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Study of decay dynamics andCP asymmetry inD
+

→ K
0
L
e
+
νe decay
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Using 2.92 fb−1 of electron-positron annihilation data collected at
√
s = 3.773GeV with the BESIII

detector, we obtain the first measurements of the absolute branching fractionB(D+ → K0
Le

+νe) = (4.481 ±
0.027(stat.)±0.103(sys.))% and theCP asymmetryA

D+→K0
L
e+νe

CP = (−0.59±0.60(stat.)±1.48(sys.))%.
From theD+ → K0

Le
+νe differential decay rate distribution, the product of the hadronic form factor and the

magnitude of the CKM matrix element,fK
+ (0)|Vcs|, is determined to be0.728 ± 0.006(stat.) ± 0.011(sys.).

Using |Vcs| from the SM constrained fit with the measuredfK
+ (0)|Vcs|, fK

+ (0) = 0.748 ± 0.007(stat.) ±
0.012(sys.) is obtained, and utilizing the unquenched LQCD calculationfor fK

+ (0), |Vcs| = 0.975 ±
0.008(stat.)± 0.015(sys.)± 0.025(LQCD).

PACS numbers: 13.20.Fc, 11.30.Er, 12.15.Hh

I. INTRODUCTION

In the Standard Model (SM), violation of the combined
charge-conjugation and parity symmetries (CP ) arises from

a nonvanishing irreducible phase in the Cabibbo-Kobayashi-
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Maskawa (CKM) flavor-mixing matrix [1, 2]. Although in
the SM,CP violation in the charm sector is expected to be
very small,O(10−3) or below [3], reference [4] finds that
K0-K̄0 mixing will give rise to a cleanCP violation signal
of magnitude of−2Re(ǫ) ≈ −3.3× 10−3 in the semileptonic
decaysD+ → K0

L(K
0
S)e

+νe.
Semileptonic decays of mesons allow determination of

various important SM parameters, including elements of the
CKM matrix, which in turn allows the physics of the SM to
be tested at its most fundamental level. In the limit of zero
electron mass, the differential decay rate for aD semileptonic
decay with a pseudoscalar mesonP is given by

dΓ(D → Peνe)

dq2
=
G2

F |Vcs(d)|2
24π3

p3|f+(q2)|2, (1)

whereGF is the Fermi constant,Vcs(d) is the relevant CKM
matrix element,p is the momentum of the daughter meson in
the rest frame of the parentD, f+(q2) is the form factor, and
q2 is the invariant mass squared of the lepton-neutrino system.

In this paper, the first measurements of the absolute branch-
ing fraction and theCP asymmetry for the decayD+ →
K0

Le
+νe, as well as the form-factor parameters for three

different theoretical models that describe the weak hadronic
charged currents inD+ → K0

Le
+νe are presented. The paper

is organized as follows: The BESIII detector and data sample
are described in Sec.II . The analysis technique is introduced
in Sec.III . In Secs.IV andV the measurements of the absolute
branching fraction, theCP asymmetry and the form-factor
parameters for the decayD+ → K0

Le
+νe are described.

Finally, a summary is provided in Sec.VI .

II. THE BESIII DETECTOR AND DATA SAMPLE

The analysis presented in this paper is based on a data
sample with an integrated luminosity of 2.92 fb−1 [5] col-
lected with the BESIII detector [6] at the center-of-mass
energy of

√
s = 3.773GeV. The BESIII detector is a

general-purpose detector at the BEPCII [7] double storage
rings. The detector has a geometrical acceptance of 93% of
the full solid angle. We briefly describe the components of
BESIII from the interaction point (IP) outwards. A small-cell
multilayer drift chamber (MDC), using a helium-based gas to
measure momenta and specific ionization of charged particles,
is surrounded by a time-of-flight (TOF) system based on
plastic scintillators which determines the time of flight of
charged particles. A CsI(Tl) electromagnetic calorimeter
(EMC) detects electromagnetic showers. These components
are all situated inside a superconducting solenoid magnet,
which provides a 1.0 T magnetic field parallel to the beam
direction. Finally, a multilayer resistive plate counter system
installed in the iron flux return yoke of the magnet is used to
track muons. The momentum resolution for charged tracks
in the MDC is 0.5% for a transverse momentum of 1 GeV/c.
The energy resolution for showers in the EMC is 2.5% for
1 GeV photons. More details on the features and capabilities
of BESIII can be found elsewhere [6].

The performance of the BESIII detector is simulated using
a GEANT4-based [8] Monte Carlo (MC) program. To develop
selection criteria and test the analysis technique, several
MC samples are used. For the production ofψ(3770), the
KKMC [9] package is used; the beam energy spread and the
effects of initial-state radiation (ISR) are included. Final-
state radiation (FSR) of charged tracks is taken into account
with the PHOTOS package [12]. ψ(3770) → DD̄ events
are generated usingEVTGEN [10, 11], and eachD meson
is allowed to decay according to the branching fractions in
the Particle Data Group (PDG) [13]. We refer to this as the
“generic MC.” The equivalent luminosity of the MC samples
is about 10 times that of the data. A sample ofψ(3770) →
DD̄ events, in which theD meson decays to the signal
semileptonic mode and thēD decays to one of the hadronic
final states used in the tag reconstruction, is referred to as
the “signal MC”. In both the generic and signal MC samples,
the semileptonic decays are generated using the modified pole
parametrization [18] (see Sec.V B).

