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ABSTRACT OF THE DISSERTATION
Land-atmosphere feedbacks in the energy, water, and carbon cycles of Earth system models

By

Paul Alexander Levine

Doctor of Philosophy in Earth System Science

University of California, Irvine, 2019

Professor James T. Randerson, Chair

Feedbacks between the land surface and the atmosphere are expected to play a role in the response

of the Earth system to climate change. Earth system models (ESMs) are designed to simulate

these processes, but their implementation is only as good as scientific knowledge and technological

capabilities allow. This puts ESMs in a dual role with respect to land-atmosphere feedbacks:

On the one hand, they represent the most important tools researchers have for understanding

land-atmosphere feedbacks and how they will affect the Earth system. On the other hand, they

acquire substantial uncertainty as a result of limitations in their representation of feedback processes.

In this dissertation, I used ESMs within the context of both roles. I used them as tools for

understanding how land-atmosphere feedbacks affect the Earth system and our understanding of it.

I also used observational data to constrain land-atmosphere feedbacks in ESMs with the goal of

evaluating and improving their ability to project future responses to climatic forcing.

The goal of my first science chapter was to evaluate how well ESMs represent seasonal-scale

feedbacks between terrestrial water availability and atmospheric conditions. I developed a metric

that was designed to use terrestrial water storage data from the Gravity Recovery and Climate

Experiment (GRACE) satellites in conjunctionwith other remote sensing data sources for atmospheric

temperature and humidity, precipitation, and downwelling shortwave radiation. First, I used GRACE

to identify the months of the year when the land surface loses more water to evapotranspiration

xiii



and runoff than it gains from precipitation. I then related the interannual water storage anomaly at

the onset of this interval with subsequent atmospheric conditions as a measure of the land surface

forcing on the atmosphere, as well as relating the atmospheric conditions with the subsequent water

storage anomaly as a measure of the land surface response to atmospheric forcing. By calculating the

equivalent quantities in an ensemble of ESMs, I demonstrated that the models tended to overestimate

the strength of these relationships. These results are consistent with complementary efforts using

other data sources and spatiotemporal scales, and suggest that overly simplistic representations of

the heterogeneity within vegetation cover and bare soil could cause models to overestimate soil

moisture feedbacks with the atmosphere.

My next chapter was partially motivated by a remaining question from the previous research: How

much of the measured relationships was driven directly by interactions between soil moisture and

the atmosphere, and how much is due to co-variability due to external forcing such as sea surface

temperature (SST) anomalies. An additional motivation stemmed from the well-known relationship

between the El Niño-Southern Oscillation (ENSO) and interannual variability in the growth rate of

atmospheric CO2 concentrations. This relationship is attributed primarily to the response of tropical

terrestrial ecosystems, and temperature has been widely implicated as the primary driver. However,

there is an ongoing debate in the literature suggesting that hydrology is also an important driver,

which, as I demonstrated in the previous chapter, is not independent of temperature.

To address these questions, I performed a set of experiments using the Energy Exascale Earth

System Model (E3SM). I modified E3SM in order to decouple the interannual variability of soil

moisture and SST, which allowed me to isolate the influence of each of these factors in the response

of the Amazon rainforest to ENSO. I found that in E3SM, soil moisture served to amplify and

extend the land surface response to ENSO in the Amazon. SST anomalies coupled with atmospheric

circulation drove an immediate response, which coincides with the Amazon wet season. As the

ecosystem was generally not water limited at this time, temperature played the dominant role in

carbon cycle variability. However, soil moisture anomalies persisted into the dry season, intensifying
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and extending the response of both temperature and the terrestrial CO2 flux. This highlights the

importance of considering the feedback between soil moisture and temperature when considering

their relative importance as drivers of CO2 variability in the Amazon.

For my final science chapter, I used a global dataset of vertically resolved soil radiocarbon

observations to evaluate the representation of soil carbon processes in the Community Land Model

(CLM) and the E3SM land model (ELM). I found that while ELM slightly overestimated radiocarbon

ages in temperate latitudes, it underestimated them in boreal and tropical latitudes, particularly at

depth, enough to lead to a young bias globally. CLM, on the other hand, underestimated radiocarbon

ages at all depths, latitudes, and vegetation types. This suggests that carbon was cycling through the

soil too quickly in the models, leading them to overestimate the rate at which soils could sequester

carbon in response to increasing atmospheric CO2 concentrations.

I used the observed radiocarbon profiles to constrain kinetic rate constants and transfer coefficients

in ELM, which improved the young age bias and improved a low bias in the tropical soil carbon

stock. Constraining the model increased the global soil carbon stock as a result of the improvements

in the tropics, and reduced the contribution of soil to the terrestrial carbon sink. This suggests that

soil is likely to respond very slowly to increasing atmospheric CO2 concentrations, and is unlikely

to serve as a short-term carbon sink.

These three chapters illustrate the range applications for ESMs in the context of land-atmosphere

feedbacks. ESMs can be evaluated for how well they reproduce observations of relationships

between multiple climatic variables, as in the first chapter. ESMs can be used to understand

land-atmosphere feedbacks in the Earth system, by isolating factors that are difficult or impossible

to disentangle in nature, as in the second chapter. ESMs can be constrained by observations in

order to reduce uncertainty in their simulation of land-atmosphere feedbacks, as in the final chapter.

This dissertation represents steps toward understanding how energy, water, and carbon flow through

terrestrial ecosystems, and improving the representation of these processes in ESMs.
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Chapter 1

Introduction

1.1 Feedbacks in the Earth system

One of the major challenges to making accurate predictions of future climatic responses to current

anthropogenic forcing is uncertainty in the quantification of feedbacks [Bony et al., 2006; Dirmeyer

et al., 2006a; Soden and Held, 2006; Booth et al., 2012; Arora et al., 2013; Bodman et al., 2013;

Friedlingstein et al., 2014; Berg et al., 2016a]. The concept of feedbacks was adapted from control

theory [Bates, 2007], and has long been recognized as a feature of the Earth’s climate [Hansen et al.,

1984; Woodwell et al., 1998], but the terminology can be somewhat ambiguous in the literature

[Sherwood et al., 2015]. In this dissertation, I use the term “feedbacks” to encompass all relationships

in which perturbations to a given variable cause a chain reaction of events that ultimately affect this

variable beyond its initial perturbation. In the case of positive feedbacks, the chain reaction pushes

the variable in the same direction as the initial perturbation, and the feedback loop will continue to

intensify until some external factor affects one or more elements in the relationship. In the case of

negative feedbacks, the chain reaction pushes the variable in the opposite direction as the initial

perturbation, yielding a dampening effect.
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In the Earth’s climate system, multiple interacting relationships can lead to overall feedback loops

with both positive and negative components. In these situations, quantification of the total feedback is

hindered by the inability to examine individual relationships in isolation. For example, anomalously

dry soil conditions would tend to reduce plant growth, which would reduce the withdrawal of water

from the soil in a negative feedback loop [Seneviratne et al., 2010]. At the same time, those drier

soils may increase temperature, and thereby evaporative demand, which would increase the amount

of water that is transferred from the soil to the atmosphere in a positive feedback loop [Dirmeyer,

2006, 2011]. In nature, it is extremely difficult to investigate these two relationships independently

of one another [Koster et al., 2006].

In addition, some feedback loops occur on time scales for which we lack sufficient observational

data to properly quantify [Manzoni and Porporato, 2009; Sun and Wang, 2012]. Nonlinearities in

relationships often means that the strength or even the sign of relationships in the present day may

not reflect those quantities in the future [Wang et al., 2014]. Furthermore, feedback relationships

may respond to thresholds that have not yet been realized in the historical record [Seneviratne et al.,

2010].

1.2 Feedbacks between the land surface and the atmosphere

The research presented here focuses on climate system feedbacks between the land surface and

the atmosphere. Many processes in the land surface are driven by atmospheric forcing from air

temperature, downwelling radiation, precipitation, humidity, and wind. At the same time, the

land surface acts as a lower boundary to atmospheric circulation, and various characteristics (i.e.,

albedo, roughness length, and stomatal resistance) and processes (i.e., infiltration, evapotranspiration,

primary production, and respiration) influence the atmosphere by regulating exchanges of energy,

water, and carbon.
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In this dissertation, I focus on two specific types of land-atmosphere feedbacks:

• Soil moisture feedback, in which the amount of water in the land surface exerts a limitation

on evapotranspiration, thereby influencing the amount of energy and water that are returned

to the atmosphere.

• The carbon-concentration feedback, inwhich atmospheric carbon dioxide (CO2) concentrations

influence the exchange of carbon between the land surface and the atmosphere.

The first limb of the soil moisture feedback, in which soil moisture influences the atmosphere, is

frequently referred to in the literature as land–atmosphere coupling [Koster et al., 2006; Seneviratne

et al., 2013]. This describes conditions inwhich soilmoisture exerts a limitation on evapotranspiration,

thereby controlling how net radiation is partitioned between turbulent fluxes in the planetary boundary

layer (PBL). For example, when evapotranspiration is limited by insufficient soil moisture availability,

the latent heat flux is decreased and the sensible heat flux is increased, limitingmoisture and increasing

temperature in the PBL [Findell and Eltahir, 2003a]. The sign of the overall feedback loop then

depends on the response of the atmosphere to the warmer and drier PBL. Reduced precipitation

and/or increased evaporative demand would cause even greater reductions in soil moisture, thus

constituting an overall positive feedback loop [Eltahir, 1998; Findell et al., 2011]. However, it is

also possible that the warmer PBL could enhance convective precipitation [Findell and Eltahir,

2003b; Taylor et al., 2012; Guillod et al., 2015], which would lead to soil moisture increases, thus

constituting an overall negative feedback loop.

The terrestrial carbon-concentration feedback is frequently referred to in the literature as the CO2

fertilization effect [Cox et al., 2013; Keenan et al., 2016]. Evidence that enhanced atmospheric CO2

concentrations stimulate increased vegetation growth has been observed in both field experiments

[Norby and Zak, 2011] and satellite remote sensing [Schimel et al., 2015]. This negative feedback

serves to mitigate rising atmospheric CO2 [Keenan et al., 2016], but the long-term efficacy of this

feedback depends on how carbon is transferred from more vulnerable forms in vegetation to more
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stable forms in the soil. Additionally, it is possible that enhanced carbon input to the soil could

actually stimulate heterotrophic respiration via priming [Heimann and Reichstein, 2008; Stockmann

et al., 2013], which would reduce the strength of the negative feedback loop.

1.3 Earth system models as tools to understand feedbacks

Earth system models (ESMs) are important tools for understanding land-atmosphere feedbacks and

their implications for a changing climate. When used in a coupled mode, i.e., with a land surface

model interacting with an atmospheric circulation model, ESMs simulate the feedbacks between

these two systems. ESMs overcome the previously mentioned limitations in two ways: first, they

allow the impact of feedbacks to be considered over longer periods of time than the observational

record and under conditions with no present-day analog, and second, they allow for mechanisms

to be excluded and included in ways that are not possible in the real world [Koster et al., 2006;

Seneviratne et al., 2013; Swann et al., 2016; Berg et al., 2016a; Kooperman et al., 2018]. However,

uncertainty in the representation of land-atmosphere feedbacks is a major source of divergence

among ESM projections of future climate change [Dirmeyer et al., 2006a; Friedlingstein et al.,

2014; Berg et al., 2016a].

Given the importance of ESMs as tools in combination with their uncertainty representing land-

atmosphere feedbacks, I consider there to be three broad categories of research in this area:

• ESMs can be evaluated based on observations in order to determine how well they can

represent land-atmosphere feedbacks.

• ESMs can be manipulated in order to simulate conditions that are not possible to observe in

the real Earth system.

• ESMs can be improved in order to better represent important processes.
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Each of these three categories is represented by a chapter in this dissertation, with Chapter 2 focusing

on evaluating feedbacks in multiple ESMs, Chapter 3 focusing on manipulating an ESM to tease

apart mechanisms that cannot be separated in nature, and Chapter 4 focusing on attempts to improve

an ESM.

Chapter 2 describes and discusses research I conducted to assess how well ESMs represent the

relationships that are part of soil moisture feedbacks. A substantial body of research has been

devoted to assessing the strength of land–atmosphere coupling in models [Koster et al., 2006;

Dirmeyer et al., 2013], but interpretation of the outcomes has been hindered by a lack of large-scale

observational data that allows the modeled relationships to be evaluated at a global scale. To

assess the strenth of soil moisture feedbacks at larger spatial scales, I developed a metric that was

specifically designed to take advantage of the Gravity Recovery and Climate Experiment (GRACE),

a gravimetric satellite remote sensing platform that measures terrestrial water storage anomalies

[Swenson and Wahr, 2006; Landerer and Swenson, 2012].

I combined GRACE data with global observations of temperature, humidity, precipitation, and

radiation from multiple additional satellite remote sensing platforms. I used this combination of

data to quantify the degree of coherence between terrestrial water storage anomalies, as a proxy for

soil moisture, and the above-mentioned atmospheric variables at multiple points in time. I then

calculated the same quantities from ESMs for comparison with the observational metrics, and was

able to demonstrate that ESMs tend to overestimate the strength of the relationships in this feedback

loop compared with the satellite observations, in a manner consistent with previous studies that

have relied on different data sources across shorter time scales and/or smaller spatial scales. This

chapter is a slightly modified version of the following publication:

Levine, P. A., J. T. Randerson, D. M. Lawrence, and S. C. Swenson (2016), Evaluating the

strength of the land–atmosphere moisture feedback in Earth system models using satellite

observations, Hydrology and Earth System Sciences, 20, 4837–4856.

http://dx.doi.org/10.5194/hess-20-4837-2016
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One of the remaining questions after the research for Chapter 2 was how much the relationships

quantified by the metrics resulted directly from coupling between the land surface and the atmosphere

relative to the amount they co-varied due to external forcing. In particular, the El Niño-Southern

Oscillation (ENSO) is known to exert an influence on both the land surface and the atmosphere,

particularly in the tropics, over the seasonal time scales I had focused on. ESMs should ideally be able

to reproduce the correct response to both direct land-atmosphere interactions and external forcing

from sea surface temperature (SST) anomalies associated with ENSO. The metrics I developed

serve as useful model benchmarks by measuring the combined effect of this combination of factors.

However, the question of how important each of these factors is relative to the other part of the

initial motivation for the research that I describe in Chapter 3.

The primary motivation for the research in Chapter 3 is related specifically to the forcing mechanisms

from soil moisture to temperature, and the impact of these processes on the terrestrial carbon cycle.

Interannual variability in the growth rate of atmospheric CO2 is highly correlated with ENSO, and

this relationship is attributed primarily to the tropical land surface [Cox et al., 2013]. However, the

relative importance of temperature versus hydrological anomalies is an area of ongoing debate in the

literature, with some studies arguing that temperature alone is a sufficient explanatory variable [Cox

et al., 2013; Piao et al., 2013;Wang et al., 2013, 2014], and others highlighting the importance of

precipitation and water storage variability [Foley et al., 2002; Zeng et al., 2005; Qian et al., 2008;

Keppel-Aleks et al., 2014; Wang et al., 2016a; Humphrey et al., 2018]. While the temperature

anomalies associated with ENSO are well-understood features of atmospheric circulation, it is

possible that some portion of those anomalies may be driven by contemporaneous soil moisture

anomalies via land–atmosphere coupling. In this case, some portion of the hydrologic influence on

the carbon cycle may be obscured by correlated temperature variability.

To assess the importance of this interaction, I conducted an experiment by manipulating an ESM to

decouple soil moisture variability from SST variability. I focused on the watershed of the Amazon

River, which has a strong response to ENSO that was reproduced well by the ESM. The ESM
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manipulation experiment allowed me to quantify how much of the temperature anomalies associated

with ENSO was caused directly by remote SST forcing, and how much was caused indirectly

by SST-driven soil moisture anomalies via land-atmosphere coupling. I found that the relative

importance of each factor depended on the season and location, with the eastern Amazon showing a

strong influence of land–atmosphere coupling on temperature, and a strong carbon cycle response

associated with soil moisture variability. This chapter is a slightly modified version of the following

publication:

Levine, P. A., J. T. Randerson, Y. Chen, M. S. Pritchard, M. Xu, and F. M. Hoffman (2019),

Soil moisture variability intensifies and prolongs eastern Amazon temperature and carbon

cycle response to El Niño–Southern Oscillation, Journal of Climate, 32(4), 1273–1292.

http://dx.doi.org/10.1175/JCLI-D-18-0150.1

The research conducted for Chapter 4 focused on the carbon-concentration feedback, and specif-

ically, improving how part of that feedback is represented in an ESM. While most work on the

carbon-concentration feedback in ESMs primarily considers the response of vegetation to elevated

atmospheric CO2 concentrations [Hajima et al., 2014; Sun et al., 2014], there has been less attention

paid to its consequences for long-term carbon storage in the soil [Todd-Brown et al., 2013]. This

may be partially due to the large uncertainties in the highly simplistic representations of soil carbon

in most ESMs. However, as ESMs adopt more sophisticated approaches toward modeling carbon, it

is essential to evaluate their simulations relative to observations, and improve them where possible.

In Chapter 4, I describe and discuss my attempt to improve soil carbon representation in an ESMwith

a relatively advanced soil carbon parameterization [Koven et al., 2013]. I used a large database of soil

carbon observations that include measurements of the radioactive isotope carbon-14 (radiocarbon).

Radiocarbon gives information about the rates at which carbon cycles from the atmosphere through

the land surface [Trumbore, 2009], which is an important characteristic in ESMs to which they are

highly sensitive [Friedlingstein et al., 2014]. I developed a method for calibrating an ESM using

the radiocarbon observations, in order to improve its representation of the soil carbon cycle and,
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ultimately, the carbon-climate feedback.

The calibrated ESM, by virtue of being observationally constrained with both radiocarbon ages and

total carbon stocks, reduces uncertainty in the simulated response to elevated atmospheric CO2

concentrations and global temperatures. The particular ESM I used for the calibration was able to

reproduce observed radiocarbon profiles comparatively well in its default parameterization, so the

calibration yielded relatively small changes. Nevertheless, the small simulated 20th-century soil

carbon sink in the default parameterization was reduced even further with the calibrated parameters.

This suggests that ESMs are likely to be overestimating global soil carbon accumulation, and that

soils are unlikely to serve as an effective sink for anthropogenic CO2 emissions.

Finally, in Chapter 5, I discuss the implications of my dissertation research, and potential directions

for future research.
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Chapter 2

Evaluating the strength of the

land–atmosphere moisture feedback in

Earth system models using satellite

observations

2.1 Introduction

Land–atmosphere feedbacks can result from the coupling of the terrestrial moisture state with

temperature, precipitation, or radiation [Findell and Eltahir, 1997; Koster et al., 2004; Betts

et al., 2014; Guillod et al., 2015]. Land–atmosphere coupling occurs when terrestrial moisture

anomalies influence the partitioning of surface energy between latent and sensible heat fluxes that,

in turn, influence the development of the planetary boundary layer (PBL) [Seneviratne et al., 2010].

Temperature coupling generally leads to a positive feedback, with wetter soil contributing to a

higher evaporative fraction (EF; the ratio of the latent heat flux to the sum of the sensible and latent
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heat fluxes), a lower surface temperature, and decreased evaporative demand [Hirschi et al., 2011;

Miralles et al., 2012]. Precipitation coupling can lead to both positive and negative feedbacks, as

the influence of EF on the development of the PBL can serve to either enhance or suppress cloud

formation and precipitation [Findell and Eltahir, 2003b; Guillod et al., 2015]. Cloud radiative

coupling can likewise lead to positive or negative feedbacks as insolation and evaporative demand,

as a function of cloud cover, are either enhanced or suppressed [Betts, 2009; Cheruy et al., 2014].

Temperature, precipitation, and radiation feedbacks each stem from coupling between terrestrial

moisture and evapotranspiration (ET), which occurs most strongly in conditions of intermediate

moisture availability [Seneviratne et al., 2010].

Evidence of these feedbacks has been observed in both in situ and remotely sensed data [Findell and

Eltahir, 1997; Eltahir, 1998; Guillod et al., 2014, 2015]. Some observational analyses have found

land–atmosphere feedback strength to be relatively weak compared to the influence of large-scale

atmospheric forcing [Alfieri et al., 2008; Phillips and Klein, 2014]. Other observational studies have

highlighted the role of these feedback mechanisms in the initiation and exacerbation of climatic

extremes such as droughts and heat waves [Hirschi et al., 2011;Miralles et al., 2012;Whan et al.,

2015].

2.1.1 Land–atmosphere coupling in climate models

Large-scale land–atmosphere coupling in general circulation models has been demonstrated by a

series of experiments from the Global Land–Atmosphere Coupling Experiment (GLACE) project

[Koster et al., 2004, 2006; Guo et al., 2006]. The GLACE efforts found that coupled climate models

differed greatly in the extent to which soil moisture variations affect precipitation and surface air

temperature, but models generally agreed on the spatial distribution of relative coupling strength,

with “hotspots” of strong coupling during boreal summer found in the central United States, northern

Amazonia, the Sahel, western Eurasia, and northern India. These hotspots were found in regions of
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intermediate soil wetness, which is consistent with the understanding that strong land–atmosphere

coupling occurs under conditions in which terrestrial moisture availability limits ET [Seneviratne

et al., 2010]. GLACE efforts also showed that correct soil moisture initialization improves seasonal

forecast skill of temperature and, to a lesser extent, precipitation, particularly in cases with a large

initial soil moisture anomaly [Koster et al., 2010, 2011].

