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Abstract

Determining First-Order Boundaries

in High-Frequency Radar Sensing

of Ocean Surface Currents:

A Proposed Method using Bayesian Estimation

by

Irene Rodriguez Alegre

High Frequency (3-30 MHz) radars measure the speed and direction of ocean

surface currents in near real time by emitting a vertically polarized electromagnetic

signal along the electrically conductive ocean surface. This signal is coherently

back-scattered by Bragg resonant ocean waves – travelling radially away or towards

the radar with ocean wavelength equal to half of the radar wavelength.

More than 400 oceanographic HF radars worldwide use this strong coherent

return of energy (Bragg scattering) and its Doppler shift to infer the radial velocity

of the surface water and to map the radial currents hourly with 1 to 5 km range

resolution.

The primary objective of this study is to recognize and isolate the first-order

Bragg back-scattered echoes, which are necessary for mapping currents, while

excluding second-order echoes that lead to erroneous ocean current estimates.

xxvii



Setting the boundaries of the first order Bragg peaks in the echo Doppler spectra

is a very important task. We have observed how present algorithms fail under

certain circumstances, e.g. when ocean conditions are influenced by tides or strong

off-shore currents and in regions around islands.

In order to avoid some of the known shortcomings of conventional methods we

have developed a new algorithm to find initial estimates of the boundaries between

first and second order echoes by using more advanced null detection methods and

normalized radar spectra across multiple ranges.

In addition, our approach keeps track of the spatial and temporal history of

data and applies Bayesian estimation techniques to the observed radar back-scatter

spectra to detect and filter out erroneous observations. Several Bayesian sequential

estimation techniques were tested to improve the estimation of the first-order

Bragg echo boundaries in the aforementioned challenging scenarios. We begin

with simple filters like G-H and Kalman and include more advanced ones like

Nearest Neighbor and Probabilistic Data Association filters.

Applying these filters to the initial estimates provided by the proposed null-

finding method provides better first-order boundary results than filtering previous

conventional estimates. By accepting more valid ocean current radial vectors,

yet rejecting second-order spectrum and noise or interference, we improve radial

current vector maps.
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Chapter 1

Introduction

In this chapter we first present an introduction to High-Frequency Radar

technology and its main applications. Secondly, we describe the objectives of

this research while introducing the concept of first-order boundaries and explain

why are they relevant to the present study. Then, we describe the order of the

chapters and the overall organization of this dissertation that will be mentioned

in the fourth section: the contributions to knowledge. In addition, we also discuss

the state of the art.

1.1 Oceanographic High-Frequency Radar

High-Frequency radars, which operate in the frequencies between 3 and 30

MHz, measure the speed and direction of ocean surface currents in near real time

by emitting a vertically polarized electromagnetic signal along the electrically

conductive ocean surface. This signal is coherently backscattered off the so-called

Bragg resonant ocean waves – travelling radially away or towards the radar with

ocean wavelength equal to half of the radar wavelength[2][3][11][19], as we will

describe thoroughly in Chapter 3.
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Oceanographic HF radars worldwide use this strong coherent return of energy,

the Bragg scattering, and its Doppler shift to infer the radial velocity of the surface

water and to map the radial currents hourly. Although limited by surface wave

propagation loss, such radars can measure ocean surface currents over an area

100 km or more in radius offshore, approximately every 10 minutes with a surface

current accuracy of about 10 cm/s and a spatial resolution of 1 to 6 km at a

cost of around $150,000 per radar station. One can find more than 400 operating

oceanographic HF radar stations in America, Europe, Asia and Oceania as shown

in Figure 1.1.

The aforementioned ocean surface current maps are used in many oceanographic

applications (see Figure 1.2) and some of them are listed below:

• physical oceanography,

• coastal engineering,

• search and rescue,

• maritime navigation and awareness,

• response to oil and other hazardous materials spills,

• water quality control,

• ocean biology,

• storm and hurricane research, prediction, and monitoring.
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Figure 1.2: (Credit to Hardik Parikh and Chad Whelan at CODAR Ocean
Sensors Ltd. in Mountain View, CA.) Figure presenting some of the most relevant
applications of the SeaSonde High-Frequency Oceanographic Radar.
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1.2 Motivation and Objectives of Research

This research focuses on the SeaSonde High-Frequency Oceanographic Radar

data since more than 85% of all coastal oceanographic radars worldwide are

SeaSonde by CODAR Ocean Sensors Ltd. As we discuss later in this dissertation,

there are a number of HF radar sites in the SeaSonde network that we will

particularly study because they present uncommon backscattered spectra – i.e.

the Bragg regions show splits (first-order Bragg echoes have pronounced, multiple

maxima) or an unusual structure.

Setting the boundaries of the first order Bragg peaks in the echo Doppler

spectra is paramount for ocean current mapping and it has been observed how

present algorithms fail under certain circumstances, e.g. when ocean conditions

are influenced by tides or strong off-shore currents, in regions around islands, and

during other air-sea interaction events. We define the radar sites that present those

irregularities as "challenging". The main difficulty when working on a challenging

site is the determination of the first-order boundaries of the Bragg region since

they do not appear as at typical sites.

Hence, the motivation of this research is to improve the technique to properly

determine the first-order boundaries, which in turn will improve the estimation

and mapping of ocean surface currents. It is important to note that incorrectly

estimating the boundaries of the first order Bragg regions in Doppler space will

lead to two types of errors: we would include data that leads to erroneous radial

currents being mapped and/or we would exclude valid data and thus lose valid

ocean current measurements.
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Therefore, the primary objective of this research is to recognize and isolate the

first-order Bragg-backscattered echoes, which are necessary for mapping currents,

while excluding second-order echoes and interference that lead to erroneous ocean

current estimates.

We work on improving the accuracy of the surface current vector estimates

generated by the "conventional" method that is currently being used. To do

so we developed a new, proposed null finding algorithm that includes Bayesian

Estimation techniques applied in both range and time and the use of a Probabilistic

Data Association Filter to decide the optimal location for the first-order boundaries.

Through this proposed algorithm, we are able to discard erroneous ocean

surface current vectors that the conventional method had placed in the map,

and to add new vectors that agree with valid ocean currents present in the area

nearby the corresponding radar site location.

