note that object partitions can contain crisp objects, class
associations, administrative objects, or a mixture thereof.

4.2  Resolution-Limited Space

Resolution-limited space is a model of space that captures the resolution limitations of
sensors.  The use of resolution-limited instead of Euclidean space leads to simpler, more
compact spatial representations since it provides disks as higher-level entities.  This
section first discusses how resolution-limitations can be modeled in existing models of
space and then introduces resolution-limited space as a more elegant model.

4.2.1  Resolution-Limitation and Existing Models of Space

Sensor resolution can be expressed in terms of their instantaneous field of view
(IFOV;  see section 2.3.2).  The IFOV defines the smallest geometric entity that
can be inspected.  All larger inspectable entities are composed of IFOVs and have
to be observed one IFOV at a time.  These geometric entities can therefore be
modeled as sets of IFOVs.

This thesis assumes that the relations between geometric entities of mixture fields
and geographic entities (see section 3.2) originate from an imaginary sensor that
observes geographic reality.  The imaginary sensor then directly observes
mixtures (see section 4.3.1 for detail).  Obviously, this limits the geometric
entities that can be related to geographic objects of geographic reality.  Geometric
entities that can potentially be inspected by the imaginary sensor are called
resolvable geometric entities.  For simplicity, this thesis assumes that a
representation results from a single sensor whose IFOV is disk-shaped and of
constant size.

In Euclidean space, an IFOV of the imaginary sensor is a disk, i.e., a point set.
Larger resolvable geometric entities are then sets of disks or sets of point sets.
Euclidean space defines an infinite number of point sets and also infinitely many
sets of point sets can be constructed.  The resolvable entities are only a small
subset of all entities.  The design of mixture fields and feature partitions later in
this chapter requires the availability of the set of resolvable geometric entities.
In Euclidean space, all these entities have to be constructed from points and rules
for such construction must be provided.  Geometric relations between resolvable
entities (such as the distance between two disks) must be expressed in terms of
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points (e.g., as the distance between the center points of the disks) rather than in
terms of resolvable entities directly.  Further the construct of sets of sets of points
that is necessary for larger resolvable entities is somewhat complex.

Resolution-limited space, in contrast, defines only a subset of the Euclidean
geometric entities, namely those that are resolvable.  This allows the design of
simpler and more compact spatial representations, since rules for the construction
of resolvable entities are unnecessary, geometric relations can be expressed
directly in terms of resolvable entities rather than being expressed in terms of
points, and sets of sets of points are replaced by the simpler construct of sets of
disks.

Regular tessellations [Peuquet, 1984] also provide only a subset of the Euclidean
geometric entities.  For example, raster cells are comparable to disks and raster
zones to sets of disks.  However, regular tessellations only provide a subset of all
resolvable geometric entities, namely those whose locations fall on some regular
grid.  Since sensors are not restricted to these locations, different data sets are
bound to be based on different grids which causes problems during data
integration.  For the design of a spatial theory that serves as a framework for data
integration, regular tessellations are therefore unsuitable.

4.2.2  Definition of Resolution Limited Space

This section defines the entities and operations of resolution-limited space.  An
algebraic specification of resolution-limited space is given in appendix C.

The atomic geometric entities of resolution limited space are disks of the same
constant size.  The diameter of these disks is called resolution of the space.  For
every location described by a coordinate pair (x, y)33, there exists exactly one
disk.  Non-atomic entities of resolution-limited space are regions that are
arbitrary sets of disks.  Since all entities are parameterized in the resolution of the
space, different resolutions define different resolution-limited spaces.

The semantics of resolution-limited geometric entities and their operations are
specified by implementation in Euclidean space (rather than axiomatically).
While the relations of resolution-limited space to Euclidean space can be
"forgotten" whenever the scope is limited to a single resolution-limited space
(identified by its resolution), they are important when resolution-limited spaces of
differing resolution are compared.

                                                

33 x and y are arbitrary real numbers.
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Resolution-limited space defines operations on its geometric entities.  Examples
of such operations are the distance between two disks (see section 4.5 for an
application), the medial axis of a region (see chapters 6 and 7 for applications),
and the boundary of a region (see chapter six for an application).

To keep the design of resolution-limited space simple, all operations are defined
as analogies to Euclidean operations--as suggested by the use of the same
operation names.  The mappings from resolution-limited disks to Euclidean points
and vice versa are important components of the implementation of resolution-
limited operations in term of Euclidean operations.  These two mappings are
"centerPoint" (that maps a disk to a point) and "disk (resolution)" (that maps a
point to a disk centered on it).  These mappings can be applied to single disks and
points, as well as sets thereof.  For example, the centerPoint of a region (i.e., a set
of disks) is the set of all centerPoints of disks contained in the region (i.e., a point
set).

Operations in resolution-limited space can then be implemented by the following
three-step method:  (1) map the arguments from resolution-limited space to
Euclidean space by using centerPoint,  (2) perform the Euclidean operation with
the same name, and (3) if the result of the Euclidean operation is a point or a point
set, then this result has to be mapped back to resolution-limited space with "disk
(resolution)".  For example, the resolution-limited distance between two disks is
implemented as follows:

r-l.distance(d1, d2) = Eucl.distance(centerPt(d1), centerPt(d2))

(where "r-l" is the prefix of operations of resolution-limited space, "Eucl" that of
Euclidean space, d1 and d2 are disks, and "centerPt" is an abbreviation for
"centerPoint").

Similarly, the resolution-limited operation "boundary" is implemented as:

r-l.boundary(region) = disk(resolution) (Eulid.boundary(centerPt(region)))

From an axiomatic point of view, the relation between the algebras of resolution-
limited and Euclidean space is described by an isomorphism [Gill, 1976].
Isomorphisms are defined by two bijections34 between entities and operations of
two algebras, respectively.  In this thesis, the bijection between entities is
"centerPoint" with its inverse "disk(resolution)";  the bijection between operations
relates operations of the same name.  The isomorphism requires that for every n-

                                                

34 A mapping from the elements of set A to those of a set B is a bijection if and only if every element of A is
mapped to exactly one element of B (a one-to-one mapping) and every element in B is the result of a mapping of an
element of A (i.e., A is mapped "onto" B).  Bijections always have inverses  [Gill, 1976].
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ary35 operation o1(e11, e12, ..., e1n) of resolution-limited space (identified by index
1), an n-ary operation o2(e21, e22, ..., e2n) of Euclidean space (identified by index
2) exists such that

cp(o1(e11, e12, ..., e1n)) = o2(cp(e21), cp(e22), ..., cp(e2n))

(where cp is an abbreviation for centerPoint).

This axiomatic specification of the semantics of resolution-limited space is
equivalent to the above implementation in Euclidean space.

4.3  Resolution-Limited Mixture Fields

Mixture fields represent all possible knowledge that can be collected with imaginary
resolution-limited sensors.  This sensor is responsible for the abstraction process and
related reduction of knowledge content between geographic reality and mixture fields
(see sections 3.4 and 3.5).  The first section therefore discusses sensorial perception of
geographic reality.  The second section uses this to define mixture fields.

Section 4.3.1 discusses real and imaginary sensors, and section 4.3.2 distinguishes
unclassified and classified mixture fields.  These concepts are related as follows:  Real
sensors perceive unclassified mixture fields such as remotely sensed images.  A
classification process that is based on "mixed pixels" transforms such unclassified
mixture fields to classified ones.  Imaginary sensors are a combination of a real sensor
with an automatic classification process.  They can therefore directly perceive classified
mixture fields.

4.3.1  Sensorial Perception of Geographic Reality

The abstraction process from geographic reality to mixture fields is modeled by
perception with imaginary sensors.  The instantaneous field of view (IFOV) of
such sensors is disk shaped.  Imaginary sensors can, among other properties,
directly observe mixtures.  An individual sensor is therefore identified by its
resolution (i.e., the diameter of the disk) and an object partition that specifies
the kinds of mixtures it can observe.  In every location that is specified by a disk,
an imaginary sensor observes the following properties:
• a mixture based on the sensor's object partition

                                                

35 An n-ary operation has n arguments.
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• additional observable properties p1, p2, ..., pn.

A mixture is a vector that represents the areal percentages of the IFOV that
every object of the associated object partition covers (see appendix C for an
algebraic specification).  For example, if the object partition contains the class
associations "land" and "water"36, then a possible mixture can be represented by
the vector (21.3% land, 78.7% water).  Figure 4.5 illustrates this.  Water is shown
as light, land as dark gray polygons.

sensor

water

land

IFOV

Figure 4.5:  Imaginary sensors directly observe mixtures.

The percentages in a mixture always add up to 100% since the considered objects
form a partition of space.  The object partition that is associated with the mixture
determines the level of abstraction at which geographic reality is perceived (in
terms of the object hierarchy).  Perception is possible from atom level up to that
of large crisp objects or highest-level class associations.  The components of a
mixture are the geographic objects of the associated object partition.  These
geographic objects can either be crisp objects, class associations, or administrative
objects.

In addition to a mixture, imaginary sensors observe other properties in their
IFOV.  While actual sensors cannot observe mixtures, these additional
properties represent actually observable properties such as albedo, temperature,
etc.  They are included in the proposed spatial theory to interface mixture fields
with actually observable fields.

                                                

36 Such class associations can for example be based on points as atoms.  Points then either belong to the class
"water" or "land".
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The relation between properties observed by real sensors and mixtures observed
by imaginary sensors is expressed by a classification as it is known from image
processing and remote sensing (see, for example, [Castleman, 1979]).  A mixture
then corresponds to a "mixed pixel" or a probability vector of remote sensing
[Goodchild, 1993b].  The derivation of mixtures from actually observable
properties usually relies on the assumption that these properties are functions of
the desired mixture.  For example, the albedo of a mixture may be a weighted sum
of the characteristic albedos of the geographic objects of the mixture, where
mixture percentages are uses as weights.

From an object-oriented point of view, an IFOV defines an association of
contained objects.  The observable properties then describe the behavior of this
association.  Behavior propagation [Egenhofer, 1989a] (see also section 2.3.6)
describes the relation between the behavior of member objects and that of the
association as a whole.

If the granularity defined by member objects is fine compared to the size of the
IFOV (L-resolution), behavior propagation results in a precise prediction of the
observed property.  A mixture of class associations then provides all the
knowledge about member objects necessary for behavior propagation, namely the
ratio of different object types and their class behavior.

In contrast, if the granularity is relatively coarse (H-resolution), it is difficult to
decide how objects that fall only partly into the IFOV contribute to overall
behavior.  This is problematic since the relative large size of such objects suggest
that their contribution to overall behavior is significant.  In the H-resolution case,
also mixtures are a poor description of the member objects of an association.

Due to the problems of classification in the H-resolution case, this thesis
interfaces only to observable fields of the L-resolution case.  From this point of
view, it is not surprising that most classification methods in remote sensing are
based on L-resolution [Strahler, 1986].  While L-resolution representations can
originate from actual perception of the world with consequent classification, H-
resolution representations are considered to be derived from L-resolution ones by
the application of abstraction mechanisms to geographic objects:  Lower-level
objects are relatively small and therefore define an L-resolution situation--while,
after abstraction, the higher-level objects are relatively large as is characteristic
for H-resolution.

4.3.2  Definition:  Mixture Fields

A mixture field is always associated with an individual imaginary sensor.  It
represents all possible knowledge that can potentially be acquired from
geographic reality by this imaginary sensor.  Imaginary sensors limit
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knowledge content by imposing resolution and perceiving only the objects
contained in their associated object partition.

To contain all possibly acquirable knowledge, a mixture field must represent the
mixture and observable properties of every location in space.  Locations here are
specified by a disk; and the set of all possible locations is given by the atomic
entities of resolution-limited space.  In summary, a mixture field can be seen as a
mapping that assigns a mixture and other observable properties to every disk
of resolution-limited space  (see appendix C for an algebraic specification of
mixture fields).  Since mixture percentages and observable properties change
continuously with location, mixture fields are continuous models.

Since mixture fields represent all potentially acquirable knowledge, their
acquisition requires an infinite effort.  Actual (finite) acquisitions of mixture
fields are based on sampling the field in finitely many locations and interpolating
the properties of all other locations.  Chapter six discusses such finitizations of
mixture fields from a representation point of view.  The concepts are equally
applicable to data acquisition, however.

This thesis distinguishes between two types of mixture fields,  classified and
unclassified mixture fields.  Classified mixture fields use two or more
geographic objects in their object partition that is associated with its mixtures.
Unclassified mixture fields use a single geographic object in their object
partition.  Unclassified mixture fields can be observed by real sensors;  Classified
mixture fields are observed by imaginary sensors that classify directly observable
properties to mixtures.  While predominantly classified mixtures fields are
important for modeling the scaling process in this thesis, unclassified mixture
fields are discussed to show the connection to current practice.  The term
"unclassified mixture field" rather than just "field" is used to point out that they
are a special case of mixture fields and to contrast with the common
understanding of fields [Goodchild, 1993a] where resolution is not modeled
explicitly.

In classified mixture fields, the mixtures are the most important properties;  the
other observable properties are far less important since they can be derived by
methods37 from mixtures.  Unlike actual property values, these methods are the
same for every location in space.  Examples of (finitized versions of) classified
fields are the result of the classification of vegetation classes in remote sensing
using mixed pixels.

                                                

37 Methods are used here in the sense of class methods of object-oriented programming.  They are procedures
rather than represented data values.
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In unclassified mixture fields, the object partition contains only the class
association of the super class of all geographic objects.  The degenerated mixture
of unclassified fields therefore contains no actual information.  The actual values
of the other observable properties in every location are therefore far more
important.  Examples of (finitized versions of) unclassified mixture fields are
remotely sensed images where the properties are represented by the albedo of
different spectral bands, and elevation models.

Unclassified fields are only marginally relevant for this thesis.  Their major
purpose is to provide an interface to actually observable properties and to define a
resolution concept for such data.  Note that this resolution concept is solely
defined by the size of IFOVs and is unaffected by the sampling density (that will
be discussed in chapter six).

4.4  Resolution-Limited Feature Partitions

Resolution-limited feature partitions are representations that are derived by an
abstraction process from mixture fields (see section 3.4).  The abstraction process is
modeled after Sinton’s concept where mixtures (the theme) are controlled in order to
measure the location of features that are resolution-limited regions (see section 2.3. for a
discussion of Sinton’s concepts, and section 3.7 for details of how it is applied to mixture
fields).  While mixture fields are continuous models (see section 4.3.2), Sinton’s concept
is used to define discrete features that compose a discrete model.  The first section
discusses limitations of feature partitions that are described in the form of requirements
that have to be satisfied to yield a meaningful representation in this format.  The theme
control of mixtures is then discussed in the second section.  Since the theme is controlled
by defining mixture partitions, section three discusses their representation and limits the
focus of this thesis to one kind of mixture partition.  The fourth section then defines
feature partitions that result from mixture control.  Their major properties are then
discussed in section five.  The sixth section defines stand-alone features as a special case
of features.  An algebraic specification of concepts introduced in this chapter is given in
appendix C.

4.4.1  Requirements for Feature Abstraction

Mixture fields are well suited to represent continuous change in mixtures.  Feature
partitions, in contrast, require that mixtures are almost constant over large
areas, i.e., within features,  and then rapidly transition between features in the
so called transition zone.  If this requirement is not satisfied, the definition of
features based on a mixture field is problematic and feature partitions are
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therefore poor representations of the world.  In other word, some cases require
continuous models and would be misrepresented by discrete models.

Figure 4.6 shows such a situation that fulfills the requirements of feature
partitions.  A two-component mixture of "land" and "water" is represented by its
land component (while its water component is implied as the complement of the
land component).  For easier visualization, the figure shows a cross section
through space.  The locations of the features "land", "water", and "transition zone"
are indicated by bars below the location axis.  The figure shows how the mixture
within the features "land" and "water" are relatively homogeneous, and how the
transition between land and water is rapid.  Further, the mixtures associated with
the feature land are different from those of the features transition zone and water.

x (location)

land

100%

0%

mixture (as a function of location)

land transition- 
zone

water

Figure 4.6:  Feature partitions require large areas of relatively homogeneous
mixture that are separated by transition zones with a rapid transition of mixture
values.

4.4.2  Theme Control of Mixtures

The fundamental properties of classified mixture fields are mixtures.  They are
therefore chosen as the controllable theme.  In contrast, other observable
properties can be derived from mixtures by class methods (see section 4.3.2) and
are therefore less interesting for theme control.  This thesis assumes that
unclassified mixture fields are not directly abstracted to feature partitions, but that
they are first classified to classified mixture fields as an intermediate step of
abstraction.

The control of mixtures requires awareness of the set of all possible mixtures that
is also called mixture space.  To understand mixture space, mixtures can be
represented as points in a coordinate system that uses mixture percentages as
coordinates.  Every object in the object partition related to the mixture space then
defines a coordinate axis.  Since all mixture percentages must be between 0% and
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100%, all possible points must fall in the first quadrant of the coordinate system.
Further, since the mixture percentages add up to 100%, all points must lie in a
hyper-plane that intersects the axes at the 100% mark.  Figure 4.7 illustrates this
for the case of an object partition that contains the three class associations
"urban", "rural", and "forest".  All possible mixtures are then points in a triangular
section of the plane.

100% geographic  
      object "urban"

100% geographic  
        object "rural"

100% geographic 
object "forest"

0%

Figure 4.7:  The set of all possible three component mixtures can be represented
by a triangular section of a plane.

The theme control of mixtures is now based on the arbitrary definition of sets of
mixtures, called mixture classes38.  Mixture classes are comparable to the
intervals of albedo used in remote sensing classification.  A single mixture class
can then be used to "measure" the location of the associated feature.  Since feature
partitions are composed of several features, several mixture classes have to be
defined.  Further, since the features of feature partitions are required to partition
resolution-limited space, the mixture classes defined for theme control have to
partition mixture space.  A family of mixture classes with this property is called
a mixture partition.  Mixture partitions completely describe theme control.

Mixture partitions must always contain one mixture class called transition zone.
Note that the transition zone is an area rather than a line in mixture space.  This
is partly motivated by the fact that the mixtures of transition zones are

                                                

38 The classification implied by the term mixture class is based on values of mixture percentages.  All
mixtures that belong to a mixture class have certain class properties in common, for example, their mixture
percentages of "land" are higher than 80%.  While in the strict sense of object-oriented modeling, a set of mixtures is
an association of class members rather than class itself, this thesis uses the term mixture class for simplicity.
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significantly different from those of other features (see, for example, figure 4.6 in
section 4.4.1 above).  It is also important for the visualization of feature partitions
within the limitations of graphic media, since this visualization relies on a
minimal width of the transition zone (see chapter seven).

The areal character of the transition zone is motivated also by the requirements of
representing spatial knowledge:  It was argued earlier, that the modal mixture
component is a weak representation of the available spatial knowledge since all
locations well inside the relatively homogeneous feature are described by the less
discriminating attribute found in the transition zone (see section 2.2.1).  For
example, in figure 4.6 above, the land feature is characterized by all mixtures that
contain more than 80% of the class association "land".  In contrast, in a mixture
with as little as 50.1% land, land is still the modal component39.  To describe the
whole land feature by a land percentage of "more than 50%" would drastically
reduce the knowledge about what is found in the interior of the feature (as
compared to a percentage of more than 80%).

The philosophy of modal mixture components requires linear transition zones.
For example, in the above example, the transition zone contains only the mixture
point40 (50% land, 50% water).  The requirement of an areal transition zone thus
avoids the weak representation of available knowledge described above.

4.4.3  Representation of Mixture Partitions

Figure 4.8 visualizes one kind of mixture partition.  Here, all mixture classes (but
the transition zone) are defined by containing more than a given percentage of a
geographic object (or mixture component).  This minimal percentage will be
called level of homogeneity or simply homogeneity.  While the level of
homogeneity may be different for different mixture components, this thesis will
use the simplest case where a single level of homogeneity is used.  The mixture
partition is then completely determined by the level of homogeneity.  Individual
mixture classes are then defined by their predominant geographic object (or
mixture component).

                                                

39 In mixtures with more than two components, this percentage can go well below 50% (see section 2.2.1).

40 In two-component mixtures, a mixture line degenerates to a point.
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100% geographic object "urban"

100% geographic  
       object "rural"

100% geog. 
obj. "forest"

0%

80%

80%
80%

mixture class "urban"

mixture class "rural"

mixture class 
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mixture class 
"transition zone"

Figure 4.8:  Mixture partition that is defined by a level of homogeneity of 80%.

A more general kind of mixture partition is visualized in figure 4.9.  Mixture
classes are now defined by a mixture ball.  The concept of mixture balls will be
discussed in detail in section 5.1.2.  For the purpose of this discussion, mixture
balls are special kinds of polygons in mixture space.  They are determined by a
single mixture that is the center point of the mixture ball and a mixture radius that
is expressed by a percentage.  In the visualization of figure 4.9, mixture balls are
not round but rather hexagons.  The mixture class "pine forest" shows that the
previously discussed kind of mixture partition already used mixture balls;  namely
those centered on the "corners" of mixture space and mixture radii that are 100%
minus level of homogeneity.  The more general kind of mixture partition allows
an arbitrary number of mixture balls, in arbitrary locations of mixture space, and
with arbitrary radii.  The mixture classes are still separated by transition zone,
however.  While the previous kind of mixture partitions could be represented by a
single level of homogeneity, the more general kind is represented by the center
points and radii of mixture balls.
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100% pine

100% birch100% oak

"pine forest"

"pine-birch forest"

"mixed forest"

mixture radius

Figure 4.9:  Example of a more general kind of mixture partition.

The most general, finitely representable kind of mixture partition is defined by
polygons in mixture space.  While the concept of feature partitions works with
any kind of mixture partition, this thesis uses only those mixture partitions that are
representable by a single level of homogeneity for a detailed discussion.  This
kind of mixture partition covers the needs of most GIS applications, and can be
represented by a single value (i.e., the level of homogeneity).  A later extension to
include more general mixture partitions is possible.  While leaving the
representations of feature partitions unaffected, it would require changes in the
meta data of feature partitions and in the transformations between feature
partitions of different resolution.

4.4.4  Definition of Feature Partition

Feature partitions are representations that are derived from classified mixture
fields by an abstraction process.  The abstraction process incorporates two
abstraction mechanisms, one that associates mixtures to mixture classes, and
another that associates disks to regions (i.e., sets of disks).  A feature is described
by an attribute that is a mixture class and a geometry that is a region.  The
relation between attribute and geometry is given by Sinton’s concept of
controlling theme and measuring location (see sections 2.3.1 and 3.6).  Namely, a
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disk is part of a feature’s geometry if its mixture41 is an element of a the feature’s
mixture class.

A feature partition is a set of features whose mixture classes partition mixture
space and consequently, whose geometries partition resolution-limited space.
Feature partitions are uniquely determined by (i) the mixture field from which
they were derived by an abstraction process and (ii) the mixture partition that is
the parameter of the abstraction process.  Since this thesis restricts its scope to
mixture partitions that can be represented by a single level of homogeneity, a
feature partition is identified by the resolution and object partition of the
underlying mixture field and the level of homogeneity of the mixture partition.

4.4.5  Properties of Feature Partitions

This section discusses some properties of feature partitions that are defined by a
level of homogeneity42.  In particular, it discusses the "absorption" of "foreign"
geographic objects in features that have a predominant geographic object.  For
example, the feature with a predominant class association "water" can absorb
small pieces of the class association "land" (i.e., islands).  The section further
investigates how the width of the transition zone is affected by the configuration
of objects in geographic reality.  A comparison to a crisp-boundary approach
illustrates how the areal transition zone allows the use of expressive attributes.

Geographic objects that are different from the predominant geographic object of a
feature but are contained in disks of the feature’s geometry are called
inhomogeneities.  If such inhomogeneities fail to show up as features of their
own, they are said to be absorbed in the feature that covers the location of the
inhomogeneity.

The maximal size of such inhomogeneities is limited by level of homogeneity and
spatial resolution (i.e. the size of disks).  Figure 4.10 illustrates this.  Assume that
the feature of interest is defined at a level of homogeneity of 80%.  The
inhomogeneity in (a) is then too large to be absorbed in the feature since it covers
more than 20% of the disk area;  in case (b), the inhomogeneity is small enough to
be absorbed in the 20% allowed inhomogeneity.  It is obvious how resolution, i.e.
the size of disks, together with the level of homogeneity limits the maximal size
of absorbable inhomogeneities.  A more quantitative study of this issue will be
given in section 4.5.

                                                

41 The underlying mixture field specifies a disks mixture.

42 see limitation of considered kinds of mixture partitions in section 4.4.3.
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(a) (b)

Figure 4.10:  Inhomogeneities that can be absorbed in a feature are limited in size
by resolution and level of homogeneity.  Large inhomogeneities cause the disk’s
mixture to fall outside the feature’s mixture class (a), while small homogeneities
can be absorbed (b).

Figure 4.11 illustrates the effects of absorbing inhomogeneities on the geometry
of features as compared to that of objects in geographic reality.  The top row
shows three different configurations of the class associations "land" and "water"
in geographic reality.  The bottom row shows the corresponding limited-
resolution features "land" and "water".  The visualization uses a projection of
limited-resolution space to Euclidean space, where disks are projected onto their
center point.  The transition zone is shown as a thick line.  Column (a) shows how
small islands can be totally absorbed in the feature "water".  In (b), long and thin
areas of the object "land" are absorbed in the feature "water".  Column (c)
demonstrates how groups of islands can become a contiguous part of the feature
"land" if they are close enough together, and how small islands close to the coast
can result in a feature topology that is different from the object topology in
geographic reality.
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Figure 4.11:  Examples of the absorption of inhomogeneities.

If inhomogeneities are relatively small, they are usually totally absorbed by
features;  if they are relatively large, they show up as features of their own.  In
between these two cases, inhomogeneities show up as transition zone only.
Figure 4.12 shows two examples.  Land is shown in light gray,  water in white,
and transition zone in dark gray.  In case (a), islands cause a transition zone inside
the feature "water";  in case (b), a complexly shaped shoreline causes a large
transition zone.
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Figure 4.12:  Inhomogeneities that are too large to be totally absorbed and too
small to show up as features of their own, are absorbed in the transition zone.

The width of the transition zone43 depends on the configuration of objects in
geographic reality.  This is illustrated in figure 4.13 with an example of the
distribution of land and water.  The three frames in the top row of the figure
visualize land and water in geographic reality.  We are interested in the mixtures
of disks that fall on the indicated cross section.  These mixtures are shown in the
bottom row of the figure44.  The frames in the top row show the last disk that
contains 100% land and the first disk that contains 100% water.  The curves in the
bottom row show how the mixtures change in between these positions.  The lines
of 80% land and 80% water indicate the edge of the transition zone between the
mixture classes "land" and "water".  The locations where the mixture curve falls
between these lines defines the feature "transition zone" that is marked by shaded
bars.  The transition zone width can obviously vary from less than a disk diameter
(a) to significantly more (c).