Additional studies have considered land–atmosphere feedbacks in the coupled Earth system

models (ESMs) used by the Intergovernmental Panel on Climate Change (IPCC) [Seneviratne et al.,

2006, 2013; Notaro, 2008; Dirmeyer et al., 2013]. Notaro [2008] was able to confirm the boreal

summer GLACE hotspots, as well as identify several additional austral summer hotspots, in the

models used for the Fourth Assessment Report of the IPCC. Analysis of long-term projections from

the phase 5 of the Coupled Model Intercomparison Project (CMIP5) indicated an increased control

of land surface moisture on boundary layer conditions with climate change [Dirmeyer et al., 2013].

The GLACE-CMIP5 experiment found that modeled coupling strength plays an important role in

simulated response to global warming, with greater warming evident in more strongly coupled

models due to interactions between soil moisture, temperature, and precipitation [Seneviratne et al.,

2013; Berg et al., 2015; May et al., 2015].

Despite the importance of land–atmosphere coupling in both short-term predictability of climatic

extremes and long-term uncertainty in climate change, validation efforts have suggested that climate

models may not be correctly representing the strength, and in some cases even the sign, of these

feedbacks [Ferguson et al., 2012; Hirschi et al., 2014]. The metrics developed for the GLACE are

based on model experiments with no direct observational equivalents. However, correlation-based

metrics that do enable direct comparison with observations suggest that models may overestimate

land–atmosphere coupling strength [Dirmeyer et al., 2006a]. Zeng et al. [2010] found that version 3

of the Community Climate System Model (CCSM3) showed a higher coupling strength than

reanalysis or observational data. Mei and Wang [2012] found that coupling strength was reduced

when the Community Atmosphere Model (the land surface component of CCSM3) was updated
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from version 3 (CAM3) to version 4 (CAM4), though the coupling strength of the updated version

was still stronger than observations and reanalysis.

The Local Land–Atmosphere Coupling (LoCo) project has focused on developing a suite of metrics

for diagnosing land–atmosphere coupling strength in observations and models. LoCo metrics

consider both the influence of soil moisture on EF, and the influence of EF on diurnal-scale boundary

layer development [Santanello et al., 2009]. Ferguson et al. [2012] used the LoCo approach to

compare global remote sensing data sets of soil moisture, EF, and the lifting condensation level

with several land surface models and reanalyses. They found that even though the models were able

to simulate the correct spatial pattern of stronger coupling in moist–arid transitional regions, the

models tended to simulate a stronger influence of soil moisture on surface turbulent fluxes than what

was observed in the satellite data. Guillod et al. [2014] used a combination of flux tower, remote

sensing, and reanalysis data sets to demonstrate that the measured strength of coupling between EF

and precipitation depends greatly on the data source and scale, and that a strong coupling apparent

in a previous analysis [Findell et al., 2011] was not consistent with the observations.

While many of the previously mentioned studies have confirmed the long-standing suspicion that

models may overestimate coupling strength relative to observations, more recent work has indicated

that observations and models may not even agree on the sign of the precipitation feedback. Taylor

et al. [2012] performed a spatial analysis of the relationship between soil moisture and afternoon

precipitation using data from remote sensing, reanalysis, and coupled models. They found evidence

of a negative feedback in the remote sensing observations, with afternoon rain being more likely over

regions of drier soil, as opposed to the positive feedback that was apparent in the models. Guillod

et al. [2015] addressed these findings by replicating the spatial analysis and complementing it with a

temporal analysis. They found a negative spatial feedback, consistent with the one found by Taylor

et al. [2012], but a positive temporal feedback, with afternoon precipitation at a given location being

more likely after mornings of relatively moist soil.

These studies highlight the need for continued efforts toward evaluating the coupling strength of
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models relative to observations using a wide array of data sources at a range of spatiotemporal

scales. Apparent coupling strength depends greatly on the spatial scales of analysis [Hohenegger

et al., 2009], indicating that observations at the scale of flux towers should not be expected to

yield the same coupling strength as those at the scale of global climate models [Guillod et al.,

2014]. Consistency between the spatial scale of observations and models is greatly assisted by

Earth observation satellites that have been continuously monitoring several relevant land surface and

atmospheric variables over multiple years [Teixeira et al., 2014]. Measured or modeled coupling

strength will also depend on the timescales in question [Guillod et al., 2015], and while the LoCo

efforts have improved the understanding of synoptic and diurnal-scale mechanisms, there is an

additional need to examine these processes on seasonal to interannual time periods.

2.1.2 New metrics to benchmark land–atmosphere coupling in models

Here we introduce a set of metrics for measuring the strength of land–atmosphere interactions on

seasonal timescales by combining satellite remote sensing data sets of terrestrial water storage,

precipitation, shortwave radiation, and surface atmospheric temperature andwater vapor during 2002–

2014. These new metrics complement previous studies and are unique in several ways. In particular,

we designed our metrics to consider interannual variability of entire seasons in order to complement

the temporal resolution of LoCo metrics, which focus on day-to-day variability within one or more

seasons. Land–atmosphere coupling on seasonal timescales has been shown to be essential in

enabling tropical forests to survive during the dry season in the Amazon [Lee et al., 2005] and as a

mechanism enabling seasonal forecasts of fire risk [Chen et al., 2013, 2016].

Until recently, studies using remote sensing data to look for evidence of land–atmosphere coupling

relied on products that provide information about surface soil moisture [Ferguson et al., 2012; Taylor

et al., 2012]. Consideration of root-zone soil moisture has recently been accomplished only indirectly

via data-assimilated estimates [Guillod et al., 2015]. The inability to directly consider root-zone
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soil moisture has been suggested as an explanation for the relatively weak coupling observed using

remote sensing data [Hirschi et al., 2014]. In order to include root-zone soil moisture, as well as

other sources of moisture available across entire seasons, here we analyzed remote sensing data of

the entire terrestrial water storage (TWS) column.

The metrics introduced here were specifically designed to use the monthly TWS anomaly (TWSA)

product from the Gravity Recovery and Climate Experiment (GRACE) mission [Wahr et al., 2004;

Landerer and Swenson, 2012]. The GRACE TWSA product integrates soil moisture at all layers

along with surface, canopy, snow/ice, and aquifer storage, as each of these components represents

a potential source of moisture for fulfilling evaporative demand. For example, in areas where

agricultural ecosystems are important, diversion of lake and river water resources and withdrawal

from aquifers may contribute to irrigation fluxes and thus ET. Furthermore, surface storage of liquid

water and snow represents sources of water that are available for and potentially limiting to ET.

Under these conditions, month-to-month TWS anomalies capture portions of the terrestrial water

cycle that soil moisture alone may not.

Previous studies have largely focused on land surface moisture availability as a forcing mechanism

on the atmosphere, as this relationship has important implications for seasonal predictability as well

as the projection of the frequency and severity of climatic extremes. However, the land surface

response to the atmosphere is governed by many of the same processes through which terrestrial

moisture availability forces atmospheric conditions, and it determines the conditions that drive

subsequent land surface forcing. It is therefore critical to assess the response of land surface moisture

to atmospheric conditions, as an accurate representation of these processes is essential for generating

the correct terrestrial moisture variability that will go on to influence the atmosphere. As far as we

can tell, this response limb of the land surface feedback loop has not been systematically integrated

with existing analyses of land–atmosphere coupling strength.

Our globally applicable approach used the annual cycle of TWS drawdown and recharge to isolate the

months of the year during which the land surface loses moisture, which we refer to as the drawdown
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Table 2.1: Remote sensing products used for analysis.

Variable Abbr. Data product Spatial Temporal Reference
Terrestrial water storage TWS GRACE Tellus RL05.1 1◦ monthly Landerer and Swenson [2012]
Vapor pressure deficit VPD AIRS AIRX3STM v6 1◦ monthly Susskind et al. [2014]
Precipitation PPT GPCP 1DD v1.2 1◦ daily Huffman et al. [2009]
Downwelling shortwave SW↓ CERES EBAF Ed2.8 1◦ monthly Loeb et al. [2009]
radiation

interval (Figure 2.1a). We selected this interval because past work has shown that the land surface’s

influence on the atmosphere is most prevalent during summer in the Northern Hemisphere [Cheruy

et al., 2014; Phillips and Klein, 2014] and during the dry season in tropical forests [Harper et al.,

2013; Lorenz and Pitman, 2014]. This approach allowed us to investigate land surface coupling at a

global scale, and to extend metrics developed in previous work for pre-defined monthly intervals

corresponding to boreal summer [e.g., Koster et al., 2006; Guo and Dirmeyer, 2013] to be applicable

to any seasonality.

In our analysis, separate metrics were calculated to consider the influence of TWS at the onset of

the drawdown interval on atmospheric conditions in subsequent months, and simultaneously, the

influence of atmospheric conditions during the drawdown interval on terrestrial water storage at the

end of the season. We refer to these two relationships as the forcing and response limbs, respectively,

of the fully coupled feedback loop between the land surface and the atmosphere (Figure 2.1). We

estimated the strength of these feedbacks during 2002–2014 using GRACE and other satellite remote

sensing data (Table 2.1). We then used the satellite observations to evaluate the strength of these

feedbacks in the Community Earth System Model (CESM) Large Ensemble (LENS) [Kay et al.,

2014] and in several models that contributed simulations to CMIP5 (Table 2.2).
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Figure 2.1: Conceptual description of coupling metrics: (a) example TWSA climatology from a
typical midlatitude location in central North America (38◦N, 92◦W) illustrating the definition of
the drawdown interval as the months from the maximum TWSA through the minimum TWSA.
TWSAmax and TWSAmin are the TWSA values (in units of water height) during the maximum and
minimum months, respectively, and ATMdi is the atmospheric variable of interest averaged across
the months of the drawdown interval. (b) Representation of the interactions between TWS and
atmospheric component, demonstrating the forcing limb of the feedback loop, in which TWSAmax
forces subsequent atmospheric conditions, as well as the response limb, in which TWSAmin responds
to the atmospheric state during the drawdown interval.
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2.2 Methods

2.2.1 Remote sensing data

We obtained level 3 TWSA data from GRACE using the University of Texas at Austin Center for

Space Research (CSR) spherical harmonic solutions [Swenson, 2012]. Global land data at a 1◦

resolution were scaled using the coefficients provided by Landerer and Swenson [2012]. The study

period was limited to September, 2002 through November, 2014, in order to minimize temporal

gaps. GRACE data during the study period included eight non-consecutive and two consecutive

missing months, which were filled using linear interpolation. At each grid cell, the TWSA time

series was decomposed into linear trend, seasonal cycle, and interannual variability components

using ordinary least squares regression. This decomposition allowed us to estimate a mean annual

cycle at each grid cell with minimal influence of any long-term trend.

Level 3 near-surface temperature and relative humidity were obtained globally at a monthly, 1◦

resolution from the ascending (daytime) orbit of the Atmospheric Infrared Sounder (AIRS) platform

[Susskind et al., 2014]. Vapor pressure deficit (VPD) was calculated from the AIRS data using

the August–Roche–Magnus approximation to the Clausius–Clapeyron relation [Lawrence, 2005].

Precipitation (PPT) data were obtained from the Global Precipitation Climatology Project (GPCP),

a merged satellite and gauge-based data set [Huffman et al., 2009], at a daily, 1◦ resolution and then

integrated monthly. Downwelling shortwave radiation (SW↓) was obtained globally at a monthly, 1◦

resolution from the Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and

Filled (EBAF) surface product [Loeb et al., 2009]. More information describing the remote sensing

and reanalysis data products used in our analysis is summarized in Table 2.1.
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Figure 2.2: Month of maximum and minimum TWSA and the length of the drawdown interval from
GRACE (a–c) and the LENS ensemble mean (d–f). Months of maximum and minimum were based
on the climatology of detrended TWSA over the 146 months in the GRACE record.

2.2.2 Drawdown interval

As a first step, we used the mean annual cycle from GRACE to determine the months of the

maximum and minimum TWS anomalies in order to define the drawdown interval at each 1◦ land

grid cell (Figure 2.2). Northern Hemisphere middle and high latitudes exhibited a drawdown interval

beginning in the spring (MAM, March–April–May) and ending in the late summer or fall (ASO,

August–September–October), reflecting the timing of the boreal summer growing season. At lower

latitudes, the North American, African, and Asian monsoons were evident, with Mexico, India, and

the Sahel showing a drawdown interval beginning in September, after the monsoonal precipitation

has peaked, and ending the following spring after the winter dry season. The onset of the drawdown

interval reversed abruptly at the Equator in Africa and Asia, with the drawdown interval reflecting

a winter dry season in the austral low latitudes transitioning to a summer growing season in the

austral midlatitudes. Within the months of our study period, the portion of land grid cells that

experience 11, 12, and 13 complete drawdown intervals are 9.4, 90.5, and 0.1%, respectively.

Existing literature generally defines “land–atmosphere coupling” as the extent to which atmospheric
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conditions are forced by the land surface state, and would use the term “atmosphere–land coupling”

to refer to the land surface response to atmospheric drivers [Seneviratne et al., 2010]. In this study,

we develop what we refer to as “coupling metrics” to indicate the strength of both limbs of the fully

coupled land–atmosphere feedback loop. We use the terms “forcing” and “response” to indicate

whether we are considering the forcing of the atmosphere by the land surface, or the response of the

land surface to the atmosphere (Figure 2.1b).

We defined our forcing metric as the Pearson product-moment correlation coefficient between the

TWS anomaly at the onset of the drawdown interval (TWSAmax) and the surface atmospheric

conditions during the drawdown interval (abbreviated here as ATMdi). In our analysis, we selected

three variables to represent the atmospheric state: VPD, SW↓, and PPT. These atmospheric

variables were averaged during the drawdown interval, including during the months of climatological

maximum and minimum TWSA. We chose these variables because they represent various aspects of

evaporative supply (PPT) and demand (VPD and SW↓).

Similarly, we defined our response metric as the correlation coefficient between ATMdi and the land

surface state at the end of the drawdown interval (TWSAmin). Although most previous diagnoses of

land–atmosphere coupling has focused on the forcing limb, we argue the response limb is equally

important as a metric for model evaluation. Specifically, if variability in the balance between

evaporative supply and demand does not lead to the correct TWS variability, then the incorrect TWS

response will feed back into subsequent forcing on the atmosphere.

We note that these metrics do not provide distinctive information for measuring the strength of

land–atmosphere coupling or the land surface response. While the metrics include the influence of

direct land–atmosphere interactions, they are also potentially influenced by atmospheric and soil

moisture persistence, as well as remote forcing from sea surface temperatures (SSTs) [Orlowsky

and Seneviratne, 2010; Mei and Wang, 2011]. Nevertheless, these metrics may still serve as useful

benchmarks against which to evaluate the ability of ESMs to reproduce the proper relationships

based on the combination of these factors.
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Here we note that our evaluation of both the forcing and response metrics will follow a nomenclature

that considers strong coupling as acting in the direction of an overall positive feedback loop. In

regions with a strong positive feedback, higher than average TWS would be followed by lower than

average VPD, as more available water is able to fulfill evaporative demand. Therefore, strong TWS

forcing on VPD would be associated with a negative correlation coefficient. Higher VPD during the

drawdown interval would increase evaporative demand, potentially leading to a more negative TWS

anomaly; therefore, a strong response of the land surface to VPD would also be associated with a

negative correlation coefficient.

Because the partitioning of surface fluxes can, depending on the spatiotemporal scale, cause a

change of either sign to cloudiness and precipitation [Taylor et al., 2012; Guillod et al., 2015],

correlation coefficients of either sign could indicate strong land surface forcing on PPT and SW↓.

However, the response metrics would be expected to show greater consistency. Higher PPT during

the drawdown interval would be expected to increase TWS (positive correlation), while higher SW↓

would increase evaporative demand, thereby decreasing TWS (negative correlation). Therefore, to

maintain consistent nomenclature based on evaluating the strength of a positive moisture feedback,

we consider strong coupling in both the forcing and response metrics to be associated with a positive

correlation in the case of PPT and a negative correlation in the case of SW↓.

2.2.3 Community Earth System Model Large Ensemble

We used the metrics described above to evaluate feedback strength in the CESM LENS. LENS

comprises an ensemble of 38 fully coupled runs in which air temperature initial conditions are

perturbed slightly (by an amount less than the round-off error) to reveal the internal variability

inherent within the coupled climate model. LENS has demonstrated that the uncertainty in climate

projections due to internal climate variability inherent in CESM is comparable to the ranges of output

within the entire CMIP5 experiment [Kay et al., 2014]. LENS uses version 1 of CESM (CESM1)
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with version 5 of the Community Atmosphere Model (CAM5) and version 4 of the Community

Land Model (CLM4) at a horizontal resolution of 1◦. The ensemble run follows protocols from

the CMIP5 experiment, with historical radiative forcing for the 20th century and representative

concentration pathway 8.5 (RCP8.5) forcing for the 21st century.

The LENS data were chosen as a starting point for feedback evaluation for two reasons. First, the

availability of a TWS variable in these simulations enabled a direct comparison with metrics derived

using data from GRACE. The TWS field in CLM4 included water from surface and canopy storage,

snow and ice, soil moisture, and a dynamic aquifer, in addition to river water storage terms from the

coupled River Transport Module (RTM). The coupling of CLM4 with RTM has been shown to be

important for simulating both the annual cycle and interannual variability of TWS in comparison

with GRACE [Kim et al., 2009].

Second, the ensemble allowed us to test the importance of internal model variability for the diagnosis

of feedback strength. Because the complete satellite record was relatively short (containing no

more than 12 drawdown intervals at any location), comparison with an equivalent single time series

of model output could be influenced by a model’s internal decadal-scale variability [Kay et al.,

2014]. Analyzing the full ensemble from LENS enabled us to assess the sensitivity of our forcing

and response metrics to this variability. We extracted from each ensemble member the equivalent

months of the satellite record, with data prior to December 2005 coming from the historical runs,

and data from January 2006 onward coming from the RCP8.5 simulations.

2.2.4 Assessment of uncertainty

To assess the sensitivity of our metrics to observational uncertainty, we used a Monte Carlo sampling

approach. For each of the 38 members of LENS, we calculated coupling metrics 10 times with

random noise added to both TWSA and atmospheric variable time series at each grid cell. The noise

was randomly generated from a Gaussian distribution with a mean of zero and a standard deviation
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equal to 25% of the standard deviation of the original data. Comparing these results with those from

the unaltered data provided some indication of how much our coupling metrics are degraded by

random noise as an approximation of observational uncertainty.

In addition, to assess how our analysis may be influenced by uncertainty due to the selection

of satellite data, we substituted data from the European Centre For Medium-range Weather

Forecasting (ECMWF) Interim Reanalysis (ERA-Interim) [Dee et al., 2011] in place of AIRS-,

GPCP-, and CERES-derived variables. We only used atmospheric reanalysis data for this sensitivity

analysis, as these data benefit from assimilation of observations, while we continued to use GRACE

for TWSA. Comparing results from this GRACE-reanalysis hybrid to those using only satellite data

provided a general ndication of how sensitive our coupling metrics were to the data source.

2.2.5 CMIP5 analysis

To extend our analysis to models that did not output an explicit TWS field, we compared accumulated

residuals of precipitation, evapotranspiration, and total runoff (surface and subsurface) with the

explicit TWS variable in the LENS simulations. We also compared coupling metrics calculated

from LENS using accumulated residuals with those calculated from the explicit TWS field. After we

determined that the accumulated residuals of the water balance represented much of the variability

in the explicit TWS variable and yielded coupling metrics with similar distributions within LENS,

we calculated equivalent metrics for several model simulations in the CMIP5 archive (Table 2.2).

We selected the CMIP5 models that were similar to LENS (CESM1-CAM5 and CESM1-BGC) as

well as the models that participated in the GLACE-CMIP5 experiment [Seneviratne et al., 2013] for

which each necessary output field was available (CCSM4, GFDL-ESM2M, GFDL-ESM2G, and

IPSL-CM5A-LR).
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Table 2.2: CMIP5 models used for analysis.

Model acronym Atmospheric model Land surface model Horizontal
grid

Ensemble
size

Reference(s)

CCSM4 National Center for
Atmospheric
Research (NCAR)
Community
Atmosphere Model
version 4 (CAM4)

Community Land
Model version 4
(CLM4)

288× 192 6 Lawrence et al. [2011];
Neale et al. [2013]

CESM1-CAM5 NCAR Community
Atmosphere Model
version 5 (CAM5)

CLM4 288× 192 3 Lawrence et al. [2011];
Meehl et al. [2013]

CESM1-BGC NCAR CAM4 with
biogeochemistry

CLM4 288× 192 1 Lawrence et al. [2011];
Neale et al. [2013];
Lindsay et al. [2014]

IPSL-CM5A-LR Laboratoire de
Météorologie
Dynamique
atmospheric model
(LMDZ5A)

Organizing Carbon
and Hydrology in
Dynamic
Ecosystems
(ORCHIDEE)

96× 96 3 Cheruy et al. [2013];
Dufresne et al. [2013];
Hourdin et al. [2013]

GFDL-ESM2G Geophysical Fluid
Dynamics
Laboratory (GFDL)
Earth System
Model 2 (ESM2)

Land Model 3.0
(LM3.0)

144× 90 1 Shevliakova et al. [2009];
Dunne et al. [2012]

GFDL-ESM2M GFDL ESM2 LM3.0 144× 90 1 Shevliakova et al. [2009];
Dunne et al. [2012]

2.3 Results

2.3.1 Drawdown interval and interannual variability

A comparison of the months of maximum and minimum terrestrial water storage as determined by

climatologies of GRACE and the LENS ensemble mean indicated that the model largely reproduces

the timing of TWSA seasonality evident in the satellite observations (Figure 2.2). Geographic

patterns of seasonality were consistent between the model and observations, though a phase shift in

the drawdown interval is apparent in eastern Canada and central Eurasia where LENS had a 1-month

early bias for both the maximum and minimum TWSA, in southeast North America where the onset

of the modeled drawdown interval was slightly later than the observations, and in parts of east Asia

and Australia where the modeled drawdown interval ended earlier than in the observations. However,
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Figure 2.3: Interannual variability (standard deviation) of TWSAmax and TWSAmin from
GRACE (a, b) and the LENS ensemble mean (c, d).

despite capturing generally correct timing, the model exhibited higher interannual variability of

TWSAmax and TWSAmin across the 11–12 drawdown intervals compared with the satellite data

(Figure 2.3) particularly in the southern United States, southern South America, central and eastern

Africa, southern Asia, and eastern Australia. One possible explanation for this is the presence of

multi-year trends in aquifer storage in CLM4 that are not consistent with GRACE [Swenson and

Lawrence, 2015].