It will be demonstrated that the new null-finding method used to determine

the first-order boundaries is able to detect that a Bragg region has been split

(first-order Bragg echoes present pronounced, multiple maxima), and it can track

both sides of the split Bragg region, and therefore can add all the vectors that

correspond to the area of the split that was missed with the conventional method.

Please refer to Section 1.3 for a description of every chapter and to find where

to read more about each of the relevant concepts mentioned above.
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1.3 Document Organization

This dissertation is divided into ten chapters. After this introduction in

Chapter 1, we discuss the principles of oceanographic high-frequency radar and

its applications to surface current mapping in Chapter 2.

Next, Chapter 3 describes the importance of determining the boundaries

between first-order and second-order Bragg regions backscatter properly. We also

describe the present method being used to find the location of those first-order

boundaries.

The proposed method that we have developed to determine the first-order

Bragg boundaries consists of three major stages:

1. Proposed alternative multi-probabilistic null-finding algorithm developed,

described in Chapter 4, which is based on the conventional method but

provides some calculations and advantages that differ from it, plus it is able

to output multiple possible locations for the first-order boundaries.

2. Object tracking and Bayesian estimation techniques, introduced inChapter

5, that are very relevant for the Bayesian approach in our proposed algorithm

to correct and smooth the first-order boundary locations.

3. The complete algorithm studied in this dissertation is summarized and listed

in Chapter 6. When multiple possible first-order boundary locations are

provided we apply the additional step of the Probabilistic Data Association

filter, described in Chapter 7, for the spatial tracking in range as well as

the Bayesian tracking in time.

7



Once the proposed method has been described, in Chapter 8 we proceed with

a series of statistical comparisons to demonstrate the validity of this alternative

method versus the conventional method. We present comparisons of determined

first-order boundaries on the radar backscatter spectra as well as comparisons of

the corresponding results mapped into surface current radial maps.

Next, in Chapter 9 we present a scenario from HF radar data collected in the

Straits of Georgia where the statistical differences method did not seem relevant.

In this study we compare the radial current vectors from both line boundary

determination methods against a series of radial velocities obtained from drifters

that were deployed by the University of British Columbia in the Straits of Georgia.

Finally, in Chapter 10 we present a summary of the study and the results.

In addition, in the conclusions we review the contributions to knowledge and sum

up the success of using the proposed Bayesian method especially in challenging

scenarios. Finally, we mention several topics that we think are worth pursuing

to improve and validate the results of work as well as moving forward with

improvements to the method.
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Contributions to Knowledge and

State of the Art

Contributions to knowledge:

1. Analysis algorithm to identify challenging observational situations where the

first-order Bragg backscattered echoes (Chapter 2) in a given range bin either

present unusual characteristics on the approaching (positive Doppler shift)

and/or receding (negative Doppler shift) ocean waves or they form multiple

peaks – see Figure 3.12 for an initial idea of those split Bragg peaks that

will be discussed in Sections 3.3.2 and 4.9.

2. Surface current measurements using compact high-frequency radars are pre-

sently handicapped in instances where the present (conventional) method

does not accurately determine the first-order boundaries. Instead, sometimes

it includes second-order or interference as valid radar data that results in

erroneous radial vectors, and misses some radar data that could produce

useful radial current vectors.

3. By the application of a new null finding algorithm and Bayesian estimation

techniques, plus probabilistic data association filtering (PDAF) to resolve

multiple options we show that we can better define the first-order Bragg

boundaries (see Chapter 3) and thus include more useful surface current

vectors while at the same time excluding data that results in erroneous

surface current vectors.
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4. The method for finding the first-order boundaries developed here provides

the most advantage in challenging situations where conventional algorithms

are most susceptible to errors, namely:

• Split Bragg regions when islands are present in the radar field of view,

• Interference is present from ionospheric echoes, HF broadcast services

or other sources,

• Strong second order echoes are present i.e. in high sea states.

5. We validate our techniques by comparison with conventional techniques

using both surrounding current measurements and drifter measurements of

surface currents.

6. Our improvements mean that in the future the measurements performed by

HF radars will be possible in some of the adverse conditions where useful

measurements were previously impractical.

7. Further, these improvements mean that the oceanographic and practical

applications of these radars are less susceptible to the present problems

caused by erroneous radial vectors distorting results.

State of the Art:

The objective of this thesis is to develop and improve methods for selecting that

portion of the radar echo data that allows valid radial current vectors to be

retrieved from the radar observations of compact antenna, decameter wavelength,

ground wave radars.
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Although there are multiple publications with ideas for improving the retrievals

of surface currents[10][11][20][23][28][33][36][39][42][50][69], a critical point in the

radar signal processing is setting the first-order boundaries in the Doppler spectrum

of the radar echoes, as discussed above and in Chapter 3.

Kirincich[37] developed an alternative methodology based on image processing

techniques that uses a single and globally relevant smoothing length scale, careful

pre-treatment of the spectra, and marker-controlled watershed segmentation, an

image processing technique, to separate areas of spectral energy due to surface

currents from areas of spectral energy due to more complex scattering by the wave

field or background noise present. This novel idea shows some success in selecting

the first-order Bragg line echoes better than the existing data processing software

of the time of his work (around 2016). However, we are not aware of any adoption

of the technique or further development of it.

The research to develop the algorithms presently in use rests on creative

ideas plus trial and error with observational data. Most of the work on this

critical task has been done in the development of the data processing software

for CODAR SeaSonde radars and is not available beyond a few brief memos.

Based on these memos and current practice we have constructed a conventional

method to represent the state of the art. This conventional method is introduced

in Chapter 4 and its algorithm is described in Section 6.3. However, we note

that the data processing software for CODAR SeaSonde is continually evolving

in efforts to improve the retrieval of ocean surface currents. Nevertheless, our

conventional model is up to date and forms a good standard of comparison from

which to validate the results of our thesis research.
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In fact, in Chapter 8 we process radar data from the Straits of Georgia by both

conventional and our new multi-probabilistic methods and statistically compare

the results. The situations that the conventional method finds most challenging

are when there are multiple peaks in the first-order Bragg region echoes due to

islands in the radar coverage, flow in straits, tidal flows, and coastal upwelling.

