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Abstract 
Modem panel surveys frequently suffer from high and non-ignorable attrition, and 
transportation surveys suffer from poor travel time estimates. The initial sampling 
process for most transportation surveys is also non-ignorable since rare travel modes are 
oversampled (and mode choice is the key dependent variable). This paper examines new 
multiple imputation methods for adjusting forecasts and model estimates to account for 
these problems in a new panel survey of 1500 commuters in San Diego, California. 
These data are collected to evaluate charging solo commuters to use an existing 8-mile 
underutilized freeway carpool lane. We illustrate the impact of attrition and 
measurement error on a standard conditional logit model of commuters' mode choice 
(solo drive in free lanes, pay to solo drive in the carpool lanes, or carpool for free in 
carpool lanes). Although the attrition rate between waves is 40% and non-ignorable, the 
quantitative impact on the results is negligible. However, measurement error in travel 
time does have an important impact on the key results from our model. Finally, failure to 
account for the measurement error process using multiple imputations yields a downward 
bias of at least 50% in the standard errors of the lo git coefficient estimates. 

1 Introduction 
Modem panel surveys frequently suffer from high and likely non-ignorable attrition, and 
transportation surveys suffer from poor travel time estimates. This paper examines new 
methods for adjusting forecasts and model estimates to account for these problems. The 
methods we describe are illustrated using a new panel survey of 1500 commuters in San 
Diego, California. These data are being collected to evaluate a federally-funded 3-year 
"Congestion Pricing" experiment investigating the impacts of allowing solo drivers to 
pay to use freeway carpool lanes. The panel survey, begun in Fall 1997, collects data on 
travel behavior and attitudes at six-month intervals through telephone interviews. The 
panel sample is refreshed with new respondents at each wave to counteract the attrition 
between waves. Both the original and refreshment samples are stratified on commuters' 
mode choice (solo drive in free lanes, pay to solo drive in the carpool lanes, or carpool 
for free in carpool lanes) to insure sufficient sample size for estimating our models 

We illustrate the impact of attrition and measurement error on a standard conditional logit 
model of commuters' mode choice (solo drive in free lanes, pay to solo drive in the 
carpool lanes, or carpool for free in carpool lanes). The basic model is documented in 
Kazimi et. al. (1999) which is summarized in Section 2 of this paper. Our model is 
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calibrated from the third wave of the panel study which was collected in Fall, 1998. We 
use data from the second wave to estimate an attrition model and then use this model to 
predict attrition probabilities as described in Section 5. We expect non-ignorable attrition 
because commuters who use the carpool lanes are more interested in the survey 
questions. It turns out that attrition is not a problem for this application even though 
there is some indication that it is non-ignorable. 

The selection probabilities are known for each new cross section (the initial sample plus 
the refreshment samples). Each sample is stratified by mode chosen for the last morning 
commute trip, and we have traffic counts for each mode taken at each survey date. These 
selection probabilities change across panel waves since the relative share of solo drivers 
paying to use the carpool lane increased over the panel and we tried to keep the number 
of observations in each mode constant over time. For panel respondents the appropriate 
selection probability is their initial selection probability times 1 - their attrition 
probability. 

Our basic strategy is to use the refreshment sample to model the attrition process, and 
then use this attrition model to generate attrition probabilities for each panel respondent. 
These attrition probabilities are then used to modify the original choice-base stratification 
weights in our discrete-choice models. Since we are using Manski and Lerman's (1977) 
Weighted Exogenous Sample Maximum Likelihood estimator, we need to modify the 
estimator to account for the estimation error in our attrition probabilities. We use 
Rubin's multiple imputation (see Rubin, 1987, 1996 and Brownstone and Chu, 1997) 
procedure to multiply impute attrition probabilities from our attrition model. This 
method has the advantage of not requiring joint estimation of the attrition and mode­
choice models, but it is therefore not fully efficient. 

We also have potentially non-ignorable measurement error in the time saved by using the 
carpool lane. Carpool lane users, and especially solo drivers paying to use the carpool 
lanes, tend to report unrealistically high values of time savings ( as described in Section 
3.3). While it is certainly possible that their mode choice decisions are based on their 
perceptions rather than the objective time savings, any useful policy model needs to be 
sensitive to actual time savings. Objective measurements of time savings are available 
from two types of data on speeds. First, floating car observations were obtained by 
driving cars down the corridor at frequent intervals and recording the actual travel times. 
During wave 3 of the panel survey, these floating car measurements were carried out for 
5 days, but the panel survey data collection involved reported travel behavior over two 
months. The second type of data on travel times, point speeds derived from magnetic 
loop detectors placed along the corridor for general traffic counting purposes, was 
available during the entire data collection period, but these data are subject to significant 
errors as described in Section 4. 

We have built a model that predicts the floating car data from the loop detector data. 
This model fits well (R-squared of .9), and we use it to predict the actual time savings 
faced by each survey respondent as a function of the date and time they entered the 
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corridor. We use multiple imputations to account for the component of error in our 
estimates and predictions from this imputation model. 

2 The San Diego Congestion Pricing Project 
The pricing demonstration project (referred to as FasTrak) allows solo drivers to pay to 
use an eight-mile stretch of reversible high occupancy vehicle (HOV) lanes along 
Interstate Route 15 (I-15). The combination of free HOV use and priced solo driver use 
is generally referred to as high occupancy toll (HOT) lanes. In this demonstration 
project, HOT lane users must travel the entire eight-mile length before exiting. The per­
trip fee for solo drivers is posted on changeable message signs upstream from the 
entrance to the lanes, and may be adjusted every six minutes to maintain free-flowing 
traffic conditions in the HOT lanes. Solo drivers who subscribe to the FasTrak program 
are issued windshield-mounted transponders used for automatic vehicle identification. 
Each time they use the lanes, their accounts are automatically debited the per-trip fee. 
This represents a dynamic form of voluntary congestion pricing, where solo drivers can 
choose to pay to reduce their travel time, and the payment is generally related to the level 
of congestion. 

2.1 The Panel Survey 
The panel survey consists of three samples of approximately equal size: 1) FasTrak 
program subscribers and former subscribers, 2) other I-15 users, and 3) users of another 
freeway corridor (I-8) in the San Diego Area defined as a control group. The analysis in 
this paper excludes the I-8 control group. The first wave of the panel was conducted 
prior to per-trip pricing. The second wave of the panel was conducted in spring 1998, 
during the first few months of dynamic pricing. For the purposes of this analysis, we 
focus primarily on program subscribers and other I-15 users in the third wave of panel 
data, collected during the fall of 1998 (October through November). During this time 
period, dynamic per-trip congestion pricing was well established. 

FasTrak subscribers were picked at random from a list maintained by the billing agency, 
and the remaining respondents were recruited using random digit dialing of residential 
areas along the respective corridors. In the initial wave of the panel, a partial quota 
sampling procedure was used to increase the number of carpoolers in non-subscriber 
parts of the sample. Panel attrition is about 33% per wave, and the sample is refreshed at 
each wave with a new random sample ofFasTrak subscribers as well as I-15 and I-8 
commuters recruited using the random digit dialing of residential areas along the 
respective corridors. The partial quota sampling procedure implies that the resulting 
sample is choice-based and weights are needed if the sample is being used to represent 
the population of regular I-15 corridor users. We estimated sampling weights from traffic 
counts carried out during the survey period. 

