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Abstract

Heuristic algorithms for agnostically identifying the globally stable and competitive

metastable morphologies of block copolymer melts

by

Carol Leanne Tsai

Block copolymers are composed of chemically distinct polymer chains that can be

covalently linked in a variety of sequences and architectures. They are ubiquitous

as ingredients of consumer products and also have applications in advanced plastics,

drug delivery, advanced membranes, and next generation nano-lithographic pattern-

ing. The wide spectrum of possible block copolymer applications is a consequence of

block copolymer self-assembly into periodic, meso-scale morphologies as a function of

varying block composition and architecture in both melt and solution states, and the

broad spectrum of physical properties that such mesophases afford.

Materials exploration and discovery has traditionally been pursued through an it-

erative process between experimental and theoretical/computational collaborations.

This process is often implemented in a trial-and-error fashion, and from the com-

putational perspective of generating phase diagrams, usually requires some existing

knowledge about the competitive phases for a given system. Self-Consistent Field

Theory (SCFT) simulations have proven to be both qualitatively and quantitatively

accurate in the determination, or forward mapping, of block copolymer phases of

a given system. However, it is possible to miss candidates. This is because SCFT

simulations are highly dependent on their initial configurations, and the ability to

map phase diagrams requires a priori knowledge of what the competing candidate

morphologies are. The unguided search for the stable phase of a block copolymer
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of a given composition and architecture is a problem of global optimization. SCFT

by itself is a local optimization method, so we can combine it with population-based

heuristic algorithms geared at global optimization to facilitate forward mapping. In

this dissertation, we discuss the development of two such methods: Genetic Algorithm

+ SCFT (GA-SCFT) and Particle Swarm Optimization + SCFT (PSO-SCFT). Both

methods allow a population of configurations to explore the space associated with the

numerous states accessible to a block copolymer of a given composition and architec-

ture.

GA-SCFT is a real-space method in which a population of SCFT field configura-

tions “evolves” over time. This is achieved by initializing the population randomly,

allowing the configurations to relax to local basins of attraction using SCFT simu-

lations, then selecting fit members (lower free energy structures) to recombine their

fields and undergo mutations to generate a new “generation” of structures that iterate

through this process. We present results from benchmark testing of this GA-SCFT

technique on the canonical AB diblock copolymer melt, for which the theoretical

phase diagram has long been established. The GA-SCFT algorithm successfully pre-

dicts many of the conventional mesophases from random initial conditions in large,

3-dimensional simulation cells, including hexagonally-packed cylinders, BCC-packed

spheres, and lamellae, over a broad composition range and weak to moderate segrega-

tion strength. However, the GA-SCFT method is currently not effective at discovery

of network phases, such as the Double-Gyroid (GYR) structure.

PSO-SCFT is a reciprocal space approach in which Fourier components of SCFT

fields near the principal shell are manipulated. Effectively, PSO-SCFT facilitates

the search through a space of reciprocal-space SCFT seeds which yield a variety of

morphologies. Using intensive free energy as a fitness metric by which to compare

these morphologies, the PSO-SCFT methodology allows us to agnostically identify
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low-lying competitive and stable morphologies. We present results for applying PSO-

SCFT to conformationally symmetric diblock copolymers and and a miktoarm star

polymer, AB4, which offers a rich variety of competing sphere structures. Unlike

the GA-SCFT method we previously presented, PSO-SCFT successfully predicts the

double gyroid morphology in the AB-diblock. Furthermore, PSO-SCFT successfully

recovers the the A15 morphology at a composition where it is expected to be stable

in the miktoarm system, as well as several competitive metastable candidates, and

a new sphere morphology belonging to the hexagonal space group 191, which has

not been seen before in polymer systems. Thus, we believe the PSO-SCFT method

provides a promising platform for screening for competitive structures in a given block

copolymer system.
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Chapter 1

Introduction

1.1 Block Copolymers

The influence of synthetic polymers on modern life is extensive, pervasive, and

nearly inescapable. Everywhere one looks, one can find their mark: teflon in non-stick

cooking pans, nylons and polyesters in fabrics and textiles, the gel soles of shoes, the

rubber treads of tires, plastics for packaging of all kinds of consumer products, the

materials encasing electronic equipment, as constituents of drug delivery vehicles, and

so much more. Within the realm of synthetic polymers exists a special category called

block copolymers, which feature desirable properties that could lend themselves to

next-generation, high performance materials.

Block copolymers are composed of chemically distinct polymer chains that can

be covalently linked in a variety of sequences and architectures. They are ubiquitous

as ingredients of consumer products and also have applications in advanced plastics

[1, 2], drug delivery [3, 4], advanced membranes [5, 6] and next generation nano-

lithographic patterning [7, 8, 9, 10]. The wide spectrum of possible block copolymer

applications is a consequence of block copolymer self-assembly into periodic, meso-
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Introduction Chapter 1

scale morphologies as a function of varying block composition and architecture in

both melt and solution states, and the broad spectrum of physical properties that

such mesophases afford[2]. In the past few decades, tremendous advances in synthetic

polymer chemistry have allowed for the controlled synthesis of polymers with well-

defined architectures. By tuning the chemical composition and architecture of block

copolymers, one can tune the self-assembly of a diverse array of periodic, meso-scale

ordered morphologies that can be exploited in a broad spectrum of applications,

including those listed above. With each new chemical and architectural system comes

the possibility of new morphologies, and with them a variety of possibly desirable

materials properties. In theory, there is an endless playground of new materials to

discover and characterize.

It is easy to see that there is an abundance of potential opportunity in block

copolymers. In an age with so many technological advancements, it is imperative to

use theoretical and computational tools in tandem with experimental approaches to

understand block copolymers, and thereby facilitate and expedite material discovery.

The studies which comprise this thesis cumulatively aspire to this goal.

Being able to predict which microphase is expected to be stable, or even which

microphases are competitive candidates for a given composition and architecture of a

block copolymer is an important part of materials design. We begin with a brief in-

troduction to one of the current methods, Self-Consistent Field Theory, which people

employ to perform this “forward mapping,” then discuss challenges of this method,

and suggest ways to address these issues through the development of heuristic algo-

rithms that fall generally under the category of global optimization strategies, which

we will see are necessary for solving the forward problem.

2
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1.2 Self-Consistent Field Theory (SCFT)

There is a diverse collection of simulation methods available to study block copoly-

mers. All of the methods involve some way of sampling statistical configurations

accessible to the polymer chains, but vary in the mathematical approaches and phys-

ical interpretations they use to do so. One common simulation approach is to use

particle-based methods, such as molecular dynamics (MD), in which one accounts for

the interactions between all segments of all polymer chains [11, 12]. Another class of

methods involves using field-based approaches such as Self-Consistent Field Theory

(SCFT) or Complex Langevin (CL), which can be constructed from a variety of chain

models [13]. Monte Carlo (MC) methods may be applied to both particle-based and

field-based methods[14]. Coarse-grained molecular dynamics and Monte Carlo sim-

ulations are typically efficient for low molecular weight polymers, but are less so for

the denser polymer melts we will be interested in simulating in this dissertation. Fur-

thermore, even at a coarse-grained level MD and MC simulations can be prohibitively

expensive, as they are often limited by the size and relaxation timescales necessary for

studying polymer systems. Although SCFT is a non-fluctuating simulation method,

it is quantitatively accurate for dense polymer melts. If necessary, fluctuation cor-

rections beyond SCFT can be included using complex Langevin sampling [15, 16].

However, CL simulations are costly and often unnecessary for a simple exploration of

candidate mesophases and their stabilities, particularly far from the Order-Disorder

Transition (ODT), where we will be primarily concerned.

The results presented in any given study in this thesis will be based on SCFT

simulations. Individual SCFT parameters used for each study will be delineated

within the section or subsection to which it belongs. The remainder of this subsection

will serve as an introduction for SCFT.

3
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When we build models to study systems at the meso-scale, we are often inter-

ested in being able to accurately account for statistical mechanical quantities such as

the partition function, which sums over all of the statistical configurations accessi-

ble to the system and allows us to connect microscopic quantities to thermodynamic

variables of interest, such as free energies, pressures, or chemical potentials. The par-

tition function of a block copolymer system is often prohibitively difficult to calculate

in particle-based models because doing so requires summing over the interactions of

all pairs of atoms or coarse-grained polymer segments between all pairs of polymer

chains in a given system. The power of SCFT lies in the conversion of a particle-

based model to a field theory via an exact mathematical transformation called a

Hubbard-Stratonovich Transformation. This mathematical transformation allows us

to decouple the many-body particle-particle interactions of the particle-based model

by introducing instead one or more auxiliary fields. In a polymer field theory, we only

need to consider the interaction of a single chain with these auxiliary fields, which

can be interpreted as chemical potential-like fields that are generated by the presence

of the chain of interest itself as well as all of the other chains present in the system.

The recipe for building a field theory begins with selecting a particle-based chain

model. There are many chain models to choose from, including bead-spring chains,

freely-jointed chains, worm-like chains, and gaussian chains, all of which are typically

coarse-grained models that ignore the effects of individual atoms. This is not a prob-

lem, since the phase behavior of polymer systems of interest are reasonably captured

using coarse-grained models. For the work presented in this thesis, we will consider

SCFT based on a continuous gaussian chain model. The continuous gaussian chain

can be interpreted as the continuum extension of the discrete gaussian chain, in which

points along the backbone of the chain are connected using entropic springs. In the

continuous gaussian chain, these springs become a continuous penalty for stretching

4



Introduction Chapter 1

the chain along its contour.

For this introduction, we will construct a field theory using continuous gaussian

chains for homopolymers in implicit good solvent (Model A). It is straightforward to

extend this methodology to other models[13]. We begin by defining a pair-potential

of mean force for the gaussian chain model is given by:

u(r) = kBTu0δ(r) (1.1)

with u0, the excluded volume parameter restricted to values greater than zero, thus

restricting Model A to good solvents. If we consider a system of n chains, each

of which is N segments long, we can keep track of the segment coordinates as the

set of conformations of space curves, rnN ≡ rj(s)s ∈ [0, N ], j = 1, 2, ..., n, with

s being a contour variable tracing the segment position along a chain. The total

interaction potential, U [rnN ], of such a system can thus be constructed by summing

over the contributions from all pairs of segments across all chains. We can partition

this into two terms, U0[r
nN ] and Ū [rnN ], which account for the contributions from

intramolecular, short-range interferences and the intermolecular interactions between

segments and long-range interferences, respectively.

U [rnN ] = U0[r
nN ] + Ū [rnN ] (1.2)

with

U0[r
nN ] =

3kBT

2b2

n∑
j=1

∫ N

0

ds
∣∣∣drj(s)
ds

∣∣∣2 (1.3)

Ū [rnN ] ≈ 1

2

n∑
j=1

n∑
k=1

∫ N

0

ds

∫ N

0

ds′ u(|rj(s)− rk(s
′)|) (1.4)
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The canonical partition function associated with the continuous gaussian chain

can thus be written as the integral over configurations which are weighted by the

total interaction energy of the system:

ZC(n, V, T ) =
1

n!(λ3T )nN

n∏
j=1

∫
Drj exp(−βU [rnN ]) (1.5)

At this point, it is useful to define a microscopic segment density operator, ρ̂:

ρ̂(r) =
n∑
j=1

∫ N

0

ds δ(r− rj(s)) (1.6)

Using this definition, we can rewrite Eqn. 1.4 as:

Ū [rnN ] =
1

2

∫
dr

∫
dr′ ρ̂(r)u(|r− r′|)ρ̂(r′)− 1

2
nNu(0) (1.7)

It is also useful to note the following representation of a delta functional:

δ[ρ− ρ̂] =

∫
Dw exp( i

∫
drw(r)[ρ(r)− ρ̂(r)]) (1.8)

We can use this representation and the definition of a delta functional,
∫
Dρ δ[ρ −

ρ̂]F [ρ] = F [ρ̂], to insert F [ρ] = 1 into to the version of Eqn. 1.5 which uses Eqn. 1.7.

By doing so, we perform a Hubbard-Stratonovich Transformation and thus recast our

particle-based partition function in terms of a partition function whose action is a

functional of auxiliary fields that were introduced by the transformation:

ZC(n, V, T ) = Z0

∫
Dρ

∫
Dw exp(−Heff [ρ, w]) (1.9)

where Z0 is the ideal gas partition function of n non-interacting continuous gaussian

chains. w and ρ can be interpreted respectively as fluctuating chemical potential and

density fields. The form of the effective hamiltonian of this field-based version of our
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theory will change from one polymer system to another. For a homopolymer in good

solvent (Model A), it takes the following form:

HA,eff [ρ, w] = −i
∫
drw(r)ρ(r) +

β

2

∫
r

∫
r′ ρ(r)u(|r− r′|)ρ(r′)− n lnQ[iw] (1.10)

The first term of the hamiltonian accounts for the interactions between the auxiliary

fields introduced by the transformation and the second term accounts for particle-

particle interactions. This first term also tells us that the chemical potential field

w is thermodynamically conjugate to the density field ρ. The Hubbard-Stratonovich

Transformation is mathematically exact, and has the effect of decoupling pair-wise

interactions among polymer segments and replacing them with interactions between

the polymer segments of a single chain with one or more auxiliary fields which are

introduced by the transformation. This effect is manifested in the third term of

the hamiltonian. This last term contains a quantity called the single-chain partition

function, Q[iw], which is a non-local quantity that accounts for the statistical con-

figurations accessible to our gaussian chain in the presence of the chemical potential

field generated by the presence of all the chains in the system. It is the fact that we

have decoupled the particle (chain segment) degrees of freedom and replaced them

with a single chain interacting with auxiliary fields which has made the problem of

simulating polymers much more tractable.

However, calculating the single-chain partition function is still an involved process.

Doing so requires us to integrate over all of the possible chain configurations, which

are captured in a quantity called the chain propagator, q:

Q[iw] =
1

V

∫
dr q(r, N − s; [iw])q(r, s; [iw]) (1.11)

7
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Here, the chain propagator q(r, s; [iw]) can be interpreted as a reduced distribution

function describing the statistical weight associated with a chain which begins with

segment 0 and ends on segment s and experiences a chemical potential field iw. Simi-

larly, q(r, N−s; [iw]) describes the statistical weight associated with a chain beginning

at segment N and ending at segment s. Here, the path integral for the single-chain

partition function has been factored at an arbitrary contour position. By doing this,

one can interpret the path integral as the sum over joint-probability distributions

associated with the configurations accessible to the chain. Chain propagators are

determined by solving the following modified diffusion equation:

∂

∂s
q(r, s; [iw]) =

b2

6
∇2q(r, s; [iw])− iw(r)q(r, s; [iw]) (1.12)

The modified diffusion equation is the continuum analog of the Chapman-Kolmogorov

equation, which relates joint-probability distributions of chain configurations that are

constructed by stochastically building the chain one segment at a time.

Thus far we have discussed the development of expressions for quantities of inter-

est for homopolymer in implicitly treated good solvent (Model A), but we can extend

these ideas to other systems. For a large part of the work presented in this disserta-

tion, we use continuous gaussian chains for Model E, the incompressible AB-diblock

copolymer melt. In Model E, we define the following microscopic segment density

operators:

ρ̂A(r) =
n∑
j=1

∫ fN

0

ds δ(r− rj(s))

ρ̂B(r) =
n∑
j=1

∫ N

fN

ds δ(r− rj(s))

(1.13)

8
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where f indicates the fraction of statistical segments in the A block. By imposing an

incompressibility constraint, ρ̂+ = ρ̂A + ρ̂B, and a local A-B interaction penalty that

goes as χABρ̂Aρ̂B, we can determine a field-based effective hamiltonian for Model E

analogous to the one in Eqn. 1.10:

HE,eff [w+, w−] = ρ0

∫
dr [(1/χAB)w2

− − iw+]− n lnQ[wA, wB] (1.14)

where χAB is a Flory-Huggins interaction parameter between A- and B-type polymer

segments. Now, the auxiliary fields for Model E are complex chemical potential fields

wA and wB which act separately on A and B polymer segments. They are defined in

terms of linear combinations of w+ and w−: wA ≡ iw+ − w− and wB ≡ iw+ + w−.

Here, w fields are still conjugate to microscopic densities ρ, but with a slightly dif-

ferent interpretation from Model A. Now, the w+ field is conjugate to the sum of

microscopic densities ρA + ρB and enforces local incompressibility, and can be in-

terpreted a pressure-like potential field. The w− field is instead conjugate to the

difference between microscopic densities ρA − ρB and can thus be interpreted as an

exchange chemical potential field. In Model E, the single-chain partition function

can be constructed by integrating over the statistical configurations of two quan-

tities respectively called the forward and complementary chain propagators: q and

qc. The forward chain propagator can be obtained by using the initial condition

q(r, 0; [wA, wB]) and solving the following modified diffusion equation:

∂

∂s
q(r, s; [wA, wB]) =

b(s)2

6
∇2q(r, s; [wA, wB])− w(r)q(r, s; [wA, wB]) (1.15)

9
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with

w(r, s) ≡


wA(r), 0 ≤ s ≤ fN

wB(r), fN ≤ s ≤ N

(1.16)

In a similar fashion, but constructing the complementary propagator from the

other end by using the initial condition qc(r, N ; [wA, wB]) instead, qc can be obtained

by solving:

∂

∂s
qc(r, s; [wA, wB]) =

bc(s)
2

6
∇2qc(r, s; [wA, wB])− wc(r)qc(r, s; [wA, wB]) (1.17)

with

bc(s) ≡


bB(r), 0 ≤ s ≤ (1− f)N

bA(r), (1− f)N ≤ s ≤ N

(1.18)

and

wc(r, s) ≡


wB(r), 0 ≤ s ≤ (1− f)N

wA(r), (1− f)N ≤ s ≤ N

(1.19)

The single chain partition function for Model E can be calculated by solving either

Eqn. 1.15 or Eqn. 1.17, since the forward or complementary construction of the chain

10
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propagators should yield statistically equivalent weights for the overall chain:

Q[wA, wB] =
1

V

∫
dr q(r, N ; [wA, wB])

=
1

V

∫
dr qc(r, N ; [wA, wB])

(1.20)

However, calculating the density operators for Model E would require knowing both

chain propagators, since it is necessary to take the joint-probability distributions

afforded by the propagators in each direction for each block:

ρA(r; [wA, wB]) =
1

V Q[wA, wB

∫ fN

0

ds qc(r, N − s; [wA, wB])q(r, s; [wA, wB])

ρB(r; [wA, wB]) =
1

V Q[wA, wB

∫ N

fN

ds qc(r, N − s; [wA, wB])q(r, s; [wA, wB])

(1.21)

The “self-consistent” aspect of SCFT comes from the fact that we are computing

the chain configurations for a polymer experiencing wA and wB auxiliary fields (as de-

termined by solving Eqn. 1.15 or Eqn. 1.17), while also calculating the configurations

of the auxiliary fields themselves. In the work we present, we consider solving for

the w fields using a mean-field approximation, rather than a fully fluctuating theory.

This means that we enforce the following condition:

δHE,eff [w]

δw(r

∣∣∣∣∣
w=w∗

= 0 (1.22)

The requirement in Eqn. 1.22 amounts to two results: 1) the Hamiltonian we solve

for will be at a stationary state with respect to variations in the field configuration

w(r), and 2) the evaluation of the fields w at a single field configuration w∗ yields a

mean-field approximation, which assumes that w∗ dominates the functional integral
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in the partition function. In the work presented in this thesis, simulations were run in

the canonical ensemble, which means that the Helmholtz free energy is equal to the

hamiltonian evaluated at the mean field configuration, since βF = − lnZC = H[w∗].

Fig. 1.1 provides a summary of the SCFT algorithm. An SCFT simulation is

initialized with some guess for the w fields, either randomly or with a seed. Densi-

ties are updated by first solving the modified diffusion equation to obtain the chain

propagators q, then determining the single chain partition function Q, and finally

employing Eqn. 1.21. Fields are then updated according to the equations appropriate

for a mean field approximation (Eqn. 1.22) or with a fully fluctuating theory (e.g.,

complex Langevin). The process of updating densities and fields is iterated until

convergence criteria are met.

Figure 1.1: Overview of SCFT algorithm. SCFT simulations consist of two main
parts: an inner loop which updates the densities, and an outer loop which updates
the fields.
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1.3 The Forward Problem

Increased complexity in the composition and architecture of block copolymer ma-

terials can lead to a wide variety of microstructures that are otherwise not seen in the

traditional linear diblock[17, 18, 19, 20, 21, 22, 23]. Materials exploration and discov-

ery has traditionally been pursued through an iterative process between experimental

and theoretical/computational collaborations. This process is often implemented in

a trial-and-error fashion, and from the computational perspective of generating phase

diagrams, usually requires some existing knowledge about the competitive phases for

a given system. SCFT simulations have proven to be both qualitatively and quantita-

tively accurate in the determination, or forward mapping, of block copolymer phases

of a given system [24, 25]. However, it is possible to miss candidates. This is be-

cause SCFT’s ability to map phase diagrams requires a priori knowledge of what the

competing candidate morphologies are. Phase diagrams are usually constructed by

gridding up the phase space of interest, performing seeded SCFT simulations of every

competing morphology at every point in the phase space, then comparing the free

energies of each morphology. If a candidate is unknown, it will not be entered into

the running, and therefore it cannot be determined to be stable. An example of this

can be seen even in the linear diblock. The theoretical phase diagram for the confor-

mationally symmetric diblock was initially established in 1994 and originally showed

spheres, hexagonally packed cylinders (HEX), double-gyroid (GYR), and lamellar

morphologies as the competing candidates of this system [24, 26]. Over the next

decade or so, hexagonally perforated lamellae (HPL) and the network phase O70 were

added as competitors and the latter was even shown to have its own pocket of stability

between DG and LAM near the order-disorder transition. Similarly, in recent years,

many new exotic sphere morphologies, including Frank-Kasper and Laves phases,

13
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have been observed for the conformationally asymmetric diblock [23, 21, 27, 28]. En-

thusiasm for these exotic sphere phases, which are well-established in metallurgy, but

are new to the polymer community, has spread and resulted in the hunt for different

compositional and architectural systems which could afford these structures larger

windows of stability.

a) b)

Figure 1.2: AB diblock phase diagram from (a) 1994[24] and b) 2005[26]. The
phase diagram in panel (b) shows a window of stability for the Fddd morphology
(belonging to the O70 space group), which had not previously been considered as
a competing candidate.