Another situation that presents problems for the conventional method is high sea

states.

In this thesis we develop methods to better handle these challenging situations

and test the validity of our new methods with both statistical tests and comparisons

with drifting buoys. We choose that particular VCOL radar site in the Straits of

Georgia for our comparisons because it is indeed a site where the Bragg regions

present splits and therefore the first-order boundaries determination from our

proposedmulti-probabilistic method (Chapter 4) and the advantages of the Bayesian

tracking we apply (Chapter 7) are more significant. In addition we also run the

comparisons against drifting buoys on that same area of the Straits of Georgia

for further verification of the favorable outcome of the proposed method we have

developed.
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Chapter 2

High-Frequency Radar and its

Oceanographic Application

High Frequency (3-30 MHz) radars measure the speed and radial direction

of ocean surface currents in near real time by emitting a vertically polarized

electromagnetic signal along the electrically conductive ocean surface. This signal

is coherently backscattered by Bragg resonant ocean waves – travelling radially

away or towards the radar with ocean wavelength equal to half of the radar

wavelength.

More than 400 oceanographic HF radars worldwide use this strong coherent

return of energy (known as Bragg scattering) and its Doppler shift to infer the

radial velocity of the surface water and to map the radial currents hourly with

1 to 5 km range resolution. Installing two radars allows the measurement of

two-dimensional directions along the ocean surface in their field of view.

In this Chapter we present an introduction to some important concepts we will

study in this dissertation, and the organization of the sections is presented next.
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First, in Section 2.1, we provide an introduction to the radar, its history and

principles of operation.

Later, in Section 2.2, we define a few of the most relevant concepts associated

with a radar system. Amongst others, we will describe the radar wavelength, the

concept of range to target, the properties of the antennas used on a radar system

as well as the principal equations that describe the signals transmitted by a radar.

Finally, in Section 2.3 we describe the application of most interest for this

dissertation: the oceanographic use of high-frequency radars to map ocean surface

radial currents. After describing some history of the oceanographic radar, we

introduce the concepts of Bragg scattering, Doppler-shift, and first-order Bragg

peaks. In addition, we include a comparison of the two possible architectures for an

oceanographic radar: phased-array beam-forming as opposed to direction-finding

radars, in Section 2.3.1. At the end, Section 2.3.2 describes the MUSIC algorithm,

a key technique in the CODAR SeaSonde compact direction-finding that chooses

a radial surface current magnitude and determines the bearings of the patches of

ocean surface where that current magnitude is present.

The system of measurement employed to express the values of quantities in

this document is the International System of Units (SI). Only SI units and those

units recognized for use with the SI system are utilized.
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2.1 Introduction to Radar

A radar system uses radio waves to detect the presence of objects and to

determine their range, angle, and velocity. The term radar, derived from radio

detection and ranging, was first used by the U.S. Navy around 1940. The system

was developed secretly, for military use, before and during World War II.

There are many applications for radar, on scale sizes that vary from a few

centimeters – like measuring the thickness of a wall – to long range systems probing

planets across the Solar System.

Some current radar applications include:

• Ground-based radar applications, i.e. air traffic control, sea traffic control,

mapping ocean currents, speed limit radars on the roads and industrial radar

measurements;

• Sea-borne applications for navigation or collision avoidance;

• Air-borne applications like altimeters, systems for navigation or to study

weather formations;

• Space-borne systems to study the ocean and other Earth resources, mapping

planets and other bodies in space;

• Military systems including the detection and tracking of targets or the

guidance of weapons.
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The principle of a radar system is that a transmitter sends electromagnetic

waves, directed by an antenna, that propagate in the range of frequencies between

VLF (starting at 3 kHz) to microwaves and higher (tens of GHz and above).

This signal will then reflect (also known as scatter) off anything it encounters –

land, sea, ships, aircraft – and a small amount of its energy will scatter directly

back to a receiver antenna which is usually, but not always, located near the

transmitter. The term backscatter is given to the signal reflections that travel

in the exact opposite direction to the incident rays. After amplification in the

receiver, these signals are processed to sort out the required echoes from the

‘clutter’ of unwanted echoes by a combination of both analog electronic signal

processing and digital computer data processing software.

Radar transmissions beyond the horizon:

The curvature of the Earth limits the line-of-sight distance from the top of a

100-meter tower to about 30 km. The experiments of Guglielmo Marconi in 1901

proved that radio waves could propagate beyond the horizon, since signals were

successfully transmitted from Cornwall, United Kingdom, to Newfoundland in

Canada. The solution to the Maxwell’s equations for a wave at a plane interface

between two media gives a space wave (free space propagation) and a surface

wave (guided propagation along the interface). The discovery of the Earth’s

ionosphere in the 1920s, proved that there can be a refracted mode of propagation,

the ionospheric skywave: which is the explanation of Marconi’s transatlantic

communications.

Figure 2.1 shows the principle of operation of a skywave over-the-horizon radar,

where the emitted electromagnetic waves refract off the ionosphere.
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Figure 2.1: Graphical description of the principle of operation of a skywave
over-the-horizon radar that employs two antenna systems installed in the coast
to detect targets located hundreds of km away in the ocean. The transmitting
antenna emits the electromagnetic waves that refract their signals off the
ionosphere for long-range detection. Then the signal is reflected and travels back
to the receiving antenna that will then process the backscatter spectra.

The SeaSonde groundwave radars that we use during this research operate in

the decameter (3-30 MHz) band – also known as HF (high-frequency) band –

and fall in the category of over-the-horizon radars. However, their transmitted

electromagnetic wave closely follow Earth’s surface, particularly over water, as a

result of the wave’s interaction with the terrestrial surface as shown in Figure 2.2.

In particular the SeaSonde radars that we employ and require transmitting and

receiving antennas as displayed in Figure 2.1.