Survey respondents were queried for detailed information about their most recent 
inbound trip along I-15 if that trip was made during the hours of operation of the HOT 
facility and covered the portion ofl-15 corresponding to the facility. By design, trip 
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lengths must be at least eight miles long (the length of the facility). There were 699 I-15 
respondents with full information on morning trips during the peak-period that were in 
the inbound (southbound) direction. Table 1 presents a summary of the individual and 
household demographic data for the three travel modes that we investigate: 1) solo 
drivers in the main lanes, 2) solo drivers using FasTrak transponders to travel in the HOT 
facility, and 3) carpoolers who also travel in the HOT facility. 

2.2 Dynamic Per-Trip Tolls 
Solo drivers face tolls that are a function of arrival time at the HOT facility. The level of 
congestion in the HOT facility determines the toll ( e.g. tolls increase to avoid exceeding 
preset capacity constraints). 1 While program subscribers are provided with a profile of 
maximum tolls that vary by time-of-day, actual tolls may be less than the maximum tolls 
depending upon usage of the facility. In extreme conditions, tolls may exceed the 
advertised maximum tolls although this is expressly advertised as a rare occurrence and 
has yet to occur during the demonstration period. 2 

Figure 1 shows the average toll by time of day for the months of October and November 
1998 (excluding Thursday and Friday of Thanksgiving weekend). Average tolls are 
remarkably similar across the days of the week. (Kazimi et. al., 1999, contains data on 
day-to-day variation.) 

Based on the estimated arrival time at the HOT lanes, each survey respondent is assigned 
a toll price for that specific arrival time and date of travel. For respondents who choose 
to drive alone in the HOT lanes, this represents actual price paid. For solo drivers in the 
regular lanes and those who carpool, this represents the price they would have paid had 
they chosen to travel with FasTrak. 

Arrival time at the HOT lanes is determined using a combination of information from the 
panel survey and speed estimates for the upstream portion of I-15. The panel survey 
queried respondents for onramp used in the morning commute and arrival time at that 
onramp. Travel time from the onramp to the beginning of the HOT lanes is estimated 
using time-of-day point speeds calculated from California Department of Transportation 
(CAL TRANS) loop detectors embedded in the roadway. These loop detector data are 
computed every six minutes. Speeds at loop detector locations are converted into speeds 
along the intervening segments ( defined as the roadway between two loop detectors) 
using an algorithm that assumes that the loop detector point speed at the beginning of the 
segment applies to the first half of the segment and point speed at the end applies to the 
second half of the segment (van Grol, 1997). Since loop detectors are placed near 
onramps, the freeway is effectively broken into segments traveling from onramp to 
onramp. 

1 The capacity goal is 1,300 vehicles per half-hour in the AM peak, and 1,440 vehicles 
fer half-hour in the PM peak. This corresponds to level of service rating C (LOS C). 

See http://www.sandag.cog.uc/i-15fastrak/schedule.html for additional details. 
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Table 1. Demographic Characteristics by Mode Choice (in percentages) 
Solo Drivers FasTrak Users Carpool 

(N = 304) (N=279) (N=l 16) 
Age of respondent: 
18-34 20.8 8.6 15.1 
35-44 34.0 46.8 39.8 
45-54 33.3 33.5 32.8 
54-64 9.9 10.8 10.6 
65+ 2.0 0.4 1.7 

Education of respondent: 
High school 12.5 4.0 10.3 
Some college 30.3 21.7 31.0 
Bachelor's degree 33.2 36.1 37.1 
Graduate work or degree 24.0 38.3 21.6 

Reason for travel along I-15: 
Work or work related 94.1 98.5 79.3 
School 1.3 0.7 2.6 
Non-work appointments 1.6 0.4 6.8 
Other social reasons 3.0 0.4 11.3 

Number of workers in household:• 
No workers 1.3 0.4 6.9 
One worker 37.8 31.5 19.5 
Two workers 51.0 58.1 54.3 
Three or more workers 9.9 10.0 19.0 

Vehicles per worker in household: a 

No workers (undefined) 1.3 0.4 6.9 
Less than one vehicle per worker 1.0 0.4 3.5 
One vehicle per worker 67.1 70.2 67.2 
More than one vehicle per worker 30.6 29.0 22.4 

Household Income: 
$20,000 or less 1.3 0 2.6 
$20,000 to $40,000 6.6 2.2 7.8 
$40,000 to $80,000 41.8 22.6 42.2 
$80,000 to $120,000 28.3 33.3 33.6 
$120,000 or more 13.5 29.4 6.9 
Refused to answer 8.6 12.5 6.9 

Female respondent: 34.2 47.3 45.7 
Household owns home: 78.6 92.1 86.2 
• The survey only asked about those who work outside the home. 

2.3 Time Savings From HOT Lane Use 
For mode choice modeling, we must determine possible time saving from travel on the 
HOT lanes for all respondents regardless of mode choice. Time saving is defined as the 
difference in travel time on the HOT lanes and travel time on the parallel main lanes. 
Both are a function of when commuters arrive at the facility (see previous section), 
speeds along the HOT lanes, and speeds in the main lanes. Speed on the HOT facility is 
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assumed to be 70 miles per hour based on several days of floating car experiments.3 

Speeds on the main lanes are estimated every six minutes during the entire survey period 
using loop detector point data in a similar manner as described in the previous section. 
These speeds were also estimated by driving along the roadway every fifteen minutes for 
one week in the middle of the survey period (referred to as floating car measurements). 
We present results using the loop detector speeds and using a combination of loop 
detector speeds and floating car speeds (see Section 4). 

Figure 1. Tolls for October and November, 1998 
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The results based solely on loop detector speed measurements by time of arrival at the 
HOT facility are summarized in Figure 2. Median time saving peaks at about seven 
minutes at the same time period (7:30-8:00 AM) that average tolls peak at four dollars 
(Figure 2). Considerable variation occurs within each half-hour time period as indicated 
by the divergence between median, 90th percentile, and 10th percentile time savings. Ten 
percent of the time, peak time saving exceeds twelve minutes. 

Those entering I-15 at one particular onramp (the Ted Williams Parkway onramp at the 
north end of the HOT Lanes) may also benefit from a special dedicated entrance to the 
HOT facility that avoids a congested main-lane onramp with a ramp-meter traffic signal. 
We estimated the time saving from using this dedicated onramp from floating car data 

3 Speeds along the HOT lanes were measured by driving the lanes, recording start and end times, and then 
calculating average speed using the time differential and distance traveled. HOT lane speeds were 
measured every fifteen minutes of the morning peak period for five days. Speeds were generally close to 
70 miles per hour with little variation across day and time. 

6 



and added the mean saving for the appropriate 15-minute time interval to the estimated 
time saving from use of the HOT lanes for those 

Figure 2. Time Savings Associated with HOT Facility Use 
(October - November, 1998) 
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Figure 3. Mean Time Saving From Use of Ted Williams Bypass On-ramp 
(October - November, 1998) 
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respondents entering I-15 at Ted Williams (approximately 36 percent of the sample). 
Figure 3 shows the mean additional savings from use of the Ted Williams onramp 
obtained from floating car data of the delay. Users of the dedicated HOT Lanes onramp 
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at Ted Williams Parkway can gain up to five minutes additional time if they choose 
FasTrak (toll) or carpool modes. 