It is clear then that unguided structure discovery with regard to expected can-

didates and also with regard to their expected unit cell sizes is an important step

in materials discovery and design. Indeed, unguided large-cell real-space structure

discovery has been feasible for two-dimensional morphologies since the the late 1990’s

[29]. Unguided spectral methods for discovering block copolymer phases have been

developed as well and are successful at mapping phases for small, three-dimensional

simulation cells [30, 31]. However, the unguided determination of globally stable

phases with very large repeat units, where there is no intuition for what the lattice

parameters and mesophase symmetry should be, remains a challenge [23, 32].

The difficulties in three-dimensional structure discovery emerge as a consequence
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of a rough free energy landscape associated with numerous candidate structures even

at fixed block copolymer composition and architecture. Local saddle points in such

a free energy landscape correspond to defective states and metastable polymorphs of

the globally stable structure. This has important ramifications with regard to the lim-

itations of SCFT when used by itself, since an SCFT simulation is heavily dependent

on the initial condition with which it is seeded. This means that SCFT simulations

can often become trapped in one of the many metastable basins of attraction at a

given point in phase space, and thus results in local optimizations, rather than global

ones.

There are several methods for overcoming this phenomenon, including approaches

such as harmonic filtering, or annealing [33, 34]. These approaches can broadly be

categorized into “single-point” methods, which act to improve an individual SCFT

field configuration. However, one might instead use population-based methods, which

exploit an element of learning among multiple “members” or “agents” that carry

information about previously visited configurations and the free energies associated

with them. To the best of our knowledge, there has not been previous work that

exploits iterative modification of many structures simultaneously to predict globally

optimal morphologies and low-lying competitors of block copolymers.

1.4 Mimetic Algorithms

In this dissertation, we explore the use of mimetic algorithms, which combine

a popular global optimization strategy of choice with an efficient local optimizer to

expedite structure determination in systems of block copolymers of fixed composition

and architecture. Specifically, we will discuss the development of two approaches:

genetic algorithm + SCFT (GA-SCFT) and particle swarm optimization + SCFT
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(PSO-SCFT). In both cases, the idea is to take advantage of SCFT as a local optimizer

in conjunction with a global optimization strategy (either the GA or the PSO). In

each case, an iteration of the entire algorithm looks like the following (as represented

by Fig 1.3):

1. Launch a set of seeded SCFT simulations to relax to some set of local basins of

attraction.

2. Compare the relative fitness (intensive free energy) of structures determined by

SCFT.

3. Generate a new set of seeds according to either the GA or PSO moves.

4. Initialize the next iteration of SCFT simulations using these updated seeds,

thus relaxing to a new set of local basins of attraction, and exploring the free

energy landscape.

5. Repeat until the maximum number of iterations is met.

Figure 1.3: Framework for global+local optimizations to identify competitive mor-
phologies of BCP melts.
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SCFT is a deterministic simulator, which means that each seed corresponds to a

unique structure that is being explored. The stochasticity in each method comes

from the moves performed by the global optimizer.

In the GA-SCFT method, we manipulate the real-space SCFT field values.

For a given SCFT simulation, we employed anywhere between 323 and 643 plane

waves to spatially resolve the simulation, thus leading to on the order of 105 real

space field values which were being optimized by the GA-SCFT algorithm, which

explores the space of real-space SCFT seeds generated by combining the real-space

field values from individual simulations.

One way to reduce the degrees of freedom being optimized is by instead manip-

ulating peaks in reciprocal space. Specifically, in the PSO-SCFT method, we are

concerned with optimizing the positions of a set of peaks that fall within a thin shell

at a radius of roughly the primary wave vector away from the origin in reciprocal

space. Such a set of peaks comprises “single-mode” seeds which can be locally re-

laxed using SCFT. Local manipulations of peaks in such a shell in reciprocal space

correspond to changing non-local features in real-space. In the PSO-SCFT method,

then, the optimization space is reduced to determining the optimal relative posi-

tions of peaks in the shell, their amplitudes, and the appropriate simulation cell size.

The positions of the peaks are kept track in terms of two angles in spherical coor-

dinates. Each peak also has an amplitude associated with it, and each agent has a

value q∗ which corresponds to some initial cell size for each SCFT simulation. Moves

are applied to peaks in one hemisphere and then mirrored in the other hemisphere.

Thus, the total number of degrees of freedom for using 6 peaks in a hemisphere is:

6(2) + 6 + 1 = 19, since there are two angles per peak, one amplitude for each peak,

and one initial cell size associated with each agent (set of peaks). This is good news,

because 19 is much less than 105! However, we will find that even 19 is a very large
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number of degrees of freedom to be optimizing simultaneously.

1.5 Summary of Chapters

This dissertation is divided into two main body chapters. In Chapter 2, we exam-

ine results from the GA-SCFT method. We begin by discussing the various elements

which comprise a genetic algorithm: selection strategies, crossover methods, muta-

tions, and other miscellaneous features that are unique to the problems that emerge

from employing GA in conjunction with SCFT. Results are presented for benchmark

testing the GA-SCFT method applied to the AB diblock, for which the theoretical

phase diagram is well established. We will see that the difficulty of the forward prob-

lem, as well as the ability of the GA-SCFT method to be successful at recovering

expected morphologies, will vary with the expected morphology, simulation cell size,

and segregation strength.

In Chapter 3, we discuss the development of the PSO-SCFT approach. Switch-

ing the algorithmic manipulations to a reciprocal space basis in spherical coordinates

gives rise to a variety of considerations which were not necessary to navigate in the

real-space GA-SCFT method. We discuss some of these considerations in the early

sections of the chapter, then present the PSO-SCFT algorithm itself. We then in-

vestigate the application of PSO-SCFT to two systems: the same diblock we used to

benchmark the GA-SCFT method, and an AB4 miktoarm system where exotic sphere

morphologies of recent interest have been observed[23, 21, 27, 28]. We then discuss

the implementation and results of employing q∗ as a PSO-SCFT search variable as

a means of optimizing simulation cell size. We finish by discussing the characteri-

zation of a mystery morphology which was found by the PSO-SCFT method in the

miktoarm system.
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Finally, we will conclude with some observations about the implications involved

in attempting to solve the forward problem, as well as some considerations for future

directions with these challenges in mind.
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GA-SCFT

Here we propose the use of a genetic algorithm (GA) in conjunction with SCFT to

undertake the forward problem of determining the globally stable structures at fixed

compositional and architectural parameters. In each section, we will explore some

choices for the various components of a GA and their implementation in the context

of GA-SCFT. We will then examine the successes of the GA-SCFT method from

benchmark testing performed with the generic diblock copolymer, as well as cases

where the method is unsuccessful.

Results for the first several sections will primarily consist of those for 2D SCFT

simulations which were studied. Morphologies such as lamellae and hexagonally

packed cylinders can be studied using 2D SCFT simulations. Much of the prelimi-

nary work towards GA move development was performed using such 2D simulations,

since they are less computationally expensive, and many of the GA moves explored

are easily extensible from two dimensions to three dimensions. Thus, a few examples

of results for 2D simulations as proofs of concept will be provided in the early sec-

tions of this chapter. However, 3D SCFT simulations provide a much richer space

of structures as well as a more realistic purview of the kinds of challenges one might

20



GA-SCFT Chapter 2

encounter in attempts at structure determination. Results in the later sections of

this chapter will be presented for the fully-developed GA-SCFT method applied to

3D systems.

2.1 Background and Overview

2.1.1 What are Genetic Algorithms?

Genetic algorithms are a class of biologically-inspired global search heuristics

called evolutionary algorithms, which were initially developed in the 1960’s and 1970’s

[35, 36, 37]. GAs have been applied in various engineering, game theoretic, and

biophysics optimization problems [35, 38, 39, 40]. More pertinent to our interests,

however, is the successful application of GAs to solve crystallographic structure op-

timization problems in the solid state community. [41, 42, 43, 44]

Genetic algorithms can be used to evolve an initial population of candidate so-

lutions toward fitter solutions. In the context of SCFT, improved fitness implies

less defective (often lower free energy) structures. In this work, we only consider

free energy as a measure of fitness. Improving fitness is accomplished by iteratively

selecting fittest members to survive, reproduce, and undergo mutations to more ex-

tensively explore the free energy landscape [42]. By themselves, GAs have proven to

be successful in many kinds of optimization problems, although they may take hun-

dreds to thousands of iterations to reach optimal solutions [45]. Mimetic algorithms,

in which a global optimization strategy such as a GA is implemented in coordina-

tion with an efficient local-optimization technique, appear to converge more rapidly

to optimal solutions than unadorned genetic algorithms[46]. Because of this, as well

as the robust successes observed in the prediction and discovery of atomic crystal

structures, we propose that structure discovery of block copolymers can be acceler-
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ated by implementing GAs as a wrapper around a local-optimization method. In our

method, we iteratively cycle between performing local optimizations with SCFT and

using GA moves on the real-space fields generated by SCFT simulations in order to

move between metastable states, i.e., basins of attraction.

2.1.2 GA-SCFT Approach

The hybrid SCFT-GA methodology proceeds by initializing a population of pos-

sible structures from random initial conditions using SCFT simulations. We then

evaluate the relative fitness of each member of the population by comparing their

intensive free energies. Lower-free energy structures are considered to be more fit.

Fitter members are statistically more likely to be selected to crossover, or recombine,

with one another to generate offspring. Mutations to the offspring involve perturba-

tion of the real-space SCFT fields and occur with some tunable probability. Once the

recombination and mutation steps are performed, each individual of this new genera-

tion of candidate structures undergoes an SCFT optimization, and the whole process

is iterated until non-defective structures emerge. Fig. 2.1 provides a schematic of the

algorithm.
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Figure 2.1: GA-SCFT flowchart.

Each SCFT local optimization was not always run to full self consistency; rather,

we imposed an upper limit of 20,000 field update iterations. This number was selected

from a cursory study performed using full GA simulations for the case of hexagonally

packed cylinders in large, cubic cells. Intensive free energy typically changes on the

order of 10−4 or 10−5 kT/chain once coarse features of a morphology are resolved in an

SCFT simulation. For hexagonally packed cylinders, 20,000 iterations was identified

to strike a balance between capturing the important, larger features in a cell and the

unnecessary extra computational expense of continuing to refine finer features which

contribute very little to intensive free energy. Indeed, the fittest structure obtained

at the end of the GA can be refined to arbitrary accuracy (up to numerical roundoff

error in the algorithms) as a post-processing step.
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2.1.3 Benchmark Testing Set-up

To test our GA-SCFT method, we applied the algorithm to a conformationally

symmetric diblock copolymer melt, for which the theoretical phase diagram is well-

understood [24, 47]. This allows us to assess our method, since the expected stable

phase is known across various compositions and interaction strengths. In this chapter,

we will eventually explore the application of the full GA-SCFT approach in two

contexts in Section 2.7: large-cell and small-cell simulations, at high and low χN

values. Small-cell simulations, which attempt to capture only a single primitive cell

of the (unknown) periodic mesophase structure, are computationally less expensive

than large-cell simulations that may contain many primitive cells. However, there are

many structures whose primitive cells are very large, such as the recently discovered

Frank-Kasper σ phase [23]. Using the GA-SCFT method to successfully discover

previously unknown phases in the future would likely require large-cell simulations,

since the primitive cell lattice vectors of such phases would not be known a priori.

As we show in Section 2.7.2, random SCFT quenches (without GA moves) are

more likely to obtain the correct structure if a commensurate cell is used. However,

for discovery of unknown mesophases, prior knowledge of the commensurate cell size

is unavailable. To compensate for this lack of information, we use cubic large-cell

simulations with a first generation initial lattice parameter, Linit, of 20Rg (radius of

gyration) along each dimension for our initial GA studies. This number was chosen

to capture several periods of the classical phases, while not being exactly commen-

surate with any morphology’s unit-cell size at the compositions we chose for testing;

this allowed us to ensure an agnostic starting point for GA-SCFT. Results for full

GA simulations using initial cell sizes ranging from 15− 30Rg are presented in Sec-

tion 2.5.2. We will see that as long as the size of the simulation cell was large enough

to capture more than one period, the choice of size did not affect whether the correct
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χN fA Expected Morphology

0.30 BCC

15 0.35 HEX

0.39 GYR

0.50 LAM

0.24 BCC

20 0.30 HEX

0.36 GYR

0.50 LAM

Table 2.1: GA-SCFT simulation benchmarking compositions for conformationally
symmetric diblock copolymers used in the present study.

phase was obtained, but did affect how quickly convergence to the expected structure

occurred. Fields for large-cell simulations were sampled with 643 collocation mesh

points.

Specifically, in Section 2.7, we apply the GA-SCFT approach at two intermediate

values of segregation strength, χN: 15 and 20. At each value of χN, the GA-SCFT

is tested at diblock compositions deep in the regions where the following phases are

expected: BCC-packed spheres (BCC), hexagonally-packed cylinders (HEX), double-

gyroid (GYR), and lamellae (LAM). The specific compositions are listed in Table 2.1

and were extracted from Matsen and Schick’s phase diagram for conformationally

symmetric diblock copolymers [24].

Sections 2.2, 2.3, and 2.4 contain results primarily for large-cell simulations with

χN=20 at compositions where HEX and GYR are expected, unless otherwise stated.

We will also see that population size is an important feature that must strike a balance

between computational expense and maintaining enough diversity in the population

in order to have better exploration of the energy landscape.
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2.1.4 Considerations for GA Moves

The following three sections delineate the various selection, crossover, and mu-

tation strategies we employed. We performed a series of basic sweeps to determine

which strategies to use. However, the methods we selected were not highly optimized

via an exhaustive search of the many tunable parameters. It is important that we

distinguished two important goals in the development of GA-SCFT: 1) effectiveness of

the search, which concerns whether globally stable structures are actually recovered,

and 2) efficiency of the search, where we were interested in minimizing computational

cost. Ultimately, we would like to balance maximizing effectiveness and efficiency; we

chose methods and parameters that appeared from our preliminary studies to provide

reasonable effectiveness while also reducing computational cost.
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2.2 Selection Methods

2.2.1 Purpose and Options

The method one uses for selection ultimately decides how “genes,” or morpholog-

ical features in the case of block copolymers, are transferred from one generation to

the next. On one hand, it is important to select parents so that fitter members of

each generation are allowed to “pass on” their “desirable” qualities to the next gener-

ation. However, as in the biological analogy, diversity in the genome is imperative for

a more thorough exploration of the optimization landscape. One risks missing more

fit structures if a population collapses to one configuration too quickly.

There is a wide variety of selection methods available to use in genetic algorithms.

We present the results for three strategies in the following subsections: 1) elitist

selection, 2) roulette wheel selection, and 3) tournament selection. Details for each

method are described in their respective subsections.

Testing of the elitist and roulette wheel selection methods was performed using

2D SCFT simulations that were run at a composition where HEX is the expected

morphology, using the features and parameters listed in Table 2.2, and with a variable

cell method that allows the cell size to change over the course of an individual SCFT

simulation. SCFT simulations using these parameters typically finished in under five

minutes. Thus, running the GA-SCFT for 50 generations could be accomplished

within a handful of hours using a batch queuing system. A population size of 20

was used for the 2D benchmarking results presented for the elitist and roulette wheel

testing. Crossover (splicing of the parent SCFT fields to yield “children” seeds for

the next generation of the GA) was performed using circular cuts as described in

Section 2.3.
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Parameter Value

χN 20

fA 0.3

expected morphology HEX

number of plane waves 128×128 (2D simulation)

chain contour resolution 0.02

field timestep size 5

simulation cell size 40 Rg×40 Rg

Table 2.2: SCFT parameters used in selection methods studies.

The tournament selection strategy as explored as an alternative much later in

the development of the GA-SCFT method. Testing for this strategy was applied to

3D SCFT simulations where GYR and BCC were the expected morphologies, con-

sistent with the parameters used in Section 2.7 where the GA-SCFT used a roulette

wheel selection strategy. More details on relevant variables tested are provided in the

tournament selection subsection.

2.2.2 Elitist Selection

In the elitist selection method, members of a generation are sorted by fitness

(intensive free energy) in descending order. Members can be chosen to “mate” with

one another by pairing up each one with the next member in the list (i.e. 1 with

2, 3 with 4, and so on). Fig 2.2 displays a plot of the intensive free-energy of every

member vs. GA-SCFT iteration (generation) (panel (a)), as well as density profiles

of the lowest free energy member of generation 1 (panel (b) and that of generation

25 (panel (c)). From the plot in panel (a), we see that initially there is a distribution

of intensive free energies, each corresponding to a different defective structure.

There are variations on the elitist method that include pairing members up ran-

domly and either allowing for overlap (one member can mate with many others) or no
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overlap (each member can mate with only one other member). Varying the way par-

ents are chosen to recombine with one another does not seem to dramatically change

the rate of convergence for the elitist strategy.

As another variation to the elitist selection procedure, a percentage of parents in

each generation can be generated randomly by randomly initializing SCFT simula-

tions instead of seeding them with recombined members from the previous generation.

In Fig 2.3, we see that seeding 25% of each new generation randomly results in a slower

convergence to non-defective structures. Even after 60 generations, we see that this

implementation of the GA-SCFT does not converge to perfectly hexagonally-packed

cylinders.
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a)

Figure 2.2: Results from 2D benchmark testing of elitist selection strategy for the
AB diblock at fA = 0.3, χN=20, where HEX is expected. (a) Intensive free energy
vs. GA-SCFT iteration; the intensive free energy of each member corresponds to
a gray point, and blue lines indicate the minimum, maximum, and average values
of intensive free energy across iterations. (b) Density profile of the A-component
for the lowest free energy structure in generation 1. (c) Density profile of the
A-component for the lowest free energy structure in generation 25.

30



GA-SCFT Chapter 2

Figure 2.3: Intensive free energy vs. iteration for 2D benchmark testing of elitist
selection strategy with 25% of each generation seeded from random initial condi-
tions. Simulations were run at fA = 0.3, χN=20, where HEX is expected to be
stable.

2.2.3 Roulette-Wheel Selection

There are a variety of selection strategies other than the elitist method of the

previous section which are available for GAs[45, 48]. In this section, we study a

roulette-wheel method [49], which is a probabilistic, fitness-proportionate method,

meaning that survivors are selected with some tunable probability according to their

relative fitness to the rest of the individuals in their generation. The roulette-wheel

approach allows very fit candidates to contribute to more than one child structure.

However, even these fit structures do not pass through the GA unmodified. In our
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method, we do not allow one individual to act as both parents (i.e., there is no

“asexual reproduction”), and every contributing parent is subject to the crossover

step described in the next subsection.

Two parents are selected for each child member of a following generation. Each

parent selection is performed independently (i.e., for a population size of 50, there

will be 50 parent selections performed in each generation). The following selection

probability is assigned to individual i:

Pi =
e
−Fi

T∑
j

e
−Fj

T

, (2.1)

where

T =
−Flow + Fhigh

lnPratio

(2.2)

Flow and Fhigh refer to the SCFT intensive free-energies of the lowest- and highest-

free energy members, respectively. Pratio is an adjustable parameter that corresponds

to a ratio between the probability that the lowest free energy member will be selected

and the probability that the highest free energy member will be selected. Thus, in

the limit that Pratio → 1, all members would be equally likely to be selected as a

parent in each selection, if one parent was allowed to contribute to the same child.

Alternatively, for very large Pratio, the lowest free energy member would always be

selected. We tested values of Pratio ranging from 1 to 10 for a composition where

HEX was expected at χN=20.

Preliminary studies performed for compositions where hexagonally packed cylin-

ders should be most stable indicated that the roulette-wheel outperforms a simple

elitist strategy. In the elitist strategy, the lowest-free energy member is always se-

lected to survive and other parents are paired from an ordered list sorted by intensive
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free energy. In the roulette-wheel strategy, members that are considered to have

lower fitness are still allowed to contribute to the next generation, albeit with a low

probability. Furthermore, with the roulette-wheel approach, individual members are

allowed to engender multiple offspring for the next generation.

Figure 2.4: Intensive free energy vs. iteration for 2D benchmark testing of roulet-
te-wheel selection strategy (with Pratio = 1) for the AB diblock at fA = 0.3, χN=20,
where HEX is expected.

Figures 2.4 and 2.5 show the plots of intensive free energy vs. generation for the

GA-SCFT method applied with a roulette-wheel where Pratio = 1.1 and 5, respec-

tively. The first generation for each implementation matches that of the sample for the

elitist selection method shown in Fig. 2.2, and we can thus obtain a direct comparison

between the three samples. Performing GA-SCFT using a roulette-wheel with Pratio
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= 5 obtains defect-free structures by generation 10, which is faster than both the

elitist selection implementation, which takes 15 generations, and the roulette-wheel

with Pratio = 1.1, which takes more than 25 generations. This is consistent with the

fact that in the case where Pratio = 1.1, the probability of selection any given member

is roughly the equal, whereas with Pratio = 5, there is a preferential weighting given

to fitter structures. Furthermore, even in the case of the elitist strategy, there is the

bias of fitter members being allowed to recombine with other fitter members.

Figure 2.5: Intensive free energy vs. iteration for 2D benchmark testing of roulet-
te-wheel selection strategy (with Pratio = 5) for the AB diblock at fA = 0.3, χN=20,
where HEX is expected.

Pratio = 5, seems to offer a balance between searches with premature population

collapse and inefficient searches from preliminary three-dimensional studies. These
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studies indicated that higher values resulted in premature population collapse to

defective structures, whereas lower values of this ratio slowed the rate at which defect-

free structures were obtained. The results presented in Section 2.7 therefore use the

roulette-wheel with Pratio = 5.

2.2.4 Tournament Selection

The elitist and roulette wheel selection strategies were tested early in the devel-

opment of the GA-SCFT method. The tournament selection method was explored

as an alternative after the application of a fully-developed GA-SCFT at the compo-

sitions listed in Table 2.1. As we will see in Section 2.7, the GA-SCFT method often

struggles with population collapse. One way to combat this is through the use of

alternative selection strategies, such as tournament selection.

In the tournament selection method, k individuals are randomly selected from

the population to form a pool of possible parents for the next generation. Parents

are then selected by running a series of “tournaments” in which the fittest individual

would be chosen with a probability p, the second fittest with a probability p(1− p),

the third fittest with p(1− p)2, and so on. This task is performed until a number of

parents equal to the population size has been selected, and parents are then paired

off according to the order in which they were selected.
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Figure 2.6: Results from 3D benchmark testing of tournament selection strategy
using p = 0.6, 50 members in the population, and k = 10, for the AB diblock at fA
= 0.50, χN=15, where LAM is expected. (a) Intensive free energy vs. GA-SCFT
iteration; the intensive free energy of each member corresponds to a gray point,
and blue lines indicate the minimum, maximum, and average values of intensive
free energy across iterations. (b) Density profile of the A-component for the lowest
free energy structure in generation 1. (c) Density profile of the A-component for
the lowest free energy structure in generation 25.
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Figure 2.7: Intensive free-energy vs. iteration for 3D benchmark testing of tour-
nament selection strategy using using p = 0.8, 50 members in the population, and
k = 10, at fA = 0.5, χN = 15, where LAM is expected to be stable.