III. EVENT SELECTION

At the ψ(3770) peak, DD̄ pairs are produced. First,
we select the single-tag (ST) sample in which aD− is
reconstructed in a hadronic decay mode. From the ST sample,
the double-tag (DT) events ofD+ → K0

Le
+νe are selected.

The numbers of the ST and DT events are given by

NST = ND+D−BtagǫST,

NDT = ND+D−BtagBsigǫDT,
(2)

whereND+D− is the number ofD+D− pairs produced,NST

andNDT are the numbers of the ST and DT events,ǫST and
ǫDT are the corresponding efficiencies, andBtag and Bsig

are the branching fractions of the hadronic tag decay and the
signal decay. In this analysis, the charge-dependent branching
fractions are measured, so there is no factor of two in Eq. (2).
From Eq. (2), we obtain

Bsig =
NDT/ǫDT

NST/ǫST
=
NDT/ǫ

NST
, (3)

where ǫ = ǫDT/ǫST is the efficiency of finding a signal
candidate in the presence of a STD, which is obtained from
generic MC simulations.

A. Selection of ST events

Each charged track is required to satisfy| cos θ| < 0.93,
where θ is the polar angle with respect to the beam axis.
Charged tracks other than those from theK0

S are required to
have their points of closest approach to the beamline within
10 cm from the IP along the beam axis and within1 cm in the
plane perpendicular to the beam axis. Particle identification
for charged hadronsh (h = π,K) is accomplished by
combining the measured energy loss (dE/dx) in the MDC
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and the flight time obtained from the TOF to form a likelihood
L(h) for each hadron hypothesis. TheK± (π±) candidates are
required to satisfyL(K) > L(π) (L(π) > L(K)).

TheK0
S candidates are selected from pairs of oppositely

charged tracks which satisfy a vertex-constrained fit to a
common vertex. The vertices are required to be within
20 cm of the IP along the beam direction; no constraint in
the transverse plane is applied. Particle identification isnot
required, and the two charged tracks are assumed to be pions.
We require|Mπ+π− −MK0

S
| < 12MeV/c2, whereMK0

S
is

the nominalK0
S mass [13] and12MeV/c2 is about 3 standard

deviations of the observedK0
S mass resolution. Lastly, the

K0
S candidate must have a decay length more than 2 standard

deviations of the vertex resolution away from the IP.
Reconstructed EMC showers that are separated from the

extrapolated positions of any charged tracks by more than
10◦ are taken as photon candidates. The energy deposited in
the nearby TOF counters is included to improve the recon-
struction efficiency and energy resolution. Photon candidates
must have a minimum energy of25MeV for barrel showers
(| cos θ| < 0.80) and50MeV for end-cap showers (0.86 <
| cos θ| < 0.92). The shower timing is required to be no later
than700 ns after the reconstructed event start time to suppress
electronic noise and energy deposits unrelated to the event.

Theπ0 candidates are reconstructed from pairs of photons,
and the invariant massMγγ is required to satisfy0.110 <
Mγγ < 0.155GeV/c2. The invariant mass of two photons is
constrained to the nominalπ0 mass [13] by a kinematic fit,
and theχ2 of the kinematic fit is required to be less than 20.

We formD± candidates decaying into final hadronic states
of K∓π±π±, K∓π±π±π0, K0

Sπ
±π0, K0

Sπ
±π±π∓, K0

Sπ
±,

andK+K−π±. Two variables are used to identify valid
ST D candidates:∆E ≡ ED − Ebeam, the energy differ-
ence between the energy of the STD (ED) and the beam
energy (Ebeam), and the beam-constrained massMBC ≡
√

E2
beam/c

4 − |~pD|2/c2, where~pD is the momentum of the
D. The STD signal should peak at the nominalD mass in
theMBC distribution and around zero in the∆E distribution.
We only accept one candidate per mode; when multiple
candidates are present in an event, the one with the smallest
|∆E| is kept. Backgrounds are suppressed by the mode-
dependent∆E requirements listed in TableI.

TABLE I. Requirements on∆E for the STD candidates. The limits
are set at approximately 3 standard deviations of the∆E resolution.

Mode Requirement (GeV)

D± → K∓π±π± −0.030 < ∆E < 0.030

D± → K∓π±π±π0 −0.052 < ∆E < 0.039

D± → K0
Sπ

±π0 −0.057 < ∆E < 0.040

D± → K0
Sπ

±π±π∓ −0.034 < ∆E < 0.034

D± → K0
Sπ

± −0.032 < ∆E < 0.032

D± → K+K−π± −0.030 < ∆E < 0.030

The ST yields of data are determined by binned maximum
likelihood fits to theMBC distributions. The signal MC line
shape is used to describe theD signal, and an ARGUS [14]

function is used to model the combinatorial backgrounds
from the continuum light hadron production,γISRψ(3686),
γISRJ/ψ and non-signalDD̄ decays. A Gaussian function,
with the standard deviation and the central value as free
parameters, is convoluted with the line shape to account
for imperfect modeling of the detector resolution and beam
energy.

The charge-conjugated tag modes are fitted simultaneously,
with the same signal and ARGUS background shapes for the
tag and charge conjugated modes. The numbers of signal and
background events are left free. Figures1 and 2 show the fits
to theMBC distributions of the STD+ andD− candidates in
data, respectively. The ST yields are obtained by integrating
the fitted signal function in the narrowerMBC signal region
(1.86 < MBC < 1.88GeV/c2) and are listed in TableII .