A comparison of the interannual variability of atmospheric variables across multiple drawdown

intervals between the model and satellite data showed various degrees of consistency (Figure 2.4).

The magnitude and geographic pattern of VPDdi was generally consistent, though LENS showed

greater interannual variability than AIRS in central and western North America, South America,

northern and southern Africa, and southern Asia. In the case of PPTdi, LENS showed less interannual

variability than GPCP in southeast North America and much of South America, but the two were
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Figure 2.4: Interannual variability (standard deviation) of atmospheric variables: VPDdi from
AIRS (a), PPTdi from GPCP (b), SW↓di from CERES (c) and the equivalent quantities from the
LENS ensemble mean (d–f).

largely consistent elsewhere. SW↓di was the least consistent between the model and satellite data, as

LENS showed greater interannual variability than CERES in southern North America, northern

Eurasia, most of Africa, and most of Australasia.

Comparing both the timing of TWS dynamics and the interannual variability of TWS and the

atmospheric variables between the observations and model output provides a context for interpreting

the correlation-based metrics we present next. Although there are some inconsistencies, as noted

above, the model largely reproduced the same patterns evident in the remote sensing data. In many

regions, the interannual variability in model output was similar to the observed variability, indicating

that CESM was able to simulate reasonably well the baseline properties (timing and variability) that

influence feedback dynamics.

2.3.2 Evaluating feedbacks for a single model simulation

The forcing metric for VPD derived from GRACE and AIRS showed regions of strong coupling,

in which TWSAmax was negatively correlated with VPDdi, in the northern Great Plains, northern
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Figure 2.5: Forcing and response metrics for VPD from GRACE/AIRS (a, b) and LENS ensemble
member 001 (c, d). Cross-hatching indicates a correlation coefficient that is statistically significant
at p ≤ 0.05.

South America, southern Africa, southern and western India, north central Eurasia, and northern

Australia (Figure 2.5a). Regions with strong positive correlation were much less common, and were

largely confined to areas of very low GRACE-derived TWSAmax variability (Figure 2.2a). Positive

correlations are unlikely to reflect direct land–atmosphere coupling. Instead, they demonstrate

how remote SST forcing, depending on persistence and time delays with atmospheric responses,

can lead to apparent negative relationships such as those demonstrated by [Wei et al., 2008]. In

comparison with the satellite data, the VPD forcing metrics from the first ensemble member of

LENS (Figure 2.5c) showed much stronger coupling in the southern and eastern Amazon, and

marginally stronger coupling strength across many regions in temperate Asia.

The response metrics for VPD showed much stronger coupling than the forcing metrics in both

the satellite data and the model (Figure 2.5b and d). Satellite data yielded negative correlation
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Figure 2.6: Forcing and response metrics for PPT from GRACE/GPCP (a, b) and LENS ensemble
member 001 (c, d). Cross-hatching indicates a correlation coefficient that is statistically significant
at p ≤ 0.05.

coefficients nearly everywhere, with positive correlations found only in arid regions of low TWS

variability. Particularly strong response metrics were found in eastern North America, northern

South America, western Eurasia, the Sahel, India, and eastern Australia. The first ensemble member

from LENS showed widespread negative correlations, and did not show the positive correlations

found in the satellite data. Response coupling in LENS was much more spatially homogeneous

than in the satellite data, though northern South America and western Eurasia still showed stronger

coupling than elsewhere.

Many of the areas that showed a strong forcing metric for VPD also showed a relatively strong forcing

metric for PPT, though the PPT forcing metric was overall weaker than that for VPD (Figure 2.6a).

The response metric for PPT was generally positive, indicating that for much of the globe, a more

positive TWSAmin was associated with higher precipitation rates (Figure 2.6b). Both the forcing
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Figure 2.7: Forcing and response metrics for SW↓ from GRACE/CERES (a, b) and LENS ensemble
member 001 (c, d). Cross-hatching indicates a correlation coefficient that is statistically significant
at p ≤ 0.05.

and response metrics were somewhat stronger in the LENS member relative to those evident in the

satellite data (Figure 2.6c and d).

The forcing metrics for SW↓ showed a mixture of positive and negative correlations, indicating that

higher TWSAmax was either positively or negatively coupled with shortwave radiation (Figure 2.7a).

This finding is consistent with both positive and negative coupling between cloud cover and terrestrial

moisture observed over shorter timescales [Taylor et al., 2012; Guillod et al., 2015]. The response

metrics for SW↓ were generally negative, indicating that greater seasonal shortwave radiation was

associated with more negative TWSAmin (stronger coupling), with western Africa being a notable

exception (Figure 2.7b). The LENS member showed generally stronger coupling in both the forcing

and response metrics for SW↓ (Figure 2.7c and d).
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Figure 2.8: Ensemble histogram of forcing metrics from the 38 simulations in LENS (gray bars)
compared to satellite observations from GRACE/AIRS/GPCP/CERES (solid black line) and the
alternate set of observations from GRACE and ERA-Interim (dashed black line), averaged across
land regions within different latitude bands.

2.3.3 Evaluating the CESM Large Ensemble

In temperate and tropical regions, forcing metrics were generally stronger in LENS (more positive

correlations for PPT, more negative for VPD and SW↓) than in the satellite and reanalysis data,

indicating a stronger land surface forcing of the surface atmospheric state in the model than in the

observations (Figure 2.8). In boreal regions, forcing metrics were much weaker (closer to zero) than
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Figure 2.9: Ensemble histogram of response metrics from the 38 simulation in LENS (gray bars)
compared to satellite observations from GRACE/AIRS/GPCP/CERES (solid black line) and the
alternate set of observations from GRACE and ERA-Interim (dashed black line), averaged across
land regions within different latitude bands.

at lower latitudes in both the satellite data and in LENS, indicating very little relationship between

TWSAmax and ATMdi. This is consistent with high levels of climate variability in many high-latitude

regions driven by the Arctic Oscillation, the North Atlantic Oscillation, and other dynamical modes

[Cohen and Barlow, 2005]. Furthermore, at high latitudes, ET is generally energy limited rather

than moisture limited, which would lead to weak forcing metrics as moisture availability would not

strongly influence atmospheric conditions.
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Response metrics were also generally higher in LENS than in both the satellite and reanalysis data

(Figure 2.9). Noticeable exceptions were the VPD and PPT response metrics in the tropics, which

were close to the satellite observations, and the boreal SW↓ and tropical PPT response metrics,

which were close to the reanalysis estimates. Despite the internal variability evident within the

model ensemble, and the difference between metrics as measured by the satellite data compared

with the reanalysis data, the general pattern indicated that modeled response metrics were higher

than those from observations and reanalysis.

2.3.4 Analysis of uncertainty

The internal variability across the ensemble of simulations in LENS yielded a distribution of forcing

and response metrics with a spread on the same order of magnitude as the difference between

modeled and satellite-derived zonal averages. The distribution of coupling metrics from LENS

revealed the sensitivity of the relationships to decadal climate variability given the relatively short

TWS time series. Comparing this distribution with the spread between the purely satellite-derived

metrics and GRACE-reanalysis hybrid indicated the sensitivity of our metrics to the choice of

data source. The differences between satellite and reanalysis metrics were generally greater in

the tropics, particularly for VPD and SW↓, and in midlatitude VPD for both forcing and response

variables. Elsewhere, the differences were generally similar to or less than the differences between

the observationally constrained zonal averages and the LENS distributions.

Comparing the original LENS forcing and response metrics with those calculated after adding

random noise to LENS (Figures 2.10 and 2.11) provided an estimate of the metrics’ sensitivity to

observational uncertainty. Adding random noise with 25% of the standard deviation of the original

data to the model time series of TWSA and atmospheric variables at each grid cell does degrade the

metrics slightly, causing areal averages to be closer to zero, but the differences are relatively small

compared to the differences between observed and modeled averages as well as the spread of the
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Figure 2.10: Ensemble histogram of forcing metrics from LENS (grey bars) and LENS plus random
noise (white bars), with the satellite observations from GRACE/AIRS/GPCP/CERES (solid black
line) and the alternate observations from GRACE and ERA-Interim (dashed black line), averaged
across land regions within different latitude bands.

ensemble itself. This sensitivity analysis provided evidence that observational errors likely have a

relatively small impact on the quality of our satellite-derived metrics.
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Figure 2.11: Ensemble histogram of response metrics from LENS (grey bars) and LENS plus
random noise (white bars), with the satellite observations from GRACE/AIRS/GPCP/CERES (solid
black line) and the alternate observations from GRACE and ERA-Interim (dashed black line),
averaged across land regions within different latitude bands.

2.3.5 Evaluating CMIP5 models

Comparison of the explicit TWS field from LENS with the accumulated residuals of the surface

water budget, as well as the forcing and response metrics calculated using both (Figures 2.12

and 2.13), indicated that the alternative formulation provides an acceptable substitute when an

explicit TWS field is not available from an ESM. More specifically, it suggests that water storage
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Figure 2.12: Ensemble histogram of forcing metrics from LENS with explicit TWS (grey bars)
and accumulated residuals of the water balance (white bars) with the satellite observations from
GRACE/AIRS/GPCP/CERES (solid black line) and the alternate observations from GRACE and
ERA-Interim (dashed black line), averaged across land regions within different latitude bands.

in rivers, lakes, and other parts of the terrestrial hydrologic system that are downstream from grid

cell-level runoff did not significantly degrade the set of metrics evaluated here. Some degradation of

the forcing metrics for PPT was apparent in the middle and low latitudes, but the remaining metrics

are not highly sensitive to TWS formulation. This suggests that metrics calculated for CMIP5 output

using accumulated residuals could be reasonably and effectively compared with the metrics derived

from LENS and the observations (Figure 2.14).
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Figure 2.13: Ensemble histogram of response metrics from LENS with explicit TWS (grey bars)
and accumulated residuals of the water balance (white bars) with the satellite observations from
GRACE/AIRS/GPCP/CERES (solid black line) and the alternate observations from GRACE and
ERA-Interim (dashed black line), averaged across land regions within different latitude bands.

As with LENS, the metrics derived from CMIP5 output indicated generally stronger coupling

metrics than the observations for both the forcing and response limbs. Exceptions include the VPD

response metric in the tropics, the boreal PPT and SW↓ forcing metrics, and the midlatitude SW↓

response metrics. The spread between various models was generally greater than the spread within

any single model with a multi-member ensemble. Of the four models that use CLM4 for the land

surface, the two that use CAM5 for the atmosphere (LENS and CESM1-CAM5) were clustered
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Figure 2.14: Scatter plots of forcing and response metrics for LENS and CMIP5 models with
observations, averaged across land regions within different latitude bands. For LENS, we show
metrics calculated using the explicit TWS output (darker gray) and TWSA estimates from the
accumulated residuals of the surface water balance (lighter gray). For CMIP5 models, we calculated
metrics using TWSA estimates from the accumulated residuals of the surface water balance.

close together, and exhibited generally the strongest forcing and response metrics. The two that

use CAM4 (CCSM4 and CESM1-BGC) were close to each other, but with lower metrics in both

forcing and response than the CAM5 models. The two GFDL models were both within the general

ensemble range in the metrics for both VPD and PPT, but GFDL-ESM2M was an extreme outlier in

both forcing and response metrics for SW↓.
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Comparison of CMIP5 and LENS models indicated a mostly positive relationship between forcing

and response metrics in temperate and tropical latitude bands. In boreal latitudes, there was little

distinction between the forcing metrics of the different models, all of which were close to zero,

though there were some clear differences within the response metrics. In temperate and tropical

latitudes, models that showed the strongest forcing metrics generally also showed the strongest

response metrics for a given variable. This relationship suggests that analysis of the response limb

of the feedback loop is important for understanding how conditions are set up for subsequent forcing

via land–atmosphere coupling.

2.4 Discussion

2.4.1 Benchmarking models with observed coupling metrics

The metrics developed here from satellite observations provide a means for evaluating land–

atmosphere feedback strength on seasonal to interannual timescales in coupled ESMs. The use of

correlation coefficients in this study does not enable a direct assessment of whether the relationships

are directly causal, as correlation between atmospheric and terrestrial conditions could result from

atmospheric persistence and remote forcing from SSTs [Orlowsky and Seneviratne, 2010; Mei

and Wang, 2011]. Nevertheless, the satellite-derived metrics provide a meaningful constraint

against which coupled models can be benchmarked, as these models need to correctly represent the

combined effects of persistence, remote SST forcing, and land–atmosphere coupling.

The forcing metrics, by indicating the relationship between antecedent TWS and subsequent

atmospheric characteristics, provide observational constraints to complement previous research in

large-scale land–atmosphere coupling in global models [e.g., Koster et al., 2006; Guo and Dirmeyer,

2013; Seneviratne et al., 2013]. Observed forcing metrics were found to be strong in some of the

regions of intermediate wetness in which ET is limited by terrestrial moisture availability, in addition
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to some regions in the moist tropics in which ET is generally considered to be energy limited.

Recent observational analyses by Hilker et al. [2014] demonstrated that at least in the Amazon, deep

rooting-zone water supplies can become seasonally depleted, leading to a stronger land–atmosphere

coupling. This is consistent with findings that deep rooted plants vertically redistribute soil water to

shallower layers, allowing higher levels of evapotranspiration to be sustained during the dry season

[Lee et al., 2005] . It is also consistent with recent work demonstrating that TWSAs can be used as

predictors for fire season severity in the Amazon [Chen et al., 2013].

The inclusion of response metrics in our analysis allows the full feedback loop to be considered by

recognizing the two-way dependence between the land surface and the atmosphere. The generally

higher correlation coefficients in observed response metrics indicates the importance of the land

surface response in priming the system for subsequent forcing on the atmosphere. For example, if the

TWS response is too strongly coupled to the atmosphere, a small change in atmospheric conditions

could yield an unrealistically large change in TWS. The unrealistically large TWS anomaly, in turn,

would have the potential to impart a larger land surface forcing of the atmosphere in subsequent

time steps. That models and ensemble members with high forcing metrics were also generally found

to have high response metrics (Figure 2.14) highlights the need to consider this.

Both the forcing and response metrics as calculated from the output of the ESMs analyzed in the

current study indicated generally stronger coupling compared with those derived from the satellite

observations. There are exceptions to this pattern, but it holds generally true, particularly across

middle and lower latitudes, and particularly in the LENS data. This is consistent with previous

studies conducted at finer temporal resolutions [Ferguson et al., 2012] and across more limited

spatial domains [Hirschi et al., 2011]. As described below, there are several possible explanations

as to why models may simulate a stronger feedback than is observed in the satellite record.
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2.4.2 Possible explanations for enhanced feedback strength in models

One set of possible explanations for the stronger coupling metrics in models relative to observations

involves models overestimating the amount of water available for ET during the drawdown interval.

The land surface influence on the atmosphere requires water to be a limiting factor to ET but not

limiting enough to prevent it altogether. Under more moisture-limited conditions, a drawdown

interval may experience multiple shorter time periods during which ET is inhibited due to insufficient

water, and the terrestrial moisture state exerts no control over flux partitioning. These periods

of insufficient moisture would tend to reduce the overall feedback strength integrated across the

duration of the drawdown interval. Model shortcomings that make water too readily available for

ET could reduce the amount of time spent in a periods of insufficient moisture during the drawdown

interval, thereby unrealistically strengthening the longer-term feedback. We note that the opposite

could take place under near-saturated conditions if a model overestimates the amount of time in

which ET is energy limited, but we would not expect these conditions to be as prevalent during the

drawdown interval that was the time period of focus in our analysis.

ESMs are known to simulate unrealistically homogeneous rainfall intensity, with overestimates of

drizzle and underestimates of large infrequent events [Dai, 2006]. Infrequent high-intensity rainfall

events would yield much more runoff from saturated soil, which would lead to a weaker connection

between the land and atmosphere than frequent low-intensity drizzle. If a model simulates too much

drizzle, precipitation could lead to too much storage, which would cause a model to overestimate

the response metrics. Too much storage also could allow water to be too readily available for

ET, causing an overestimate of the forcing metrics. Contributions from drizzle could be offset if

insufficient rainfall intensity does not allow for high enough throughfall or soil moisture recharge.

The issue of rainfall intensity is related to issues of convective parameterization (described below),

and may be addressed in future versions of ESMs through atmospheric superparameterization, in

which a model’s convective parameterization is replaced with embedded cloud-resolving models

[Kooperman et al., 2016].
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A misrepresentation of either the amount of bare soil or of bare soil processes also could lead

to overestimates of the amount of water available for ET and thereby coupling strength. Current

land surface schemes of ESMs are based on the “big leaf” model paradigm, which could lead

to overestimates of ET if runoff and groundwater recharge are underestimated as a consequence

of an unrealistically small bare soil fraction. In addition, even if bare soil fraction were correct,

overestimates of ET due to an incomplete representation of surface resistance of bare soil, as found

in CLM4 by Swenson and Lawrence [2014], would amplify positive feedbacks.

Additional explanations for why models may overestimate feedback strength include the parame-

terization of convection in the PBL or stomatal conductance responses to soil moisture. Previous

work using a regional climate model (RCM) with a higher spatial resolution have determined that

convective parameterizations are as important as spatial resolution in the simulation of precipitation

coupling [Hohenegger et al., 2009]. Taylor et al. [2013] similarly found parameterized convection in

an RCM yielding a positive coupling in contrast to the negative coupling found in both observations

and model runs with explicitly simulated convection. If negative coupling mechanisms are present

in reality but absent from models, this could contribute to an overestimate of coupling metrics

and underrepresentation of negative feedbacks in models. Similarly, the diversity of stomatal

conductance parameterizations in CMIP5 ESMs is relatively low [Medlyn et al., 2011; Swann et al.,

2016], and if stomatal apertures close too rapidly in response to an initial deficit in terrestrial water

storage, transpiration–humidity feedbacks may be intensified in an unrealistic manner.

One factor that could contribute toward stronger coupling metrics in models relative to observations

is the effect of observational uncertainty combined with a relatively short time series. Adding

random error to one or more variables in a correlation analysis will reduce the correlation coefficient,

and this degradation has been shown to be sensitive to the length of data sets used to establish

metrics of land–atmosphere coupling [Findell et al., 2015]. Given the relatively short time series

available for the current analysis, the correlation coefficients derived from remote sensing data may

be reduced due to observational uncertainty, unlike those derived from internally consistent models.
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We found that adding random noise to LENS at 25% of the standard deviation of the original data

caused some degradation of our area-averaged coupling metrics, but only by a small amount relative

to the difference between LENS and the observations (Figures 2.10 and 2.11). We chose 25%

as a qualitative upper bound on likely uncertainties introduced from random observational error

within the TWSA and atmospheric variable time series. This highlights the need for developing

more quantitative error estimates in remote sensing and reanalysis products. More generally, this

sensitivity analysis suggests that our coupling metrics, when averaged across large areas, may be

useful in identifying robust data–model differences.

Another possible explanation stems from the fact that our coupling metrics include co-variability

due to atmospheric persistence and remote forcing by SST [Orlowsky and Seneviratne, 2010;Mei

and Wang, 2011] alongside the direct influence of land–atmosphere interactions. For this reason,

we caution that overestimates of coupling metrics do not imply that the land–atmosphere feedback is

necessarily stronger, but could be due to an overestimate of SST-driven correlations between the

land surface and the atmosphere. Wei et al. [2008] demonstrated that negative correlations between

soil moisture and subsequent precipitation can be explained by precipitation persistence combined

with negative temporal autocorrelation of precipitation associated with intra-seasonal modes such as

the Madden–Julian Oscillation (MJO). Poor representation of the MJO period in CMIP5 models

leads to unrealistic patterns of precipitation persistence [Hung et al., 2013]. If models are failing

to capture MJO-driven negative correlations, this could lead to overly strong positive correlations

relative to observations. However, this would depend on the length of the drawdown interval relative

to persistence time and the period of intra-seasonal modes.

2.4.3 Uncertainties and future applications

The current study demonstrates the utility of the coupling metrics presented here, but conclusions are

limited by the time span of the satellite record. While LENS enables the internal variability of these
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relationships to be investigated within the model, it is unclear how much natural climate variability

affects these relationships in reality on timescales longer than the satellite record. Furthermore,

we acknowledge that observational error over an insufficiently long time series could reduce the

apparent strength of correlations [Findell et al., 2015]. Therefore, the utility of the coupling metrics

we present will increase alongside the length of the time series available from remote sensing

platforms. This emphasizes the importance of the GRACE follow-on mission [Flechtner et al.,

2014] and the need for continuity in the record between missions.

Furthermore, incorporating additional remote sensing products can reduce uncertainties inherent in

the satellite-derived data sets. We presented metrics derived using ERA-Interim in place of AIRS,

GPCP, and CERES in order to qualitatively illustrate this uncertainty. We found a non-negligible

amount of uncertainty in both forcing and response metrics due to inconsistencies between the remote

sensing and reanalysis products. Future work will address these uncertainties by incorporating

additional observations and observationally constrained data sets such as those from the Global Soil

Wetness Project [Dirmeyer et al., 2006b] and the Global Land Data Assimilation System [Rodell

et al., 2004]. In addition, as increasingly long time series of data become available from the Soil

Moisture Ocean Salinity [Mecklenburg et al., 2012] and Soil Moisture Active Passive [Panciera

et al., 2014] missions, the metrics developed here can be applied to those data sets as well, which

will elucidate the importance of surface soil moisture relative to the total TWS column in these

interactions.