Figures 2.6 and 2.7 show results for 3D benchmark testing for the tournament

selection method, which was performed using p = 0.6 and p = 0.8, respectively. Sim-

ulations were run at fA = 0.5 and χN = 15, where LAM is the expected morphology.

Each implementation of the tournament selection used a population size of 50, with

k = 10 as the tournament size. Having a larger probability that the lowest free en-

ergy structure be selected (p = 0.8 vs. p = 0.6) resulted in faster identification of

non-defective structures (3 generations instead of 5). The distribution of structures

by later generations does not seem to be significantly different between one value of
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p and another.

Figure 2.8: Intensive free-energy vs. iteration for 3D testing of roulette-wheel
selection strategy using using Pratio = 5, and 50 members in the population, at fA
= 0.5, χN = 15, where LAM is expected to be stable. Panels (a) and (b) show
results of two implementations of the GA-SCFT method using these parameters
starting from the same population of structures for the first generation.

Figure 2.8 shows the intensive free energy vs. generation plots for two sample

implementations of the GA-SCFT method using the roulette-wheel with Pratio = 5

also at fA = 0.5 and χN = 15, where LAM is expected. As we can see from the re-

sults in panels (a) and (b), which both have the same distribution of first generation

structures, the stochasticity of the method yields variation in the results. From these

plots, as well as those of Figures 2.6 and 2.7, there does not seem to be an advan-

tage to using the tournament selection method as opposed to the roulette wheel. In

fact, we see that there are a larger number of structures at higher intensive free en-

ergies in later generations of the tournament selection method, as compared with the

roulette-wheel. However, these structures seem to exist in some band of free energies,

indicating that there has been a collapse to a non-ideal structure instead of LAM. In-

deed, this is further corroborated by Fig. 2.9, which shows the density profiles for the
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second lowest free energy structures in the tournament selection results from Fig. 2.6

(a) and the roulette-wheel results from Fig 2.8 (b). An exhaustive search through

variations of p and k for the tournament selection method might show windows of

these values where using the tournament selection produces better results than the

roulette-wheel method. However, such studies are deferred to future work.

Figure 2.9: Density profiles of the second-lowest free energy structure from (a)
generation 25 of the GA-SCFT using tournament selection with p = 0.6 (see
Fig. 2.6) and (b) generation 20 of the GA-SCFT using roulette-wheel selection
“sample 1” (see Fig. 2.8).
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2.2.5 Comments

In this section, we explored three options for methods to select members of the

GA-SCFT population to “recombine” their SCFT fields: 1) elitist, 2) roulette-wheel,

and 3) tournament selection. We found that the roulette-wheel method out-performs

the simple elitist method, as well as the tournament selection method for the few

values of parameters for the tournament selection that we tested. It is important

to recognize that there are many strategies for just the “selection” move alone, and

this was by no means an exhaustive search, but rather a screening step to quickly

identify a reasonable selection strategy. The application of the full GA-SCFT method

in Sections 2.5, 2.6, and 2.7 uses a roulette-wheel selection with Pratio = 5.
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2.3 Crossover Testing

2.3.1 Purpose and Options

Once survivors are selected, we perform crossover moves to initialize the next gen-

eration of members. The crossover step is applied to the real-space fields generated

by the SCFT simulations. The child fields that come from the crossover step are

then used as seeds for the next generation of simulations. Crossover is applied to two

members at a time; their fields are spliced together. We divide each member’s SCFT

fields into two regions. Field values in the first region are swapped between the par-

ents to generate the first child; the same is done for the second region to generate the

second child. Figure 2.10 shows a schematic of this procedure. In this section, we in-

vestigate the effect of cut shape, edge hardness, and using disordered fields as parents.

Figure 2.10: Schematic of child fields resulting from splicing two parent fields.
Child fields are used as seeds for the next generation of SCFT simulations.
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Figure 2.10 shows a schematic of what child fields look like after a crossover event

between two parents. These child fields are used as seeds for the next generation of

SCFT simulations. The Two cut types were tested: planar cuts and circular cuts.

In the sets of studies presented for cut shape and edge hardness in the following

subsections, the GA-SCFT method was applied using an elitist selection strategy that

randomly seeds 25% of members in each generation. Herein lies an example of the

challenges faced in developing heuristic algorithms which have many modular steps.

In the early stages of development, it made sense to choose a simple selection method

and test the performance of various crossover moves against one another. We saw,

however, from Section 2.2 that this version of the elitist strategy was actually the worst

performing selection method we tested. It was fortunate that these 2D calculations

ran quickly so testing could be performed fairly expediently, despite the inefficient

selection strategy we were using. Developing the various selection, crossover, and

mutation moves in the construction of the GA-SCFT method was thus an iterative

process.

This iterative process is not totally unavoidable, since at some point, choices must

be made to fix one set of parameters while doing a coarse exploration of another

feature of the algorithm. It is important when designing such investigations to strike

a balance between educating oneself about the various options available for each

method, the cost to implement and study each option, and the fact that no choice is

entirely isolated in its ability to affect the results of other choices. This kind of balance

is difficult to achieve, and seems to require experience, as well as an understanding of

the optimization problem at hand, which in turn requires its own level of experience.

We will also see that results from 2D studies do not always translate to the 3D

case. This is particularly true for the effects of cut shape and using disordered fields

as parents, and seem to primarily be dependent on what the target morphology was
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for a given study.

As a final note, the SCFT relaxation step used in tandem with our GA algorithm

includes not only field relaxation, but simultaneous relaxation of the cell-tensor that

defines the shape and volume of the simulation cell. As part of a crossover event, we

assign the average of the SCFT-relaxed cell-tensors of the two contributing parents as

the initial guess of the cell-tensor for each child; we refer to this step as a “cell-tensor

update.”

2.3.2 Shapes: Planar vs. Circular Cuts

Figure 2.11: Intensive free energy vs. generation plot from GA-SCFT using planar
cuts applied for 2D simulation cells at fA = 0.3, χN = 20, where HEX is expected
to be stable.
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Figure 2.11 shows the results from performing GA-SCFT using planar crossover

cuts in large, 2D simulation cells at a composition where HEX is the expected mor-

phology. Even after 50 generations, we see that there is a failure to converge to

defect-free structures. This is consistent with the fact that we were using the elitist

strategy with randomly initialized fields.

Figure 2.12 shows the results from performing GA-SCFT using circular crossover

cuts in large, 2D simulation cells at a composition where HEX is the expected mor-

phology. Similarly to the planar crossover cut case, we see a failure of GA-SCFT

to converge to defect-free structures. However, by tracking the minimum free-energy

structure of each generation, we do see an improvement over the planar cuts in the

rate at which lower free energy (less defective) morphologies are obtained. This, is

actually in contrast with results from 3D studies, which saw better performance with

planar crossover cuts.

44



GA-SCFT Chapter 2

Figure 2.12: Intensive free energy vs. generation plot from GA-SCFT using circular
cuts applied for 2D simulation cells at fA = 0.3, χN = 20, where HEX is expected
to be stable.

2.3.3 Edge Hardness

Splicing two disparate morphologies can often lead to discontinuities along the

interface of the splice, which in turn resulted in numerical stability problems with the

SCFT field relaxers. To mitigate this effect, we softened the interface of the cut by

smearing with a tanh function. Values for fields for each child from a given set of two
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parents, A and B, were written to SCFT field files in the following way:

φchild1 = x ∗ φA + (1− x) ∗ φB

φchild2 = x ∗ φB + (1− x) ∗ φA
(2.3)

where φA and φB are the values of the fields from parent A and parent B, respectively.

The value of x allows for an interpolation between the two regions separated by the

cut, and x is determined using:

x =
tanh(a(r− 1) + 1)

2
(2.4)

where r is the distance between the current coordinate in the simulation cell and

the hard, unsmeared edge of the cut, and a determines the width of the smearing.

Smaller values of a have the effect of smearing the edge of the cut more, where as larger

values correspond to sharper interfaces. Preliminary tests using tanh function widths

ranging from 0.005L to 0.1L were performed for a HEX composition at χN=20.

Softer tanh functions had the effect of slowing the retrieval of defect-free structures,

while sharper tanh functions resulted in divergent SCFT field relaxer trajectories.

Using a width of 0.025 the simulation cell seemed to yield the best results for the

ranges we observed.

Figure 2.13 displays results for GA-SCFT applied where HEX is the expected

morphology using 2D simulations, an elitist strategy that randomly seeds 25% of

members each generation, and sharp vs. smeared interfaces. The sample which used

softened interfaces (blue data) shows an improvement in obtaining lower free energy

structures than the GA-SCFT applied with sharp interfaces. This trend in perfor-

mance, unlike the trend seen for the 2D studies for cut shape, seemed to carry to the

3D benchmarking.
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Figure 2.13: Intensive free energy vs. generation plots for GA-SCFT applied to a
composition where HEX is expected using 2D SCFT simulations and sharp (red)
and smeared (blue) interfaces.

2.3.4 Using Disordered Fields as Parents

Conceivably, allowing disordered fields to recombine with fit members of each gen-

eration could allow defect-free patterns to propagate through the homogeneous por-

tion of the spliced fields, directed by the surrounding ordered regions (see Fig. 2.14).

We probed this idea in 2D and 3D SCFT simulations, at compositions where LAM,

HEX, BCC, and GYR were expected to be stable. In this section, we will only exam-

ine two case studies: 2D and 3D simulations at χN = 20 and fA = 0.3, where HEX is

the stable morphology.
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Figure 2.14: Strategy for using homogeneous fields as parents in the crossover step.
Defect-free patterns might be able to propagate into the homogeneous, disordered
fields.

Figure 2.15 shows the results from performing GA-SCFT using disordered fields

as parents with circular crossover cuts (a) and planar crossover cuts (b) in large, 3D

simulation cells at fA=0.3, χN=20, a composition where HEX is the expected mor-

phology. A roulette wheel with Pratio=5 was used to select parents, and homogeneous

fields were used parents for every member of every generation (i.e., for every pair of

parents used to generate children, one of the parents was a homogeneous, disordered

SCFT field, and the other was selected using the roulette-wheel). Using circular

crossover cuts consistently resulted in more rapid recovery of defect-free structures,

as well as collapse to these structures. Collapse to structures could be delayed by

tuning the value of Pratio.
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Figure 2.15: Intensive free energy vs. generation plot from GA-SCFT using ho-
mogeneous fields as parents and planar cuts applied for 2D simulation cells at fA
= 0.3, χN = 20, where HEX is expected to be stable.

Figure 2.16 shows the results from performing GA-SCFT using disordered fields

as parents and planar crossover cuts in large, 3D simulation cells at fA=0.3, χN=20,

a composition where HEX is the expected morphology. Planar crossover cuts showed

faster convergence to defect-free structures than spherical crossover cuts in the 3D

studies, across the LAM, HEX, and BCC morphologies. This is in contrast to the

2D studies shown in the previous subsection on cut shape. In Fig. 2.16, we see that

after only 11 generations, defect-free structures were already being obtained. Even

by generation 9, the lowest free energy member has cylinders arranged in a hexagonal

array; the difference in free energy between this structure and the defect-free HEX

morphology comes from the branches that connect some of the cylinders to one an-

other. Such defects were also commonly seen in the simulations where homogeneous

fields were not introduced as parents. However, introducing the disordered fields as

parents during crossover had the effect of facilitating the “clean-up” of these defects.

One would expect the search for 3D morphologies to be slower than the 2D mor-

phologies. However, the combination of using a roulette-wheel selection strategy and
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also introducing disordered fields as parents expedited the identification of defect-free

hexagonally-packed cylinder structures. The values of the intensive free energies pre-

sented in this plot do not match those from previous plots for the same composition;

this is simply an artifact of a change that was made to the in-house SCFT code some

time in 2015, after the 2D benchmark tests had been performed. There is a flag in

the code that can be turned on, called “UseLegacyOperators,” which will provide

comparable intensive free energies to previous studies. There is a small difference be-

tween the lowest free energy structures in generations 11-13 and the black dashed line

depicted the expected free energy for HEX at this composition. This difference can

be made up by further relaxing the SCFT fields of those individual members of the

population, since in the GA-SCFT method, SCFT simulations are capped at 20,000

iterations to avoid unecessary computational cost associated with resolving the finer

features in an SCFT simulation.
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Figure 2.16: Intensive free energy vs. generation plot from GA-SCFT using disor-
dered fields as parents and planar cuts applied for 3D simulation cells at fA = 0.3,
χN = 20, where HEX is expected to be stable.

The disordered parent method was very successful for accelerating the search for

HEX. In some cases, half the number of generations were needed to obtain perfect

HEX morphologies. However, the disordered parent crossover/mutation technique

was unsuccessful for GYR simulations; the tubules in the simulation cell became

elongated and eventually the GA-SCFT algorithm led to HEX or LAM structures

for a variety of crossover cut shapes and relative volumes. The results look very

similar to those shown in Figure 2.21, which shows the collapse of the population

onto hexagonally-packed cylinders, rather than ever finding GYR.

51



GA-SCFT Chapter 2

2.3.5 Comments

In this section, we investigated the crossover, or recombination move, which comes

immediately after members are selected as parents. In a genetic algorithm, crossover is

a means to recombine the “genetic information” of parents which have been selected

to reproduce, which helps to retain desirable features from fit parents, while also

maintaning some diversity in the population. In the case of the GA-SCFT method,

the genetic information of members is contained in the real-space SCFT field values

from each simulation. This means that recombination moves involved the physical

splicing of the real-space SCFT fields of parents.

We explored the effects of using different cut shapes: planar cuts vs. circu-

lar/spherical cuts. We also examined the effect of using various shapes at the in-

terfaces, such as straight lines vs. wavy lines. These studies were not included in

this dissertation, but for the 2D investigations performed, using straight rather than

wavy lines did not seem to have much of an effect on the performance of the GA-

SCFT method. We also looked at the effect of softening the interface with a tanh

function. Lastly, we considered using disordered SCFT fields as parents, in the hope

that doing so would allow “good features” to grow in at the boundaries. However, we

saw that this had the effect of elongating the tubular regions rich in A-type polymer,

and eventually collapsing the population into cylinder structures rather than network

morphologies even at compositions where network phases were expected to be stable.

An interesting observation that came from the investigations surrounding the

development of the crossover move is that some of the results of these studies changed

drastically in going from 2D to 3D SCFT simulations. For instance, circular cuts

performed better in the 2D simulation case, but planar cuts performed better in

the 3D simulations. Some of this effect may stem from the fact that 1) the shape

of the cut may guide the direction that A-rich or B-rich densities grow from the
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cut interface, and 2) symmetries of the expected morphologies in each of the given

case studies differ with different dimensionality. In the 2D simulations, we expected

the HEX morphology, which has a radial symmetry in the cylinders. In the 3D

simulations, the HEX morphology still exhibits the radial symmetry, but has an extra

dimension which does not have radial symmetry. We found that defects branching

across cylinders were more likely to remain in the spherical crossover cuts. This was

also true for the application of GA-SCFT to compositions where GYR was expected.

Introducing homogeneous fields as parents mitigated this effect in the case of HEX,

but in the case where GYR was the target morphology, there was the added difficulty

of tubules elongating in one direction.

The best performance of the GA-SCFT method for 3D simulations occured with

planar crossover cuts that were softened with a tanh function and split the box into

equal halves along one of the x, y, or z planes with equal probability. The application

of the full GA-SCFT method in Sections 2.5, 2.6, and 2.7 uses these planar crossover

cuts with softened interfaces.
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2.4 Mutation

2.4.1 Overview

Once children are generated, mutations can be performed as perturbations to their

real-space field values. This is important for maintaining diversity in the population

to avoid premature population collapse to unoptimal structures.

Results are presented for mutations which consisted of replacing some portion

of the simulation cell with random white noise. The idea behind this mutation is

similar to the motivation for using disordered fields as parents (Section 2.3). In

fact, employing disordered fields as parents with some probability was explored as a

mutation as well, but resulted in a similar set of deficiencies seen in using disordered

fields as part of the crossover move. That is, in the case of the application of GA-

SCFT at a composition where GYR was expected, tubules end up elongating, and

morphologies eventually collapsed into cylinders or lamellae.

In this section we will explore the performance of GA-SCFT for different muta-

tion sizes, noise amplitudes in the field values, and mutation frequencies. We will

also examine the use of a spectral filter, where low amplitude Fourier peaks of the

reciprocal space fields are removed, following the methods discussed by Bosse et al.

[33]

2.4.2 Random White Noise Mutations

The random white noise mutations were performed tested in several ways. One

method involved replacing all original field values in a region of the simulation cell

with zero, then adding random values to each point. Another version of the method

involved adding random values to each field value in a particular region of interest in

the simulation cell. In our initial work, we applied the noise mutation to the entire
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simulation. In later studies, we applied the noise mutation to different shapes and

sizes of regions. Regions would be selected randomly. Thus, for example, if we applied

the mutation to half of the simulation cell, the noise could be applied to only the half

of the cell that one parent contributed to, or it could apply to a half which spanned

sides of the cell containing contributions from both parents. We also tried applying

the mutation to an octant or multiple octants of the simulation cell, quadrants, and

spheres of various radii.

Figure 2.17: Examples of mutated child fields in GA-SCFT after random white
noise has been added to a) an octant and b) a quadrant of the original child fields.

Applying random white noise to the children (input fields for the next generation)

seemed to mitigate some of the population collapse we were observing. However,

simply adding noise to the field values in each generation without bounding the value

of the noise led to field values that grew with each successive generation. After several

generations of this effect, SCFT simulations would result in divergent trajectories. To

address this problem, we scaled the values of the noise so the values of the mutated

fields would not exceed the magnitude of the original field values. In the final iteration
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of the development of the noise mutation (i.e., the version of the mutation used in

Sections 2.6 and 2.7, we performed the following tasks:

1. Randomly select the region of the real-space fields to mutate (e.g., half the

simulation cell, an octant, or a sphere)

2. For every coordinate in the selected region:

• Choose a random number, r, between ((−a, a)). Here, a = ∆A ∗ C,

∆A = Amax − Amin is the difference between the maximum and mini-

mum amplitudes of the original fields, and C is a prescribed percentage of

the maximum magnitude of the original field values.

• Use Anoise = r+A
s

as the new field value. A is the original field value at the

current coordinate, and s is a scaling variable given by: |Amax|+a
|Amax|

Figure 2.17 displays examples of what the random white noise mutation might

look like when applied to an octant (a) or a quadrant (b) of a 3D simulation cell. The

images shown in this figure are visual representations of fields which were used as seeds

for a subsequent generation (iteration) of the GA-SCFT. Using octants or quadrants

as regions for the application of the mutation seemed to yield better performance than

applying noise to the entire field, or applying noise in spherical regions. In the case

of applying noise to the entire field, GA-SCFT took more generations to identify the

expected morphology when the target was HEX than when noise was only applied to

an octant or a quadrant. When the target was GYR, GA-SCFT never recovered GYR.

This was no different from any of the other implementations of GA-SCFT applied at

a composition where GYR was the target morphology. In the case of applying the

noise mutation to spherical regions of varying radii, GA-SCFT would often converge

to cylinder morphologies, even when the target was GYR. This result is similar to

the ones seen for using disordered, homogeneous fields in crossover and mutation, as
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well as applying a harmonic filter as a mutation.

2.4.3 Applying a Mutation which Used Disordered Fields as

Parents

One move which was studied was the employment of disordered fields as parents

as a mutation. We tested a number of different strategies:

• Apply mutation every generation, to some subset of members (vary size of

subset).

• Always apply before crossover.

• Always apply after crossover.

• Vary frequency of application (not necessarily performed every generation).

• Vary size of disordered fields introduced to child fields.

• Overlay disordered fields coincidentally with crossover cut.

• Overlay disordered fields non-coincidentally (and randomly) after crossover cut.

• Apply in addition to random white noise

Figure 2.18 provides a schematic for the application of the DIS mutation after

crossover has already been applied. Homogeneous fields may be overlayed on child

fields either coincidentally or non-coincidentally with the original crossover cut. The

advantage of overlaying the homogeneous, disordered fields coincidentally with the

original crossover cut is that the DIS crossover move seems to accelerate the recovery

of defect-free morphologies. However, it has the effect of obliterating the “genetic

information” from one of the parent fields, which may be unproductive when those

fields contain desirable features.
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Figure 2.18: Schematic for applying disordered fields as a mutation after crossover.
Once real-space fields are spliced from parents during the crossover step, disordered
fields may be overlayed on the child fields coincidentally with the original crossover
cut, or non-coincidentally.

Figure 2.19 provides examples of input field files one might encounter when per-

forming the homogeneous DIS fields mutation. In this particular example, the DIS

mutation was applied to every member of every generation (100% frequency). From

both panels, we see a variety of possible input fields. Of particular interest are the

fields shown in red (second row, second from the left in panel (a) and third row,

farmost right square in panel (b)). The simulations that were seeded using these

fields actually resulted in divergent trajectories. For the 2D testing where the target

morphology was HEX, the GA-SCFT algorithm was surprisingly robust to the exis-

tence of divergent trajectories, as long as it was limited to one or two per generation.

The members which experienced these trajectories would simply not get selected as

parents for the following generation. Even in 3D testing where HEX was the target

morphology, this effect seemed to hold.

In 3D testing where GYR was the expected morphology, the existence of diver-

gent trajectories seemed to aggravate the problems we were already seeing with the

58



GA-SCFT Chapter 2

application of the DIS mutation: the frequent collapse to HEX or LAM structures we

observed seemed to be somewhat accelerated (occuring within 10 generations instead

of 15, for instance). We did add a feature which would remove divergent trajectories

by creating new children from the selected pool of parents, or by spawning a new

individual by using random initial conditions, which seemed to somewhat extend the

number of generations to collapse. However, it is not entirely clear to what extent this

effect was due to the stochastic nature of the algorithm. Running a full GA-SCFT

for the 3D simulations was fairly expensive; in many cases we would only run one or

maybe two samples of each trial we were investigating. However, population collapse

to LAM and HEX occurred across the board for the various implementations of the

DIS fields mutation.