More information about the modes of propagation of a radar signal will be

described in Section 2.2.8.
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Figure 2.2: Radio wave transmission reaching beyond line of sight for over the
horizon radars[15]. While the transmitted electromagnetic waves of a skywave
radar refract off the ionosphere; the signals transmitted on a groundwave radar
follow the Earth’s surface as a result of the wave’s interaction with the terrestrial
surface. The exact range that the reflection of the sky wave by the ionosphere and
the ground wave could reach depends on the system operating frequency. More
details about a radar signal modes of propagation presented in Section 2.2.8.
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2.2 Radar Fundamental Concepts

2.2.1 Radar Wavelength

The frequency f and wavelength λ of an electromagnetic wave are related to

the velocity of light c by

c = λf (m s−1) (2.1)

At HF frequencies (3 to 30 MHz), electromagnetic waves can propagate very

long distances over the horizon from a land based radar. The problem is that since

wavelengths become very large (in the decameter size), antennas often have to be

large as well in order to obtain high accuracy in the determination of the direction

to the target or place antenna nulls toward unwanted echoes. For example, at 3

MHz, a quarter-wavelength monopole would be 25 meters high which makes it

difficult to build a high-gain antenna that could potentially have a vertical null

to avoid ionospheric echoes. Another issue found at HF frequencies is that layers

and irregularities in the ionosphere can cause strong scattering, which creates

unwanted echoes that could be confused with moving ocean waves.

2.2.2 Range to the Target

The radar transmitter antenna transmits a short pulse, focused in a direction

given by the directivity (Section 2.2.6) of the antenna and this pulse propagates

in this given direction at the propagation speed of EM waves for the situation of

interest – typically very close to the speed of light. Once the pulse is transmitted,

the radar clock starts counting and when it encounters obstacles or targets, part

of the energy of this pulse is reflected back to the radar. The receiving antenna

receives this energy, the clock registers the time and then the signal information

is evaluated.
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Since the radio pulse travels away from the radar at its known, propagation

velocity, the distance (range) between the radar and the target that has reflected

the signal can be calculated from the time that took to travel the distance to the

target and back[35]. The range R to the target is

R = c · τ
2 (m) (2.2)

where c is the speed of light and τ is the time delay of the echo from the

moment it is transmitted to the moment it is received i.e. having travelled the

range distance twice.

2.2.3 Signal Bandwidth

A radar receiver must have the ability to process the signal bandwidth of the

backscattered pulse that it receives. The bandwidth BW is the difference between

the upper and the lower cut-off frequencies of the radar receiver and it is measured

in Hertz.

For a single short pulse radar, the minimum bandwidth BW to receive a pulse

of duration τpulse seconds is

BW = 1
τpulse

(Hz) (2.3)

2.2.4 Bearing and Range Resolution

The target resolution of a radar is its ability to distinguish between targets

that are very close in either range or bearing.
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Range resolution is the ability of radar system to distinguish between two

or more targets at different ranges. In a basic short pulse radar (see Figure 2.3)

the degree of range resolution depends primarily on the width of the transmitted

pulse, τpulse seconds. The size and types of targets can also affect the resolution,

as well as the efficiency of the receiver.

A well-designed and efficient radar system should be able to distinguish targets

separated by one-half the pulse width time τpulse. Thus, the theoretical range

resolution SR of a radar system can be calculated as shown in Equation (2.4),

which is based on Equation (2.2) for the range of a radar, expressed in terms of

the pulse width time τpulse. As we see, this resolution can also be expressed in

terms of bandwidth (Equation 2.3).

SR ≥
c · τpulse

2 ⇒ SR ≥
c

2 ·BW (m) (2.4)

Bearing resolution (also known as angular resolution) SA is the minimum

angular separation at which a radar is able to distinguish two targets located at

the same range but at a different bearing. The angular resolution is typically

determined by the antenna characteristics, specifically by the antenna beamwidth

represented by the angle Θ, which is defined by the half-power point i.e. point

where the power is –3 dB from the maximum. The angular resolution as a distance

between two targets can be calculated as

SA ≥ 2R · sin(Θ
2 ) (m) (2.5)

where Θ is the antenna beamwidth angle and R is the range in meters at which

both targets are located.
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2.2.5 Signal Modulation and FMCW

Initially, the principal radio frequency of a radar system is set by the frequency

synthesizer. The first types of radar we describe are the continuous-wave radars

(CW), where the transmitted signal is sent out continuously in time.

On the other hand, in a pulsed wave radar, this continuous signal is pulsed

on and off by the modulator, creating shorts bursts of radio energy that are then

amplified by the transmitter and sent to the antenna via a transmit – receive

switch or duplexer. The two main functions of the switch are to connect the

antenna to either the transmitter or the receiver at the appropriate times, and to

protect the receiver part of the system from the higher energy of the transmitted

pulse. The waves are indeed interrupted for a period of time so that the wave can

reach a reflecting target or surface and a portion of the energy can return to the

same antenna before the next burst of waves are transmitted.

Pulse compression is a method for improving the range resolution (and often

signal to noise ratio) of a pulse radar by spreading out the pulse transmission

in time and modulating the frequency of the transmission, typically a ramp in

frequency over time, as shown in Figure 2.3. The range resolution of a pulse

compression radar system is given by the length of the pulse after the pulse

compressing stage[70], namely τc. Pulse compression combines the advantages

of transmitting very short pulses with the energy advantages of very long pulses.

The factor determining the ability to compress the pulse is not the pulse width (as

in simple pulse-modulated radars), but the pulse bandwidth instead: the receiver

needs at least the same bandwidth to process the full spectrum of the echo signals.
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In this technique the transmission pulse is modulated internally, and it allows

one to send long pulses and therefore high power but still obtain high range

resolution. The Pulse Compression Ratio (PCR) is the ratio of the time length

of the uncompressed transmitted pulse to the length of the compressed pulse,

and it is approximately equal to the pulse compression gain. Finally, the range

resolution SR –compare with Eq.(2.4)– is therefore the range resolution of the

FMCW compressed pulse length multiplied by the PCR.

PCR = c · τpulse/2
c /(2 ·BW ) = BW · τpulse (2.6)

SR = c · τpulse2 = PCR c

2 ·BW

In our study, we are interested in a hybrid version of these two types of radar

(continuous wave and pulsed wave radar), which is the frequency-modulated

continuous-wave radar, described next and compared against pulsed wave radars

in Figure 2.3.