B. Selection of DT events

After ST D candidates are identified, we search for elec-
trons andK0

L showers among the unused charged tracks
and neutral showers. For electron identification, the ratio
R′

L′(e) ≡ L′(e)/[L′(e) + L′(π) + L′(K)] is required to be
greater than 0.8, where the likelihoodL′(i) for the hypothesis
i = e, π orK is formed by combining the EMC information
with the dE/dx and TOF information. The energy lost by
electrons to bremsstrahlung photons is partially recovered by
adding the energy of showers that are within5◦ of the electron
and are not matched to other charged particles. The selected
electron is required to have the opposite charge from the ST
D. Events that include charged tracks other than those of the
STD and the electron are vetoed.

Because of the longK0
L lifetime, very fewK0

L decay in
the MDC. However, mostK0

L will interact in the material
of the EMC, which gives their position, and deposit part of
their energy. We search forK0

L candidates by reconstructing
all other particles in the event; we then loop over unused
reconstructed neutral showers, taking the direction to the
shower as the flight direction of theK0

L. Using energy-
momentum conservation and the constraintUmiss = 0, we
calculate the momentum magnitude|~pK0

L

| of theK0
L and the

four-vector of the unreconstructed neutrino in the event. The
variableUmiss is expected to peak at zero for semileptonic
decay candidates and is defined as

Umiss ≡ Emiss − c|~pmiss|, (4)

where

Emiss = Etot − Etag − EK0
L

− Ee,

~pmiss = ~ptot − ~ptag − ~pK0
L
− ~pe;

(5)

Etot, Etag, EK0
L

and Ee are the energies of thee+e−,
the STD, the K0

L and the electron;~ptot, ~ptag, ~pK0
L

and
~pe refer to their momenta.EK0

L

is calculated byEK0
L

=
√

|~pK0
L
|2 +m2

K0
L

. In order to suppress background from fake

photons, the energy ofK0
L shower should be greater than
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FIG. 1. Fits to theMBC distributions of the STD+ candidates for data. The dots with error bars are for data, and the blue solid curves are the
results of the fits. The green dashed curves are the fitted backgrounds.
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FIG. 2. Fits to theMBC distributions of the STD− candidates for data. The dots with error bars are data, and the blue solid curves are the
results of the fits. The green dashed curves are the fitted backgrounds.

0.1GeV. We also reject photons that may come fromπ0’s
by rejectingγ in anyγγ combination with0.110 < Mγγ <
0.155GeV/c2. In events with multipleK0

L shower candi-
dates, the most energetic shower is chosen. The inferred four-
momentum of theK0

L is used to determine the reconstructed
q2, the invariant mass squared of thee+νe pair, by

q2 =
1

c4
(Etot−Etag−EK0

L

)2− 1

c2
|~ptot−~ptag−~pK0

L

|2. (6)

Similar to the determination of the ST yields, we obtain the
DT yields of data from the fits to theMBC distributions of the
corresponding STD candidates. Figures3 and 4 show the fits
to theMBC distributions of the DTD+ andD− candidates in
data, respectively. From the fits, we obtain the DT yields in
data, which are listed in the third column of TableII .

C. Estimation of backgrounds

TheK0
L reconstruction efficiencies of data and MC differ,

so theK0
L reconstruction efficiency of the generic MC is

corrected to that of data. The correction factors ofK0
L recon-

struction efficiencies are determined from two control samples
(J/ψ → K∗(892)±K∓ with K∗(892)± → K0

Lπ
± and

J/ψ → φK0
LK

±π∓), which are described in AppendixA.
The corrected generic MC samples are used to determine the
amount of peaking background and the efficiency forD+ →
K0

Le
+νe.

We examine the topologies of the corrected generic MC
samples to study the composition of the DT samples. In the
MBC signal region, the DTD candidates can be divided into
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FIG. 3. Fits to theMBC distributions of the DTD+ candidates for data. The dots with error bars are for data, and the blue solid curves are the
results of the fits. The green dashed curves are the fitted combinatorial backgrounds.
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FIG. 4. Fits to theMBC distributions of the DTD− candidates for data. The dots with error bars are for data, and the blue solid curves are the
results of the fits. The green dashed curves are the fitted combinatorial backgrounds.

the following categories:

• Signal: Tag-side and signal-side correctly matched.

• Background:

– Tag-side mismatched events (Bkg I).

– Tag-side matched but signal-side mismatched sig-
nal events (Bkg II).

– Tag-side matched butD → Xeνe non-signal
events on signal side (Bkg III).

– Tag-side matched butD → Xµνµ events on
signal side (Bkg IV).

– Tag-side matched but non-leptonicD decay
events on signal side (Bkg V).

In the selected DT candidates, the proportion of signal
events varies from49% to 58% according to the specific
hadronic tag mode. Bkg I comes fromDD̄ decays in
which the hadronic tagD is mis-reconstructed and non-
DD̄ processes, and varies from1% to 12% according to the
specific hadronic tag mode. Bkg II (∼10%) consists ofD+ →
K0

Le
+νe events of whichK0

L shower is mis-reconstructed.
The dominant background in the DT sample is Bkg III
(∼24%), which is fromD+ → K̄∗(892)0e+νe (41.9%),
D+ → K0

Se
+νe (41.2%), D+ → π0e+νe (10.2%), D+ →

ηe+νe (6.0%) andD+ → ωe+νe (0.7%). Bkg IV (∼3%)
consists ofD+ → K0

Lµ
+νµ (65.2%),D+ → K̄∗(892)0µ+νµ

(23.3%) and D+ → K0
Sµ

+νµ (11.5%). Bkg V (∼3%)
consists ofD+ → K̄0π+π0 (78%) andD+ → K̄0K∗(892)+
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(22%).