Figure 2.19: Examples of input fields for generation 3, members 1-20 (a) and
generation 15, members 1-20 (b) for GA-SCFT applied to a composition where
HEX is the expected morphology. A mutation strategy where disordered parents
were applied to every member of every generation after the crossover step, at
positions which were not coincident with the original crossover cuts.
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Figure 2.20: Intensive free energy vs. generation plot for GA-SCFT applied to 2D Hex

2.4.4 Spectral Filter

In the spectral amplitude filter mutation, low amplitude Fourier components of the

power spectrum of parent fields are removed. A range of values for the percentage

of Fourier modes to be removed was investigated over the range of 50% to 90%

of the lowest amplitude components in 10% increments. Similar to the case of the

disordered parent crossover/mutation, GA-SCFT applied to compositions where HEX

was expected were accelerated by the application of the filter. However, GA-SCFT

with spectral filtering for GYR was unable to recover GYR; again we encountered
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the elongated tubules that eventually yielded HEX or LAM morphologies.

Thus, both the disordered parent method and spectral amplitude filter mutation

led to improvements in cases where the unembellished GA-SCFT was already suc-

cessful, but was unsuccessful for GYR, for which the basic GA-SCFT method failed

anyway.

Figure 2.21: Intensive free energy vs. generation plot for GA-SCFT using 3D
simulations and the spectral filter mutation at fA=0.37 and χN=20, where GYR
is the expected morphology. By about 15 generations, the population of structures
collapses into hexagonally-packed cylinders, whose intensive free energy is about
10mkBT/chain higher than the GYR morphology.

2.4.5 Comments

In this section, we studied a variety of mutations, including 1) the addition of

random white noise to field values, 2) swapping in disordered, homogeneous fields to
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the original fields either before or after crossover, and 3) the application of a spectral

filter. We saw that the application of disordered, homogeneous field and the spectral

filter mutation were similar in the results, both for the implementation of GA-SCFT

at compositions where HEX was the target morphology and compositions where GYR

was expected. The identification of HEX as a stable morphology was accelerated by

the use of these mutations, while GYR was never observed, but rather the GA-SCFT

algorithm often collapsed into competing morphologies such as HEX or LAM.

For the results presented in Sections 2.6 and 2.7, we used a version of GA-SCFT

where noise was applied to a single, randomly selected octant of every member after

crossover was performed. Field values in these random octants of the simulation

cell were replaced with white noise of amplitudes selected from a uniform random

distribution between (−A,A), where A is the maximum magnitude real-space-field

value observed in a given simulation.
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2.5 Miscellaneous Features

In this section, results are presented for the application of GA-SCFT which used

the moves listed in Table 2.3.

GA Move Parameter Value

roulette-wheel selection Pratio = 5

planar crossover half box, tanh width = 0.025

white-noise mutation single octant, 100% of members

Table 2.3: GA moves used in the application of the full GA-SCFT method to the
diblock for studies on the effects of population size, SCFT simulation cell size, and
χN (see Sections 2.5, 2.6, and 2.7.

2.5.1 General Commentary

In the context of the combination of genetic algorithms with SCFT, there are

a variety of important considerations that fall beyond the scope of the basic GA

moves of selection, crossover, and mutation. For instance, it is conceivable that the

choice of initial cell size might affect the results of the GA-SCFT. We will see in

Section 2.7.2 that how commensurate an SCFT simulation cell is with the cell size

of the expected, stable morphology affects how accessible that morphology is to our

group’s implementation of the SCFT algorithm. Thus, in our benchmark testing of

the GA-SCFT, it is important to choose large and small simulation cell sizes which

are not exactly commensurate with a multiple of the unit cell of any of the individual

competing candidate morphologies, to unintentionally favoring one structure over

another.

Another feature which seemed worth exploring was the question of whether simu-

lation cell sizes should be averaged between each pair of parents. It was also important

to tune individual SCFT simulations to reduce computational cost, since the SCFT

simulations themselves take many orders of magnitude longer than the GA moves,
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which are applied with a series of simple scripts.

2.5.2 Initial Cell Size

Here we present some findings with regard to the choice of the initial lattice

parameter, Linit. The results presented here are given for a diblock composition where

HEX is expected to be stable: χN=15 and fA=0.35, where fA is the block fraction of

monomer type A in the diblock. Figure 2.22 depicts plots of the value of the intensive

free energy per chain of each member vs. generation number in Linit = 15Rg (panel

A) and Linit = 20Rg (panel B) simulation cells. Grey dots represent the intensive free

energy for each member at the end of their respective SCFT relaxation. The blue

dotted lines track the highest and lowest free energy members of each generation,

while the solid blue line is the arithmetic mean and the black dashed line is the

defect-free (target) morphology.

There is a small difference in intensive free energy seen between the dotted black

line representing the expected value and the intensive free energy to which the GA-

SCFT method converges. This discrepancy arises from a difference in the spatial

resolution of the simulations run to calculate the expected value and the simulations

in the GA-SCFT samples, and has been independently verified by using the fields

from the lowest intensive free energy members as seeds in simulations with spatial

resolutions below 0.2Rg for both the Linit = 15Rg and Linit = 20Rg cases. The

unit-cell reference free energies plotted in all figures were run at spatial resolutions

in a range of about 0.25Rg to 0.26Rg, depending on the expected morphology of

interest. In the GA-SCFT simulations themselves, collocation meshes of 48 and

64 collocation points in each dimension were used for the 15Rg and 20Rg initial

lattice parameters, respectively. Upon SCFT relaxation during the GA, lattice vectors

ranged from 14.5Rg to 17.5Rg in the Linit = 15Rg simulations, implying a range of
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spatial resolutions from 0.302Rgto 0.365Rg. In the Linit = 20Rg simulations, lattice

vectors ranged from 19.8Rg to 22.2Rg; the range of spatial resolutions for this set of

simulations was 0.309Rg to 0.347Rg.

The appropriate defect-free, 3D hexagonally-packed cylinder morphology was ul-

timately achieved for both Linit = 15Rg and Linit = 20Rg within a modest number of

generations. However, the simulations that were run in the smaller cell size obtained

the defect-free structures in fewer generations. In both cases, we observe the removal

of defects as the search progresses (Figure 2.22), and the populations eventually col-

lapse onto a single morphology due to the relatively large selection bias employed.
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Figure 2.22: Effect of simulation cell size on GA-SCFT performance. GA-SCFT
applied to a diblock copolymer melt at χN=15 and fA=0.35, where the HEX
morphology is expected. (a) Plot of the value of intensive free energy of all mem-
bers vs. generation for members with Linit = 15Rg. (b) Corresponding plot for
Linit = 20Rg. The black dashed line in each plot indicates the value of the inten-
sive free energy of the expected, defect-free structure. Plots of the density of A
monomers of the lowest free energy member for the indicated generations of the
Linit = 15Rg (c) and Linit = 20Rg (d) simulations.
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Population collapse is evident in (Fig. 2.22) – eventually all members collapse

onto the same structure. In this example, population collapse is not a problem because

the most stable phase is found first. However, to confidently apply GA-SCFT for

structure discovery in new systems, it is critical to maintain population diversity

in order to reduce the change of false convergence to a locally stable but globally

metastable structure. An important factor that can affect whether population collapse

will occur is the choice of the number of members used in each generation. The effect

of varying population size will be explored in Section 2.6.

The results we present for large-cell simulations in Section 2.7 Linit = 20Rg sim-

ulation cells, which provide representative large-cell tests for our method.

2.5.3 Averaging Parent Cell Sizes

In our initial work, we took the average of parent cell sizes during the crossover

step. This seemed reasonable, since the idea with crossover is to “genetically recom-

bine” the individuals who were selected as parents. Averaging the simulation cell

sizes of parents was not a problem with the 2D benchmarking we performed, and

even in the case of 3D benchmarking for LAM, HEX, and BCC there were no notable

issues.

Figure 2.23 displays a plot of final simulation cell size of each member vs generation

for GA-SCFT benchmarking at a composition where GYR is the target morphology.

From the figure, we see that when cell averaging is included (red), we encounter the

problem of the simulation cell size growing over the course of successive generations of

GA-SCFT. This is problematic if we recall that the individual SCFT simulations are

run with a spatial resolution of 64 plane waves in each dimension. A simulation cell

size of 60 would mean that the resolution, ∆x, would be roughly 1Rg, which would

yield totally inaccurate intensive free energies. Intensive free energy is the fitness met-
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ric for the GA-SCFT method, which means if they are inaccurate, “good” structures

are not going to be accurately selected, with this effect being exacerbated with the

progression of generations. By not averaging the cell sizes of the parents in each gen-

eration, but rather resetting the initial cell size of all simulations to some prescribed

value, and simply turning on the “variable cell” feature in individual simulations to

allow for stresses to relax, we are able to maintain cell sizes to reasonable values for

the spatial resolution of the SCFT simulations (blue). We found that in tracking the

cell sizes of the other benchmark cases, cell sizes also grow over the course of many

generations, but much more slowly than in the case of the GYR benchmarking. It is

unclear why this was happening, but also contributed to elongated tubules in later

generations.
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Figure 2.23: Final simulation cell size of each member of the population vs. genera-
tion of GA-SCFT applied to a composition where GYR is stable with cell-averaging
as part of the crossover move (red) and without cell-averaging as part of crossover
(blue).

2.5.4 Removing Divergent Trajectories

In some cases, especially for the trials of GA-SCFT with the unscaled additive

random white noise, and also for some of the instances where homogeneous, disordered

fields were used, individual SCFT would exhibit divergent trajectories. One way of

dealing with this is to simply ignore those members as competitors for the parent pool.

This could be problematic, since having divergent trajectories means the parent pool

for a given generation would be reduced, thus decreasing diversity and opportunity

to fully explore the free energy landscape. To address this issue, we removed SCFT

simulations which had divergent trajectories by replacing the input fields with random

seeds.

69



GA-SCFT Chapter 2

2.5.5 Tuning SCFT Iterations

The most computationally expensive step of the GA-SCFT method is the set of

SCFT simulations that must be run for each generation. Because of this, it is im-

perative to tune parameters to minimize individual SCFT run-time. For AB-diblock

melts, 3D SCFT simulations seemed to run most efficiently, while also generating

accurate results, with the parameters listed in Table 2.4.

Parameter Value

number of plane waves 323 (small cell) or 643 (large cell)

chain contour resolution 0.02

modified diffusion equation solver SOS

field updater SIS

field timestep size 5

total iterations 20,000

SCFT force stopping tolerance 10−4

Table 2.4: SCFT parameters used in 3D benchmark testing for GA-SCFT.
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2.6 Population Size

2.6.1 Importance

Population size is another important consideration for the success and/or efficiency

of a GA optimization [45, 50, 51, 52]. It is necessary to employ enough members to

maintain diversity in the population for the duration of the search, to more thor-

oughly explore the configuration space and increase the likelihood of discovering the

correct defect-free ground-state structure. However, using more members makes the

GA-SCFT method more computationally expensive, resulting in fewer generations

completed within a fixed runtime. Thus, a balance must be struck to obtain defect-

free structures as quickly as possible. We tested using population sizes of 10-100

members per generation for a composition where HEX was expected at χN=15. A

range of 40-200 member populations were tested at a GYR composition. For the

studies we have performed, using 50 members per generation appears to be optimal;

using fewer members results in populations that are not very diverse, and using more

members per generation only adds computational expense with little or no benefit

with respect to population diversity and/or how quickly defect-free structures are

recovered.

2.6.2 Some 2D studies

Figure 2.24 displays the intensive free energy vs. generation plots for GA-SCFT

applied for a range of population sizes for 2D simulation benchmarking with HEX

as the target morphology. For all cases, we used a roulette wheel with Pratio = 5

for selection, circular crossover cuts, and mutations employing scaled random white

noise chosen from a range of values up to 90% of the original field values. From the

plots, we see that increasing member size results in a larger distribution of intensive
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free energies, and thus morphologies, across iterations of GA-SCFT. This effect is still

present in the 3D simulation cases seen in the next subsection in Figures 2.25 and

2.26, but to a less dramatic extent. With greater diversity comes the opportunity to

find more structures. However, using a large population size results in more compu-

tational expense, since each member needs to undergo an SCFT simulation in each

generation of GA-SCFT. This is one of the recurring themes of exploiting heuristic

algorithms such as the GA: the necessity of finding values of relevant parameters,

such as population size, which leverage computational expense and optimal results.

Figure 2.24: Plots of intensive free energy vs. GA-SCFT generation for 2D bench-
mark testing where HEX was the target morphology. GA-SCFT was applied using
a roulette wheel with Pratio = 5, random white noise mutations applied to every
member of the population, and a series of population sizes. The population size
used in each case is indicated on the plots.
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2.6.3 Application to Compositions where HEX and GYR are

Expected

We have investigated the effect of population size on the performance of the GA-

SCFT algorithm. There is a compromise between computational cost and improving

population diversity. For this set of tests, we studied the case of χN=15 at fA=0.35

(HEX) and fA=0.38 (GYR). Population sizes ranging from 10-200 were investigated.

A number of preliminary population size tests indicated that 1) optimal parameters

for the GA-SCFT scheme are not always transferable between studies conducted in

2D and 3D (as seen in comparison with the results from the previous subsection),

and, 2) below 50 members per generation, population collapse to defective structures

occurred in the GYR simulations, and the spread of free-energies was smaller for HEX

simulations. We chose to compare the efficiency of the algorithm using 50 and 200

members per generation for each test morphology.

Figure 2.25: GA-SCFT applied at χN = 15, fA=0.35, where HEX is expected to be
stable. Plots display intensive free energy of all members (grey) versus generation
number using populations sizes of (a) 50 members per generation and (b) 200
members per generation.
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At the HEX composition, the GA-SCFT was able to find HEX as the stable

structure within 35 generations, for either population size. In Figure 2.25, we show

that the 200 population-size search required almost as many iterations as the search

using 50, but the cost per iteration is four times higher. Population collapse is evident

in both cases, and is clearly more of a function of strong selection bias than population

size.
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Figure 2.26: GA-SCFT applied at χN = 15, fA=0.38, where GYR is expected to
be stable. Plots in (a) and (b) display intensive free energy of all members (grey)
versus generation number for 50 and 200 members per generation, respectively.
Panels (c) and (d) show volumetric renders of the A-monomer density of the fittest
candidate at the indicated generation for 50 and 200 member GYR simulations.

75



GA-SCFT Chapter 2

For the studies at compositions where GYR is the target, neither the 50 or 200

member test predicted GYR to be stable (Fig. 2.26); we limited the latter to 90

generations. The morphologies selected in this figure at indicate that the search may

have been converging to HEX instead of the more stable GYR. In contrast, the 50

member search did not find any ordered structures within 250 generations. Moreover,

the population’s free energy spread stabilized for the final 150 iterations, indicating

a stagnant search trapped in the space of diverse and highly defective structures.

For all compositions tested, we allowed individual SCFT simulations to relax

to stress-free structures with concentration-conserving relaxation [53]. Most SCFT

relaxations began with initial cell-tensor guesses produced by averaging those of the

parents, but for GYR searches we reset the initial guess to Linit for each member

of each generation. We found that isolated SCFT simulations performed on highly-

defective network structures resulted in lower free-energies for increasingly larger cell-

sizes. Thus, defective structures that emerged in the GA-SCFT algorithm would tend

to grow within the SCFT local relaxation portion of the algorithm, causing unbounded

cell-volume growth as the GA-SCFT iterations progressed. The unbounded growth in

the cell-tensors we see may be a complicated interplay between the interface generated

during the crossover step for each member and how the GA explores the free energy

landscape, but we do not fully understand these interactions. Moreover, we see no

evidence that the GYR structure would eventually emerge, regardless of whether or

not we average the cell-tensors of parents. Clearly, more development towards an

efficient exploration of candidate network phases is needed.

In this study, we only examined the effect of population size on the ability of

GA-SCFT to maintain diversity. However, several other factors can affect population

collapse. We employ a roulette-wheel selection method, but this can be too aggressive

in its preference of lower-free energy members as parents. Preliminary work suggests
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that retaining memory of all-time high and low values of intensive free energy for

the determination of Pratio can reduce the selection bias and assist in preventing

population collapse. Other selection methods, such as tournament selection, may

provide a less aggressive alternative without sacrificing search efficiency, as one would

encounter with simply reducing Pratio [54]. Further investigation of this method is

not pursued here, but would be an interesting direction for future work.
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2.7 The Effects of Simulation Cell Size and χN

The results presented in this section for large-cell GA-SCFT are based on sim-

ulations that were performed at the diblock compositions listed in Table 2.1 in

Linit = 20Rg cells. To mitigate computational cost, and noting the diminishing

returns of using more members from Figures 2.25 and 2.26, 50 members per gener-

ation were used for the remaining tests. Moves for this application of the GA-SCFT

method follow the prescriptions from Table 2.3.

2.7.1 large-Cell Simulation Results

“Low” χN

At χN=15, BCC, HEX, and LAM morphologies emerge at the appropriate block

fractions where they are expected to be stable; for BCC and LAM, this occurs within

a few generations (Figure 2.27).

As we saw in Figure 2.26, the application of the GA-SCFT method in large-cells at

compositions where GYR was expected resulted in the algorithm becoming trapped

in the space of diverse and highly defective structures. Hexagonally packed cylinders

were not the only structures obtained from simulations where GYR was expected.

Simulations at χN=14 and fA=0.4, where GYR is maximally stable relative to other

candidate phases, were also performed. At this composition, the Fddd phase (O70)

and perforated LAM were both found using our GA-SCFT scheme (Figure 2.28). This

indicates that algorithm is able to access a variety of candidate defect-free structures.

However, once a cleaner structure emerges, it appears the algorithm is unable to main-

tain any diversity, presumably due to strong selection bias, and population collapse

occurs.
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Figure 2.27: χN=15 large-cell GA-SCFT. GA-SCFT applied to a diblock at χN =
15, fA=0.30 (a) and fA=0.50 (b), where BCC and LAM morphologies are expected,
respectively. (c) Plots of A monomer density of the lowest intensive free energy
member at the indicated generations from simulations where BCC is expected. (d)
Plots of A monomer density for the simulations where LAM is expected.
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Figure 2.28: Other morphologies obtained where GYR is expected. GA-SCFT
applied to a diblock at χN = 14, fA=0.40, using 150 members per generation (a)
and 200 members per generation (b). O70 structures were obtained for the 150
member simulations; alternative views of the densities are given in panel (c). The
200 member GA-SCFT yielded perforated LAM; plots of A monomer density are
provided in panel (d).

“High” χN

At χN=20, GA-SCFT applied to the HEX and LAM compositions successfully

produces the target morphology, but was unable to obtain a defect-free BCC structure

(Figure ??). Furthermore, at this higher χN, the algorithm required more genera-

tions to produce the expected structures. This increasing difficulty for the GA-SCFT

scheme to find ordered structures at larger χN is perhaps not surprising because it

is likely that the roughness of the free energy landscape increases with segregation

strength.
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c) LAM, fA=0.50
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igure5: N=20 large-cell GA-SCFT. GA-SCFT applied to a diblock at N = 20
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Figure 2.29: χN=20 large-cell GA-SCFT. GA-SCFT applied to a diblock at χN =
20, fA=0.24 (a), fA=0.30 (b), and fA=0.50 (c), where the BCC, HEX, and LAM
morphologies are expected, respectively. Plots of A monomer density of lowest
free energy member of final generation are shown in the right column for each
morphology.
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2.7.2 Challenges of Large-Cell Simulations and High χN: High

Density of Defective States

An interesting and related question is whether the density of defective states also

increases with χN. To explore this issue and also establish differences in the accessible

states between morphologies, we performed 100 isolated, SCFT-only (no GA) 3D

simulations with fields seeded from uniform random white noise – for HEX and GYR

at χN=14 and χN=20 (Figures 2.30 and 2.31). We then generated a histogram of the

per chain intensive free-energies. This is an indirect probe of the density of defective

states, because it only counts states that were obtained from random quenches using

our numerical field relaxation algorithm. One can view these free energy histograms

as a convolution of the actual density of states and the non-uniform probability that

our SCFT update scheme relaxes into any given state. The lattice vectors in each

direction of the simulation cells were fixed to be commensurate with one or two times

the primitive unit-cell of the expected phase.

From the histograms, we make two observations: (1) fewer defect-free structures

emerge from random initial conditions at higher values of χN, suggesting either a

rougher free energy landscape with a higher density of defect states, or a stronger

tendency for our SCFT relaxation algorithm to converge onto defective structures,

and (2) defective structures are more accessible to our field relaxation algorithm in the

larger cells, but the dispersion in free energy of these defective structures is confined

to a smaller range.

No defect-free structures were obtained for either HEX or GYR in the large-cell,

higher χN simulations. We believe this high density of accessible defective states is

manifest in the observation that the GA-SCFT technique becomes trapped among

numerous defective GYR states in the large-cell simulations (Figure 2.26).
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Figure 2.30: Histograms of intensive free energy for SCFT simulations from random
initial conditions at the indicated compositions consistent with HEX. Simulations
were performed in fixed-cell boxes commensurate with unit-cell (red) and two times
the unit-cell lattice vector in each dimension (8 primitive cells, blue). The orange
line in each histogram denotes the expected intensive free energy (kT/chain) for
the corresponding perfect state. 100 independent simulations were run for each
histogram.

In this subsection we observed the lowest number of accessible defective states

for the small-cell and low χN systems. However, similar quenches performed for off-

commensurate simulation cells have larger numbers of accessible defective states in

all cases than their corresponding commensurate counterparts. This effect has some

important ramifications. The goal of the GA-SCFT method is to find the globally

stable morphologies of given compositions and architectures. Commensurate cell lat-

tice vectors for these morphologies are not established a priori since the morphologies
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themselves are not known. From the free energy histograms in Figs. 2.30 and 2.31, we

see that the problem of having more accessible defective states at higher χN values is

exacerbated in larger simulation cells. Recognizing this and the fact that commensu-

rability also influences the distribution of states suggests that the GA-SCFT method

applied to large-cell simulations is faced with the daunting challenge of thoroughly

exploring an enormous number of defective states and cell-tensor variations on the

way to locating the singular globally stable state. It is reasonable to infer an improved

success and efficiency of finding the globally stable structure in a smaller simulation

cell.
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GYR
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Figure 2.31: Histograms of intensive free energy for SCFT simulations from random
initial conditions at the indicated compositions consistent with GYR. Simulations
were performed in fixed-cell boxes commensurate with unit-cell (red) and two times
the unit-cell lattice vector in each dimension (8 primitive cells, blue). The orange
line in each histogram denotes the expected intensive free energy (kT/chain) for
the corresponding perfect state. 100 independent simulations were run for each
histogram.