Finally, the issue of causality and the possibility that correlations result primarily from atmospheric

persistence and remote forcing from SST rather than land–atmosphere interactions may be addressed

using sensitivity experiments similar to those of the GLACE and GLACE-CMIP experiments. While

the previous experiments have tested the importance of soil moisture interaction with the atmosphere,

additional experiments could expand upon these methods by treating SST variability similar to

terrestrial soil moisture availability. Such experiments could determine the relative importance of

remote SST forcing, including the effect of atmospheric persistence, and local land–atmosphere

42



coupling in explaining correlations between TWS and atmospheric conditions.

As these sources of uncertainty are diminished, the coupling metrics introduced here may be used to

assess whether improvements to model biogeophysics and parameterizations yield relationships that

are more consistent with observations. CMIP5 models are known to have a high ET bias [Mueller

and Seneviratne, 2014], which could be due in part to the explanations proposed as possible reasons

for overestimated coupling metrics in models. As data become available from phase 6 of the Coupled

Model Intercomparison Project (CMIP6), these metrics could provide an assessment of whether

improvements to ET processes in models also improves the relationship between the land surface

and the atmosphere.

2.5 Conclusion

We have developed a new approach for measuring the strength of the two-way feedback relationships

between TWS and the atmosphere. This approach was designed specifically to take advantage

of TWSA data from the GRACE mission, along with concurrently collected remote sensing and

reanalysis data sets of atmospheric variables, in a manner that could then be applied to Earth system

models. The coupling metrics described here quantify the relationships between both antecedent

TWS and subsequent atmospheric conditions, as well as antecedent atmospheric conditions and

subsequent TWS.

Regions of strong forcing, in which the TWSA at the beginning of the drawdown interval was

related to the subsequent atmospheric state, coincided with the semi-arid zones previously found

to be hot spots of land–atmosphere coupling, as well as some new tropical zones that may have

moisture-limited ET regimes. Regions of strong response metrics, in which the TWSA at the

end of the drawdown interval is related to the atmosphere, are much more widespread. Modeled

coupling metrics are generally found to be stronger than those observed in the satellite record. If
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this discrepancy is due to models overestimating the two-way feedback between the land surface and

the atmosphere, this could lead to models incorrectly projecting future warming trends and climatic

extremes [e.g., Hirschi et al., 2011; Seneviratne et al., 2013; Cheruy et al., 2014; Miralles et al.,

2014].

The results of this study are consistent with previous studies at smaller temporal scales indicating

land–atmosphere coupling strength may be stronger in models than in observations. There are

several possible mechanisms that may contribute to the overestimation of land–atmosphere coupling

in models, and future studies may incorporate the metrics introduced here to assess the role of these

mechanisms. These metrics will become increasingly useful as the temporal coverage of the remote

sensing record grows longer and additional missions come online.

Acknowledgements

This chapter was adapted from the following publication:

Levine, P. A., J. T. Randerson, D. M. Lawrence, and S. C. Swenson (2016), Evaluating the

strength of the land–atmosphere moisture feedback in Earth system models using satellite

observations, Hydrology and Earth System Sciences, 20, 4837–4856.

http://dx.doi.org/10.5194/hess-20-4837-2016

The copyright is held by the authors (2016), and the work is reproduced here under the Creative

Commons Attribution 3.0 license. We received funding support from the United States Department

of Energy Office of Science Biogeochemistry Feedbacks Scientific Focus Area and the Climate

Change Prediction Program, cooperative agreement (DE-FC03-97ER62402/A010). The CESM

Large Ensemble Community Project was supported by the National Science Foundation (NSF) with

supercomputing resources provided by the Climate Simulation Laboratory at NCAR’s Computational

and Information Systems Laboratory (CISL). We also acknowledge the World Climate Research

44

http://dx.doi.org/10.5194/hess-20-4837-2016


Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank

the climate modeling groups (listed in Table 2 of this paper) for producing and making available their

model output. For CMIP, the US Department of Energy’s Program for Climate Model Diagnosis and

Intercomparison provides coordinating support and led the development of software infrastructure

in partnership with the Global Organization for Earth System Science Portals.

45



Chapter 3

Soil moisture variability intensifies and

prolongs eastern Amazon temperature and

carbon cycle response to El Niño–Southern

Oscillation

3.1 Introduction

3.1.1 El Niño-Southern Oscillation and Amazon climate variability

El Niño-Southern Oscillation (ENSO) is the dominant mode of interannual climate variability in the

Earth’s tropics. During the positive phase of the ENSO cycle (El Niño), high sea surface temperature

(SST) anomalies in the eastern and central equatorial Pacific persist for several months during

boreal fall and winter. Positive SST anomalies are associated with a weakened Walker circulation,

which leads to climatic teleconnections globally, and particularly over the tropical land surface
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[Trenberth et al., 2002]. Under El Niño conditions, the tropical land surface as a whole experiences

anomalously high surface air temperatures, and anomalously low precipitation and terrestrial water

storage, while the opposite occurs during the negative phase of the ENSO cycle (La Niña) [Llovel

et al., 2011; Tyrrell et al., 2014; Reager et al., 2016].

ENSO-driven land surface responses are particularly prevalent in the Amazon River Basin [Marengo,

1992; Foley et al., 2002; Chen et al., 2011; de Linage et al., 2013]. Recent El Niño events have

exacerbated the effects of global warming, with the 2015–2016 El Niño leading to record-breaking

temperatures and extreme drought in the Amazon [Jiménez-Muñoz et al., 2016]. The Amazon is

known as a “hot spot” of land-atmosphere coupling, in which variation in soil moisture leads to

variation in the partitioning of turbulent surface fluxes between latent and sensible heat, subsequently

influencing development of the planetary boundary layer and local atmospheric conditions [Fu

et al., 2001; Lee et al., 2011; Ma et al., 2011; Sun and Wang, 2013]. An outstanding challenge is to

determine how much the Amazonian temperature anomalies during different phases of the ENSO

cycle are the direct result of atmospheric circulation changes due to SST variability, and how much

they are indirectly driven by the local land surface response to moisture redistribution [Sun and

Wang, 2013; Spennemann and Saulo, 2015; Levine et al., 2016].

The ENSO cycle is also associated with interannual variability in the atmospheric CO2 growth rate

(CGR), which increases during El Niño and decreases during La Niña [Bacastow, 1976; Keeling and

Revelle, 1985; Jones et al., 2001]. While interannual variability in the carbon sink of the tropical

land surface has been strongly implicated in CGR variability, there is ongoing debate in the literature

as to the exact mechanisms that lead to this relationship. Some studies attribute CGR variability

primarily to the effects of temperature on terrestrial ecosystems [Cox et al., 2013; Piao et al., 2013;

Wang et al., 2013, 2014]. Other studies indicate that CGR is driven at least in part by the terrestrial

response to precipitation and water storage variability [Foley et al., 2002; Zeng et al., 2005; Qian

et al., 2008; Keppel-Aleks et al., 2014; Wang et al., 2016a; Humphrey et al., 2018]. While the

relative importance of these drivers varies across tropical continents, both high temperature and
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low precipitation in the Amazon during a recent El Niño event were associated with an observed

positive CO2 flux anomaly [Liu et al., 2017].

3.1.2 Land-atmosphere coupling in the Amazon’s response to ENSO

Of course, the effects of temperature and hydrology on the terrestrial carbon cycle should not be

viewed as mutually exclusive. The role of land-atmosphere coupling in the Amazon suggests that

when considering the impact of SST forcing on terrestrial ecosystems, temperature anomalies and

moisture redistribution may not be independent. However, studies exploring the relative importance

of precipitation and temperature controls on terrestrial carbon cycle variability may obscure this

interdependence by externally forcing land surface models with time series of these variables from

observations or reanalysis [Zeng et al., 2005; Qian et al., 2008; Piao et al., 2013; Wang et al., 2013,

2016a].

The Amazon’s ecological response to ENSO is delayed by a series of cascading effects. ENSO

teleconnections with the Amazon are strongest during boreal winter, with El Niño events decreasing

precipitation between November and April [Chen et al., 2017]. These months coincide with the

dominant wet season for most of the Amazon. Therefore, even though years that begin under El

Niño conditions may receive anomalously low precipitation during these months, the terrestrial

ecosystem may not respond immediately, as water availability is not a limiting factor during the wet

season. The Amazon rainforest is known to sustain plant growth during the dry season by utilizing

water from deep soil, which can be hydraulically redistributed to the surface by deep roots [Nepstad

et al., 1994; Lee et al., 2005], and transferred from groundwater into the root zone through capillary

rise [Miguez-Macho and Fan, 2012]. Therefore, wet season precipitation deficits and concurrent

radiation surpluses may reduce the soil moisture store for the subsequent dry season, leading to

decreased evapotranspiration and primary production [Juárez et al., 2007; Chen et al., 2013; Hilker

et al., 2014; Bowman et al., 2017; Liu et al., 2017; Swann and Koven, 2017].
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Figure 3.1: Conceptual diagram of the hypothesized pathways through which SST and soil moisture
variability impact temperature and the carbon cycle. TSST is the portion of surface air temperature
anomalies driven directly by remote SST forcing. TSM is the portion of temperature anomalies
driven indirectly by SST-driven soil moisture anomalies via land-atmosphere coupling. CSST is
the portion of the carbon cycle anomalies driven by TSST . CSM is the portion of the carbon cycle
anomalies driven directly by soil moisture anomalies along with the portion of the temperature
signal driven by soil moisture anomalies (TSM).

Here, we were motivated by the hypothesis that some portion of the Amazon temperature anomalies

associated with ENSO was due to land-atmosphere coupling resulting from the cascading effects

of precipitation and subsequent soil moisture anomalies. We posited that following El Niño

events, drier soils in the Amazon would inhibit evaporative cooling, indirectly contributing to

warmer temperatures above and beyond direct SST forcing. Furthermore, we hypothesized that the

temperature anomalies driven by land-atmosphere coupling may have contributed to variability in

CO2 fluxes between the terrestrial ecosystem and the atmosphere. This hypothesis is illustrated

conceptually in Figure 3.1.

To test this hypothesis, we performed a series of mechanism-denial experiments in an Earth system

model. As described in Section 3.2.3.2.2, we first ran a control simulation driven by observed SSTs
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and with fully interactive land-atmosphere feedbacks. We then modified the land surface model

to assimilate soil moisture in order to isolate the atmospherically mediated effects of remote SST

variability on land surface temperature from those occurring indirectly as a result of SST-induced soil

moisture anomalies. Our goal was to determine how much the cascading effects of SST anomalies

on soil moisture anomalies contribute to interannual variability in surface air temperature and the

net CO2 flux over the Amazon basin.

3.2 Methods

3.2.1 Model description

We used version 0.3 of the Energy Exascale Earth SystemModel (E3SM), a branch of the Community

Earth System Model (CESM) version 1.3 beta that is now under development by the United States

Department of Energy Office of Science [Terai et al., 2017]. Global E3SM simulations were run in

a configuration similar to the Atmospheric Model Intercomparison Project (AMIP) [Gates et al.,

1999], with an interactive atmosphere and land surface, and with prescribed SSTs and sea ice

fractions. The atmosphere was simulated by version 5.3 of the Community Atmosphere Model

[Neale et al., 2012] with the spectral element dynamical core (CAM-SE) [Dennis et al., 2012],

with the land surface simulated by version 4.5 of the Community Land Model with prognostic

biogeochemistry (CLM4.5-BGC) [Oleson et al., 2013].

The prescribed SST and sea ice time series were from version 2 of the NOAA 1/4◦ daily Op-

timum Interpolation Sea Surface Temperature (OISSTv2) [Banzon et al., 2016]. We chose this

observationally-based data set in order to simulate the climatic response to the ENSO time series

that took place during the observational record. Radiative forcing of greenhouse gas and aerosols

was fixed at levels from the year 2000, so that the forced component of interannual variability would

be due entirely to SST anomalies. We ran E3SM simulations on a cubed-sphere grid of NE30
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(∼ 100-km grid spacing), with 30 vertical layers in the atmosphere and 10 hydrologically active

soil layers with exponentially increasing thicknesses to a depth of ∼3.8 m. History fields were

conservatively regridded to a 1◦ uniform equirectangular grid.

3.2.2 Experimental setup

The control run (hereafter referred to as the AMIP simulation) was forced with SSTs and sea ice

fractions from daily OISSTv2 data from 1982 through 2016. Soil moisture was simulated interactively

by CLM4.5-BGC, and recorded in each layer at every time step. We used this interannually varying

time series of soil moisture from the AMIP simulation, as well as its climatology, to prescribe

soil moisture in our subsequent experimental simulations (described below, and summarized in

Table 3.1).

Table 3.1: Description of E3SM experiments and applicability to the conceptual pathways from
Figure 3.1.

Simulation SST source Soil moisture Pathways
AMIP Time varying observations Interactive from CLM4.5 All
SSTvar Time varying observations Prescribed from AMIP climatology TSST & CSST
SMvar Observations climatology Prescribed from AMIP (time varying) TSM & CSM
NOvar Observations climatology Prescribed from AMIP climatology None

In the first experimental simulation (SSTvar), we maintained interannual variability in the SST

forcing, but we prescribed soil moisture in each layer to the annual climatology of the data from

the AMIP simulation. This served to isolate the direct influence of SSTs on interannual variability

in the Amazonian temperature (TSST in Figure 3.1) and carbon cycle (CSST ), while excluding the

influence of soil moisture (TSM and CSM). Our approach was similar to the Global Land-Atmosphere

Coupling Experiment of the Coupled Model Intercomparison Project, Phase 5 (GLACE-CMIP5)

[Seneviratne et al., 2013], but with prescribed SSTs that capture the observed ENSO time series.

In an additional experimental simulation (SMvar), we used a climatology of OISSTv2, but retained
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the interannual variability of soil moisture by prescribing the full time series of data from the

AMIP simulation. This approach, which enabled us to isolate the indirect effects of SST-driven soil

moisture variability from the direct effects of SST on atmospheric circulation, is similar to part of

the experiment in Orth and Seneviratne [2017], but with a soil moisture time series that was created

by forcing the climate model with observed SSTs. Finally, we performed a simulation that we refer

to as NOvar , in which both SSTs and soil moisture were prescribed to a climatology. Comparing

results from this simulation to the AMIP simulation enabled us to quantify the unforced internal

variability of the atmosphere apart from any contributions from either remote SST forcing or local

soil moisture response.

3.2.3 Observations and reanalysis

The Amazon is a region where interannual variability of climate is known to be strongly related

to interannual SST variability [Marengo, 1992; Foley et al., 2002; Chen et al., 2011; de Linage

et al., 2013]. The AMIP simulation, driven by observed SSTs, was expected to reproduce the

portion of the actual interannual variability of the Amazon climate that is controlled by SST-driven

teleconnections, to the extent the associated atmospheric bridge mechanisms are represented in the

model. We benchmarked temperature, precipitation, and total water storage anomalies from the

AMIP run with observational and reanalysis data sets in order to determine how well E3SM was

able to reproduce ENSO teleconnections impacting the land surface.

For benchmark temperature data, we used version 4.01 of the Climatic Research Unit Time Series

(CRU TS4.01) [Harris et al., 2014], the European Centre for Medium Range Forecasts Interim

Reanalysis (ERA-Interim) [Dee et al., 2011], and version 2 of theModern-Era Retrospective Analysis

for Research and Applications (MERRA-2) [Gelaro et al., 2017]. For benchmark precipitation data,

we used version 2.3 of the Global Precipitation Climatology Project (GPCP v2.3) [Huffman et al.,

2009] and the CPC Merged Analysis of Precipitation (CMAP) [Xie and Arkin, 1997]. Temperature
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and precipitation benchmark data sets were conservatively regridded to the same 1◦ equirectangular

grid as the model. For total water storage benchmarks, we used version 2 of the Gravity Recovery

and Climate Experiment (GRACE) Jet Propulsion Laboratory (JPL) RLO5M mascon solution

[Watkins et al., 2015;Wiese et al., 2015]. GRACE data were preserved in their original resolution

of 3◦ mascons on a 0.5◦ grid, while modeled total water storage data were regridded to the same

0.5◦ grid and subsequently averaged over each of the 3◦ GRACE mascons.

3.2.4 Temporal classification and aggregation

We calculated a Niño3.4 index that represented the mean SST anomaly averaged over the eastern

tropical Pacific (5◦S–5◦N and 170◦–120◦W). The monthly OISSTv2 data were smoothed with a

3-month center meanmoving window, and the anomalies were estimated using a monthly climatology

constructed from the entire time series (1982–2016). El Niño and La Niña years were defined

as years that begin during an interval in which the Niño3.4 index exceeds a threshold of ±0.5◦C

(positive for El Niño, negative for La Niña) for five or more consecutive months. According to these

criteria, El Niño years in our analysis were 1983, 1987, 1988, 1992, 1995, 1998, 2003, 2005, 2007,

2010, 2015, and 2016, and La Niña years were 1985, 1989, 1996, 1999, 2000, 2001, 2008, 2011,

and 2012.

To focus on interannual variability, we calculated monthly anomalies by subtracting linear trends and

long-term means. Several of the analyses described below involved aggregating monthly anomalies

into wet and dry seasons. We defined wet and dry seasons from a terrestrial perspective, based on the

mean annual cycle of total water storage in the Amazon basin measured by GRACE. As such, the wet

season comprised the three months with the largest increase in total water storage (January—March),

while the dry season included the three months with the largest decrease (July—September).

The SST anomalies used to define El Niño and La Niña years generally exhibited their largest values

(positive or negative) during or soon before the wet season. The initial onset of El Niño and La Niña
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conditions generally occurred around the end of the dry season. In consideration of the cascading

response of the Amazon to ENSO [Chen et al., 2017], we associated the dry season that follows the

peak of the SST anomaly with the El Niño or La Niña years. For example, the SST anomalies that

defined the 1983 El Niño began at the end of the 1982 dry season, but we considered only the dry

season in 1983 to be associated with this particular El Niño event.

3.2.5 Data analysis

Temperature variability decomposition

We assessed the relative contributions of various drivers of temperature variability by comparing

the variance of temperature anomalies from the AMIP simulation with those from the experimental

simulations. The magnitude of temperature variability resulting from remote SST forcing and local

land-atmosphere coupling may not be additive, because feedbacks with the atmosphere are prevented

in the simulations with prescribed soil moisture. However, subtracting the variance of temperature

anomalies in the NOvar from those of SSTvar and SMvar provides a useful indication of how much

additional variability is due solely to the direct SST forcing and subsequent soil moisture response,

respectively. Normalizing these quantities by the variance of the AMIP simulation indicates the

relative importance of each of these mechanisms in explaining the overall variability of temperature.

Model benchmarking

To determine mean state biases, we compared wet- and dry-season multi-year means of temperature

and accumulated precipitation in both the AMIP simulation and the benchmark data. We computed

summary statistics [Taylor, 2001] comparing monthly anomalies from benchmark data sets with

those of the equivalent quantity in the AMIP simulation to evaluate how well E3SM v0.3 was able

to simulate observed interannual variability. In order to assess how realistically the model responds
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to ENSO, we compared correlations of the Niño3.4 index with both model and benchmark data

during the wet and dry season. Finally, to gauge whether the model exhibited the correct sensitivity

of temperature to soil moisture, we replicated the analyses described below with the benchmark

temperature data sets.

El Niño–La Niña contrast

We calculated mean anomalies of surface air temperature, terrestrial ecosystem fluxes, and relevant

biogeophysical variables using all of the El Niño and La Niña years, respectively. The resulting

mean El Niño and La Niña composites do not represent the temporal structure of individual years

within the ENSO cycle. Nevertheless, they serve as useful indicators of the timing of the different

drivers of variability across the experimental simulations.

We defined the ENSO-driven contrast as the difference between the mean El Niño and La Niña

composites during the Amazonian wet and dry seasons. Calculating this metric for temperature and

the net CO2 flux provided the basis upon which we quantitatively estimated the conceptual pathways

in our hypothesis (Figure 3.1). We did not expect ENSO-driven contrasts to necessarily sum linearly

between simulations, due to internal variability in addition to soil moisture feedbacks in the coupled

AMIP simulation that were not captured by the mechanism-denial simulations. Therefore, we

estimated each pathway as the range bounded on one side by the fraction of the contrast produced by

including that mechanism, and on the other side by the fraction that denying that mechanism failed

to produce. The width of the ranges provided an estimate of the importance of nonlinearities and

soil moisture feedbacks (as well as any internal variability that may be present) in explaining the full

contrast of the coupled AMIP simulation.

For example, to consider the conceptual pathways for temperature (TSST and TSM in Figure 3.1), we

first calculated the ENSO-driven contrast (EC) in temperature for the AMIP, SSTvar , and SMvar

simulations, notated as ECAMIP, ECSST , and ECSM respectively, and then estimated each pathway

55



as

TSST ∈

{
x
��� ECSST

ECAMIP
≤ x ≤

(
1 −

ECSM

ECAMIP

)}
(3.1)

and

TSM ∈

{
x
��� ECSM

ECAMIP
≤ x ≤

(
1 −

ECSST

ECAMIP

)}
, (3.2)

with an equivalent set of estimates for carbon fluxes (CSST and CSM in Figure 3.1) based on the

ENSO-driven contrast of NEE.

3.3 Results

3.3.1 Drivers of interannual variability in temperature

The overall variability in detrended monthly surface air temperature as simulated by E3SM had a

variance of about 0.15–0.45 ◦C2 throughout most of the Amazon (Figure 3.2a), with a mean variance

of 0.32 ◦C2 across the entire watershed. The fractions of the variance attributable to each driver were

approximately additive, and indicated the relative importance of each driver across the watershed.