3 Mode Choice and Value of Time 
The key ingredient in evaluating projects designed to reduce travel time is commuters' 
willingness to pay for these reductions. If commuters value time saved from congestion 
reduction highly, then it may be worthwhile to make costly investments in new 
transportation infrastructure. This section reviews the model structure and estimation 
methods that transportation economists use to estimate value of time (VOT) from 
reducing travel delays. 

3.1 Conditional Logit Mode Choice Models 
Suppose that respondent n faces a choice of three modes for travel to work indexed by j. 
In this paper the modes are drive alone, pay to drive alone in the HOT lanes (FasTrak), or 
carpool in the HOT lanes. In most previous studies the modes are automobile, bus, or 
subway. The Conditional Logit model assumes that the probability that respondent n 
takes mode j conditional on observed variables x1n is given by: 

(1) 

The value of time is given by the increase in cost required to keep P1n constant after a 
small decrease in travel time. If time and cost only enter as linear terms in x, then the 

VOT is just given by etime I Beas/ . 

Small (1992) and Wardman (1998) provide comprehensive reviews of value-of-time 
studies, and Gonzalez ( 1997) provides a review of the theory of consumer choice and its 
connection to value of time and mode choice modeling. Based on his review, Small 
(1992) suggests that 50 percent of gross wage rate is a reasonable value of time estimate. 
On the higher end of previous studies, Cambridge Systematics (1977) estimate that value 
of time for commuters in Los Angeles is 72 per cent of gross hourly wage. These 
previous studies are based upon mode choice models that consider differences between 
transit and automobile travel, and to the extent that differences between crowded transit 
and private automobiles are not captured, the results will be biased. In more recent work, 
Calfee and Winston (1998) attempt to avoid this problem by using stated preference data 
that only considers the tradeoff between travel by automobile in slower, free lanes and 
travel by automobile in faster, priced lanes. Their results indicate that commuters place a 
lower value on time saving than previously estimated (roughly $3.50 to $5.00 per hour or 
15 to 25 percent of hourly wage). Calfee and Winston rely upon stated preference data 
because they lack revealed preference data for the choices involved with congestion 
pricing. Our results are not subject to the same potential biases associated with stated 
preference data as we use revealed preference data. 
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Given a random sample of N commuters, the model in equation (1) is typically estimated 
by maximizing the likelihood function 

(2) 
11=! i=I 

where Din=l ifrespondent n chooses mode i and zero otherwise. This likelihood function 
is globally concave and therefore easy to maximize using standard algorithms. See Train 
(1986) for more information about this model and its application to transportation 
problems. 

3.2 Choice-base Sampling 
It is very common for one mode to have a very low market share, which makes collecting 
a random sample with a reasonable sample size for each mode very expensive. For 
example, in the I-15 corridor the FasTrak users make only 3.5 percent of the southbound 
morning commute trips. To reduce data collection costs most transportation surveys 
stratify on mode choice, which of course results in a non-ignorable sampling scheme. 

Maximizing a random-sample likelihood function as in equation (2) with a choice-based 
sample will generally yield inconsistent parameter estimates. McFadden (see proof in 
Manski and Lerman, 1977) shows that for the conditional logit model with a full set of 
mode-specific constants only the parameters associated with these mode-specific 
constants are inconsistent. A relatively simple estimator which yields consistent 
estimates under choice-based sampling was developed by Manski and Lerman (1977). 
Their Weighted Exogenous Sample Maximum Likelihood Estimator (WESMLE) is the 
maximand of the weighted likelihood function: 

L,,CV11 L11 (B,x11 ), 
(3) 

where Ln is the log likelihood function for the nth observation and the sampling weight, OJ
11 

, 

is the inverse of the probability that the nth observation (individual) would be chosen from a 
completely random sample of the population. Of course, if the sampling scheme were 
completely random, then all of the sampling weights would be equal and the WESMLE 
would simply be the usual maximum likelihood estimator. 

Manski and Lerman (1977) show that the WESMLE is consistent and asymptotically 
normal, but not fully efficient (see Imbens, 1992 for fully efficient alternative estimators). 
Manski and Lerman's proof actually shows that the WESMLE's properties hold for any 
regular maximum likelihood estimator as long as the sampling weights are known with 
certainty. The asymptotic covariance of the WESMLE is given by: 

V = q,-1 A q,-i, where 

and (4) 
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This covariance matrix can be consistently estimated by replacing the expectations in 
equation (4) with sample moments evaluated at the WESMLE estimates. 

A major advantage of the WESMLE is that it can be computed easily by modifying 
existing maximum likelihood programs. The WESMLE for both the linear regression 
model and the conditional logit model can be computed by appropriately weighting the 
variables and applying standard maximum likelihood programs. Unfortunately, this 
procedure yields downward biased standard error estimates, but the consistent estimates 
given by equation (4) are straightforward to compute. This downward bias can be 
substantial in common applications. The incorrect standard errors for the models in 
Section 6 are typically downward biased by 50 percent relative to the correct standard 
errors in equation (4).4 

For a simple choice-based sample, the WESMLE weights are just given by the ratio of 
the population mode share divided by the sample mode share. This is just the inverse of 
the sampling probability multiplied by the sample size divided by population size to 
make the sum of the weights equal the sample size. Note that these weights are also 
equal to the standard post-stratification weights for the choice-based design. For many 
transportation applications the population mode shares are available from traffic and 
passenger counts. Table 3.1 gives the relevant shares and weights for the I-15 panel used 
in Section 6 of this paper. Note that the FasTrak users are oversampled, which results in 
their getting a very low weight. 

Table 3.1: Mode Share and Weights 

Mode 

Drive Alone 
FasTrak 
Carpool 

4 Measurement Models 

Population 
share 
80.8 

3.5 
15.7 

Sample 
share 
43.5 
39.9 
16.6 

Weight 

1.86 
0.09 
0.95 

The loop detector data described in Section 2.3 can give very inaccurate estimates of the 
actual time savings commuters get from taking the HOT lanes. Depending on the traffic 
flows between the loop detectors (which are miles apart on the I-15 corridor) actual 
speeds can be either over or under-predicted. Since these measurement errors will 
generally be larger when the road is congested, the measurement errors in time savings 

4 A ST AT A program for computing the WESMLE and the correct standard errors is 
available from the corresponding author. 
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are likely to be larger for FasTrak and carpool lane users. Since time saved using the 
HOT lanes is a key dependent variable in the choice models in Section 6, this 
measurement error will bias key parameter estimates. 

This section considers two different approaches to correcting the measurement errors in 
loop detector speeds. Section 4.1 uses data from cars that drove down the 1-15 corridor at 
15 minute intervals during the last week of October, 1998. These data are used to fit an 
imputation model which we use to multiply impute corrected time savings in Section 6. 
Section 4.2 uses data on commuters' perceived time savings. These data were only 
collected for FasTrak customers, but there are enough in our sample to fit some 
interesting models. 

