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Abstract

The history of Daylight Saving Time (DST) has béeng and controversial. Throughout its
implementation during World Wars | and I, the eihbargo of the 1970s, consistent practice
today, and recent extensions, the primary ratiofl®ST has always been to promote energy
conservation. Nevertheless, there is surprisingle levidence that DST actually saves energy.
This paper takes advantage of a natural experimetiite state of Indiana to provide the first
empirical estimates of DST effects on electricipnsumption in the United States since the
mid-1970s. Focusing on residential electricity dachave conduct the first-ever study that uses
micro-data on households to estimate an overall Bffct. The dataset consists of more than
7 million observations on monthly billing data fibre vast majority of households in southern
Indiana for three years. Our main finding is thatnitary to the policy’s intent—DST in-
creases residential electricity demand. Estimatethe overall increase are approximately 1
percent, but we find that the effect is not constaroughout the DST period. DST causes the
greatest increase in electricity consumption infdle when estimates range between 2 and 4
percent. These findings are consistent with simaratesults that point to a tradeoff between
reducing demand for lighting and increasing demfamcheating and cooling. We estimate a
cost of increased electricity bills to Indiana heluslds of $9 million per year. We also estimate
social costs of increased pollution emissions taage from $1.7 to $5.5 million per year. Fi-
nally, we argue that the effect is likely to be e&tronger in other regions of the United States.

" We are grateful to Dick Stevie and Monica RedmiBuke Energy for generously providing data andstssce
throughout. We also acknowledge financial suppaormnfthe University of California Energy Institute.

" Corresponding author: Kotchen is visiting the Department of EconomitStanford University and the UC En-
ergy Institute for the 2008-2009 academic yearagdeaddress correspondence to the University dfo@ah En-
ergy Institute, 2547 Channing Way, Berkeley, CA2&5180. Email: kotchen@bren.ucsb.edu. Phone: 805-4
6389. Fax: (510) 643-5180.



1. Introduction

Daylight Saving Time (DST) is currently practiced 76 countries and directly affects more
than 1.6 billion people worldwide. The well-knowmeamonic of “spring-forward, fall-back”
describes the annual ritual: turn clocks forware aour in the spring, and turn them back one
hour in the fall. Less well known is that DST ipalicy designed to conserve enefgBenja-
min Franklin (1784) is credited with the basic idster observing that people were sleeping
during sunlit hours in the early morning and bugnoandles for illumination in the evening. He
argued that if people adjusted their schedulestiee in the day during summer months, when
day length is longest, an immense sum of tallowwaa# could be saved by the “economy of
using sunshine rather than candles.” To encoutagde¢havior, Franklin satirically proposed
the firing of cannons to awaken people at dawn andx on window shutters that keep out
sunlight?

More than a century later, William Willet (1907)oposed the simple advancement of
clock time during summer months in order to avoldéhé Waste of Daylight.” But it was not
until World War | that the idea finally took holG&ermany was the first country to implement a
DST policy, with the aim of reducing demand forattieal lighting so that more coal could be
diverted to the war effort. Thirty-one other nagpincluding the United States, soon followed
with their own DST policies, but the practice wanerally repealed after the war ended. Dec-
ades later, and for the same reason, 52 countgeae anplemented various DST policies dur-
ing World War Il. In the United States, year-rouD8T was practiced for three years and then

repealed entirely.

1 A common misperception is that DST is an agricaltpolicy. Farmers have historically been onehsf most
organized groups against the practice of DST, eexjiires them to work in morning darkness for ainaehour in

order to coordinate with the timing of markets. eerau (2005) for a detailed discussion of DSdigyland con-
troversial history.

2 Interestingly, Franklin also recognized that hacalations of the economic savings during the semwere an
underestimate because of general equilibrium effdde wrote that “... | have calculated upon only b of

the year, and much may be saved in the other, ththegydays are shorter. Besides, the immense efogkx and
tallow left unconsumed during the summer, will pably make candles much cheaper for the ensuingewiand
continue them cheaper as long as the proposednafion shall be supported.”



The Uniform Time Act of 1966 was the first fedeEebT law in the United States that
was not part of a wartime initiative. The Act esistied that DST would begin on the last Sun-
day in April and end on the last Sunday in OctobEhen, the oil embargo of the early 1970s
prompted temporary changes to federal DST polidgerwthe Emergency Daylight Saving
Time Energy Conservation Act of 1973 imposed yeand DST for 15 months. A more en-
during change, again with the intent of energy eovetion, occurred in 1986, when the start
date was moved forward by three weeks. The DSThregn practice today includes a further
extension authorized within the Energy Policy AE2605. Having begun in 2007, DST now
starts three weeks earlier, on the second Sund®aich, and lasts one week longer, until the
first Sunday in November. Figure 1 shows the senasd sunset times, the time shifting of
DST, the 2007 extensions on both ends, and thdahath throughout the year (the middle
line) for a representative location in southernidnd.

Congressional debate about the most recent extetsiBDST focused on the potential
energy savings. It was forecasted that each additiday of DST would save the equivalent of
100,000 barrels of oil per day (Congressional R&@005a, 2005b). But the 2005 Energy Pol-
icy Act specifically requires that research be amtdd to estimate the actual effects on energy
demand, and Congress retains the right to repeatttensions if the conservation benefits are
not realized. Despite the conservation rationated8T’s current and historical practice, sur-
prisingly little research has been conducted temeine whether DST actually saves enérgy.
Even among the few studies that do exist, whichrevéew in the next section, the evidence is
inconclusive. Hence, the need to better understa@dST effect on energy consumption is
immediately policy relevant. What is more, with Vdwide energy demand expanding rapidly,

along with concerns about climate change, it isgasingly important to know whether DST,

% Individual states could opt for exemption, butyoArizona, Hawaii, Indiana, and a few U.S. teriiiésr have

done so in various ways over the years.

* Other effects of DST have been studied in moraidédthese include studies that investigate theat$fon safety
(e.g., Coate and Markowitz 2004; Sullivan and Fégan 2002; Coren 1996a, 1996b), health (e.g., iKaaten et

al 2007), economic coordination (Hamermesh et @&l620and stock market performance (Kamstra et 8020
2002; Pinegar 2002).



which is among the most uniformly applied policaasthe planet, has its intended effect of en-
ergy conservation.

In this paper, we investigate whether DST doesiah $ave energy, with a focus on resi-
dential electricity consumption. Our research desakes advantage of the unique history of
DST in the state of Indiana, combined with a datao$ monthly billing cycles for the majority
of households in the southern portion of the d@ate¢he years 2004 through 2006. While some
counties in Indiana have historically practiced D8iE majority have not. This changed with a
state law that required all counties to begin pcagy DST in 2006. The initial heterogeneity of
DST among Indiana counties and the policy chang206 provides a natural experiment—
with treatment and control sets of counties—to eimglly identify the relationship between
DST and residential electricity demand.