A Frequency-Modulated Continuous Wave radar (FMCW) is a special kind of

radar sensor which transmits continuously, like a simple continuous wave radar

(CW), but that can modify its operating frequency during the measurement,

i.e. the transmission signal is modulated either in frequency or in phase. On

the other hand, pulse radars can only deliver their peak power in short bursts.

With FMCW, a signal is transmitted and then the frequency (or phase) of this

signal is increased or decreased periodically. When the echo signal is received,

that change of frequency generates a delay ∆t (known as ’runtime’ shift), similar

to the technique used on pulse radars. In a pulse radar this runtime must be
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Figure 2.3: (Credit: Michael Davis, Georgia Tech Research Institute)
Comparison of transmitting a pulsed wave (top) versus a frequency-modulated
continuous-wave (lower). Pulsed Wave Radar uses electromagnetic waves
that are emitted from the antenna in short bursts. On the other hand,
Frequency-Modulated Continuous-Wave (FMCW) achieves a much better SNR
by emitting a continuous-wave signal with a much larger energy as compared to
the emitted signal of a pulse radar system. The frequency of this continuous-wave
signal is linearly modulated over time and its sweep duration can be chosen
independently from the bandwidth.

measured directly, but in FMCW radars we measure the differences in phase or

frequency between the actual signal that was transmitted and the signal that is

being received. Some of the advantages of choosing FMCW modulation are:

• Ability to measure very small ranges to the target, since the minimal measured

range – Equation (2.4) – is comparable to the transmitted wavelength λ.

• High target range accuracy and ability to measure it simultaneously along

with its relative velocity.

• The pulse radiation does not have to be at a high peak power. Rather, the

pulse is spread out over a coherent integration time T, allowing more pulse

energy for a given peak transmit power.

The range R to an object is defined in Eq. (2.7). The frequency difference in

Hz is ∆f = ∆t · df
dt

, where ∆t is the time delay in seconds, (df
dt

) is the frequency

shift per unit of time, also known as the chirp rate.
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R = c|∆t|
2 = c|∆f |

2(df
dt

)
(m) (2.7)

If the change in frequency is linear over a long time interval, then the radar

range can be determined by a simple frequency comparison: the frequency difference

∆f is proportional to the distance R to the target.

On the other hand, if the reflecting object has a radial velocity with respect to

the receiving antenna, then the echo signal contains a Doppler frequency fD caused

by that velocity. Thus, the radar will measure the frequency difference f∆t = 1
∆t

caused by the runtime and, in addition, the Doppler frequency fD caused by the

radial velocity. These frequencies will be either added or subtracted depending

if the movement direction and the modulation direction are equal or opposite to

each other, resulting in |∆f | = |f∆t ± fD|.

The coherent integration time T determines the frequency resolution

fres = 1
T

(Hz) (2.8)

and, therefore, the radial velocity resolution is calculated as

vres = λ
fres
2 (m s−1). (2.9)

The signal-to-noise ratio (SNR) of an HF radar system can be improved by

using waveforms that maximize the percentage of time that the transmitter is on,

more about SNR can be found on Section 2.2.7.
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As opposed to CW modulation, FMCW involves sweeping the frequency of the

continuous wave to gain bandwidth and therefore range resolution too, as seen in

Eq.(2.4) and described by Barrick[7].

2.2.6 Antenna Fundamentals

An antenna is a device for radiating and receiving electromagnetic energy. The

three principal characteristics of an antenna are:

1. Directivity: Ability to focus the power beam in a given direction to increase

the radar sensitivity in that direction.

2. Steering: Capacity to provide some beam steering such that an area of

coverage is obtained.

3. Angle: To allow the measurement of angular information so that the direction

of the target can be determined.

The terms above are generally applied to beam forming antennas. Direction

finding antennas will be discussed in more detail in Section 2.3.1.

An isotropic antenna is a hypothetical radiator that radiates energy in all

directions uniformly, being therefore omnidirectional.

Generally all practical antennas (which all show some directivity) are compared

with the characteristics of the ideal isotropic radiator which would radiate power

uniformly over the whole 4π steradians of a sphere.

This property of beaming power is known as the directive gain D(θ, ϕ), or the

power gain G(θ, ϕ), and abbreviated as directivity D and gain G.
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While the directive gain describes the radiation pattern of the antenna, it

does not provide any details about how lossy the antenna is. The power gain

includes the concept of losses, which occur through heating of the antenna itself,

the ground plane and any matching devices, as well as power radiated into the

sidelobes. Power gain might be defined as the ratio of the radiation intensity in

the main lobe of the antenna to the radiation intensity from a 100 percent efficient

isotropic antenna having the same power input.

The gain of a lossless antenna is given by

G(θ, ϕ) ∼=
4π

∆θ∆ϕ (2.10)

where ∆θ [radians] is the width of the beam in azimuth direction and ∆ϕ[radians]

is the width of the beam in the elevation direction.

The azimuth angle θ gives directional or bearing information, measured clockwise

from the north. The elevation angle ϕ is measured from the horizon upwards.

The power gain is most commonly used to denote the maximum gain of an

antenna, which can also be calculated from its size:

G = (4πAe)/λ2 (2.11)

where Ae is the effective area of the antenna, usually less than the real area A by

an efficiency factor ε.
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If the practical antenna has ohmic losses (I2R) represented by Ploss, the power

radiated Prad is less than input power Pin, and they are related by ηr, the radiation

efficiency of the antenna.

ηr = Prad
Pin

= Prad
(Prad + Ploss)

(2.12)

The ratio of the power radiated in a particular direction (θ,ϕ) to the actual

power input of the antenna is called power gain of an antenna, denoted by Gp

(θ,ϕ) and given by

GP (θ, ϕ) = (Pd(θ, ϕ))
Pin

(2.13)

2.2.7 Range Equation and Signal-to-Noise Ratio

The ability of a radar to detect the presence of a target is expressed in terms

of the radar equation.