                                                

43 Since a transition zone is a resolution-limited region rather than a point set, its width has to be measured in
terms of resolution-limited distance.  In the visualization used in the figures, every disk is projected to a Euclidean
point and the resolution-limited width projects to a "normal" Euclidean width.

44 While the mixtures describe disks, they are visualized as the attributes of points along the cross section.
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(a) (b ) (c )

cross- 
 
section

mixture
100% land

100% water
80%water

80%land

Figure 4.13:  The width of the transition zone depends on the configuration of
objects in geographic reality.

A major incentive for an areal transition zone is that it allows expressive feature
attributes.  The following comparison of an areal transition zone with a crisp
boundary shows this (see figure 4.14).  The fills suggest that the areal transition
zone allows much stronger attributes than the crisp boundary approach.  In case of
an areal transition zone, the attribute meaning is determined by the level of
homogeneity.  In particular, features "land" and "water" contain more than, for
example, 80% of the geographic objects "land" and "water", respectively.  To
achieve a crisp boundary, features have to be defined in terms of the modal
mixture component rather than a level of homogeneity.  Every disk that contains
more land than water is then part of the feature "land".  In the two-component
mixture of "land" and "water", the feature attribute "land" then expresses that
disks contain more than 50% of the geographic object "land".  In the case of
mixtures of, for example, ten components, a mixture percentage of as little as
10.1% can be modal if all other components are less than 10%.  This shows that
a modal attribute expresses much weaker knowledge about what can be found in
the world than an attribute that is based on a level of homogeneity.  A
geometrically attractive crisp boundary thus has to be paid for by weak attributes,
while an areal transition zone preserves much more of the knowledge of the
underlying mixture field.
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land waterTZ land water

areal transition zone crisp boundary

Figure 4.14:  Comparison of areal transition zone and crisp boundary.

4.4.6  Special Case: Stand-Alone Features

Feature partitions contain several features that form a partition of space.  Stand-
alone features are the features of special feature partitions45 that contain only
two features, namely the stand-alone feature itself and the transition zone.
Like all features in this thesis, stand-alone features are defined by a predominant
geographic object and a level of homogeneity.  In contrast to partitioning
features, the level of homogeneity of stand-alone features is 0%, i.e., every disk
that contains more than 0% of the predominant object in its mixture is part of the
stand-alone feature.

The term "stand-alone" expresses that stand-alone features exist independently of
other features46.  In contrast, general feature partitions contain several features that
are closely related by a mixture partition.  This thesis uses the term partitioning
features for the features of general feature partitions.  Partitioning features are
then a contrast to stand-alone features.

If uncertainty introduced by finite approximation is not considered (as is the case
in this chapter), stand-alone features are represented and otherwise treated like
partitioning features.  The difference between stand-alone and partitioning
features is the way in which they model the mentioned uncertainty.  Here, stand-
alone features must follow a different approach than partitioning features in order
to preserve the knowledge they represent (see chapter five for detail).

Stand-alone features are designed to preserve knowledge about very small
geometric objects.  Normal features with their high level of homogeneity require a
minimal size of the predominant object before it shows up as a feature.  If the

                                                

45 Here, these feature partitions are defined by the more general kind of mixture partitions that use mixture
balls (see section 4.4.3).

46 The transition zone is irrelevant in absence of other features and is only needed to show that stand-alone
features are part of a special case of feature partitions.
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predominant object is very small compared to resolution, knowledge about its
presence in geographic reality is not represented.  Maps give many examples,
where small objects are relevant in spite of their size.  For example, maps often
show cities, rivers, and roads, that are too small to be preserved in the scaling
process.  Cartography uses methods to preserve the knowledge about such objects
and displays them as graphic point or line symbols of the minimal allowable size.
Since all objects are two- (or three-) dimensional in geographic reality, showing
cities as (zero-dimensional) points and roads as (one-dimensional) lines is often
called dimension change [Nickerson, 1986].

The preservation of such knowledge requires mixture classes that contain
mixtures with arbitrarily small percentages of the small geometric object.  A disk
that is part of one stand-alone feature can then easily also be part of another
partitioning or stand-alone feature.  This is evident in the fact that a disk can
simultaneously contain more than 0% of a small geographic object and more than
say 80% of another, larger geographic object.  This discussion shows that stand-
alone features usually overlap with other features rather than forming a partition
of space.

4.5  Some Quantitative Properties of Mixture Fields and Feature
Partitions

While some qualitative properties of resolution-limited mixture fields and feature
partitions were pointed out above, this section discusses quantitative properties.  A first
section investigates the size threshold for inhomogeneities to be absorbed at a given
resolution.  Then, a distance function for mixtures is defined in order to express how
similar or dissimilar mixtures are.  This distance function is used in the third section to
define the maximal difference in the mixture of two disks of a mixture field as a function
of the spatial distance between them.  The fourth section applies this maximal rate of
mixture change to determine the minimal width of the transition zone in feature
partitions.

The following discussion uses the calculation of intersection areas of disks and half
planes in different configurations.  Appendix "A" documents how to calculate these
intersection areas.

4.5.1  Absorption of Inhomogeneities

While it is not possible to look at all possible configurations of inhomogeneities,
the two examples of circular- and bar-shaped inhomogeneities give an idea of the
maximal dimension of inhomogeneities that can be absorbed.  The two
configurations are illustrated in figure 4.15:  Inhomogeneities are shown in gray
and two resolution-limited disks without shade are shown for reference.
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width

Figure 4.15:  Circular and bar-shaped inhomogeneities.

Section A.3 in the appendix provides the formulas and table for the calculations of
circular inhomogeneities.  Table 4.1 lists the maximal size of circular
inhomogeneities that are still absorbed as a function of the level of homogeneity.

Table 4.1:  Maximal radius of absorbed circular inhomogeneities as a function of
the level of homogeneity.

Since a ratio of radii is difficult to visualize, figure 4.16 shows the cases of 95 and
80% homogeneity.

Level of
homogeneity

[%]

Maximal radius of
circular

inhomogeneity
[% resolution-
limited disk]

95 22

90 32

85 39

80 44
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80% homogeneity90% homogeneity

R

r =22%R
r=44%R

Figure 4.16:  Maximal circular inhomogeneity still absorbed at 95% and 80%
homogeneity.

The maximal size of bar-shaped inhomogeneities can be derived from section A.2
in the appendix.  The inhomogeneity obviously has its maximal effect if it is
centered on a resolution-limited disk.  Table 4.2 shows the maximal width of bars
that are still absorbed as a function of the level of homogeneity.

Table 4.2:  Maximal width of absorbed bar-shaped inhomogeneities as a function
of the level of homogeneity.

Figure 4.17 shows two cases from the above table graphically.

95% 80%

R

width=8%R

width=32%R

Figure 4.17:  Maximal bar-shaped inhomogeneity still absorbed at 95% and 80%
homogeneity.

Level of
homogeneity

[%]

Maximal width of
absorbed bar
[% of radius of

resolution-limited
disk]

95 8

90 14

85 24

80 32
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4.5.2  Distance Function for Mixtures

Finite resolution limits the maximal rate with which mixtures can change.  In
order to capture this maximal rate, mixture change first needs to be quantified.
This is done in this section by defining a distance function for mixtures.

The following simple example illustrates the idea of a distance between mixtures.
Let us consider mixtures with only two components, for example, the class
associations "land" and "water".  Two mixtures with the same ratio of land and
water are obviously equivalent, and therefore have a distance of 0%.  Mixtures
containing 100% land and those containing 100% water are examples of the
maximal possible difference between mixtures, expressed in a distance of 100%.

In mixture fields, mixtures are always associated with disks.  The idea behind
quantifying mixture-distances is to consider one disk and measure the minimal
area that has to be replaced with a different mixture component in order to reach
the mixture of the second disk.  For example, let us consider two disks that
contain a mixtures of land and water ratio of (10% , 90%) and (50%, 50%),
respectively (see figure 4.18).  In order to get from a (10% , 90%) mixture to
(50%, 50%), water in 40% of the first disk has to be replaced by land.  Since 40%
of the disk area had to change, the distance between these two mixtures is 40%.

land water10% 90%

40%

Figure 4.18:  Two disks with mixtures of land and water of (10%,90%) and
(50%, 50%), respectively.

Let us now apply this concept to general mixtures with arbitrarily many
components.  The doubled disk area that has to change is then found by summing
up the absolute values of percentage differences over all mixture components.  In
the above example, we have to sum up |10-50| for land and |90-50| for water.  This
adds up to 40 + 40 = 80, i.e., twice the mixture distance as predicted.
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The following captures the distance between two mixtures ma and mb:  Let ma
and mb be mixtures of n components.  ma can then be written as [a1, a2, ..., an]
and mb as [b1, b2, ..., bn].  The mixture-distance md is then determined as follows:

md(ma, mb)  =  1/2  Σ |ai - bi|

Mixture-distances are obviously limited to the interval between 0% and 100%.
They are thus always positive, as expected from a distance.  They are also
symmetric, i.e., md(ma, mb) is the same as md(mb, ma), and satisfy the triangular

inequation47, i.e., md(ma, mc) ε md(ma, mb) + md(mb, mc) for arbitrary mixtures
ma, mb, mc.

4.5.3  Maximal Rate of Mixture Change in Mixture Fields

Since close disks of resolution-limited space intersect, their possible mixture
difference is limited.  This can be expressed as a maximal mixture-distance
between two disks as a function of their spatial distance.  This maximal rate of
mixture change is relevant to possible finite representations of mixture fields since
it allows interpolation of mixture values between sampling locations (see chapter
six).  It will further be used in the following section to determine the minimal
width of transition zones in feature partitions.

Figure 4.19 illustrates two close disks with their intersection area.  Obviously, the
geographic content of the intersection area must be the same for both disks.  The
disks can thus only differ in the geographic contents found in their non-
overlapping parts.  Since mixture-distance is defined as the area that changes its
thematic content, it must be restricted to the non-overlapping part of the disks.

d

Figure 4.19:  Two adjacent disks with their intersection area (gray) that can be
derived form the distance d between their center points.

                                                

47 The proposed mixture distance has all the properties of distance functions since it is a special case of the
well-known city-block metric.
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Table 4.3 shows the maximal mixture change as a function of the spatial distance
between disks.  Section A.2 in the appendix describes the underlying area
calculations.  Note that a distance of 200% of the radius between disks means that
they just touch at a point of their boundary.

Table 4.3:  Maximal rate of mixture change.

Figure 4.20 shows this maximal rate of mixture change as a function.  A straight line
between the end points of the function is added for reference.  The disk configurations are
visualized for the distances of 0, 100, and 200% of the radius.

spatial distance
between disks
[% of radius]

maximal
mixture-

distance       [%]

0 0

20 14

40 26

60 36

80 50

100 60

120 72

140 80

160 90

180 96

200 or more 100
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max. mixture-distance

spatial 
distance 
between 
disks 
[% of  
 radius]

0

20

40

60

80

100

0 20 40 60 80 100 120 140 160 180 200   

Figure 4.20:  Maximal rate of mixture change.

4.5.4  Minimal Separation of Features

The maximal rate of mixture change implies that in a feature partition, the features
with a predominant geometric object are always separated by the transition zone
by a minimal spatial distance.  Such separation properties are relevant to the finite
representations of features (see chapter six), as well as their visualization (see
chapter seven).

Features are defined by mixture classes, i.e., sets of mixtures.  The minimal
mixture-distance between two mixture classes is then the minimal distance
between element mixtures.  Figure 4.21 shows an example of illustration.  The
mixture classes A and B are defined as part of a mixture partition.  The partitioned
mixture space contains all mixtures with the three components c1, c2, and c3.
The mixture class A contains all mixtures with at least 80% c1;  B contains all
mixtures with at least 40% c1,  at least 40% c2,  and at most 10% c3.  The more
c1 a mixture in B contains, the closer it is to A.  The mixture of B with the
maximal amount of c1 is P1 with 60% c1, 40% c2, and 0% c3.  P2 in A is the
closest to P1, since it contains the minimal possible amount of c1 and the
maximal possible amount of c2.  P2 thus contains 80% c1, 20% c2, and 0% c3.
The mixture change from P1 to P2 consists of replacing 20% of c2 with 20% of
c1.  The minimal mixture distance between A and B is therefore 20%.
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A

B

c1

c2 c3

P1

P2

Figure 4.21:  Example of minimal mixture-distance between mixture classes.

In case of feature partitions that use a mixture partition defined by a level of
homogeneity per predominant geographic object, the minimal mixture-distance
can be expressed in a simple formula.  Let A and B be mixture classes with a level
of homogeneity of Ha and Hb, respectively.  The minimal mixture distance mmd
between A and B is then given by the following formula:

mmd = Ha + Hb - 100%

For example, if A has a level of homogeneity of 70%, and B one of 90%, the
minimal mixture distance between A and B is 60%.

The maximal rate of mixture change relates mixture-distances and spatial
distances (see preceding section).  A minimal mixture-distance between mixture
classes therefore implies a minimal spatial distance between the according
features or equivalently, a minimal width of the transition zone.  For example, two
features that are separated by a minimal mixture-distance of 60% are separated by
at least a disk-radius in the spatial domain  (see table 4.3 above).
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5  Representation of Uncertain Spatial Knowledge

The previous chapter has shown that mixture fields and feature partitions are the results of
abstraction processes applied to geographic reality (see figure 5.1).  Both these results are infinite
representations and can therefore not be physically represented in a finite computer.  In order to
allow physical representation, the infinite representations have to be approximated by finite
representations.  Approximation leads to differences between actual properties and represented
properties.  This constitutes approximation error (in the sense of Chrisman’s definition of error
[Chrisman, 1991]).  While it is not possible to represent individual errors48, an uncertainty
model represents the possible magnitudes of error.

Approximation is modeled as an additional step in the abstraction process (see figure 5.1).
Section 5.1 discusses the approximation of mixture fields.  This abstraction step maps the certain
mixture fields of chapter four to uncertain mixture fields (see figure 5.1).  Uncertain feature
partitions can be constructed in two ways,  either by propagation of uncertainty from uncertain
mixture fields, or by an approximation abstraction of certain feature partitions (see figure 5.1).
Section 5.2 will first discuss the former possibility and then reason that the latter possibility
results in a representation of the same format.  While stand-alone features were treated as a
special case of partitioning features in the previous chapter, they have to be treated different from
partitioning features in the uncertain case.  This allows preservation of knowledge that would
otherwise be lost at relatively coarse resolution.  This is not evident in figure 5.1 where stand-
alone features are derived from feature partitions of the same resolution.  It will become clear
only when considering transformations to coarser resolution (see chapter eight).  Then, small
partitioning features get lost while, due to their different uncertainty model, small stand-alone
features are preserved.

                                                

48 If actual errors were represented, the representation would allow the reconstruction of the true property (as
represented property + error).  This is obviously not possible in finite representations.
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geographic 
reality

certain 
mixture field

certain 
feature partition

uncertain 
mixture field

uncertain 
feature partition

resolution-limited 
perception 
(section 4.3)

feature 
abstraction 
(sect. 4.4)

mixture field 
approximation

feature 
approximation

modified feature 
abstraction 

uncertain 
non-partitioning 

features
abstraction of 
non-partitioning  
features

Figure 5.1:  Abstraction steps between geographic reality and uncertain representations.

While the abstraction process from geographic reality to certain representations was described in
terms of standard abstraction mechanisms (see sections 2.3.6 and 3.4); the final step in the
complete abstraction process that describes the approximation cannot easily be modeled by one
of these abstraction mechanisms applied to entities of the spatial theory.  However, several
different states of certain representations map to a single state of an uncertain representation.
This many-to-one mapping shows that the approximation process is an abstraction [Liskov,
1986].

This chapter models uncertainty that is introduced by approximation at a general level.  All
possible finite representations (including the ones proposed in chapter six) are then special
cases of the general uncertain representations, since they are all approximations of certain
representations.  Figure 5.2 illustrates how finite representations approximate the general case
using the example of a mathematical function:  A general function is visualized in (a), while (b)
shows a function that can be described with a finite number of parameters, namely the values in
sampling points.  The figure illustrates how finite approximation introduces error that can be
represented in the form of an uncertainty model.
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(b)(a)

Figure 5.2:  Functions with a finite number of parameters (b) can only approximate general
functions (a) and therefore introduce error.

5.1  Uncertain Mixture Fields

This section describes the approximation of certain mixture fields that results in uncertain
mixture fields.  The first section describes the concept of representing mixture
uncertainty.  The next section is concerned with finding a representation for such
uncertainty.  The final section shows how different finite parametrizations are special
cases of uncertain fields.

5.1.1  Basic Concept

The representation of certain mixture fields was described in section 4.3.3.  For
every disk in resolution-limited space, the actual mixture was known.  In
uncertain mixture fields the actual mixtures are unknown.  Instead of single
mixtures, intervals49  (or more generally sets) of mixtures are used in uncertain
mixture fields.  It is then known for certain that the actual mixture lies
somewhere in this set of mixtures50.

Figure 5.3 illustrates this concept.  For easy visualization, the figure shows only a
cross-section through space on the horizontal axis, and a mixture of only two
components (for example, "land" and "water") on the vertical axis.  The mixture
axis then shows the percentage of one component, e.g., "land" and implies the
second component as its complement.  The certain mixture field is visualized in
(a), while the uncertain case is shown in (b).  The certain representation relates a

                                                

49 Strictly, the concept of "interval" can only be applied to two-component mixtures.  It is used here to
facilitate understanding.

50 Note that the approximation errors in the case of mixture fields are the result of interpolation between
sampling locations.  Due to a maximal rate of mixture change as a function of location change (see section 4.5), the
maximal approximation error is theoretically limited.
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single mixture with every location (e.g., (65% land and 35% water)).  The
uncertain representation relates an interval51 of mixtures with every location (e.g.,
the interval between the mixtures (64% land and 36% water) and (68% land and
32% water)).  A single mixture interval corresponds to a vertical line segment in
the figure (marked by arrows).  The entirety of all intervals is shown as a "band"
of varying width.  The uncertain representation can be described by a finite
number of parameters, for example, the mixture intervals in sampling locations
(marked by points in the figure).  Mixture information between sampling
locations is then derived by interpolation;  and mixture uncertainty increases with
the distance from the sampling location.

(a) (b)

mixture

location

mixture

location

single mixture 
interval

Figure 5.3:  A certain (a) and uncertain mixture field representation (b).

5.1.2  Representation of Uncertain Mixture Fields

This subsection is concerned with the representation of intervals and sets of
mixtures and the representation of uncertain mixture fields.  While the
representation of mixture intervals is straight forward, it is only applicable to two-
component mixtures.  The concept of intervals is therefore generalized for n-
component mixtures in the form of "mixture balls".  Mixture balls are used by
uncertain mixture fields in the way that single mixtures are used by certain
mixture fields.

In Euclidean geometry, the higher-dimensional equivalent to a two-dimensional
closed interval is a closed ball (see, for example, [Croom, 1989]).  It is
represented by a center point and a radius, and contains all points whose distance
to the center point is less than or equal to the radius.  The concept of such balls is
obviously applicable to spaces of arbitrary dimension.

Section 4.4.2. showed that mixtures can be represented as points in a plane of an
n-dimensional space; and section 4.5.2. defined a distance function for mixtures.

                                                

51 In the general case, the mixture interval for a two-component mixture becomes a set of mixtures for an n-
component mixture.
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The ball concept can therefore be applied to mixtures:  If mi are mixtures of n-
components, mc is the mixture corresponding to the center point of the ball, and r
is the mixture-radius expressed as a mixture distance, then a mixture ball mb is
defined as follows:

mb = {mi | mixture-distance(mc, mi) • r}

Figure 5.4 illustrates a mixture ball for the case of three components.  Note that
since mixture-distance is closely related to city block metric and mixtures can
only exist in a plane, the ball becomes a hexagon.

Figure 5.4:  A mixture ball for three-component mixtures.

Uncertain mixture fields use mixture balls as a major component of
representation.  Section 4.3.2 defined certain mixture fields as "a mapping that
assigns a mixture (and other observable properties) to every disk of resolution-
limited space".  An uncertain mixture field is then a mapping that assigns a
mixture ball (and other observable properties) to every disk of resolution-
limited space.

In classified mixture fields, the additional observable properties are represented as
methods rather than property values (see section 4.3.2).  The represented mixture
uncertainty can therefore be propagated to uncertainty in observable properties
which makes a separate representation of property uncertainty unnecessary.  In the
case of unclassified fields, the property uncertainty can be represented by intervals
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of property values52.  Since unclassified fields are only of marginal importance in
this thesis, such representation is not further investigated.

5.1.3  Finite Representations as Special Cases of Uncertain Mixture Fields

Finite approximations of mixture fields will be discussed in chapter six.  Since
approximation introduces uncertainty, such finite approximations are uncertain
mixture fields, namely those that can be represented by a finite number of
parameters.  Figure 5.5 uses the visualization of mixture fields proposed in section
5.1.153 to illustrate this point.  The certain mixture field (a) is finitely
approximated in (b) and (c) by different finite parametrizations of mixture fields.
They both capture approximation uncertainty as part of their representation in the
form of mixture intervals.  It is obvious in the figure that both (b) and (c) are
special cases of uncertain mixture fields.

(a) (b) (c)

mixture

location

mixture

location

mixture

location

Figure 5.5:  Different finite approximations (b,c) of a certain mixture field (a) are
special cases of uncertain mixture fields.

5.2  Uncertain Feature Partitions

This section describes the derivation and representation of uncertain feature partitions.
The first section points out that feature partitions can only be derived from mixture fields
with a limited mixture uncertainty.  The next section describes the propagation of mixture
uncertainty in fields to geometric uncertainty in feature partitions.  The third section
reasons that the approximation of certain feature partitions results in the same kind of
uncertain feature partition that was developed for handling propagated mixture field
uncertainty.  The final section discusses the philosophy that underlies the proposed

                                                

52 Under the assumption that observable property values are of ratio scale.

53 This visualization uses a two-component mixture and a cross section through space.   
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uncertainty representation.  It is important for understanding the difference between
partitioning and stand-alone features.

5.2.1  Feature Partitions Require Limited Uncertainty

Feature partitions can only be derived from mixture fields with limited
uncertainty, since otherwise, the mixture classes that define features can be
confused.  Figure 5.6 illustrates the case where mixture field uncertainty is too
large for the derivation of a feature partition.  A single mixture ball represents the
uncertain mixture knowledge in a certain location of the mixture field.
Obviously, the excessive level of uncertainty makes the separation of mixture
classes (and thus features) impossible.  This thesis therefore assumes that mixture
field uncertainty is relatively small compared to the separation of mixture classes.

Figure 5.6:  If mixture field uncertainty is large compared to the separation of
mixture classes, different features become confused and indistinguishable.

5.2.2  Propagation of Mixture Field Uncertainty to Feature Partitions

When feature partitions are derived from uncertain mixture fields, mixture field
uncertainty propagates to the feature domain.  This section therefore discusses the
effect of mixture field uncertainty on feature partitions.  For an efficient
representation of uncertain feature partitions, the feature abstraction proposed in
section 4.4 has to be modified to accommodate the characteristics of uncertain
representations.  The modified abstraction results in the representation of
uncertain feature partitions.

The original feature abstraction is designed for certain representations (see section
4.4) and assigns every disk of space to a feature based on the mixture that the
underlying field associates with the disk.  Figure 5.7 compares the feature
abstraction from a certain mixture field (a) with that from an uncertain one (b).
The mixtures m1 and m2 are the attributes of two disks of a certain mixture field.
Since they completely fall into a single mixture class, the associated disks can
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easily be assigned to a feature.  The situation becomes more complex in the
uncertain case (b) because mixture balls instead of single mixtures are associated
with disks.  Such mixture balls can either be completely contained by a mixture
class (b1 and b3), or intersect with two mixture classes (b2)54.  The latter case
prevents a straight forward assignment of disks to features.

m1

m2

b1

b2

b3

(a) (b)

Figure 5.7:  Feature abstraction based on a certain (a) and uncertain mixture field (b).

Figure 5.8 illustrates feature abstraction that derives feature partitions from
mixture fields.  Parts (a) and (b) apply the feature abstraction of chapter four to a
certain (a) and uncertain mixture field (b), respectively.  Part (c) illustrates the
modified feature abstraction that is proposed later in this section.  All three parts
show a cross section through space along which mixtures represented by mixture
fields gradually change from the mixture class "land" to that of "water".  The
mixtures of the certain mixture fields in (a) are illustrated by a single thick line.
The uncertain mixture field in (b) and (c) uses mixture balls (here intervals) rather
than mixtures.  It is therefore visualized by two lines that mark the upper and
lower bound of possible mixtures in the mixture balls.  Gray bars mark the
possible mixture classes that can be found in their associated regions.

For reference, (a) illustrates the classification of certain mixture fields.  The
mixture axis shows the mixture classes of land, water, and transition zone.  Every
disk, identified by its location, is assigned to one of these classes.  The shaded
bars a1, a2, and a3 illustrate how the classification relates regions (i.e., intervals

                                                

54 Note that mixture balls cannot intersect with more than 2 mixture classes if field uncertainty is relatively
small compared to the separation of mixture classes.
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along the horizontal axis) with mixture classes (i.e., intervals along the vertical
axis).  Every region is then related to only one mixture class.

Part (b) of the figure illustrates the application of the original feature abstraction
to uncertain mixture fields.  Disks whose mixture balls are totally contained in a
single mixture class are related to a single mixture class and thus feature (b1, b3,
and b5).  Disks whose mixture balls intersect with two mixture classes have to be
related to two features, one being the transition zone (b2 and b4).  Due to
uncertainty, it is not known which of these two features the disk belongs to.  The
actual feature boundary can therefore lie anywhere inside the regions whose disks
intersect two mixture classes (b2 and b4).  Since the actual boundary location is
unknown, any location chosen for the representation deviates from the actual
boundary and therefore introduces approximation uncertainty.

mixture

location

land

water

transition 
zone

mixture

location

land

water

mixture

location

land

water

(a) (b)

(c)

a1
a2

a3

b1
b2

b3

b4

b5

c1
c2

c3

transition 
zone

transition 
zone

certain 
mixture field

upper and lower 
mixture bound of 
uncertain field

Figure 5.8:  Original and modified feature abstraction applied to certain and
uncertain mixture fields.  The original feature abstraction is applied to a certain (a)
and uncertain mixture field(b).  The modified feature abstraction is applied to a
uncertain mixture field (c).