2.7.3 Small-Cell Simulation Results

In this section, we present studies of the GA-SCFT algorithm applied to small-cell

simulations, which are computationally less costly than their large-cell counterparts

and we expect also have a smaller density of defective states to trap the search.

Small-cell simulation results presented here used initial lattice parameters that are

close, but not commensurate, to the unit-cell size of the largest of the classical phases
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(gyroid, GYR) at the composition and interaction parameters selected for testing.

We present results using an initially cubic simulation cell of side length 9Rg. SCFT

fields for small-cell simulations were sampled with 323 collocation mesh points.

Figure 2.32: Small-cell GA-SCFT. Simulations were run in a variable cell with
Linit = 9Rg and 32 collocation mesh points in each dimension for a diblock at the
compositions listed in Table 2.1. Plots of intensive free energy for the following
expected morphologies at χN=15: (i) BCC, (ii) HEX, (iii) GYR, (iv), LAM.

Indeed, our small-cell simulations obtain morphologies that are consistent with

the correct microphases for all of the expected phases at χN=15 (although random

quenches often succeed in this limit, and indeed the perfect structure is often present

in the first generation, before GA moves have been executed), and every expected

morphology at χN=20 except for GYR (Figures 2.32 and 2.33). This is compatible

with findings from the density-of-states study in the previous section. However, ex-
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clusively enforcing small-cell simulations makes discovering new morphologies more

difficult; there are possible structures that can undoubtedly not be found by initial-

izing the algorithm from a small cubic cell. Even with cell relaxation methods, there

is no guarantee that such structures will be observed; initial cell sizes and shapes still

play a complicated role in the the morphologies obtained by SCFT or GA-SCFT.

GYR and the sphere phases seem to be particularly sensitive to initial cell sizes,

even for the small-cell GA-SCFT simulations. GA-SCFT did not obtain the expected

GYR morphology when Linit = 9Rg, which is not commensurate with the lattice

parameter for GYR at χN=20, fA=0.36 (Figure 2.33). However, using initial lattice

parameters commensurate (Linit = 9.5Rg) with the expected GYR morphology at this

composition yields GYR within 3-4 generations. Similarly for compositions where

BCC is expected, only when GA-SCFT is applied to near-commensurate cells are

BCC morphologies obtained (Linit = 9.2Rg for χN=15, fA=0.3, and Linit = 9.3Rg

for χN=20, fA=0.24). When GA-SCFT is run at a BCC composition, but with an

initial lattice parameter that is & 10% off-commensurability, BCC was not found.

Instead, a competing phase such as cylinders or a defective sphere/micelle structure

emerges. An ostensible solution to this would be to seed the first generation with

a range of initial lattice parameters to ameliorate the sensitivity we observe. When

this approach was attempted, the competing cylinders disappeared. However, perfect

BCC structures were not obtained; only defective sphere morphologies appeared.
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Figure 2.33: Small-cell GA-SCFT. Simulations were run in a variable cell with
Linit = 9Rg and 32 collocation mesh points in each dimension for a diblock at the
compositions listed in Table 2.1. Plots of intensive free energy for the following
expected morphologies at χN=20: (i) BCC, (ii) HEX, (iii) GYR, (iv), LAM.
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2.8 Concluding Remarks

For a fixed composition and segregation strength, an unguided SCFT search in

three dimensions is not likely to find the globally stable mesophase structure; the

system can become trapped in one of numerous metastable states that correspond

to defective structures or other metastable polymorphs. The GA-SCFT method pre-

sented here represents a significant advance in the challenge of mesophase discovery,

i.e., identifying the globally stable phase of a specified block copolymer.

The GA-SCFT method is a real-space, global optimization method. It has suc-

cessfully recovered the canonical non-network diblock phases HEX, LAM, and BCC

at the compositions where they are expected to be stable in both large- and small-cell

3D simulations from random initial conditions. At a higher χN=20 value, large-cell

determination of the correct structure was slower, but still successful for HEX and

LAM, while it did not recover the BCC phase. GYR was not obtained in any of

the large-cell investigations, but was achieved for χN=15 (from a random quench in

generation 1) with a small, near-commensurate initial lattice parameter, Linit = 9Rg.

The failure of the GA-SCFT method at higher segregation strengths for BCC in large

simulation-cells and generally for GYR likely arises from an interplay between two

factors: 1) more numerous defective states accessible in larger simulation cells that

are incommensurate with the unit cell, and 2) higher barriers at stronger segregation

strengths. It is probably the case that free energy alone does not provide sufficient

contrast to determine the fitness of individual members.

It remains a challenge to determine more efficient ways of exploring this vast

configurational space and accurately predict the global stability of GYR and other

network phases. A critical element toward this end is the identification of an eco-

nomical and effective way to prevent population collapse. Our preliminary studies
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indicate that employing a less aggressive selection method than the roulette-wheel to

maintain population diversity and retaining memory of all-time low and high free en-

ergy members instead of generational low and high free energy members may increase

fitness diversity. We might also be able to tune GA parameters more meticulously

to obtain improved results. Furthermore, though we explored a variety of options for

selection, crossover, and mutation strategies, the list was by no means an exhaustive

one. Methods like genetic algorithms have a huge parameter space of their own to

explore and optimize. Their power, but also their shortcomings, lie in the fact that

they are so modular and extensible. They appear to be more problem-dependent

than one would hope, and so it is important that one frames a problem very carefully

when designing such an algorithm.

Nevertheless, we believe the results we have observed with the current GA-SCFT

technique constitute a significant step in solving the forward problem of determin-

ing globally stable phases of block copolymers. GA-SCFT has the exciting potential

to be employed for structure discovery in multi-species, multi-component systems

[32, 55]. In a multi-species system, the primary change is the addition of more fields

and interaction terms to the Hamiltonian. Since the GA only requires a measure of

fitness (e.g., the scalar-valued free energy), and the ability to manipulate and com-

bine the fields that gave rise to that fitness value, the method immediately extends

to multi-species systems. The addition of different molecular constituents and ar-

chitectural complexity changes the SCFT Hamiltonian by modified single-molecule

statistics terms. It does not modify the number of fields nor the nature of the fit-

ness metric. Thus, extending GA-SCFT to accommodate more complex molecular

constituents and architectures would be straightforward. Expediting the discovery

of new morphologies and the composition-spaces in which they may be found could

have broad-reaching impacts in terms of material applications, and furthermore is an

90



GA-SCFT Chapter 2

important element in realizing a true inverse approach to materials design [56, 57].

Ultimately, it seems necessary that one explores methods which can reduce the

dimensionality of the configuration space that must be searched for candidate struc-

tures. For example, a large-cell calculation on a 128× 128× 128 grid represents each

density or potential field using over 2× 106 degrees of freedom, each of which can be

varied continuously. Strategies that invoke a significantly smaller number of collec-

tive variables such as Fourier modes or blocked field values could potentially focus

the search in optimally productive regions for pattern evolution, thereby accelerating

heuristic algorithms aimed at global optimization. In the next chapter of this thesis,

we explore such options.

91



Chapter 3

PSO-SCFT

3.1 Introduction and Overview

In the previous chapter of this dissertation, we saw that the GA-SCFT method-

ology was successful in the agnostic identification of non-network morphologies of

conformationally symmetric diblock copolymers in large simulation cells. However,

we also observed that GA-SCFT failed quite spectacularly at recovering the GYR

network morphology when it was expected to be stable for the same benchmarking

system. Particularly, the algorithm would become “stuck” in numerous defective

metastable morphologies which visually resembled a vat of tangled spaghetti. Other-

wise, the population of a given instantiation of the method would collapse prematurely

into a competing morphology such as HEX or LAM.

Let us remind ourselves of our objective: We would like to be able to determine

the globally stable morphology and its low-lying metastable competitors (i.e., solve

the forward problem) agnostically. In this chapter, we explore an alternative method

for solving the forward problem. In the last chapter, we were concerned with being

able to do this in a large simulation cell, to facilitate the identification and discovery
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of morphologies of which we do not know the unit cell sizes a priori. However, in the

approach we will discuss in this chapter, we will frame the problem differently, so that

the unit cell size is a dimension we add to the parameter space we are attempting to

optimize. We will also manipulate a small set of reciprocal space variables, rather than

the entire real-space SCFT field values, which greatly reduces the degrees of freedom

we need to optimize. A schematic representation of the reduced search space can be

observed in Figure 3.1. The idea is to search through a space of “single-mode” SCFT

seeds, which consist of peaks that populate a thin shell whose radius is approximately

the primary wave vector, q∗, away from the origin in reciprocal space. The width of

this shell is set by the nearest neighbor distances between grid points in our simulation

cell, and the value of q∗ can either be estimated by following the recipe specified by

Leibler[58] via a Random Phase Approximation (RPA), or by incorporating is as a

variable which the PSO-SCFT algorithm optimizes. By varying the relative positions

and amplitudes of these peaks, as well as q∗, we can search through a variety of

morphologies, since SCFT is a deterministic simulator and each seed corresponds

to a specific structure. These tasks will be accomplished by combining SCFT with

the framework of a Particle Swarm Optimization (PSO), which is another heuristic

algorithm that can be used for global optimization problems.
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Figure 3.1: Schematic depiction of the reduced search space in the reciprocal
space PSO-SCFT method. Instead of optimizing all field values in real space as
in the GA-SCFT method, only the positions of a set of peaks in a single mode in
reciprocal space are optimized.

3.1.1 What is Particle Swarm Optimization?

Particle Swarm Optimization is a type of biologically-inspired, population-based

heuristic algorithm that was first developed by Kennedy and Eberhart in 1995[59].

These algorithms have been successfully implemented for a variety of optimization

problems, including those in economics, various fields of engineering, protein struc-

ture determination, and crystallographic structure prediction [60, 61, 62, 63, 64, 65].

Recently, PSO has also been used in conjunction with SCFT towards solving the in-

verse design problem: determining compositions and architectures that would yield a

desired pattern (morphology) [56, 57]. However, this inverse problem relies on being

able to accurately solve the forward problem: determining the stable morphology and

low-lying metastable competitors that emerge for a given block copolymer composi-

tion and architecture. Optimization algorithms such as the PSO are versatile; their

94



PSO-SCFT Chapter 3

success depends largely on how well a problem is framed within the context of how

such an algorithm works. Features of a given algorithm itself are largely modular,

and can be extended to include more elaborate embellishments. However, for the

work we present in this chapter, we employed a basic PSO algorithm.

In a PSO algorithm, a number of particles, or agents, are initialized with ran-

dom positions and velocities at various points in a search space of interest. In each

iteration of the PSO, each agent’s fitness is assessed at their current position. Agent

positions and velocities are then updated using information about each agent’s per-

sonal fittest (best) position and the swarm’s best known positions. For our work, we

use the intensive free energy determined by SCFT as the metric to compare agent

fitness. Typical PSO convergence times occur on the order of hundreds to thousands

of iterations for various test functions. However, mimetic algorithms, which combine

a global optimization strategy such as a PSO with an efficient local-optimization tech-

nique, appear to converge more rapidly to optimal solutions than the unembellished

PSO. With this in mind, as well as inspiration drawn from the crystallographic com-

munity where PSO has been used in conjunction with DFT packages, we propose the

implementation of PSOs as a wrapper around SCFT to facilitate structure discovery.
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3.1.2 PSO-SCFT Approach

We initialize the PSO-SCFT method with a population of possible structures gen-

erated from randomly initialized SCFT seeds. The seeds themselves are the agents

of the PSO, and are comprised of peaks (field values) in reciprocal space which are

placed within a thin shell at radius q∗ away from the origin. The idea is to take advan-

tage of the fact that many morphologies of interest in block copolymer systems can

be constructed from a single-mode approximation, which relies on the proper relative

placement and phase relationship between peaks on the surface of a sphere in recipro-

cal space. In a single-mode approximation, polymer densities, ρ, are constructed by

retaining only the first term in a sum over basis functions, φ that contribute to the

density: ρ =
∑

n cnφn, where φn =
∑

k ak exp(2πikx). That is, only φ1 is retained to

approximate the density.

The number of peaks and their proper relative placement to one another corre-

spond to the symmetry elements represented in a particular space group of interest.

We will also see that the relative sign of the peak amplitudes matters, in that they

contribute to either cosines (same phase relationship) or sines (opposite phase re-

lationship) in the basis function expansion for the single-mode approximation. For

example, the hexagonally-packed cylinders morphology can be constructed by placing

six peaks at 60o angles from one another on the perimeter of a circle whose radius

is q∗. q∗ is a quantity analogous to the primary wave vector seen in scattering plots,

such as those generated by SAXS or SANS experiments. Figure 3.2 shows examples

of the results from SCFT simulations which were initialized with single-mode seeds

at compositions where the indicated morphologies are expected. The orange peaks

in the single-mode seed which resulted in the GYR morphology indicate the opposite

phase from the blue peaks.
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Figure 3.2: Morphologies from SCFT simulations initialized with single-mode seeds
at compositions where a) HEX, (b) BCC, and c) GYR are the expected morpholo-
gies.

Once the single-mode seeds (agents) have been relaxed using SCFT, we evaluate

their relative fitness by comparing their intensive free energies as determined from

each SCFT simulation. Here we would like to point out that SCFT simulations

are deterministic, and therefore result in field configurations which are specific to the

initial conditions (seed) of the simulation. This means that each different single-mode

seed corresponds to a different structure, each with its own intensive free energy, or

fitness, in the context of PSO-SCFT. Thus, the space which the PSO-SCFT

method searches through is comprised of sets of single-mode seed peaks

which correspond to the various structures accessible through SCFT. That

is: each agent, or particle, consists of a set of peaks on the surface of a sphere of

radius q∗.

The SCFT simulations initialized with single-mode seeds thus act as a local op-

timization step. The PSO update equations described in the subsection below serve

in turn to provide stochastic, global optimization moves. Each iteration of the PSO-
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SCFT method then consists of the following steps:

1. Relax agents (a set of single-mode seeds) locally with SCFT.

2. Evaluate all agents’ fitnesses (intensive free energies).

3. Apply PSO update equations to the peak positions, peak velocities, peak am-

plitudes, and simulation cell size via a variable called q∗ (discussed in the next

subsection) to generate new single-mode seeds.

4. Repeat steps 1)-3) until maximum PSO-SCFT iterations have been attained.

This process is shown in the schematic in Figure 3.3. Inputs to the PSO are the

number of agents, number of peaks per agent, peak amplitudes, and q∗, which is

related to the simulation cell size by q∗ = 2πn
L

, where n is an even integer that

determines the number of periods of the primary wave vector that exist in a simulation

cell of length L.

Figure 3.3: Schematic of the PSO-SCFT method.
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3.1.3 Benchmark Testing Set-up

In this chapter, we will investigate the application of the PSO-SCFT methodology

to two systems: the AB-diblock which we had studied using the GA-SCFT approach,

as well as an AB4 miktoarm star system, which yields a variety of interesting sphere

microphases, including A15 and the Frank-Kasper σ phase[27]. For both cases, we

explore the application of PSO-SCFT with (Section 3.7) and without (Sections 3.4

and 3.5) q∗ as a PSO optimization variable.

For the diblock, we present results for applying PSO-SCFT to the compositions

listed in Table 2.1 at χN=15, and use the parameters listed in Table 2.4 for “small

cell” simulations. For the miktoarm system, we apply PSO-SCFT at χN = 40 with

fA = 0.32 and the SCFT parameters listed in Table 3.1.

Parameter Value

number of plane waves 323 (q∗ fixed) or 483 (vary q∗)

chain contour resolution 0.02

modified diffusion equation solver SOS

field updater SIS

field timestep size 4

total iterations 20,000

SCFT force stopping tolerance 10−4

λ+ (mobility parameter for pressure-like fields) 1.0

λ− (mobility parameter for exchange fields) 0.5

Table 3.1: SCFT parameters used in 3D benchmark testing for GA-SCFT.

When including q∗ as a PSO-SCFT variable to optimize, simulation cell sizes are

allowed to vary over a pre-determined window specified by setting the range on q∗.

This means that the spatial resolution of individual SCFT simulations may vary quite

widely for a given number of plane waves used in each dimension of the simulation

cell. Achieving accurate relative values of intensive free energies is imperative, since
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free energy is the fitness metric we assess in the algorithm to update agent positions

and velocities. Thus, for the SCFT simulations in these samples, it is important to

set a number of plane waves which will account for the variation and still result in

spatial resolutions that will yield accurate relative values of the intensive free energy

between PSO-SCFT agents. A good rule of thumb for obtaining accurate relative

free energies is to use simulations with a spatial resolution of ∆x / 0.35. Thus, to

avoid incurring prohibitive computational expense, we used 483 plane waves in SCFT

simulations and chose ranges of q∗ for PSO-SCFT to explore that corresponded to

spatial resolutions which remained less than ∆x ≈ 0.35.

3.1.4 Chapter Outline

In the remainder of this chapter, we will first discuss the development of the PSO

as applied to simple test functions that can be mapped onto a spherical manifold

(Section 3.2). We will see from these studies that the unadorned PSO has the problem

of agent trajectories which bunch at the poles of the sphere. We can instead achieve

uniform sampling of the sphere by applying rotations to the agent positions so that

their updates are always performed from a specified location on the equator.

In Section 3.3, we discuss the PSO-SCFT algorithm in more detail. We then

explore the application of PSO-SCFT to diblock (Section 3.4) and miktoarm (Sec-

tion 3.5) systems. In these sections, we do not include the primary wave vector q∗ as

a PSO search variable, which means that the unit cell size is not something that is

being optimized.

We address this issue separately in Section 3.7, where we do include q∗ as a variable

for PSO-SCFT to optimize, and discuss the challenges and successes of this version

of the method, which is an important step in actually solving the forward problem,

since the unit cell size of a given morphology is not known a priori. We conclude

100



PSO-SCFT Chapter 3

with a characterization of a competitive sphere morphology which was predicted by

PSO-SCFT in the miktoarm system.
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3.2 Addressing Challenges of the Spherical Search

Space: Basic PSO applied to Test Functions

3.2.1 The Basic PSO Algorithm

In this section, we will investigate the application of a basic PSO algorithm to test

functions which can be mapped to a spherical manifold. In this series of tests, the

PSO agents are the azimuthal and polar angles of an individual position, rather than

a set of peaks on the surface of the sphere. This is because in this case, we are simply

trying to determine the angles which extremize a given test function of interest. This

differs from the full PSO-SCFT methodology, which is looking for the set of peaks

which corresponds to a minimal free energy block copolymer morphology.

The following equations of motion are used to update the positions xi and veloc-

ities vi of i PSO agents[59]:

dvi
dt

= cpξp(t)(x
pbest
i − xi) + cgξg(t)(x

gbest
i − xi)− wvi

dxi
dt

= vi

(3.1)

Here, the xi are the set of azimuthal and polar angles (φi and θi, respectively) being

explored by the PSO. xpbesti is the personal best position found by an individual agent

and xgbesti is the global best position found by any agent. The first two terms in the

first line of Equation 3.1 can be interpreted as springs which tether agent positions

back to the personal and global best positions, respectively. cp and cg are scalar

values which can be used to tune the relative strengths of the springs, and ξp(t) and
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ξg(t) are random uniform variables between [0,1] that contribute to the stochasticity

of the algorithm. The last term in the first line of Equation 3.1 is an inertial term

with inertial weight w. The formulas in Equation 3.1 are integrated using a first order

Euler-Maruyama method with timestep ∆t = 1 to yield the equations in Equation 3.2.

vt+1
i = wvti + [cpξ

t
p(x

pbest,t
i − xti) + cgξ

t
g(x

gbest,t
i − xti)]∆t

xt+1
i = xti + vti∆t, x = (φ, θ)

(3.2)

The pseudocode for the basic PSO algorithm is provided in Algorithm 1. For

any given test function, the fitness of an agent is simply the value of the function

evaluated at the angles found by a given agent. Agents themselves are 2-vectors,

comprised of the azimuthal and polar angles: (φ, θ). Thus, the fitness of an agent i

for test function f is given by f(φi, θi).

In order to achieve a uniform random sampling for the initialization of each angle

in spherical coordinates, the polar and azimuthal angles should be selected in the

following way:

1. Choose u and v randomly from (0,1).

2. Determine polar angle θ = πu.

3. Determine azimuthal angle φ = arccos(2v − 1).
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initialize agent positions x0i and velocities v0i randomly;

for each timestep t > 0 do

for each agent i do

update position xt according to Eqn. 3.2;

calculate fitness f(xt);

update xtp;

end

update xtg;

end

Algorithm 1: Update process for basic PSO (no SCFT).

We applied the basic PSO to a variety of test functions, including the spherical

harmonic Y 0
2 = 1

4

√
5
π
(3 cos2(θ) − 1), which is shown in Figure 3.4. In the initial

investigations applying the basic PSO to a spherical search space, we found that the

basic PSO failed to converge to the target maximal value of Y 0
2 = 2. This can be

seen in Figure 3.9, which shows a plot of the value of Y 0
2 vs. PSO iteration for every

agent. From the plot, we see that agents actually found angles corresponding to the

target value within a couple of iterations, but would not converge to the appropriate

values after successive iterations of the PSO. This failure to converge was observed

consistently for a range of values of swarm size, w, cp, and cg.
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Figure 3.4: Plot of the spherical harmonic Y 0
2 , which was used as a test function

for the basic PSO.
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Figure 3.5: Plot of the value of spherical harmonic Y 0
2 vs. PSO iteration for all

agents, represented as gray circles.

In an attempt to understand this behavior, we performed a series of tests which

isolated each term in the PSO update equations. We applied the PSO to the same test

function, and worked through the permutations of allowing either one or two of w, cp,

and cg to be non-zero for a given sample, while also setting ξp and ξg to 1 to eliminate

stochastic kicks (e.g., w = 0, cp = 0, and cg 6= 0, or w = 0, cp 6= 0, and cg 6= 0). Some

results from these experiments are shown in Figure 3.6. We found that the inertial

term attached to the coefficient w behaved in an expected way. That is, when it was

the only term that was turned on, the agents would begin at some position with some

velocity which would eventually be drained away and agent positions would stagnate

after several iterations. Having only cp turned on seemed to also produce expected
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behavior: agents would simply remain at their original positions (as seen in panel

(b)). Furthermore, having only cg turned on seemed to behave as expected as well,

since all agents eventually collapse to the target fitness (panel (c)). This left us very

perplexed as to why the PSO was failing to converge on good positions.

Figure 3.6: Plots of the value of spherical harmonic Y 0
2 vs. PSO iteration for all

agents, represented as gray circles, for cases where the only non-zero term was (a)
w, (b) cp, and (c) cg.