First, at the transmitter we have a peak power output Pt in Watts. If this

power was radiated isotropically by the antenna, then the power flux ΦR at a

range R would be given by:

ΦR = Pt
4πR2 (W m−2) (2.14)

If the transmitting antenna is not isotropic, concentrating the power towards

the target with a gain factor Gt, then the power flux at a range R will be:

ΦR = PtGt

4πR2 (W m−2) (2.15)
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The target intercepts a portion of this incident power and re-radiates it. The

measure of the incident power intercepted by the target and radiated back towards

the radar is σ, the radar cross section. On the return path the power gain will be

spread out over the sphere of area 4πR2, and in addition the amount of returning

power that is intercepted by the antenna is determined by its effective area Ae.

Finally the mean power reflected and received by the radar becomes

Pr = PtGtσAe
(4πR2)2 (W) (2.16)

and the receiving antenna gain is

Gr = 4πAe
λ2 (2.17)

Adding the inevitable inefficiencies in the radar system, all grouped in the loss

factor Ls, we obtain the power received by the radar from the target defined by:

Pr = PtGtσλ
2Ls

(4π)3R4 (W) (2.18)

Finally, adding the concept of noise level N, we can now compare the power

received from the target with the noise power, which is known as the signal-to-noise

ratio:

SNR = PtGtσλ
2Ls

(4π)3R4N
(2.19)

The noise level N is an average of the background noise. In some cases we

need consider additional sources of interference, e.g. other discrete transmitters,

machinery or power lines, to obtain a signal to interference ratio SIR.
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2.2.8 Signal Propagation

An accurate study of the performance of a radar requires studying the significant

effects that the Earth and its atmosphere cause in the propagation of radio waves.

Some of these effects are described next, and Figure 2.4 illustrates the layers of

the Earth’s atmosphere mentioned below.

• Ground reflections from the surface of the Earth.

• Refraction (bending) of the radar electromagnetic waves. The refraction

effect will happen in the first layer of the atmosphere i.e. the troposphere,

which extends up to an altitude of around 20 km. The refraction indices are a

function of pressure, temperature, water vapor, and gaseous content. At the

HF frequency band (3-30 MHz) refraction also happens in the ionosphere,

discussed below.

• Attenuation or absorption of part of the radar signal energy by the gases

in the atmosphere. Atmospheric attenuation increases significantly in the

presence of rain, fog, dust, and clouds, as well as with the increase of the

frequency of the transmitted electromagnetic wave. On the other hand, it

decreases with air pressure and therefore with altitude, which is why the

atmospheric attenuation is maximum in the troposphere. Typically, at HF

frequencies attenuation is not significant in the troposphere.

• The ionosphere extends from about 50 km to about 600 km. Compared to

the troposphere, the ionosphere has very low gas density and a significant

amount of ionized free electrons, which will affect the electromagnetic waves

being propagated through it. The primary cause for this ionization is the

sun ultraviolet and X-rays. These effects are highly dependent on the

frequency at which the waves are incident, and they include refraction,
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Figure 2.4: (Credit: NASA’s Science Photo Library) Illustration of the Earth’s
ionosphere and atmospheric layers. The ionosphere (partially shown in yellow at
upper left) is the ionised part of the Earth’s atmosphere, reaching from around
60 to 1000 kilometres above the Earth’s surface. The ionisation is caused by
the Sun, and studying the ionosphere is a key part of understanding the effect
space weather has on satellite communications and related technology. Other
atmosphere layers shown in the figure are the troposphere and the stratosphere,
the two lower layers where most surface weather occurs. The altitude boundaries
of each layer is shown in kilometres (km).

absorption, noise emission, and polarization rotation. For incidence near

vertical, frequencies lower than about 4 to 6 MHz are completely reflected in

the lower region of the ionosphere and will not travel through it. Frequencies

higher than 30 MHz may penetrate the ionosphere and will suffer some level

of attenuation. For oblique incidence frequencies in the HF band (3-30 MHz)

are often refracted back toward the Earth and enable "skywave" propagation

between points on the Earth’s surface at long distances.

• Diffraction of electromagnetic waves. The region below the horizon, close

to the Earth’s surface, is called the diffraction region. Diffraction is a term

used to describe the bending of radar waves around physical objects and it

generally increases with frequency. Groundwave radars and their operation

were presented in Figure 2.2.
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2.3 HF Radar for Oceanography

In his publication from 1955, Crombie[19] noted that part of the received signal

from propagation over the ocean seemed to be related to surface waves. Further

development of radar systems, driven primarily by military needs, quickly moved

to shorter centimetre-scale wavelengths. However, numerous researchers proposed

and demonstrated that high-frequency (HF) radar systems operating between 3

and 30 MHz frequency (10-100 meters wavelength) could be used to measure ocean

surface currents and sea state. Among those researchers, publishing their research

in the 1970s are Barrick[8], Hasselmann[27] and Stewart and Joy[65].

HF radar systems estimate surface currents by analyzing the spectra of the

resonant scattering peak of the echo –returned signal–, which is also known as the

first-order Bragg peak. (Refer to Chapter 3 for a complete study on first-order

Bragg).

First-order resonant scattering occurs when outgoing electromagnetic waves

reflect from radially-propagating surface waves with half the wavelength of the

radar. Since ocean waves travel with a known speed set by the deep water

gravity wave dispersion relation, the reflected signal is Doppler-shifted by a known

amount. In addition, if the waves are being transported by an underlying, near

surface, ocean current, then this Doppler shift is further modified. Thus, a

measured Doppler shift is proportional to the sum of the known velocity of ocean

waves and the unknown velocity of the surface current.

Radio waves in this frequency band propagate primarily as ground waves

because they are effectively trapped on the electrically conductive ocean surface.
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Therefore, in principle, HF radar is capable of long range measurements beyond

the horizon – like presented in Figure 2.2 – because the waves do follow the

curvature of the Earth. However, in practice, electromagnetic wave energy is lost

by scattering and absorption, and also diluted geometrically, all of which reduce

the signal to noise ratio (Eq.(2.19)) and therefore the range and quality of the data.

Summarizing, a surface-current radar system requires:

1. A conductive body of water.

2. The presence of ocean waves with a wavelength of half the radar wavelength,

propagating in the radial direction, of amplitude large enough to generate a

measurable reflection but not so large that most energy is scattered away.