To manage this uncertainty, a modified feature abstraction is proposed here (see
figure 5.8.c).  It results in uncertain feature partitions.  Part (b) of the above
figure has illustrated that the represented geometry of features always deviates
from their actual geometry.  According to Sinton, such a change in geometry is
inseparable from a change in attribute (see section 3.7).
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Following this philosophy, the modified feature abstraction defines the geometry
of all features other than the transition zone as the region of disks that carry the
feature attribute for certain.  In part (b) of the above figure, these are the
regions b1 and b5.  The geometries of these features are thus reduced in size by
the amount of locational uncertainty, while their attributes stay unaffected.  This
change in feature geometries has to go along with a widening of the transition
zone such that features and transition zone again partition space.  The widened
transition zone is illustrated by the width of box c2 in part (c) of the above figure.
Obviously the new transition zone now includes some disks with attributes of
adjacent features.  This must result in a change of transition zone attribute.  Since
the mixtures of absorbed "foreign" disks can fall in any mixture class, any mixture
can now be found in the modified transition zone.  In other words, all knowledge
of mixtures inside the transition zone is lost as a consequence of the geometric
approximation.  This change of the transition zone attribute is visualized by the
height of box c2 in part (c) of the figure.

Since in this modified feature abstraction, the transition zone is conceptually
different from other features, the term feature used in the remainder of this
thesis will not include the transition zone.

The above modified feature abstraction incorporates an approximation of
feature geometries where all positional uncertainty is absorbed in the transition
zone.  The resulting uncertain feature partitions are still composed of features
and the transition zone.  The major difference to certain feature partitions is the
attribute of the transition zone.  It now allows arbitrary mixtures.  Uncertainty
decreases the size of features while widening the transition zone.  In other words,
it increases the region for which no knowledge about mixtures (and thus
geographic objects) is available.

5.2.3  Uncertainty introduced by Finite Approximation of Regions

Feature partitions are subject to two kinds of uncertainty, (i) the one propagated
from the underlying mixture field and (ii) additional uncertainty that is introduced
during the finite representation of the feature partition.  This section argues that
both kinds of uncertainty can be combined and represented in the same format
that was proposed in the previous section.

In feature representations, uncertainty is introduced by the approximation of
feature geometries by regions that can be described with a finite number of



98

parameters (such as polygons or raster zones55).  Since finite approximations of
regions deviate from the original region, they locally include disks from outside
the actual region and/or exclude disks from its inside (see figure 5.9).

original region

approximating region

included exterior disk

excluded interior disk

Figure 5.9:  Approximation of a region.

Geometry and attributes cannot be separated [Csillag, 1991].  It is therefore
necessary to study the effect of an approximation in the geometric domain on the
attribute domain.  Attributes of features are represented by mixture classes.  The
following investigates whether the approximating region can be described by the
same mixture class (i.e., attribute) as the original region:  While the exclusion of
disks does not affect the mixture class that is associated with the approximating
region, the inclusion of exterior disks adds mixtures from outside the original
mixture class.

In order to use the original mixture class as attribute of the approximating region,
this region has to be completely contained in the original region  (see figure 5.10).
The disks that are excluded during approximation of a feature geometry can be
absorbed by the transition zone that is already associated with the whole range of
possible mixtures.  Again, uncertainty increases the size of the transition zone.

                                                

55 In this context, polygons and zones are concepts of resolution-limited space and are therefore regions rather
than point sets.
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(a) (b)

original region

approximating 
region

Figure 5.10:  Finite kernel approximation of a region with a polygon (a) and a
raster zone (b).

The above discussion shows that uncertainty propagated from uncertain mixture
fields can be represented the same way as that originating from approximation in
the geometric domain.  The two kinds of uncertainty can be combined by letting
any additional uncertainty further widen the transition zone.

Note that the proposed concept of uncertainty representation is not comparable to
locational uncertainty [Chrisman, 1991].  The only similarity is that transition
zones and, for example, probability contours [Dutton, 1992] that represent
positional uncertainty "look" similar in their visualizations.  Conceptually,
however, they are different.  For example, a probability contour that represents
positional uncertainty contains the true boundary56 with a certain probability.
This is a geometric statement that relies on the existence of some kind of "spatial
objects" with sharp boundaries and a known topological configuration (see section
2.2.5 for detail).  In contrast, a transition zone is a region that is characterized by
its lack of attribute knowledge57.  This is not a geometric statement but rather
documents that the relationship between geometry and attributes has been strictly
preserved.

5.2.4  Philosophy of Uncertainty Representation

This section discusses the philosophy that underlies the proposed representation
of uncertain feature partitions.  It justifies the choice of representation and puts it

                                                

56 The problem that the concept of "true boundary" is not sufficiently defined was discussed in section 2.2.5.

57 Note that the transition zone has an areal character even in the absence of uncertainty introduced by
approximation (see chapter four).  In this thesis, the effects of resolution-limitation are not treated as uncertainty.
The width of the transition zone in the certain case could only be considered a "positional uncertainty" if resolution-
limitation was considered an uncertainty.
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in the context of hierarchical reasoning.  Further, an explicit statement of the
philosophy explains the differences in the uncertain representations of partitioning
and stand-alone features.

The previous section argued that feature partitions can be subject to two kinds of
uncertainty, namely (i) that which propagates from uncertain mixture fields and
(ii) that introduced by the geometric approximation of regions.  Both kinds of
uncertainty are treated by a worst-case scenario; i.e., the representation captures
only knowledge that is certain.

(i) In feature abstraction of the uncertain case, uncertainty allows the mixtures of
disks to vary within the limits of a mixture ball.  Since features are defined by a
predominant geographic object and a level of homogeneity, the best case is
represented by the mixture in the mixture ball that maximizes the percentage of
the predominant geographic object;  Similarly, the worst case minimizes the
percentage of the predominant geographic object.  Since uncertain feature
partitions are based on a worst-case scenario, a disk is only part of a feature if,
even in the worst case, its mixture still falls in the associated mixture class.

(ii) In the geometric domain, approximation leads to an uncertainty in the location
of feature boundaries.  Both, the representation of the approximate feature
boundary and its uncertainty must be representable with a finite number of
parameters.  Figure 5.11 shows a possibility of such a representation that is
motivated by Peuker’s theory of the cartographic line [Peucker, 1975].  It is
known that the original feature boundary lies anywhere inside the represented
strips.  In the best-case scenario, the feature is located such that the feature’s area
is maximized;  in the worst-case, the feature’s area is minimized.  The absorption
of uncertainty in the transition zone at the cost of feature area thus corresponds to
worst-case scenario.

original feature 
boundary

approximative  
bounary with 
uncertainty  
represented 
by strips

Figure 5.11:  Uncertainty in the approximation of a feature geometry.

In computational geometry, such worst-case approximations are known as
"kernels" [Nievergelt, 1989].  The concept is for example used in quadtrees
[Samet, 1983] where the set of quad cells that are totally contained by a feature
compose a kernel of this feature (see figure 5.12).
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container

kernel

Figure 5.12:  A kernel and container of a region.

While the proposed representation is based on the worst-case approach, it also
implies a best-case approach where features and transition zone are united.  In the
best case, the feature attribute can then be found anywhere inside the feature itself
or the transition zone.  Best-case approximations of geometry are known as
"containers" in computational geometry [Nievergelt, 1989] (see figure 5.12).
Examples of containers are the strips used in strip trees [Ballard, 1981] where
certain curve sections are totally contained by approximating strips.

Kernels and containers (and thus worst- and best-case approximations) are central
to many cases of hierarchical reasoning.  For example, in the case of strip trees,
containers are used in the hierarchical search for curve intersections.  The basic
idea is to drastically reduce the search space in a coarse approximation in order to
save a lot of computing in a more detailed approximation.

I believe that the representation of spatial knowledge at different levels of
resolution should ultimately be used to support hierarchical reasoning processes
(see also chapter eight).  Representations based on a best- or worst-case approach
are ideal for this purpose.  In contrast, most currently used GIS representations
use an average- or most-probable-case approach.  For example, finite vector-
format approximations of feature geometries attempt to minimize deviations from
the actual geometry on average.

Current practice makes use of representations for hierarchical reasoning very
difficult:  It is known that average-case approximations are close to the actual
world but the amount of error introduced by the approximation is usually
unknown.  This makes it difficult to relate coarser approximations to more
detailed ones, and the world itself.  Such relations are necessary, however, for
hierarchical reasoning--as examples from computational geometry illustrate.  The
use of best- and worst-case approximations allow easy relation of coarser and
finer approximations and are therefore well suited for hierarchical reasoning (see
chapter eight).
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5.3  Uncertain Stand-Alone Features

In the case of feature partitions, uncertainty was managed by reducing the size of features
and altering the attribute of the transition zone.  The same concept is not applicable to
stand-alone features since they are endangered to be lost due to their relatively small size
already.  This section therefore proposes an alternative concept where the geometry of the
stand-alone feature is widened while at the same time, its attribute is modified.  Much of
the following discussion focuses on the modified attribute that expresses what can be
found in the approximate geometry of the uncertain stand-alone feature.

In the certain case, stand-alone features were special cases of partitioning features and
therefore derived from mixture fields.  Their disks were defined to contain an arbitrarily
small amount of a certain geographic object (see section 4.4).  This definition of stand-
alone features is not practical in the uncertain case and is therefore modified in this
section.

The problem of the certain definition is evident when looking at the component disks of
stand-alone features.  Since every component in a disk’s mixture can now vary within the
limits of uncertainty, every disk can potentially contain the required arbitrarily small
percentage of the characteristic geographic object.  In a best-case approach, all the disks
in space would therefore be part of the stand-alone feature;  if the mixture percentage was
required to be above a certain threshold, stand-alone features would partly or completely
disappear.  The certain definition of stand-alone features is thus not applicable in an
uncertain environment.

A solution for this problem is to express the mixture requirements at a higher resolution
where the characteristic geographic object is relatively large and can more easily be
detected with certainty.  This allows minimal mixture requirements that allow detection
but avoid the problem of eliminating major parts of the stand-alone feature.  In the
modified definition, a disk is part of an uncertain stand-alone feature if it completely
contains at least one smaller disk58 that contains a detectable amount of the
characteristic geographic object.

In most practical cases, this detectable amount will be high enough to make the
characteristic geographic object predominant in the small disk’s mixture.  The above
definition is then equivalent to the following one:  A disk is part of an uncertain stand-
alone feature if it contains at least one smaller disk that is part of the related feature
in a feature partition of higher resolution.

The higher resolved feature partition that underlies a stand-alone feature is based on a
worst-case approach (see section 5.2.4).  The weak requirement that at least one smaller

                                                

58 Since disks of different diameters are compared, the comparison must take place in Euclidean space of
geographic reality.
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disk has a predominant (or detectable) percentage of the characteristic geographic object
in its mixture is compatible with a best-case approach:  the geometry of the stand-alone
feature can be seen as a container of the underlying feature.  It is therefore natural to also
deal with the uncertainty introduced by the finite approximation of the stand-alone
feature’s geometry with a best-case, container approach.  In summary, the modified
definition of stand-alone features uses a worst-case approach at high resolution to
guarantee detectability in an uncertain environment and then uses a best-case approach to
preserve the relevant knowledge at the coarser resolution of the stand-alone feature.

Chapter eight defines a transformation that maps from a feature partition to a stand-alone
feature of equal resolution.  This transformation does nothing but extract a single feature
from the feature partition.  Another transformation of chapter eight maps between two
stand-alone features of different resolution.  This transformation implements the best-case
approach typical for stand-alone features.  A combination of these two transformations
allows derivation of a low-resolution stand-alone feature from a feature partition of
higher resolution as specified in the above definition.
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6  Finite Representation of Spatial Knowledge

The previous chapter has discussed approximations of mixture fields and feature partitions at a
general level.  Such approximations can be represented in the form of uncertain mixture fields
and uncertain feature partitions.  This chapter proposes special cases of uncertain mixture fields
and feature partitions that can be (physically) represented with a finite number of parameters.
They are special cases of the general uncertain representations in the same way as polygons are
special cases of general point sets.

The goal of this chapter is to show that the concepts of uncertain mixture fields and feature
partitions are physically representable on finite computers.  To prove this point, the chapter
discusses only some, not all possible finite parametrizations of uncertain resolution-limited
representations.  For example, the discussed finite parametrizations of mixture fields are limited
to using either nearest-neighbor and linear interpolation.  Additional finite parametrizations
based on other interpolation methods are obviously possible but not discussed in this chapter.

In spite of the limited scope of this chapter, it clearly demonstrates how finite parametrization
introduces format.  This is most evident in the domain of feature partitions where the general
shape of features is either approximated with straight line segments (i.e., a vector format) or
raster cells (i.e., a raster format).  Not surprisingly, the proposed finite parametrizations of
uncertain mixture fields and feature partitions are therefore very similar to conventional vector
and raster representations.

The major differences between conventional and the proposed representations are (i) their
attributes, (ii) the incorporation of uncertainty representation, (iii) the use of an areal transition
zone instead of a sharp boundary (only for feature partitions), and (vi) the use of resolution-
limited rather than Euclidean space.  The difference in attributes (i) is for example evident in the
use of mixtures and mixture classes instead of a modal nominal attribute value (see also section
2.2.1).  The incorporation of an uncertainty model in the proposed representations (ii) leads to the
representation of mixture balls and the widening of the transition zone59.  Neither mixture balls
nor the transition zone have direct equivalents in conventional representations (see section 5.2.3
for a distinction of transition zone and positional uncertainty).  A major difference is that the
geometric entities of conventional representations are defined in Euclidean space while the
proposed representations use resolution-limited space (iv).  A raster cell in the proposed raster
representation is then a special set of disks rather than a point set.  Similarly, a resolution-limited
polygon is a set of disks rather than points.  Since both, Euclidean points and resolution-limited
disks are identified by a coordinate pair, this difference does not show up at the level of physical
representation in the form of data models or data structures.  It is crucial for the conceptual
understanding of the proposed representations, however.

                                                

59 Note that the transition zone is also areal in the absence of uncertainty introduced by approximation (see
chapter 4).



105

The chapter is composed of two major parts.  The first discusses finite parametrizations of
uncertain mixture fields.  While feature partitions and stand-alone features differ in their
uncertainty model, they can be treated very similarly for finite representation.  The second part
therefore discusses the finite representation of uncertain feature partitions and stand-alone
features together.

6.1  Finite Representation of Uncertain Mixture Fields

This section describes some finite parametrizations of uncertain mixture fields.  The first
section describes the concept of parametrization, namely sampling and interpolation.  The
second and third sections describe the cases of nearest-neighbor and linear interpolation.
Finally, the fourth section discusses how conventional raster and TIN data structures can
be modified to store such finite representations.

6.1.1  Concept of Finite Parametrization

The finite parametrizations described in this chapter are based on sampling and
interpolation.  The data acquisition from geographic reality is always based on
sampling since the observation effort must be limited.  Since sampling and
interpolation can only yield an approximation of the actual (certain) mixture field,
the resulting uncertain mixture field contains approximation uncertainty.  This
section discusses how such uncertainty is limited by limited resolution, sampling
density, and interpolation method.

At infinite resolution, mixtures can abruptly change with location.  For example, it
can change from 100% land to 100% water.  Limited resolution smoothes these
abrupt transitions by limiting the maximal rate of mixture change that can be
observed in IFOVs (see section 4.5.3).  This maximal rate of change guarantees
that the interpolation of mixtures between sampling location stays close to the
actual mixture in this location.  More precisely, the maximal possible deviation
between actual and interpolated mixture is then a function of the resolution,
sampling density, and interpolation method60.

Since at limited resolution, mixtures change continuously with location, the
approximation quality depends on how well an interpolation method reflects this

                                                

60 The maximal approximation error discussed in this section does not limit the possible configurations of
geographic reality.  It may be possible to further bound the maximal error if limitations in terms of size or shape of
possible geographic objects are imposed.  Like the model of geographic reality itself, such limitations are very
application dependent and are therefore not explored in this thesis.
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continuous character.  For example, nearest-neighbor interpolation leads to a
coarser approximation than a bi-cubic interpolation.  In other words, the better the
interpolation method, the lower the sampling density can be to achieve an
equivalent approximation quality.

Figure 6.1 illustrates how approximation quality, and thus mixture uncertainty,
depends on sampling density and resolution.  Sampling density is directly
visualized in the figure;  resolution is visualized indirectly by the maximal rate of
mixture change.  The higher the resolution, the larger the mixture change over a
given (spatial) distance can be (see section 4.5.3).  The figure shows two
situations of linear interpolation of mixtures between pairs of sampling disks
(shown as points).  The maximal rate of mixture change is visualized by curves.
The interpolated mixture falls on the straight line between the points.  The actual
mixture can fall anywhere between the curves of maximal change.  The maximal
possible error therefore increases with the distance from the sampling location.  In
both situations (a and b), the maximal possible mixture uncertainty occurs in the
middle between the sampling locations.  The maximal uncertainty is marked with
arrows.  A comparison of situation (a) and (b) shows that in the case of linear
interpolation, the maximal possible uncertainty occurs in the case where the
mixtures in the sampling locations are equal (a).  When the observed mixtures in
the sampling disks differ considerably, the maximal possible approximation error
is smaller.

location

mixture

(a) (b)

maximal rate
of change

Figure 6.1:  Interpolation error is limited by the maximal rate of mixture change
and sampling density.

In uncertain mixture fields, the uncertainty introduced by approximation based on
sampling and interpolation is represented by mixture balls (see section 5.1).  In
every location, the mixture ball must be large enough to contain the actual
mixture for certain.  The maximal rate of mixture change then determines the
necessary radius of such mixture balls.

Since the maximal rate of change is not easily representable with few parameters,
the radii of mixture balls can be represented by simpler functions that are easier to
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represent.  For example, the representation described in the following section
simply uses a constant mixture radius in the whole neighborhood of a sampling
location.  To capture uncertainty truthfully, the represented mixture radii must
always be equal to or larger than the ones determined by the maximal rate of
mixture change.

6.1.2  Nearest-Neighbor Interpolation

The simplest finite parametrization of uncertain mixture fields is based on
sampling and nearest-neighbor interpolation.  In nearest-neighbor interpolation,
all disks that are closest to the same sampling location are described by the same
mixture ball.  Its radius must therefore be large enough such that the actual
mixtures in any location inside the neighborhood fall inside the mixture ball.

Figure 6.2 illustrates this finite representation.  It uses a cross section through
space and a two-component mixture for easy visualization.  The points on the
location axes mark the sampling disks (or locations).  The dashed vertical lines
mark the neighborhood boundaries used by the nearest-neighbor interpolation.
The black curve shows the mixtures as they are actually observable in geographic
reality (see section 4.3.1).  The gray points on this curve represent the observed
mixtures of the sampling disks.  These mixtures become the center points of
mixture balls that represent the maximal possible uncertainty introduced by the
finite parametrization within the neighborhood.  In two-component mixtures,
mixture balls degenerate to mixture intervals.  An example of such an interval is
shown as vertical line segments (b) in the figure.  In nearest-neighbor
interpolation, all locations within the neighborhood are described by the same
mixture interval.  The entireties of all center points of mixture intervals are shown
as thin horizontal line segments in every neighborhood; the entirety of all
intervals are visualized as gray rectangles.  Mixture uncertainty (i.e., the height of
the gray rectangles in the figure) is derived from the maximal rate of mixture
change.  It depends on the distance between sampling points and the mixture
difference observed in the sampling points (see figure 6.1 above).
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location
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Figure 6.2:  Finite representation of an uncertain mixture field based on regular
sampling and nearest neighbor interpolation (cross section through space and two-
component mixture).

Figure 6.2 shows regular sampling.  The concept is equally valid for irregular
sampling, however.  In the case of regular sampling of resolution-limited space,
neighborhoods are regions that are comparable to Euclidean raster cells;  in the
case of irregular sampling, they are regions comparable to Thiessen or Voronoi
polygons [Gold, 1990].

6.1.3  Linear Interpolation

A refined finite representation of uncertain mixture fields results from linear
interpolation of mixture balls between sampling locations.  The linear
interpolation is then based on a triangulation61 of resolution-limited space where
sampling disks are the vertices of triangles.  Within each triangle, linear
interpolation is used to determine the center points of mixture balls.  Their radii
are determined by a simple linear function of the distance from the closest
sampling disk.

Figure 6.3 illustrates this concept.  The upper half of the figure shows the
triangulation of resolution-limited space.  For easy visualization, disks are
projected onto their center points.  The lower half of the figure shows a two-
component mixture along the marked cross section.  The thin line segments
between the gray points illustrate the linear interpolation of the center points of

                                                

61 Linear interpolation requires a triangulation.  This is evident for example in an elevation model where
elevation is interpolated between sampling points.  Linear interpolation then models the elevations between sampling
points by segments of planes.  Since a plane in the three-dimensional space defined by x, y, and elevation is
determined by three points, a single plane segment is always associated with three points and is therefore triangular.
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mixture balls;  the height of the gray polygons again visualizes the local mixture-
radii.  The radii are determined by a linear function that approximates62 the
maximal rate of mixture change.

location

mixture

cross 
section

Figure 6.3:  Finite representation of an uncertain mixture field based on sampling
and linear interpolation.  The upper half of the figure shows a triangulation of
resolution-limited space; the lower half a two-component mixture along the
marked cross section.

Saalfeld [1985] describes a method of linear interpolation for triangulations that is
based on simplicial coordinates.  It is directly applicable to mixture radii.  It can
also be applied to each mixture component separately while preserving the
consistency of interpolated mixtures (i.e., their property that percentages add up to
100%).

6.1.4  Raster and TIN Storage of Uncertain Mixture Fields

The two representations proposed above can be stored in modified versions of
raster and triangular irregular networks (TINs) data models.  The choice of
data model depends of the sampling strategy, rather than the interpolation method.
[Laurini, 1992].  The modifications of the conventional data models are discussed
in this section.

                                                

62 and is always greater than.
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Raster data models represent a single value per raster cell.  Depending on the GIS,
different types of cell values are possible.  For example, Idrisi supports values of
the type integer and real.  To store the proposed representations in a raster model,
cell values of type mixture ball must be supported.

Cells in conventional raster models are usually understood as special Euclidean
point sets.  For the storage of the proposed representations, cells are resolution-
limited regions rather than point sets.  Due to the structural equivalence between
Euclidean and resolution-limited space (see section 4.2.2), the physical storage
structure is the same for cells as point sets or cells as regions.  The structural
equivalence is most evident in the coordinate pair that identifies both, Euclidean
points and resolution-limited disks.

Each cell of the proposed raster representations represents a sampling location,
i.e., a disk.  The cell’s mixture ball (or attribute) thus describes the cell’s center
disk.  In the case of nearest-neighbor interpolation, the mixture ball also describes
all disks inside the cell.

In raster representations, the cell size (also called "raster resolution") specifies the
sampling density.  While this sampling density is often understood as a measure
for resolution, it is independent of the resolution concept proposed in this
thesis which is determined by the IFOV of the sensor.  Instead, sampling density
is a measure of the approximation quality:  The more densely a mixture field is
sampled, the smaller the uncertainty introduced by such finitization becomes (see
section 6.1.1 above).

In the case of irregular sampling with an interpolation method that is based
on a triangulation, uncertain mixture fields can be stored by triangular
irregular networks (TINs) [Laurini, 1992].  TINs are usually associated with
vector GIS.  While conventional TINs are usually designed for ratio valued
attributes (such as elevation), they have to be modified to allow mixture balls as
attributes.

The finite format of uncertain mixture field representations must be captured in
the form of meta data.  These meta data describe the sampling strategy and
interpolation method.  The above raster representation is then specified by the
grid used for regular sampling and its interpolation method (nearest-neighbor or
linear).  The TIN is specified by the triangulation63 and interpolation method64.

                                                

63 Different triangulations of the same sampling points lead to different interpolated mixture values.  A
specific triangulation can be identified by its algorithm (such as Delauny triangulation) and a starting point to make
the specification unique.

64 Besides linear interpolation, also bi-cubic interpolation would be possible in a triangulation.
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Approximation uncertainty is not part of the meta data that describe whole
representations, but an integral part of the representation in the form of mixture
balls (that are used as cell values).  Approximation uncertainty is affected by the
finite format parameters, however.  For example, at the same sampling density, a
more sophisticated interpolation method (such as bi-cubic or liner) causes a
smaller approximation error than nearest-neighbor interpolation.

6.2  Finite Representation of Uncertain Feature Partitions and Stand-
Alone Features

This section discusses different possibilities of finite parametrization of uncertain feature
partitions and stand-alone features.  Since these two kinds of representations are very
similar from a representation point of view, every parametrization alternative is applied to
both of them.

The proposed finite parametrizations are very similar to conventional raster and vector
data models [Laurini, 1992].  A major difference is the areal character of the transition
zone that compares to sharp boundaries in most conventional representations.  Another
major difference is again the use of resolution-limited space rather than Euclidean
space.  The geometry of features is represented by resolution-limited regions rather than
point sets.  As in conventional raster and vector representations, regions that can be
described by a finite number of parameters are used.  Namely, these regions are
resolution-limited raster cells and zones (see [Tomlin, 1983] for Euclidean raster
zones), and resolution-limited polygons.  While conceptually, resolution-limited regions
are different from point sets, they can be physically represented in the same data
structures.

In feature partitions, feature attributes are mixture classes.  The special case of mixture
classes used in this thesis can be represented by the identifier of the predominant
geographic object and the level of homogeneity.  Stand-alone features have their
characteristic geographic features as attribute.  The major issues of finitely representing
uncertain feature partitions and stand-alone features are of a geometric nature and are
therefore the focus of the following section.

In the case of mixture fields, uncertainty was introduced by sampling during data
acquisition.  The resulting uncertain mixture field is then the most detailed knowledge
about geographic reality that is available.  The approximation uncertainty is therefore not
determined by comparison with more detailed knowledge but has to be derived
theoretically.  In the case of uncertain feature partitions and stand-alone features, more
detailed finite representations are always available in the form of uncertain mixture fields.
The approximation error is therefore determined by propagation of mixture field
uncertainty.  The origin of uncertainty is therefore not discussed in this section but will be
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explored in chapter eight which focuses on transformations from (uncertain) mixture
fields to feature partitions and stand-alone features.

The remainder of section 6.2 discusses the geometric aspects of three different finite
parametrizations of uncertain feature partitions and stand-alone features.  The first uses a
conventional raster representation.  The second parametrization uses a conventional
topologically structured vector model.  Its major shortcoming is a lack of support for
"cognitive topology" that is defined in section 6.2.3.  The third parametrization uses a
Voronoi-based vector representation [Gold, 1992] that avoids this shortcoming.