4.1 Time Savings Imputation Models 
Driving down a corridor with a stopwatch and clipboard, called the "floating car 
method," is generally considered the most accurate way to measure travel times and 
speeds. However, floating car observations are expensive and expose surveyors to 
liability in case of accidents. Therefore it is rare when there are enough floating car data 
to examine the distribution of travel times as in Figure 2. 

We use the five days in late October where we have both floating car and loop detector 
data available to fit a model which we use to predict floating car travel time for the other 
seven weeks of our survey period. These predicted floating car data are then used to fit 
mode choice models in Section 6.2. This approach assumes that the floating car data are 
correct, and we will use multiple imputations to correct for the measurement error caused 
by imperfect predictions. 

The floating car data are collected at 15 minute intervals while the loop detector data are 
at 6 minute intervals. To make these data compatible, we interpolated the floating car 
data into 6 minute intervals. Figure 4 shows box and whisker plots of the distribution of 
time savings from the two methods over the morning commutes from October 26 through 
October 30, 1998. The floating car estimates are generally more than twice as large as 
the loop detector time savings, which shows that the loop detector estimates are badly 
biased for this corridor. 
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Figure 4: Distribution of HOT Lane Time Savings 
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Table 4.1 shows the best fitting linear regression model for predicting floating car HOT 
lane time savings. To avoid unreasonable predictions we first transform both time savings 
measures to keep them bounded between zero and 35 minutes, which is the maximum 
observed loop detector time savings. The exact transformation for both time savings 
variables is given by the following transformed logit: 

(5) 

We tried a number of different specifications including higher order terms in loop 
detector time savings and toll variables, but none of them significantly improved the fit of 
the model. We also experimented with lagged values, but the cubic polynomial in time 
effectively removes the autocorrelation in the time savings measures. Since the purpose 
of this model is accurate prediction, we are looking for the most parsimonious model 
with the best fit. 

Although the variables involving the tolls are not individually significant, they are jointly 
significantly different from zero at the one percent level. If they are excluded from the 
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model, then the R2 drops slightly to .89. However, excluding the loop detector data 
reduces the R2 to .82 and increases the MSE of the residuals to .46. 

Table 4.1: Imputation Model for Floating Car HOT Lane Time Savings 

Dependent Variable: Logit of Floating Car Time R- = 0.90 
Savings Root MSE = 0.36 

Independent Variables: Coef. Std. Err. t-Stat. 

Logit of Loop Detector Time Savings x Minutes 0.0029 0.00031 9.3 
Past 5:00 A.M. 

Minutes Past 5:00 A.M. 0.222 0.0149 14.8 
(Minutes Past 5:00 A.M.)2 -0.00138 0.000121 -11.4 
(Minutes Past 5:00 A.M.)3 2.73E-06 2.91E-07 9.38 
Toll -0.229 0.188 -1.22 
Toll x Minutes Past 5:00 A.M. 0.00222 0.00126 1.77 
Constant -11.4 0.52 -22.1 

There are two general approaches for estimating a behavioral model with measurement 
error in the explanatory variables: joint maximum likelihood of the behavioral and 
measurement models, or Rubin's multiple imputation approach. Joint maximum 
likelihood would be very difficult for the model in Section 6.2 since the actual 
explanatory variables are complicated non-differentiable transformations of the variable 
explained by the measurement model in Table 4.1. We will therefore implement the 
multiple imputation approach as given in Rubin (1987 and 1996). Brownstone (1998) 
gives more detail using the same notation as this section. Rubin developed his 
methodology for missing data, and in our application floating car time savings are 
missing for approximately 80 percent of our respondents. 

Suppose we are interested in estimating an unknown parameter vector 0. If no data are 

missing, then we would use the estimator 0 and its associated covariance estimator Q . If 
we have a model for predicting the missing values conditional on all observed data, then 
we can use this model to make independent simulated draws for the missing data. If m 
independent sets of missing data are drawn and m corresponding parameter and covariance 

estimators, ei and Qi, are computed for each of these imputed data sets, then Rubin's 

Multiple imputation estimators are given by : 

where 
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Note that Bis an estimate of the covariance among them parameter estimates for each 
independent simulated draw for the missing data, and U is an estimate of the covariance of 
the estimated parameters given a particular draw. B can also be interpreted as a measure of 
the covariance caused by the nonresponse ( or measurement error) process. 

Rubin (1987) shows that for a fixed number of draws, m ?: 2, 8 is a consistent estimator for 

0 and f is a consistent estimator of the covariance of 8 . Of course B will be better 
estimated if the number of draws is large, and the factor (1 + m-1

) in equation (7) 
compensates for the effects of small m. Rubin (1987) shows that as m gets large, then the 

Wald test statistic for the null hypothesis that 0 = 0 ° , 

(10) 

is asymptotically distributed according to an F distribution with K (the number of elements 
in 0) and vdegrees of freedom. The value of vis given by: 

(8) v= (m - 1)(1 + rm-1)2 and 
rm= (1 + m-1

) Trace(BU1)/K. 
(11) 

This suggests increasing m until vis large enough ( e.g. 100) so that the standard asymptotic 
Chi-squared distribution of Wald test statistics applies. We used this stopping rule and 
found that the models in Section 6.2 required m=20 multiple imputations. Meng and Rubin 
(1992) show how to perform likelihood ratio tests with multiply-imputed data. Their 
procedures are useful in high-dimensional problems where it may be impractical to 
compute and store the complete covariance matrices required for the Wald test statistic 
( equation 10). 

To draw one set of imputed values for the missing floating car data, first draw one set of 
slope and residual variance parameters from the asymptotic distribution of the linear 
regression estimators from Table 4.1. The slope parameters are drawn from the joint 
normal distribution centered at the parameter estimates with covariance given by the 

usual least squares formula ( s 2 (xxt ). The residual variance, a;, is drawn by dividing 

the residual sum of squares by a draw from an independent xJ distribution, where dis 

the residual degrees of freedom. An imputed residual vector is then drawn from 

independent normal distributions with mean zero and variance equal to a;. The imputed 
values are then computed by adding this imputed residual to the predicted value from the 
regression using the imputed slope parameters. Additional sets of imputed values are 
drawn the same way beginning with independent draws of the slope and residual variance 
parameters. Observations where floating car data are observed are fixed at these 
observed values across all imputations. This imputation method, which Schenker and 
Welsh (1988) call the "normal imputation" procedure, is equivalent to drawing from the 
Bayesian predictive posterior distribution when the dependent variable and the regressors 
follow a joint normal distribution with standard uninformative priors. 
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For each imputed value we add the mean time savings for those respondents using the 
Ted Williams Parkway entrance. The medians and 90th percentiles across each month are 
computed for each 6-minute time interval. These medians and the difference between the 
90th percentiles and the medians are then used to estimate the parameters of the choice 
model in Section 6.2. The multiple imputation procedure described here has been 
implemented in ST AT A, and it could be programmed in most modern statistical 
packages. 