3. A method of localization so that a measured Doppler shift can be associated

with its specific patch of ocean at a particular range and azimuthal direction.

In practice, most seawater is salty enough to support propagation, and although

surface wave spectra can be highly directional, there is generally enough wave

energy in the radial direction to generate a suitable reflection. Range is easily

found from time-of-flight estimates, as described in Section 2.2.2. However, as we

will see next, obtaining directional information can be more challenging[25].

An HF surface wave radar does indeed receive echoes from multiple ranges,

as shown in Figure 2.5. Using a time series of echoes, each range bin shows a

Doppler spectrum for all the targets (regions) within an arc of constant range, as

described next in Figure 2.6.
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Figure 2.5: Schematic view of a high frequency surface wave radar with echoes
being received from multiple range cell arcs. A time series of the echoes from each
range cell arc are used to compute a Doppler spectrum for each range cell arc.

Figure 2.6 presents a system schematic showing the signal information flow,

starting at the radar sensing and ending as a surface current map that includes

the radial surface current vectors present in the radars field of view.

Following the arrows in Figure 2.6, the radar first collects radar echoes for

several minutes in range-Doppler mode to form a Doppler spectrum (as seen in

the upper right portion of the figure). Each Doppler bin corresponds to some

location along the range arc and corresponds to a radial surface current speed.

Each Doppler bin in placed in azimuth along the range arc. The Doppler shift

is converted into a radial current speed and mapped to location in range and

azimuth (as we see in the bottom left portion)[47]. Two radar stations allow the

generation of a vector current map as the one presented in Figure 2.9.
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Figure 2.7: (Credit to Hugh Roarty – Rutgers University) Picture of power
spectra for Antenna 3 of the SeaSonde at 00:15 GMT on February 26, 2009 [59].
The x-axis corresponds to the Doppler shift (Hz), while the y-axis is the signal
strength (dB). Finally, the z-axis denotes the range bin from the radar (scalar).
We observe how the signal strength decreases with increasing range, as expected.

All those range Doppler spectra are superimposed and then presented in Figure

2.7, as an example graph of the power spectra for the monopole antenna in

a SeaSonde radar i.e. Antenna 3, which is the antenna we use for first-order

boundaries determination[9][10][40][41]. In addition, there are two other receiving

antennas in a SeaSonde radar system, namely Antenna 1 and Antenna 2, which

are a dipole as seen in Figure 2.10 and Figures 3.4 through 3.7.

Each Doppler bin in the Doppler frequency shift axis represents the amount

of energy that the signal has at that particular Doppler frequency and range.

The x-axis in Figure 2.7 corresponds to the Doppler shift in Hz, while the y-axis

is the signal strength in dB. Finally, the z-axis denotes the range bin from the

radar.
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In this case we can see the energy spectrum from each different range bins

superimposed and, as expected, we observe how the signal strength decreases

as we move further away from the radar site. Also the higher energy regions

(first-order regions that will be detailed in Section 3.1.2) are found constantly

around ±0.35 Hz Doppler frequency shift.

Moreover, Figure 2.8 presents the full backscatter spectra energy received at

the monopole antenna (Antenna 3) for a single range at another SeaSonde site. Its

horizontal axis represents the Doppler frequency, and the vertical axis is the range

in kilometers from the radar site location, again we see the energy decreasing with

increasing range. The two stronger first-order Bragg regions are clearly located in

Figure 2.8 around the ±0.22 Hz from the center.

From a complete ocean backscattered spectra plot – like the one presented

in Figure 2.8 – we study each ’Range Spectra’ portion separately. Every ’Range

Spectra’ corresponds to the backscattered energy from that specific range arc,

usually simplified to ’Range Cell’, where all azimuth bins within the arc are located

at the same distance (range) from the radar site.

As we described in Figure 2.6, each Doppler bin in each range spectrum

represents a radial surface current for an azimuth somewhere within the range

bin. Looking at the radial range bins from the top of the ocean surface we can

plot a full map of radial currents, like the radial surface currents map from the

SeaSonde radar site near Bodega Bay, CA shown in Figure 2.9.
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Figure 2.9: Map showing the radial surface currents and the constant range arcs
(range cells) at the SeaSonde radar site near Bodega Bay, CA. Each range arc
provides a separate ’Range Spectra’ (like the ones in Figure 2.7 and Figure 2.8
from which we extract the first-order region boundaries.
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The radial range cells can be easily identified, but the azimuth of the targets

needs to be determined in order for the radial currents to be placed in the map.

The incident, azimuth, angle of a received signal can be inferred from phase

differences between multiple antennas using the MUSIC algorithm as we will study

in Section 2.3.2.

As summarized in Figure 2.10:

• From the ocean backscatter of the three antennas for every range cell, we

process each of the Doppler bins within the first-order region separately

through MUSIC Direction Finding.

• The information about the ocean surface current they represent can thus be

extracted.

• The system compares phase and amplitude received at the three antennas

for that Range-Doppler bin and determines the bearing angle of the radial

velocity vector.

2.3.1 Beam-Forming and Direction-Finding

Currently, in oceanographic HF radars, there are two major architectures for

the receive antennas and they are described next.

Beam-Forming Antenna Arrays: A linear (or phased) array, typically with

8 to 16 antennas spaced one-half wavelength apart. Following the theory of

conventional beam-forming processing techniques, the angular resolution of an

antenna array of width L, emitting radiation of wavelength λ, is about λ/L radians.
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Therefore, the large number of antennas and physical length of the array

provides good angular resolution. The disadvantages of a beam-forming array are

their high costs, large required installation space and other logistical requirements.

When we work with a phased array of antennas we assume that we know the

direction where our beam should be pointing at. We steer the antenna beam to

this direction by applying phase shifts to the receive antenna element signals and

summing them. We then take the signal representing the echo from that desired

beam direction and extract the information, namely, the radial velocity in case of

ocean current mapping. The beam-forming method allows for estimating signal

from any specific direction chosen, since the incidence angle is an independent

variable.