Our results provide the first empirical estimaté®8T effects on electricity demand in
the United States since the mid-1970s. The studyst the first ever to use residential micro-
data. A unique feature of the research designtaltiee natural experiment, is that we are able
to estimate, for the first time, an overall DSTeeff and different effects throughout the year
over the entire DST period, including the perioddransition. We also run an engineering
model that simulates the effect of DST on houseledttricity demand. These results are
comparable with our empirical estimates and higitlggasonal differences in the quantity and
timing of electricity demand for lighting, heatingnd cooling. A further contribution of the
paper is that we estimate changes in pollution €ons due to DST and quantify the associ-
ated social costs and/or benefits.

We find that the overall DST effect on electricttgnsumption runs counter to conven-
tional wisdom: DST results in a 1-percent ovenadirease in residential electricity demand, and
the effect is highly statistically significant. Véso find that the effect is not constant through-
out the DST period. In particular, DST causes tteaigst increase in consumption later in the
year, with October estimates ranging from an inegeaf 2 to nearly 4 percent. To help inter-

pret these results, we simulate the effect of D&Tah Indiana household with a U.S. Depart-



ment of Energy model for residential electricitymind (eQuest). Consistent with Benjamin
Franklin’s original conjecture, DST is found to sawn electricity used for illumination, but

there are increases in electricity used for headimg) cooling. Both the empirical and simula-
tion results suggest that the latter effect isdartpan the former. A final component of our
analysis is the calculation of costs associated W T. We find that the policy costs Indiana
households an average of $3.29 per year in inalealgetricity bills, which aggregates to ap-
proximately $9 million over the entire state. Weaatalculate the social costs in terms of in-
creased pollution emissions, and these estimatge faom $1.7 to $5.5 million per year.

The remainder of the paper proceeds as follows:nEx¢ section reviews existing evi-
dence on the effect of DST on electricity consuomtiSection 3 describes the research design
and data collection. Section 4 contains the enmgdianalysis. Section 5 provides a discussion
of the results with comparisons to engineering tnns and cost estimates. Section 6 con-

cludes with a brief summary and remarks about @reegalizability of our results.

2. Existing Evidence

The most widely cited study of the DST effect oecélicity demand is the U.S. Department of
Transportation (1975) report that was requiredigyEmergency Daylight Saving Time Energy
Conservation Act of 1973. The most compelling mdrthe study is its use of the ‘equivalent
day normalization technique,” which is essentiallgifference-in-differences approach. Using
hourly electricity load data from 22 different utés for a period of days before and after tran-
sitions in and out of DST, days are partitioned IDST-influenced periods (morning, evening)
and uninfluenced periods (midday, night). It isrttessumed that differences in the difference
between influenced and uninfluenced periods, bedackafter the transition are due to the DST
effect. The results indicate an average load réolucif approximately 1 percent during the
spring and fall transition periods, but a subsetg@saluation of the study, conducted by the
National Bureau of Standards (Filliben 1976), cadek that the energy savings are question-

able and statistically insignificant.



The California Energy Commission (CEC 2001) condslictsimulation-based study to
estimate the effects of DST on statewide elecyricdinsumption. A system of equations is es-
timated to explain hourly electricity demand asuaction of employment, weather, tempera-
ture, and sunlight. The Commission then simulakestiécity use under different DST regimes.
The results indicate that practicing winter DSTueeks consumption by 0.5 percent, and DST
as currently practiced leaves electricity consumptwirtually unchanged between May and
September, but may reduce consumption betweenabhd®.3 percent during April and Octo-
ber®> More recently, the CEC modeling approach is usedonsider the actual extensions to
DST that occurred in 2007 (CEC 2007). Based orsginag and fall extensions, the simulation
predicts a decrease in electricity consumption .66 (oercent, but the 95-percent confidence
interval includes zero and ranges from a decreb&@ercent to an increase of 1.1 percent.

The U.S. Department of Energy (DOE 2006) also cotsla study to estimate the po-
tential energy saving impacts of the 2007 DST esiters. Using hourly electricity data imme-
diately before and after the DST transitions in£0e study estimates DST effects and ex-
trapolates them into the extension periods to ptednat might happen beginning in 2007. The
results of most relevance here are the actual Cif&€Ette. The main findings of the study in-
clude the following: a decrease in electricity dechaf 0.4 percent at the points of transition,
but the estimate is very imprecise; morning incesas demand that are more than offset by
evening decreases; southern regions of the Unit@é<Sexperience lower energy savings; and
energy savings are slightly greater during thengptiansition compared to the fall transitfon.

Kellogg and Wolff (in press) take advantage of agnexperiment that occurred in
Australia with the extension of DST in conjunctiatith the Sidney Olympic Games in 2000.

Using a comparison of electricity load data fronotdifferent states, where only one experi-

® The Indiana Fiscal Policy Institute (2001) attesnyut replicate the CEC approach and estimate ttenpal ef-

fects of DST in Indiana; however, the results aseaonclusive. While the statistical models areorggd as very
preliminary and appear to have never been complébedresults indicate that DST in Indiana coulthesi in-

crease or decrease electricity consumption.

® Currently underway, but not yet released, is tfiicial U.S. DOE report to Congress required by freergy
Policy Act of 2005. The report will use 2007 dateestimate the actual, rather than potential, gnsagings due
to extended DST.



enced the extension of DST, they find that DSTaases demand for electricity in the morning
and decreases demand in the evening. While in s@ases the net effect is an increase in de-
mand, the combined results are not statisticaffgidint from zero. Kellogg and Wolff also ap-
ply the CEC simulation technique to determine waeth reasonably predicts what actually
occurred with the Australian DST extension. Thendfthat the simulation fails to predict the
morning increase in consumption and overestimée®vening decrease. Their study provides
the first empirical results that question wheth&TDpolicies actually produce the intended ef-
fect of reducing electricity demand.

Using an engineering simulation model, Rock (198ip finds evidence that DST
might increase, rather than decrease, electriciisemption. He calibrates a model of energy
consumption for a typical residence using utiliécaords and chosen parameters for construc-
tion type, residential appliances, heating andingatystems, lighting requirements, and num-
ber of occupants. In order to account for diffeena weather and geographic location, the
model simulates DST scenarios for 224 differenatimns within the United Sates. The results
indicate that DST, as it is currently practiced;reases electricity consumption by 0.244 per-
cent when averaged over the different locationsuRe for alternative scenarios indicate that
extending DST year-round would save an average 287/0percent, but the overall effect of
year-round DST compared to no DST would leave eyt consumption virtually unchanged.

A similar methodology is employed in two recentds&s that take place in Japan,
where DST is continually debated but not curreptigcticed. Fongt al. (2007) use a simula-
tion model to investigate the effects of DST ondwhold lighting, and they find a reduction in
electricity consumption that differs by regibiShimodaet al. (2007) conduct a similar exer-
cise, with the added consideration of DST’s effectresidential cooling. When considering
both effects, they find that implementing DST résuh a 0.13-percent increase in residential

electricity consumption. The underlying mechanigmthe result is that residential cooling is

" Aries and Newsham (2008) review other studies, ymanwhich are technical reports not published &ep
reviewed journals, that focus on lighting energg usthe United States and other countries. They fio clear
DST effect other than some evidence for a redudti@vening peak demand for electricity.



greater in the evening than in the morning, andementing DST aligns an additional hour of
higher outdoor air temperature and solar radiatwith the primary cooling times of the eve-
ning.