IV. BRANCHING FRACTION AND CP ASYMMETRY

The branching fraction forD+ → K0
Le

+νe (Bsig) is
determined by

Bsig =
NDT(1 − fpeak

bkg )

ǫNST
, (7)

whereNDT, NST are the DT and ST yields,fpeak
bkg is the

proportion of peaking backgrounds in the DT candidates
(from Bkg II to Bkg V), ǫ is the efficiency for finding
D+ → K0

Le
+νe in the presence of STD. fpeak

bkg and
ǫ are obtained from theK0

L efficiency corrected generic
MC samples. TheD+ → K0

Le
+νe branching fractions

for different ST modes are listed in TableII . We obtain
B(D+ → K0

Le
+νe) = (4.454 ± 0.038 ± 0.102)% and

B(D− → K0
Le

−ν̄e) = (4.507 ± 0.038 ± 0.104)%, which
are the weighted averages of the six ST modes forD+ and
D− separately. Combining these branching fractions, we
obtain the averaged branching fractionB̄(D+ → K0

Le
+νe) =

(4.481 ± 0.027 ± 0.103)%, which agrees well with the
measurement ofB(D+ → K0

Se
+νe) of CLEO-c [15]. The

CP asymmetry ofD+ → K0
Le

+νe is

ACP ≡ B(D+ → K0
Le

+νe)− B(D− → K0
Le

−ν̄e)

B(D+ → K0
Le

+νe) + B(D− → K0
Le

−ν̄e)

= (−0.59± 0.60± 1.48)%.

(8)

This result is consistent with the theoretical prediction in
Ref. [4] (−3.3× 10−3).

Table III summarizes the systematic uncertainties in the
measurements of absolute branching fractions and theCP
asymmetry ofD+ → K0

Le
+νe. A brief description of each

systematic uncertainty is provided below.

1. Electron (positron) track-finding and identification (ID)
efficiency

Uncertainties of electron (positron) track-finding and
ID efficiency are obtained by comparing the track-
finding and ID efficiencies for the electrons (positrons)
from radiative Bhabha processes in the data and MC.
Considering both thecos θ, whereθ is the polar angle
of the positron, and momentum distributions of the
electrons (positrons) of the signal events, we obtain
the two-dimensional weighted uncertainty of electron
(positron) track-finding to be0.5%, and the averaged
uncertainties of positron and electron ID efficiency to
be0.03% and0.10%, respectively.

2. K0
L efficiency correction

We take the relative statistical uncertainty of theK0
L

efficiency difference between data and MC as a function
of momentum (as shown in Fig.7 in AppendixA) as the
uncertainty of theK0

L efficiency correction. Weighting
these uncertainties by theK0

L momentum distribution

in D+ → K0
Le

+νe, we obtain the uncertainties of the
K0 → K0

L and K̄0 → K0
L efficiency corrections to

both be1.2%.

3. Extraχ2 cut forK0
L efficiency correction

As described in AppendixA, in the determination
of correction factor of theK0

L efficiency, we apply
a χ2 cut which brings an extra uncertainty. The
uncertainty of theχ2 cut is obtained by comparing the
cut efficiency between data and MC using two control
samples (J/ψ → K∗(892)±K∓ with K∗(892)± →
K0

Lπ
± andJ/ψ → φK0

LK
±π∓). Weighting by the

momentum distribution of theK0
L of signal events, the

uncertainty of the extraχ2 cut (χ2 < 100) is 0.8%.

4. Peaking backgrounds in DT

For Bkg II, from Eq. (7) the ratio of mis-reconstructed
K0

L will not affect the measured branching fraction,
since the numerator and the denominator share the
common factor. The uncertainties of the peaking back-
grounds of mis-reconstructedK0

L can be safely ignored.
For Bkg III, Bkg IV and Bkg V, we determine the
change of the number of DT events by varying the
branching fractions of peaking background channels by
1σ, and the uncertainty of peaking backgrounds in DT
events is1.6%.

5. MBC fit

To evaluate the systematic uncertainty from theMBC

fit, we determine the changes of the DT yields divided
by the ST yields when varying the standard deviation of
the convoluted Gaussian function by±1σ deviation for
each tag mode. We find that they are negligible.

The total systematic uncertainties of the branching fractions
for D+ → K0

Le
+νe andD− → K0

Le
−ν̄e are determined to

be 2.3% and2.3%, respectively, by adding all contributions
in quadrature. In the determination of theCP asymmetry, the
corresponding systematic uncertainties of branching fractions
for D+ → K0

Le
+νe andD− → K0

Le
−ν̄e are obtained in a

similar fashion, except that the contribution of the extraχ2

cut ofK0
L efficiency correction is not used since it cancels.

The systematic uncertainties entering theCP asymmetry are
found to be2.1% and2.1%, respectively.