4.2 Perceived Time Savings 
Another approach to measuring time savings is to ask commuters directly. Panel 
respondents who were FasTrak customers were asked: "About how much time, if any, do 
you think using FasTrak saves you on a one-way, south-bound trip, compared to using 
the regular lanes during the times you normally travel?" The distribution ofresponses to 
this question is shown in Figure 5. Most respondents round to the nearest five minutes, 
and the most frequent responses were 15 and 20 minutes, followed by 10 and 30 minutes. 
In general, the perceived values are higher than time savings estimates from loop detector 
and floating car data. 
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Figure 5. Perceived Time Savings resulting from FasTrak Use 
for the Southbound Trip in Minutes (N = 497) 
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Perceived time savings should be a positive monotonic function of objective time 
savings. One component of objective time savings is the time difference attributable to 
travel in the HOT lanes, as opposed to the regular lanes ofl-15, estimates of which are 
available from the time savings imputation models that correct loop detector speed data 
using floating car data. A second component of objective time savings is relevant for 
FasTrak users entering the I-15 freeway at Ted Williams Parkway at the north end of the 
HOT Lane facility. Their perceived time savings should also be a function of the 
objective measurement of onramp delay times, as described in Section 2.3. 

We conducted regression analyses of perceived time savings as a function of different 
measures of the distribution of corrected HOT lanes time savings and floating car 
measurements of time savings at the Ted Williams Parkway onramp, plus demographic 
variables. The candidate measures of objective time savings included the median and 
90th percentiles of the corrected HOT lanes time savings for six-minute arrival intervals 
over one month, and the median, 90th percentile, and maximum values of onramp time 
savings for 15-minute ramp arrival times for ten days of observations. Quadratic and 
interaction terms were also tested, and the results are shown in Table 4.2. We did not use 
multiple imputations to account for the prediction error in the time savings variables, and 
we used the best point prediction from the model in Table 4.1 together with a simulated 
residual. Therefore the standard errors in the models presented in this subsection are 
downward biased. Qualitatively similar results can be obtained using loop detector data. 

The best explanation of perceived time savings only achieved an adjusted R2 of .092. It 
involved using the one-month median of imputed HOT lanes time savings and the 
maximum value of time savings at the Ted Williams Parkway onramp. For some 
unknown reason, females were found to perceive almost four minutes more savings than 
males for the same level of objective time savings. This gender effect is significant at p < 
.001. The positive constant term confirms that FasTrak users perceive time savings to be 
greater than objective time savings by a substantial amount. 

Table 4.2: Regression of Perceived FasTrak Times Savings on Time Savings 
Estimated from Loop Detectors and Floating Cars, Plus Demographics (N = 386) 

Independent Variables: Coef. Std. Err. 

Median corrected HOT Lanes time savings over one month 0.478 0.134 

Maximum time savings at Ted Williams Pkwy onramp 0.294 0.144 

Female 3.883 1.006 

Constant 11.269 4.553 

Since mode choice behavior involving FasTrak usage is likely to be related to perceived 
travel time savings, and not just objective time savings, we analyzed the relationship 
between the residual computed from the regression of Table 4.2 and a categorical 
variable defined as the proportion of each FasTrak users previous week's trips that were 
made using FasTrak to pay for solo use of the HOT lanes. This FasTrak demand variable 
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has five categories: 0 (10.4 % of the sample), .2 (7.8 %), .4 (13.0%), .6 (6.0%), .8 (4.9 %) 
and 1 (58.0%). The polyserial correlation coefficient between FasTrak demand measured 
this way and the regression residual is 0.313, which is significant at p < .001. The 
polyserial correlation coefficient is one of the most appropriate estimates of the strength 
of a relationship between an ordered-categorical variable and a continuous variable 
(Olsson, Drasgow and Dorans, 1982; Bollen, 1989). 

We can conclude that FasTrak demand is positively associated with the difference 
between users' perceived time savings and the value of their perceived time savings 
predicted using available objective time savings measures and demographic variables. 
This indicates that demand for FasTrak cannot be explained solely in terms of objective 
time savings and other variables. Perceived time savings probably also plays a role in 
forming behavior, but perceptions can also be a function of behavior. 

To test the role of objective time savings in jointly explaining both perceived time 
savings and FasTrak demand while simultaneously testing the direction of the causality 
between FasTrak demand and perceived time savings, we next constructed a structural 
equations model (SEM). The SEM has two endogenous variables, FasTrak demand and 
perceived time savings. The five exogenous variables in the SEM model are the four 
variables in the regression of Table 4.2 plus a spatial Ted Williams Parkway user dummy 
variable, to test for effects that are not captured by the objective onramp time savings 
variable alone. We postulated that perceived time savings were a function of objective 
time savings and the demographic variables, and FasTrak demand was a function of 
perceived time savings and demographic and spatial variables. In such a recursive 
model, objective time savings only affects demand through perceived time savings. 
Demand is a function of both the explained and unexplained portions of perceived time 
savings. We also specified an alternative model with causality from FasTrak demand to 
perceived time savings, to test the hypothesis that greater time savings are perceived as a 
rationalization of behavior, consistent with the theory of cognitive dissonance (Festinger, 
1957; Golob, Horowitz and Wachs, 1979). 

In the SEM, the endogenous FasTrak demand variable was treated as a two-limit Tobit 
model (Maddala, 1983), and all the other variables were treated as ordinary continuous 
variables. The SEM was estimated using ADF-WLS (arbitrary distribution function 
weighted least squares), as described in Bollen (1989) and Joreskog and Sorbom (1993). 
The ADF-WLS method yields consistent parameter estimates which are asymptotically 
efficient with asymptotically correct covariances, and the model fit will produce correct 
chi-square test values (Browne, 1982 and 1984). 

The postulated direct links that define the optimal SEM are shown with their estimated 
coefficients in Figure 6. The chi-square value for the fitted model is 4.278 with 5 degrees 
of freedom ( corresponding top = 0.510). This indicates that the fitted model cannot be 
rejected at the p = .05 level (the null hypothesis is that the model represents the true 
covariance structure, and differences between this true structure and the sample are due 
only to chance). Results show that perceived time savings is explained by the two 
measures of objective time savings plus gender, in a manner consistent with the 
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regression described in Table 4.2. FasTrak demand is explained by perceived time 
savings, an income dummy, and a dummy signifying access to I-15 and the HOT lanes at 
Ted Williams Parkway. Objective time savings and gender explain demand via the path 
through perceived time savings. The total effects, or coefficients of the reduced-form 
equations, computed by solving the equations in terms of the exogenous variables, are 
listed in Table 4.3. 