6.2.1  Raster Approximation

Regular tessellations [Peuquet, 1984] of resolution-limited space define cells, i.e.,
special kinds of regions.  Square raster cells are a prominent example.  Such
regions are uniquely identified by their tessellation index, such as a pair of row
and column number in a raster grid.  Cells can thus be represented by a single
parameter, namely their tessellation index.  The second kind of special regions
defined by tessellations are zones [Tomlin, 1983], i.e., sets of cells.  They can be
represented by a finite set of cell indices or parameters.  Finite parametrizations
of feature partitions and stand-alone features use such zones to approximate the
actual feature and transition zone geometries.

Chapter five has shown how the uncertainty introduced by finite approximation of
the geometry can be represented in uncertain feature partitions and stand-alone
features.  For feature partitions, a worst-case approach was proposed where the
approximating geometry is a kernel to the actual feature geometry.  The
differences between approximating and actual geometry are then absorbed in the
transition zone that separates features (see figure 6.4).  The attribute of the
transition zone was modified to preserve the relationship between geometry and
attributes.

Figure 6.4:  Raster approximation of a feature partition:  features (dark gray) are
separated by the transition zone (light gray).
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The parts (a) and (b) of figure 6.5 show the effects of kernel approximation of
feature geometries on feature partitions.  Part (a) shows a feature with its actual
geometry and raster kernel.  Part (b) illustrates that it is not possible to find raster
kernels for features that are relatively small compared to raster cells.  In this case,
the feature cannot be represented and the cells that intersect such features belong
to the transition zone.

approximating 
geometry

actual geometry

(a)

(b) (c)

Figure 6.5:  Effects of finite raster approximation of features in feature partitions
(a and b) and of stand-alone features (c).

Stand-alone features are approximated with containers according to a best-case
approach (see chapter five).  Their attribute is chosen accordingly in order to
preserve the relationship between geometry and attribute.  Part (c) of the figure
6.5 above shows such a container approximation of a small feature.  A
comparison to (b) shows that the best-case approach preserves small features that
are dissolved in the transition zone in the worst-case approach of feature
partitions.

6.2.2  Vector Polygon Approximation

Another finite parametrization of general regions is defined by vector format.  In
resolution-limited space, resolution-limited vector polygons are finite
parametrizations of general regions.  Polygon boundaries are then chains of
(resolution-limited) straight line segments.  Polygons and boundaries can be
represented by a finite number of parameters, namely the locations (or
coordinate pairs) of their vertices.  Figure 6.6 illustrates a polygonal kernel
approximation of an actual feature geometry, as it is used in feature partitions.
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Figure 6.6:  Polygonal approximation of feature geometry.

In partitions of space, boundaries are shared by adjacent regions.  In feature
partitions, the representation of feature boundaries is therefore equivalent to the
representation of the transition zone boundary.  More precisely, the transition
zone boundary consists of all feature boundaries (see figure 6.7).

Figure 6.7:  The transition zone boundary consists of all feature boundaries.
Features are shown in dark, the transition zone in light gray.

The discussion above shows that conventional vector data models are well suited
for the representation of the geometric aspects of resolution-limited features.  This
is particularly true for stand-alone objects, since they are represented separately
from other objects.  In feature partitions, the representation contains many
features and therefore has to model their relationships.  In conventional vector
models, such relationships are captured by topological data models.  The
remainder discusses the shortcomings of topologic data models in the context of
resolution-limited feature partitions.
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In current vector GISs, topological relationships are captured by a data structuring
that is based on mathematical topology [Broome, 1990] [Herring, 1987].  The
topological structure relates regions to their boundaries and captures the
neighborhood relationships between regions that share boundaries.  In
mathematical topology, boundaries are therefore sharp and separate features
from the transition zone.  While the transition zone is neighbor to all features,
features cannot be neighbors since they are separated by the transition zone and
cannot share boundary sections.

In contrast, in human cognition, features can be neighbors and the major
purpose of the transition zone is to separate features.  This cognitive
understanding of (non-metric) relationships between features and transition zone
is called "cognitive topology" in this thesis.  While in mathematical topology, the
transition zone is a region with the same status as a feature, it constitutes the
"boundary" between features in cognitive topology.  Features that "share" a
section of the transition zone are then considered neighbors.

Since GISs support human spatial reasoning, they must support cognitive
topology in order to be user friendly.  In conventional vector representations
that use sharp feature boundaries rather than an areal transition zone, this support
comes automatically with the topological structuring that relates polygons to their
boundaries.  The relevance of cognitive topology in current GIS is, for example,
documented by work on topologic relations and the incorporation of such
relations into query languages [Egenhofer, 1993].

In resolution-limited representations, cognitive topology must be modeled
explicitly.  The following section proposes such a model that explains cognitive
topology in terms of mathematical geometry.  While the above vector
representation for feature partitions lacks support of cognitive topology, section
6.2.4 reviews a Voronoi-based vector representation [Gold, 1992] that avoids this
shortcoming.

6.2.3  "Cognitive Topology" in Resolution-Limited Feature Partitions

This section models cognitive topology in terms of mathematical geometry
applied to resolution-limited space.  In particular, it defines entities that
correspond to "boundary sections" of cognitive topology that can be shared by
features.  This thesis uses the term "cognitive topology" to express that the human
understanding of relations between features is modeled and to contrast the
concepts with mathematical topology.

The basic concept used for the definition of such "boundary sections" is a
modified medial axis transform of the transition zone.  The original medial axis
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transform is defined, for example, in [Castleman, 1979, page 329].  An efficient
algorithm for the computation of the medial axes of polygons was proposed by
Lee [1982].  A definition of the medial axis is also found in appendix D.

For the purpose of defining cognitive topology, the original medial axis transform
is modified in two respects:   (i) only a subset of the original medial axis is used
and (ii) the maximal distance between the axis and boundary of the transition
zone is limited.

(i) Every point of the (original) medial axis of a point set is related to a disk that
intersects the boundary of the point set in at least two points (see definition in
appendix D for detail).  Figure 6.8 illustrates this.  It shows a section of the
transition zone between features A and B and its medial axis.  One point of the
medial axis is shown with its related disk that intersects the transition zone
boundary in two points.  One of the shown points is in the boundary of feature A,
the other in that of feature B.  The modification of the medial axis eliminates all
axis points that are related to disks that intersect the boundary of only a
single feature boundary.

transition 
zone

medial axis

feature A

feature B

Figure 6.8:  Disk related to a point of medial axis.

Figure 6.9 shows two examples for axis points that are eliminated in the
modification.  In (a), the eliminated point is inside a section of the transition zone
inside a feature.  In (b), the eliminated point is on a "free branch" of the original
medial axis.
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free 
branch

Figure 6.9:  Examples for medial axis points that are eliminated in the
modification.

(ii) In the original medial axis transform, the maximal possible distance between
axis points and boundary of the transition zone is unlimited.  In other words, the
disks related with axis points can become very large in wide sections of the
transition zone.  In contrast, the modified medial axis transform limits the
maximal possible distance between axis points and boundary.  Where this
distance is exceeded by the original transform, the modified transform creates a
transition feature.  The concept is illustrated in figure 6.10.  The maximal
allowable distance d is shown in a location marked by arrows.  Where the original
medial axis would exceed d, the modified transform "splits" the axis into two
sections that bound the transition feature and follow the feature boundaries
at the distance of d.

d

feature

feature

feature

Figure 6.10:  Example of a transition feature (shown as hatched area)

Cognitive topology can now be formalized by applying the modified medial axis
transform to the transition zone.  This transform then defines a "sharp boundary"
of "neighboring" features and is therefore comparable to the sharp boundaries of
conventional vector representations.  The same topological structuring of
conventional representations [Broome, 1990] [Herring, 1987] [Egenhofer, 1989b]
can therefore be applied to the modified medial axis of the transition zone.  Figure
6.11 shows how the medial axis can be subdivided into nodes and edges that are
the entities of the conventional topological data structures.
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edge

node

Figure 6.11:  Medial axis of the transition zone and its topological structure that
is defined by edges and nodes.

The subdivision of the modified medial axis into discrete topological entities (i.e.,
nodes and edges) can be propagated to a separation of the transition zone into
discrete entities:  every edge defines a subregion of the transition zone that
contains all locations that are closest to this edge.  This region is called the edge
neighborhood and its visualized in figure 6.12.a.  Similarly, a node
neighborhood (see figure 6.12.b) is constructed from a node of the medial axis
and the locations in the boundary of the edge neighborhood that are equally close
to two edges.

edge 
neigborhood

node 
neighborhood

(a) (b)

Figure 6.12:  Edge (a) and node neighborhood (b).
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Cognitive topology can now be defined in relation to mathematical topology65.
Edge and node neighborhoods are comparable to topologic edges and nodes.
While in mathematical topology, feature boundaries are composed of edges and
nodes, they are composed of edge and node neighborhoods in cognitive topology.
In mathematical topology, two features are neighbors if their boundaries share
edges and/or nodes [Egenhofer, 1993];  in cognitive topology, two features are
neighbors if their cognitive boundaries share edge and node neighborhoods.

While relatively thin sections of the transition zone are treated as cognitive
boundaries, wide sections become transition features and take on the role of
features.  Their attribute is that of the transition zone, namely a total lack of
knowledge about which geographic objects are found in its location.  A cognitive
neighborhood of features is based on spatial proximity since closeness of features
usually implies some form of interaction.  When two features are separated by a
transition feature, they are not close enough for such interactions and are therefore
not considered to be neighbors.

6.2.4  Voronoi-based Vector Representation

This section discusses the use of Voronoi-based [Gold, 1990] vector models for
the representation of feature partitions.  Their major advantage as compared to
conventional (topological) vector models is their ability to support cognitive
topology in resolution-limited feature partitions.

The Voronoi-based data model developed by Gold [1992] provides all the entities
introduced in the above discussion of cognitive topology.  Namely, these entities
include edges and nodes of the transition zone’s medial axis, as well as edge and
node neighborhoods.  This is evidence for a strong similarity of concepts used in
Gold’s Voronoi-based data model and those of cognitive topology that are defined
in terms of the medial axis of the transition zone.  Considering, that the medial
axis of a polygon is a subset of the Voronoi diagram defined by the straight line
segments and points of the polygon boundary [Lee, 1982] this similarity is not
surprising.  The cognitive neighborhood concept is actually equivalent to "spatial
adjacency" proposed by Gold [1989].  Since Gold’s data model promises to
support cognitive topology in the context of an areal transition zone, it seems to
be an ideal vector representation for resolution-limited feature partitions.

Gold’s data model allows the representation of feature partitions with the
following properties:
• features can be retrieved as polygons,

                                                

65 In particular, combinatorial and algebraic topology.
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• the transition zone can be retrieved as a polygon,
• edge neighborhoods of the transition zone can be retrieved as polygons,
• edges of the modified medial axis of the transition zone can be retrieved as

polylines66,
• the cognitive boundary of a feature can be retrieved as sets of edges or edge

neighborhoods.
• transition features can be retrieved as polygons,

Such a representation supports two views of the transition zone, namely it can be
treated as an areal region or as a cognitive boundary of features.  The former
view is important, for example, during transformations to coarser levels of
resolution (see chapter eight).  The latter view supports reasoning about the
relations between features.  It is also used for visualization purposes (see chapter
seven).  Here, the transition zone is accessed in the form of edges of the modified
medial axis for thin sections, and transition features for wide sections.  The medial
axis segments can then be visualized by graphical lines of a certain width;  and
transition features can be shown as polygons.

                                                

66 The medial axis of polygons consists of straight line segments and parabolic sections [Lee, 1982].  The
parabolic sections would have to be approximated by polylines.
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7  Visualization of Resolution-Limited Knowledge

While the main concern of this thesis is representation of resolution-limited spatial knowledge,
the proposed representations would be of little use if they were not displayable.  The proposed
representations differ in two major aspects from conventional ones.  Namely the proposed
representations are based on resolution-limited space rather than Euclidean space, and they use
mixtures that are uncommon in conventional representations.  These differences prevent a
straight forward application of conventional visualization methods as they are used in
commercial GIS [Beard, 1991b] and cartography [Robinson, 1984].  A particular problem is that
resolution-limited space is not visually inspectable like Euclidean space.  The visualization
methods proposed in this chapter therefore investigate possible projections of resolution-limited
space to Euclidean space.  Also, the possibilities of visualizing multi-component mixtures are
discussed.  This chapter thus focuses on the particular needs of visualization of the proposed
resolution-limited representations.

In addition to proposing visualization techniques for resolution-limited representations, this
chapter investigates the relationship between the proposed resolution concept and the
limitations of graphic media.  Namely, section 7.2.5 shows that the resolution limitation in
feature partitions guarantees displayability within the limitations of graphic media.
Consequently, the transformations to coarser levels of resolution that are part of the proposed
spatial theory (see chapter eight) can be used in conjunction with a visualization method to yield
coarser visual representations of the available spatial knowledge.  The mentioned components of
the proposed spatial theory could thus serve a purpose similar to that of line generalization
methods [Buttenfield, 1985].

The chapter is structured in three sections that discuss the visualization of mixture fields, feature
partitions, and stand-alone features, respectively.

7.1  Visualization of Mixture Fields

Mixture fields are continuous models and their visualization is therefore related to that of
ratio valued fields such as elevation models.  Instead of using ratio values, uncertain
mixture fields use mixture balls.  This section discusses how to reduce the complexity of
mixture balls such that mixture fields can be visualized with methods adapted from ratio
valued fields.  The section is structured in two parts.  The first discusses the visualization
of mixtures in the center of mixture balls;  the second the visualization of the uncertainty
expressed by mixture ball radii.  The separation of mixture ball center points and radii
reduces the complexity of uncertain mixture fields to that of mixture valued fields.
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7.1.1  Visualization of Mixture Valued Fields

The visualization of multi-component mixtures cannot be treated with
visualization methods of ratio valued fields.  For example, a mixture field does
not directly define contours, and mixture values cannot be directly mapped to gray
tones of pixels.  Instead, the following three visualizations methods are possible:
(i) mixture pie charts based on coarse sampling67 of the mixture field, (ii)
visualization of a single mixture component at a time, and (iii) visualization of the
mixture field trends in the form of a feature partition.  These possibilities are
discussed in the following:

(i) Mixtures with a small number of components can easily be mapped to color
coded pie charts (see figure 7.1).  Showing such pie charts only at certain
sampling locations avoids the problem of overlaps.  In most cases, only a part of
the mixture field will be displayable at a time.  Panning and zooming are therefore
crucial operations.  Zooming should automatically change the density of the
sampling such that the density of pie charts remains constant in the visualization.

Figure 7.1:  Pie chart visualization of mixture fields.

(ii) Looking at only a single mixture component at one time makes it possible to
use the visualization methods for ratio valued fields.  These visualization methods
include contouring and using pixels whose gray value reflects the percentage of
the visualized mixture component.  A graphical user interface that supports
multiple windows would allow views of several or all mixture components
simultaneously.  The following combination with the pie chart method would be
possible in interactive systems:  A pointing device can be used to probe single
locations of single component visualization.  The mixture at this location could
then be displayed as a pie chart or numeric table.

(iii) A third visualization method could reduce the multi-component mixture to a
single predominant mixture component [Leung, 1992].  This is equivalent to what

                                                

67 The sampling density used for visualization does not have to be the same as that used for finite
representation.  For example, the representation sampling density can be encapsulated in a "virtual representation"
[Stephan, 1993] such that it is invisible whether a mixture is a actually sampled or interpolated.  The visualization
module is then absolutely free in the choice of its sampling locations.
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happens in the construction of a feature partition from a mixture field (see section
4.4).  The visualization of feature partitions is thus a possible visualization of the
trends of a mixture field.  Rather than using only a single static visualization, an
interactive system should support easy editing of the definition of mixture classes
(see section 4.4) and give instantaneous feedback by updating the visualization of
the feature partition.  This would allow users to explore the mixture field and get a
feel for the distribution of mixtures.

7.1.2  Visualization of Uncertainty

The above discussion of visualization considered only the center points of mixture
balls.  Several possibilities exist to visualize mixture field uncertainty:  (i) spatial
cross-sections that show upper and lower bounds of a single mixture component,
(ii) toggling between extreme cases, and (iii) cursor controlled point probes.

(i) The first method shows a single mixture component along a user defined cross
section.  In the projection defined by the cross section and use of a single mixture
component, mixture balls become vertical intervals.  This makes it possible to
show an upper and lower bound of the shown mixture component along the cross
section (see figure 7.2).

location along cross-section

percentage of a single 
mixture component

upper bound

lower bound

Figure 7.2:  Visualization of mixture field uncertainty by upper and lower bounds
of a single mixture component along cross-section.

(ii) Another possibility is to toggle between extreme cases of possible mixtures.
In the former case, extremes are mixtures that maximize or minimize one of the
mixture components.  The toggling can be user controlled or automated as a slow
movie.

(iii) A third possibility to visualize uncertainty is to use a pointing device to
sample point probes.  Several visualization options exist for the uncertainty in the
probed location:  An example is given in figure 7.3.  Here, bars visualize the
amount of uncertainty in each mixture component.  This simple visualization
could be shown in real-time while the cursor is moved continuously over space.
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Another possibility would show all extreme mixtures for the probed location
simultaneously.

mixture 
percentages

100%

50%

Figure 7.3:  Visualization of mixture uncertainty in probed locations.

7.2  Visualization of Feature Partitions

Currently used data models for discrete views of the world are closely related to the
commands of graphic output devices such as monitors, raster printers and vector plotters.
The visualization of knowledge represented in such models is consequently straight
forward.  In contrast, resolution-limited object representations require more sophisticated
means of visualization due to the greater gap between representation and graphics.  This
gap is most evident in the overlapping disks that cannot be visualized without first
projecting them into Euclidean space.  This section is concerned with such projections.
One of the discussed projections shows similarities to Perkal’s work on cartographic
generalization [Perkal, 1966].  The relationship between limited resolution of
representations and to resolution-limitations of (carto-) graphic displays is also discussed
in this section.

7.2.1  Disk_to_Point Projection

The simplest projection that maps resolution-limited space to Euclidean space
reduces resolution-limited disks to their center points (see figure 7.4).  This
projection is well suited for the visualization of the concepts that underlie the
representation of resolution-limited features.  It has consequently been used in the
figures of previous chapters.  This projection is not well suited for the
visualization of the represented spatial knowledge in GISs, however.  The major
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problem is that disk_to_point projections are incompatible with the resolution
limitations of graphic media.  For example, very small features would be
projected into point sets that are too small for display;  no minimal dimensions
can be guaranteed with this visualization approach.

resolution-limited space

Euclidean space

disk

point

projection

Figure 7.4:  Disk_to_point projection.

7.2.2  Review of Perkal’s Work on Cartographic Generalization

In an attempt to formalize the problem of cartographic generalization, Julian
Perkal [1966] proposed a well-defined procedure to transform a map from one
scale to another.  This procedure was already discussed in section 2.2.3.  This
section interprets Perkal’s work in the framework of the proposed spatial theory.

Perkal’s maps consist of a family of point sets that partition Euclidean space.  For
example, a map could partition space into "land" and "water".  His generalization
procedure consists of moving a disk over the whole space.  The disk radius is a
measure of resolution.  If a disk contains only points of a single attribute such as
"water" or "land", all contained points are assigned the same attribute in the
generalized map.  If a disk contains a mixture of attributes (e.g., "land" and
"water"), no attribute is assigned to the contained points.  Points without attribute
assignments form the generalized boundary (see [Perkal, 1966], page 4).

Figure 7.5 illustrates Perkal’s generalization procedure.  (a) shows the original
map with the two point sets "land" and "water".  The moving disk is shown in
critical locations where the attribute changes from pure to a mixture in (b).  The
generalized map is shown in (c).  Note that the boundary has become an area in
certain parts (hatched section).
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(b) (c)(a)

Figure 7.5:  Illustration of Perkal’s generalization method.

For the purpose of this discussion, Perkal’s procedure is interpreted to consist of
two steps: (1) the classification of resolution-limited disks and (2) a projection of
the resulting resolution-limited feature partition to Euclidean space.  The
classification of disks (1)  is equivalent to the feature abstraction proposed in
chapter four.  Every disk contains a mixture of the geographic objects land and
water.  Perkal uses the mixture partition that is defined by a level of homogeneity
of 100%.  Obviously, the result is a special case of a feature partition.  All disks
with a 100% pure mixture belong to the features "land" or "water" and all other
disks to the transition zone.

The second step (2) now projects the resolution-limited feature geometries to
Euclidean space.  This projection is visualized in figure 7.6.  The figure shows
resolution limited space as a three-dimensional box and two of its disks.  The light
filling marks the left disk as an inhomogeneous disk, and the dark filling
represents a disk that contains purely "water".  While these disks can coexist with
different attributes, their projection to Euclidean space causes a potential problem,
namely what attribute to assign to their intersection area.
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space

projection
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Figure 7.6:  Projection from resolution-limited to Euclidean space.

Figure 7.7 shows two possible solutions to the overlap problem.  In (a), the
inhomogeneous disk is put in the foreground, while the water disk is part of the
background.  The reverse is shown in (b).

(b)(a)

Figure 7.7:  Foreground/Background projection of disks.

While the above figure shows only two disks at a time, figure 7.8 illustrates what
happens if the foreground is constructed as the union of all water disks, while the
background is formed by the union of all inhomogeneous disks.
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Figure 7.8:  Foreground/Background projection of disks defines the boundary
between the graphic representation of the transition zone and features.

In the case Perkal’s generalization procedure, all feature disks are projected to the
foreground while all inhomogeneous disks form the background.  Note that the
100% level of homogeneity guarantees that disks of different features (such as
land and water) do not overlap.  If the projected disks are open, features are
always separated by a boundary line or boundary area that is formed by what is
visible of the background through the "gaps" and "holes" in the foreground.

In summary, this section has interpreted Perkal’s generalization procedure in the
framework of the proposed spatial theory.  Perkal’s original procedure is
equivalent to the above two-step interpretation that first creates a special case of a
feature partition and then projects it to Euclidean space.

7.2.3  Precise Foreground/Background Projection

This section generalizes the projection that Perkal uses in the two-step
interpretation to the case of limited level of homogeneity.  Since Perkal uses a
100% level of homogeneity, disks of different features (such as "water" and
"land") are always disjoint;  they are either separated by a sharp line or a boundary
area.  If the level of homogeneity is less than 100%, disks of different features can
overlap in their projection to Euclidean space.  Figure 7.9 illustrates such a
situation:  The class associations "land" and "water" in geographic reality are
shown as white and gray areas, respectively.  Two disks are superimposed.  Both
contain 80% of the class association "land" or "water", respectively.  At level of
homogeneity below 100%, features can thus obviously overlap in their projection
to Euclidean space.
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Figure 7.9:  The class associations "land" and "water" in geographic reality and
two disks that both contain 80% of one class association and 20% of the other.

To avoid the problem, the above projection can be generalized.  Figure 7.10
shows such a generalization.  Resolution-limited disks are now projected to
graphic disks of a reduced size using a disk_to_disk projection.  Overlaps are
still resolved by a foreground/background solution.  In this thesis, the
combination of a disk_to_disk projection and a foreground/background overlap
solution is referred to as a precise foreground/background solution.

The maximal radius of the graphic disks used in the disk_to_disk projection can
be derived from the level of homogeneity using the maximal rate of mixture
change (see section 4.5.3).  For example, the transition from 80%  "water" to 80%
"land" corresponds to a minimal mixture distance of 60% .  This is evident since
80% or more of "water" can include a maximum of 20% "land"; thus the mixture
changes from 20% or less "land" to 80% or more "land";  this changes the mixture
by 60%  (i.e., 80%-20%) or more.  The maximal rate of change relates a mixture
distance of 60% to a minimal spatial distance of one disk radius (see table 4.3 in
section 4.5.3).  If the disk center points are at least one disk radius apart, these
resolution-limited disks can be visualized as graphic disks of half the original
radius;  this guarantees that in Euclidean space, disks of different features are
always disjoint.
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Figure 7.10:  Disk_to_disk projection used as part of the general
foreground/background projection.

7.2.4  Approximate Foreground/Background Projection

While the above projection resolves the overlap problem and thus makes display
possible, it can be computationally expensive.  Namely, the boundary between the
graphic representations of features and the transition zone must be computed as
the envelope68 of all visualization disks of the foreground (see figure 7.8 above).
The computation of the envelope is comparable to the construction of a buffer
around a disk_to_point visualization of features.  Buffering is an expensive
operation in vector representations.  This section therefore proposes an
approximative foregound/background projection that is much faster and adequate
for most purposes.

While in the precise foreground/background projection, the transition zone’s
graphic representation is usually a thin band, it varies in width.  As a
simplification of the above foregound/background projection, this section
proposes to graphically represent the transition zone by a curve of constant
width.  This is obviously an approximation compared to the precise
foreground/background projection.  The simplified projection is therefore called
approximate foreground/background projection.

The constant width curve that represents the transition zone follows the modified
medial axis (see section 6.2.3).  In the graphic representation, the transition zone

                                                

68 the envelope is the boundary of the union of disks
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curve forms the (cognitive) boundary of features.  Individual features are thus
bound by the edges of the transition zone curve.  Wide sections of the transition
zone, i.e., transition features, are visualized like normal features.  From a
graphical point of view, features are represented by a fill inside cycles of the
transition zone curve.

Figure 7.11 illustrates this by overlaying the following three layers:  (i) a
disk_to_point projection of a feature partition, (ii) its graphic representation
produced by an approximate foreground/background projection, and (iii) its
precise foreground/background projection.

(i) In their disk_to_point projection, features are shown as gray polygons, the
transition zone is left white.  (ii) The approximate foreground/background
visualization is illustrated by the constant width curve that is the graphic
representation of the transition zone and follows the modified medial axis.  (iii)
The precise foreground/background visualization is sketched by showing some
graphic foreground disks whose envelope forms the boundary between the
transition zone and features in their precise graphic representation.  The graphic
foreground (feature) disks are visualized by circles.  A transition feature is
represented by the polygon c.

The differences between precise and approximate foreground/background
visualization can be seen, for example, in the locations a and b.  The precise
boundary of the graphic feature representation is given by the envelope of all
graphic disks in the foreground.  The figure shows some of these disks that are
projected from resolution-limited disks (shown as points in the center of circles)
along the feature boundary.  Since in location a, the envelope of circles clearly
intersect with the constant width curve of the approximate visualization, the
approximation is locally too wide.  In contrast, in the location b, the envelope
used in the precise graphic representation is well apart from the constant width
curve.  The approximate graphic representation is therefore locally too narrow.
The approximation error is limited by the use of transition features.  They prevent
excessively wide sections of the transition zone to be approximated by a relatively
thin curve.
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a

b c

Figure 7.11:  Approximate and precise background/foreground approximation
compared to a disk_to_point projection of a feature partition.