This review of existing studies suggests that thidesce to date is inconclusive about
the effect of DST on electricity consumption. Nafehe empirical studies finds an overall ef-
fect that is statistically different from zero, ati® simulation-based studies find mixed results.
Hence, given the widespread practice of DST, itsseovation rationale, and the recent changes
to policy, there is a clear need for further reskeahat informs the question of whether DST

actually saves energy.

3. Research Design and Data Collection
Our study takes advantage of the unique histoST in the state of Indiana. The practice of
DST has been the subject of long-standing contsyvier the state, due in large part to the im-
portance of agriculture in Indiana, and the stat®ation split between the Eastern and Central
Time Zones. For more than 30 years prior to 2006 résultant policy has been three different
time scenarios within the state: 77 counties ortdfasStandard Time (EST) that did not prac-
tice DST; 10 counties clustered in the north- amakis-western corners of the state on Central
Standard Time (CST) that did practice DST; and énties in the south-eastern portion of the
state on EST that did practice D&The different time scenarios changed in 2006 wihen
entire state began practicing DST as required layvathat passed the state legislature in 2005.
Also beginning in 2006, a handful of counties shad from EST to CST.

Let us now be more precise about time and timinthensouthern portion of Indiana,
where our study takes place. The shaded countiEégure 2 are those included in the study. It
is useful to partition the counties into four sets,shown in the figure. The SE and SW counties

experienced no change; they practiced DST pri@0@6 and have remained on EST and CST,

8 These differences in the practice of DST were iptesbecause of a 1972 amendment to the UniformeTAwt
of 1966 (15 U.S.C. 260-67). The amendment wasextiesponse to Indiana’s ongoing time regime delzatd it
permitted states with multiple time zones to alexemptions from the practice of DST.



respectively. The NE counties began practicing B@The first time in 2006, but remained on
EST. The NW counties also began practicing DSTiHerfirst time in 2006, but changed time
zones from EST to CST simultaneously at the spniagsition into DST. In effect, the NW
counties did not advance clocks one hour in A@D& but did turn them back one hour at the
end of October 2008.

The pattern of time and timing in southern Indian@ates a natural experiment to iden-
tify the effect of DST on residential electricitgmhand. The empirical strategy relies on having
monthly billing data for households located witkine different sets of counties before and after
the policy change in 2006. Considering only the D&fiods of each year, we can partition
electricity demand into pre-2006 and 2006 peridasong the different counties, we thus have
treatment and control groups when moving from te®ote to after period. The NE counties
serve as a treatment group because they begamcprgddST for the first time in 2006. The
other sets of counties serve as a control groupusectheir clock time never changed during
the DST period of the year, before and after thicpahange?® The key identification as-
sumption is that, after controlling for changebservables, such as weather and the practice
of DST, changes from year to year in electricitynded would otherwise be the same for the
treatment and control groups of counties. With #ssumption, identification of the DST effect
comes from a difference-in-differences estimatevbeh the two groups, before and after the
policy change.

Table 1 shows selected variables from the 2000 Oehisus for the different sets of
counties and in total. The majority of people limghe eastern counties. The northern counties

have a larger fraction of the population classifeedrural and farm, although the overall pro-

® Specific counties included in the study are tHang: (NE) Bartholomew, Brown, Crawford, Decatiirank-
lin, Jackson, Jefferson, Jennings, Lawrence, Mgn@yange, Scott, Ripley, Washington; (SE) Clarkabern,
Flyod, Harrison; (SW) Gibson, Posey, Warrick; (NDAviess, Knox, Martin, Pike. Counties in southardidna
not included in the study because data were ndtaéna from Duke Energy are the following: (SE) @hBwit-
zerland; (SW) Spencer, Vanderburgh; (NW) DuboisrPe

19 Recall that clock time did not change for all ctiemiin the control group, but for different reasofihe policy
had no effect on the SE and SW counties, but ctook did not change for the NW counties becausefithe
practice of DST and the switch in time zones oamisimultaneously.



portion of people living on farms is small. All fogets of counties are similar with respect to
median age and average household size. Electrtashe®re common in the eastern counties,
and income is higher in the southern counties, w/l@erage commute times are also some-
what higher.

We obtained data on residential electricity constimnpfrom Duke Energy, which pro-
vides electrical service in southern Indiana torttagority of households in the counties shown
in Figure 2'* The dataset consists of monthly billing informatfor all households serviced by
Duke Energy in the study area from January 200dutiit December 2006. All households in
the service area faced the same standard resideatBa and there were no rate changes be-
tween 2004 and 2006.

Several variables are important for our analysig Meter position is a unique number
for each electricity meter. We refer to these paset asresidences, and for each one, we have
data for itszip code andcounty. For each monthly observation at each resideneealso have
codes that identify which ones belong to the stan@nt. This enables us to account for the fact
that people move and to identify the observatidra belong to the same tenant within each
residencé? Each observation includesage amount, which is electricity consumption in kilo-
watt-hours (kWh), andiumber of days, which is the number of calendar days over whiah t
usage amount accumulated. With these two variablesare able to calculatverage daily
consumption (ADC). Finally, each monthly observation includesransaction date, which is
the date that the usage amount was recorded it company’s centralized billing system.

The actual read-date of each meter occurs roughdgye80 days and is determined ac-
cording to assigned billing cycles. Residencesgroeiped into billing cycles and assigned a
cohort number for one of 21 monthly read-dates, (ite weekdays of a given month). Meters

are read for billing cycle 1 on the first weekddyeach month, billing cycle 2 on the second

1 Cinergy formerly provided electrical service irutitern Indiana but was acquired by Duke Energy0id52 Al-
ternative electrical service providers are the gt@eowned utility Vectren and rural electric memgbgp coopera-
tives.

12 The data does not permit us to follow tenants fmma residence to another, but this is not a liioitafor our
analysis.



weekday, and so forth throughout the month. Tlaggred system allows the utility company
to collect billing information and provide 12 bilis customers on an annual basis. In a separate
file, we obtained data on the assigr@ling cycle for each meter position. We then merged
these datasets so that each monthly observatiassisciated with its assigneead-date, ac-
cording to Duke Energy’s billing-cycle schedule.