Figure 6. Flow Diagram of Structural Equations Model of Perceived Times savings 
and FasTrak Demand 

corrected median 
0.188 HOT lanes savings 
(3.67) 

maximum TWP 
savings 0.107 onramp savings 

(2.07) 

0.246 
gender = female 

(5.03) 0.188 
(3.94) 

FasTrak household income 
demand 0.087 high or unknown 

(1.79) 

0.171 
Ted Williams (3.54) 

Parkway (TWP) user 

Table 4.3. Coefficients of the Reduced-form Equations, or Total Effects (t-statistics in 
parentheses; N = 386) 

Endogenous Corrected 
Variable median HOT 

lanes savings 

Perceived time 0.188 
savings (3.67) 

FasTrak demand 0.046 
(3.02) 

Maximum 
TWPonramp 

savings 

0.107 
(2.07) 

0.026 
(1.92) 

Gender= 
female 

0.188 
(3.94) 

0.046 
(3.05) 

Household 
income high or 

unknown 

0.087 
(1.79) 

Ted Williams 
Parkway user 

0.171 
(3.54) 

The SEM is still identified if a direct effect is added from FasTrak demand to perceived 
time savings. Adding this link drops the fitted model chi-square to 3.743 with 4 degrees 
of freedom. The estimated parameter of the "feedback" link from demand to perceived 
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time savings is positive, as predicted by the theory of cognitive dissonance, but it is not 
significant at the p = .05 level. The significance of the overall improvement in the model 
can also be tested using the difference in chi-square values, because the two models are 
nested. This difference, which is 0.535 with 1 degree of freedom, is not significant at the 
p = .05 level. Further research is required to better understand this complex relationship 
between objective estimates oftime savings, perceived time savings, and demand. 

5 Attrition Model 
The 39% attrition rate between Waves 2 and 3 of our panel is not unusual for 
transportation panel surveys (Raimond and Hensher, 1997). The high attrition might be 
due to the required detailed questions about the commute trip which respondents find 
difficult to answer and/or intrusive. Although new respondents (the refreshment sample) 
are recruited each wave to maintain sample size, it is crucial to account for attrition when 
analyzing these data. Once the data are collected there is nothing to be done about the 
loss of efficiency due to the decreased sample size, but there are flexible modeling 
techniques to identify and correct for non-ignorable attrition. 

The simplest approach is to compare the non-attriters ( or panel sample) with the 
refreshment sample. Table 5.1 compares the mean of key variables across these samples 
for our data. There do not appear to be striking differences, but the panel sample appears 
to have slightly higher income and longer commute distance. Since the samples are 
approximately equal size, it is also possible to fit the choice model in Section 6.1 
separately for each sample. The hypothesis that attrition is ignorable is then equivalent to 
the hypothesis that the coefficients of the choice model are equal across the samples. A 
standard likelihood ratio test shows that this hypothesis cannot be rejected at any 
reasonable significance level for these data. 

If there is no reasonable size refreshment sample, or if the data are used for dynamic 
analysis, then the attrition process can be modeled using the initial wave of the panel. 
Table 5.2 gives the results of fitting a binomial logit model to the attrition process. The 
results show that the only significant predictors of attrition are refusal to disclose income, 
distance, and proportion ofFasTrak use during the previous week. Commute distance 
enters as a quadratic term that has a maximum negative effect on attrition at 42 miles. 
This implies that for the relevant range of the data longer distance commuters are less 
likely to attrite. Proportion of FasTrak use is an endogenous variable in our choice 
models, so its significance in the attrition model implies that the attrition process is non­
ignorable. The higher attrition of FasTrak users might be related to the substantial 
number of additional survey questions administered to this group. The marginally 
significant results in Table 5.2 also imply that respondents who do not change work or 
home locations are less likely to attrite. Previous FasTrak panel members (those who 
also completed the first wave of the survey) are less likely to attrite between the second 
and third waves. 
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The attrition model results in Table 5.2 indicate that the attrition process is non-ignorable 
for mode-choice modeling, so we need to use inference methods that are consistent with 
non-ignorable attrition. Our method is based on the fact that the WESMLE described in 
Section 3.2 yields consistent inference as long as the weights are known. Although we 

can consistently estimate these weights by W = 1/(1 - P) (where P are the predicted 
attrition probabilities from the attrition models), these estimates are subject to substantial 
estimation error. Therefore WESMLE estimates using weights W will provide consistent 
parameter estimates, but the estimated standard errors of these estimates will be 
downward biased since they neglect the estimation errors in the weights. 

Table 5.1: Comparison of Panel and Refreshment Samples Mean Values 

Wave 3 Variable Panel Refreshment 
sample sample 

Income ~ $100,000 0.34 0.30 
Income< $40,000 0.04 0.07 
Income-refused/Don't Know 0.09 0.11 
Female 0.40 0.43 
Age between 35 and 45 0.39 0.40 
Has Graduate Degree 0.30 0.28 
Household owns home 0.86 0.85 
Distance 26.11 24.84 
Toll paid by someone else 0.04 0.06 
Used FasTrak last trip 0.40 0.40 
Used carpool last trip 0.17 0.16 
Sample Size 337 362 

(All variables are indicators except for distance.) 

Fully consistent inference can be achieved by multiply imputing the weights from the 
binomial logit attrition model and combining the estimates using Rubin's multiple 
imputation Methodology (see equations 6-9). The weights can be multiply imputed by 
drawing independently from the asymptotic joint normal distribution of the parameter 
estimates from the logit model and then using these draws to compute a new set of 
estimated attrition probabilities. 
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Table 5.2: Binomial Logit Attrition Model (positive favors attrition) 
Number of observations 792 

Pseudo R2 0.04 
Log likelihood -507.9 Mean Values 

Wave 2 Variable Coef. Std. Err. t-Stat. Attrite Panel 
Sample 

Income::: $80,000 0.115 0.216 0.53 0.44 0.46 
Income< $40,000 0.077 0.241 0.32 0.22 0.23 
Income-refused/Don't Know 0.664 0.274 2.42 0.17 0.10 
Age/10* -0.554 0.439 -1.26 4.30 4.41 
(Age/10) squared* 0.053 0.047 1.13 19.68 20.57 
Workers per vehicle 0.127 0.348 0.37 0.79 0.79 
Household owns home -0.272 0.221 -1.23 0.80 0.84 
Female -0.005 0.160 -0.03 0.44 0.43 
Vehicles per driver* 0.174 0.197 0.88 1.18 1.18 
Has Graduate Degree -0.027 0.173 -0.15 0.31 0.30 
Distance/IO* -0.607 0.239 -2.55 2.57 2.73 
(Distance/I 0) squared* 0.071 0.031 2.31 7.92 8.56 
Single worker household 0.385 0.286 1.35 0.35 0.31 
Two worker household 0.266 0.247 1.08 0.53 0.54 
Proportion ofFasTrak use* 0.460 0.229 2.01 0.33 0.26 
Proportion of Carpool use* -0.117 0.263 -0.45 0.13 0.15 
FasTrak panel -0.270 0.189 -1.43 0.31 0.33 
I-15 panel -0.063 0.194 -0.32 0.25 0.29 
Enters at Ted Williams Parkway 0.164 0.186 0.88 0.40 0.31 
Toll paid by someone else 0.365 0.340 1.07 0.07 0.05 
Works full or part time -0.002 0.374 -0.01 0.95 0.94 
Size of household;:: 4 0.386 0.229 1.68 0.16 0.11 
Changed location of work/school in past 6 mos. 0.323 0.253 1.28 0.12 0.09 
In current residence more than 6 mos. -0.551 0.341 -1.62 0.93 0.96 
Constant 1.772 1.129 1.57 
Proportion of Sample 0.39 0.61 
Predicted Attrition Probability* 0.43 0.37 
Standard Deviation of Predicted Attrition 0.12 0.10 
Probability* 

(All variables are md1cators except those marked with*.) 