The variability was relatively high in the south, as a consequence of contributions from internal

atmospheric variability (Figure 3.2b). In central and western portions of the basin, where the total

variability was low, the variability was mostly driven by SST (Figure 3.2c). The contribution from

soil moisture variability was mainly observed in the eastern part of the Amazon basin (Figure 3.2d).
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Figure 3.2: Decomposition of interannual variability of surface air temperature in E3SM for
1982–2016. Variance of detrended monthly temperature anomalies from the AMIP simulation, in
units of ◦C2 (a). Ratio of the variance of temperature anomalies from the NOvar simulation to that
of the AMIP simulation (b). Ratio of the difference between the variances of temperature anomalies
from the SSTvar and NOvar simulations to that of the AMIP simulation (c). Ratio of the difference
between the variances of temperature anomalies from the SMvar and NOvar simulations to that of
the AMIP simulation (d).
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3.3.2 Benchmarking E3SM with observations and reanalysis

Model validation

E3SM produced mean annual temperature within the range of the benchmark data sets over most of

the Amazon, with the exception of the Andes (Figure 3.3). The AMIP run was cooler than the CRU

TS4.01 data by approximately 2–3 ◦C, warmer than the ERA-Interim data by approximately 1–2
◦C, and within about 1 ◦C of the MERRA-2 data over the non-montane portion of the basin. The

disagreement across benchmark data meant the bias between the model and any one dataset is less

than the bias between the gridded observations from CRU and the reanalysis data. E3SM represented

the magnitude of interannual variability within the range of the benchmark data (Figure 3.4), and

did a reasonable job simulating its timing (Figure 3.5).

E3SM simulated a mean precipitation that was considerably lower than the observations from GPCP

throughout most of the Amazon, producing excess rainfall only at the Andean margin (Figure 3.6),

with a bias pattern in this region consistent with other CMIP5 models [Joetzjer et al., 2013; Yin

et al., 2013]. A similar spatial pattern was evident in the magnitude of variability, as the ratio

of modeled to observed standard deviations (of monthly anomalies) was low throughout most of

the Amazon while high in the Andes (Figure 3.7). Despite relatively low correlation of modeled

precipitation anomalies with those of both precipitation data sets (Figure 3.8), modeled terrestrial

water storage anomalies during the dry season were correlated relatively highly with GRACE in the

eastern Amazon (Figure 3.9). This apparent contradiction likely results from the greater spatial

homogeneity of water storage relative to precipitation; even if the model could not capture the

precise spatial structure of precipitation anomalies, runoff distributed the resulting water storage

anomalies more evenly.
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Figure 3.3: The first row is the
mean temperature (in ◦C) in
the E3SM AMIP simulation
during the wet season (JFM)
and dry season (JAS) for the
years 1982—2016. The re-
maining rows are the tem-
perature biases (model mi-
nus benchmark data) for the
CRU TS4, ERA-Interim, and
MERRA-2 data sets for the
wet season (left column) and
dry season (right column) of
the same years. Crosshatching
indicates that the difference be-
tween means (n =35) is statis-
tically significant at p ≤0.05.
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Figure 3.4: The first row is
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Figure 3.5: Pearson’s corre-
lation coefficient for the tem-
perature in the E3SM AMIP
simulation versus those from
the CRU TS4, ERA-Interim,
and MERRA-2 data sets dur-
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Benchmarking the ENSO–Amazon teleconnection

E3SM simulated reasonably well the relationship between Niño3.4 SSTs during December–February

and precipitation anomalies during subsequent wet (January–March) and dry (July–September)

seasons (Figure 3.10). SST anomalies were negatively correlated with wet-season precipitation

in most of the northern Amazon basin, particularly towards the east, which was consistent with

both benchmark data sets. Statistically significant positive correlations in the southern Amazon

were present in E3SM but not in the benchmark data. During the dry season, E3SM showed a
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Figure 3.6: The first row is
the mean precipitation (in cm)
in the E3SM AMIP simula-
tion accumulated during the
wet season (JFM) and dry
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E3SM AMIP simulation accu-
mulated during the wet season
(JFM) and dry season (JAS)
across the years 1982—2016.
The remaining rows are the
ratios of the modeled stan-
dard deviation to those from
the GPCP v2.3 and CMAP
data sets during the wet sea-
son (left column) and dry sea-
son (right column) across the
same years.

63



G
P

C
P

Wet season (JFM)

15°S

0°

Dry season (JAS)
C

M
A

P

75°W 60°W

15°S

0°

75°W 60°W

1.0 0.5 0.0 0.5 1.0

Precipitation correlation coefficient

Figure 3.8: Pearson’s corre-
lation coefficient for the pre-
cipitation in the E3SM AMIP
simulation versus those from
the GPCP v2.3 and CMAP
data sets during the wet sea-
son (JFM, left column) and
dry season (JAS, right col-
umn) for the years 1982—
2016. Correlations were cal-
culated between time series
of the seasonal means across
the 35 years in the study pe-
riod. Cross-hatching indicates
that the correlation coefficient
was statistically significant at
p ≤0.05.

G
R

A
C

E

75°W 60°W

Wet season (JFM)

15°S

0°

75°W 60°W

Dry season (JAS)

1.0 0.5 0.0 0.5 1.0

Total water storage correlation coefficient
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Figure 3.10: Pearson’s correlation coefficient comparing the Niño3.4 index averaged over December–
February with precipitation anomalies from E3SM (AMIP simulation), GPCP v2.3, and CMAP
averaged over the wet season (January–March, left column) and dry season (July–September,
right column) for 1982–2016. Cross-hatching indicates the correlation coefficient was statistically
significant at p ≤ 0.05.
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Figure 3.11: Pearson’s correlation coefficient comparing the Niño3.4 index averaged over December–
February with total water storage anomalies from E3SM (AMIP simulation) and GRACE averaged
over the wet season (January–March, left column) and dry season (July–September, right column)
for 2003–2016. Cross-hatching indicates the correlation coefficient was statistically significant at
p ≤ 0.05.

stronger negative correlation in the eastern Amazon than the GPCP precipitation data and, to a

lesser extent, the CMAP data. However, the impact of this correlation bias only weakly affected soil

moisture variability because of the smaller overall amount of precipitation during this time of year

and carry-over in moisture storage from the previous wet season.

E3SM simulated ENSO teleconnections with total water storage in the Amazon qualitatively better

than precipitation, compared with the available data from GRACE (Figure 3.11). In the wet season,

E3SM and GRACE showed a similar pattern, suggesting that evapotranspiration and runoffmust have

had compensating biases. In the dry season, there was less agreement between E3SM and GRACE

in the west and central Amazon, but both the model and observations showed significant correlations
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in the east, despite less significant dry-season correlations in the benchmark precipitation data.

Although there were large differences among benchmark data sets, both model and benchmark data

showed a positive correlation between the Niño3.4 index and the surface air temperature anomalies

in the Amazon during both the wet and dry seasons (Figure 3.12). The correlations were higher

in the wet season than in the dry season across all data sets. The dry season exhibited both the

greatest disparity between benchmark data sets as well as the greatest disagreement between the

model and benchmark data. E3SM and MERRAv2 both showed significant correlations across most

of the Amazon during the dry season, but the ERA-Interim and CRU TS4.01 data sets each showed

respectively less.

3.3.3 Amazon temperature response to ENSO forcing

The ENSO-driven contrast

The ENSO-driven contrast in temperature from the different model experiments revealed the

season when and location where temperature anomalies originated from direct SST forcing and

land-atmosphere moisture coupling (Figure 3.13). During the wet season, El Niño years exhibited

higher temperatures than La Niña years throughout the Amazon, with most of the difference in the

AMIP simulation attributable to forcing from remote SSTs (the SSTvar simulation) and very little

from land-atmosphere moisture coupling (the SMvar simulation). During the dry season, however,

the ENSO-driven contrast was stronger in the SMvar simulation, particularly in the eastern part

of the basin. Thus, land-atmosphere moisture coupling played a major role in determining the

ENSO–temperature teleconnection during the dry season, and, more generally, in extending the

duration of ENSO-induced temperature anomalies within the Amazon.

We further examined temperature anomalies in the eastern Amazon (east of 60◦W) by exploring

their temporal evolution during a full ENSO cycle (Figure 3.14). Table 3.2 summarizes the seasonal
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Figure 3.12: Pearson’s correlation coefficient comparing the Niño3.4 index averaged over December–
February with temperature anomalies from E3SM (AMIP simulation), CRU TS4.01, ERA-Interim,
and MERRA-2 averaged over the wet season (January–March, left column) and dry season (July–
September, right column) for 1982–2016. Cross-hatching indicates the correlation coefficient was
statistically significant at p ≤ 0.05.
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means of wet- and dry-season contrasts in this region, which were used to quantitatively estimate

our hypothesized conceptual pathways reported in Table 3.3. During the wet season in the eastern

Amazon, the fully coupled (AMIP) temperature anomaly was 0.81 ◦C higher for El Niño years than

it was for La Niña years. Direct SST forcing reproduced 81% of that anomaly when isolated in

SSTvar , and failed to reproduce 82% when denied in SMvar . Thus, wet-season TSST was estimated

as 81–82%, and, similarly, TSM as 18–19%. During the dry season, the AMIP temperature anomaly

showed a second peak of nearly the same magnitude (0.71 ◦C). However, during this season,

land-atmosphere moisture coupling was the dominant driver (TSM = 67–82%), while direct SST

forcing had only a secondary effect (TSST = 18–33%).
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Figure 3.13: Difference between surface air temperature anomalies averaged across El Niño and La
Niña years during the wet season (January–March, left column) and dry season (July–September,
right column) in the AMIP, the SSTvar , and SMvar simulations. Cross-hatching indicates that the
difference between El Niño and La Niña means is statistically significant at p ≤ 0.05.
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Drivers of the ENSO temperature contrast

The role of land–atmosphere coupling in the eastern Amazon was evident in the time series of

evapotranspiration, downwelling shortwave radiation (insolation), and vapor pressure deficit (VPD)

anomalies (Figure 3.15). During the wet season, evapotranspiration and its drivers (insolation and

VPD) from the AMIP simulation exhibited a positive relationship with the ENSO phase, consistent

with an evaporative regime that is not moisture-limited [Seneviratne et al., 2010]. This positive

relationship was also present in the SSTvar simulation (though somewhat weaker), and there was no

wet-season evapotranspiration contrast in the SMvar simulation, indicating that evapotranspiration

was limited by radiation, rather than moisture availability.

During the dry season, the AMIP simulation maintained a positive relationship between the ENSO

phase and VPD, but the relationship with evapotranspiration was reversed, consistent with a

moisture-limited evaporative regime. The similarly large contrasts in the SMvar simulation were

consistent with the interpretation that soil moisture anomalies drove the temperature contrast during
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Figure 3.14: Temporal evolution of monthly temperature anomalies in the eastern Amazon in the
AMIP, SSTvar , SMvar , and NOvar E3SM simulations. Monthly surface air temperature anomalies
were averaged across all grid cells in the Amazon watershed east of 60◦W from the July preceding
each El Niño (red) and La Niña (blue) year through the following December. Individual years are
plotted with dashed lines, with a solid line for the mean of El Niño and La Niña years. Gray regions
delineate the months in the wet season (January–March) and dry season (July–September). Monthly
data were smoothed with a three-month centered moving average for clarity.
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Table 3.2: Differences between mean El Niño and mean La Niña anomalies in eastern Amazon (east
of 60◦W).

Wet season (JFM) Dry season (JAS)
AMIP SSTvar SMvar AMIP SSTvar SMvar

Temperature (◦C) 0.81 0.67 0.15 0.71 0.13 0.48
Vapor pressure deficit (hPa) 55.1 24.2 23.0 204 31.9 162
Insolation (W/m2) 7.69 2.04 4.34 1.83 2.13 -0.65
Evapotranspiration (mm/d) 0.12 0.08 0.03 -0.27 0.01 -0.31
Net primary production (gC/m2/d) -0.16 -0.07 -0.07 -0.47 -0.02 -0.43
Heterotrophic respiration (gC/m2/d) -0.01 0.07 -0.08 -0.16 0.00 -0.17
Net ecosystem exchange (gC/m2/d)? 0.16 0.14 -0.01 0.32 0.03 0.27
?Net ecosystem exchange is a positive flux to the atmosphere. It is the balance between net primary
production (positive is flux to the land surface) and heterotrophic respiration (positive is flux to
atmosphere), though the rows may not sum perfectly due to rounding error.

the dry season. Insolation contrasts were relatively low across the mean composites, but there was a

large degree of noise in the individual years and high contrast in the NOvar simulation, indicative of

higher internal variability during the dry season.

ENSO-driven temperature contrast in benchmark data sets

The E3SM temperature response to ENSO variability in the eastern Amazon falls within the range

of available benchmark data sets (Figure 3.16). Both the ERA-Interim and, in particular, the CRU

TS4.01 data sets showed a much weaker contrast throughout the year, and particularly during the dry

season, than the E3SM AMIP simulation. However, the MERRA-2 reanalysis showed a somewhat

stronger temperature contrast than the E3SM AMIP simulation, and it is the only benchmark data

Table 3.3: Contribution of SST and soil moisture variability to the differences in temperature and
the net CO2 flux (see Figure 1) between mean El Niño and mean La Niña anomalies, as percent of
the difference in the AMIP simulation, in eastern Amazon (east of 60◦W)

Temperature Net ecosystem exchange
TSST TSM CSST CSM

Wet Season 81–82% 18-19% 89–108% -8–11%
Dry Season 18–33% 67–82% 9–15% 85–91%
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Figure 3.15: Temporal evolution of monthly anomalies of biogeophysical variables in the eastern
Amazon in the AMIP, SSTvar , SMvar , and NOvar E3SM simulations. Monthly anomalies of vapor
pressure deficit (VPD), downwelling shortwave radiation (insolation), and evapotranspiration (ET)
were averaged across all grid cells in the Amazon watershed east of 60◦W from the July preceding
each El Niño (red) and La Niña (blue) year through the following December. Individual years are
plotted with dashed lines, with a solid line for the mean of El Niño and La Niña years. Gray regions
delineate the months in the wet season (January–March) and dry season (July–September). Monthly
data were smoothed with a three-month centered moving average for clarity.

set that, like E3SM, showed a dry-season contrast as strong as the one from the wet season. The

disagreement between benchmark data sets presented a challenge to evaluating the model; however,

there was some indication that the temperature response to ENSO in E3SM may be too strong,

particularly in response to soil moisture variability during the dry season.
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Figure 3.16: Same as Figure 3.14 but for the E3SM AMIP simulation alongside the CRU TS4.01,
ERA-Interim, and MERRA-2 benchmark data sets.

Lag-correlation analysis

A lag-correlation analysis demonstrated how soil moisture variability in E3SM served to intensify

and prolong the response of temperature in the eastern Amazon to SST forcing from the Niño3.4

region (Figure 3.17a). The SSTvar simulation exhibited the maximum correlation between SST

anomalies and eastern Amazon surface air temperature anomalies with a two or three months

lag in air temperature. The SMvar simulation exhibited a weaker but still significant maximum

correlation with a longer time scale, i.e., air temperature lagging SST by seven or eight months. The

lag-correlation structure of the AMIP simulation was in between those of the SSTvar and SMvar

simulations.

For the first few months of lag time, correlations from the AMIP simulation resembled those of

the SSTvar simulation, consistent with initial forcing by SST. But the AMIP structure then attained

a higher peak correlation at a longer lag time, and the predictability was prolonged consistent

with support from the soil moisture interaction revealed by the SMvar correlation. The lagged

correlations from benchmark data sets peaked somewhat earlier and lower than those from the AMIP

simulation (Figure 3.17b). This could also be interpreted as an indication of temperature responding

too strongly to soil moisture in E3SM. Alternatively, the timing inconsistency could have resulted
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Figure 3.17: Temporal structure of Niño3.4 correlations with surface air temperature in the eastern
Amazon for E3SM experiments (a) and benchmark datasets (b). Monthly temperature anomalies
averaged across all grid cells in the Amazon watershed east of 60◦W were correlated with the
Niño3.4 index using lead and lag times up to 12 months. Dashed horizontal lines indicate correlation
coefficients that are statistically significant at p ≤ 0.05. Monthly data were smoothed with a
three-month centered moving average for clarity.
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from a tendency for ESMs to exhibit a delay in the seasonal cycle of precipitation in this region

[Joetzjer et al., 2013].

3.3.4 ENSO response of the carbon cycle

The ENSO-driven contrast in net ecosystem exchange (NEE, positive flux to atmosphere) across

the E3SM experimental simulations showed a similar seasonal partitioning of drivers to that of

the temperature contrast (Figure 3.18). During the wet season, the AMIP simulation showed a

positive contrast throughout the Amazon basin, resulting from positive NEE anomalies (an increased

source/reduced sink of atmospheric CO2) during El Niño and negative anomalies during La Niña.

This contrast was present, though reduced in strength, in the SSTvar simulation, and was largely

reversed in the SMvar simulation. During the dry season, there was a strong regional difference,

particularly in the eastern Amazon, in both the AMIP and SMvar simulations that was absent in

the SSTvar simulation. This partitioning of drivers was particularly apparent in the east, which we

further examined through the time series of NEE and the ecohydrologic drivers of NEE (Figure 3.19).

Interannual anomalies in net primary production (NPP) were driven primarily by soil moisture

variability rather than direct SST forcing. NPP was suppressed by drier soils under El Niño

conditions and enhanced by wetter soils under La Niña conditions throughout the year in both the

AMIP and SMvar simulations, with a substantially larger contrast in the dry season than in the wet

season. During the wet season, direct SST-driven temperature and radiation anomalies of the same

sign (Figures 3.14 and 3.15) had opposite effects on NPP, but the influence of temperature was

dominant, e.g., higher El Niño temperatures reduced NPP more than it was enhanced by increased

sunlight. However, these NPP contrasts were small compared with those caused by soil moisture

variability, particularly during the dry season.

Soil moisture variability was also the dominant driver of anomalies in heterotrophic respiration, but
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Figure 3.18: Difference between NEE (positive flux to atmosphere) anomalies averaged across
El Niño and La Niña years during the wet season (January–March, left column) and dry season
(July–September, right column) in the AMIP, the SSTvar , and SMvar simulations. Cross-hatching
indicates that the difference between El Niño and La Niña means is statistically significant at
p ≤ 0.05.
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Figure 3.19: Temporal evolution of monthly anomalies of ecosystem variables in the eastern Amazon
in the AMIP, SSTvar , SMvar , and NOvar E3SM simulations. Monthly anomalies of net primary
production (NPP), heterotrophic respiration (RH), and net ecosystem exchange (NEE) were averaged
across all grid cells in the Amazon watershed east of 60◦W from the July preceding each El Niño
(red) and La Niña (blue) year through the following December. Individual years are plotted with
dashed lines, with a solid line for the the mean of El Niño and La Niña years. Gray regions delineate
the months in the wet season (January–March) and dry season (July–September). Monthly data
were smoothed with a three-month centered moving average for clarity.

not necessarily for NEE. Dry El Niño soils reduced respiration and wet La Niña soils increased it

throughout the year, particularly during the dry season. However, the magnitude of these effects

relative to NPP led to distinct differences between the wet and dry seasons.

During the wet season, the coupled ENSO-driven contrast in eastern Amazon NEE was 0.16 gC/m2/d

(Table 3.2). Soil moisture effects on NPP and respiration were approximately equal, yielding only a

small NEE contrast in the SMvar simulation. At the same time, respiration anomalies driven by
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direct SST forcing on temperature had a similar magnitude to the concurrent NPP anomalies but

with the opposite sign. As a result, wet-season NEE anomalies were larger than the constituent NPP

and respiration anomalies in both the AMIP and SSTvar simulations. Therefore, despite substantial

soil moisture effects on the components of NEE, wet-season CSM was close to zero while CSST was

close to 100% (Table 3.3).

By the dry season, the fully coupled NEE anomalies grew to twice the magnitude of those occurring

during the wet season, with an ENSO-driven contrast of 0.32 gC/m2/d. Soil moisture effects on

NPP and respiration were still of the same sign, but the effect on NPP was larger. Therefore, while

respiration anomalies dampened the effect of NPP anomalies, there was still a strong NEE contrast

in both the SMvar and AMIP runs. By this time of year, direct impact of SST forcing on temperature

and radiation had weakened, and soil moisture variability was the dominant driver, with a dry season

CSM of 85–91%.

3.4 Discussion

3.4.1 Land-atmosphere coupling and ENSO

Our mechanism-denial experiments with E3SM illustrate how soil moisture variability served

to intensify and extend the temperature response of the Amazon to forcing from ENSO. SST

anomalies, which peaked during December–February, drove changes to atmospheric circulation

and meteorology in the Amazon with little or no delay. The direct impact of these changes, absent

any soil moisture interaction, was responsible for over four-fifths of the wet-season temperature

response to ENSO in the eastern Amazon. Concurrent precipitation anomalies led to a soil moisture

memory that persisted into the following dry season, resulting in a delayed temperature response

via land-atmosphere coupling. This indirect impact of soil moisture was responsible for two-thirds

to four-fifths of the contrast between El Niño and La Niña dry-season temperatures. These results
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highlight how temperature anomalies set up by ocean-atmosphere climate modes are amplified and

extended by land-atmosphere coupling.