V. HADRONIC FORM FACTOR

A. Method of extraction of form factor

The number of produced signal events for each tag mode
from the wholeq2 range can be written as

n = 2ND+D−BtagBsig = Ntag
Γsig

ΓD+

, (9)

whereΓsig is the partial decay width ofD+ → K0
Le

+νe while
ΓD+ is the total decay width ofD+. So we obtain

dn =
Ntag

ΓD+

dΓsig = NtagτD+dΓsig, (10)
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TABLE II. Summary of the ST yields (NST), the DT yields (NDT), the peaking background rates for the DT candidates (f
peak
bkg ), the detection

efficiency (ǫ) and the branching fraction for signal decay for each ST mode(Bsig). The averages are the weighted average of the individual ST
mode branching fractions. The uncertainties are statistical.

D+ → K0
Le

+νe

Tag Mode NST NDT f
peak

bkg (%) ǫ(%) Bsig(%)

D− → K+π−π− 410200 ± 670 10492 ± 103 41.83 ± 0.28 33.96 ± 0.10 4.381 ± 0.050

D− → K+π−π−π0 120060 ± 457 3324± 64 44.78 ± 0.49 33.14 ± 0.19 4.613 ± 0.103

D− → K0
Sπ

−π0 102136 ± 378 2658± 56 38.93 ± 0.58 35.67 ± 0.21 4.456 ± 0.108

D− → K0
Sπ

−π−π+ 59158 ± 303 1459± 41 40.84 ± 0.76 32.51 ± 0.27 4.488 ± 0.145

D− → K0
Sπ

− 47921 ± 225 1287± 36 38.90 ± 0.88 35.07 ± 0.32 4.679 ± 0.155

D− → K+K−π− 35349 ± 239 905± 32 44.64 ± 0.97 30.98 ± 0.35 4.575 ± 0.190

Average 4.454 ± 0.038

D− → K0
Le

−ν̄e

Tag Mode NST NDT f
peak

bkg (%) ǫ(%) Bsig(%)

D+ → K−π+π+ 407666 ± 668 10354 ± 103 40.44 ± 0.29 34.02 ± 0.11 4.447 ± 0.051

D+ → K−π+π+π0 117555 ± 450 3264± 63 42.28 ± 0.52 33.19 ± 0.19 4.829 ± 0.107

D+ → K0
Sπ

+π0 101824 ± 378 2642± 55 39.06 ± 0.58 35.92 ± 0.21 4.402 ± 0.104

D+ → K0
Sπ

+π+π− 59046 ± 303 1533± 42 39.68 ± 0.77 33.44 ± 0.27 4.683 ± 0.147

D+ → K0
Sπ

+ 48240 ± 226 1217± 35 38.50 ± 0.88 35.20 ± 0.32 4.408 ± 0.147

D+ → K+K−π+ 35742 ± 240 942± 32 44.04 ± 0.95 32.40 ± 0.36 4.552 ± 0.181

Average 4.507 ± 0.038

TABLE III. Systematic uncertainties in the measurements ofabsolute branching fraction and theCP asymmetry ofD+ → K0
Le

+νe.

Source D+ → K0
Le

+νe(%) D− → K0
Le

−ν̄e(%)

Electron tracking 0.5 0.5

Electron ID 0.1 0.1

K0
L efficiency correction 1.2 1.2

Extraχ2 cut forK0
L efficiency correction 0.8 0.8

Peaking backgrounds in DT 1.6 1.6

MBC fit negligible negligible

Total (Branching fraction) 2.3 2.3

Total (CP asymmetry) 2.1 2.1

whereτD+ = 1/ΓD+ is theD+ lifetime anddΓsig is the
differential decay width of the signal.

Substituting Eq. (10) into Eq. (1), Eq. (1) can be rewritten
as

dn

dq2
= ANtagp

3|f+(q2)|2, (11)

whereA = 1
2
G2

F
|Vcs|

2

24π3 τD+ , and the number of observed
semileptonic signal events as a function ofq2 is given by

dnobserved

dq2
= ANtag

[

p3(q′2)|f+(q′2)|2ǫ(q′2)
]

⊗ σ(q′2, q2),

(12)
whereq′2 refers to the true value andq2 refers to the measured
value;p(q′2) is the momentum ofK0

L in the rest frame of the
parentD; ǫ(q′2) is the detection efficiency andσ(q′2, q2) is
the detector resolution. To account for detector effects, we use
the theoretical function convoluted with a Gaussian detector
resolution to describe the observed signal curve.

B. Form-factor parametrizations

The goal of any particular parametrizationf+(q2) of the
semileptonic form factors is to provide an accurate, and
physically meaningful, expression of the strong dynamics in
the decays. One possible way to achieve this goal is to
express the form factors in terms of a dispersion relation. This
approach of using dispersion relations and dispersive bounds
in the description of form factors, has been well established
in the literature. In general, the dispersive representation is
derived from the evaluation of the two point function [16, 17]
and can be written as

f+(q
2) =

f+(0)

(1− α)

1

1− q2

m2
pole

+
1

π

∫ ∞

(mD+mP )2

Imf+(t)

t− q2 − iǫ
dt,

(13)
wheremD and mP are the masses of theD meson and
pseudoscalar meson respectively, whilempole is the mass
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of the lowest-lying cq̄ vector meson, withc → q the
quark transition of the semileptonic decay. For the charm
semileptonic decays we havempole = mD∗

s
for D → Keνe

decays. The parameterα expresses the size of the vector
meson pole contribution tof+(0). It is common to write the
contribution from the continuum integral as a sum of effective
poles

f+(q
2) =

f+(0)

(1− α)

1

1− q2

m2
pole

+
N
∑

k=1

ρk

1− 1
γk

q2

m2
pole

, (14)

whereρk andγk are expansion parameters.
The simplest parametrization, known as the simple pole

model, assumes that the sum in Eq. (14) is dominated by a
single pole

f+(q
2) =

f+(0)

1− q2

m2
pole

, (15)

where the value ofmpole is predicted to bemD∗

s
. In

experiments,mpole is left as a free fit parameter to improve
the fit quality.