If the attrition model is correctly specified, then the resulting multiple imputation parameter 

and covariance estimators, 0 and f , are consistent whether the attrition process is 

ignorable or not. The standard unweighted maximum likelihood estimators, 0 and Z: , 
which ignore the attrition weights, are efficient if both the sampling and attrition processes 
are ignorable, but inconsistent otherwise. Therefore the statistic: 

r = (e - e)' ( f- ~)-
1 (e- e), (12) 

is a valid Hausman (1978) test statistic for the null hypothesis that both the attrition 
processes is ignorable. Under the null hypothesis, Thas a chi-squared distribution with 
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degrees of freedom equal to the rank of ( f- I) . When applied to the choice models in 

Section 6, this Hausman test fails to reject the hypothesis of ignorable attrition for either the 
panel sample or the merged panel and refreshment sample. 

Relative to joint maximum likelihood estimation of the attrition and choice model, the 
methodology described above is inefficient. However, this methodology is much easier to 
calculate than joint maximum likelihood, which is frequently intractable in complex 
models. Simple Hausman (1978) tests can be applied to test for the non-ignorability of the 
attrition (or missing data) process. Since the WESMLE was originally designed to provide 
consistent estimates with choice ( or response )-based sampling designs, the methodology 
proposed here can be trivially modified to yield consistent estimates and forecasts for 
choice-based panels with non-ignorable attrition. The attrition weights for each mode need 
to be multiplied by a constant so average weight for each mode equals the choice-based 
weights given in Section 3 .2 

The tests for non-ignorable attrition described in this section depend critically on the model 
being estimated. In our application the attrition process is clearly non-ignorable, but the 
magnitude of the resulting bias is small relative to the error in our parameter estimates. 
Clearly this result can change if there is any change in model specification. 

6 Choice Model Results 
Sections 6.1 and 6.2 compare mode choice model estimates correcting for measurement 
error and choice-base sampling. We use a model derived from the specification in 
Kazimi et. al. (1999). The main difference in the specifications is that here we include a 
variable identifying sample respondents who do not pay their own tolls. Any teenager 
knows that if someone else is paying (typically the employer), then they will be less 
sensitive to the price. 

In addition to the parameter estimates, we also report value of time (VOT) estimates for 
the models in Sections 6.1 and 6.2. Since toll enters the sfecification both linearly and 
interacted with variability (the difference between the 901 percentile and the median of 
time saved by taking the HOT lane over the month), the VOT in dollars per hour saved is 
given by: 

( 60 X 0,imesavings) / 

1(0,01/ + 0,oll*Variability X Variability) . 
(13) 

Since VOT varies across respondents, we give the distribution across respondents 
weighted by the choice-base sampling weights to match the population of morning 
commuters. We also give this VOT evaluated at the weighted mean of Variability. This 
latter quantity is useful for comparison with other studies which typically do not report 
the variable in equation (13). 
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6.1 Loop Detector Time Savings 
The top portion of Table 6.1 gives parameter estimates for the mode choice model using 
loop detector time savings. Most of the parameters in the unweighted model are 
precisely estimated, although this is not surprising given the extensive specification 
search needed to find the model in Kazimi et. al. (1999). High-income, home-owning, 
middle-aged females with a graduate degree are the most likely group to pay for FasTrak. 
Large households with not enough cars per worker are most likely to carpool. Both 
carpoolers and FasTrak users have similar positive coefficients for time savings, but the 
reduction in Variability from HOT lane use is not significant. However, if Variability is 
removed from the model then the toll coefficient drops and becomes insignificant. 
Relative to solo driving, commute trip drivers are more likely to choose FasTrak and non­
commute trip drivers are more likely to carpool. 

The weighted estimates are computed using the WESMLE estimator described in Section 
3 .2. The parameter estimates are similar to the unweighted estimates except for the 
FasTrak constant. This is not surprising since the unweighted estimates for the mode­
choice constants are inconsistent. The standard errors for the weighted FasTrak choice 
parameters are almost three times larger than the unweighted estimates. This is due to the 
low weight given FasTrak users, and it shows that WESMLE estimates can be quite 
inefficient when the sample mode proportions are much different than the population 
proportions. Imben's (1992) efficient estimator should be more accurate in this setting. 

The bottom portion of Table 6.1 gives various estimates of the value of travel time 
reduction. The first block gives the weighted distribution of the value of time calculated 
in equation (13). Note that the distribution is skewed and there is substantial variance 
across the population. The median values are much higher than Calfee and Winston'2 
(1998) estimates, and they are on the high end of the estimates reviewed in Small (1992). 
These medians are similar to equation (13) evaluated at the weighted sample mean 
variability (labeled "VOT at Mean Variability" in Table 6.1 and 6.2). This is the number 
typically presented in studies where VOT varies according to observed variables. Since 
this is just a scalar, it is straightforward to estimate the standard error of this estimate 
( caused by parameter estimation error) using the delta method. Although this estimate is 
significantly different from zero, the standard error is large enough to include almost all 
previous estimates. Calfee and Winston do not report standard errors for their VOT 
estimate of $5.00, but the unweighted VOT estimates in Table 6.1 are more than two 
standard errors away from their point estimate. 

6.2 Predicted Floating Car Time Savings 
Table 6.2 gives the results of estimating the choice model using the predicted floating car 
data and multiple imputation algorithm described in Section 4.1. The coefficient 
estimates are roughly similar to those in Table 6.1, but the key coefficients of toll and 
time savings for commuters are reduced in magnitude and significance. Overall the 
standard errors are considerably larger than in Table 6.1. This is of course due to the 
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component of error caused by the error in the prediction model used to generate the 
predictions. 

Table 6.1: Mode Choice Model Using Loop Detector Data 

Unweighted Estimates Weighted Estimates 
Number of obs. = 699 Pseudo R2 = 0.21 Pseudo R2 = 0.53 

Log likelihood= -606.56 Log likelihood= -357.89 
FasTrak choice Coef. Std. Err. t-Stat. Coef. Std. Err. 
Constant -5.978 1.994 -3.00 -10.251 8.824 
Income :2:: $ lO0K + DK/REF 0.855 0.183 4.68 0.924 0.559 
Income < $40K -0.621 0.505 -1.23 -0.551 1.864 
Female 0.730 0.183 3.98 0.845 0.557 
Age between 35 & 45 0.423 0.179 2.36 0.428 0.540 
Has Graduate Degree 0.741 0.195 3.80 0.842 0.575 
Household owns home 0.754 0.293 2.57 0.747 1.002 
Distance 0.019 0.010 1.86 0.025 0.029 
Toll paid by someone else 1.747 0.454 3.85 2.013 0.885 
Toll -0.787 0.220 -3.58 -0.930 0.693 
Median total time savings for 0.182 0.047 3.87 0.177 0.115 
commuters 
Median total time savings for non- 0.417 0.216 1.93 0.532 0.866 
commuters 
Toll x Variability 0.135 0.035 3.83 0.158 0.094 
Commute trip 3.395 1.939 1.75 4.428 8.677 
Carpool Choice 
Constant -2.265 1.006 -2.25 -3.163 1.326 
Workers per vehicle 1.005 0.366 2.74 0.979 0.414 
Distance 0.102 0.056 1.82 0.105 0.076 
Distance squared -0.001 0.001 -1.27 -0.001 0.001 
Single worker household -0.973 0.350 -2.78 -0.914 0.435 
Two worker household -0.522 0.289 -1.81 -0.520 0.357 
Commute trip -1.762 0.414 -4.25 -1.655 0.449 
Median total time savings 0.144 0.045 3.19 0.134 0.055 
Carpool ramp bypass 0.556 0.278 2.00 0.733 0.353 
Variability of solo drive time 0.098 0.076 1.29 0.081 0.102 