We decided to further simplify the problem and look at the PSO’s exploration of

a uniform function. The idea was to verify that the PSO would sample the sphere

uniformly without a bias. This was achieved by modifying the algorithm to turn off

the tethering terms and simply provide random kicks from the current position at

each iteration, to mimic brownian dynamics. If the PSO did indeed exhibit brownian

dynamics in its trajectory, after enough iterations we would expect to see a uniform

distribution in the azimuthal angle, and a distribution that looked like a cosine func-

tion in the polar angle. However, this was not what we observed with the basic PSO

algorithm written as it was. The distributions for the azimuthal (φ) and polar (θ) an-

gles visited by a single agent whose position was updated by adding a random vector

to the current position at each iteration of the simulation are shown in Figure 3.7.

From the plot in the second panel, we can see that the particle tends to bunch at the

poles.
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Figure 3.7: Distributions of the (a) azimuthal and (b) polar angles visited by a
single agent whose position was updated by adding a random vector to its current
position at each iteration of the simulation.

3.2.2 Rotation Matrices

To circumvent the issue of particles bunching at the poles, we can implement the

PSO update equations in a local coordinate frame at the equator of the sphere. This

can be achieved by applying a rotation matrix which will rotate the peaks from where

ever they currently are in the global coordinate frame (the space we are searching)

to a point on the equator, where the particle’s position and velocity can be updated.

The inverse of the original rotation matrix can then be applied to return the particle

to the global coordinate system. This idea was inspired by the work presented in

Fredrickson’s 1988 paper discussing a theory describing results from rotational fluo-

rescence depolarization experiments[66]. Our PSO+RM algorithm would then read

as shown in Algorithm 2.

108



PSO-SCFT Chapter 3

initialize agent positions x0i and velocities v0i randomly;

for each timestep t > 0 do

for each agent i do

apply Rgeto current position;

update position xt using to Eqn. 3.2 in local, equatorial coordinates ;

apply Reg = (Rge)
−1 to updated position to rotate back to global

coordinates;

apply boundary conditions (periodic in φ, reflecting in θ);

calculate fitness f(xt);

update xtp;

end

update xtg;

end

Algorithm 2: Update process for the basic PSO+RM strategy (PSO with rotation

matrices) to avoid particle bunching at the poles.
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The rotation matrix which takes particles from the global frame to the local,

equatorial frame takes the following form:

Rge =


sin θ cosφ sin θ sinφ cos θ

− sinφ cosφ 0

− cos θ cosφ − cos θ sinφ sin θ

 (3.3)

This matrix was obtained by multiplying the rotation matrices Rz and Ry: Rge =

RzRy. Rz yields a rotation about the z-axis to get to the xz-plane, and Ry yields a

rotation about the y-axis to get to the xy-plane. Thus, the rotation matrix Rge always

results in a rotation to the same point on the equator: the prime meridian at (π, π
2
).

The updates to positions are performed in this local, equatorial frame according to

the equations in 3.2, and new positions are rotated back using the inverse of Rge.

Brownian motion and a uniform sampling of the sphere were recovered when co-

ordinates were updated in the local frame of reference, as seen in Figure 3.8. This

is in comparison with Figure 3.7, where angles were updated without rotating to a

local frame of reference, and the distribution for the polar angle does not take on the

expected cosine shape associated with a uniform exploration of the sphere.
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Figure 3.8: Distributions of the (a) azimuthal and (b) polar angles visited by a
single agent whose position was updated by adding a random number to its current
position in a local, equatorial frame of reference at each iteration of the simulation.

The basic PSO+RM strategy also fixed the problem of convergence to target value

of the Y 0
2 spherical harmonic. From Figure 3.9, we see that PSO+RM actually recov-

ers the maximal value of Y 0
2 within 2 iterations, and converges to this value within

less than 10 iterations. This is remarkable improvement over the failure of the basic

PSO to recover the target value for this test function. Thus, the use of the rotation

matrices to update velocities in the equatorial coordinate frame seems necessary for

the successful application of the PSO in a spherical space.
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Figure 3.9: Plot of Y 0
2 vs iteration for all agents in a basic PSO+RM applied to

the Y 0
2 spherical harmonic as a test function.
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As with the basic PSO, we applied the basic PSO+RM strategy to a variety of

test functions. One example can be seen in Equation 3.4. The function obtains its

maximal value of 3.79 at φ = 1.6, θ = 0.785.

f2(φ, θ) = 1 + 4 sin(5φ) sin(10θ)/5 + sin(φ) + sin(2θ) (3.4)

A contour plot of this test function is shown in panel (a) of Figure 3.10. The PSO

recovers the angles associated with the maximum value of f1 after about 50 itera-

tions, as seen in panel (b). For this implementation of the PSO, we used 20 agents

(particles), ∆t = 1, w = 0.9, cp = 0.1, and cg = 0.5. We found that increasing the

ratio of cg to cp dramatically decreased the number of iterations it took to obtain and

converge to the optimized angles. For example, using cg = 0.5 and cp = 0.5 resulted

in the PSO taking on the order of 1000 iterations to optimize f1 rather than 50. The

plots in Figure 3.11 display the trajectories followed by four agents from the 20-agent

test. From the plots, we can see that while each agent begins at a different location

on the sphere, they eventually converge to the same pair of angles.
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Figure 3.10: (a) Contour plot of the test function, f2, in Equation 3.4. The function
obtains its maximal value of 3.79 at φ = 1.6, θ = 0.785. (b) f2 vs. basic PSO
iteration.

114



PSO-SCFT Chapter 3

Figure 3.11: Samples of trajectories followed by four of the twenty agents in the
PSO applied to optimizing f2.
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3.2.3 Comments

In this section, we tested the application of a basic PSO algorithm to functions

which could be represented in a spherical coordinates. We saw that in order to achieve

uniform sampling of a uniform function, as well as convergence to optimal coordinates

for non-uniform functions, it was necessary to update the coordinates at each iteration

of the PSO in a local, equatorial frame of reference. This result was consistent across

several test functions.

We also saw that it was important to tune the PSO parameters to values that

differed from the commonly seen literature values of cp = cg ≈ 2 [67]. From a back

of the envelope calculation, one can see that allowing cp and cg > 1 would mean that

velocities would be larger than one. Since we fix ∆t = 1 in Equation 3.2, this means

positions would be changing by order 1. Since the entire space which we are optimizing

falls in φ ∈ (0, 2π) and θ ∈ (0, π), a change in position of order 1 would quite

a substantial change relative to this range; essentially, particles would be whizzing

around the sphere, rather than being tethered to previously known good solutions.

We found that using cp and cg between (0.01,0.5) performed best, depending on the

test function.
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3.3 PSO-SCFT Algorithm

After performing testing of a basic PSO on simple test functions that could be

mapped to a spherical space and developing the strategy for using rotation matrices

to update coordinates in a local, equatorial frame, we focused on developing the PSO-

SCFT. The following equations of motion are used to update the positions xi,j and

velocities vi,j of i PSO-SCFT agents with j peaks each:

dvi,j
dt

= χcpξp(t)(x
pbest
i,j − xi,j) + χcgξg(t)(x

gbest
i,j − xi,j)− (1− χ)vi,j

dxi,j
dt

= vi,j

(3.5)

where χ ∈ (0, 1) is a constriction factor intended to facilitate convergence tuning,

cp and cg are positive scalar influence weights, ξp(t) and ξg(t) are random uniform

variables between [0,1], and xi,j are the sets of azimuthal angles φi,j and polar angles

θi,j, where each of these quantities represents the angles of each peak j for the ith

agent. The positions xpbesti,j refers to the best position visited by agent i, peak j in its

history, and the positions xgbesti,j refers to the best position for peak j found globally

by any agent. The first two terms in Equation 3.5 can be viewed as springs which

tether the agents to their personal best and global best positions found. The ratio

scalar weights cp and cg can be tuned to favor xpbesti,j or xgbesti,j , and thus effectively

can be interpreted as spring constants that mediate the strength of the tethering of

PSO agents to these positions. The last term in the equation for particle acceleration

provides inertia to the particles. The formulas in Equation 3.5 are integrated using a
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first order Euler-Maruyama method with timestep ∆t = 1:

vt+1
i,j = χvti,j + [Fpbest + Fgbest]∆t

xt+1
i,j = xti,j + vti,j∆t, x = (φ, θ)

(3.6)

where

Fpbest = χcpξ
t
p(x

pbest,t
i,j − xti,j)

Fgbest = χcgξ
t
g(x

gbest,t
i,j − xti,j)

(3.7)

It should be stressed that the PSO-SCFT algorithm differs from the basic PSO

or PSO+RM algorithms we have examined thus far, not only in the fact that the

PSO is now wrapped around the local optimizer SCFT, but also because agents are

no longer comprised of a pair of angle coordinates. Instead, in PSO-SCFT, agents

consist of a set of peaks, each with their own azimuthal and polar angles

associated with them.

Furthermore, only half of the total number of peaks are actually manipulated.

This reduces the number of degrees of freedom that is necessary for the PSO to op-

timize by a factor of two, which is important, since PSO and other similar heuristic

algorithms perform better with less variables to optimize. It is possible to do this as a

first approach to performing PSO-SCFT since for many of the morphologies we are in-

terested in, the symmetries they obey can be captured in one hemisphere. To generate

an entire SCFT seed, the peak amplitude at a given coordinate (kx, ky, kz) is copied

to the coordinate corresponding to a reflection through the origin, (−kx,−ky,−kz).
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Thus, “pairs of peaks” in single-mode seeds are related to one another by this reflec-

tion through the origin. Another relevant consideration is that PSO-SCFT updates

coordinates on the entire sphere. This means that even though half the total number

of peaks are initialized, their trajectories may cover the entire sphere. Their coun-

terparts are always simply updated to be placed at the corresponding point via a

reflection through the origin.

SCFT seeds are written in terms of cartesian reciprocal space coordinates, while

updates to the peak positions are performed in spherical coordinates. The grid spac-

ing of an SCFT seed is dictated by the spatial resolution of the SCFT simulation

for which it is intended. However, the PSO searches through a space of continuous

angles, which means that some rounding must occur when converting an updated po-

sition from spherical to cartesian coordinates; this is accomplished by simply choosing

the nearest grid point in the simulation cell. The PSO-SCFT algorithm is shown in

Algorithm 3.
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initialize peak positions x0j = (φj, θj) and velocities v0j randomly for all peaks

j of all agents i;

for each timestep t > 0 do

for each agent i do

for each peak j do

apply Rge to current position (rotate to local frame);

convert from cartesian coordinates to spherical coordinates;

update position xtj using Eqn. 3.2 in local, equatorial frame ;

apply Reg = (Rge)
−1 to updated position (rotate to global frame);

apply boundary conditions (periodic in φ, reflecting in θ);

end

generate SCFT seed consisting of all 2j peaks (reflect through origin);

run SCFT simulation using seed & get fitness (intensive free energy), f ;

update xtp of all j peaks;

end

update xtg;

end

Algorithm 3: Update process for the PSO-SCFT algorithm which optimizes sets

of peak positions.
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3.4 Application to AB Diblock

3.4.1 Experimental Set-up

In this section, we will discuss the application of the PSO-SCFT algorithm to

the same conformationally symmetric diblock we used to test the GA-SCFT method

using the compositions listed in Table 2.1. Specifically, we apply PSO-SCFT at the

block fractions corresponding to χN=15 for HEX, BCC, and GYR as the target

morphologies. It is important to recognize that as with GA-SCFT, there are two

relevant sets of parameters that must be tuned: those associated with individual

SCFT simulations, and those for the PSO. Parameters for SCFT simulations must

be finely tuned, since they comprise the majority of the computational expense for

a given implementation of the PSO-SCFT method. Thus, minimizing the runtime of

any individual SCFT simulation is imperative for an efficient search with the PSO.

In our initial work, we focused primarily on optimizing SCFT runtime (values shown

in Table 2.4. Using such values, individual SCFT simulations could be completed

within 5-15 minutes, and a whole 50-iteration implementation of PSO-SCFT could be

performed in a day or two, depending on the queue on the high-performance clusters

we used. We chose χ = 0.73, cp = cg = 2.05 for the PSO, which were “standard”

values used by Bratton and Kennedy[67, 56]. For the examples shown in this section,

agents had 6 peaks, each with an azimuthal and polar angle to optimize. This means

there was a total of 12 peaks in a single-mode seed, since seeds are constructed by

generating pairs of peaks that are related to one another via a reflection through the

origin.
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3.4.2 Results

Application to Composition where HEX is expected

Figure 3.12 displays a plot of intensive free energy vs. iteration for PSO-SCFT

applied to a composition where HEX was the target morphology, which resulted in

the immediate identification of HEX and LAM as competitive structures within the

first iteration of the algorithm. In this particular case, 5 agents were used, but in

some instances as few as 2 agents could immediately recover HEX. It is unclear from

this particular study whether PSO-SCFT outperforms GA-SCFT, since GA-SCFT

is also able to immediately recover HEX in 3D simulation cells when Linit is set to

4.4Rg. However, we will see the advantage of PSO-SCFT later in Section 3.7 when

we implement simulation cell size as a parameter that must be optimized by the al-

gorithm.
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Figure 3.12: Intensive free energy vs. iteration for benchmark testing of
PSO-SCFT using 5 agents for a diblock at fA = 0.35, χN = 15, where HEX is
expected to be stable. The algorithm optimized 6 peaks, each with their own
azimuthal and polar angles.

Application to Composition where BCC is expected

Similarly to the case for HEX, BCC is recovered immediately by PSO-SCFT.

Figure 3.13 shows a plot of the intensive free energy vs. iteration of all agents for a

case where PSO-SCFT was applied at χN=15, fA=0.3, where BCC is the expected

morphology. In this example 20 agents were used, but BCC could also be identified

immediately with as few as 5 agents. All of the known competitive structures for

this composition (LAM, HEX, and FCC) are also identified by PSO-SCFT, whereas

GA-SCFT was not always able to do this.
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Figure 3.13: Intensive free energy vs. iteration for benchmark testing of
PSO-SCFT using 20 agents for a diblock at fA = 0.30, χN = 15, where BCC
is expected to be stable. The algorithm optimized 6 peaks, each with their own
azimuthal and polar angles.

Looking at Figure 3.13, we also see that there is a failure to converge to the known

best structure. We will see that this can partly be attributed to the PSO parame-

ters χ, cp, and cg not being properly tuned. However, it is likely that a different

network topology for communication between agents of the swarm may further facil-

itate convergence. This was something we realized much later in the development of

PSO-SCFT and did not have time to explore.
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Application to Composition where GYR is expected

In Figure 3.14, we have a plot of the intensive free energy vs. iteration for all

agents in a sample where PSO-SCFT was applied at χN=15, fA=0.39, where GYR

is the expected morphology. For this example, 20 agents were used. Additional tests

were performed using 10, 30, and 50 agents with similar results. In all cases, GYR

was never identified, although Fddd, HEX, and HPL were recovered. It is interesting

to note that the orthorhombic Fddd morphology was found by the PSO, given that

the peaks in the “single mode” were confined to a sphere rather than an ellipsoid.

It further remarkable that our SCFT optimizer seems to land more easily in the

Fddd structure than GYR, as has now been observed in benchmark testing for both

the GA-SCFT and PSO-SCFT methodologies. It is unexpected and unclear as to

why this occurs, since at this composition, GYR is stable to Fddd by approximately

2mkT/chain.

Using agents with 6 peaks in a hemisphere (12 total peaks) or 12 peaks in a hemi-

sphere (24 total peaks) did not make a difference in the results. We originally thought

using more peaks might be necessary, since the single-mode approximation for GYR

is constructed using 24 total peaks on the sphere. However, what we did not include

in these studies was the ability for the PSO to search through amplitude as a variable

to optimize. In the single-mode approximation for GYR, the 24 peaks on the sphere

have specific positions relative to one another, as well as signs, which contribute to

either cosines or sines in the plane wave expansion for the basis function φ1 in the

single-mode approximation.
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Figure 3.14: Intensive free energy vs. iteration for benchmark testing of
PSO-SCFT using 20 agents for a diblock at fA = 0.39, χN = 15, where GYR
is expected to be stable. The algorithm optimized 6 peaks, each with their own
azimuthal and polar angles.

3.4.3 The Role of Peak Amplitude

In this subsection, we explore the role of the magnitude and signs of peak ampli-

tudes in the single-mode approximation. In our investigation of these variables, we set

up a series of tests in which independent SCFT simulations were run from single-mode

seeds for a variety of morphologies: HEX, BCC, and GYR. For each morphology, we

used single-mode seeds which consisted of peak amplitudes in a range of (0.1,10). For

the case of GYR, where half of the signs are positive (contributing to cosines) and

half of the signs are negative (contributing to sines), we tested the following three
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cases: 1) make all signs positive, 2) make all signs negative, 3) retain the appropriate

relative signs.

Independent SCFT Study for Peak Amplitude

For the studies in this subsection, SCFT simulations were run at χN = 15, using

the block fractions listed in Table 2.1 for each morphology. The following magnitudes

for all amplitudes were used: 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0. All magnitudes resulted

in the recovery of the expected morphology for a given simulation.

Figure 3.15 provides density profiles for A-rich regions from two independent

SCFT simulations initialized with single-mode seeds at a composition for which GYR

was the expected morphology. Panel (a) shows the result of using a single-mode seed

in which all peaks were placed at appropriate positions in the spherical shell, but as-

signing their signs to be all positive or all negative. The morphology which arose was

the “Plumber’s Nightmare,” rather than the expected GYR morphology. In contrast,

panel (b) shows that using a single-mode see which has the proper relative placement

and sign allows one to recover GYR.

Another important result is the fact that half of the peaks can be removed in the

single-mode seed and SCFT can still recover GYR. Removing all peaks of one sign

in a seed, for instance, would still result in an SCFT simulation which found GYR.

However, completely removing pairs of peaks (those related by a reflection through

the origin) resulted in non-GYR structures. Superficially this may seem inconsistent

with the result from Figure 3.15, panel (a), since all peaks had the same sign in that

study. However, what the combination of these two findings suggests is that it is the

proper relative sign having at least one peak from a pair of peaks that matters. This

is good news for us, since it means that 1) our in-house SCFT solver is good enough

to “fill in” some blanks, and 2) the idea of PSO-SCFT searching through only half

127



PSO-SCFT Chapter 3

of the peaks should not be an obstruction to actually identifying “good” structures.

However, the caveat is that we must include enough peaks for the PSO to optimize.

This is not known a priori, but in principle could be added another parameter for

the PSO to optimize, limited to some range of values which seems to correspond to

physical systems.

Figure 3.15: Density profiles from independent SCFT simulations run for a diblock
at χN=15, fA=0.39, where GYR is the expected morphology, using a cell size of
17.6Rg in each dimension, which is commensurate with twice the unit cell size
of GYR at this composition. Simulations were initialized with single-mode seeds
where (a) all peaks had the same sign, resulting in the “Plumber’s Nightmare”
morphology, (b) peaks had relative signs that were consistent with those comprising
a GYR single-mode approximation, resulting in the GYR morphology.

From these studies, we observe that while the magnitude of the peak amplitude

does not seem to matter for recovering the appropriate morphology when performing

an SCFT simulation from a single-mode seed, using the proper relative signs does.

This means that if we want the PSO-SCFT algorithm to be able to agnostically iden-

tify structures, we must include the sign of the amplitude as a PSO search variable.
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Set-up for Peak Amplitude as PSO Variable

From the previous subsection, we saw that it may be necessary to employ the

sign of the amplitude as a variable which is optimized by PSO-SCFT. For the results

shown in the remainder of this chapter, we implement this in a similar fashion to the

peaks. Speaking in terms of Python’s object oriented programming, the language in

which PSO-SCFT is implemented, each peak has azimuthal position, polar position,

and amplitude value attributes. A peak also has azimuthal velocity, polar velocity,

and amplitude velocity. These values are all updated according to the integrated

equations of motion in Equation 3.6. Amplitudes, however, are different from the

peak position variables, in that their values are initialized from a random uniform

distribution between (-1,1), and their values may only remain within that range. This

range is enforced by using a tan function which maps onto a space in which amplitudes

are updated, and then mapped back to the search space: amapped = tan(pi
2
a), where

amapped is the value of the amplitude in the space which is mapped to the real number

line where updates are performed. To return to the confined range, one takes the

arctan of the updated amapped.
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Figure 3.16: Intensive free energy vs. iteration for benchmark testing of
PSO-SCFT with amplitude as a search variable, using 20 agents for a diblock
at fA = 0.39, χN = 15, where GYR is expected to be stable. The algorithm
optimized 6 peaks, each with their own amplitude and azimuthal and polar angles.

Figure 3.16 displays the intensive free energy vs. iteration plot for PSO-SCFT

with amplitude as an optimization variable applied to a diblock at fA=0.39, χN = 15,

where GYR is the target morphology. Comparing to Figure 3.14, we see that when

amplitude is included as a variable to search, PSO-SCFT is able to identify GYR.

Again, we see the problem of the failure of PSO-SCFT to converge to fit structures,

as was the case with the benchmark testing for BCC and HEX. This can be mitigated

to some extent by tuning χ, cp, and cg.
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3.4.4 Comments

For these tests, we used variable SCFT simulations that were initialized in each

iteration of the PSO with a prescribed cell size that fell within 5-10% of the com-

mensurate cell size for a given target morphology. For example, SCFT simulations

for the benchmarking where HEX was the target morphology were initialized with

Linit = 4.4Rg. The commensurate cell size for HEX at fA=0.35 and χN=15 is 4.65Rg,

which is a 5% difference from the initial cell sizes used for these simulations. Chang-

ing the initial cell size to as little as 3.5Rg (24.7% off-commensurability) did not

drastically affect the ability of PSO-SCFT to recover HEX. Similar results were seen

for BCC, but not for benchmarking for GYR. Implementing PSO-SCFT more than a

few percent away from the commensurate cell size for GYR would result in a failure of

the algorithm to identify GYR, even with signed peak amplitude as a search variable.

We will see that this is the case in the other system we present results for in the next

section: the AB4 miktoarm. Ultimately, we will need to include a way for PSO-SCFT

to optimize cell sizes; simply using variable cell in individual SCFT simulations is not

enough. Before we take on this task, however, we explore the application of PSO-

SCFT to the miktoarm system, where several sphere morphologies are competitive

with one another.
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3.5 Application to AB4 Miktoarm

3.5.1 Experimental Set-up

In this section, we discuss the application of the version of the PSO-SCFT algo-

rithm which optimizes a set of peak positions and their amplitudes to an AB4 mik-

toarm system, benchmarking against the phase diagram provided by Xie et al.[27].

Particularly, we look at a composition of fA0.32 at χN=40, where the A15 sphere

phase is expected to be stable, but other sphere morphologies are also competitive.