Another parametrization is known as the modified pole
model, or Becirevic-Kaidelov (BK) parametrization [18]. The
idea is to add the first term in the effective pole expansion,
while making simplifications such that the form factor can
be determined with only two parameters: the interceptf+(0)
and an additional shape parameterα. The simplified one-term
expansion is usually written in the form

f+(q
2) =

f+(0)

(1− q2

m2
pole

)(1− α q2

m2
pole

)
. (16)

A third parametrization is known as the series expan-
sion [19]. Exploiting the analytic properties off+(q2), a
transformation of variables is made that maps the cut in the
q2 plane onto a unit circle|z| < 1, where

z(q2, t0) =

√

t+ − q2 −√
t+ − t0

√

t+ − q2 +
√
t+ − t0

, (17)

t± = (mD ± mP )
2, and t0 is any real number less than

t+. This transformation amounts to expanding the form factor
aboutq2 = t0, with the expanded form factor given by

f+(q
2) =

1

P (q2)φ(q2, t0)

∞
∑

k=0

ak(t0)[z(q
2, t0)]

k, (18)

whereak are real coefficients,P (q2) = z(q2,M2
D∗

s

) for kaon

final states,P (q2) = 1 for pion final states, andφ(q2, t0) is
any function that is analytic outside a cut in the complexq2

plane that lies along thex-axis fromt+ to∞. This expansion
has improved convergence properties over Eq. (14) due to the
smallness ofz; for example, taking the traditional choice of
t0 = t+(1− (1− t−/t+)1/2), which minimizes the maximum

value ofz(q2, t0). Further, taking the standard choice ofφ:

φ(q2, t0) =

√

πm2
c

3

(

z(q2, 0)

−q2
)5/2 (

z(q2, t0)

t0 − q2

)−1/2

×
(

z(q2, t−)

t− − q2

)−3/4
t+ − q2

(t+ − t0)1/4
,

(19)

wheremc is the mass of charm quark, it can be shown that the
sum over allk of a2k is of order unity.

In practical use of the series expansion form factor, one
often takesk = 1 and k = 2 in Eq. (18), which gives
following two forms of the form factor.

• 2 par. series expansion of form factor is given by

f+(q
2) =

1

P (q2)φ(q2, t0)
a0(t0)

(

1 + r1(t0)[z(q
2, t0)]

)

.

(20)
It can be rewritten as

f+(q
2) =

1

P (q2)φ(q2, t0)

f+(0)P (0)φ(0, t0)

1 + r1(t0)z(0, t0)

×
(

1 + r1(t0)[z(q
2, t0)]

)

,

(21)

wherer1 = a1/a0.

• 3 par. series expansion of form factor is given by

f+(q
2) =

1

P (q2)φ(q2, t0)
a0(t0)

×
(

1 + r1(t0)[z(q
2, t0)] + r2(t0)[z(q

2, t0)]
2
)

.
(22)

It can be rewritten as

f+(q
2) =

1

P (q2)φ(q2, t0)

f+(0)P (0)φ(0, t0)

1 + r1(t0)z(0, t0) + r2(t0)z2(0, t0)

×
(

1 + r1(t0)[z(q
2, t0)] + r2(t0)[z(q

2, t0)]
2
)

,
(23)

wherer1 = a1/a0, r2 = a2/a0.

C. Determination of fK

+ (0)|Vcs|

We perform simultaneous fits to the distributions of ob-
served DT candidates as a function ofq2 for the six ST
modes to determinefK

+ (0)|Vcs|. In the fits, we treatD+

andD− DT candidates together. The detection efficiency
ǫ(q′2) and detector resolutionσ(q′2, q2) are obtained from the
K0

L efficiency corrected signal MC simulations. For each ST
mode,ǫ(q′2) is described by a fourth-order polynomial; the
(q2− q′2) distribution is described by a Gaussian function. As
an example, Figure5 shows the fits toǫ(q′2) for signal events
tagged byD± → K∓π±π±.

Simultaneous fits are made with one or two common
parameters related to the form-factor shape to the data for
the simple pole model (mpole), the modified pole model
(α), two-parameter series expansion (r1) and three-parameter
series expansion (r1, r2). As an example, Figure6 shows
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FIG. 5. Detection efficiencyǫ(q′2) for signal events tagged by
D± → K∓π±π±. The dots with error bars are the corrected signal
MC efficiencies, and the curve is the fit result.

the simultaneous fit results using the two-parameter series
expansion model. The signal PDF is constructed in the form
of Eq. (12). For the background shape, as mentioned in
Section III C, the shape and the number of Bkg I events
are fixed according to the side-band region of theMBC

distribution (1.83 < MBC < 1.85GeV/c2) from data; for
Bkgs from II to V, the shape is determined from theK0

L

efficiency corrected generic MC samples. We also fix the
relative proportion ofNsig, NBkg II andNBkg III + NBkg IV

events, to the result from theK0
L efficiency corrected generic

MC. Here,Nsig, NBkg II, NBkg III andNBkg IV represent the
number of the signal, Bkg II, Bkg III and Bkg IV events,
respectively.