We also collected and merged data on weather. @atverage daily temperature were
obtained from the National Climatic Data CerlteWe collected these data for every day in
2004 through 2006 from 60 different weather staiam southern Indiana and neighboring
Kentucky. For each day and all 60 weather statiasgscalculated heating and cooling degree
days, as these provide standard metrics for exptpiand forecasting electricity demand. The
reference point for calculating degree days isfE&irenheit (F). When average daily tempera-
ture falls below 65° F, the difference is the numibkeheating degrees in a day. When average
daily temperature exceeds 65° F, the differendbasnumber of cooling degrees in a day. We
then matched each residence to a climate statiog its zip code and a nearest-neighbor GIS
approach; and for each observation, we collectedettact days corresponding to the dates of
the billing cycle. Heating degrees in each day veairemed over the days in the billing cycle to
yield the heating degree days variable for eachthpmbservation. A parallel procedure was
used to create the cooling degree days variablethéfe used the number of days for each ob-
servation to calculate variables fawerage heating degree days (AHDD) andaverage cooling
degree days (ACDD). This approach gives nearly residence-dpegieather data for each bill-
ing cycle.

The original dataset included 7,949,207 observati@29,818 residences, and 413,802
tenants; however, several steps were taken, inuttatisn with technical staff at Duke Energy,
to clean and prepare the data. In order to focuthemmost regular bills, we first dropped all

observations that had a number of days less thaan@Sgreater than 35 (1.52 percent of the

13 These data are available online at www.ncdc.noa#og/ncdc.html.
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data)'* We also dropped all of the observations for whtuh transaction date did not closely
align with the scheduled billing cycle. The vastjonigy of transaction dates fall within O to 3
days after the scheduled read-date, as meter seyghécally enter data into the system on the
following workday. Those with transaction datesttiwvare more than one day earlier than the
scheduled read date or more than 5 days later desmmed irregular and dropped (an additional
5.20 percent of the data). Finally, we consideresbular and dropped all observations that had
less than 1 kWh for average daily consumption @aiteonal 1.76 percent of the data). The
final dataset includes 7,267,392 observations,888residences, and 384,083 tenants.

Table 2 reports descriptive statistics disaggrebatt® the different sets of counties and
combined. Reflecting the relative populations, itiggority of data come from the NE counties,
followed by those in the SE, with fewer in the vegstcounties. Average daily consumption—
between 35 and 36 kWh/day—is very similar amongetlt of counties. As expected, average
cooling degree days is higher in the south counubde average heating degree days is higher
in the north counties.

Figure 3 illustrates average daily consumption @nedweather variables graphically for
each month in the dataset. We show the naturadfiddC separately for the control and treat-
ment sets of counties, along with AHDD and ACDDeThst thing to note, which is to be ex-
pected, is the close correspondence between ADChenaveather variables. Electricity de-
mand is greater in months with high AHDD and ACDAIso worth noting are the differences
between the treatment and control groups. Inspedafothe trends for ADC reveals that the
control group tends to have greater electricity dednduring the DST periods, while the treat-
ment group tends to have greater electricity dendnthg the non-DST periods. It appears
that differences in AHDD and ACDD influence thisttean, as the control group tends to be

hotter during the DST periods, and the treatmeotigtends to be colder during the non-DST

1 The cutoff at 15 days is standard in econometradyais of residential electricity demand (e.g.jsR@and White
2003), and Duke Energy considers bills with moentB5 days irregular.

11



periods. These patterns underscore the importaheeoounting for weather when trying to

explain variation in electricity demand.

4. Empirical Analysis
Indiana’s 2006 change to DST policy provides a ratexperiment for identifying the effect of
DST on residential electricity demand. As mentiopeeviously, the approach is based on a
comparison between the treatment and control grofigsunties. Referring back to in Figure
1, recall that the NE counties began practicing D&The first time in 2006. The other sets of
counties either practiced DST for all the yearsf€@@ough 2006, or had no change in clock
time during the DST period in 2006 due to the dffsg effect of changing time zones. Our
identification strategy thus comes from a differemt-differences (DD) comparison between
the two groups, before and after the DST policyngee®

We begin with a simple comparison of means for agerdaily consumption. First con-
sider only the monthly electricity bills with stadand end-dates entirely within the DST period
of each year. The first two columns of Table 3 repoADC for both the treatment and control
groups, before and after the policy change. We edport the before-after difference and the
DD between groups. These comparisons indicate elegtricity demand increased for both
groups, but demand increased 1.9 percent moreeitrélatment group. While this result sug-
gests that DST may increase electricity demandsithple comparison of means does not pro-
vide a formal test, nor does it control for othariables that may be changing differentially
over time between groups, namely weather.

As a point of comparison, we conduct the same plaeeusing electricity bills with

start- and end-dates entirely outside the DST peobeach year. This calculation can be

!5 An alternative identification strategy is to compahe DST and non-DST periods with a DD approacthée
years prior to the policy change. This strategiesebn the assumption that different sets of cegntiould have
the same differences in consumption at differane$ of the year, if not for the differential praetiof DST. We
find this assumption less plausible because ofptitential confounders of differences in the disttibn of air
conditioning and/or electric heat. Although notagpd in the paper, we estimate models using higcach and
find results with magnitudes nearly twice as laagethose presented here. The following estimatesidiihere-
fore be considered conservative.

12



thought of as a quasi-counterfactual because iges an estimate of how the two groups dif-
fer in their differences to 2006 during the non-Di&riod of the year, when there was no pol-
icy change’® We again find that electricity demand increaseadbimth groups, but in this case,
demand increased 0.91 percent less in the treatgneap. The fact that this result, when there
was no policy change, has a lower magnitude anapipesite sign provides further evidence
that DST may increase electricity demand.

To more rigorously investigate the DST effect osidential electricity demand, we es-
timate standard DD, treatment-effects models. Wee @gain begin using only electricity bills
that fall entirely within the DST period of eachay&’ Our regression models have the follow-

ing general specification:
(l) INADC;; = dYear2006; x NE; + f(ACDDit, AHDD;;, NEi)+ O+ Vi + gt ,

where subscripts denote tenant$(ear2006; is a dummy variable for whether the observation
occurs during 2006NE; is a dummy variable for whether the residencenishe NE set of
counties ¢ is a time-specific intercept; is a tenant-specific intercept, andis the error term.
Equation (1) does not specify a particular funaidiorm for the weather variables because we
try several different specifications, some of whatlow the effect of weather to differ between
the treatment and control groups. The estimai® of of primary interest, as it captures the av-
erage DD in electricity demand for 2006 betweenttbatment and control groups. Again, the
key identification assumption here is that, aftenteolling for differences in weather and time-
invariant unobserved heterogeneity among tenal@strieity demand would have followed the

same trend in the treatment and control groupsfdsdhe effect of the change in DST.

16 For this calculation, we exclude electricity billsthe NW counties during November and Decembe2Qf6,
when and where there is the confounding effecttadha-zone change.