I believe that this approximate visualization is sufficient for most purposes of
human interpretation.  The information about data quality that is lost in this
approximation can be visualized in better ways (see section 7.2.6).  Note that the
error introduced by the approximation affects only the visualization while leaving
the actual representation unaffected.

7.2.5  Spatial Resolution and Limitations of Graphic Media

This section attempts to prove that approximate foreground/background
visualizations are always displayable within the limitations of graphic media.  For
this purpose, it uses the following two criteria for graphic displayability:

(i) The transition zone must be visualizable with minimal graphical
dimensions (e.g., a line width) such that its topology is preserved by its
graphic representation.  This requirement prevents cognitive feature
boundaries from becoming self-intersecting as an effect of minimal graphical
dimensions.

(ii) Also the graphic representation of features shall have minimal dimensions.
This can be formalized in terms of a disk_to_disk projection where graphic disks
are of a minimal size.  It is then required that the disk_to_disk projection of a
feature is totally contained in its graphic representation.  A feature’s graphic
representation can thus never be narrower than the associated graphic disks.

To illustrate the effect of the requirements, figure 7.12 shows two cases that fail to
satisfy these requirements.  In (a), the minimal drawing width of the transition
zone leads to a self-intersecting cognitive feature boundary (see arrow).
Obviously, the transition zone and its graphic representation are not topologically
equivalent.  In (b), the transition zone topology is preserved in the visualization.
However, the feature inside the cycling section of the transition zone has smaller
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than minimal graphical dimensions.  This is evident when comparing the feature’s
graphic representation to the line width of the graphic transition zone.

disk_to_point 
projection

graphic 
representation

(a) (b)

Figure 7.12:  Two cases where the requirements for displayability are violated.

To prove that the approximate foreground/background visualization satisfies this
first criterion of displayability, we have to show that the modified medial axis can
be drawn in a certain line width wl without being self-intersecting.  For
simplicity, the following argument and figures use the context of a disk_to_point
projection of the feature partition.  The proof uses the minimal width of the
transition zone wtz that can be derived from the maximal rate of mixture change
(see section 7.2.3) and is thus a function of the resolution.  Note that the
minimal width is only guaranteed for the modified medial axis (as opposed to free
branches and other parts of the original medial axis) that separates different
features (rather than separate components of the same feature).

The minimal width of the transition zone wtz guarantees that all disks of diameter
of d • wtz that are centered on arbitrary points of the transition zone's modified
medial axis are totally contained in the transition zone.  Figure 7.13 illustrates
this.  The large disk in location a marks a section of the transition zone that has
the minimal width of wtz.  The modified medial axis by definition goes through
the center point of this disk.  A smaller open disk of diameter d is contained in the
larger disk.  It is obvious that such open disks are always completely contained in
the transition zone.

The approximate foreground/background visualization of the transition zone as a
curve of constant width can be seen as the union of infinitely many closed disks
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whose diameter is equal to the drawing line width wl (see location b in figure
7.13).  If wl is smaller than wtz69, all these disks, and thus the transition zone’s
graphic representation, are always contained in the transition zone.  Since the
transition zone’s graphic representation (of an adequate line width) never goes
outside the boundaries of the transition zone, it cannot be self-intersecting.

a

bd wl

Figure 7.13:  The minimal width of the transition zone compared to the width of
the curve that visualizes the transition zone.

The second criterion requires that a disk_to_disk projection of a feature is totally
contained in the feature’s graphic representation.  In the approximate
foreground/background visualization, the feature’s graphic representation is the
fill inside a cycle of the curve that represents the transition zone.  To prove that
the second criterion of displayability is always satisfied for this kind of
visualization, it has to be shown that the disk_to_disk projection of an arbitrary
feature disk is always disjoint from the transition zone curve.  The following
argument assumes that the graphic disks used in the disk_to_disk projection are
open.

Figure 7.14 shows that every disk of a feature can always be projected to a
graphic disk whose diameter is wf = wtz - wl.  In the worst-case scenario, the
transition zone reaches its minimal possible width wtz.  This is illustrated by the
larger disk around point M.  The small disk around M illustrates the drawing
width wl of the transition zone’s graphic representation.  Point P represents a
resolution-limited disk at the feature boundary (in its disk_to_point projection).
Its disk_to_disk projection results in the illustrated disk of diameter wf.
Considering that the transition zone disks are closed, the graphic feature disks
open, and the diameters are related by wf = wtz - wl, the disk_to_disk projections
of arbitrary feature disks are always disjoint from the transition zone curve.

                                                

69 Note that since these disks are closed, their diameter cannot be equal to the minimal width but has to be
smaller.
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Figure 7.14:  Relations between minimal transition zone width, width of the
transition zone’s graphic representation, and minimal size of a feature’s graphic
representation.

7.2.6  Visualization of Data Quality

In the context of feature partitions, two measures are suited for the expression of
data quality.  Namely, these are the (i) transition zone width and (ii) the level of
homogeneity in conjunction with resolution.  Both these aspects are discussed
in this section.

(i) Visualizing features in the foreground as is done in foreground/background
projections, gives a rather optimistic view of the available spatial knowledge since
the graphic representation reduces the size of the transition zone in favor of
features.  Further, the constant width curve used in the approximate
foreground/background projection suggests a crisp boundary between features.
To visualize resolution effects on feature boundaries, the transition zone can be
put in the foreground.  The possibility to toggle back and forth between putting
features or the transition zone in the foreground may give the best understanding
of the spatial knowledge and its uncertainty.

Putting transition zone disks in the foreground requires the computation of the
envelope of disks.  This envelope can be achieved graphically by drawing the
disk_to_point projected transition zone boundary with an appropriate line width.
If the same drawing color is used for this transition boundary and the fill,
problems of undisplayably small sections of the fill will not occur.  The
visualization of uncertainty should thus be adequately fast.

(ii) The second kind of data quality is expressed by the level of homogeneity in
conjunction with resolution.  Together, they determine how large and dense
inhomogeneitites in features can be.  The allowed inhomogeneity of features can
be visualized with a concept proposed by Leung et al [1992]:  A random process
creates different possible configurations of inhomogeneities in the otherwise pure
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feature.  Such a process could for example create small islands of "land" in a
"water" feature, such that every disk still contains at least 80% of "water".

7.3  Visualization of Stand-Alone Features

From a representation point of view, stand-alone features preserve relevant knowledge
that would get lost in a feature partition of the same resolution;  from a visualization point
of view, the displayability of this preserved information is of concern.  This section
addresses this issue first for a single stand-alone feature and then for one or several stand-
alone features displayed on top of a feature partition.

7.3.1  Visualization of Single Stand-Alone Features

A first concern of visualization is that a single stand-alone feature can be
visualized within the limitations of graphic media.  For this purpose, two cases are
distinguished:  visualization of the feature by (i) its container, and (ii) by an
arbitrary symbol.

(i) Stand-alone features are represented by containers (see section 5.3).  They can
be visualized by directly displaying these containers.  An adequate visualization
for this purpose is the disk_to_point projection (see section 7.2.1).  Due to the
definition of stand-alone features, this projection guarantees minimal dimensions
of the graphic representation:  In the underlying higher resolution feature partition
used in the definition of the stand-alone feature (see section 5.3), the stand-alone
feature shows up as at least one high resolution disk.  This guarantees the minimal
dimension of the container in its disk_to_point visualization.  This is evident from
figure 7.15 which shows two of the resolution-limited disks that make up the
container.  The figure assumes that the geographic object shows up only as a
single high resolution disk that is shown in gray.  This is the worst-case scenario
in respect of minimal dimensions of the graphic representation.  The graphic
representation of the stand-alone feature is given by the disk_to_point projection
of all disks in its resolution-limited container.  The points projected from the two
shown disks are visualized in the figure.  The boundary of the complete graphic
representation is illustrated by a circle through these two points.  It is evident that
the smallest possible graphic representation of a stand-alone feature is a disk
whose radius is larger than the resolution (i.e., diameter of the resolution-limited
disks).
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Figure 7.15:  Containers of stand-alone features guarantee minimal dimensions of
graphic representations based on a disk_to_point projection.

(ii) Stand-alone features can alternatively be visualized by arbitrary symbols that
are centered on the feature’s container.  Examples of such symbols are disks that
represent cities or double lines that represent roads.  Some symbols can be
constructed as exaggerated versions of a higher resolution appearance of the
feature:  for example, a fjord that would not be identifiable by its shape at the
resolution at hand can be symbolized by its lowest-resolution appearance that is
still recognizable.  Since the choice of symbol is arbitrary, it is always possible to
make symbols satisfy display limitations.

7.3.2  Visual Integration of Stand-Alone Features with a Feature Partition

Displaying a single stand-alone feature is rather uncommon; and it is usual to
display several stand-alone features on top of a (single) feature partition.  While
the graphic representation of feature partitions partition Euclidean space, the
graphic representations of stand-alone features can overlap with that of other
stand-alone or partitioning features when displayed simultaneously.

Stand-alone features are usually put in the foreground over feature partitions.
They thus mask part of the feature partition.  Also, different stand-alone features
can compete for the same space.  Depending on the configuration, these masking
and competition problems may eliminate some relevant information from the
visualization.  A straight forward solution of this problem is the support of
interactive toggling that includes or removes individual stand-alone features from
the visualization.  Alternatively, the overlap areas could be marked as "conflict
regions"; and fast zooming to a higher resolution would allow visualization of all
involved geographic objects as in a higher resolved feature partition.

In the case of non-interactive systems or hard copy visualization, these simple
methods of conflict resolution are inapplicable.  A suitable solution to the conflict
problem would then be to locally deform space.  Since at infinite resolution, no
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conflicts between geographic objects occur, it will be possible to use deformations
to make more space in densely populated regions at the cost of sparsely populated
ones.  The location occupied by a very small region can then be locally deformed
such that it becomes large enough to accommodate the geometry of its graphic
representation in the form of a stand-alone feature.  Such a local deformation then
automatically displaces features in its proximity.  Note that name labels cause
very similar visualization problems as overlapping stand-alone features since both
compete for space already used by feature partitions.

A possible implementation of local deformations of space uses rubber sheeting
based on a triangulation [Saalfeld, 1985].  Topological constraints could be used
such that relevant topologic relations of geographic objects have their equivalents
in the related stand-alone objects [Kainz, 1994].
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8  Meta Data and Transformations between Resolution-
Limited Representations

The previous chapters have proposed resolution-limited representations that are part of the
consistent spatial theory.  Namely, these representations are uncertain mixture fields, feature-
partitions, and stand-alone features.  Depending on type and parameters of the representations,
they model different kinds of spatial knowledge at different levels of detail.  Only uncertain
resolution-limited representations are considered since only transformations between finitely
approximated, and thus uncertain, representations are of interest.  This chapter defines meta data
that captures the knowledge content of representations and transformations between the
proposed representations.

Figure 8.1 illustrates the concept that underlies the definition of meta data and transformations.
R1 and R2 are resolution-limited representations that are derived from the model of geographic
reality by one of the abstraction processes described in the chapters four and five.  The meta
data are the parameters of these abstraction processes.  A representation can therefore always
be derived from its meta data and geographic reality.  While geographic reality describes the
actual state of the world, the meta data describe the knowledge content of representations, i.e.,
the kinds and levels of abstraction of the represented spatial knowledge.

Transformations between representations are the basic tool for data integration.  A
transformation T between two representations R1 and R2 is completely determined by the meta
data of R1 and R2.  This is possible by defining T such that T (A1) = A2, since both, A1 and A2,
are completely determined by meta data.

geographic 
reality

R1

R2

Transformation abstraction 
processes 
parameterized  
in

T

A1

A2

meta data

Figure 8.1:  Transformations between resolution-limited representations.

The chapter starts with a description of meta data in the first section.  Part of the meta data
distinguishes between different representation types;  namely, mixture fields, feature partitions,



140

and stand-alone features.  The remaining four sections describe transformations:  Sections two
through four define primitive transformations that can be combined to general
transformations (see section five).  Three kinds of primitive transformations are discussed:
transformations within a representation type (section two), across representation types (section
three), and across finite formats (section four).

8.1  Meta Data

The most prominent component of meta data is the distinction of the following types
of representation:
(1) unclassified mixture fields
(2) classified mixture fields
(3) feature partitions
(4) stand-alone features
This meta data component can, for example be represented by a string.  The
representation type determines the kind of abstraction process that resulted in the
representation.  The parameters of the abstraction process are captured by additional
meta data components that vary with representation type.  The following reviews the
abstraction process and its parameters for every representation type.  An overview of
meta data components is given in table 8.1 below.

(1) Unclassified mixture fields are derived from geographic reality by means of an
imaginary sensor that observes every location in space.  In the case of unclassified
mixture fields, this sensor senses observable properties but cannot directly observe
mixtures.  The only parameter of this process is the resolution of the sensor.  Since
sensor resolution is measured by the diameter of the IFOV, this meta data component can
be represented by a real number.  Since different finite parametrizations of uncertain
unclassified mixture fields are possible, the finite format has to be specified.  In
sampling-based parametrizations, the finite format is identified by the sampling
locations and the interpolation method.  In the case of regular sampling based on a grid,
the sampling locations can be represented by a reference point, a sampling width, and an
orientation.  In the case of irregular sampling, the coordinate pairs of all sampling
locations must be represented.

(2) Classified mixture fields are also derived from geographic reality by an imaginary
sensor.  Resolution is therefore one of the parameters of this abstraction process.  In
contrast to the unclassified case, however, the imaginary sensor can directly sense
mixtures.  Since mixtures are defined in terms of a set of geographic objects, the object
partition related to the mixture is another parameter of the abstraction process.  The meta
data of classified mixture fields are thus composed of a resolution and an object partition.
Object partitions can, for example, be represented by a set of strings that identify the
contained geographic objects.  Alternatively, if a representation of the object hierarchy in
the form of a graph is available in a GIS, an object partition can be represented by a set of
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pointers to nodes in this graph.  The meta data on finite format are the same as for
unclassified mixture fields.

(3) Feature partitions are derived from mixture fields by a feature abstraction that is
based on one of Sinton’s concepts.  The first part of the overall abstraction process from
geographic reality to the underlying mixture field is described by resolution and an
object partition.  The feature abstraction, i.e., the second part, is determined by the
mixture partition that was used for theme control.  The meta data of feature partitions
are thus composed of a resolution, an object partition, and a mixture partition.  For the
special kind of mixture partition considered in this thesis, the mixture partition is
determined by the object partition and a single level of homogeneity.  This special kind
of feature partitions can thus be described by its resolution, object partition, and level of
homogeneity.  The latter parameter can be represented by a real number.  The finite
format of feature partitions can be either raster or vector.  In the case of raster, the used
grid has to be specified in the way discussed for unclassified mixture fields.  In the case
of vector, the minimal length of line segments further describes the finite format.

(4) In the uncertain case, stand-alone features are derived from feature partitions of
higher resolution (see section 5.3).  The resolution, object partition, and level of
homogeneity of the underlying feature partition are thus meta data components of the
meta data.  The second part of the abstraction process consisted of finding all disks of a
coarser resolved space that contain the characteristic feature at higher resolution.  The
only parameter of this process is the final resolution of the stand-alone feature.  In
summary, the meta data of stand-alone features are thus composed from the resolution of
the underlying feature partition, an object partition, a level of homogeneity, and the
final resolution.  The finite format of stand-alone features is equivalent to that of feature
partitions.

Table 8.1 gives an overview of the meta data used for different representation types.
Fields use an X to mark that a representation type has a certain meta data component.
The meta data that identify the finite parametrization apply to all representation types but
are excluded from the table.
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representation
type

resolution
of imaginatory

sensor

object partition
of mixture

level of
homogeneity

(theme control)

resolution
of final

representation
unclassified
mixture field X

classified
mixture field X X

feature partition
X X X

stand-alone
feature X X X X

Table 8.1:  Overview of meta data components for different representation types.  ’Fields use an
X to mark that a representation type has a certain meta data component.

Chapter five modeled finite approximation as an additional step of the overall abstraction
process.  The resulting approximation uncertainty varies with location.  For example,
mixture uncertainty increases with increasing distance from sampling locations.  Also, a
raster approximation of a generally shaped geometry introduces different errors in
different locations.  Approximation uncertainty is therefore modeled by representation
entities such as mixture balls or the transition zone, rather than in the form of meta data
that describe a whole representation.

Another kind of meta data that does not relate to individual representations is the object
hierarchy.  It describes how geographic objects are related by abstraction mechanisms
(see section 4.1) and is valid for all representations simultaneously.  Such object
hierarchies can be represented by graphs, partially ordered sets, or lattices [Kainz, 1994].

8.2  Primitive Transformations within a Representation Type

Primitive transformations that map knowledge between two representations of the same
type are discussed in this chapter.  Namely, these transformation are changes of
resolution between two mixture fields (section one), changes of resolution and
homogeneity between two feature partitions (section two), changes of resolution between
two stand-alone features (section three), and changes of the object partition of the above
representation types (section four).  A comparison to the previous section shows that
these transformations cover all meta data components of a given representation type can
be changed by one of these transformations.

The discussion of resolution change heavily relies on appendix B that mathematically
describes two methods to estimate the mixtures of coarser mixture fields from higher
resolved ones.  Transformations to higher levels of resolution are obviously impossible
since they would increase the information content.
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8.2.1  Resolution Change for Mixture Fields

This section discusses resolution change for mixture fields.  It proposes to use
linear filters to model resolution change.  In classified mixture fields, such filters
are applied to each mixture component individually;  in unclassified mixture
fields, the same kind of filter is applied to a single observable property.  This
section focuses on the more interesting case of classified mixture fields since the
treatment of the unclassified case follows by analogy.

Appendix B describes how the resolution effect of imaginary sensors can be
modeled with linear filters.  The abstraction process from geographic reality to a
mixture field is then determined by a disk shaped linear filter.  According to the
general definition of transformations, a transformation T that maps from the
representation R1 to R2 is defined in terms of the related abstraction processes A1
and A2 as follows:  T(A1) = A2.  Since A1 and A2 are linear filters, T can be
modeled as a linear filter as well.  To satisfy the above equation, T becomes
A2(A1-1) where A1-1 is the inverse of A1.  T(A1) then becomes A2(A1-1(A1))
which is obviously equal to A2.  While A1-1 does not exist by itself since it would
reconstruct information that was eliminated by A1, the combination A2(A1-1) can
be determined precisely or in a good approximation since A2 eliminates the
information that was reconstructed by A1-1 (see appendix B for detail).

While appendix B deals with a single certain mixture component, the following
discusses how to apply the method to an uncertain mixture field that uses multi-
component mixture balls.  The generalization of the method to mixture balls
consists of three steps:

(i) First it extracts the upper and lower bounds for every mixture component from
the field’s mixture balls.  This results in a ratio valued field for every component
and both bounds:  For example, a three component mixture field is decomposed
into six ratio valued fields, namely those of component1/lower bound,
component1/upper bound, ..., component3/upper bound.

(ii) The second step changes all these ratio valued fields to coarser resolution by
applying a linear filter.

(iii) The final step reconstructs a single uncertain mixture field from the family of
ratio valued fields.  The center point of each mixture ball is then determined as the
average between upper and lower bound.  The mixture ball radius in a given
location is computed as half the maximal difference between upper and lower
bound out of all mixture components.

The use of upper and lower mixture bounds propagates uncertainty from the
source to the target representation.  As shown in appendix B, the filtering can
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introduce some additional mixture uncertainty.  This uncertainty increase can be
expressed in an increase of mixture ball radii.  For example, if the filtering process
introduces 2% mixture uncertainty, every mixture radius has to be increased by
2%.  This shows that in addition to uncertainty propagation, also the uncertainty
introduced by the transformation itself can be captured by the existing uncertainty
model.

While it is evident from the appendix that these transformations are uniquely
determined by the source and target meta data, the remainder of this section
discusses issues of finite implementation.

Linear filters can easily be implemented in the raster domain [Castleman, 1979].
Such implementations are based on a nearest-neighbor interpolation70.  The
implementation of such filters for finite mixture field representations based on
linear interpolation and/or irregular sampling are theoretically possible but
impractical.  It is therefore proposed to always compute resolution changes in the
raster domain and, if necessary, use conversions of finite format (see section 8.4.1
below) before and after the transformation.  Such conversions can also be used to
provide a dense enough raster grid, since the uncertainty introduced by the raster
implementation of linear filters depends on the grid density.

8.2.2  Resolution and Homogeneity Change for Feature Partitions

Since feature partitions are abstractions of mixture fields, they extract the major
trends of mixture fields.  In particular, they inform about the minimal presence of
the mixture components that are characteristic for features.  This allows the
definition of the resolution change for feature partitions in terms of the methods
used in mixture fields.  While mixture fields are much better suited for the
derivation of knowledge at coarser resolution, feature partitions are often the only
available information.

The resolution change for feature partition consists of three steps:  (1) deriving a
certain mixture field that represents the minimal presence of each mixture
component,  (2) transforming this mixture field to a coarser resolution,  and (3)
using a new feature abstraction (see section 4.4) to transform this mixture field
into a coarser-resolution feature partition.

The mixture field representation of step (1) can be derived by inspection all
locations of the feature partition:  locations inside a feature inherit the minimal
percentage of the characteristic mixture component as specified by the feature’s

                                                

70 This is evident since the numeric approximate computation of the convolution integral uses a constant value
in every cell.
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level of homogeneity.  While the minimal mixture percentages for sampling
locations in the transition zone are generally zero, the maximal rate of mixture
change (see section 4.5.3) can be applied to gradually decrease the mixture
percentage from the level of homogeneity to zero.  The inspection of locations of
step (1) can be finitely implemented by sampling.  Uncertainty introduced by such
sampling is captured by decreasing the minimal mixture percentages.

Step (2) was already described in the previous section.  The only difference is that
only the minimal possible mixture percentages are known.  This corresponds to
the lower bound derived from mixture balls in the case above.  Instead of filtering
both upper and lower bound, only the lower one has to be treated and the
reconstruction of mixture balls is unnecessary.  Since the method already deals
with the lower bound of possible mixtures, uncertainty is automatically
propagated.  The additional uncertainty introduced by the filter further reduces the
lower mixture bounds.  This second step (2) is obviously determined by the
resolution of the source and target feature partition.

The homogeneity meta data of the target feature partition determines the
parameters of the feature abstraction that composes step (3).  A certain decrease in
homogeneity from the source to target representation is necessary to allow the
absorption of mixture uncertainty introduced by step (2).  A further decrease
causes the absorption of additional inhomogeneities71, i.e., areas that belong to the
transition zone or a different feature in the higher resolved feature partition.  For
example, if the source and target feature partitions have levels of homogeneity of
90% and 80%, respectively, and step (2) introduces 3% mixture uncertainty, the
result of step two is a mixture field with maximal mixture percentages of 90% -
3% = 87%.  These maximal mixture percentages are reached inside features that
are relatively large compared to the target resolution72.  This means that an
additional 7% is available for the absorption of additional inhomogeneities.  The
finite implementation of step (3) will be discussed in section 8.3.2.

The change of resolution from one feature partition to another again satisfies the
general requirement for transformations, i.e.,  T(A1) = A2 (see section 8.2.1
above).  This is evident for step (2) since it used the resolution change designed
for mixture fields.  Step (1) and (2) are again in the format of A2(A1-1).  The
abstractions A1 and A2 here are feature abstractions applied to mixture fields,
rather than overall abstraction processes applied to geographic reality.  Step (1) is
an inverse of the original feature abstraction.  Since the information that was lost
in the original abstraction cannot be reproduced, step (1) introduces considerable

                                                

71 The term inhomogeneity here is not used as defined earlier.  I.e., inhomogeneities here are not geographic
objects but small sections of transition zone and "foreign" features of the source feature partition.

72 This can be seen when considering that filters use convolution integrals and that such convolution integrals
applied to a constant function yield the same constant function as a result.
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uncertainty.  As expected, step (2) is the feature abstraction related to the target
representation.

8.2.3  Resolution Change for Stand-Alone Features

Stand-alone features are derived from a higher resolution feature partition by an
abstraction process.  More precisely, the stand-alone feature’s geometry consist of
all resolution-limited disks that contain73 at least one higher resolution disk that is
part of a characteristic feature in some higher resolution feature partition (see
section 5.3).  According to the general definition of transformations, a resolution
change of stand-alone features must find all target resolution disks that contain the
smaller disks of the characteristic feature that were used in the original definition.
This is visualized in figure 8.2:  One of the original small disks of the
characteristic feature is shown in gray.  Two disks of the source representation are
shown as medium size circles.  The thicker and larger circles visualize two disks
of target resolution that contain the original small disk.

The figure illustrates that a target resolution disks contains the original small disk
if it contains at least one disk of the source stand-alone feature.  Further, in their
disk_to_point projections, the target resolution geometry is wider than the
source resolution one.  The width difference w is equal to the half the resolution
difference, i.e., the difference of the disks’ radii.  This is the basic concept used for
the resolution change of stand-alone features.

  disk of the defining 
characteristic feature disk of source 

non-partitioning  
feature

disk of target 
non-partitioning  
feature

w

Figure 8.2:  Visualization of resolution change for stand-alone features.

In vector representations, the target resolution geometry can be computed by
buffering the source geometry in their disk_to_point projection by the distance w.
Figure 8.3 shows the situation in case of raster format.  In the shown

                                                

73 This containment must be evaluated in Euclidean space, as usually when disks of differently resolved
resolution-limited spaces are compared.
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disk_to_point projection, the source resolution geometry has to be buffered by
half the resolution difference.  The buffer is shown in gray74.  One cell of the
target resolution geometry is shown on the left.  In accordance with the container
philosophy, it belongs to the target geometry since it intersects with the buffer.
Note that it is defined in the same grid that is used for the source geometry, since
the transformation leaves the finite format unaffected75.  The figure shows that the
resolution change can be achieved by raster buffering.

disk_to_point projection

buffer of 
width w

source geometrycell of target  
geometry

Figure 8.3:  Resolution change in raster representation of stand-alone features.

8.2.4  Changes of Object Partitions

Classified mixture fields, feature partitions, and stand-alone features all use object
partitions as a meta data component.  Representations can obviously differ in the
object partitions that underlie their mixtures.  A transformation from a source to a
target object partition is only possible if every object in the target object partition
is hierarchically related76 to the objects of the source object partition (see figure
8.4).

target 
object partition

source 
object parition

Figure 8.4:  Hierarchical relations between source and target object partitions.