It was important to first verify that A15 was indeed the expected morphology at

the composition at which we applied PSO-SCFT. Verification for this can be seen in

Table 3.2.

Seeded Morphology Intensive Free Energy

BCC -3.37

FCC -3.44

σ -3.47965

A15 -3.47973

Table 3.2: Intensive free energies obtained from SCFT simulations seeded with the
indicated morphologies for an AB4 miktoarm star polymer at χN=40 and fA=0.32.

Individual SCFT simulations were tuned to have a total runtime of 5-30 minutes.

The large variation in runtime resulted from differences in individual single-mode

seeds. An implementation of 50-iterations of PSO-SCFT could be accomplished in

1-3 days, depending on SCFT simulation time and queue wait time on the clusters.

For the results presented in this section, PSO parameters were modified to χ =

0.73, cp = 0.2, and cg = 0.2, which is closer to the values which appeared to give

optimal results in the studies of the basic PSO algorithm applied to various test

functions in Section 3.2. The logic is the same here: values of cp and cg which are

greater than 1 would result in velocities which would send peaks whizzing around the
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sphere. This would render the tethering terms to personal and global best positions

in Equations 3.6 effectively useless.

3.5.2 Results

Figure 3.17: Intensive free energy vs. iteration for benchmark testing of
PSO-SCFT with amplitude as a search variable, using 30 agents for an AB4 mik-
toarm star polymer at fA = 0.40, χN = 40, where A15 is expected to be stable. The
algorithm optimized 6 peaks, each with their own amplitude and azimuthal and
polar angles. Individual variable-cell SCFT simulations were initialized in cubic
cells with Linit = 7.39Rg.

A plot of intensive free energy vs. iteration for the application of PSO-SCFT

with amplitude as a search variable to an AB4 miktoarm star polymer with A15 as
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the target morphology is shown in Figure 3.17. In this test, 30 agents were used,

and individual variable-cell SCFT simulations were initialized in cubic simulation

cells with side lengths Linit = 7.39Rg. At this composition, 7.39Rg on a side is

commensurate with the unit cell of the expected A15 morphology. From the plot, we

see that PSO-SCFT is actually able to identify A15 within about 10 iterations, and

over the course of successive iterations more agents return to the expected morphology.

A wide variety of structures was observed throughout all the iterations in this

sample. Some examples of such morphologies can be seen in Figure 3.18. Panel (f)

shows the A15 morphology. Other morphologies not shown include various defective

sphere packings, spheres mixed with cylinders, and defective cylinders, all of which

were seen throughout various implementations of the PSO-SCFT algorithm for this

AB4 miktoarm system. Additionally, a given intensive free energy might actually

correspond to a few different structures, particularly in the window between (-3.46,-

3.42) kT/chain. This was consistently observed in various implementations of the

PSO-SCFT algorithm at this composition and architecture.

134



PSO-SCFT Chapter 3

Figure 3.18: Examples of morphologies and their corresponding intensive free en-
ergies that were identified by the implementation of PSO-SCFT described in Fig-
ure 3.17.

From the plot in Figure 3.17, the rate of convergence to previously known good

structures appears to be very slow. However, it appears that the PSO-SCFT is “work-

ing.” This is partly evidenced by the distribution of intensive free energies observed

in the first iteration as compared with the last iteration of this particular implemen-

tation, which can be seen in panels (a) and (b) respectively in Figure 3.19. The black

line in each histogram indicates the intensive free energy of the A15 morphology at

our benchmark composition. In panel (a), we see that the initial distribution of the

30 agents has no structures corresponding to the A15 free energy, whereas by iteration

50, 4 of the 30 agents yield A15 morphologies.
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Figure 3.19: Histograms of the intensive free energies of all agents in the (a) 0th and
(b) 50th iterations of PSO-SCFT applied to an AB4 miktoarm. These distributions
correspond to the test described in Figure 3.17.

The results shown in the previous three plots were all associated with PSO-SCFT

applied to the miktoarm using initial cell sizes which were commensurate with the

expected morphology. However, since the entire point of these heuristic algorithms

is to agnostically identify structures, this is not particularly impressive. We would

not expect to know a priori what the unit cell sizes of competitive morphologies are,

and furthermore, they may vary quite substantially. This is certainly the case for

this system: the unit cell of BCC has a lattice vector of 4.6Rg, whereas A15’s lattice

vector is 7.39Rg. Before we discuss the development of a version of PSO-SCFT

which will account for variation in unit cell sizes among competing structures, it is an

important first step to check that the current version of PSO-SCFT is still capable of

identifying the expected morphology when initial cell sizes are some percentage away

from commensurate.

Figure 3.20 displays a plot of intensive free energy vs. iteration for PSO-SCFT

applied to the same system as Figure 3.17 (fA=0.40, χN=40, target = A15), but with

individual variable-cell SCFT simulations initialized using Linit = 6.64Rg. This is

about 10% less than the commensurate cell size of 7.39Rg. From the plot, we see

that A15 is eventually identified, but it takes more PSO-SCFT iterations to find it
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than the case where commensurate cell sizes were used (i.e., about 30 iterations in-

stead of 10). This effect is reproducible, with a variation of a few iterations for both

cases.

Figure 3.20: Intensive free energy vs. iteration for benchmark testing of
PSO-SCFT with amplitude as a search variable, using 30 agents for an AB4 mik-
toarm star polymer at fA = 0.40, χN = 40, where A15 is expected to be stable. The
algorithm optimized 6 peaks, each with their own amplitude and azimuthal and
polar angles. Individual variable-cell SCFT simulations were initialized in cubic
cells with Linit = 6.64Rg.

Figure 3.21 shows histograms of the intensive free energy of all agents in the first
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iteration (panel (a)) and last iteration (panel (b)) of the the implementation of PSO-

SCFT with Linit = 6.64Rg. The results are similar to those observed from the case

where Linit = 7.39Rg, in that initially there are no free energies corresponding to

A15, but by the 50th iteration there are. However, convergence to “good” structures

is slow in this case as well.

Figure 3.21: Histograms of the intensive free energies of all agents in the (a) 0th and
(b) 50th iterations of PSO-SCFT applied to an AB4 miktoarm. These distributions
correspond to the test described in Figure 3.20.

3.5.3 Comments

In this section we applied PSO-SCFT to an AB4 miktoarm star polymer. We saw

that initializing the individual variable-cell SCFT simulations to be commensurate

with the expected A15 morphology’s unit cell size resulted in a faster identification

of A15 than using a non-commensurate initial cell size. Initializing cell sizes within

10% larger than that of the commensurate cell size resulted in the failure of the PSO-

SCFT algorithm to identify A15. We did not try using Linit that were even larger than

110% of the commensurate cell size, but it seems unlikely that PSO-SCFT would be

successful in that case, either. This seems to stem from a peculiarity of the SCFT

solver we use in the group. We explore this phenomenon more deeply in the following

138



PSO-SCFT Chapter 3

section.

Of further interest is the fact that the Frank-Kasper σ phase was not observed.

σ’s intensive free energy is only a little over 0.1mkT/chain higher than that of A15

at this composition. Furthermore, PSO-SCFT applied at fA=0.24, χN=40, in the

center of a large window of stability for σ, fails to recover σ across a range of 12-

48 total peaks per agent, initial cell sizes, and values of the PSO parameters (χ,

cp, and cg). There are a few factors contributing to the difficulty of recovering the

σ phase. First of all, the unit cell size for σ is quite large, and its intensive free

energy is quite close to one of its competitors, A15. To even resolve the free energies

properly, it is necessary to run SCFT simulations with at least 128 plane waves in

each dimension, which becomes prohibitively expensive for PSO-SCFT. We originally

thought, as with the other test cases we have investigated so far, that we could use

a lower spatial resolution as a preliminary screen to identify competitive structures

then perform a closer inspection of individual morphologies which looked promising.

However, this approach becomes problematic if a competitor is simply never observed,

which was the case for the studies where σ was competitive of even expected.

Furthermore, the σ morphology does not belong to a cubic space group, but rather

to a tetragonal one, which means that the length of one of its lattice vectors does

not equal the other two. Our current implementation of PSO-SCFT only technically

accounts for cubic cells. It would be possible to generalize the algorithm to include

unequal lattice vectors, but this would inherently add to the dimensionality of the

degrees of freedom being optimized by PSO-SCFT. We do report results for includ-

ing the cell size as a search variable via a parameter q∗, which will be described in

Section 3.7.

It is curious that non-cubic morphologies have been observed, and even preferred,

over cubic ones, in both the GA-SCFT and PSO-SCFT methodologies (i.e., the or-
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thorhombic Fddd phase). It may be the case that it is enough for the SCFT solver to

have one of the lattice vectors correct, and the rest can be “filled in” as long as the

seed carries enough information (e.g., the correct placement of a large enough subset

of the Fourier peaks in the single-mode seed). However, σ contains 30 spheres in its

unit cell, and even more Bragg reflections, which means that it may require a much

larger number of peaks, a non-spherical single-mode seed, and a decent guess for the

cell size, all of which are hefty requirements that are not within the capabilities of

the PSO-SCFT algorithm as presented thus far.

140



PSO-SCFT Chapter 3

3.6 The Important of Initial Cell Size

The initial cell size chosen for any given SCFT simulation, Linit, plays a consid-

erable role in retrieving expected morphologies. We have already seen hints of this

in our studies of the density of defective states in Chapter 2 (see Figures 2.30 and

2.31). However, this notion has been a recurring theme – yea, nightmare! – through-

out the course of this project of solving the forward problem. Another example of

the importance of initial cell sizes can be seen in the case study presented in this sec-

tion. Here, we will see that independent variable-cell SCFT simulations which have

different initial cell sizes but start with the same single-mode seed generate different

morphologies.

To test the robustness of our SCFT solver to different initial cell sizes, we per-

formed two sets of variable-cell SCFT simulations which swept across initial cell size

for a diblock at χN=15, fA=0.39, where GYR is expected to be stable. In both sets

of simulations, the total number of SCFT iterations was capped at 20,000, to mimic

the conditions of PSO-SCFT.

In the first study, simulations were seeded using the output fields corresponding

to the lowest free energy structure in iteration 1 of Figure 3.16. These output fields

correspond to a GYR structure which had a unit cell size of 8.9Rg. A plot of the

intensive free energy vs. Linit from SCFT simulations which were initialized with this

seed is shown in Figure 3.22. This plot looks like a typical plot of free energy vs.

cell size for SCFT simulations which are run using the same seed; it is fairly smooth,

and has a minimum at the commensurate cell size. The density profile shown in the

inset looks like the GYR morphology. Each of the SCFT simulations initialized using

the cell sizes resulted in structures which looked like GYR, but the free energies were

different because the cell sizes had not grown or shrunk to the expected value over
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the course of only 20,000 SCFT iterations. If instead we performed fixed-cell SCFT

simulations where the cell size remained at the value prescribed by Linit, we would

see larger free energy differences, but would still recover GYR structures through the

range of Linit values reported (7,10)Rg. Thus far, everything which has been stated

about this study does not seem like it would raise any concern. In fact, the robustness

of SCFT results to variations in the initial cell size employed when using the same

“perfect” GYR structure seems like it should be a reassurance.

Figure 3.22: Plot of intensive free energy vs. initial cell size, Linit for SCFT
simulations which were all seeded with the output fields corresponding to the lowest
free energy structure in iteration 1 of Figure 3.16 (GYR structure). The inset shows
the density profile of the A-rich polymer region after an SCFT simulation was run
using the seed and Linit = 9Rg.

The disturbing part of the story comes when we instead use the single-mode seed

which generated the GYR fields we used to initialize the simulations in Figure 3.22.
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This single-mode seed was the PSO-generated seed corresponding to the first identi-

fication of GYR in Figure 3.16 (i.e., the agent associated with the lowest free energy

structure in iteration 1). Figure 3.23 displays the free energy vs. Linit plot of this set

of SCFT simulations.

Figure 3.23: Plot of intensive free energy vs. initial cell size, Linit for SCFT
simulations which were all seeded with the PSO-generated single-mode seed which
corresponds to the lowest free energy structure in iteration 1 of Figure 3.16.

As we can see, the plot is no longer smooth, but does still have a minimum occurring

at Linit = 9Rg. Figure 3.24 displays density plots of individual SCFT simulations

which were initialized using this same single-mode seed and the indicated initial cell

sizes. Here, we see that SCFT is no longer robust to using a range of initial cell

sizes. This means that if we want to use the PSO-generated single-mode seeds, we
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had better have a good guess for the initial cell size for SCFT as well!

Figure 3.24: Density plots from variable-cell SCFT simulations using initial cell
sizes of (a) Linit = 8Rg, (b) Linit = 9Rg, and (c) Linit = 10Rg. The SCFT
simulations were all initialized using the PSO-generated single-mode seed which
corresponds to the lowest free energy structure in iteration 1 of Figure 3.16.

This conclusion provokes two thoughts: 1) the forward problem is difficult,

because SCFT is a local optimizer which depends heavily on the initial

conditions used for a simulation, and 2) the initial conditions of an SCFT

simulation in the context of a reciprocal space, single-mode seed include

the relative peak positions, their relative phase relationships, and the

initial cell tensor (characterized by a single lattice parameter in cubic

cells).
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3.7 q∗ as a PSO-SCFT Search Variable

In this section, we discuss the development of a version of the PSO-SCFT algo-

rithm which includes the cell size as a variable that must be optimized, in addition to

the existing search variables of peak positions and amplitudes. We restrict ourselves

to implementing this for simulations which begin in cubic cells, since these can be

described with a single lattice parameter that indicates the length of cell. However,

we will find that working with reciprocal space seeds lends itself to using a quantity

we call q∗, which is related to simulation cell size by q∗ = 2πn
L

, where n is an even

integer that determines the number of periods of the primary wave vector that exist

in a simulation cell of length L.

3.7.1 What is q∗ and its Possible Relevance?

In the context of PSO-SCFT, q∗ is the magnitude of the wave vector which dictates

the lengthscale of the features in the density profile of a morphology generated by

SCFT. In a sense, it is analogous to the primary wave vector seen in scattering

experiments such as SAXS or SANS. We first began thinking about this quantity upon

the realization that the unit cells of different morphologies of interest contain different

numbers of periods of the primary wave vector. For instance, the commensurate

lattice vector for BCC is related to q∗ by LBCC = 4π
q∗BCC

, but the commensurate lattice

vector for GYR is related to q∗ by LGY R = 8π
q∗GY R

. This means that in a BCC unit

cell, there are 2 periods of the primary wave vector, whereas for GYR there are 4.

To better understand the relationship between q∗ and the commensurate cell size

of a morphology, one can study the analysis performed by Leibler in his 1980 paper

[58]. Specifically, one can look at Section IV of his manuscript, where he determines

the critical point and order-disorder phase boundary for a diblock by constructing
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correlation functions from the Debye function. From the plot in Figure 2 of his

paper, one can estimate the value of q∗ at a given block fraction. For fA ≈ 0.4, we

see that q∗ ≈ 2.8 and domain spacing D = 2π
q∗
≈ 2.2. This means that for GYR at

χN=15 and fA = 0.39, where the commensurate cell size is about 8.9Rg, there are

about 4 domain spacings (4 periods of the primary wave vector) in a unit cell.

We have seen that the initial cell size we choose to initialize an SCFT simulation

is important, especially when starting from a single-mode seed. Thus, we need to

find some way to incorporate simulation cell size as part of the space which the PSO-

SCFT algorithm explores. It seems like a sensible way to do this is by exploring

the q∗ space. We are interested in generating reciprocal space, single-mode seeds as

agents. The other variables being optimized by PSO-SCFT live in reciprocal space:

peak positions in terms of their azimuthal and polar angles, and amplitudes. Linit is a

real-space quantity, where as q∗ is a reciprocal space quantity. Thus, for consistency

across PSO-SCFT optimization variables to remain in the same sort of “thematic

space”, we chose to make q∗ the quantity that varies in the search.

3.7.2 RPA Calculation of q∗ for an AB4 Miktoarm

Before we incorporate q∗ as a variable for PSO-SCFT to optimize, it is important

to verify that using such a scheme would be applicable to systems besides the diblock.

In this subsection, we follow the analysis performed by Leibler discussed above, but

for the AB4 miktoarm. The idea is to see if we can accurately determine q∗ for the

miktoarm, and if so, what kinds of ranges for the value of q∗ we might expect to

observe.

The first step in obtaining a curve analogous to the one in Figure 2 from Leibler’s
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paper is to define Debye-like functions for the miktoarm:

g1(f, x) =
2

x2
(fx+ exp(−fx)− 1)

hd(f, x) =
1

x
(1− exp(−fx))

(3.8)

Here, g1(f, x) was taken from the Leibler paper (Equation IV-3), and hd(f, x) was

determined by modifying the work in Fredrickson’s book [13] for a homopolymer

star (Equations 3.140, 3.141). g1 and hd provide expressions for the correlations for

segments on the same arm and correlations with different arms, respectively. From

here, we write down correlation functions for the two types of polymer in our system,

A and B:

SAA = nnA[g1(αA, x) + (nA − 1)hd(αA, x)2]

SBB = nnB[g1(αB, x) + (nB − 1)hd(αB, x)2]

SAB = nnA nBhd(αA, x)hd(αB, x)

(3.9)

where n is the total number of arms, nA and nB are the number of A- and B-type arms,

and αA and αB are the volume fractions of the A- and B-type polymers, respectively.

SAA, SBB, and SAB can be interpreted as correlations for A-type segments with other

A-type segments, B with B, and A with B, respectively. As a quick verification that

these definitions are correct, one can set nA = nB = 1 and choose αA 7→ fA, αB 7→

1-fA. By doing this, we should recover SAB = S12, the correlation function for the

diblock in Equation IV-2 of Leibler’s work, which does indeed happen.

The correlation functions SAA, SBB, and SAB can be added together to define

S(q), a density-density correlation function which sums over all correlations in the
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system: S(q) = SAA + SBB + 2SAB. S(q), in turn, can be used to determine S̃(q),

the structure factor. Equating Leibler’s equations IV-1 to IV-5, we determine that

we can obtain:

F (x) =
N ˜S(q)

W
(3.10)

where W is the determinant of the matrix composed of the correlation functions of

the ideal independent copolymer chains ||Sij||. q∗ can be obtained by determining the

q which minimizes F (x), with q∗ =
√
x∗/Rg. For the AB4 miktoarm at fA = 0.32, we

obtain q∗ = 2.6. From comparisons with SCFT simulations to identify the commen-

surate cell size for A15 at χN=40, fA=0.32, we find that this is a gross overestimate of

q∗, which should be approximately 1.7. The difference may be accounted for by the

fact that such RPA analysis is accurate close to the spinodal line, but breaks down

with the divergence of the structure factor at higher segregation strengths. Neverthe-

less, we can make a coarse estimate from what we observed in this exercise that the

range of values accessible to q∗ for the AB4 miktoarm would most likely be (1,3).

3.7.3 Application in the Context of PSO-SCFT

Implementing q∗ as a variable for PSO-SCFT to optimize requires only some

slight modifications to Algorithm 3. The algorithm for the full version of PSO-SCFT

which optimizes peak positions and amplitudes, as well as q∗ is shown in Algorithm 4.
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initialize peak positions x0j = (φj, θj), peak velocities v0j , peak amplitudes a0j ,

and peak velocities v0a,j randomly for all peaks j of all agents i;

initialize q∗,0i and its velocities vq∗,0,i randomly for all agents i;

for each timestep t > 0 do

for each agent i do

for each peak j do

apply Rge to current position (rotate to local frame);

convert from cartesian coordinates to spherical coordinates;

update position xtj using Eqn. 3.2 in local, equatorial frame ;

apply Reg = (Rge)
−1 to updated position (rotate to global frame);

apply boundary conditions (periodic in φ, reflecting in θ);

end

generate SCFT seed consisting of all 2j peaks (reflect through origin);

run SCFT simulation using seed & get fitness (intensive free energy), f ;

update xtp and atp of all j peaks;

update q∗,ti according to Eqn 3.6 and update q∗,tp ;

end

update xtg and atg;

update q∗,tg ;

end

Algorithm 4: Update process for the PSO-SCFT algorithm which optimizes sets

of peak positions, their amplitudes, and q∗.
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For this version of the algorithm, each agent consists of a set of peaks,

each with their own amplitudes and azimuthal/polar angles, as well as

one value of q∗. This is because each agent is used to generate a single-mode SCFT

seed. Values of q∗ are restricted to a prescribed range that can be assigned upon

initialization of the PSO-SCFT algorithm. The restriction is accomplished by using

a tanh function which maps q∗ onto the entire number line, in a similar fashion to

what was done with peak amplitudes.

The forward mapping to the space where q∗ values are updated is given by:

1
p

tanh−1 (a+b−2x)
(a−b) , where a and b are the bounds on the range to which q∗ is restricted,

and p sets the width of the tanh function. The backward mapping is simply given by

the inverse of this function: b−a
2

(tanh(p x) + 1) + a, and is applied to the value of q∗

which would have been updated in the mapped space. We found that using p = 0.005

resulted in a soft enough tanh function that the entire range could be explored. For

larger values of p, agents would have q∗ values which bunched at the extremes of a

given range.

Values for q∗ for each agent are updated according to the integrated equations

of motion described in Equation 3.6, and can be assigned χ, cp, and cg values that

are independent of the analogous values in the equations updating peak positions or

amplitudes. We will not present a discussion of the tuning of these parameters in this

thesis. However, values we use for the results presented in Sections 3.7.4 and 3.7.5

are listed in Table 3.3.
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Search Variable PSO Parameter Value

{φ, θ, amplitudes}
χ 0.5

cp 0.2

cg 0.2

q∗
χ 0.7

cp 2

cg 2

Table 3.3: PSO-SCFT parameters for optimizing peak position and q∗.

3.7.4 Results for AB Diblock

In this subsection, we discuss the results of applying the “full” version of PSO-

SCFT which optimizes peak positions, their amplitudes, and q∗, to the conformation-

ally symmetric diblock we have been using for benchmarking throughout this thesis.

Specifically, we look at results for χN = 15 with fA = 0.35 (target is HEX) and

fA = 0.39 (target is GYR).

Figure 3.25 displays a plot of the intensive free energy vs. iteration for PSO-

SCFT applied to the diblock at χN = 15 and fA = 0.35, where HEX is the target

morphology. 6 peaks were used, which means there was a total of 12 peaks on the

sphere. q∗ was restricted to values between (1.5,3.5), which corresponded to a range

of Linit falling between (3.58,8.37)Rg. From the plot, we see that even with only

5 agents, HEX is identified within the first iteration of the algorithm. We also see

an envelope on the distribution of values, suggesting that convergence to HEX is

occurring over successive iterations.