Our results also illustrate the importance of soil moisture variability in the ENSO-modulated carbon

cycle response of the eastern Amazon. During the wet season, soil moisture impacts on NPP

and heterotrophic respiration counteracted each other, leading to a net neutral impact on NEE,

while direct SST forcing on each of these fluxes amplified impacts on NEE. This gives direct SST

forcing the appearance of driving nearly all of the wet-season ENSO-driven NEE contrast, despite

soil moisture impacts on the constituent NPP and respiration anomalies. During the dry season,

the carbon cycle response was driven primarily by soil moisture variability, which limited NPP

more than heterotrophic respiration. At the same time, the temperature anomalies resulting from

land-atmosphere coupling affected NPP with the same sign as the net soil moisture effect, with the

NPP response dominating the overall NEE signal. This portion of the temperature anomaly (TSM)

combines with the direct control of soil moisture on NEE, leading to the dominance of CSM during

the dry season.

3.4.2 Uncertainties and limitations

While our experiment demonstrated the importance of land-atmosphere coupling in E3SM, ex-

trapolation to the real Earth system must be tempered by consideration of the disagreement in the

ENSO-driven temperature contrast between observations and reanalyses. The AMIP simulation was

able to reproduce the mean temperature within the uncertainty of the benchmark temperature data,

but it showed a stronger dry-season contrast than two of the three benchmark data sets. This may

have resulted from unrealistically strong land-atmosphere coupling in this model, which would be

consistent with previous studies that found land-atmosphere coupling to be too strong in the models

on which E3SM is based [Dirmeyer, 2006; Zeng et al., 2010;Mei and Wang, 2012; Levine et al.,

2016].
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Land surface temperatures are more sensitive to moisture availability when that becomes the limiting

factor for evapotranspiration, which mostly occurs under semi-arid conditions [Seneviratne et al.,

2010]. Therefore, any errors in the model that pushed the Amazon from its generally moist state

towards toward drier conditions could have biased the land-atmosphere coupling strength. The dry

bias in the AMIP simulation is a well-known feature of many ESMs, including the precursors to

E3SM [Joetzjer et al., 2013; Yin et al., 2013], and could have caused excessive land-atmosphere

coupling that led to an unrealistically large temperature contrast in the dry season. In addition,

CLM4.5 does not include any hydraulic redistribution by deep roots [Tang et al., 2015; Wang et al.,

2016b], which sustains dry-season plant growth and evapotranspiration in the Amazon [Nepstad

et al., 1994; Lee et al., 2005; Oliveira et al., 2005]. This may also have pushed the model toward

drier conditions, by making water inaccessible by plants and unavailable for evapotranspiration.

On the other hand, there is also evidence that supports the possibility that E3SM may have

underestimated the response to ENSO. The precipitation bias applied not only to the mean state,

but also to the magnitude of interannual variability. Land–atmosphere coupling in the model

ensured that errors in wet-season precipitation that yielded errors in subsequent dry season water

storage anomalies would have led to errors in temperature, and potentially NEE as well. Insufficient

precipitation variability in the eastern Amazon did not lead to insufficient water storage variability,

at least over the limited time span of the GRACE record. However, in the places where water storage

variability was too low, the temperature anomalies resulting from land-atmosphere would also have

been too low, which could have caused the simulated response to ENSO to be too weak.

3.4.3 Implications for future research

Our results suggest that attempts to partition the relative importance of temperature and hydrology

in the carbon cycle response to ENSO should consider the interdependence between these variables.

In particular, studies that employ offline models that are forced by non-interactive temperature
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and precipitation (or soil moisture) time series may overestimate the sensitivity of CO2 fluxes to

temperature and underestimate the sensitivity to hydrology [e.g., Piao et al., 2013;Wang et al., 2013].

While our experiments could not separate the direct ecosystem carbon response to soil moisture from

the effect of soil moisture on temperature, they demonstrated that the largest ENSO-driven carbon

cycle anomalies, in the eastern Amazon during the dry season, are spatiotemporally colocated with

the strongest land-atmosphere coupling. Future work could use temperature time series from an

experiment such as ours to drive an offline model, in order to further constrain how much of CSM is

directly due to TSM .

The disagreements between the benchmark temperature data sets highlights the need to reduce

uncertainties in observations and reanalyses. CRU TS4.01 is based on station observations, so in

sparsely observed regions such as the Amazon, spatial interpolation could decrease interannual

variability, which could have caused the overall low contrast in this data set. Reanalysis data sets

showed stronger contrasts, but they are constrained at the surface by land surface models that

may themselves suffer from the same bias in land-atmosphere coupling strength as E3SM. The

ongoing efforts toward improving these data products are important for understanding this remote

but climatically significant regions such as the Amazon.

3.5 Conclusion

We performed an experiment with a set of global E3SM simulations to decouple the direct effects

of SST variability from the resulting soil moisture variability in the Amazon. We found that soil

moisture anomalies served to intensify and prolong the response of the eastern Amazon climate to

ENSO. The immediate component of the response to El Niño was driven directly by atmospheric

circulation changes that increased temperatures and reduced precipitation during the wet season.

Soil moisture anomalies persisted into the dry season, causing a delayed temperature response from

land-atmosphere coupling. SST-driven soil moisture anomalies explained two-thirds to four-fifths
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of the eastern Amazon’s dry-season temperature response to ENSO in E3SM. Observational and

reanalysis data suggest that E3SM may have overestimated the temperature response to ENSO,

perhaps due to a bias in land-atmosphere coupling strength.

The drivers of the carbon cycle response to ENSO in E3SM were similar to those for temperature.

In the eastern Amazon, soil moisture did not affect the net carbon cycle response to ENSO during

the wet season, but it drove the majority of the dry season response. ENSO had a larger impact on

dry-season carbon fluxes than those of the wet season, resulting from soil moisture limitations on

ecosystem function combined with land-atmosphere coupling affecting temperature. This indicates

the need to consider the interdependent relationship between temperature and the hydrologic cycle

when attributing mechanisms to ENSO-driven variability in the tropical terrestrial carbon cycle.
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Chapter 4

The size of the global soil carbon sink

constrained by radiocarbon observations

and an Earth system model

4.1 Introduction

4.1.1 Uncertainty in the fate of soil carbon

Soil is the largest reservoir of biologically active carbon in the Earth system, but there is substantial

uncertainty in the fate of soil carbon in a changing climate. Increasing atmospheric carbon dioxide

(CO2) concentrations enhances primary production of terrestrial vegetation [Norby and Zak, 2011;

Schimel et al., 2015], which increases carbon input into the soil. However, the rates at which soil

carbon is decomposed and returned to the atmosphere as CO2 are expected to increase with rising

temperatures [Davidson and Janssens, 2006; Heimann and Reichstein, 2008; Crowther et al., 2016;

Melillo et al., 2017]. The balance between these competing processes determines the magnitude of
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the total soil carbon sink, which feeds back into the climate by exerting a control on atmospheric

CO2 concentrations [Le Quéré et al., 2018].

Earth system models (ESMs) are important tools for making projections of future climate change,

but there is substantial uncertainty in their simulations of soil carbon dynamics [Todd-Brown et al.,

2013; Bradford et al., 2016; Todd-Brown et al., 2018]. ESMs do not agree on the magnitude, or

even the sign, of the projected 21st-century soil carbon sink [Anav et al., 2013; Todd-Brown et al.,

2014]. Poor model representation of feedbacks introduces additional uncertainty into projections

of future atmospheric CO2 concentrations, and feeds back into the climate in biogeochemically

coupled ESMs [Friedlingstein et al., 2014].

The large uncertainties in ESMs stem from the difficulty of using information that was collected

mostly at the site level and extrapolating it to the global scale [Reichstein and Beer, 2008; Manzoni

and Porporato, 2009]. Soil organic carbon (SOC) is controlled by a complex network of interacting

biogeochemical processes [Ahrens et al., 2015; Dwivedi et al., 2017]. However, in order to maintain

computational efficiency, ESMs typically simplify these processes using first-order kinetics with

parameterized decay rate constants. As such, there are large discrepancies not only between

ESMs and observations, but also between the lumped parameter approach used in ESMs and

more computationally expensive approaches that explicitly account for important processes such

as microbial dynamics and mineral sorption [Riley et al., 2014; Ahrens et al., 2015]. While

multi-compartment first-order decay formulations have proven capable of reproducing observed

SOC states and fluxes, the issue of equifinality emphasizes the need for confronting models with

multiple observational constraints[Reichstein and Beer, 2008; Luo et al., 2016].

4.1.2 Radiocarbon as a model constraint

One of the most important constraints to modeled representations of SOC cycling, not only in

ESMs but in all models, is measurements of the radioactive nuclide carbon-14 (14C, or radiocarbon)
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[Trumbore, 2009]. Radiocarbon naturally forms in the Earth’s atmosphere when nitrogen atoms are

bombarded by cosmic rays, and is then absorbed in the form of 14CO2 by plants via photosynthesis.

Living plants have a 14C to 12C that is in equilibrium with the atmosphere, but when the plant dies,

the 14C undergoes radioactive decay, and the ratio decreases over time. By measuring this ratio in a

sample and comparing it with the background ratio, the sample can be “dated,” i.e., the amount of

time that has passed since the plant matter was in equilibrium with the atmosphere may be measured.

This form of chronometry is widely applied to archaeology, where it can be used to date material

up to ∼50,000 years old. The application to soil science is somewhat different, as soil contains a

mixture of decomposed plant matter that spans a range of ages. As such, the “age” of a soil sample

does not indicate a single date on which the soil formed, but instead indicates the mean age, which

can be used to determine the mean transit time of carbon atoms in that soil [Sierra et al., 2018].

Rates of organic matter decomposition are key parameters in models of soil biogeochemistry, and

are related to the mean transit times. While radiocarbon does not directly measure decomposition

rates, models that include a radiocarbon tracer can be constrained with radiocarbon observations. In

other words, radiocarbon is something that models predict and can be observed.

Importantly, both model predicted and observed radiocarbon are related to processes that may take

place across tens of thousands of years. It is, therefore, the only known way to constrain rates of soil

decomposition that act at timescales beyond those that can be observed in the laboratory or field. In

addition, above-ground thermonuclear weapons testing around the mid-1950s generated levels of

radiocarbon in the atmosphere that were nearly double the background. This so-called “bomb spike”

serendipitously provided scientists with an impulse-response tracer experiment for the entire Earth,

and has been useful for constraining faster decay rates that act upon timescales of decades or less

[Schrumpf and Kaiser, 2015; Balesdent et al., 2018].

Radiocarbon dating has demonstrated that organic matter in soil can be very old (millennia or

greater), particularly at depth. The persistence of SOC, i.e., the tendency of carbon to remain in
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soil for long periods of time without being decomposed, is an area of active research [Schmidt

et al., 2011; Riley et al., 2014; Castellano et al., 2015; Mathieu et al., 2015; Sierra et al., 2018].

Previous hypotheses that microbes transform plant matter into chemically stable forms of SOC

(humus) have been rejected due to evidence that soil carbon can become old while remaining in a

biogeochemically available form Campbell and Paustian [2015].

The current understanding is that multiple environmental factors contribute to SOC persistence

[Schmidt et al., 2011]. When carbon enters the soil, much of it gets remineralized very quickly,

while some of it is stabilized via physical protection in micro-aggregates and chemical protection

by minerals [Riley et al., 2014; Paul, 2016]. Observational evidence suggests that while climate,

and particularly temperature, explains most of the variability in radiocarbon ages at the surface,

persistence of SOC in deeper soil is more strongly controlled by mineral associations [Koarashi

et al., 2012; Kramer et al., 2017], with the most important climatic driver being soil moisture

[Kramer and Chadwick, 2018; Balesdent et al., 2018].

4.1.3 Radiocarbon in Earth system models

While a small set of ESMs have recently incorporated radiocarbon as a tracer in simulated SOC

[Koven et al., 2013; Tifafi et al., 2018a; Chen et al., 2019], none did so in time to be included in the

fifth phase of the Coupled Model Intercomparison Project (CMIP5) [Taylor et al., 2011]. However,

uncertainty in the fate of SOC in CMIP5 ESMs [Todd-Brown et al., 2013] prompted He et al. [2016]

to fit their output to a set of radiocarbon-enabled reduced complexity models (RSMs). He et al.

[2016] compared these RSMs to a large set of radiocarbon observations from around the world, and

found that the models tended to underestimate observed radiocarbon ages. They posited that the

age bias was the result of carbon cycling through the soil too quickly, which they hypothesized was

causing the models to overestimate the response of the soil carbon sink to increased atmospheric

CO2 concentrations. This hypothesis was supported by constraining the RSMs with the radiocarbon
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observations, which reduced the 21st-century soil carbon sink relative to the unconstrained models

[He et al., 2016].

The first ESM to explicitly include terrestrial radiocarbon was the Community Earth System Model

(CESM), by way of its land surface model, version 4.5 of the Community Land Model (CLM4.5)

[Koven et al., 2013]. Since then, the CESM developers have released version 5 of CLM (CLM5), and

will include terrestrial radiocarbon in their submissions to the sixth phase of the CMIP experiment

(CMIP6). In addition, the United States Department of Energy has been actively developing its

own ESM, the Energy Exascale Earth System Model (E3SM). E3SM began as a branch of CESM

that included the radiocarbon-enabled CLM4.5, and will also be including terrestrial radiocarbon

in its submissions to CMIP6. Finally, Organising Carbon and Hydrology In Dynamic Ecosystems

(ORCHIDEE), the land surface model for the Institut Pierre Simon Laplace (IPSL) ESM, now also

includes radiocarbon [Tifafi et al., 2018a], though it will not be included in submissions to CMIP6

[Charles Koven, personal communication].

The radiocarbon tracer was an important component in the development of vertically resolved soil

decomposition in CLM4.5 [Koven et al., 2013]. However, the developers had access to only a fairly

limited number of soil radiocarbon observations. The time since then has seen multiple efforts to

compile a synthesis of soil radiocarbon observations from around the globe [Mathieu et al., 2015; He

et al., 2016], which have been combined into the International Soil Radiocarbon Database (ISRaD)

[Lawrence et al., 2019]. Chen et al. [2019] used the synthesis compiled from He et al. [2016] to

evaluate version 1.0 of the E3SM Land Model (ELM1.0), and they found that while the model

simulated radiocarbon ages fairly well at the surface, they strongly underestimated radiocarbon age

at depth [Chen et al., 2019]. However, it was later discovered that ELM1.0 contained a coding error

that resulted in an unrealistically low rate of radioactive decay, which would have contributed to

underestimation of the older soil layers. This error was subsequently fixed in ELM1.1.

Here, we used the released version 1.0 of ISRaD (Figure 4.1) to constrain the size of the soil carbon

sink in ESMs. We evaluated vertically-resolved soil radiocarbon profiles in both CLM5 and ELM1.1.
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Figure 4.1: Location of observational radiocarbon profiles separated by land cover type. Filled
symbols indicate locations that also include data for determining carbon stocks, which were used in
the calibration of ELM1.1.

We then used the observations from ISRaD to calibrate some key soil decomposition parameters in

ELM1.1. We describe the theory that formed the basis of the calibration and how it was implemented

in ELM1.1 in the next section, followed by a detailed description of the calibration methods, a

presentation of the results, and an analysis of their significance.

4.2 Methods

4.2.1 Theory and model implementation

The simulation of soil decomposition processes in both CLM5 and ELM1.1 was inherited from

CLM4.5, which was based on the CENTURY model [Parton et al., 1993]. CENTURY is a

multi-compartment first-order decay model in which the compartments represent conceptual “pools”

of carbon. Each pool is each parameterized with a kinetic rate constant that determines how much
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carbon leaves via microbial decay at each time step, and a transfer coefficient that determines how

much of the departing carbon gets shifted to downstream pools versus how much is lost to respiration.

The transfer coefficient of each pool (referred to here as the respired fraction) can be subtracted from

one to determine the inherent carbon use efficiency of each pool, i.e., the fraction of transferred

carbon that is consumed via respiration.

The implementation of CENTURY in both CLM and ELM comprises three SOC pools, which are

colloquially referred to as the “fast,” “slow,” and “passive” pools to reflect their characteristic time

scales of months-to-years, decades, and centuries-to-millennia, respectively. Each of these three soil

pools, along with three litter pools and a pool for coarse woody debris (CWD) that comprise the rest

of the CENTURY-derived decomposition cascade, are represented in each of the 10 biologically and

hydrologically active soil layers, for a total of 30 individual soil pools. Diffusive transport allows

vertical exchange of carbon between the same pool types in different layers. Within each layer, the

parameterized rate constants for each pool are modified by scalars derived from temperature and

soil moisture, reflecting the influence of these environmental factors on decay rates.

Despite their relative simplicity, multi-compartment approaches to modeling soil decomposition

have been known for some time to reproduce observed radiocarbon ages [Jenkinson, 1990]. However,

they are limited by the conceptual nature of the distinctions between pools. While there have

been attempts to relate individual pools in multi-compartment models to measurable soil fractions

[Skjemstad et al., 2004; Zimmermann et al., 2007], detailed radiocarbonmeasurements have indicated

that even the fractions of soil carbon are mixtures of fast and slow carbon [Schrumpf and Kaiser,

2015].

In our analysis, we use output from both models based on their “offline” mode, in which the land

model was forced with atmospheric boundary conditions derived from observations and reanalysis

instead of being coupled with an interactive atmospheric circulation model. If offline atmospheric

forcing is fixed to a relatively short climatology (one or a few years), the climatological means of

the temperature and moisture scalars become fixed, and therefore so do the decay rates in each
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pool. Furthermore, the rates of input from primary production via the upstream litter and CWD

pools remain constant bewtween cycles of the climatology, meaning that the model behaves like

an autonomous compartmental system as described in Rasmussen et al. [2016]. In this case, the

quotient of the fluxes into each pool and the decay rates determine the “steady state” stocks, which

would be quasi-equilibrated to the specific conditions of the (quasi-constant) climatology.

In a transient simulation, in which the atmospheric forcing is not fixed, the system is no longer

autonomous, and the stocks would be expected to change in response to changing inputs and changing

environmental scalars. However, if a transient simulation begins in a state that is not equilibrated to

the initial climatological conditions, there will be drift in the stocks that would confound the signal

of interest. Because stocks in ELM get initialized arbitrarily, we were required to “spin up” the

model by fixing atmospheric forcing to a climatology that resembles the first several years of the

transient simulation, and integrating it forward in time long enough for the stocks to equilibrate to

those conditions.

After spinning the model up to sufficiently equilibrate the stocks, changes in the mass of the stocks

can be interpreted as the response to the transient forcing, both of atmospheric CO2 concentrations

climatic conditions. The response of the stocks depends on the rates at which carbon cycles through

the individual pools, which itself is determined by the rate constants and respired fractions used to

parameterize the soil pools. We demonstrated the dependence of stock responses to these model

parameters using an idealized conceptual model (Figure 4.2).

The initial goal of this research was to modify the model in a way that would make radiocarbon ages

older at depth while maintaining the well-simulated SOC stocks. Using our idealized conceptual

model, we demonstrated how simultaneously changing the decay rates and respired fractions can

allow a model to simulate the same SOC stocks with older radiocarbon ages. In this demonstration,

models A and B are idealized two-compartment models, each with a fast and slow carbon pool

that are parameterized with a turnover time (τ) that is the multiplicative inverse of the decay rate

constant (Figure 4.2a).
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Model A:
50 PgC/y

25 PgC/y

RF = 0.5

total C = 2000 PgC
mean Δ14C = -9.1‰

! = 1 y
50 PgC

! = 78 y
1950 PgC

25 PgC/y 50 PgC/y

10 PgC/y

RF = 0.8

total C = 2000 PgC
mean Δ14C = -22.5‰

! = 1 y
50 PgC

! = 195 y
1950 PgC

40 PgC/y
Increase input by 10% (5 PgC/y)?

After 100 years? 
•A accumulates:   146 PgC

•B accumulates:   183 PgC

Model B:

Model A:
50 PgC/y

25 PgC/y

RF = 0.5

total C = 2000 PgC
mean Δ14C = -9.1‰

! = 1 y
50 PgC

! = 78 y
1950 PgC

25 PgC/y 50 PgC/y

10 PgC/y

RF = 0.8

total C = 2000 PgC
mean Δ14C = -22.5‰

! = 1 y
50 PgC

! = 195 y
1950 PgC

45 PgC/y
Increase input by 10% (5 PgC/y)?

After 100 years? 
•A accumulates:   146 PgC

•B accumulates:   183 PgC

Model B:

a.

b.

Figure 4.2: Conceptual demonstration of calibration strategy. a) Two idealized models with the
same inputs and steady state stocks. b) Both models eventually equilibrate to the same steady state
stock, but the slower model (B) takes longer to reach this state.
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Both models have the same steady-state stock of 2000 PgC and the same total input of 50 PgC per

year, with differences in the transfer coefficients (RF) between the fast and slow pools affecting the

inputs to the slow pools. The decay rate of the slow pool in Model B is slower (longer turnover time)

than that of Model A, leading to an older radiocarbon age for the system as a whole. The different

parameterizations caused the two models to respond differently to an instantaneous increase in the

total input of 50 PgC per year (Figure 4.2b). While both models eventually equilibrated to the

same SOC stocks in response to increased input, the slower model (with the older radiocarbon age)

responds more slowly, thereby providing a smaller carbon sink in the short term.

4.2.2 Evaluation of ESM radiocarbon

ISRaD is a compilation of soil radiocarbon measurements that have been collected from published

literature and submitted by community members. ISRaD includes radiocarbon measurements from

bulk soil, soil fractions, soil interstitial gas and liquid, and soil–atmosphere fluxes. For the present

study, we used bulk soil observations from mineral soil layers, as this provides the best analog for

comparison with an ESM.

We compared the full set of observed radiocarbon profiles against the output from CLM5 and

ELM1.1. The simulated profiles from CLM5 were biased young at the surface in some biomes, and

were biased young at depth throughout the globe (Figure 4.3). Although ELM1.1 was generally less

biased than CLM, and was able to reproduce the radiocarbon profile fairly well for temperate woody

vegetation (trees and shrubs), it still had a young age bias at depth in the tropical and boreal latitudes

(Figure 4.4).