The productfK
+ (0)|Vcs| is obtained from

fK
+ (0)|Vcs| =

√

48π3

G2
F

Nsig

NtagτD+I
, (24)

whereI =
∫ [

p3(q′2)|f+(q′2)|2ǫ(q′2)
]

⊗ σ(q′2, q2)dq2.
Since theq2 distribution of the signal events is smooth,

the form-factor fit is insensitive to the detector resolution.
For each tag mode, we use the full width at half maximum
(FWHM) of the (q2 − q′2) distribution to estimateσ(q′2, q2)
and obtain FWHM =0.0360GeV2/c4 and the corresponding
resolutionσ = FWHM/2

√
2 ln 2 = 0.0153GeV2/c4. The

distributions of DT candidates as a function ofq2 are fit
again by different models with the detector resolutionσ =
0.0153GeV2/c4. Compared to the previous results, the form-
factor parameters and the signal yields are almost unchanged.
So the uncertainty of the detector resolution can be ignoredin
the form-factor fit.

Systematic uncertainties of the form-factor parameters are
more sensitive to the distribution of backgrounds in this
analysis. We use different side-band region of theMBC

distribution (1.835 < MBC < 1.855GeV/c2) and ISGW2
model to simulate the main possible semi-leptonic and semi-
muonic backgrounds. We simultaneously fit the the distri-
butions of observed DT candidates as a functionq2 again.

The differences between the form-factor parameters obtained
from the two determinations are taken as the systematic
uncertainties of the form-factor parameters.

Systematic uncertainties associated with the product
fK
+ (0)|Vcs| are one half of the systematic uncertainties in

the branching fraction measurements, presented in Sec.IV,
combined in quadrature with the uncertainties associated
with D+ lifetime (0.67%) [13] and the integrationI, which
are obtained by varying the form-factor parameters by±1σ.
The systematic uncertainties offK

+ (0)|Vcs| are obtained for
the simple pole model, modified pole model, two-parameter
series expansion and three-parameter series expansion to be
1.4%, 1.5%, 1.5%, 1.2%, respectively.

The fit results are given in TableIV. As a comparison,
TableIV also lists the corresponding form-factor results de-
termined forD+ → K0

Se
+νe from CLEO-c [15]. Our results

are consistent with those from CLEO-c within uncertainties
except for three-parameter series expansion model due to
heavy backgrounds in this analysis. In general, as long as the
normalization and at least one shape parameter are allowed to
float, all models describe the data well. We choose the two-
parameter series fit to determinefK

+ (0) and|Vcs|.
The BESIII experiment has recently reported the most

precise value offK
+ (0)|Vcs| using the two-parameter series

expansion forD0 → K−e+νe [21]. It is in agreement with
the results reported here.

D. Determination of fK
+ (0) and |Vcs|

Using thefK
+ (0)|Vcs| value from the two-parameter series

expansion fit and|Vcs| = 0.97343 ± 0.00015 from PDG fits
assuming CKM unitarity [13] or fK

+ (0) = 0.747±0.019 from
the unquenched LQCD calculation [20] as input, we obtain

fK
+ (0) = 0.748± 0.007± 0.012 (25)

and

|Vcs| = 0.975± 0.008± 0.015± 0.025, (26)

where the uncertainties are statistical, systematic, and external
(in Eq. (26)). For Eq. (25), the external error is negligible
(0.0002) compared to our measurement. The measuredfK

+ (0)
is consistent with the one measured withD+ → K0

Se
+νe

at CLEO-c [15]; it is also in good agreement with LQCD
predictions, although the currently available LQCD results
have relatively large uncertainties. The measured|Vcs| is in
agreement with that reported by the PDG.

VI. SUMMARY

In this paper we present the first measurement of the
absolute branching fractionB(D+ → K0

Le
+νe) = (4.481 ±

0.027(stat.)±0.103(sys.))%, which is in excellent agreement
with B(D+ → K0

Se
+νe) measured by CLEO-c [15]. The

CP asymmetryAD+→K0
L
e+νe

CP = (−0.59 ± 0.60(stat.) ±
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FIG. 6. (Color online) Simultaneous fit to the numbers of DT candidates as a function ofq2 with the two-parameter series expansion
parametrization. The points are data and the curves are the fit to data. In each plot, the violet, yellow, green, and black curves refer to
Bkg I, Bkg II, Bkg III+Bkg IV, and Bkg V, respectively. The reddashed curve shows the contribution of signal, and the blue solid curve shows
the sum of background and signal.

TABLE IV. Comparison of results offK
+ (0)|Vcs| and shape parameters (mpole, α, r1 andr2) to previous corresponding results determined by

D+ → K0
Se

+νe from CLEO-c [15]. The first uncertainties are statistical, and the second are systematic.