151



PSO-SCFT Chapter 3

Figure 3.25: Intensive free energy vs. iteration for benchmark testing of
PSO-SCFT using 5 agents for a diblock at fA = 0.35, χN = 15, where HEX is
expected to be stable. The algorithm optimized 6 peaks, each with their own am-
plitude and azimuthal and polar angles. Individual variable-cell SCFT simulations
were initialized in cubic cells over a range of q∗ ∈ (1.5, 3.5), which corresponds to
Linit ∈ (3.58, 8.37)Rg.

We can verify convergence to HEX by examining plots of the values of q∗ and vq∗

vs. iteration, shown in panels (a) and (b), respectively, in Figure 3.26. From the plot

in panel (a), we see that there is a distribution of values for q∗ in the first iteration,

but by the last iteration, 3 of the 5 agents have swarmed toward a value of approxi-

mately q∗ = 1.9, which corresponds to Linit = 6.6Rg. This makes sense, since we are

initializing simulations in cubic cells, rather than hexagonal cells. In a rectangular

cell spanning the height of two hexagonal unit cells, the length of the rectangular

cell would be a
√

3, where a is the side length of the hexagonal cell. 6.6Rg√
3

= 3.8Rg,
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which is the unit cell size for HEX in a hexagonal lattice at this composition. Visual

inspection of the structures and the intensive free energy provide further verification

of the identification of HEX by the full version of PSO-SCFT.

Figure 3.26: Plots of (a) q∗ and (b) vq∗ vs. iteration for all agents in an implemen-
tation PSO-SCFT at fA = 0.35, χN = 15, where HEX is the target morphology.
Individual variable-cell SCFT simulations were initialized in cubic cells over a range
of q∗ ∈ (1.5, 3.5), which corresponds to Linit ∈ (3.58, 8.37)Rg.

The fact that PSO-SCFT can identify HEX in 3D simulation cells with only 5

agents in a total runtime of less than an hour without any a priori knowledge of the

symmetry or the expected cell size is a significant improvement over the GA-SCFT

algorithm, which did not have the capability to screen cell sizes at all. However, HEX

is a simple morphology and straightforward to identify, even without the help of a

mimetic algorithm. We are interested in determining whether PSO-SCFT is able to

recover GYR under these conditions.

We present a plot of intensive free energy vs. iteration for all 50 agents of a full

PSO-SCFT applied for the diblock at χN = 15, fA = 0.39, where GYR is the target

morphology in Figure 3.27. The range to which q∗ values were restricted was smaller

than that of the example for the case for HEX, but as we saw in our studies of the den-

sity of states of defective structures in Section 2.7.2 and the studies of the robustness
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of SCFT to changing Linit using the same single-mode seed in Section 3.6, even small

differences in cell sizes can produce drastically different structures at this composition.

Figure 3.27: Intensive free energy vs. iteration for benchmark testing of
PSO-SCFT with amplitude as a search variable, using 50 agents for a diblock
at fA = 0.39, χN = 15, where GYR is expected to be stable. The algorithm
optimized 6 peaks, each with their own amplitude and azimuthal and polar an-
gles. Individual variable-cell SCFT simulations were initialized in cubic cells over
a range of q∗ ∈ (2.7, 3.1), which corresponds to Linit ∈ (8.1, 9.3)Rg.

From the plot, we see that we were actually able to identify GYR within a handful

of iterations. PSO-SCFT is slow to converge to this structure, but agents do eventu-

ally return to it over the course of successive iterations. Convergence may be helped
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with finer tuning of the PSO parameters, and possibly by using a different network

topology. Nevertheless, this is a promising result, and shows marked progress towards

identifying competitive structures from an agnostic standpoint.

3.7.5 Results for AB4 Miktoarm

The last case study in this section is for the full PSO-SCFT algorithm applied to

the AB4 miktoarm at χN = 40 and fA = 0.32, where A15 is the target morphology.

Figure 3.28 shows the intensive free energy vs. iteration plot for all 30 agents in

the swarm. A15 is successfully identified after 14 iterations, and agents return to

sets of peak positions and q∗ values which correspond to the A15 morphology in later

iterations. As in previous examples, we observe a wide variety of structures through

successive iterations. For this example, it was important to use SCFT simulations

which had 48 plane waves in each direction, since the cell sizes could grow to be

quite large, and we wanted to maintain the spatial resolution ∆x / 0.35. This

resulted in individual SCFT simulations having a runtime of up to 4 hours, which

drastically slows down the implementation of the full PSO-SCFT. An 80-iteration

run, for instance, could take up to 5 days.
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Figure 3.28: Intensive free energy vs. iteration for benchmark testing of
PSO-SCFT with peak positions, amplitude, and q∗ as search variables, using 30
agents for an AB4 miktoarm star polymer at fA = 0.32, χN = 40, where A15 is
expected to be stable. The algorithm optimized 6 peaks, each with their own am-
plitude and azimuthal and polar angles. Individual variable-cell SCFT simulations
were initialized in cubic cells over a range of q∗ ∈ (1.2, 2), which corresponds to
Linit ∈ (6.28, 10.47)Rg.
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3.7.6 Comments

In this section, we applied the full PSO-SCFT algorithm to the conformationally

symmetric diblock, at compositions where HEX and GYR were expected to be stable,

as well as to the AB4 miktoarm at a composition where A15 is the target morphology.

The full version of the PSO-SCFT algorithm was successful at identifying the target

morphologies in all cases.

It should be noted, however, that it is important to set the correct number of

periods of the q∗ wave vector when employing the PSO-SCFT algorithm. As previ-

ously mentioned, the GYR unit cell has 4 periods of the primary wave vector, which

means q∗ = 2nπ
L

, with n = 4. If the PSO-SCFT algorithm is performed using n = 2,

instead, GYR is never found. Indeed, when PSO-SCFT is performed using n = 2 at

the same composition, the algorithm seems to favor the Fddd structure instead, even

though it is more than 2mkT/chain higher in intensive free energy than GYR, which

is an order of magnitude greater than the differences between some of the competitive

sphere morphologies seen in asymmetric AB systems.

A brief explanation for this phenomenon may lie in the fact that the plane wave

expansion for the single-mode approximation is comprised of a linear combination

of the plane waves in the basis. What that means is that there can be different

coefficients on the plane waves which contribute to the single-mode seed that would

yield a morphology of interest. For instance, for the case of FCC, a “single-mode” seed

can be constructed by populating peaks at k-indices of (2,0,0), (0,2,0), (0,0,2) and

various plus/minus permutations of (2,2,2). However, the FCC morphology cannot

be retained by populating only the (1,0,0), (0,1,0), (0,0,1) and permutations of (1,1,1)

positions, even though as a cubic morphology it takes (1,0,0), (0,1,0), (0,0,1) as its

primitive lattice vectors. Furthermore, we know that
√

2 6=
√

12 + 12 + 12, so there

appears to be more than a single “radius” associated with the peaks comprising the
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single-mode seed.

It may be helpful to recall at this point that in a single-mode approximation,

polymer densities, ρ, are constructed by retaining only the first term in a sum

over basis functions, φ that contribute to the density: ρ =
∑

n cnφn, where φn =∑
k ak exp(2πikx). That is, only φ1 is retained to approximate the density. In other

words, in order for φ1 to span the symmetries (simultaneously satisfy all of the sym-

metry elements belonging to a space group of interest), a linear combination of the

plane waves comprising φ1 must be used. This is consistent with what we see in our

example above with FCC.

The fact that n must be assigned correctly has some important ramifications in

terms of the development and capabilities of PSO-SCFT. It is yet unclear whether it

is simply enough to prescribe n to be some large enough even integer that will capture

enough periods of the primary wave vector in the search for competitive structures,

or if it is necessary to set it to its exact value for the unit cell of a given possible

morphology. The latter constraint is obviously more strict, and would require either

some kind of manual sweep or implementation of n as a variable for PSO-SCFT to

optimize. This study, however, is deferred to future work.

3.8 Mystery Morphology

In the final section of this chapter, we discuss the characterization of a “mystery”

morphology that was observed in several independent samples of PSO-SCFT applied

for the miktoarm system. After using the fields file associated with this structure to

seed a longer, more highly resolved SCFT simulation, we determined that this struc-

ture was indeed metastable at χN = 40 and fA = 0.32, with an intensive free energy

which was 2mkT/chain higher than that of A15. This mystery structure thus has
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a lower intensive free energy than BCC and FCC at this composition, but a higher

intensive free energy than σ and A15. Figure 3.29 shows images of the density profile

of the “mystery” morphology shown from three different perspectives.

Figure 3.29: Density profile shown from three different perspectives of the “mys-
tery” morphology observed in multiple samples where PSO-SCFT was applied for
the AB4 miktoarm at χN = 40 and fA = 0.32.

Characterizing an unknown structure presents a slew of difficulties. Determining

the space group to which the morphology belongs is one of these challenges, but can

be accomplished using online tools such as FindSym, as long as the coordinates of

the sphere centers are known within some tolerance. The coordinates of the sphere

centers were identified both manually and via a script written by group mate Joshua

Lequieu, yielding the same values. It was interesting to see that the spheres had

slightly different volumes and were not exactly spherical. This seems to be the case

for many of the exotic sphere morphologies which have been observed in asymmetrical

block copolymer systems. This seems to stem from the Frank-Kasper phases are

comprised of different combinations of slightly “deformed” voronoi cells that allow

for perfect tiling of the cells. For our “mystery” morphology, there were three sphere

“types” and their associated volumes, corresponding to three different Wigner-Seitz

cells in a 2:2:3 ratio.

From visual inspection we originally thought the “mystery” phase belonged to
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the tetragonal space group, since two of the sides were very similar and unequal to

the third, longer side. However, from our work to characterize the morphology us-

ing FindSym, it appears that the structure belongs to Space Group 191 (P6/mmm),

which is a hexagonal space group. This can be verified by entering the coordinates of

the sphere centers into a program such as VESTA, acquiring the Wyckoff positions,

and going to the International Crystallographic Tables to confirm that the correct

linear combination of the Wyckoff positions exist in the structure[68]. Indeed, the

Wyckoff positions corresponding to the symmetry elements c 6̄m2, d 6̄m2, and fmmm

occur in the correct 2:2:3 ratio seen for the spheres, with matching fractional coordi-

nates those listed in the table for Space Group 191.

Figure 3.30: Crystal structure of Al3Zr4 viewed along (a) a-axis and (b) c-axis.

The next challenge in characterizing a structure is the fact that a given space

group can have thousands of structures which belong to it. This would have been

akin to searching for a needle in a haystack. However, Professor Ram Seshadri of-

fered tremendous assistance in identifying the “mystery” morphology as the crystal

structure of Al3Zr4. Figure 3.30 shows the structure of Al3Zr4. It is characterized by
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alternating graphite sheets separating kagome sheets with vertical rods in a triangular

lattice.

At first glance, it is difficult to see how the structure of Al3Zr4 is the same as the

“mystery” morphology from our PSO-SCFT algorithm. However, we can see from

side-by-side images of the hexagonal unit cells for each structure that they look quite

similar (see Figure 3.31). The image for the unit cell in panel (b) is colored according

to the three different types of Wigner-Seitz cells observed in the mystery morphology.

The fact that the structures of the hexagonal unit cell match so closely is indicative

that they are indeed the same.

Figure 3.31: Hexagonal unit cells for (a) Al3Zr4 and (b) the “mystery” morphology
observed in multiple samples where PSO-SCFT was applied for the AB4 miktoarm
at χN = 40 and fA = 0.32.

To the best of our knowledge, this structure has not been observed in the block

copolymer community. Experimental verification of this morphology is needed. Such

verification, however, would mark non-trivial progress toward solving the forward

problem and more predictive capabilities on the part of theory and computation.
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3.9 Concluding Remarks

In this chapter, we discussed the development of a reciprocal space global opti-

mization method, PSO-SCFT, with the goal of agnostically determining stable and

low-lying metastable polymorphs accessible to a given block copolymer system. The

full version of the PSO-SCFT algorithm seeks to optimize the positions and ampli-

tudes of a set of peaks, as well as the value of the primary wave vector, q∗, which

sets the lengthscale for morphological features and is related to the unit cell size by

q∗ = 2nπ
L

. The combination of all these variables were used to generate single-mode

seeds which were used to initialize SCFT simulations that yielded a variety of mor-

phologies. Intensive free energy was used as a metric to determine the fitness of each

seed which guided the trajectory of PSO-SCFT agents through the space of possible

sets of peak positions, amplitudes, and q∗ values.

PSO-SCFT successfully identified the expected stable morphology and low-lying

known competitors for the conformationally symmetric diblock and an AB4 miktoarm

system, both of which have established phase diagrams [24, 26, 27]. In the case of

the AB4 miktoarm, PSO-SCFT was even able to identify a previously unobserved

structure.

We found that for the case where GYR was the target morphology, it was im-

portant include the sign of the peak amplitudes as a variable which the PSO-SCFT

algorithm could search. Furthermore, when q∗ was included as an optimization vari-

able, the identification of GYR required assigning the correct number of periods of

q∗, n. This provides a small complication, which can be addressed by performing a

brief sweep of n, which realistically would likely be restricted to even numbers less

than 8 or 10.

The full version of PSO-SCFT demonstrated slow convergence to good structures
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which were identified. This could possibly be addressed by using a different network

topology and more aggressively tuning the coefficients in the integrated equations of

motion for updating agent positions [60, 62].

The current version of the PSO-SCFT algorithm is far from perfect; it is fairly

basic and does not always work. It can also become prohibitively expensive, since the

runtime of SCFT simulations can vary quite drastically from one polymer system to

another. However, PSO-SCFT does seem like a promising step towards addressing

the forward problem, and as a proof-of-concept works as a tool which can be used to

screen for competitive morphologies.
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Conclusions and Outlook

4.1 Summary

In this dissertation, we considered the development of two heuristic algorithms

for the agnostic identification of globally stable and low-lying metastable competing

morphologies of block copolymer melts. This is an important problem which needs

to be solved in order for true inverse design of materials to be possible, since being

able to determine the structure and composition of a block copolymer which would

yield desired material properties requires knowledge of the morphologies accessible

to such systems in the first place. However, the forward problem is a difficult one.

The current computational tools for mapping phase diagrams of block copolymers

rely on experimental guidance to even know which structures might be competitive

and a priori knowledge of the symmetry group and therefore the symmetry elements

spanned by a given candidate morphology. This is a consequence of the fact that for

a given block copolymer system, there is a rugged free energy landscape associated

with the possible morphologies accessible to system. However, current computational

methods such as SCFT rely heavily on the initial conditions used to seed simulations,
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and thus result in local optimizations, rather than global ones.

Mimetic algorithms, which combine heuristic global optimization algorithms with

local optimization methods, have been successfully applied to structure determination

problems in biophysics and metallurgical systems [41, 42, 63, 61]. These algorithms

seek to explore the landscape associated with various structures accessible to their

respective systems. The combination of global and local optimization methods is

achieved by developing algorithms which iterate through global optimization moves,

which generate “perturbed” configurations which can be relaxed by the local opti-

mizer.

We developed two approaches toward addressing the forward problem in block

copolymers, drawing inspiration from mimetic algorithms in other applications: GA-

SCFT (Genetic Algorithm + SCFT) and PSO-SCFT (Particle Swarm Optimization

+ SCFT). Both algorithms we discuss were benchmarked by applying them to the

diblock, for which the theoretical phase diagram is well-established. The PSO-SCFT

method was also benchmarked on the AB4 miktoarm star polymer, where sphere

morphologies are competitive. The idea with both methods was to explore the free

energy landscape associated with the numerous defective and competitive metastable

states by generating seeds which SCFT would relax into local basins of attraction.

Structures with better fitness, which was measured by comparing their intensive free

energies, would inform the exploration of the optimization space.

In Chapter 2, we discussed the GA-SCFT algorithm, which uses a Genetic Algo-

rithm as a wrapper around SCFT. In the GA-SCFT method, we manipulated real-

space SCFT fields. By selecting fit members to go on to “reproduce” by exchanging

regions of their SCFT fields and then allowing them to undergo a variety of mutations,

we were able to generate many seed fields which were used as initial configurations

for SCFT to relax. Each seed corresponded to a different structure. We saw that the
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GA-SCFT approach was successful at identifying non-network morphologies, but was

never able to recover GYR when it was the target structure. One of the challenges

with this method was that it would become “stuck” in the numerous defective states

accessible to the system, or would prematurely collapse into a competing candidate

morphology such as HEX or LAM.

In Chapter 3, we developed the PSO-SCFT approach, which addressed some of

the challenges we faced in Chapter 2 by reframing the problem to reduce the degrees

of freedom that we were manipulating. Instead of recombining entire real-space SCFT

fields, we chose to move to reciprocal space to generate “single-mode” seeds. These

seeds are effectively the agents of the PSO-SCFT swarm. Agents have positions and

velocities in the space of parameters the PSO-SCFT algorithm attempts to optimize.

Thus, an agent consisted of a set of peaks, their amplitudes, and an initial cell size

which was determined by the primary wave vector, q∗. We found that it was important

to include signed peak amplitudes in the search space, since the relative signs of

the peaks carry information about the symmetries spanned by a morphology. This

became evident in an independent study of independent SCFT simulations which were

initialized with various single-mode seeds. Furthermore, we observed that cell size

plays a non-trivial role in the identification of structures, and that it was important to

assign the appropriate value of n, the number of periods of the primary wave vector

when including q∗ in the search space. The full version of PSO-SCFT was able to

successfully recover the expected target morphology in all cases, identify

known competitors, and in one case, even found a previously unknown

structure in the block copolymer community.
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4.2 Concluding Remarks

With PSO-SCFT, we observed a pronounced improvement over the abilities of

the GA-SCFT method, which was never able to successfully identify the GYR mor-

phology, even when applied using small simulation cells. By reducing the degrees

of freedom which needed to be optimized, we were able to more effectively search

through the space of possible seeds. This is necessary because SCFT depends heavily

on the initial conditions used for a simulation. For the real-space GA-SCFT approach,

the initial configurations used to seed SCFT simulations were comprised of the entire

real-space SCFT fields. However, for PSO-SCFT, the initial configurations SCFT

simulations were single-mode seeds which contained information about the relative

peak positions, their relative phase relationships, and the initial cell tensor that is

characterized by a single lattice parameter in cubic cells. Furthermore, PSO-SCFT

allows us to search through seeds which correspond to range of unit cell sizes, whereas

GA-SCFT did not effectively incorporate this consideration.

It is important to note that the reason for the success of PSO-SCFT as compared

with GA-SCFT is not because we used a different algorithm, but because we changed

the way we were looking at the problem in a fundamental way by looking at reciprocal

space, single-mode seeds. The choice of using a PSO as opposed to a GA made sense

in this context for a few reasons: PSO’s are better suited to manipulating continuous

degrees of freedom, whereas GA’s are better for discrete manipulations. Furthermore,

other members in the group had seen relative success with the implementation of a

PSO toward solving the inverse problem, and there are less tuneable knobs that must

be optimized in a PSO as compared with a GA.

Solving the forward problem is far from complete. PSO-SCFT “worked” in the

benchmark studies we performed, insofar as it was able to reliably and agnostically
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predict a given target morphology and its competitors. However, the algorithm does

not converge in a timely manner to “good” structures. More aggressive tuning of the

parameters of the PSO, or changing the network topology may facilitate more efficient

convergence. The issue of convergence to high fitness structures may not actually be

considered that much of an obstacle, since one can effectively use PSO-SCFT as a

screening tool. PSO-SCFT can become very expensive. Generating phase diagrams

to facilitate inverse design would not be efficiently performed by using PSO-SCFT

at every point in phase space. Rather, PSO-SCFT can be used to perform “spot

checks” at various points in phase space, to see what kinds of morphologies may

be accessible to a new system of interest. In such a case, it would be necessary to

“zoom in” to particular structures the method identifies and perform more rigorous

SCFT simulations to thoroughly characterize structures, determine their intensive

free energies, and generate “clean” seeds which can be used in other simulations.

Once a good seed is identified by PSO-SCFT and undergoes such post-processing, it

can be used to perform the typical types of simulations necessary to generate phase

diagrams for specific block copolymer architectures and compositions of interest.

There is a further complication that is important to acknowledge: SCFT sim-

ulations themselves can become prohibitively expensive, depending on the system.

For instance, blended systems or block copolymer brushes may result in significantly

swollen domains which require individual SCFT simulations to be run at higher spa-

tial resolutions. This coupled with the fact that initial cell size is part of the set of

variables being optimized by the PSO means that it may not be possible in all cases

to realistically perform PSO-SCFT.

Both Chapters 2 and 3 are presented primarily in a chronological way. This on

many levels reflects the process involved in developing such heuristic methods, since

there are so many tunable knobs to explore that doing so in an exhaustive way is
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an optimization problem unto itself. What this means ultimately was that in many

cases, we probed some options for methods and parameters, and then made choices

according to the limited scope of results we saw, as well as our intuition and under-

standing of the forward problem as they matured over the course of the project. This

path for developing a method is in contrast with the more comprehensive approaches

taken in projects which investigate various implementations of global optimization

methods against the same, well-established, standard set of test functions. Therein

lies the difference in how we can approach the forward problem in the context of

block copolymer systems: our benchmarking is being performed on a system where

full SCFT simulations must be run as an inner loop to our global optimizer of choice.

The performance of different global optimization strategies ends up being quite prob-

lem dependent[69, 70, 71, 60]. Furthermore, it is not always clear that all algorithms

which are being compared are themselves fully optimized in terms of values of their

specific parameters. What is clear is that there are many considerations which must

be entertained in the development of these algorithms.

Nevertheless, the successful results seen in the application of the PSO-SCFT ap-

proach have important ramifications for materials design. It is a modular, straight-

forwardly extensible method which can be applied to a wide range of block copolymer

systems, since the only requirements for its use are a measure of fitness (i.e., intensive

free energy), and the capacity to manipulate the degrees of freedom which generate

single-mode seeds: peak amplitudes/positions and q∗. Being able to reliably predict

possible candidates in a given block copolymer system in a day or a handful of days

by simply “pressing go” and waiting for simulations to run on a high-performance

cluster exhibits a clear advantage over performing a series of experimental syntheses

and characterizations. PSO-SCFT method should not necessarily replace experi-

ments, but instead facilitate and guide them. We believe the success of PSO-SCFT
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marks significant progress toward solving the forward problem, expediting structure

discovery, and ultimately, the ability to achieve inverse design of materials.
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