                                                

74 Actually, the shown buffer is slightly too large in the corners.

75 This illustrates again that "raster resolution" is not related to the resolution concept proposed in this thesis.

76 More precisely, the source object partition must be a refinement [Gill, 1976] of the target one.
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In mixture fields, a transformation to a coarser object partition derives the
mixtures of the target representations from those of the source representation.
More precisely, the target mixture component related to a higher-level geographic
object is the sum of the components related to its component objects.

For example, let "pastures", "corn fields", "apple orchards", etc. be geographic
objects of the source object partition, and "agricultural area" one of the geographic
objects of the target object partition.  In this case, there is a hierarchical
relationship between the mentioned low-level objects and "agricultural area".  If
one of the mixtures in the source representation contains 2% of "pasture", 12% of
"corn fields", and 6% of "apple orchards", the mixture in the target representation
at the same location becomes 2% + 12% + 6% = 20% "agricultural area".  A
mixture ball can be constructed with this method by applying it to the center point
mixture and setting the mixture radius as the product of source mixture radius
with the maximal number of components of the higher-level objects of the target
object partition.  For example, if "industrial area" is an association of four
components, and all other higher-level objects have four or less components, then
the target mixture radius is four times the source one.

In feature partitions and stand-alone features, transformations to coarser object
partitions trigger a change in feature attribues, i.e., the mixture classes associated
with features.  More precisely, such a transformation forms a higher-level mixture
class related to a higher-level geograpic object as an association of the mixture
classes related to its component objects.  Since features are always separated by a
transition zone, the combination of feature geometries in not possible.

For example, if the same object partitions are used as above, the source features
"pasture", "corn field", and "apple orchard" would all become parts of the target
feature "agricultural area".  Since the source features are all separated by
transition zone, the geometry of "agricultural area" is not simpler than those of the
source representation.  This shows a major difference to the conventional  sharp
boundary approach.

8.3  Primitive Transformations across Representation Types

This section describes different transformations across representation types.  All but the
transformation from unclassified to classified mixture fields reduce knowledge content.
Inverses for these transformations can thus only exist as coarse approximations that
introduce significant uncertainty.  An example of such an inverse was used in the
transformation of feature partitions to coarser scales (see section 8.2.2).

In the general definition of transformations, here, A1 and A2 are the abstraction processes
from geographic reality to the source and target representation, respectively.  A2 uses A1
as a first step and adds an additional abstraction step.  This additional abstraction step is
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therefore directly the transformation T.  All steps of the abstraction process were already
described in the chapters four and five.  This section therefore focuses on their finite
implementation.

8.3.1  Unclassified to Classified Mixture Fields

The prime example of an explicit transformation from an unclassified to a
classified mixture field is image classification in remote sensing.  The most
commonly used classification methods are not geared towards mixtures but
usually use pure "categories" or mixed pixels with unspecified component
percentages [Castleman, 1979].  This section briefly discusses how classification
can be adapted to yield mixtures.  A detailed study is left for future research.

Supervised image classification is based on the distribution of properties of
mixture components that is determined by training sets.  Figure 8.5 shows a
possible distribution in a two-dimensional property space:  A, B, C, and D, are the
point clouds constructed by training;  and p is the property vector of a pixel that
shall be classified.

property 1

property 2

B

A D

C

p

Figure 8.5:  Property distribution constructed by training and the property p of a
pixel to be classified.

The figure suggests that classifying pixel p as a mixture of A, B, C, and D is an
ill-posed problem:  p could either be a mixture of just A and C, or of just B and D,
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or it could be a mixture of all four.  A unique solution can only be found if
additional assumptions or rules are made to resolve the inherent ambiguity77.

The following example of a simple heuristic rule shall illustrate this:  The
heuristic procedure first classifies pixels that fall completely into one of the
training polygons A, B, C, and D.  For all other pixels it assumes that they are a
mixture of only those mixture components of adjacent, already classified pixels.
For example, a mixed pixel located between a "forest" and "pasture" would be
assumed to be a mixture of these landuses.

8.3.2  Classified Mixture Fields to Feature Partitions

The transformation from classified mixture fields to feature partitions of the same
resolution and object partition has been discussed in detail in the sections 4.4.4
and 5.2.2.  In addition, this section discusses issues of finite implementation.

Certain finite mixture field formats naturally translate into certain finite feature
partition formats.  This eliminates the need for finite approximation of the
resulting geometry with the related increase of uncertainty.  Table 8.2 gives an
overview of naturally related mixture field and feature partition formats.  Recall
from the above section 8.1 on meta data that finite mixture field formats are
described by the set of sampling locations, and their interpolation method.

Table 8.2:  Mixture field formats with their naturally related feature partition
formats.

Nearest-neighbor interpolation in a regularly sampled mixture field keeps the
mixture field value constant in each raster cell.  Classification of such mixture
fields thus assigns whole cells at once (rather than individual disks) to a mixture
class.  The resulting feature geometry therefore naturally results in a raster format
that is based on the same grid as the field’s sampling locations.

                                                

77 Note that the ambiguity is caused by the use of a property space that is lower than the number of geometric
objects that have to be classified.  This situation is characteristic for all practical cases.

Sampling Locations Interpolation
Method

Related Feature
Partition Format

regular grid nearest-neighbor raster (same grid)

regular grid linear vector

irregular nearest-neighbor or
linear

vector
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In the case of linear interpolation78, the surfaces that express the minimal
percentages of a single mixture component as a function of location are locally
represented by plane segments.  In the feature abstraction, these plane segments
are intersected with thresholds that are determined by the required levels of
homogeneity.  The intersection of plane segments with such horizontal planes
always results in straight line segments.  The geometries of the resulting features
thus become the polygons of a vector approximation.

The same is true for irregular sampling with nearest-neighbor interpolation where
object classification deals with whole triangles at a time.  Since triangles are
bound by straight line segments, unions of such triangles are always vector
polygons.

In the case of higher order interpolation methods, the resulting feature geometries
are not naturally related to either raster or vector format.  The easiest way of
deriving a finitely representable feature partition from such mixture fields is to
first transform them into a mixture field format that has a finite counterpart in the
feature domain.  For example, let us look at a relatively coarsely sampled mixture
field that uses a higher order interpolation method in order to keep the
interpolation error low as compared to a simpler interpolation method.  This
mixture field can be transformed into a more densely sampled mixture field that
uses linear or nearest neighbor interpolation (see section 8.4.1).  Most of the
uncertainty caused by the simpler interpolation method is then compensated for
by the denser sampling.  The derived mixture field can now easily be transformed
to a feature partition of the naturally related format.

Transformations from mixture fields to feature partitions propagate uncertainty by
using a worst case scenario for the feature abstraction (see section 5.2).  If a
transformation to a naturally related finite format is used, finite approximation of
the resulting geometry is unnecessary and the transformation therefore avoids to
introduce additional uncertainty.

8.3.3  Feature Partitions to Stand-Alone Features

The geometry of stand-alone features was defined as the set of all coarser-
resolution disks that contain at least one higher-resolution disk of a feature in the
underlying feature partition (see section 5.3).  In this chapter, this abstraction
process is implemented in two steps by two primitive transformations:  the first
step transforms a feature partition to a stand-alone feature of equal resolution (see
this section), and the second step transforms this stand-alone feature to a coarser
resolution (see section 8.2.3).

                                                

78 independently of the sampling strategy.



152

This first step is thus defined by modifying the above definition such to the
special case where the coarser-resolution disks are of the same size as the higher-
resolution ones.  The geometry of such a stand-alone feature is then equal to the
geometry of the characteristic feature in the feature partition.  A primitive
transformation from a feature partition to a stand-alone feature thus simply
extracts one of the features.  Implementations in raster and vector formats are thus
straight forward.

8.4  Primitive Transformations across Finite Formats

While in current GISs, transformations across finite formats (i.e., conversions between
raster and vector format) attempt to preserve the vaguely defined visual impression, this
section describes transformations that preserve knowledge about the world--except for a
slight increase of uncertainty.  It is obvious that the preservation of knowledge about the
world is impossible if the resolution of the representations is not taken into account.
While in current GISs, concepts such as resolution or uncertainty are defined differently
for the raster and vector domain, the resolution-limited approach uses the same concept in
both domains.  This conceptual compatibility of formats allows for much more precise
definitions of transformations.  This is for example evident in the well-defined
propagation of uncertainty across formats.  Furthermore, a concatenation of a
transformation and its inverse yields a result that is contradiction-free to the original
representation and solely has an increased uncertainty.  For example, this makes it
possible to convert a raster representation to a vector format and back to raster, without
causing any contradictions between the original and resulting representation.

8.4.1  Transformations between Finite Mixture Field  Formats

The finite format of mixture fields is specified by the set of sampling locations
and the interpolation method (see section 8.1).  All transformations between
different mixture field formats are achieved by resampling.  Since resampling is
well known from the conventional approach, this section focuses on the issues of
resolution and propagation of uncertainty.

Transformations across finite formats preserve the spatial resolution of the
mixture field  knowledge.  Source and target representations thus use the same
resolution-limited space.  This shows again that "raster resolution" is a different
concept from the resolution in this thesis:  "Raster resolution" is called sampling
density in the proposed spatial theory and is a parameter of finite approximation.
Since the transformations discussed in this section are primitive, they only affect
the finite format while leaving resolution unaffected.
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Propagation and increase of uncertainty are of major concern during resampling.
Figure 8.6 illustrates the problem.  The uncertainty in the sampling locations is
shown by black disks.  Interpolation between sampling locations introduces
additional uncertainty that usually increases with increasing distance from the
sampling locations.  The figure shows how resampling increases uncertainty in
the resampled locations and consequently for the whole mixture field .

property

location

property

location

original field

resampled field

Figure 8.6:  Propagation of uncertainty during the resampling of mixture fields.

The actual increase of uncertainty introduced by resampling depends on the
represented real world phenomena, the sampling density, and the interpolation
method.  For example, different phenomena exhibit different rates of mixture
change between sampling locations, and higher sampling densities with a simple
interpolation method may be comparable to lower densities with a more
sophisticated interpolation.

8.4.2  Transformations between Finite Feature Formats

Transformation between raster and vector formats of the geometries used for
feature partitions and stand-alone features are well known from current GISs.
Their major problem is their incapability of propagating meta data on resolution
and uncertainty.  Since the primitive transformations across finite formats leave
resolution unaffected, this section focuses on the propagation and increase of
uncertainty.
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Chapter five has pointed out that the represented geometries in feature partitions
and stand-alone features are either kernels or containers.  Uncertainty can
therefore be managed by the simple requirement that the geometries in the target
representation are kernels or containers of the source geometries.  Since the
container and the kernel concepts are transitive, a kernel/container approximation
of the kernels/containers of the source representation are still kernels/containers of
the original infinite geometry.  Figure 8.7 illustrates this for a vector kernel that is
re-approximated by a raster kernel.  It is obvious, that the raster kernel, designed
as a kernel of the vector kernel, is necessarily also a kernel of the original feature
geometry.  The geometric differences of source and target kernels introduce
additional uncertainty that is visualized by the gray area in the figure.

original 
geometry

vector kernel

raster kernel

additional uncertainty

Figure 8.7:  Propagation of uncertainty in a vector to raster conversion.

Note that the above requirement for preserving kernel and container properties
does not completely determine transformations across formats.  In the raster
domain, the source and target data of finite representation completely determine
the transformation since the relative position of source and target grid are known.
The finer the target grid is chosen, the less uncertainty is additionally introduced.
In the case of vector representations, the target meta data of minimal line segment
length does not uniquely determine the transformation.  This is not a problem,
however, since all possible results are compatible with each other and differ solely
in their amount of uncertainty that properly represented.  Vector
kernels/containers with a comparable amount of uncertainty are thus conceptually
equivalent for all practical purposes.

8.5  General Transformations as Combinations of Primitive Ones

Most of the above primitive transformations affect only a single aspect of meta data.
General transformations must therefore be composed as a composition of primitive ones.
For example, a transformation from a mixture field representation to a coarser resolution
feature partition can be composed of a resolution change of the mixture field followed by
a change of representation type.
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The decomposition of a general transformation into a series of primitive ones is not
unique, however, since several sequences of primitive transformations are possible.  For
instance, the above example could alternatively be solved by first changing the
representation type and only then changing resolution.  As evident in this example,
different decompositions differ in their amount of uncertainty increase and system
response time.

An attractive method for managing decomposition alternatives are query optimizers as
known from the discipline of data bases [Jarke, 1984] [Graefe, 1993].  They are based on
rules that express when decompositions are conceptually equivalent and estimations of
the uncertainty increase and processing time of primitive transformations.  Optimizers
then find the decomposition that minimizes either uncertainty or processing time while
staying within specified constraints on the other criteria.  Piwowar and LeDrew [1990]
describe a very similar approach to data integration without using existing query
optimizer concepts.

Query optimizers can be used for more that just the decomposition of single
transformations:  In a multi-format environment, a whole query involves several GIS
operations and transformations and requires an optimizer for its efficient decomposition
(see section 10.2).  The decomposition of transformations can be implemented as part of
such an overall query optimizer.
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9  Data Integration in a Consistent Spatial Theory

The previous chapters have described a consistent spatial theory.  This chapter demonstrates the
potential of such a consistent theory for data integration with three examples.  Namely, the
consistency makes far-reaching system support and automation possible.

These advances in the field of data integration are possible based on more knowledge that is
available in machine interpretable form:  In particular, this chapter shows how the meta data can
be used by a system to make intelligent decisions of how to deal with available data.  For
example, the system can offer substantial support in the fitness for use assessment (see section
9.1).  The consistency of meta data and transformations allows translation of such decisions to
actions.  For example, data sets can automatically be converted to the format required by a
certain analysis (see section 9.1).  Systems that can access more knowledge can relieve users
from certain responsibilities.  For example, the resolution conscious overlay proposed in section
9.2 avoids slivers and relieves users from the task of sliver removal.  It is also possible to hide all
issues of finite format from users.  This is discussed in section 9.3.

The chapter is divided into three parts.  Each gives examples of the potential of a consistent
framework for data integration.  The first part discusses the integration of differently resolved
data sets in a suitability study.  Since spatial overlay is a major mechanism for data integration,
the second part investigates how the explicit modeling of resolution allows the definition of an
overlay method that avoids slivers and propagates uncertainty.  The third part explores the
potential of format free user interfaces.

9.1  Resolution-Sensitive Suitability Studies

This section uses the example of a suitability study to demonstrates the potential system
support for the integration of data sets of different resolution and shows how meta data
help to express suitability requirements.  The first section gives a brief overview of the
suitability study.  Then, resolution and level of homogeneity are used to express minimal
data quality requirements.  Comparing these requirements to the meta data of available
data sets allows evaluation of different degrees of fitness for use.  The next section shows
how to combine all data sets and how meta data propagates in the applied operations.
The example points out the potential of system support for the choice of adequate data
sets.

9.1.1  Suitability Example Overview

A simple example of finding suitable locations for a waste disposal site is used in
this section.  For reasons of simplicity, only three criteria are used:  (i) maximal
slope of the terrain, (ii) predominantly impermeable soils, and (iii) minimal size
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of the suitable area.  The available data sets are an unclassified mixture field that
contains slope data, and a feature partition that informs about the permeability of
soils.  The former data set was derived from a digital terrain model, the latter by
reclassification from a soils feature partition.

9.1.2  Resolution Requirements of Queries

A suitability study must require minimal data quality in order to yield meaningful
results.  This section shows how this can be expressed by a characteristic
resolution for the unclassified mixture field of slope, and a minimal resolution
and homogeneity for the soils feature partition.

Like many other spatial phenomena and processes, slope79 is a highly resolution-
dependent measure [Buttenfield, 1989c].  A slope requirement therefore has to be
expressed at a suitable resolution.  This paragraph shows how this resolution is
often characteristic for the processes involved.  It is therefore called
characteristic resolution.  Let us assume that the slope requirement shall
guarantee easy leveling of the waste disposal site with bull dozers.  Slope
measured at a resolution comparable to the size of the whole waste disposal site
expresses how easy it is to level the whole site:  if it is relatively flat, it will
always be possible to fill in valleys with the material of hills.  If the same is true at
slightly higher resolutions, it is guaranteed that valleys can be filled in locally
without the effort of displacing material over long distances.  Slope at a resolution
higher than the size of a bull dozer does not express much about the ease of
leveling the terrain.  This discussion showed how the characteristic resolution of
slope data is related to the involved processes.  Slope data at a too high or too low
resolution would be meaningless for the study.

To support users in the specification of the characteristic resolution or range of
resolutions, a resolution-conscious GIS can randomly generate and visualize
possible terrain that just satisfy the slope requirement at a user defined resolution.
This would allow users to intuitively choose the characteristic resolution and
would avoid a theoretical derivation.  In current GISs, users have neither well
defined meta data to express their requirements, nor system support in choosing
the characteristic resolution for their requirements.  The proposed spatial theory
with its machine readable meta data can thus provide a superior user support that
helps to avoid meaningless studies that use data at inappropriate resolutions.

The proposed meta data also allows expression of minimal requirements for the
second criteria of impermeable soils.  In order to prevent potentially hazardous

                                                

79 A resolution-limited slope measure could for example be defined by the slope of a plain that locally
approximates the terrain surface in the area of a resolution-limited disk.
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materials from contaminating the ground water, suitable sites are predominantly
covered by impermeable soils.  Resolution and homogeneity together specify the
maximal overall percentage of permeable soil (i.e., inhomogeneity) and the
maximal size or grain of regions with such undesirable soil.  Areas with
permeable soil must be "sealed" with engineering artifacts.  It is conceivable that
larger permeable areas have to be treated with different engineering methods at
different cost.  Resolution and homogeneity thus obviously affect the overall cost
of constructing a waste disposal.  Their actual values can thus be chosen to
include only fiscally feasible locations.  Again, a resolution-conscious GIS can
support users in choosing minimal requirements by visualizing the real world
meaning.  A similar visualization was proposed by Leung and Goodchild [1992]
in the context of uncertainty (see section 7.2.6).  This visualization would allow
users to use intuition rather than analytically deriving the minimal requirements.

It is conceivable that in the future, the propagation of uncertainty will be well
enough understood to make it possible to specify the minimal data quality of GIS
products rather than that of the data sets from which the product is derived.  The
scale of a query could then be specified indirectly via the quality of the end result.

9.1.3  Fitness for Use Assessment

So far, users may use meta data to specify the minimal requirements of a query.
In a multiple representation environment, let us assume several data sets are
available to answer the query.  One or several data sets may directly or after
certain transformations (see chapter eight) satisfy the requirements of the query.
A central problem in this scenario is the assessment of fitness for use [Goodchild,
1992b].  This section discusses this assessment for the slope and the soil criteria
of the suitability study.  It further points out the potential of system support in this
area.

The slope criteria requires data at the characteristic resolution of the involved
processes.  If a data set is fit for use, a transformation must exist that maps from
its original resolution to the characteristic resolution.  Chapter eight showed that
this is feasible for all data sets of a resolution equal or higher than the
characteristic one.  Suitable data sets will differ in their uncertainty of the slope
measure.  A query optimizer [Jarke, 1984] [Graefe, 1993] can help to select the
most adequate data set (see also section 8.5).

In the case of feature partitions, fitness for use assessment is somewhat more
elaborate since four degrees of fitness are distinguishable depending on how the
available resolution and homogeneity compares to the requirements:  In the best
case, suitable areas can be identified for certain; in the two intermediate cases this
is not possible but areas that are certainly unsuitable can be found;  in the worst
case, the available resolution and homogeneity are too low to derive any relevant
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information about suitability.  The following four examples illustrate the possible
degrees of fitness for use:

(1) The first example represents the best case.  Assume that permeable soil was
required to be at a resolution of 30 meters with a homogeneity of 80% and that the
available data set has a resolution of 20 meters with a homogeneity of 90%.
Chapter eight has shown that it is possible to find a transformation that converts
the data set to the desired resolution and homogeneity.  In the worst-case approach
of feature partitions, features represent areas that are for certain either suitable or
unsuitable.  The transition zone could theoretically have either property.  If the
requirements of a minimal size of the waste disposal site are considered, however,
transition zones between unsuitable features can be identified as certainly
unsuitable:  the minimal size guarantees that suitable real world areas always
show up in the form of suitable features.  The absence of suitable features thus
implies the absence of suitable areas.  Adjacent to suitable features, however,
additional suitable areas may hide in the transition zone.  The search for suitable
areas can thus be answered in the form of kernels representing suitable features
that mark areas that are certainly suitable, and containers given by the union of
suitable features and surrounding transition zone, that contain all potentially
suitable areas.

(2) Sometimes, the available data set can have a lower resolution and
homogeneity than required.  If a minimal size for the waste disposal site is
required, it is still possible to derive valuable information, however.  Assume that
the required resolution and homogeneity is again 30 meters and 80%, and that the
minimal size is 300 by 300 meters.  Let the available data set have a resolution of
60 meters and a homogeneity of 75%.  Clearly, a transformation to the required
resolution and homogeneity is impossible since it would have to add information.
Let us therefore study what information can be derived at the available resolution
and homogeneity:  Suitable features are likely to be suitable also at the required
level of detail, but a certain evaluation of suitability is no longer possible.
Unsuitable features, however, can be identified with certainty to be unsuitable:
The homogeneity of 75% allows at most 25% of impermeable soil in every 60
meter disk of unsuitable features.  Clearly, a 300 by 300 meter suitable site could
not hide in the inhomogeneity of an unsuitable feature.  The transition zone can be
treated as in case (1) above:  The required minimal size of the site would make at
least some 60 meter disks part of a suitable feature.  Suitable areas can thus again
only hide in the transition zone around suitable features.  The search for suitable
areas can thus be answered in the form of containers given by the union of
suitable features and surrounding transition zone, that contain all potentially
suitable areas.  While kernels for certainly suitable areas are not derivable, the
containers allow a significant limitation of a more detailed search.

(3) The next worse degree of fitness for use differs from case (2) by the suitability
information contained in the transition zone.  Assume that the query requirements
are unchanged from case (2) but the available data set now has a resolution of 400
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meters and a homogeneity of 75%.  The minimal size of the disposal site of
90,000 m2 at the required 80% homogeneity would contain at least 72,000 m2 of
impermeable soil.  This corresponds to about 57% of the area of 400 meter
diameter disks, which is sufficient to prevent suitable areas from hiding in
unsuitable features of 75% homogeneity, but too low to be predominant in
suitable features.  Unsuitable features can thus still be certainly identified as
unsuitable, but the above reasoning about the transition zone does not apply
anymore:  The whole transition zone now has to be considered a potential hiding
place for suitable areas.  The search query is thus answered by a container that
includes all suitable features and the complete transition zone.

(4) If resolution and homogeneity are further lowered, the minimal size of suitable
areas can be absorbed in unsuitable features.  It is then not possible anymore to
certainly exclude suitable areas and thus limit a more detailed search.  The
corresponding data set is thus completely unfit for use.

Since the above assessment of fitness for use is completely based on the proposed
meta data, a complete automation of the process is possible.  A comparison to
conventional meta data such as "cartographic scale" demonstrates the advantages
of machine interpretable meta data.  Extensive system support in assessing fitness
for use becomes increasingly important in multiple-representations environments:
here, several data sets may have the same degree of fitness.  A major problem is
then to select the optimal data set [Bruegger, 1989].  Section 8.5 has proposed to
use query optimizers to find optimal decompositions of transformations.  This
optimization can be extended to also select the best suited data set.  Besides
processing time and data quality, also fiscal cost for the available data sets (e.g., in
a network environment) can be used in the optimization.  The rules used in such
optimizers is a topic of future research.

9.1.4  Combination of Suitability Criteria

The previous sections have shown how different suitability criteria are formulated
at different levels of resolution and homogeneity.  This section is concerned with
combining all criteria to yield a single feature partition of suitable and unsuitable
features.  In the conventional approach, feature partitions for each suitability
criteria are simply overlaid--in the resolution conscious approach, their resolution
differences have to be taken into account.

An overlay of layers that differ in resolution is obviously undesirable.  The
overlay has to be performed at a single level of resolution.  Since the single
criteria define suitable areas in the real world, it is natural to represent these areas
in Euclidean space at infinite resolution.  This is compatible with the visualization
of the real world meaning of resolution-limited knowledge that was suggested in
section 9.1.2 in support of choosing minimal requirements.
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Several possibilities for defining suitable areas at infinite resolution based on
resolution-limited representations exist.  The following two possibilities are the
most prominent:  (1) If a resolution-limited disk satisfies the criteria, the center
point of the disk is considered suitable in the real world; or (2) if a disk satisfies
the criteria, every Euclidean point in this disk is considered suitable.

The result of the suitability classification of the original feature partitions thus
results in a set of infinitely resolved feature partitions, where suitable features
represent areas that certainly satisfy a single criteria, unsuitable features mark
certainly unsuitable areas, and the transition zone could be suitable or unsuitable.
Since all feature partitions are at the same resolution, they can now easily be
overlaid.

The following rules specify the semantics of the overlay:
• if a point is part of a suitable feature in all feature partitions, it belongs to a

suitable feature in the resulting feature partition.
• if a point is part of an unsuitable feature in at least one feature partition, it

belongs to an unsuitable feature in the resulting feature partition.
• if a point belongs to the transition zone in at least one feature partition and to

suitable feature in the others, it is part of the transition zone in the resulting
feature partition.

The resulting feature partition again marks certainly suitable/unsuitable areas with
features and potentially suitable areas with the transition zone.

The minimal size criteria can be used after the overlay to eliminate undesirable
small suitable areas.  If the geometry of the resulting layer is still too detailed, a
transformation can transform the results back to limited resolution.

9.2  Sliver-Free Overlay

As a second example of the benefits of resolution consciousness in GISs, this section
demonstrates how overlay in the resolution-limited approach avoids the problem of
slivers.  The overlay discussed here is different from that in the above suitability example
(see section 9.1.4) since it operates at limited resolution.  An example of such an overlay
would be landuse change detection, where two feature partitions show landuse in
different years at the same resolution.

To show that sliver problems are avoided, a first section analyses the origins of slivers in
conventional representations.  The second section shows how the proposed knowledge
representation helps to avoid slivers.  Since overlay processing is closely related to
topologic integration, the implications of resolution-limited overlay processing in this
area are discussed in the third section.
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9.2.1  Origin of Overlay Slivers

Sliver problems occur when two different data layers describe real world
phenomena with locally (i) equal or (ii) similar spatial distribution.  In the former
case, geographic objects of the two layers share parts of their boundaries in
geographic reality;  in the latter case, such boundary parts are mutually close
(relative to resolution).  This section discusses how such real world situations are
represented in the conventional approach and how slivers have their cause in
representation decisions.