' To be even more specific, for these DST and nofi-B®dels, we drop the monthly electricity bills tistrad-
dle the date of transition in or out of DST; howe\tater in this section we use these dropped @hsiens to es-
timate the DST effect at the spring and fall trioss.
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All standard errors are clustered at the billingleywithin each county in order to make
statistical inference robust to potential seriad apatial correlation. The importance of consid-
ering serial correlation in DD estimation is wetidwn (see Bertrand et al 2004), and clustering
at this level accounts for potential serial cotielaof household electricity demand. Clustering
at the billing-cycle also has the advantage of anting for potential serial correlation due to
the timing of meter reads earlier or later in thenth, which is not captured with month-year
dummies used to control for the time trend in dpEadion (1). The relatively broad level of
clustering should also ally concerns about potéspatial correlation. Within counties, billing
cycles are closely aligned with neighborhoods bgeatlhey are designed as meter-reading
walking routes. The clustering thus account fortigb&orrelation that may arise because of
neighborhood characteristics, such as the denkhpusing, type and date of construction, and
possibly socio-economic characteristics.

Table 4 reports the fixed-effects estimates of agugl). We include four specifica-
tions that account for weather in different wayseVvariables ACDD and AHDD enter linearly
in models (a) and (b). The only difference is tmatdel (b) includes interactions with the treat-
ment group so that weather is allowed to affecttatdty demand differently in the treatment
and control groups. The models in columns (c) a)aife more flexible, with dummy variables
for ACDD and AHDD binned at each integer. This ud#s 18 dummies for ACDD and 16
dummies for AHDD. In parallel, the only differensemodel (d) is that each weather dummy
variable is also interacted with the treatment grouallow differences in the effect of weather
between groups. The estimate dffor all four models is positive, highly statistlty signifi-
cant, and of similar magnitude. The estimatestfativeen 0.008 and 0.0103. The interpretation
is that DST causes an increase in electricity dehthat ranges from 0.8 to 1.03 percent over
the entire DST period.

Table 5 reports the fixed-effects estimates forghasi-counterfactual experiment. Us-
ing only data for the non-DST period of each year,estimate a slightly modified version of

equation (1). To take advantage of all the data,imetude an additional dummy variable,
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NWchg2006, to account for the time-zone change that occuimettie NW counties at end of
2006. Another difference is that models (c) andd@hot include dummy variables for ACDD,
as there are exceedingly few cooling degree daysdiana during the non-DST period of the
year. These models do, however, include 32 dummgias for AHDD, which are also inter-
acted with the treatment group in model (d). Alireates of the quasi-counterfactual DST ef-
fect are negative and have relatively small magieisy ranging from 0.3 percent to 0.6 percent.
While three of the four estimates are not sta@diffadistinguishable from zero, despite having
close to 2.4 million observations, the coefficiantmodel (c) is marginally, statistically signifi-
cant. Generally, we interpret these results in ettppf our key identification assumption that
the trend in electricity demand is similar betwéles treatment and control groups of counties,
other than for the change in DST policy and diffises due to weather.

We now disaggregate our estimate of the overall BBdct into monthly estimates in
order to investigate whether the effect of DSTeatdfthroughout the year. In particular, we es-
timate equation (1) separately for each month efytar based on the meter-read date. Follow-
ing the same practice, we estimate equations fur the DST and non-DST periods, and we
continue to exclude observations that straddldotBé& transitions, meaning that we do not have
monthly models for April or November. For simpligitwve report disaggregated estimates con-
sistent with inclusion of the weather variablec@tumn (a) in Tables 4 and'%. Rather than
report each of the 10 equations, we focus on estsnafo, that is, the DST and quasi-
counterfactual effects. We illustrate these resgitgphically in Figure 4, along with the 95-
percent confidence intervals (standard errors gegnaclustered at the county x billing-cycle
level). We find that the effect of DST is not sséitally different from zero in May and June. It
is, however, positive and statistically significdot the months July through October, with
magnitudes ranging from 1 to 2 percent. As expeatadng the non-DST months, we find no

statistically significant differences between treatment and control groups.

18 Alternative specifications of the weather variaitave little affect on the estimate interest.
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The fact that monthly billing data is structuredund billing cycles—with consistent
read-dates within each month—allows us to decomffesestimates even further. We separate
the observations into billing cohorts where the thaa divided into three segments: those with
read-dates in the first third of the month, theosekcthird of the month, and the last third of the
month!® We then estimate parallel models for each colmeaich month. In effect, this disag-
gregates the monthly estimates into third-of-magtimates. These results are shown in Figure
5. We again do not find consistent evidence for @E&cts in May and June, yet through the
DST period, there is a clear upward trend. In #terlhalf of the DST period, nearly every es-
timate indicates that DST causes an increase atrigiéy consumption, with the effect appear-
ing to be strongest during the October read-datben estimates range between 2 and 4 per-
cent. In the non-DST periods, all coefficients gtoene are not statically different from zero,
as one would expect if the DST periods are ideimigfyhe effect of changing the clock.

The final set of models that we estimate take athge of the monthly observations that
straddle the transition dates in and out of the P8iiod. We have thus far dropped these ob-
servations from the analysis, but we now use therfio¢us on estimates of the DST effect at
the time of transition. In parallel with equatial),(we estimate models for the spring and fall

transitions that have the following form:

(2) INADC;i; = dDSTfrac x Year2006; x NE; + S/ACDD;; + £,AHDD;; + )4 Year2005;

+ ppYear2006; + U + it ,

where the main difference is the interactionD8Tfrac with the treatment-effect variatd®.

This new term is the fraction of the number of deythe billing cycle that are in the DST pe-

19 Because there are 21 billing cycles in each mahib,procedure means that there are 7 billingesyah each
cohort. In principle, we could estimate the DSTeefffor each billing cycle separately, rather tltambining
them into cohorts. But there is a tradeoff betwleaving more precisely timed estimates and havisg diata upon
which to estimate the effect. We thus follow thgraentation in Reiss and White (2003), whereby [ingilcycles
are combined into one cohort.

20 We again report only specifications in which theather variables enter linearly and without intéoaxs with
the treatment group.
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riod. Once again, the coefficiewdt is of primary interest, and its interpretatiomeens the
same: the percentage change in average daily cqisumaue to the practice of DST. But here
the effect is identified off of marginal changeshe number of days in DST.

Table 6 reports the fixed-effects estimates of 8qng2) for both the spring and fall
models. For the spring transition, we find a pesitand statistically significant effect, with a
magnitude of approximately 1.2 percent. The coffitestimate for the fall transition model is
also positive, but has a very small magnitude anubt statistically different from zero. While
both of these transition results are of interdstytshould be interpreted with caution because
they are based on an attempt to extract a daigcetiut of inherently monthly data. This, of
course, makes it difficult to precisely estimate #ffect. The same caution does not apply,
however, to the estimates reported previously, eliee models are based on data for which all

days in the monthly billing cycle are subject te #ame treatment effect.

5. Discussion

In this section we consider two questions. Firdtaivare the underlying mechanisms that give
rise to the estimates of the DST effect on resideptectricity consumption? To answer this
guestion we provide evidence from an engineeringukition model. Second, given that DST
causes an overall increase in residential elegtramnsumption, what are the costs? We answer
this question in terms of increased residentiattal@ty costs and the social costs of increased

pollution emissions.