In addition to examining profiles at the site level, we evaluated the global mass-age distribution

of carbon against a benchmark constructed from two different machine-learning products. We

obtained SOC density and soil bulk density from LandGIS (https://landgis.opengeohub.org),

a successor to the SoilGrids [Hengl et al., 2017], that globally extrapolates an extensive set of soil
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Figure 4.3: Comparison of observed radiocarbon profiles with CLM5. Shaded regions indicate
the minimum and maximum values. Woody vegetation consists of all forest and shrubland, and
herbaceous vegetation consists of grassland and cropland.
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Figure 4.4: Comparison of observed radiocarbon profiles with ELM1.1. Shaded regions indicate
the minimum and maximum values. Woody vegetation consists of all forest and shrubland, and
herbaceous vegetation consists of grassland and cropland.
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observations using random forest regression. An additional random forest regression was run to

globally extrapolate radiocarbon ages at two depth intervals (0–30 cm, and 30–100 cm) based on

environmental factors, mainly temperature, precipitation, and soil texture [Shi et al., 2019]. We

used the combination of the two machine-learning products to determine the distribution of SOC by

age within the two depth intervals, and compared this with the equivalent distribution from CLM5

and ELM1.1 (Figure 4.5). This global comparison indicated that SOC in both models is younger

than in the benchmark data, consistent with the site-level comparisons.

1000 800 600 400 200 0 200
0

100

200

300

400

To
ta

l C
 (P

g)

O
bs

er
va

ti
on

0 30 cm

1000 800 600 400 200 0 200
0

200

400

0.3 1 m

1000 800 600 400 200 0 200
0

50

100

150

200

To
ta

l C
 (P

g)

EL
M

1.
1

1000 800 600 400 200 0 200
0

20

40

60

80

1000 800 600 400 200 0 200
14C ( )

0

100

200

300

To
ta

l C
 (P

g)

CL
M

5.
0

1000 800 600 400 200 0 200
14C ( )

0

25

50

75

100

Tropical (< 23 ) Temperate (23 50 ) Boreal (> 50 )

Figure 4.5: Mass-age distribution of soil carbon comparing an observational benchmark product
(LandGIS and Shi et al. [2019]) with CLM5 and ELM1.1.
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4.2.3 Radiocarbon-constrained ESM calibration

Data selection

The importance of multiple constraints [Luo et al., 2016] prompted us to perform the ESM calibration

using only the observations that include enough information to also determine the amount of carbon

in the soil. In some cases, SOC stocks were reported directly, but in most cases they were derived

from measurements of soil bulk density and organic carbon concentration. We included these data

as objectives in our calibration in order to insure that we did not improve model representation of

radiocarbon ages at the expense of being able to reproduce SOC stocks.

For the purpose of the calibration, we extracted all layers from ISRaD that contained both SOC

stocks (or the information required to calculate them) and radiocarbon ages for bulk soil layers.

Layers were screened to eliminate those with a bulk density less than 0.5 gm−3 or organic carbon

concentrations above 20%, as we considered those to be more characteristic of organic rather than

mineral soil horizons. We also eliminated layers with a bulk density greater than 2 gm−3, as we

considered those to exceed the normal density of mineral soil and likely to yield unrealistically high

SOC stocks.

In addition, several observational profiles included layers across which radiocarbon ages got younger

with depth. While there are several processes that could lead to such conditions, such as vertical

mixing (particularly cryoturbation) or disturbance (e.g., tilling, fire, deforestation), the model does

not simulate these processes in a manner that would allow it to reproduce such profiles. We

determined that including such conditions degraded the performance of the calibration algorithm,

therefore we eliminated all layers for which the radiocarbon age in ∆14C exceeded that of the layer

above by more than 100‰. This threshold was chosen to balance the number of observations with

which to constrain the model with the extent to which larger differences caused greater performance

degradation.
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We defined valid profiles as those that comprised three or more valid layers, and that extended

to a depth of at least 50 cm. The final set of valid profiles for calibration comprises a total of

102 sites, with more than half of the profiles coming from forested land cover, and nearly two thirds

of the profiles located in temperate latitudes (Figure 4.1). We performed a site-level comparison

against ELM1.1 using only the 102 selected sites, and determined that the general patterns evident

in Figure 4.4 are maintained with the reduced data set (Figure 4.6). We additionally compared SOC

stocks from ELM1.1 with the observations, and found that the model tended to underestimate the

amount of carbon across all depths in the tropical and temperate latitudes (Figure 4.7).

Calibration parameters

Based on the theory presented in Section 4.2.1, we developed a method to calibrate both the decay

rates and the respired fractions simultaneously. Instead of calibrating each parameter for each pool

separately, which would risk over-fitting the data, we created ad-hoc meta-parameters that scaled

each pool by the same amount. We designated the parameter k∗ to scale decay constants and rf ∗ to

scale the respired fractions for all soil pools.

In addition to the environmental scalars that limit decomposition based on temperature and soil

moisture, ELM1.1 also includes an exponential decrease of decay rates with depth that was inherited

from CLM4.5 [Koven et al., 2013]. This decrease is designed to account for processes that are not

explicitly represented in the model, and is parameterized with an e-folding depth (referred to as

zτ) that has a default value of 0.5 m. The shape of radiocarbon profiles in ELM1.1 is known to be

sensitive to zτ [Chen et al., 2019], so we included this parameter in our calibration as well.

Optimization algorithm

We conducted a global offline transient simulation on a 1.9◦x2.5◦ grid, using atmospheric forcing data

from the Global Soil Wetness Project (GSWP3) [Dirmeyer et al., 2006b] for the years 1901 through
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Figure 4.6: Comparison of observed radiocarbon profiles selected for calibration with ELM1.1.
Shaded regions indicate the minimum and maximum values. Woody vegetation consists of all forest
and shrubland, and herbaceous vegetation consists of grassland and cropland.
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Figure 4.7: Comparison of observed SOC profiles selected for calibration with ELM1.1. Shaded
regions indicate the minimum and maximum values. Woody vegetation consists of all forest and
shrubland, and herbaceous vegetation consists of grassland and cropland.
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2010. We configured ELM to use the Equilibrium Chemistry Approximation (ECA) approach

[Zhu et al., 2017] for nitrogen and phosphorous biogeochemistry, and used historical records of

atmospheric CO2 and 14CO2. We used the first 20 years of atmospheric data to spin up the model

until the total global soil SOC stock was changing by less than 0.1% annually. However, individual

locations and layers were not always as close to equilibrium. To account for this, we conducted an

additional control simulation, which amounted to continuing to spin up for an additional 110 years,

and subtracted changes to each pool in the control from the transient simulation. Because we did

not modify any parameter values from the ELM defaults, we refer to this as the default simulation.

Because the parameters we chose to calibrate determine the equilibrium stocks, all parameter

combinations required undergoing the full spin up. This precluded any sort of iterative optimization

algorithm, such as Markov chain Monte Carlo (MCMC) or evolutionary approaches. Instead, the

model was run simultaneously across a range of seven values for each parameter (Table 4.1) for a

total of 343 (73) combinations.

Table 4.1: Minimum and maximum values for each parameter, the increment it was sampled along,
its default value in the model, and its description.

Min. Max. Inc. Def. Description (and units)
k∗ 0.7 1.3 0.1 1∗ Scaling factor for soil pool decay rate (unitless)
rf ∗ 0.7 1.3 0.1 1∗ Scaling factor for soil pool respired fraction (unitless)
zτ 0.2 0.8 0.1 0.5 Decay rate decrease e-folding depth (m)

∗k∗ and rf ∗ are not part of the original model, but have no effect when set to 1.

For each of the 102 profiles in the study, we determined the plant functional type (PFT) from ELM

that most closely matched the observed vegetation and land cover. We included all model grid cells

that coincide with the observed profiles, and assigned each grid cell to the PFT associated with the

observations. If two or more observational profiles with different vegetation types were located on

the same model grid cell, we included that grid cell multiple times, once for each vegetation type.

The total number of unique grid cells in the calibration simulation was 72, and each was simulated

for all 343 parameter combinations, for a total of 24,696 grid cells.
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In order to facilitate comparison between observations and model output at different layer depths,

we linearly interpolated each profile to a common 1-cm vertical resolution. We chose 1.4 m as the

maximum depth for the optimization, as the number of observations below that depth were too few

for a robust comparison. If Co(i, p, z) is the observed carbon content (in gm−3) in each of the 150

1-cm vertical layers (z) for all 343 parameter combinations (p) at each of the 102 profiles (i), and

Cm(i, p, z) is the modeled carbon content, the root mean squared error for the carbon stock each

profile and parameter combination (RMSEC(i, p)) was calculated as

RMSEC(i, p) =

√√√√√ 150∑
z=0

(
[Cm(i, p, z) − Co(i, p, z)]2

)
150

(4.1)

For the observed and modeled radiocarbon ages (∆14Co(i, p, z) and ∆14Cm(i, p, z), respectively, in

units of ‰), the root mean squared error (RMSE∆14C(i, p)) was weighted by the the observed carbon

content and calculated as

RMSE∆14C(i, p) =

√√√√√√√√√√√ 150∑
z=0

(
Co(i, p, z) ∗

[
∆14Cm(i, p, z) − ∆14Co(i, p, z)

]2
)

150∑
z=0

Co(i, p, z)
(4.2)

Because each latitude band had a unique combination of stock and age biases, we conducted

a separate calibration for each. For each latitude band, we considered woody vegetation types

only (trees and shrubs), due to the different biases between these and herbaceous (grass and crop)

vegetation types and the relatively small number of valid profiles available for the latter (Figures 4.6

and 4.7). The modeled radiocarbon profiles for woody land cover in the temperate latitudes matched

the observations fairly well (Figures 4.4 and 4.6), therefore, we excluded this region while performing

separate calibrations for the tropical and boreal latitude bands.

For each of the calibrated latitude bands, a total RMSEwas calculated for each parameter combination
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as a weighted mean of the N sites in that region, where the weights were the inverse of the number

of profiles sharing the same model grid cell as profile i (S(i)−1). For example, the region-wide

RMSE of carbon content (RMSEC(p)) was calculated as

RMSEC(p) =

N∑
i=0

(
S(i)−1 ∗ RMSEC(i, p)

)
N∑

i=0
S(i)−1

(4.3)

and the region-wide RMSE for radiocarbon ages (RMSE∆14C(p)) was calculated equivalently.

Weighting by S(i)−1 insured that each model grid cell was weighted equally, and was numerically

equivalent to averaging all observed profiles that share a common grid cell.

Because the RMSEs are in different units (mass of carbon for SOC stocks, and ∆14C for radiocarbon

ages), we normalized each of the two global objective functions by the standard deviation of RMSEs

across all parameter combinations (σRMSEC and σRMSE∆14C
for carbon content and ages, respectively)

for all 343 parameter combinations. The two normalized RMSEs were then summed to create

a combined objective function, and in each latitude band, the parameter combination with the

smallest combined objective function was designated as the optimum. Mathematically, the optimum

parameter combination (popt) was found as

popt = arg min

(
RMSEC(p)
σRMSEC

+
RMSE∆14C(p)
σRMSE∆14C

)
(4.4)

for each of the latitude bands in our calibration.

The two sets of popt for boreal and tropical latitudes were used as the basis of a constrained simulation.

We assigned all model grid cells with more than 50% of the vegetated area assigned to boreal forest

PFTs to the boreal popt , and likewise for the tropical forest PFTs and the tropical popt . We note that

a small number of model grid cells in the temperate latitudes (23–50◦) were modified, by virtue of

containing boreal and tropical forest PFTs near the highest and lowest latitudes, respectively. The

constrained simulation repeated the same offline spinup and transient 20th-century climate as the
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default simulation, with the calibrated model parameters.

4.3 Results

4.3.1 Optimum model parameters

In our optimization, neither of the individual latitude band optimizations yielded a single parameter

value that minimized the RMSE for both SOC stocks and radiocarbon ages. As is the case with any

multi-objective optimization, we needed to decide how to balance the trade-offs between the the

two objective functions. Within each latitude band, we considered the Pareto frontier, which is the

set of parameter values in which improvements to either objective function can be made only at

the expense of the other (Figure 4.8). The member of the Pareto frontier selected as the optimum

was determined by minimizing the combined objective function, which was the sum of normalized

RMSE values as described in Equation 4.4.

Examination of the Pareto frontier indicated that a wide range of possible parameter combinations

can yield a fairly narrow range of combined objective functions. This highlights the issue of

equifinality, in which multiple solutions (combinations of parameters) were able produce results that

may be considered equally desirable. It also demonstrates the interdependence between parameters,

as alternative values in one parameter could be close to each other in objective space as a result of

differences in the other parameters.

The k∗ parameter in particular was not well-constrained by the observational data, as evidenced by

the wide range of values within the Pareto frontier for this parameter across both latitude bands.

This was especially noticeable in the boreal latitudes, in which the optimum combination had a k∗

value of 1.1, but alternatives with values of 0.7 and 1.2 had nearly the same combined objective

function. While this parameter is constrained somewhat better in the tropical latitudes, it still varied

105



16 17 18 19 20
SOC RMSE (kg/m2)

100

110

120

130

140

150

14
C 

RM
SE

 (
)

Bo
re

al
 (

>
 5

0
)

k*

16 17 18 19 20
SOC RMSE (kg/m2)

100

110

120

130

140

150
rf*

16 17 18 19 20
SOC RMSE (kg/m2)

100

110

120

130

140

150
z

15.0 17.5 20.0 22.5
SOC RMSE (kg/m2)

130

140

150

160

14
C 

RM
SE

 (
)

Tr
op

ic
al

 (
<

 2
3

)

k*

15.0 17.5 20.0 22.5
SOC RMSE (kg/m2)

130

140

150

160

rf*

15.0 17.5 20.0 22.5
SOC RMSE (kg/m2)

130

140

150

160

z

2.4 2.6 2.8
SOC Norm. RMSE (1)

3.25

3.50

3.75

4.00

4.25

4.50

2.4 2.6 2.8
SOC Norm. RMSE (1)

3.25

3.50

3.75

4.00

4.25

4.50

2.4 2.6 2.8
SOC Norm. RMSE (1)

3.25

3.50

3.75

4.00

4.25

4.50

14
C 

No
rm

. R
M

SE
 (1

)

1.2 1.4 1.6 1.8
SOC Norm. RMSE (1)

6.5

7.0

7.5

8.0

8.5
1.2 1.4 1.6 1.8

SOC Norm. RMSE (1)

6.5

7.0

7.5

8.0

8.5
1.2 1.4 1.6 1.8

SOC Norm. RMSE (1)

6.5

7.0

7.5

8.0

8.5

14
C 

No
rm

. R
M

SE
 (1

)

k*      rf*      z
0.7    0.7    0.2
0.8    0.8    0.3
0.9    0.9    0.4
1.0    1.0    0.5
1.1    1.1    0.6
1.2    1.2    0.7
1.3    1.3    0.8
  Pareto front
  Comb. Opt.
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more across the Pareto frontier than either of the other two parameters.

The interdependence between parameters was also evident upon examination of the combined

objective function in parameter space (Figure 4.9). Within both latitude bands, the k∗ and rf ∗
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Figure 4.9: Combined objective function in parameter space. The contour lines are the sum of
the normalized RMSEs for SOC stocks and radiocarbon. The X in the center of each denotes the
model’s default value, and the O denotes the minimum combined RMSE value.

parameters were negatively correlated, as the combination of high rf ∗ and low k∗ values produced

the having the same combined objective function as low rf ∗ and high k∗. The k∗ and zτ parameters

were also negatively correlated, which was to be expected, considering that each of these parameters

affected decomposition rates with the same sign, though the former affected the entire soil column

equally while the latter had a larger effect at depth.
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4.3.2 Constrained model output

The optimized parameter values yielded a noticeable improvement to the simulated soil profiles

(Figure 4.10). Carbon stocks in the constrained simulation remained close to those in the default

simulation in the boreal latitudes, but improved in the tropics by simulating increased SOC at

all depths. Radiocarbon ages showed improvements–with ages increasing (∆14C decreasing) at

depth–for both latitude bands.

The constrained simulation also yielded improvements to the global mass-age distributions compared

to the machine-learning benchmark data (Figure 4.11). The constrained simulation was slightly

older at 0–30 cm, and substantially older at the 30–100 cm depth interval, compared with the default

simulation. However, the constrained simulation was still younger than the benchmark product in

both depth ranges, indicating the need for continued improvement of the optimization process.

4.3.3 The twentieth-century soil carbon sink

Constraining ELM1.1 with the observations from ISRaD led to changes in both absolute SOC

stocks and the change in those stocks in response to 20th century climatic and anthropogenic forcing

(Table 4.2). The constrained model began its transient simulation with a larger SOC stock than the

default model, reflecting the higher equilibrium values of the optimized parameters achieved during

spin-up. In 1910, SOC represented 74% and 75% of the total terrestrial carbon stock in the default

and constrained models, respectively.

The total 20th-century soil carbon sink in the constrained model was 0.3 PgC lower than the default

model. This represented both a smaller portion of the 1910 value and a smaller portion of the total

terrestrial carbon sink. In the constrained simulation, all pools other than vegetation began the 20th

century with higher carbon stocks, and all pools other than soil increased slightly more, compared

with the default simulation.
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ISRaDv1.0 (± !)
ELMv1.1 default (± !)

ELMv1.1 calibrated (± !)

Figure 4.10: Observed profiles with default and constrained ELMv1.1 output. Observed profiles are
the same as the “Woody” columns of Figures 4.6 and 4.7. Modeled profiles are from the calibration
run, in which the grid cells were assigned to 100% of the observed PFT. Shaded regions are ±1σ.
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Figure 4.11: Mass-age distribution of soil carbon comparing an observational benchmark product
(LandGIS and Shi et al. [2019]) with the default and constrained simulations from ELM1.1.

In both the default and constrained simulations, the boreal latitude band contained more than half

of the global SOC stock, but 20th-century changes were very small in magnitude (nearly 0% of

the global sink, and less than 2% of the beginning-of-the-century stock). The temperate latitudes

remain nearly unchanged between the simulations, owing to the very small number of model grid

cells in which more than 50% of the vegetated surface consists of either boreal or tropical forest

PFTs. The tropical latitudes saw the largest change in the 20th-century sink, with the constrained

model simulating a smaller sink due to a slower soil carbon cycle.
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Table 4.2: Changes in carbon stocks between 1910 and 2010. 1910 and ∆2010 columns are in units
of PgC, and are the 1910 stocks and the change to those stocks in 2010, respectively. %∆ columns
express ∆2010 as a percent of the 1910 stock. %Σ columns express ∆2010 as a percent of the ∆2010
for all rows in the grouping, which is the total column ∆2010 for the first grouping, and the total soil
∆2010 for the second and third groupings.

ELM1.1 default ELM1.1 constrained

Total C: 1910 ∆2010 %∆ % Σ 1910 ∆2010 %∆ % Σ
Vegetation 356.1 51.2 14.4 57.4 352.9 51.9 14.7 55.5
CWD 227.0 19.6 8.6 22.0 280.5 22.9 8.2 24.5
Litter 29.8 2.2 7.4 2.5 33.9 2.7 8.1 2.9
Soil 1755.8 16.2 0.9 18.1 2010.7 15.9 0.8 17.0

Soil C: 1910 ∆2010 %∆ % Σ 1910 ∆2010 %∆ % Σ
> 50◦ 906.8 -0.3 -0.0 -1.6 1009.1 -0.3 -0.0 -1.8
23–50◦ 438.1 6.5 1.5 39.9 420.4 6.5 1.5 40.9
< 23◦ 410.9 10.0 2.4 61.6 581.1 9.7 1.7 60.9

Soil C: 1910 ∆2010 %∆ % Σ 1910 ∆2010 %∆ % Σ
< 30 cm 476.1 13.4 2.8 82.5 474.0 13.1 2.8 82.2

30–100 cm 446.4 2.8 0.6 17.1 486.6 2.8 0.6 17.8
> 1 m 833.3 0.1 0.0 0.8 1050.1 0.0 0.0 0.0

In the default simulation, almost half of the global SOC stock at the beginning of the 20th century

were below 1 m deep, and was more than half in the constrained simulation. While the default

simulation had a very small 20th-century sink at this depth (0.1 PgC), that of the constrained

simulation was even smaller. In both simulations, more than 82% of the 20th-century sink was

shallower than 30 cm.

The simulated response to 20th-century climate change (embedded in the GSWP3 forcing data)

and to increased atmospheric CO2 concentrations exhibited two distinct phases in the time series

(Figure 4.12). In the first half of the century, there was little accumulation in any of the pools, but the

second half of the century brought relatively rapid increases across most pools. Notable exceptions

were the litter pool, which never sustained meaningful accumulation due to rapid decay rates, and

the boreal soil, which actually began the century accumulating carbon but ended up losing it to the

atmosphere in the latter half of the century. As evident in Table 4.2, the 20th-century soil carbon
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Figure 4.12: Constrained 20th-century terrestrial carbon sink. The response to the constrained
transient simulation across terrestrial carbon pools (a) and in the soil pool across latitude bands (b)
and depth intervals (c).
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sink was a relatively small component of the total terrestrial sink, and it took place primarily in the

tropics and primarily in the shallowest layers.

4.4 Discussion

4.4.1 Implications for the future soil carbon sink

Both land surface models we examined here had soil carbon ages that were too young relative

to the observations from ISRaD, consistent with previous research [He et al., 2016; Chen et al.,

2019]. This suggests that the models were cycling carbon too quickly, which would cause them

to overestimate how rapidly it could sequester carbon in response to elevated atmospheric CO2

concentrations. The constrained simulation, in which decomposition rates were reduced in the

boreal and tropical latitudes along with inputs to slower pools (by virtue of larger respired fractions),

supports this by simulating a smaller 20th-century soil carbon sink.