Value of Time ($/hour) Percentile Largest Percentile Largest 
95% 105.60 693.26 83.19 430.56 
90% 73.63 58.86 
75% 35.27 Smallest 28.71 Smallest 
50% 23.37 -254.14 19.13 -239.55 
25% 16.55 13.59 
10% 14.43 11.86 
5% 14.08 11.58 

Mean Std. Dev. Mean Std. Dev. 
32.64 94.29 23.64 67.74 

VOT at Mean Variability 25.96 7.70 21.23 17.11 
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Table 6.2: Multiply Imputed Mode Choice Model Using 
Predicted Floating Car Data 

Unweighted Estimates Weighted Estimates 
Number of obs. = 699 Pseudo R2 = 0.20 Pseudo R2 = 0.53 

Log likelihood = -611.27 Log likelihood= -360.57 
FasTrak choice Coef. Std. Err. t-Stat. Coef. Std. Err. 
Constant -7.179 3.342 -2.15 -11.318 12.063 
Income ~ $ 100K + DK/REF 0.830 0.271 3.06 0.852 0.603 
Income < $40K -0.591 0.536 -1.10 -0.524 1.912 
Female 0.704 0.251 2.81 0.801 0.597 
Age between 35 & 45 0.445 0.210 2.12 0.532 0.562 
Has Graduate Degree 0.747 0.266 2.81 0.792 0.611 
Household owns home 0.812 0.355 2.29 0.884 1.049 
Distance 0.015 0.011 1.39 0.023 0.031 
Toll paid by someone else 1.816 0.633 2.87 2.112 1.045 
Toll -0.600 0.387 -1.55 -0.665 0.665 
Median total time savings for 0.074 0.037 2.04 0.089 0.084 
commuters 
Median total time savings for non- 0.297 0.200 1.49 0.371 0.712 
commuters 
Toll x Variability 0.090 0.053 1.69 0.102 0.077 
Commute trip 4.495 3.004 1.50 5.303 11.693 
Carpool Choice 
Constant -2.139 1.145 -1.87 -2.645 1.492 
Workers per vehicle 0.982 0.435 2.26 0.970 0.485 
Distance 0.099 0.060 1.64 0.083 0.078 
Distance squared -0.001 0.001 -1.23 -0.001 0.001 
Single worker household -1.005 0.426 -2.36 -1.003 0.506 
Two worker household -0.548 0.318 -1.72 -0.589 0.389 
Commute trip -1.747 0.588 -2.97 -1.655 0.616 
Median total time savings 0.056 0.033 1.71 0.067 0.041 
Carpool ramp bypass 0.634 0.315 2.01 0.820 0.406 
Variability of solo drive time 0.039 0.076 0.51 0.096 0.107 

Value of Time ($/hour) Percentile Largest Percentile Largest 
95% 108.70 333.36 95.37 141.16 
90% 72.12 65.04 
75% 31.30 Smallest 27.71 Smallest 
50% 18.71 -190.35 17.69 -547.43 
25% 10.30 9.14 
10% -20.72 -19.69 
5% -83.02 -123.92 

Mean Std. Dev. Mean Std. Dev. 
25.63 74.75 7.54 81.49 

VOT at Mean Variability 18.63 13.88 20.88 28.41 

t-Stat. 
-0.94 
1.42 

-0.27 
1.34 
0.95 
1.30 
0.84 
0.75 
2.02 

-1.00 
1.06 

0.52 

1.33 
0.45 

-1.77 
2.00 
1.07 

-0.73 
-1.98 
-1.52 
-2.69 
1.63 
2.02 
0.90 

Since the floating car time savings are generally larger than the corresponding loop 
detector measures, we would expect that the value oftime estimates would drop relative 
to Table 6.1. The bottom portion of Table 6.2 confirms this expectation and shows that 
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the VOT estimates have dropped $5 - $7 from those in Table 6.1. Note that this change is 
quite significant from a policy perspective, but the change is not statistically significant 
given the large standard errors of these measures. 

If the error in the prediction model is ignored and only one set of predictions is used, then 
the standard errors are downward biased by over 50 percent for this model. Even though 
the prediction model in Table 4.1 fits very well, the prediction error is still an important 
component of the total estimation error. 

7 Conclusion 
This paper reviews techniques for handling attrition, choice-based sampling, and 
measurement error in panel surveys. Although we concentrate on commuter surveys and 
value of time measurement, the techniques are general and can be applied in other 
settings. 

The analysis of panel attrition in Section 5 shows that although the attrition process is not 
ignorable, the resulting biases in the choice model estimates are negligible. This result 
depends critically on the particular choice model we used, and attrition might be 
important for a more accurate model. In any case, the 40 percent attrition rate in the San 
Diego panel will clearly reduce the sample size for dynamic analysis. The transportation 
research community needs to find cost-effective methods for reducing the attrition rate 
even if we are capable of effectively monitoring the attrition process. One possible 
approach is to give respondents small GPS receivers coupled with a logging device to 
more accurately record trip details without requiring lengthy recall diary questions. 

The WESMLE estimator is an easily applied estimator for non-ignorable samples. 
However the high standard errors reported in Sections 6.1 and 6.2 show WESMLE's 
inefficiency can be important in cases where the weights vary over a broad range. We 
will experiment with Imben's (1992) efficient estimator to see if this remedies the 
problem. For the conditional logit models used in this paper, choice-based sampling only 
biases the mode-specific constants. The unweighted estimates are therefore consistent for 
estimating value of travel time reduction (VOT), but they can not be used to predict 
market shares in response to a change in tolls ( or any other quantity that depends on the 
parameters of the mode-specific choice constants). 

Section 4 shows that measurement error in travel time is a serious problem for mode­
choice models. The relatively cheap measures, loop detectors and respondents' 
perceptions of time savings, are both badly biased. When we collect additional data on 
all respondents' perceptions, then we can add these perceptions to our imputation models. 
In any case the multiple imputations approach used here to integrate the measurement 
error and choice models is a good general tool for these sorts of problems. Ignoring the 
component of error in the choice model parameters caused by the prediction model leads 
to serious underestimates of the precision of the choice model parameters. 
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The substantive conclusions from the models in Section 6 are largely negative. We 
cannot estimate value of travel time reduction accurately enough to resolve current 
controversies. In particular, the confidence bands from our estimates cover all existing 
estimates even though the differences between these estimates are important for planning 
new transportation infrastructure investments. We are planning additional work 
combining perceived time savings, loop detector time savings, and floating car time 
savings using data from more recent waves of the I-15 panel. We are also asking stated 
preference questions to our sample (similar to those in Calfee and Winston, 1998) so that 
we can jointly model their responses to hypothetical and real HOT lanes. Hopefully 
these enhanced models will yield more accurate estimates. 
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