A. Engineering Smulations
We ran simulations on eQuest, an interface progrased on a versatile U.S. Department of
Energy simulation model of a building’s energy demhaincluding electricity* The program

has standardized design parameters for varioudibgitypes, but all parameters can be altered

2 The program description and download can be fatngww.doe2.com. eQuest has the complete DOE-2 (ver
sion 2.2) building energy use simulation progranbedded. Rock (1997) uses an older version of DOE-2
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by the user. We ran many simulations with differeetls of parameters based on advice we re-
ceived from program experts. While the numericgtineates differ among simulations, the
general pattern of results remains the same. Hereeport the results for a single family resi-
dence in southern Indiana with parameter settihgaght to be most representatféeEmbed-
ded in the software is hourly weather data averdgead 1961 through 1990. Using 2006 as the
calendar year, we ran simulations for the DST mriof the year, with and without the option
to implement DST.

The first column of Table 7 reports the simulatedcentage change in electricity con-
sumption by month. Electricity consumption increage 6 out of the 7 months. The only
month associated with a savings is July, and thgnmade is less than half of a percent. The
increased consumption that occurs in the springthsoof April and May, at approximately 0.7
and 1.7 percent, respectively, tapers off in miouser. By September and October the simu-
lated increase in consumption is well over 2 percBote that the pattern of these results is
similar in many respects to our estimates in thevipus section. We found some evidence,
based on the model presented in Table 6, of aeaserin electricity consumption at the time
of transition in April. Referring back to Figure &e also found that the largest increases in
consumption occur in late summer and early fallpdmticular, the October read-dates, which
reflect half of September’s consumption becauseetigenearly a 30-day lag on average, have
magnitudes of increased electricity consumption #na very similar to the predictions of the

simulation model.

22 Details about the program settings for the resafesented here are the following: We use the rfasttiily,
low-rise schematic to model a single-family dwadlim Evansville, IN. The dwelling is a single-stpmyood-
frame construction, front and rear entry pointshvappropriate square footage for a family of fout&00 sq ft).
The rectangular footprint (35’ x 51°) is orientedNin the lengthwise direction, with doors on bbtland S sides.
We modify the roof to ‘pitched’ with recommendedaldt settings. Day lighting controls are set ad p@rcent to
simulate electricity-use change due to daylighatreé to clock-time. Occupancy schedules are defaaked on
daytime work and leisure outside of the home. Hhegiih the residence is forced-air resistance etecnd cool-
ing is typical Freon-coil air conditioning. Seasbtiermostat set points to initiate the HVAC systiemoccupied
are 76F for cooling and 68F for heating, for unged 80F and 65F, respectively. Fans are cycledtrimittently
at night, except are shut off from midnight to 4drarther details about the simulations and resrksavailable
upon request.
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Beyond corroboration of our findings, the valuetloé simulation exercise is that we
can decompose electricity consumption into its congmt parts. The last three columns in Ta-
ble 7 report the simulated change in average d@aihsumption by month for lighting, cooling,
and heating separately. In all months, other thatoli®r, DST saves on electricity used for
lighting; therefore, it appears that the “Benjanfiranklin effect” is occurring. But when it
comes to cooling and heating, the clear patterthas DST causes an increase in electricity
consumption. The changes in average daily consomptie far greater for cooling, which fol-
lows because air-conditioning tends to draw moeetatity and DST occurs during the hotter
months of the year.

These results indicate that the findings of Shimgdd. (2007) for Japan apply to Indi-
ana as well. Moving an hour of sunlight from thelyanorning to the evening (relative to
clock time) increases electricity consumption fooling becausei)l demand for cooling is
greater in the evening anidl)(the build-up of solar radiation throughout the daeans that the
evening is hotter. Though not shown here, thigégipely the pattern that we find in the simu-
lated daily electricity profiles for each month. dome months, as can be seen in Table 7, the
cooling effect out weights the Benjamin Franklifeef.

There is also evidence for a heating effect thatlsea an increase in electricity con-
sumption. When temperatures are such that heaingaessary, having an additional hour of
darkness in the morning, which is the coldest tohelay, increases electricity consumption.
Kellogg and Wolff (2006) find evidence for the hegteffect in their study of DST extensions
in Australia. While the magnitude of the heatinfeef does not appear to be as large in our
Indiana simulation results, it is likely to be maebstantial when considering extensions to

DST, which push further into the colder and shaodeys of the year.

B. Costs of DST in Indiana
To begin calculating the costs of DST in Indian& meed to establish the baseline of what

electricity consumption would be without the praetiof DST. We take advantage of all the
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data during the DST period to establish the basekor all observations that were subject to
DST, we subtract the estimate of 0.96 percentdbates from model (a) in Table 4. Average
daily consumption is then calculated from theseistéjd observations and all others that were
not subject to DST, yielding an overall estimate80f12 kWh/day. It follows that the effect of
DST—under the pre-2007 dates of practice—is aneas® in consumption for the average
residence of 61.01 kWh/year (i.e., 0.00980.12 kWh/dayx 211 days/year). Extrapolating
this estimate to all 2,724,429 households in tlagesof Indiana implies that DST increases
statewide residential electricity consumption b¥,Pd47 megawatt hours per year (MWh/year).

With this estimate, it is straightforward to deritlee increased residential electricity
costs per year. The average price paid for resaleziectricity service from Duke Energy in
southern Indiana is $0.054/kWh. Multiplying thisger by the change in a household’s con-
sumption implies a residential cost of $3.29 peary&xtrapolating once again to the entire
state yields a cost of $8,963,371 per year in esdidl electricity bills due to the practice of
DST?

The statewide increase in electricity consumptbri66,217 MWh/year also provides
the basis for calculating the social costs of pimhi emission$* We follow the general ap-
proach used in Kotchest al. (2006). The first step is to determine the fuét for electricity
generation. According to the Energy Information Adistration (EIA 2006), the fuel mix for
generation in Indiana is 94.8 percent coal, 2 pgroatural gas, 0.1 percent petroleum, and 4.9
percent from other sources (gases, hydroelectit,other renewables). We assume the change
in generation due to DST comes entirely from caaljt accounts for such a vast majority of
the state’s electricity generation. Emission ratestens of emissions per MWh of electricity

generation from coal—are taken from Ecobilan’s Tfwol Environmental Analysis and Man-

% A more precise estimate would account for prideedinces in different areas of the state. Butetsigmate pre-
sented here should be treated as an underestitiederding to the Energy Information AdministratigBlA
2006) the average retail price of electricity ttgbaut Indiana in 2006 was $0.0646/kWh. At this @rithe in-
creased cost to residential electricity bills i9FB7,645 per year.

4 The focus on changes in consumption rather thaergéion means that we do not take account of rmesson
and distribution loses, which can be substantihls Ts one respect in which the social costs ofutioh emissions
reported here should be treated as conservative.
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agement (TEAM) model, which is a life-cycle assemstrengineering model (Ecobilan 1996).
The first column in Table 8 reports the marginalissons for carbon dioxide, lead, mercury,
methane, nitrogen oxides, nitrous oxide, parti@datnd sulfur dioxide. The second column
reports the change in emissions for each pollutahtch is simply the product of marginal

emissions and the change in overall electricityegation.