One possible cause of slivers is the overlay of layers that differ in their level of
resolution or level of homogeneity.  The previous chapters have shown how the
(identity and) geometry of features change with level of resolution and
homogeneity.  A single boundary section of the physical world can therefore be
mapped to two significantly different representations at different scale.  In an
overlay, these differences show up as slivers.  While common practice tries to
avoid this situation, a lack of precise meta data and automated resolution change
often makes living with the problem the only practical solution.

A second reason for slivers is the conventional treatment of uncertainty in
representations--which basically consists of ignoring it.  Conventional
representations use the point-sharp boundaries of Euclidean point sets.  The
boundary location then depends on the approximation error in the finite and scaled
representation:  (i) In Sinton’s feature abstraction, small errors in the mixture field
property propagate to small errors in the boundary location;  (ii) in addition, the
error introduced by finite approximation of the general shape of the boundary
introduces error in the location.

Even if uncertainty, i.e., the magnitude of error, is the same for two data layers,
the actual errors are likely to be different.  Figure 9.1 shows an example where the
same boundary section is approximated differently in two finite representations
that originate from independent digitization.  Different realizations of error in two
layers thus lead to different boundary representations.  In an overlay, they show
up as slivers.  This problem is unavoidable and inherent in the conventional
treatment of uncertainty.

Figure 9.1:  Two different finite approximations (one with black, the other with
white vertices) of a boundary section (thick line) introduce different locational
errors in the boundary representation.
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9.2.2  Resolution-Limited Overlay

While the previous section showed that overlay slivers are unavoidable in the
conventional approach, this section shows that they do not exist in resolution-
limited knowledge representation due to the explicit modeling of uncertainty.  The
first cause of slivers, i.e., overlay of differently resolved layers, can be avoided in
the resolution-limited approach due to the availability of meta data and
transformations (see chapter eight).  The discussion therefore focuses on the
second cause, i.e., the treatment of uncertainty.  Note that while the following
argument is made in the context of knowledge representation, slivers in a
cartographic or visualization sense are also avoided.  This is evident when
considering that overlay results are feature partitions that guarantee minimal
dimensions in their visualizations (see chapter seven).

Conventional overlay is conceptually an intersection of point sets in Euclidean
space.  While points in the intersection of the point sets A and B are supposed to
carry both these attributes, this is not true for an average-case based uncertainty
model:  The approximation error can cause points close to the boundary to carry
wrong attributes.  It is therefore difficult to reason about the attributes of points in
an overlap polygon.  In contrast to this conventional approach, resolution-limited
knowledge representation allows a more precise knowledge of attributes:  The
worst-case approach based uncertainty model leads to transition zones with an
unknown attribute rather than to an arbitrary change of attributes that yields a
convenient sharp boundary.

The precise attribute knowledge allows the definition of spatial overlay in terms
of both, attributes and location, rather than using a purely geometric definition:
All disks of an intersection polygon must then certainly fall into the mixture
classes of both related features of the original layers80.  This means that disks that
fall in the transition zone in one of the two layers cannot be part of a feature:
Since at least part of their attribute is unknown, they have to be part of the
transition zone of the resulting layer.

Since the resulting transition zone is then the union of the transition zones of the
input layers, overlay operations obviously increase uncertainty.  This may seem
impractical, but I believe it is unavoidable and reflects what we really know about
the world.  While the increase of uncertainty may not "look" good in a
cartographic mind set, it reflects an honest approach that expresses what is really
known.  Answers from an "honest" GIS may support decision making much

                                                

80 Note that the semantics of this overlay is different from those in the suitability study example (see section
9.1.4).  This is evident when considering unsuitable spatial objects:  In suitability studies, a disk (point) that is part of
an unsuitable spatial object in the resulting layer does not have to be unsuitable in all the input layers.
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better, than the good looking answers of an overly optimistic and appearance
based GIS.

The resolution-limited approach guarantees that the smallest possible intersection
polygons are at least one resolution-limited disk wide.  Since both attributes are
required to be of a certain level of homogeneity, it requires a minimal size of the
related geographic objects in geographic reality;  too small intersection areas of
geographic reality get absorbed in the transition zone or other features.  This
approach models the human cognition that distinguishes between significant
overlaps and spurious polygons whose size depends on resolution.  The similarity
of resolution-limited overlay to human reasoning demonstrates how resolution-
conscious GISs behave more intuitively and are therefore easier to use.

9.2.3  Uncertainty and Topologic Integration

Topologic integration is often seen as providing pre-computed overlays.  We have
seen that one of the major differences of the conventional and resolution-limited
definition of overlay is the treatment of uncertainty.  The conventional topologic
integration of a large number of thematic layers is defined for the average-case
model of uncertainty.  This section discusses the implications of worst-case
uncertainty modeling to topologic integration.

Topologic integration is known from conventional GISs such as TIGER [Broome,
1990] or TIGRIS [Herring, 1987].  It is theoretically founded in the context of
certain, infinitely resolved spatial knowledge that is expressed in Euclidean
geometry.  In the context of a worst-case based uncertainty model, topologic
integration is not practical since the single integrated layer would consist
predominantly of transition zone.  Resolution-limited knowledge representation
and other models that take uncertainty into account must therefore favor a layered
GIS architecture.

Work on automatic sliver avoidance or removal in the conventional modeling
approach [Pullar, 1991] [Pullar, 1993] [Zhang, 1990] give evidence that topologic
integration is problematic with all kinds of explicit uncertainty modeling.  It
demonstrates how topologic decisions about coincidence depend on the number
and sequence of overlaid layers.  Further, they show how uncertainty increases
with the number of overlaid layers.

While total topologic integration is not feasible in the resolution-limited approach,
it is still possible to explicitly share common boundary parts among layers.  For
example, school districts and census tracts often follow county and state
boundaries.  The equivalence of shared boundary sections can be expressed by
topologic relations between layers.  Note that while in the general case, topologic
integration increases the transition zone area, this kind of integration can be used
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to increase certainty by forming the union of kernels and thus narrowing the
transition zone.

9.3  Format-Independent User Interfaces

The ultimate degree of raster/vector integration is a GIS that hides differences of finite
parametrization from its users [Maguire, 1991].  This section shows how a consistent
spatial theory can support this goal:  The ability of a system to intelligently deal with
format issues relies heavily on the consistency of representations, meta data, and
transformations.

Such fully integrated GISs offer users a format-independent view of data and
operations.  Different types of data are then characterized by their conceptual
characteristic rather than their finite parametrization.  The chapters four and five have
discussed such conceptual characteristics at a format-independent level.  The format-
independent view of operations requires the support of generic operations that are
defined at a format-independent level but can be implemented in the raster and/or vector
domain.  This thesis provides format-independent models for such definitions.

While users see only generic data sets and operations, the system manages actual,
formatted data sets and executable, formatted representations.  In order to hide format
issues from users, such a system must be responsible for the following two tasks:
• translation of generic operations to executable operations of an adequate format
• if necessary, conversion of data sets to different formats (with transformations)
The latter point shows the importance of transformations in this context.  Since a system
determines the necessary transformations based on the available meta data, the latter task
can only be automated if transformations are determined by source and target meta data.
The absence of such consistency in current approaches is the major impediment to the
implementation of fully integrated GISs.

Both of the above tasks are well known in the field of programming languages in the
form of the polymorphisms "overloading" and "coercion" [Cardelli, 1985].  Overloading
expresses that the same operation identifier (such as "+") is used for several executable
operations (such as integer and real addition) and is instanciated according to the types of
the operation arguments.  Coercion allows the use of operation arguments (such as an
integer variable) that have to be converted to another format (e.g., from integer to real) in
order to be usable by an executable operation (such as real addition).  The necessity of a
type conversion is then automatically detected and the adequate conversion routine
automatically executed.  Prime examples of overloading and coercion is the addition
operand ("+").  It is a generic operation that can be instanciated as a integer or a real
addition (overloading).  If one of the arguments is of type real and the other integer, the
integer is automatically converted to a real before executing a real addition (coercion).
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While these polymorphisms are used in programming languages to provide an easier
interface to programmers, they can equally be used in GISs to provide format-
independent, and thus easier to use, interfaces.  In contrast to programming languages, the
implementation of coercion and overloading are more complex in the domain of finite
spatial formats.  This is evident in the fact that a single query can be decomposed in
multiple equivalent series of executable operations.  The following simple example
illustrates this:  Assume that a raster and a vector format feature partition shall be
overlaid.  Obviously, this can be executed in two ways:  convert the raster representation
to vector and then use a vector overlay, or convert the vector representation to raster and
then use a raster overlay.  While conceptually, both ways are equivalent, they differ in the
finite format of their result, their execution time, and the uncertainty of the result.  It is
easy to imagine how the complexity increases when more than two representations are
overlaid or when additional operations are involved.  To make things worse, certain
operations may only be implemented in a single finite format.

Query optimizer [Jarke, 1984] [Graefe, 1993] are designed to manage such problems.  As
described in section 8.5, such optimizers are based on rules of equivalency and
estimations of processing time and uncertainty increase of different processing steps.  The
following gives some examples of possible equivalency rules used for the implementation
of a format-free user interface.

The examples use the following variables and operations:  V1 and V2 are vector format
feature partitions;  R1 and R2 are raster format feature partitions;  VtoR and RtoV are
vector to raster and raster to vector conversions, respectively; and VOL and ROL are the
executable overlay operations in vector and raster format, respectively.
(1) ROL(R1, R2) = ROL(R2, R1)
(2) VOL(V1, V2) = VOL(V2, V1)
(3) ROL(R1, R2) = VOL(RtoV(R1), RtoV(R2))
(4) VOL(V1, V2) = ROL(VtoR(V1), VtoR(V2))
(5) ROL(VtoR(V1), R2) = VOL(V1, RtoV(R2))

A fully integrated GIS uses such a query optimizer by first translating the format-free
user query into one possible executable format, and then let the query optimizer use
equivalency rules to convert the initial query decomposition into the optimal one.
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10  Conclusions

The conclusions are organized in two parts, a summary of major results and an outline of future
work.

10.1  Major Results

This thesis has identified inconsistency of the current spatial theory as one major cause of
problems observed during data integration in current GISs.  It has proposed a
framework for the design of a consistent spatial theory (see chapter three).  In particular,
representations are derived by an abstraction process from the model of geographic
reality, meta data are the parameters of these abstractions, and transformations are
defined in terms of the abstraction processes of the source and target representation.  The
use of abstraction processes allows precise control of the knowledge content of different
representations.

Modeling in the domain of finite (and therefore formatted) data models has been
identified as the second problem of data integration.  To overcome this problem, this
thesis has defined representations, meta data, transformations, and uncertainty introduced
by finite approximation in an infinite, format-independent domain.  This approach
allows application of concepts such as resolution and transition zone equally in the vector
and the raster domain.  This compatibility of concepts between formats is a prerequisite
for the integration of data sets.

Failure to strictly preserve the relationship between geometry and attributes has been
identified as a cause of problems in several aspects of spatial modeling.  Sinton [1979]
has formalized this relationship by concepts that define the geometry in terms of
attributes or vice versa.  The proposed spatial theory strictly applies Sinton’s concepts in
the abstraction processes that result in representations.  The relationship between
geometry and attributes is also preserved during the approximation process necessary for
finite representation.  A change of geometry in the approximation process is then
inseparable from a change in attributes (see chapter five).

The proposed spatial theory is distinguished from previous work by explicitly modeling
the effects of limited sensor resolution on the represented spatial knowledge.  The
proposed representations therefore represent knowledge at the limited level of detail that
is available from sensors.  The proposed resolution concept also allows the specification
of data quality requirements (see section 9.1), the definition of resolution-conscious
operations such as "resolution-conscious overlay" (see section 9.2), and guarantees
displayability within the limitations of graphic media (see chapter seven).

The thesis has proposed four types of representations to express different types of
spatial knowledge at different levels of detail.  Namely, these representations are
"unclassified mixture fields", "classified mixture fields", "feature partitions", and "stand-
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alone features".  The related meta data and an exhaustive set of transformations between
such representation has been defined in chapter eight.

Chapters six, seven, and eight have demonstrated the validity of the proposed concepts.
In particular, chapter six has demonstrated that the proposed representations can be
finitely represented in data models.  Chapter eight has described finite implementations of
the proposed transformations.  Chapter seven has shown that the represented spatial
knowledge can be visualized.

Chapter nine has given examples of the potential impact of the proposed spatial theory
on data integration.  The discussion has included specification of minimal data quality
requirements, fitness for use assessment, automatic preparation of data sets for analysis,
resolution-conscious overlay that avoids slivers, and the design of a format-free GIS user
interface based on query optimization.

This thesis directly contributes to two of Goodchild’s four "hard challenges and
opportunities in GIS-related research"  [Goodchild, 1992b]:

Challenge 2:  "To devise a system of theory, terminology, and meta data that will support
improved sharing of spatial data".  Many problems of data sharing boil down to the
question of what information about the world is actually contained in a given data set.
The proposed system of representations and meta data directly answers this question in
respect of resolution issues.  Consequences of this approach that are relevant in the
context of data sharing are machine-interpretable meta data (see chapter eight), necessary
transformations across level of resolution and format (see chapter eight), system
supported fitness for use assessment (see section 9.1.3), and the integration of fields and
objects in both, raster and vector format, in a single consistent theory.

Challenge 3:  "To devise a GIS and spatial language that will present the user with a view
of continuous fields, hiding internal discretization81  except where necessary".  Since
discretization manifests in different finite formats, Goodchild asks for a format-
independent user interface.  As reasoned above, this thesis lies the foundation for the
design of such interfaces.

10.2  Future Work

This section discusses topics which are closely related to the presented research but were
excluded from this thesis.

Since this thesis focused predominantly on representation issues, GIS operations have
clearly been neglected.  While some operation examples were given in chapter nine, a

                                                

81 This thesis used the term "finitization" rather than "discretization"



169

comprehensive treatment of GIS operations in a resolution-limited environment is
necessary.  This includes format-independent definitions of operations, the specification
of their semantics in terms of resolution, and their propagation of meta data.

Fully integrated GISs with format-independent user interfaces have been outlined in
chapter nine.  While the proposed consistent spatial theory provides the basis for such
GISs, the necessary definitions of generic operations and equivalency rules are left for
future work.

An extension of a query optimizer of a format-independent user interface adapts the
concept to support access of information in a multiple representation environment.
Here, several alternative data sets are available for each query.  An optimizer extension
would allow use of the optimal input data sets for each query.

GIS operations usually impose certain requirements on their argument representations.
For example, the overlay operation can require both input layers to be of equal resolution.
Such requirements can be formalized by a GIS type system.  It specifies argument types
for operation arguments, and performs type checks.  The support of polymorphisms can
increase user friendliness of the interface.  For example, coercion could be used to
automatically transform the argument layers of an overlay operation to equal levels of
resolution.  A type system could be implemented as a further extension of a query
optimizer.  A simple GIS type system for representation types is currently developed as a
masters research under my supervision [Roth, 1994].

Section 9.1.3 discussed how coarsely resolved representations can be used to significantly
limit more detailed searches for areas with certain properties.  In an environment with
both coarse and detailed representations, this potentially makes hierarchical reasoning
possible that incorporates several representations at different level of resolution.
Research has to show how efficient such hierarchical reasoning is.

This thesis explicitly modeled uncertainty introduced by limited resolution and finite
representation.  It excluded other kinds of uncertainty, such as that introduced by the
confusion of different mixture classes in remote sensing classification.  An extension of
the knowledge representation scheme to include other kinds of uncertainty would
improve its practical value.

The proposed representation schema is based on two-dimensional space.  All the concepts
used are easily extendible to three- or higher-dimensional spaces.  Future research
could investigate such extensions.
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Appendix "A"--Intersection Areas of Disks with Half-
Planes and Disks

A.1  Intersection of Disk with Half-Plane

This section is concerned with calculating the intersection area and overlap area of a disk
intersecting with a half-plane  (see figure A.1).

h

a(b)

a(d)

Figure A.1:  Disk segment created by intersection with half-plane.

Figure A.2 introduces the necessary symbols.  O, A, B, C, and D. are distinct points.  The
symbols r, d, and h represent distances between such points.  In particular, r is the radius
of the disk, measured for example between O and A;  d is the distance between O and D,
and h the distance between D and C.  ϕ is half the opening angle of the sector, i.e. the
angle between OA and OC.
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O

A

B

CD

r

d h
ϕ

Figure A.2:  Symbols related to a disk sector.

We will be interested in the following areas:
a(d): the area of the whole disk
a(t): the area of the triangle between O, A, and B
a(s): the area of the whole sector involving the points O, A, C, and B.
a(b): the area of the disk segment deliminated by the arc (A,C,B) and the line (A,B)

With the radius r = 1, the following equations hold:
a(d) = πr2 = π
a(t) = sin ϕ  cos ϕ
a(s) = πr2  ϕ/π= ϕ
a(b) = a(s) - a(t) = ϕ  −  sin ϕ cos ϕ
a(b) / a(d)  =  ϕ / π   −  sin ϕ cos ϕ / π
h = h/r = r - d = 1 - cos ϕ

We use the last two formulas to calculate tables A1 and A2, where the intersection area of
a half-plane and a disk are related with its overlap depth.  A1 is organized by even values
of intersection area, A2 by even values of overlap depth.
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Table A.1:  Arc hight as a function of disk-segment area.

Table A.2:  Disk-segment area as a function of arc hight.

h / r
[%]

a(b) / a(d)
[%]

ϕ
[degrees]

11 2 27

20 5 36

32 10 47

42 15 54

51 20 61

59 25 66

67 30 71

76 35 76

84 40 81

88 42.5 83.22

93 45 86

96 47.5 87.8

100 50 90

h / r
[%]

a(b) / a(d)
[%]

ϕ
[degrees]

10 2 26

20 5 37

30 10 46

40 14 53

50 20 60

60 25 66

70 32 73

80 37 78

90 43 84

100 50 90
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A.2  Intersection of Two Disks of Equal Size

This section is concerned with calculating the non-intersecting area a(n) of a disk that
intersects with an equally sized disk  (see figure A.3).  This area a(n) shall be expressed
as a function of the distance d between the two disks.  It is obviously closely related to
the above problem, since the intersection can be constructed from two half-plane
intersections:

d

a(n)

Figure A.3:  Intersection of two disks of equal radius.

a(n) = a(d) - 2 a(b)
a(n) / a(d)  =  1  -  2 a(b) / a(d)

The distance d between the disk centers is related to the above used arc hight h by the
following formula:
d/2 = r - h   and thus
h = 1 - d/2    or
h/r = 1 - 1/2 d/r

Table A.3 shows the non-intersecting area as a function of d and is derived from table A2
using the above formulae.
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Table A.3:  Non-intersecting area of two disks as a function of distance of centers.

A.3  Intersection of Two Disks of Different Radius--Special Case

In this section we are interested in the intersection of two disks of different radius.  For
reasons of simplicity, we only consider the case where a smaller disk is totally contained
in the larger one  (see figure A.4).  The following shows how to compute the ratio of
areas as a function of the ratio of radii:
a1 = π r1

2

a2 = π r2
2

a1/a2  =  r1
2 / r2

2

and thus

a1/a2  =  (r1/r2)2  and

r1/r2  =  a1/a2’

d / r
[%]

a(n) / a(d)
[%]

0 0

20 14

40 26

60 36

80 50

100 60

120 72

140 80

160 90

180 96

200 100
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r1

Figure A.4:   Small disk contained in larger disk.

The following table A4 lists some points of this function:

Table A.4:  Ratio of radii in fuction of ratio of areas.   

ratio of area
[%]

ratio of
radii
[%]

5 22

10 32

15 39

20 44
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Appendix "B"--Derivation of Low Resolution Mixtures
from Higher Resolution Ones

Mixture components express how many percent of a resolution-limited disk’s area are affected by
a given geographic object.  This areal percentage is thus defined at the infinite resolution of
geographic reality.  When transforming knowledge from one resolution to another, areal
percentages have to be derived from already resolution-limited mixtures, rather than from
geographic reality directly.  This appendix discusses how to estimate areal percentages of
mixture components from limited-resolution representations and how much uncertainty is
introduced in the process as compared to deriving them directly at infinite resolution.

The mathematical tools used for this discussion come from linear system theory [Castleman,
1979, pp. 139].  In particular, the reasoning uses convolution and its properties of commutativity
and associativity (see [Castleman, 1979, p 145-148]).  To apply these tools, a first section shows
how the areal percentage of a single mixture component can be modeled by a convolution at
infinite resolution.  This process yields the true percentage of the mixture component.  The
second section describes a simple method to estimate the same mixture component indirectly
from a resolution-limited representation also using a convolution.  It further discusses the
difference between the true and estimated component.  Section 3 looks at the worst-case scenario
to give an estimation of the maximal possible estimation error.  Section 4 outlines a more
sophisticated estimation method that should drastically decrease the maximal error.

B.1  Mixture Percentage as a Convolution at Infinite Resolution

To derive mixture percentages in disks as a convolution, we first have to describe the
spatial distribution of geographic objects in the form of functions.  We here assume a
geometric interpretation of geographic reality where every point in Euclidean space is
associated with exactly one geographic object.  (The relations between this geometric
interpretation and the physical one were discussed in section 4.3.2).  The distribution of a
single geographic object can then be described by an object function o(x,y) that has the
value 1 in points associated with the geographic object and 0 otherwise.  Figure B.1 gives
an example of such a function in a map and a cross-section view.
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x

y white symbolizes 
function value of 0

gray symbolizes 
function value of 1

cross section

x

Cross Section View

Map View

o(x,y)

1

0

Figure B.1:  Example of an object function.

The mixture percentage m of this geographic object within a resolution-limited disk d
can now be computed as the integral over the disk area of the object function o,
normalized by the total area a of the disk (see figure B.2):

p  =  1/a ∫∫ o(x,y) dx dy    (1)

             in d

x

y Map View
disk d

Figure B.2:  Mixture percentage in a disk.
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To get closer to a convolution view, we modify equation (1) such that we integrate over
the whole Euclidean space.  This can be achieved by multiplying the object function with
a disk function D(x,y) that has the value 1/a inside the disk and 0 outside:

m  =   ∫∫ o(x,y) * D(x,y)  dx dy   (2)

over whole space

The disk function d(x,y) for a disk of radius r, centered on the origin is shown in figure
B3 in a cross section.

d(x,y)

x

1/a

0-r r

Figure B.3:  Disk function d(x,y) for a disk of radius r, centered on origin.

If the original disk of figure B.2 was centered on the point (u,v), equation (2) can be
rewritten using the disk function d of the origin, rather than D centered on (u,v):

m(u,v)  =   ∫∫ o(x,y) * d(u - x, v - y )  dx dy   (3)

      over whole space

By writing m(u,v), we expressed that the equation calculates the mixture for the disk in
the location (u,v).  The general equation for a two-dimensional convolution is given by
the following equation1:

h(u,v)  =   ∫∫ f(x,y) * g(x - u, y - v)  dx dy   (4)

     over whole space

                                                          

1 Adapted from Castleman’s equation (41) from page 148 by renaming of variables.
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The calculation of a mixture component given in (3) is thus a convolution and can be
written in the abbreviated form
m = o * d   (5)
where * is the convolution operator  (see Castleman, equation 33, page 146).  To get the
mixture percentage of a single mixture component of a single disk, we can use equation
(3) with fixed values for u and v.

B.2  Simple Estimation of Mixtures from Resolution-Limited Fields

While the previous section gave a equation for calculating mixture components, the
object function at infinite resolution is usually not available.  We therefore assume that
the only available information is given by a resolution-limited field representation.  For
the purpose at hand, we look at a single mixture component of this field and attempt to
estimate the mixture percentage of the same component in a field of coarser resolution.

Assume that the disk function d with radius r characterize the resolution of the available
field information, while the disk function D with radius R characterizes the resolution of
the requested field.  The available information about a single mixture component was
expressed above in equation (5).  The requested field information can then be expressed
by an equivalent equation (6) that uses a coarser resolution disk function:
m = o * d (5) :  available information
M = o * D (6) :  requested information
Since o is not available, M can be approximated by the following estimate E:
E = m * D (7) :  possible estimate

The next section will reason that E is a good estimate if the R is large compared to r.
Here we will compare the geometric meaning of the equations (6) and (7) in order to
understand the estimation better.

Using (5), equation (7) can be rewritten as:
E = (o * d) * D (8)

Since convolution is both commutative and associative (see Castleman, equations 32 and
39 on the pages 146 and 148),  equation (8) can be rewritten as follows:
E = o * (D * d) (9)

The most common interpretation of convolution is filtering with weighted averaging in a
moving window.  Equation (6) can thus be interpreted as a low-pass filtering of the
original object function.  The filter kernel D averages with constant sensitivity over the
disk area.  In this context, the difference of the requested information M and the estimate
E, are expressed in using different kinds of low-pass filters:  D for M, and (D * d) for E.
The filter kernel (D * d) can itself be seen as the original kernel D low-pass filtered with
d.  Figure B.4 illustrates the original and filtered version of the kernel in a cross section.
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x

1/a

R

2r

2r

D

(D * d)

Figure B.4:  Original (D) and smoothed (D * d) version of filter kernel.

Figure B.5 shows how the smoothed filter kernel affects the computation of the mixture
percentage.  A comparison with figure B.2 shows that the estimate E differs from the true
mixture M by integrating over the object function o with a changes sensitivity factor  (see
equation 2).  Compared to the D,  (D * d) is not sensitive enough just inside the boundary
of the original disk, and is too sensitive in a ring just outside that boundary.

x

y Map View D

d

area of decreased  
sensitivity

area of increased 
sensitivity

Figure B.5:  Effects of smoothed filter kernel on computed mixture percentage.

B.3  Maximal Error of Simple Estimation Method

The error made in estimating mixture percentages from resolution-limited fields depends
on the object function o.  The following examples shown in figure B.6 illustrate this:
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(c)(b)(a)

Figure B.6:  The approximation error depends on the object function:  If the component
is not present in the rings, the approximation is equal to the true value (a);  In
configuration (b), what is counted with too small sensitivity in the inner ring (horizontal
hatch) can be partly compensated for by sections counted with too high sensitivity in the
outer ring (vertical hatch);  Configuration (c) shows the worst case, since the too small
sensitivity effects the maximal possible component area and the outer ring cannot
compensate due to the absence of the component.