Even the default ELM1.1 simulates radiocarbon profiles better than CLM5, and the difference

between the default and constrained simulations are less than the difference between models. The

carbon sink in CLM5 could not be directly compared with the ELM simulations due to the inclusion

of land cover change, which drove a large loss of soil carbon. Both of these models are descendants

of earlier versions of CLM, which was known for its rapid soil and litter decay rates, being the

only land surface model in the CMIP5 ensemble (in CESM1-BGC and NorESM1) to simulate a

terrestrial carbon source [Anav et al., 2013; Friedlingstein et al., 2014]. But it was also the land

surface model associated with the smallest bias and smallest 21st-century soil carbon sink in the

reduced complexity models from He et al. [2016]. This encourages us to interpret the generally

small soil sink in both ELM1.1 simulations as being well constrained by the observations.

This interpretation is in agreement with the current understanding of soil carbon age distribution with
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depth. A large portion of carbon is remineralized soon after entering the soil, while a smaller portion

is protected physically through micro-aggregates and chemically through mineral associations, and

transported in solution to depth where it remains for centuries to millennia [Schmidt et al., 2011;

Riley et al., 2014; Paul, 2016]. While ELM1.1 does include vertical transport via diffusion, it does

not account for the mineral sorption and microbial interactions that strongly influence soil age

structure [Ahrens et al., 2015; Dwivedi et al., 2017], the only land surface model for an ESM that

accounts for these processes being the Geophysical Fluid Dynamics Laboratory’s Land Model 4

(LM4) when using the Carbon, Organisms, Rhizosphere, and Protection in the Soil Environment

(CORPSE) module [Sulman et al., 2014]. The zτ parameter was designed to account for all of these

un-simulated processes in CLM [Koven et al., 2013], and allows ELM1.1 to accurately reproduce

radiocarbon ages, especially when constrained by the calibration.

These results to not inspire optimism in the efficacy of soil to serve as a solution to anthropogenic

CO2 emissions. Even though atmospheric CO2 will enhance carbon input to the soil through primary

production [Cox et al., 2013; Keenan et al., 2016], this will not necessarily lead to more storage.

Uptake capacity depends on saturation of the physical and chemical substrates that protect soil

carbon and allow it to persist, and priming effects could even result in increased input enhancing

decomposition [Castellano et al., 2015]. Increased inputs would also have to overcome enhanced

heterotrophic respiration driven by global warming [Heimann and Reichstein, 2008; Crowther

et al., 2016;Melillo et al., 2017], as well as soil carbon loss due to land cover change [Sanderman

et al., 2017]. On the other hand, this could potentially be mitigated if enhanced decomposition has

sufficient nutrient availability to increase the conversion of carbon to protected forms [Tang and

Riley, 2014; Crowther et al., 2015]. On the whole, there is a strong case to be made that soil can

only serve as a useful carbon sink if managed explicitly to do so [Stockmann et al., 2013;Minasny

et al., 2017].
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4.4.2 Limitations, uncertainties, and future improvements

Despite the improved simulation using the constrained parameters, and the increased confidence

in its representation of soil carbon uptake, there are several limitations that highlight the need for

refinement of the calibration process. The primary limitations are imposed by the observational

data set, but others stem from the model itself as well as the optimization methodology. These

limitations should motivate future efforts toward reducing the uncertainty they impose.

While the value of ISRaD is unprecedented for examining radiocarbon ages in soil, as was

demonstrated in this study, it is limited in its ability to provide a high quality and quantity of

information regarding SOC stocks. A majority of ISRaD profiles we included (those extending

below 50 cm depth) did not include sufficient information to determine SOC stocks, which limited

their use in our multiple-constraint approach. The small number of SOC observations exacerbated

the issues introduced by observational uncertainty, stemming mostly from measurements of soil

bulk density [Todd-Brown et al., 2013; Tifafi et al., 2018b].

An additional limitation inherent to ISRaD is the reduction in the number of observations with

increasing depth (Figures 4.3–4.7). While we limited our optimization to the top 1.5 m, we found

the calibration algorithm to be fairly insensitive to the maximum depth beyond ∼75 cm, where the

number of observations declines precipitously, due mostly to the higher weighting of the higher

mass layers at the surface. However, both the models and the benchmark data from LandGIS include

substantial amounts of soil carbon below 1 m, which reflects uncertainty in global soil carbon stocks

[Batjes, 2014; Jackson et al., 2017; Tifafi et al., 2018b] and the maximum depth to which SOC

extends [Harper and Tibbett, 2013; Jackson et al., 2017; Balesdent et al., 2018].

Further uncertainties are introduced by the mismatch in spatial scales between the model and

observations. SOC stocks and radiocarbon ages are highly spatially variable [Schrumpf and Kaiser,

2015], and many of the observations in ISRaD were collected to maximize this variability [Lawrence

et al., 2019]. This limitation could be overcome by field campaigns with a sampling strategy
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designed to obtain observations that are more representative of larger landscapes. While some

drivers of variability are included in ELM1.1, specifically the temperature and moisture scalars,

the model does not account for geologic variability (information about soil texture and content

are included indirectly through their use in the soil moisture and soil temperature portions of the

model), nor can it account for spatial heterogeneity in microbial communities [Don et al., 2017].

This highlights the importance of models that represent processes at observable scales [Riley et al.,

2014].

Finally, our calibration protocol introduced additional uncertainty in the selection of the optimum

parameter combination. For the purpose of performing a constrained transient simulation, we

were satisfied with obtaining a single set of values for each of the three major latitude bands. The

variability within the Pareto frontiers demonstrated the sensitivity of the constrained parameters

to the normalization of the objective functions. Assigning a value that determines the relative

importance of each RMSE is an unavoidable step in a multi-objective optimization. Future work

will consider sampling multiple solutions from the Pareto frontier, in order to produce a distribution

of constrained models rather than a single realization.

4.5 Conclusion

We used global observations from ISRaD to evaluate and constrain the soil carbon cycle in ELM1.1.

We found that while ELM1.1 slightly overestimated radiocarbon ages in temperate latitudes, it

underestimated them in boreal and tropical latitudes, particularly at depth, enough to lead to a young

soil carbon age bias globally. CLM5, which we also evaluated, had an even stronger young bias.

This suggests that carbon was cycling through the soil too rapidly in the models, leading them to

overestimate the rate at which soils could sequester carbon in response to increasing atmospheric

CO2 concentrations.
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We used the observed radiocarbon profiles to constrain kinetic rate constants and transfer coefficients

in ELM1.1, which improved the young age bias and improved a low bias in the tropical soil carbon

stock. Constraining the model increased the global soil carbon stock as a result of the improvements

in the tropics, and reduced the contribution of soil to the terrestrial carbon sink. This suggests that

soil is likely to respond very slowly to increasing atmospheric CO2 concentrations, and is unlikely

to serve as a carbon sink in the near term. To the extent that anthropogenic CO2 emissions may

stimulate terrestrial primary production, the additional carbon will be stored in the vegetation and

CWD, which are highly vulnerable to carbon loss and therefore much less effective as a long-term

sink.
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Chapter 5

Conclusions

5.1 Implications of research results

The research presented in this dissertation contributes toward the general scientific knowledge of

land-atmosphere feedbacks in the Earth system, and demonstrates the importance of Earth system

models (ESMs) as tools in this effort. I focused on two important feedbacks between the land surface

and the atmosphere: soil moisture feedbacks via land–atmosphere coupling, and the long-term

portion of the carbon-concentration feedback. I demonstrated how ESMs can be evaluated for and

improved in their representation of land-atmosphere feedbacks, and how they can be manipulated to

investigate mechanisms that cannot be directly observed in nature.

In Chapter 2, I established that ESMs from the fifth phase of the Coupled Model Intercomparison

Project (CMIP5) tend to overestimate the strength of feedbacks between soil moisture and the

atmosphere. This is probably due to overly simplistic “big-leaf” representations of the land surface

[e.g., Dickinson et al., 1998] with insufficient representation of bare soil evaporation, leading to

a land surface that is too sensitive to soil moisture variability. By demonstrating that models

overestimate both the forcing and response limbs, I highlighted how warm/dry biases in ESMs
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[Cheruy et al., 2014; Mueller and Seneviratne, 2014; Wehrli et al., 2018] could be exacerbated,

because even though the forcing limb is relatively small, the large response limb sets up even larger

biases for subsequent forcing. These results emphasize the extent to which uncertainty in projections

of the hydrologic cycle can degrade the simulation of temperature trends under climate change. For

example, while Berg et al. [2016b] found that soil moisture feedbacks exacerbate temperature trends

in CMIP5 models, their results are applicable only to the extent that the projected soil moisture

increases are accurate.

In Chapter 3, I demonstrated the importance of this feedback in the response of the Amazon

Rainforest to climate variability associated with the El Niño-Southern Oscillation (ENSO). I showed

that while the immediate response to ENSO is driven directly by atmospheric circulation, soil

moisture feedbacks to temperature amplify this response and extend it by several months, particularly

in the eastern Amazon. The results of Chapter 2 suggest that this effect may be unrealistically strong

in the ESM I used. However, it would also be expected to be uncrealistically strong across most

ESMs, which only further emphasizes the need to consider hydrologic variability and its relationship

with temperature when attributing the contribution of these factors to the tropical terrestrial carbon

cycle. This suggests that efforts to constrain the long-term carbon-climate feedback using the

present-day relationship between temperature and CO2 may need to be revisited.

In Chapter 4, I describe a method for constraining a radiocarbon-enabled ESM with data from the

International Soil Radiocarbon Database (ISRaD). The constrained model reduces some of the

bias in the modeled radiocarbon ages, and suggests that soil is unlikely to serve as a major sink for

anthropogenic CO2 emissions in the 21st century. The methodology that I developed for this chapter

can be applied to other ESMs with vertically resolved radiocarbon, and can be used to calibrate

other parameters beyond those that I demonstrated. I plan to continue working with this method in

order to refine the constraints on the Energy Exascale Earth System Model (E3SM) Land Model

(ELM) and to impose similar constraints on the Community Land Model (CLM) prior to continuing

with the next steps described below in Section 5.2.
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5.2 Future research directions

There are two general categories of future research that would extend and/or complement the work

presented here. The first category is more methodological, and involves formalizing the techniques

I developed in Chapters 2 and 4 so that they can be applied more broadly toward benchmarking

ESMs. The second category is more scientific, and involves pursuing the questions from Chapter 3

with additional data, and extending those questions to shed light on the carbon-climate feedback

[Cox et al., 2013].

5.2.1 Formalizing new methods

For the first category, I plan to implement my methods from Chapters 2 and 4 within the framework

of the International Land Model Benchmarking (ILAMB) system [Collier et al., 2018]. ILAMB

provides a platform for systematically benchmarking ESMs against a wide variety of observational

data at both the global and site level. In addition to assessing the mean state and variability of

individual variables, ILAMB was specifically designed to include functional response benchmarks

[Randerson et al., 2009] that evaluate the relationship between multiple variables. The metrics I

developed for Chapter 2 would serve to complement existing functional response benchmarks in

ILAMB.

When ILAMB was originally designed, few if any ESMs included vertically resolved soil profiles,

so there is currently no functionality for benchmarking soil characteristics as a function of depth.

However, it has become increasingly common for ESMs to simulate vertically resolved soil processes

[Koven et al., 2013; Camino-Serrano et al., 2018]. If added to ILAMB, the methods I developed in

Chapter 4 would enable the benchmarking of any vertically resolved soil characteristics, including

not only carbon stocks and radiocarbon ages as I compared in Chapter 4, but any other observations

at multiple depths, such as soil moisture and temperature.

120



5.2.2 Further investigating terrestrial carbon cycle response to ENSO

The total terrestrial carbon cycle feedback is often conceptualized as the sum of two separate

feedback processes: the carbon-concentration feedback, which I considered in Chapter 4, and the

carbon-climate feedback. The carbon-climate feedback comprises the sum of various terrestrial

responses to climate change that can complete both positive and negative feedback loops. In general,

higher temperatures from global warming would promote an increased CO2 flux to the atmosphere

from both respiration [Jones et al., 2011] and fire [Flannigan et al., 2013], but could also enhance

CO2 uptake via gross primary production (GPP) in temperature-limited environments [Winkler

et al., 2019].

Cox et al. [2013] developed a method for reducing uncertainty in the long-term carbon-climate

feedback based on the “emergent constraint” approach. An emergent constraint [Hall and Qu, 2006]

is a linear relationships within an ensemble of models between some unknown feature, typically

either a future state or a long-term sensitivity, and some other feature that can be validated with

observational evidence. The emergent relationship enables the observationally derived probability

distribution of the ensemble to constrain the probability distribution of the unknown feature. This

approach has been used to constrain the equilibrium climate sensitivity [Huber et al., 2011], the

snow-albedo feedback [Qu and Hall, 2014], cloud feedbacks [Klein and Hall, 2015], and atmospheric

CO2 projections [Hoffman et al., 2014].

The emergent constraint used by Cox et al. [2013] was the relationship between the present-

day sensitivity of global atmospheric CO2 to the interannual variability of tropical temperature

(γ IAV) and the long-term carbon-climate sensitivity (γ LT). By calculating a value for γ IAV

based on observations, they applied the emergent constraint to reduce the uncertainty in the

ensemble’s probability distribution for γ LT. Based on their constrained γ LT for the Coupled Climate

Carbon Cycle Model Intercomparison Project (C4MIP) ensemble [Friedlingstein et al., 2006], they

determined the carbon-climate feedback is likely to reduce net terrestrial uptake as the climate
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warms, but is unlikely to cause massive dieback of tropical forests, as some of the more extreme

models projected. Wenzel et al. [2014] subsequently formalized the methodology and applied it to

ESMs from the CMIP5 experiment, demonstrating its applicability across ensembles.

The utility of this emergent constraint approach is rooted in the relationship between the interannual

variabilities of global atmospheric CO2 and tropical temperature. Global CO2 concentrations are

strongly correlated with the ENSO, and the terrestrial carbon cycle has been identified as the

dominant driver using both isotopic observations [Rayner et al., 2008] and process-based models

[Jones et al., 2001]. The tropical land surface exhibits a relatively consistent response to ENSO,

with warm and dry El Niño conditions reducing NEP by limiting GPP while enhancing respiration

and fire, and the opposite effects under cool and moist La Niña conditions [Hashimoto et al., 2004;

Qian et al., 2008]. The large difference between ENSO phases within a fairly short time frame

(three to seven years) enables a robust calculation of γ IAV even with a limited observational record.

The original methodology [Cox et al., 2013;Wenzel et al., 2014] calculated γ IAV and γ LT in reference

to temperature, neglecting other climate variables under the assumption that they linearly scale

with temperature. However, this assumption has been challenged by evidence that the temperature

sensitivity of the terrestrial ecosystem is modulated by drought stress [Wang et al., 2014]. While

correlations between CO2 and precipitation are low in observations and overestimated in models

[Piao et al., 2013; Wang et al., 2013], stronger relationships emerge when CO2 lags precipitation by

several months [Wang et al., 2016a], indicating the importance of soil moisture memory, which can

also feed back to temperature. An active debate persists in the literature regarding the importance

of hydrology relative to temperature as a driver of CO2 interannual variability [Jung et al., 2017;

Bastos et al., 2018], and served as part of the motivation for the research in Chapter 3.

One of the challenges to accounting for hydrology is that the lags vary spatially, with a time-evolving

cascade of responses to ENSO drivers across the globe and, particularly, in the tropics [Chen

et al., 2017; Levine et al., 2019]. This spatial heterogeneity is obscured by a single global time

series of observational CO2, as in the original studies [Cox et al., 2013;Wenzel et al., 2014]. The
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use of a single global time series was due to spatially sparse observations of atmospheric CO2

concentrations. However, the Greenhouse Observing Satellite (GOSAT) and Orbiting Carbon

Observatory-2 (OCO-2) missions now provide spatially explicit observations of column-averaged

atmospheric CO2 concentrations [Kataoka et al., 2017]. In addition, these satellites, along with

the Global Ozone Monitoring Experiment-2 (GOME-2), provide measurements of gross primary

production (GPP) constrained by solar induced fluorescence (SIF) [Sun et al., 2018]. The CMS-Flux

framework assimilates these and other data sources into an inverse atmospheric transport model

to provide observationally constrained estimates of the net land-atmosphere CO2 flux (net biome

exchange, NBE), as well as the constituent gross fluxes (GPP, respiration, and fire) [Liu et al., 2014;

Parazoo et al., 2014].

Despite the relatively short time series of available data, Liu et al. [2017] were able to use the

CMS-Flux framework to measure the response of the tropical land surface to the 2015-2016 El Niño

event. They showed that the response of the terrestrial land surface was far from homogeneous,

and that CO2 fluxes varied highly across the tropical continents as the result of spatial variability

in the component fluxes (GPP, respiration, and fire). However, comparison with the E3SMv0.3

simulation I conducted for Chapter 3 demonstrates that the model does not correctly capture the

spatial variability of either the component or net fluxes across tropical continents (Figure 5.1).

The satellite observations from GOME-2, GOSAT, and OCO-2, combined with the CMS-Flux

framework, are powerful sources of data for evaluating, understanding, and improving ESMs.

The spatially resolved observations of atmospheric CO2 concentrations could be very useful for

testing the assumptions and limitations of emergent constraints based on globally integrated data,

and reducing the uncertainty they introduce [Keppel-Aleks et al., 2018]. SIF-constrained GPP

observations and inverted fluxes will reveal mechanistic relationships, which will reveal not only

whether the models are getting these right, but also whether they are doing so for the right reasons

(Figure 5.1). When combined with additional satellite observations of radiation and the hydrologic

cycle, these data can be used to observe the entire time-evolving cascade of drivers and responses in
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(Fig. 2): GPP was reduced by 0.9 ± 0.96 gigatons
C and NBE increased by 0.9 ± 0.24 gigatons C,
mainly owing to the lower than average precip-
itation (3.8s) over the northern and southeast-
ern part of the region (Fig. 4A) (40). Over these
regions with extreme precipitation anomalies
(i.e., larger than

ffiffiffiffiffiffiffiffi
2s2

p
), the NBE increased by

1.0 ± 0.22 gigatons C and the GPP decreased by
0.7 ± 0.53 gigatons C (Fig. 4a). This implies that
the rest of tropical South America, where the
precipitationwas slightly higher in 2015, absorbed

0.1 ± 0.13 gigatons more carbon from the atmo-
sphere in 2015 than in 2011. This spatial gradient
in carbon flux response suggests that the tropical
South American carbon flux anomaly responded
directly to precipitation anomalies. Leaf- and
plot-level measurements also suggest that severe
drought in the Amazon suppresses photosynthesis
more than it suppresses respiration (41, 42). The
net carbon loss from the 2015–2016 drought over
tropical South America was even higher than
the 2010Amazonia drought,whichwas estimated

to range from 0.2 to 0.7 gigatons C relative to 2011
(27, 43–45), whereas the carbon loss from the
2005 drought was estimated to be lower than
from the 2010 drought (46).
High surface-temperature anomalies occurred

in tropical Africa in 2015 (fig. S2), increasing the
ecosystem respiration by 0.6 ± 1.01 gigatons C,
which dominated the NBE response (75% of the
0.8 ± 0.22–gigatons C NBE difference). The large
uncertainty in GPP led to the large uncertainty in
the residual respiration. About 40% of the NBE

Liu et al., Science 358, eaam5690 (2017) 13 October 2017 3 of 7

2.0  

-3.0  

1.6  

-0.6  
-2.8  

1.7  

0.8 0.2 0.6 0.8 
-0.3 

0.4 0.9 

-0.9 

0.1 

-0.1 

Trop. S. America 

Trop. Africa 

Trop.  Asia 

∆NBE, GtC

∆GPP, GtC

∆Fire,GtC

∆(respiration), GtC

∆temperature
∆precipitation

2015-2011 

Fig. 2. Carbon flux, temperature, and precipitation anomalies in
2015 relative to 2011. Magenta, red, and purple bars are NBE, biomass
burning (fire), and respiration differences between 2015 and 2011.
Upward (positive) bars represent increased carbon release into the
atmosphere in 2015 relative to 2011. The green bars show the GPP
differences between 2015 and 2011. Downward (negative) bars represent
less carbon uptake through photosynthesis in 2015 relative to 2011.
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bars represent precipitation differences, and the downward (negative)
direction represents less precipitation in 2015 relative to 2011. The brown
bars show temperature differences, with the upward (positive) direction
representing higher temperatures in 2015 relative to 2011, where s is
30-year (1981–2010) standard deviation. GtC, gigatons C.
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Even where the modeled NBE is accurate (S. America), there are large errors in both climate forcing
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the tropical ENSO cycle [Chen et al., 2017].

The spatial variability of functional relationships between environmental factors and land surface

fluxes will provide new insights into the carbon-climate feedback. Uncertainties and assumptions in

globally derived constraints on the long-term feedback can be critically examined and minimized to

the extent possible. New functional response metrics that focus on the response of multiple land

surface variables to ENSO can be incorporated into ILAMB, where they will reveal the conditions

under which they can be used to constrain spatially resolved carbon-climate feedbacks, along with

where ESMs need the most urgent improvements.

The atmospheric CO2 observations will be of limited utility for the CMIP5-era models, as relatively
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few include a time-varying CO2 tracer that gets transported through the atmosphere, but will be

quite valuable for assessing the newer generation of models from the sixth phase of the project

(CMIP6). Many of the newer models are expected to have incorporated previously unrepresented

information about the role of temperature and moisture in soil dynamics [Bradford et al., 2016],

which will require carefully evaluating functional relationships to determine where ESMs are falling

short, and help model developers know where to focus there efforts. This research direction has the

potential to not only help improve ESMs, but also to improve the general understanding of how the

terrestrial carbon cycle responds to multiple drivers associated with ENSO.
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