The next step is to quantify the marginal damadesaoh pollutant. For this we use a
benefits transfer methodology and report low- aigghimarginal damage scenarios where pos-
sible. The two exceptions are mercury and sulfoxide. We have only one estimate for mer-
cury, and the values for sulfur dioxide are thelatde permit price in 2007, rather than the
marginal damages. The reason for using the suldumip price is that total emissions are
capped, so the marginal costs are reflected ipénenit price, as the increase in emissions due
to DST must be abated somewhere because of thenpicdp. Table 8 reports the range of
values in 2007 dollars for all pollutants, and eéer readers to Kotcheat al. (2006) for de-
tails on the specific references for each estimate.

The final step is to simply multiply the marginadrdages by the change in emissions
for each pollutant. The last two columns of Tableeport these total damage costs for each
pollutant, for the low and high scenarios. Aftensuing the results across all pollutants, the
low and high estimates for the social costs of simis are approximately $1.7 million and
$5.5 million per year. In the low scenario, inces@ carbon dioxide, particulates, and sulfur
dioxide account for the vast majority of the coststhe high scenario, increases in carbon di-
oxide account for a much greater share of the costs the difference reflecting uncertainty
about the economic impacts of climate change. th Boenarios the costs of increases in lead,

mercury, and methane are negligible.

6. Conclusion
The history of DST has been long and controverdialoughout its implementation during

World Wars | and I, the oil embargo of the 197@mre consistent practice today, and recent

21



extensions, the primary rationale for DST has abMagen the promotion of energy conserva-
tion. Nevertheless, there is surprisingly littled®nce that DST actually saves energy. This pa-
per takes advantage of a unique natural experimetite state of Indiana to provide the first
empirical estimates of DST effects on electricipnsumption in the United States since the
mid-1970s. The results are also the first-ever eéngliestimates of DST’s overall effect.

Our main finding is that—contrary to the policyigent—DST results is an overall in-
crease in residential electricity demand. Estimatiethe overall increase in consumption are
approximately 1 percent and highly statisticallgrsiicant. We also find that the effect is not
constant throughout the DST period: there is somi@eace for an increase in electricity de-
mand at the spring transition into DST, but thd neereases come in the fall when DST ap-
pears to increase consumption between 2 and 4rgefideese findings are generally consistent
with simulation results that point to a tradeoftveeen reducing demand for lighting and in-
creasing demand for heating and cooling. Accortintipe dates of DST practice prior to 2007,
we estimate a cost to Indiana households of $9amilber year in increased electricity bills.
Estimates of the social costs due to increasedpil emissions range from $1.7 to $5.5 mil-
lion per year.

Although this paper focuses exclusively on residérglectricity consumption, it is
likely to be the portion of aggregate electricitgnghnd that is most responsive to DST.
Changes in the timing of sunrise and sunset octenvpeople are more likely to be at home,
where and when behavioral adjustments might oc€ammercial electricity demand, in con-
trast, is likely to be greatest at inframarginahdés of the day and generally less variable to
changes in the timing of daylight. But future resbahat accounts for commercial and indus-
trial electricity demand would be useful.

It is also worth considering how the results repotere might generalize to other loca-
tions in the Unites States. Answers to this quasatie, of course, limited by the fact that Indi-
ana is the only place where such a natural expetitmes occurred. There are nevertheless sev-

eral reasons we might infer that DST increasedradég demand across a much broader area.
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First, existing simulations suggest that DST insesaelectricity consumption on average over
224 different locations throughout the United Stgfeock 1997). Our results also corroborate
the results of such simulation exercises. Secoweln evhen prior research finds little or no
electricity savings from DST in the United Statibg effect is smaller in more southern regions
(DOE 2006). Finally, the fact that we identify thederlying tradeoff between artificial illumi-
nation and primarily air-conditioning suggests ttie DST effect that we estimate is likely to
be even stronger in the more populated, southgiomne of the Unites States. Further south, the
days are shorter during the summer, meaning thaedses in electrical use from lighting are
likely to be smaller, and air conditioning is ma@mmon and intensively used, meaning that
increases in electricity for cooling are likelyle bigger.

The results of this research should inform ongalelgate about the recent extensions to
DST that took place in 2007. As mentioned eartieg, Energy Policy Act of 2005 requires that
research be conducted to evaluate whether the statenyield conservation benefits. While
our results suggest that the extensions to DSTas likely to increase, rather than decrease,
demand for residential electricity, further reséars necessary to examine the effects of the
extensions themselves. At present, we are stillitangarelease of the official Department of
Energy study.

In conclusion, we find that the longstanding rasilenfor DST is questionable, and if
anything, the policy seems to have the oppositiésahtended effect. Nevertheless, there are
other arguments made in favor of DST. These rang® fncreased opportunities for leisure,
enhanced public health and safety, and economietigrdn the end, a full evaluation of DST
should account for these multiple dimensions, bet évidence here suggests that continued

reliance on Benjamin Franklin’s old argument al@seow misleading.
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Table 1: U.S. Census data for different sets of countiepirthern Indiana

Set of counties

Census variable SE SW NE NW Total
Number of counties 4 3 14 4 25
Total population 247,729 111,944 506,932 92,282 ,&5B
Proportion of population rural 0.389 0.456 0.493 530 0.466
Proportion of population rural and farm 0.018 0.029 0.032 0.063 0.031
Median age 36.5 37.6 35.9 37.4 36.4
Number of households 96,011 42,490 195,597 35,74869,836
Average household size 2.5 2.6 2.5 2.5 2.5
Proportion households with electric heat 0.313 £.28 0.334 0.218 0.311
Median household income in 1999 $42,964  $43,505 ,0F® $33,717 $39,553
Average per capita commute time (min-

utes) 12.00 11.18 10.58 9.56 10.92

Notes: All data taken from the 2000 U.S. Census. Celiégited appropriately by either population or numtife
households.

Table 2: Descriptive statistics for different sets of caestin the data set

Set of counties

Variable SE SW NE NW Total
Observations 1,295,108 316,746 5,097,035 558,5032677392
Residences 39,643 9,595 157,477 17,174 223,889
Tenants 66,148 14,387 276,339 27,209 384,083
Average daily consumption (kWh/day) 35.10 35.91 35.86 35.00 35.66

(25.26) (26.08) (28.99) (26.95) (28.08)
Average cooling degree days 4.01 3.88 3.14 3.59 3.36

(5.09) (4.92) (4.18) (4.53) (4.43)
Average heating degree days 11.19 11.86 12.91 12.47 12.53

(11.29)  (11.82)  (12.44)  (12.30)  (12.23)

Notes: Standard deviations reported in parentheses.