Single pole model

Decay mode fK

+ (0)|Vcs| mpole ( GeV/c2)

D+ → K0
L
e+νe 0.729 ± 0.006 ± 0.010 1.953 ± 0.044 ± 0.036

D+ → K0
S
e+νe 0.720 ± 0.006 ± 0.009 1.95 ± 0.03 ± 0.01

Modified pole model

Decay mode fK

+ (0)|Vcs| α

D+ → K0
L
e+νe 0.727 ± 0.006 ± 0.011 0.239 ± 0.077 ± 0.065

D+ → K0
S
e+νe 0.715 ± 0.007 ± 0.009 0.28 ± 0.06 ± 0.02

Two-parameter series expansion

Decay mode fK

+ (0)|Vcs| r1

D+ → K0
L
e+νe 0.728 ± 0.006 ± 0.011 −1.91 ± 0.33 ± 0.28

D+ → K0
S
e+νe 0.716 ± 0.007 ± 0.009 −2.10 ± 0.25 ± 0.08

Three-parameter series expansion

Decay mode fK

+ (0)|Vcs| r1 r2

D+ → K0
L
e+νe 0.737 ± 0.006 ± 0.009 −2.23 ± 0.42 ± 0.53 11.3 ± 8.5 ± 8.7

D+ → K0
S
e+νe 0.707 ± 0.010 ± 0.009 −1.66 ± 0.44 ± 0.10 −14 ± 11 ± 1

1.48(sys.))%, which agrees with theoretical prediction onCP
violation in K0 system within the statistical error, is also
determined. By fitting the distributions of the observed DT
events as a function ofq2, fK

+ (0)|Vcs| and the corresponding
parameters for three different theoretical form-factor models
are determined. Takingf+

K(0)|Vcs| from the two-parameter
series expansion parametrization,f+

K(0)|Vcs| = 0.728 ±
0.006(stat.) ± 0.011(sys.) and using|Vcs| from the SM
constraint fit, we findfK

+ (0) = 0.748 ± 0.007(stat.) ±
0.012(sys.). By using an unquenched LQCD prediction
for fK

+ (0), |Vcs| = 0.975 ± 0.008(stat.) ± 0.015(sys.) ±
0.025(LQCD).
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Appendix A: Systematic uncertainty inK0
L reconstruction

efficiency

To determine the systematic uncertainty in theK0
L recon-

struction efficiency, we measure theK0
L efficiency in data

and MC using a partial reconstruction technique. We then
determine the efficiency difference between data and MC,
ǫdata/ǫMC − 1, of theK0

L reconstruction efficiency, where
ǫMC is the efficiency for MC andǫdata is the efficiency for
data.

Based on 1.3 BJ/ψ events collected by BESIII detector
in years 2009 and 2012, we use two control samples to
measureK0

L reconstruction efficiency. One sample isJ/ψ →
K∗(892)±K∓ with K∗(892)± → K0

Lπ
±, and the other is

J/ψ → φK0
LK

±π∓. We reconstruct all the particles in the
event except theK0

L whose efficiency we wish to measure.
The number ofK0(K̄0) is denoted byN1. Then, by applying
K0

L selection requirements mentioned in Sec.III B , we obtain
the number ofK0(K̄0) denoted byN2. Here, in order to
selectK0

L control samples with low level of backgrounds,
we perform the kinematic fit to selectK0

L candidate with the
minimalχ2 and requireχ2 < 100.
K0(K̄0) reconstruction efficiency is calculated byǫ =

N2/N1. For data,N1, N2 are determined by fitting the
missing mass squared distribution ofK0

L. Each fit included
a signal line shape function which is determined from MC
samples smeared with a Gaussian resolution, and the back-
ground shape is determined from MC samples as well. With
respect to MC samples,N1, N2 are obtained from MC truth
directly. The fits are performed in separate momentum bins.
In each fit,N1 (N2) consists of the number ofK0

L andK0
S .

The ratio ofK0
L to K0

S is estimated from MC simulations.
Due to the effect of the difference in nuclear interactions of
K0 andK̄0 mesons, we considerK0 → K0

L andK̄0 → K0
L

separately. We use the charge of kaon to tagK0 or K̄0 in the
control sample, which means if we find aK+ in the process,
the correspondingK0

L must be derived from̄K0.
Figure 7 shows the distributions ofK0

L reconstruction

efficiency differences between data and MC in 19 momentum
bins for the processes ofK0 → K0

L andK̄0 → K0
L.
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FIG. 7. Distributions ofK0
L reconstruction efficiency differences

between data and MC for the processes ofK0 → K0
L andK̄0 →

K0
L.

The probability of an inelastic interaction of a neutral
kaon in the detector depends on the strangeness of the kaon
at any point along its path, which is due to oscillations
in kaon strangeness and different nuclear cross sections for
K0 and K̄0. Hence, the total efficiency to observe a final
stateK0

L(K0
S) differs from that expected for eitherK0 or

K̄0. This effect is related to the coherent regeneration
of neutral kaons [22]. However, the detector-simulation
program GEANT4 does not take into account this effect. The
time-dependentK0-K̄0 oscillations are thereby ignored in
GEANT4. Considering the massive detector materials in the
outer of the MDC, the TOF counter and the EMC, it results
in an obvious discrepancy (>10%) of K0

L shower-finding
efficiency in the EMC between data and MC. On the other
hand, we take the same method to studyK0

S reconstruction
efficiency difference between data and MC for the processes
of K0 → K0

S andK̄0 → K0
S by 224 MJ/ψ control sample,

as shown in Fig.8. We find that theK0
S reconstruction

efficiency of data is a little higher than that of MC, which
gives another hint of the absence of the coherent regeneration
of neutral kaons by GEANT4.
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S reconstruction efficiency differences

between data and MC for the processes ofK0 → K0
S andK̄0 →

K0
S . The red line is the fit to the points in the form of zero-order

polynomial.
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