We use the worst case scenario (see B.6.c) to determine the maximal estimation error.
The true mixture value M is determined by integration given in equation (2):

M  =   ∫∫ o(x,y) * D(x,y)  dx dy   (2)

Since D is zero outside the disk, only the area inside the disk is of interest.  In the worst
case scenario, o is 1 everywhere inside the disk.  M therefore is the integral over D, i.e.,
the volume of a cylinder with radius R and height 1/a.  This true mixture value compares
to the estimate E that is the volume under the smoothed kernel shown as a cross section
in figure B.7.  Note that the outer ring is "cut off" since the object function o is zero in
that area.
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x

1/a

R

rotation axis

Figure B.7:  The estimated mixture percentage in the worst case scenario is the volume
under the body above (shown in a cross section).

The estimate E is thus too small by a percentage that is given as the ratio of the volume
differences.  Since the volume of the cylinder is 1 (by definition of D), the error
percentage is directly the volume difference.  The error volume is shown in figure B.8 in
a cross section.

x

1/a

R

rotation axis

P

2r

t

Figure B.8:  Error volume in a cross section.

The error is bound by the rotated triangle t shown in figure B.8.  The position of point P
depends on the ratio of the radii r and R.  Table A.3 in appendix A shows that in the case
of r=R, P is located in a height of 40% of the total cylinder height2.  The smaller disk d is
usually much smaller than D, however.  When d becomes increasingly small compared to

                                                          

2 The value of the smoothed filter kernel is given by the intersection area of the original disk D and the
smoothing disk d in the position where the center of d lies on the boundary of D.  This means that the distance
between the disks’ center points is equal to one radius.  Table A3 shows 60% non-intersecting area, which implies an
intersection area of 40%.



8

D, the height of P approaches 50% of the cylinder height3.  In the following, we use the
worst case of P in a height of 40% to compute an error bound.

To simplify the computation of the error bound further, we can cut the "ring" of the error
volume and bend it straight.  This is illustrates in figure B.9.  The initial error volume is
shown in (a), while the situation after is shown in (b).  If the deformation stretches the
inner edge while preserving original length of the two outer edges, the total volume
slightly increases.  This is compatible with the concept of an error bound.

cut

bendbend

(a) (b)

l

h

w
cross section

Figure B.9:  A deformation of the error volume simplifies the computation of its volume.

The dimensions of the deformed error volume are shown in figure B.9:  the length l is
equal to 2•R,  the width w is given by the smaller disk d with a diameter of 2r,  and the
height is 60% of the total height 1/a of the cylinder.  The area of the cylinder foot print
denoted by a is •R2.  The height h is thus 0.6 / •R2.  The total volume v is then given by
the following formula:

v   =   1/2 * h * w * l   =   1/2  *  0.6 / •R2  *  2r  *  2•R   =   1.2 * r / R

Table B.1 shows error bounds computed with this formula for different ratios of r and R.

                                                          

3 If D is very much larger than d, D’s curvature can be neglected and it can be approximated by a half-plane.
Table A1 in appendix A shows that the intersection area in this case is 50% of d.



9

Table B.1:  Error bounds for the estimation of mixture components depending on the
resolution difference of the source and target representation.

The table shows that a resolution change from 10 meters to 120 meters introduces a
maximal mixture uncertainty of 10%.

The above table gives a rough bound of the estimation error.  Figure B.8, the conservative
positioning of point P, and the increase of volume in the bending process suggest that the
actual maximal error is smaller by about a factor of 1.5 to 2.  Further, this error is only
reached in the worst case scenario that is rather unlikely.  In most cases, the estimation
error will be rather small since too small and too high sensitivity even out as in figure
B.6.b.

A more precise calculation of the maximal estimation error could be produced with an
image processing package:  D and d can be created analytically as images.  D can then be
filtered with d.  The result can be masked with D to cut off the outer ring.  The volume of
the smoothed cylinder can be computed by summing up the cell values.  The precision of
this numeric integration depends on the resolution of the raster approximation.

B.4  More Sophisticated Estimation Method

This section outlines a more sophisticated estimation method that reduces the maximal
error drastically.  Working out the details of this method is left for future research.

While the above simple estimation method used (d * D) as an approximation for D, the
more sophisticated method attempts to yield the true values (in the case of certain fields).
When using uncertain fields, a small error in the estimate can be expected.

Image restoration [Castleman, 1979, chapter 14] attempts to eliminate the effect of an
undesired filter by a convolution with its inverse.  A possible problem is that the inverse

ratio of radii r and R estimation error smaller than:

R =    4 r 30%

R =    6 r 20%

R =    8 r 15%

R =   12 r 10%

R =   24 r 5%

R =   60 r 2%

R = 120 r 1%
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filter does not always exist and can then only be approximated.  We use this approach of
inverse filtering to compute the true value of M:
M = o * D = (o * d)  *  (d-1 * D)

In this equation, the available representation is expressed by (o * d), while (d-1  * D) is
the sought filter necessary to compute M.  While d-1 does not exist, we show here that (d-

1 * D) exists in the one-dimensional case when R is a multiple of r:

In the frequency domain, both d and D correspond to a sin(x)/x type function4.  More
precisely, if d transforms into sin(x)/x,  D becomes sin(nx)/(nx) where n is an integer
expressing the ratio of R/r.  The inverse d-1 of d then becomes x/sin(x), since this
eliminates the effects of d.  While d-1 has discontinuities where sin(x) goes to zero, this
problem is avoided in (d-1 * D), since sin(nx) goes to zero in the same locations and
sin(nx)/sin(x) is always finite5.

With the spectrum of the filter (d-1 * D) being finite, an inverse Fourier transform is no
problem and the filter therefore exists.  It is actually easy to reason in the spatial domain
alone that such a filter exists (see figure B.10):  In a single location x3, the filter D
basically integrates the object function over a (one-dimensional) spatial interval I.  The
filter d does the same thing but for a smaller interval.  For example, i1 is the integration
interval of d in position x1.  It is now possible to construct the integration given by D in
location x3, as the sum of several integrations given by d in the locations x1 through x5.
These locations are chosen such that the related intervals just meet at their edges.

d(x1) d(x2) d(x3) d(x4) d(x5)

D(x3)integration interval I

i1

Figure B.10:  Relations between filters at different resolution.

Adding up (o * d) in the locations x1 through x5 is equivalent to a convolution6 of (o * d)
with a discrete filter that has non-zero sensitivity only in the locations corresponding to
x1 through x5.  This filter is thus obviously equal to (d-1 * D).  Note that the discrete

                                                          

4 For simplicity, constants are not considered in the discussion.

5 Sin(nx)/sin(x) is n for x = 0.

6 evaluated in the fixed position x3
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character of this filter is not surprising considering that the spectrum of (d-1 * D) is
periodic.

We have thus shown that (d-1 * D) exists in the one-dimensional case and is of a very
limited width.  I believe that the presented reasoning can be generalized for the two-
dimensional case.  Instead of using the one-dimensional Fourier transform, the rotation
symmetric filter kernels can be treated with the Hankel transform [Castleman, 1979, page
184].  The close similarity of the two-dimensional Hankel transform to the one-
dimensional Fourier transform suggests that a two-dimensional version of (d-1 * D) has
similar properties to its one-dimensional equivalent.
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Appendix "C"--Algebraic Specification of Certain
Resolution-Limited Representations

This appendix algebraically specifies some of the key terms of this thesis that are defined
informally in chapter four.  Algebraic specification is accepted in computer science as a high
level, formally precise description of models [Woodcock, 1988] [Thomas, 1988] [Horebeek,
1989] [Liskov, 1986].  The format of the specification is very similar to that used in [Dorenbeck,
1991].

An algebraic "sort" is similar to the object-oriented concept of "class" [Meyer, 1988].  However,
algebra does not distinguish between "objects" and "values" but rather treats everything as a
"value".  For example, it is not possible to modify an "object" while preserving its identity but
rather every possible state of an object is treated as an entity of its own.  A sort is a set that
contains all such entities, i.e., all allowable states.

A sort is specified in three steps:  (i) the sort is named, (ii) the signatures of operations on the sort
are specified, and (iii) equations capture the semantics of such operations.  The third step is
simplified by providing variables that can be used in the equations.

Rather than enumerating all elements of a sort, these elements are defined axiomatically
(implicitly) by the operations and equations (also called axioms).

Genericity and inheritance are used to keep the specification more compact.  The use and
difference of genericity and inheritance are discussed in detail in [Meyer, 1988].

In case of genericity, a sort can be defined generically such that the elements of the sort depend
on the parameter(s) of the generic definition.  The process of fixing the parameters of a generic
sort is called "instantiation".  All instances of a generic class feature all operations and equations
of the generic class, in a form that is adapted to fit the instantiation parameters.  It is important
for this thesis that different instantiations of parameters create different sets (i.e., sorts).  An
example of a generic sort is "Set" with the parameter "Element".  Element can then take on
values such as "point" or "object".  Evidently, sets of points are different from sets of objects.
The instantiated sort can be specified as "instantiation of <generic sort> (<parameter1>,
<parameter2>, ...)".  For example, a set of points is specified as "sort PtSet:  instantiation of
Set(Point)".  If generic sorts are used in the operations and equations, an "abbr" statement can
define abbriviations of the full sort identifiers.  For example, "abbr   Disk = Disk(resolution)"
allows use of the simple terms "Disk" instead of "Disk(resolution)".

Inheritance creates a new sort that inherits all operations and equations from its "super-sort" but
specializes the semantics of the super-sort by defining additional operations and/or equations.
For example, the sort "value" represents real numbers and the sort "percentage" is specified as
"Sort Percentage:  specialization of Value"  with an additional equation that limits Percentage
values to the interval [0, 1].
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In their most detailed format, operations are specified by their sort and their operation name:  for
example "Value.add" is the operation with the name "add" as specified in the sort "Value".
Within the specification of a sort, the sort as prefix to the operation name is omitted since it is
clear from the context.  Further, when the sort prefix is clear from the argument sort or the
uniqueness of the operation name, the following specification omits the sort prefix.  The shorter
specification text then improves readability.

Operations that are defined for a single argument are sometimes applied to whole sets of such
arguments.  In this case, the operation has to be applied to every element in the set which results
again in a set that contains all operation results.

The following specification defines key terms of chapter four.  Sorts such as "Boolean" that are
well known from mathematics are not completely specified.  If necessary for clarity, the
signature of operations is given;  the equations are always omitted, however.  The specifications
are followed by a brief explanation.

{------------------------------ Boolean ------------------------------}

Sort Boolean {as known from mathematics}

{------------------------------ Id -- Identifier ------------------------------}

Sort Id {unique identifier}

{------------------------------ Set ------------------------------}

generic Sort  Set with parameter Element {as known from mathematics}

Ops makeEmpty: -> Set

addElem: Set x Element -> Set

isElement: Element x Set -> Boolean

isSubSet: Set x Set -> Boolean

isPartition: Set x Set of Sets -> Boolean

isSingleton: Set -> Boolean

areDisjoint Set x Set -> Boolean

union: Set of Sets -> Set

intersection: Set x Set -> Set

noOfElems: Set -> Integer
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{------------------------------ Value -- real numbers ------------------------------}

Sort Value

Ops sum: Set of Value -> Value

ratio: Value x Value -> Value

isSmallerEqual: Value x Value -> Boolean

abs: Value -> Value

diff: Value x Value -> Value

min: Set of Value -> Value

isZero: Value -> Boolean

nonZero: Value -> Boolean

{------------------------------ Percentage ------------------------------}

Sort Percentage:  Specialization of Value

Var p: Percentage

Eq 0 • p • 1

{------------------------------ Point ------------------------------}

Sort Point

Ops make: Value x Value -> Point

x: Point -> Value

y: Point -> Value

Var xx, yy : Value

Eq x(make(xx, yy)) = xx

y(make(xx, yy)) = yy

The sort Point can be interpreted as a two-dimensional vector space that can underlie several

different metric space that define different distance functions.

{------------------------------ PtSet -- Point Set ------------------------------}

Sort PtSet: instantiation of Set(Point) {point sets}
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{------------------------------ EuclSpace -- Euclidean Space ------------------------------}

Sort EuclSpace:  Specialization of Point

Ops distance: Point x Point -> Value {Euclidean distance}

area: PtSet -> Value

isOpen: PtSet -> Boolean {point set topology}

isClosed: PtSet -> Boolean

boundary: PtSet -> PtSet

isPartition: Set of PtSet -> Boolean

medAxis: PtSet -> PtSet {medial axis}

cg: PtSet -> point {center of gravity}

The operations listed in the specificaton are only examples of all possible operations of

Euclidean Space.

{------------------------------ Disk ------------------------------}

generic Sort  Disk with parameter resolution: Value

Specialization of PtSet

Ops make: Point -> Disk

centerPt: Disk -> Point

Var center, p: Point

Eq (1) isSmallerEqual(distance(center, p), (resolution/2)) =>

isElement(p, make(center))

(2) centerPt(make(p)) = p

Disks are Euclidean point sets that are disk shaped.  An individual disk is specified by its center

point and the radius which is aways half of the sort parameter "resolution".  An instantiated sort

Disk(resolution=constant) contains infinitely many disks, all of the same radius.

{------------------------------ Region ------------------------------}

generic Sort  Region with parameter resolution: Value

Instantiation of Set(Disk(resolution))
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{-------------------------- ResLimSpace -- Resolution-limited Space ---------------------------}

generic Sort  ResLimSpace with parameter resolution: Value

Specialization of (Instantiation of Disk(resolution))

Abbr Disk = Disk(resolution),  Region = Region(resolution)

Ops distance: Disk x Disk -> Value

area: Region -> Value

boundary: Region -> Region

isPartition: Set of Region -> Boolean

Var d1, d2: Disk;  r: Region;  sr: Set of Region

Eq (1) distance(d1, d2) = EuclSpace.distance(center(d1), center(d2))

(2) boudary(r) = Disk.make(EuclSpace.boundary(Disk.center(r)))

(3) isPartition(sr) = EuclSpace.isPartition(Disk.center(sr))

ResLimSpace(resolution) is a subset of Disk(resolution) with additional operations and

equations.  The specialization of Disk to ResLimSpace is comparable to that from Point (i.e., a

vector space) to EuclidSpace (i.e., a metric space).  The operations of ResLimSpace are

structurally equivalent to those of EuclidSpace, i.e., there exists a homomorphism [Gill, 1976]

between the two sorts.  The 1:1 relationship between elements of the sorts is given by the

opeartion Disk.centerPoint and Disk.make (in both directions).  The 1:1 relationship between

operations is evident in the same operation name.  The homomorphism is used in the design of

the equations (1), (2), (3).  The operations listed in the specification are only examples of the full

set of possible operations.

{------------------------------ Atom ------------------------------}

Sort Atom

Ops location: Atom -> PtSet

id: Atom -> Id
property1:

...
propertyn:

method1:

...
methodn:

Atoms are the smallest discrete entities in the world.  They are characterized by their location.
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{------------------------------ GeoReal -- Geographic Reality ------------------------------}

Sort GeoReal:  Specialization of (Instantiation of Set(Atom))

Ops make: -> GeoReal

Eq isPartition(atom.location(make)

Geographic reality is basically a set of Atoms with the additional requirement that the locations

of atoms must form a partition of EuclideanSpace.

The proposed model of geographic reality is very similar to Goodchild’s model in case of using

only nominal values.  The difference is that the model of this thesis considers contiguous areas of

a constant nominal value entities.

{------------------------------ Obj -- Object ------------------------------}

Sort Obj:

Ops makeAtm: Atom -> Obj {single Atom}

makeAM: Set of Obj -> Obj {abstr. mechs.}

partOf: Obj x Obj -> Boolean

makeGeom: PtSet -> Obj {admin.objects}

location: Obj -> PtSet

contained: Atom x Obj -> Boolean

isObjPartit: Set of Obj -> Boolean

id: Obj -> Id
property1:

...
propertyn:

method1:

...
methodn:
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Var a:  Atom;  o:  Obj;  OS: Set of Obj;  geom:  ptSet

Eq (1) location(makeAtm(a)) = Atom.location(a)

(2) location(makeAM(OS)) = union(location(OS))

(3) isElement(o, OS) => partOf(o, makeAM(OS))

(4) contained(a, o) = isSubset(atom.location(a), location(o))

(5) contained(a, makeGeom(geom)) <=> isElement(cg(atom.location(a)), geom)

(6) isObjPartit = isPartition(location(p))

Objects are directly or indirectly composed from atoms.  MakeAtm creates an object from a

single atom.  MakeAM is designed to create higher level objects using the abstraction

mechanisms "classification", "generalization", "aggregation", and "association".  PartOf tests

whether a lower level object is part of a higher level one.

In the cases of classification and generalization, a new (super) class is defined.  The related

higher level object is the association of all objects that are members of this class (i.e., an instance

rather than a class).  The higher level object is thus based on common behavior of its component
objects.  The behavior of objects is described with the opeartions propertyi and methodi.  Note

that most programming languages limit the common behavior used in classification and

generalization to methods and excludes properties that are expressed in terms of values.  For

example, the class "teenagers" whose members have the property "age = [10, 20)" in common is

usually not supported by programming languages.  Since they are common practice in GIS, this

specification allows also property based classifications and generalizatons.

In case of using the abstraction mechanisms aggregation and generalization for makeAM, a crisp

object is defined based on strong relations/interactions between its lower level components.

MakeGeom is designed to deal with administrative units such as parcels, districts, states, or

countries that are usually defined as point sets in Euclidean space.  MakeGeom transformes this

geometric definition into an object that contains all atoms that are (fully or predominantly) inside

the specified geometry.  Note that the location of such an object is slightly different from the

pointset used in its definition, since it is the union of atom locations (see equation (5)).

The provided operations allow the creation of an unlimited number of objects at different levels

of abstraction.  These objects are potentially overlapping.  IsObjPartit is therefore provided to
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check whether a set of objects forms a partition of geographic reality, i.e., that the objects’

locations form a partition of Euclidean space.

{------------------------------ ObjPart -- Object Partition ------------------------------}

Sort ObjPart:  Specialization of (Instantiation of Set(Obj))

Var p:  ObjPart

Eq isObjPartit(p)

An object partition is a set of objects that partitions geographic reality.

{------------------------------ Mixture ------------------------------}

generic Sort Mixture with parameter objP:  ObjPart

Ops make: Set of (Obj x Percentage) -> Mixture

compnts: Mixture -> ObjPart

compPerc: Mixture x Obj -> Percentage

distance: Mixture x Mixture -> Percentage

Var m, m1, m2: Mixture;  o:  Obj;  p: Percentage;

s: Set of (Obj x Percentage)

Eq (1) compnts(m) = objP

(2) isElement([o, p], s) <=> isElement(o,  compnts(make(s))) and

compPerc(make(s), o) = p

(3) sum(compPerc(m, compnts(m))) = 1

(4) isNotElement(o, compnts(m) => compPerc(m, o) = 0
(5) distance(m1, m2) = 0.5 * sum(abs(diff(compnts(m1), compnts(m2))))

A mixture is an assignment of a percentage to every object contained in a object partition.  A

distance operation is defined to measured the similarity between two mixtures.  Minimal distance

is 0 and means that the mixtures are the same;  maximal distance is 1 (or 100%) and expresses

maximal disimilarity.
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{------------------------------ ArbArea -- Arbitrary Aarea ------------------------------}

Sort ArbArea

Ops make: ObjPart x PtSet -> ArbArea

location: ArbArea -> PtSet

mixture: ArbArea -> Mixture

Var o: Obj;  op: ObjPartit;  geom: ptSet

Eq (1) compnts(mixture(make(op, geom))) = op

(2) isElement(o, op) => isElement(o, compnts(mixture(make(op, geom))))

(3) isElement(o, op) =>

compPerc(mixture(make(op, geom)), o) =

ratio(area(intersection(location(o), geom)), area(geom))

An arbitrary area is defined by an arbitrary point set in geographic reality.  The determination of

the properties and behavior of such an area requires the relation to behavior carrying objects.

The behavior of an arbitrary area is thus approximatively described by a mixture of objects.  The

mixture percentages of objects are given by the area that they cover within the arbitrary area (see

equation 3).  This description is at a higher level of abstraction if higher level objects are used

instead of atoms.  The behavior description is an approximation since some objects are only

partly contained while the bahavior of objects is usually not dividable.

{------------------------------ MixField -- Mixture Field ------------------------------}

generic Sort MixField with parameter resolution: Value

Abbr Disk = Disk(resolution)

ops make: objPart -> MixField {sensoric perception}

mixture: MixField x Disk -> Mixture

isClassifd: MixField -> Boolean
obsProp1: MixField x Disk -> propType1

...
obsPropn: MixField x Disk -> propTypen

Var d:  Disk;  op: ObjPart

Eq (1) compnts(mixture(make(op), d)) = op

(2) mixture(make(op), d) = ArbArea.mixture(op, d)

(3) isClassifd(make(op)) = greaterThan(noOfElems(op), 1)

(4) obsProp = assumed to propagate from objects contained in area
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Sensoric perception (make) at the resolution specified by the parameter extracts mixtures and

observable properties for every disk of resolution-limited space.  The mixtures are derived from

knowledge about the world that is provided in the form of an object partition.  A classified

mixture field uses two or more objects in the object partition and thus in the mixture.  Mixtures

are thus the major property of classified mixture fields.  ObsProp stands for observable properties

that have different values for every disk.  They are important for unclassified mixture fields that

do not distinguish different objects and whose mixtures degenerate to the trivial form "100%

atoms".  Unclassified mixture fields and observable properties are included in this specification

to allow classifications that map unclassified mixture fields to classified mixture fields.  This

classification is based in the relations between observable properties and objects in the object

partition objP that cause such properties (equation (4))

{------------------------------ MixClass -- Mixture Class ------------------------------}

generic Sort  MixClass with parameter objP: ObjPart

Specialization of (Instantiation of Set(Mixture(objP)))

Ops distance: MixClass x MixClass -> Percentage

Var c1, c2: MixClass

Eq distance(c1, c2) = min(Mixture.distance(c1, c2))
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{------------------------------ MixPart -- Mixture Partition ------------------------------}

generic Sort MixPart with parameter objP: ObjPart:

Specialization of (Instantiation of Set(MixClass(objP)))

Abbr MixClass = MixClass(objP),  Mixture = Mixture(objP)

Ops makeStandAlone: Obj -> MixPart

Const transitionZone:  MixClass
Var mp:  MixPart;  mc, mc1, mc2:  MixClass;  o: Obj; m: Mixture

Eq (1) isPartition(Mixture, mp)

(2) isElement(transitionZone, mp)

(3) isElement(mc, mp) => MixClass.distance(mc, transitionzone) = 0
(4) isElement(mc1, mp) and isElement(mc2, mp) and

notEqual(mc1, transitionZone) and notEqual(mc2, transitionZone)

=> MixClass.distance(mc1, mc2) > 0

(5) noOfElems(makeStandAlone(o)) = 2

(6) makeStandAlone(o) => isElement(o, objP)

(7) isElement(mc(makeStandAlone(o)) and notEqual(o, transitionZone)

and isElement(m, mc)   <=>

nonZero(compPerc(m,o)

(8) isElement(transitionZone, makeStandAlone(o)) and isElement(m, transitionZone)

<=> isZero(comPerc(m, o))

A mixture partition is a partition of the set of all possible mixtures into mixture classes (equation

(1)).  The transition zone is always part of a mixture partition (equation (2)).  The transition zone

is neighbor of all other mixture classes (equation(2)) and thus separates all these other mixture

classes (equation (4)).

MakeStandAlone makes the mixture partition for a stand-alone feature.  Its semantics are

captured in equation (5) through (7):  The mixture partition of a stand-alone feature contains two

mixture classes (5).  MakeStandAlone requires that the argument object is part of the object

partition given as parameter of the generic class (6).  One of the mixture classes in

makeStandAlone(o) contains all mixtures that have a non-zero percentage of the argument object

o (7).  The transition zone on the other hand consists of all mixtures that contain zero percent of

the argument object (8).
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{------------------------------ Feature ------------------------------}

generic Sort  Feature with parameters resolution: Value, objP: ObjPart

Specialization of (Instantiation of Region(resolution))

Abbr MixField = MixField(resolution),  MixClass = MixClass(objP),

Disk = Disk(resolution)

Ops make: MixField x MixClass -> Feature {Sinton}

mixClass: Feature -> MixClass

Var d:  Disk; f:  MixField; mc:  MixClass

Eq (1) isElement(d, make(f, mc)) <=> isElement(mixture(f, d), mc)

(2) mixClass(make(f, mc)) = mc

A feature is the aggregation of disks that fall into the same mixture class to a region.  The

mixture class describes Sinton’s "control of the theme" and the resulting region correspond’s to

Sinton’s "measured location".

{------------------------------ FeatPart -- Feature Partition ------------------------------}

generic Sort  FeatPart with parameters resolution: Value, objP: ObjPart

Specialization of (Instantiation of Set(Feature(resolution, objP)))

Abbr MixField = MixField(resolution)

Ops make: MixField x MixPart -> FeatPart

makeStandAlone: MixField x Object -> FeatPart

Var mc:  MixClass;  mp: MixPart;  f:  MixField;  o: Object

Eq (1) isElement(mc, mp) <=> isElement(Feature.make(f, mc), make(f, mp))

(2) makeStandAlone(f, o) = make(f, MixPart.makeStandAlone(o))

A feature partition is a set of features that are derived from a mixture field by using all mixture

classes of a mixture partition (1).  The partition property of the mixture domain propagates to the

spatial domain of resolution-limited space.  A special case of feature partitions are stand-alone

features that are created by makeStandAlone (2).
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Appendix "D"--Definition of Medial Axis

This appendix defines the concept of medial axis of a point set.  Again, algebraic specification is
used.  The specification uses point sets (sort "PtSet") and closed disks (sort "Disk") that are
defined in Euclidean Space.
The medial axis transform ("ma") is presented in the form of an operation that maps a point set to
another point set:
ma: PtSet -> PtSet

For reasons of convenience, ma is composed of the two steps ma1 and ma2, such that
ma1: PtSet -> Set of Disk
ma2: Set of Disk -> PtSet

Let ps be a point set, then the relation between ma and ma1, ma2 is as follows:
ma(ps) = ma2(ma1(ps))

The semantics of ma2 are given by the following equations that use the variables:
ps:  PtSet;  sd:  Set of Disk
ma2(sd) = centerPt(sd)      {union of all center points of disks in sd}

The semantics of ma1 is given by the following two equations that use the variables:

d, d1:  Disk;  ps: ptSet

(1) union(ma1(ps)) = closure(ps)
(2) isElement(d, ma1(ps)) =>

not ∃ d1 such that isSubset(d, d1) and isSubset(d1, closure(ps))

The first equation specifies that the union of disks created by ma1 must completely cover the
closure of the argument point set.  The second equation requires that ma1 returnes the largest
possible disks to cover the closure of ps.
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