Table 3: Differences in average daily consumption betwe@22005 and 2006

DST period Non-DST period
Treatment: Control: Treatment: Control:
NE SE, SW, NW NE SE, SW, NW
Years 2004-2005 3.1256 3.2239 3.2940 3.2147
Year 2006 3.1814 3.2607 3.3068 3.2366
Difference 0.0558 0.0368 0.0128 0.0219
Difference-in-difference (DD) 0.0191 -0.0091

Notes: Average daily consumption reportedla8DC. In order to account for the unbalanced panel, we
first calculate averages within tenants and theerage between tenants. Difference is interpreteatieas
percentage change from years 2004-2005 to year. Zifiérence-in-difference is the percentage differ
ence in the treatment group compared to the cogtmlp. Differences may not compute exactly due to
rounding. For the non-DST control group, we excletitricity bills in the NW counties during Nov.
and Dec. of 2006, when and where there was a pofiapge due to the shifting of time zones
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Table 4: Natural experiment DST period fixed-effects modeltschanged
average daily consumption in 2006

(a) (b) (€) (d)
Year 2006x Treatment group 0.0096** 0.0080** 0.0103** 0.0089**
(0.0030) (0.0029) (0.0027) (0.0029)
Average cooling degree days (ACDD) 0.0487** 0.0481** -- --
(0.0012) (0.0013)
Average heating degree days (AHDD) 0.0035** 0.0005 -- --
(0.0011) (0.0013)
ACDD x Treatment group -- -0.0004 -- --
(0.0009)
AHDD x Treatment group -- 0.0029* -- --
(0.0013)
ACDD dummies - - Yes Yes
AHDD dummies - - Yes Yes
ACDD dummiesx Treatment group - - -- Yes
AHDD dummiesx Treatment group - - -- Yes
Month-year dummies Yes Yes Yes Yes
Observations 3,685,287 3,685,287 3,685,287 3,685,287
Tenants 343,530 343,530 343,530 343,530
R-squared (within) 0.310 0.310 0.310 0.310

Notes. The left-hand side variable iIBADC. Standard errors, reported in parentheses, asteohd at the billing-
cycle x county level, of which there are 388 clusters. Bledc) and (d) include 18 categories for ACDD 4%d
categories for AHDD. All weather dummies are alsteiacted with the treatment group in model (d)affd *

indicate statistical significance at the 99- anep@8cent levels, respectively.
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Table 5. Quasi-counterfactual non-DST period fixed-effentsdels for changed
average daily consumption in 2006

(a) (b) (©) (d)
Year 2006x Treatment group -0.0030 -0.0004 -0.0064* -0.0029
(0.0029) (0.0028) (0.0031) (0.0031)
Average cooling degree days (ACDD)  0.0065 -0.0483** 0.0244 -0.0060
(0.0292) (0.0178) (0.0248) (0.0211)
Average heating degree days (AHDD) 0.0150** 0.0144** -- --
(0.0004) (0.0005)
ACDD x Treatment group - 0.1008* -~ 0.0453
(0.0494) (0.0424)
AHDD x Treatment group - 0.0008 -- -
(0.0005)
ACDD dummies - - - -
AHDD dummies - - Yes Yes
ACDD dummiesx Treatment group - - - -
AHDD dummiesx Treatment group - - - Yes
NWchg2006 0.0062 0.0039 0.0041 0.0015
(0.0077) (0.0076) (0.0079) (0.0076)
Month-year dummies Yes Yes Yes Yes
Observations 2,374,790 2,374,790 2,374,790 2,374,790
Tenants 340,328 340,328 340,328 340,328
R-squared (within) 0.080 0.080 0.080 0.081

Notes: The left-hand side variable iISADC. Standard errors, reported in parentheses, aséechd at the county

billing-cycle level, of which there are 387 clusteModels (c) and (d) include 31 categories for AHnd each
of these dummy variables is interacted with thattreent group in model (d). ** and * indicate stttial signifi-

cance at the 99- and 95-percent levels, respegtivel
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Table 6: Fixed-effects models for the spring and fall traoss in and out of DST

Transition model

Spring Fall

Fraction DST days Year 2006x Treatment group 0.0123** 0.0048
(0.0060) (0.0069)

Average cooling degree days (ACDD) 0.0347** 0.0501**
(0.0040) (0.0066)

Average heating degree days (AHDD) 0.0126** 0.0131**
(0.0007) (0.0009)

Year 2005 0.0130** 0.0043
(0.0020)** (0.0029)

Year 2006 0.0148* 0.0257**
(0.0029) (0.0065)
Number of observations 580,888 603,253
Number of residents 282,703 283,964

R-squared (within) 0.008 0.036

Notes: The left-hand side variable IBADC. Standard errors, reported in parentheses, aséeobd at
the countyx billing-cycle level, of which there are 374 andr2dusters for the spring and fall mod-
els, respectively. ** and * indicate statisticégsificance at the 99- and 95-percent levels, respe

tively.
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Table 7: Simulation results for changes in monthly eledyidemand due to DST

Difference in average daily consumption (DST -D®T)

DST effect Lighting Cooling Heating
April 0.73% 4.1 6.8 2.2
May 1.69% -6.0 10.5 4.4
June 0.03% -7.5 6.8 0.4
July -0.05% -7.5 6.7 0.0
August 0.60% 5.7 9.7 0.0
September 2.31% -1.9 11.7 2.6
October 2.39% 2.4 104 1.8
Overall 0.98% -4.5 9.1 1.7

Notes: Simulation results based on 2006 simulationsouttsern Indiana. Quantities reported in the lasgteh
columns are changes in average daily consumptidfh(@tay) due to DST for the period indicated. DSfeetf
is the percentage change and does not corresp@utlyeto the percentage change in lighting, coglizgd
heating, as the overall effect also captures attlatively small changes in electricity consumption

Table 8: The social costs to Indiana of Pollution emissifsamn DST

Emissions A emissions  Marginal damages Total damages

(tons/MWh) (tons) Low High Low High
Carbon dioxide  1.134E-00 188,490.08 $2.82 $20.55 318m5 $3,872,566
Lead 6.752E-07 0.11 $572.52 $2,457.32 $64 $276
Mercury 2.490E-08 0.00 $58.90 $58.90 $0 $0
Methane 1.336E-05 2.22 $79.96 $343.16 $178 $762
Nitrogen ox- 5.275E-03
ides 876.79 $77.20 $179.41 $67,686 $157,304
Nitrous oxide 4.868E-05 8.09 $853.54 $7,690.35 35,9 $62,226
Particulates 8.540E-04 141.95 $954.91 $3,282.86 55143 $465,999
Sulfur dioxide 1.060E-02 1,761.90 $518.98 $518.98 914$391 $914,391
Total $1,656,259 $5,473,524

Notes: Emissions (tons/MWh) taken from Ecobilan’s TEAMdel, copyright 2006A emissions are the product
of emissions and the DST change in electricity aamgion of 166,217 MWh/year. All dollars values agported
in 2007 dollars.
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