The size of an antenna array required to obtain a good angular resolution for

azimuthal direction can be extremely large (more than 100 m) when we study

ocean surface gravity waves that have wavelengths in the range of a few to tens

of meters or more. For example, in the Strait of Georgia, Bragg scattering from

surface gravity waves with λ = 6 m (period, T = 2 s) requires electromagnetic

radiation with a wavelength of 12 m, and to obtain an angular resolution of 6° the

antenna array required is about 120 m across, which is in most cases impractical.

Direction-Finding systems: Like a phased array, a direction-finding system

employs multiple antenna elements and it also collects the signals received at

each individual element and processed them in software to extract the desired

information.
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However, in a direction-finding system we consider each range bin separately

and assume we know the radial velocity of the current: it is the output of the

digital spectral processing for each Doppler-shift bin. What we search for is the

bearings of each of the incoming signals associated with their respective radial

velocities.

While in a beam-forming system the bearing is limited by the resolution, i.e.

the beamwidth (as seen in Section 2.2.4); the bearing accuracy in a direction-finding

architecture is limited by the signal-to-noise ratio of the system (refer to Section

2.2.7) and we obtain a much better signal bearing accuracy when using direction

finding[7].

Barrick[7] compares the two systems with the following example: "A strong

ocean current variation within a given radar range cell will produce many separate

Doppler-shifted signals, originating from different directions. However, some

current patterns could have the same radial velocity (Doppler shift) coming from

two or more bearings.

• In beam scanning, two signals at the same frequency (radial velocity) coming

from within the same antenna beam can not be separated, unless they are

displaced more than one beamwidth.

• In direction-finding, the number of signals at the same frequency that can

be uniquely determined is N–1, where N is the number of receiving antenna

elements used.
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Therefore, an important difference between the two methods is how they

handle signals at the same frequency but coming from different directions".

When a single target is generating a return signal, then direction-finding

techniques can be used with a much more compact antenna. Radar pulse timing

separates targets by range, so the requirement is for only a single target at a given

range, over all the azimuths returning signals.

Halverson et al.[25] present the following example:

"If an ocean surface current is constant, moving eastward at 10 cm/s, over the

radar field of view, which spans 180° of azimuth on a straight east-west coastline,

then the radial component of this current at a fixed range would vary as 10 cos(θ)

where θ is the azimuthal direction, between a value of –10 cm/s in the up-current

direction to +10 cm/s in the down-current direction. A particular radial speed,

like 2 cm/s, would therefore appear only once in a 180° arc and would be a "single

target" in the Doppler bin associated with speeds of 2 cm/s. If the current was

moving southwards towards the coast, then all radial speeds would appear as two

targets, equally spaced to the left and right of the radar, so that a direction-finding

algorithm would need to separate two targets of variable relative power."

In the compact CODAR SeaSonde radar systems, the technique used is indeed

direction-finding. The radar return directions are determined by combining the

signals from one omnidirectional monopole and two dipole antennas (oriented at

90° to each other). These dipole antennas are co-located with the omnidirectional

antenna, all three are mounted in the same vertical axis.
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Because of their symmetric and orthogonal design, the three elements do not

interact with each other, i.e. there is no mutual coupling between them. Due to

its design, the ground footprint of this antenna system can be only a few tens of

centimeters across.

The first robust direction-finding algorithm applied to the SeaSonde three

antenna system for high-frequency oceanographic current mapping radar was

Least Squares, as described by Lipa and Barrick[41]. However, as described next,

it was later found that the MUSIC algorithm is more accurate and robust.

2.3.2 The MUSIC Algorithm

As we introduced in Section 2.3.1, the SeaSonde high-frequency radars designed

by CODAR use the MUSIC algorithm (MUltiple SIgnal Classification) – developed

by Schmidt[61] in 1986 – to provide the most likely direction for a maximum of

two targets.

MUSIC is a direction finding algorithm that considers each of the range bins

separately. Each spectral point in each range bin where Bragg energy is detected

in the Fourier spectrum of the received signal is processed. The MUSIC algorithm

then determines the direction of the areas of the ocean surface that are reflecting

the radar signal at that Doppler shift.

In other words, MUSIC chooses a radial surface current magnitude and then

it determines the bearings of patches of the ocean surface where that particular

current magnitude is present (See Figure 2.10).
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The number of directions that can be resolved for a single current magnitude

is limited to the minimum between (N–1) and M. N is the number of receiving

antenna elements and M is the number of data segments averaged in the process

of making the measurement. Since a SeaSonde radar has three receiving antennas

(N=3), as described in Section 2.3.1, we can infer that MUSIC is indeed able to

provide the direction of a maximum of two simultaneous targets. In addition, the

performance of the MUSIC algorithm has been found to be very good in examples

where the requirements mentioned above are met, i.e. there are a maximum of

two targets in a given range and Doppler bin.

The MUSIC algorithm analyses the sample-averaged antenna covariance matrix

and determines the locations of the targets that are backscattering the signal.

The largest eigenvalues of this covariance matrix are associated with signals and

the others are associated with noise. The ability to determine the direction

of arrival (DOA) for each of the signal emitters is based on the fact that the

signal eigenvectors are mutually perpendicular to each other and to the noise

eigenvectors. Provided that the above limit on the number of signal emitters

detected is not exceeded and the signal to noise ratio is high enough, the directions

of arrival for each of the targets can, in principle, be completely resolved.

The spectrum of Doppler shifts received by the antennas are binned into a

discrete set, each associated with a particular radial velocity. By repeating the

calculation for all Doppler bins at a particular range, a plot of radial velocity as a

function of azimuthal direction can be created, with one (or two) points for each

velocity associated with each Doppler bin plotted at their most likely azimuth.
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This set of points, irregularly spaced in angular direction, is then smoothed

and interpolated to find radial velocities at a fixed set of azimuths for that range,

normally every 5°. The whole set of calculations is then repeated for all ranges to

build up a radial velocity field like the one we see in the radial currents map in

Figure 2.9.

Finally, we obtain a full two-dimensional current velocity vector when we

combine the radial velocities from two separated radar systems. The error in this

combination is dependent on the system geometry. MUSIC is most accurate when

the two radial velocities are in perpendicular directions, and becomes less accurate

as the two radials become co-linear. Furthermore, the area of the scattering patch

increases with distance from the antenna, and the degree to which the variability

is resolved depends on their radial distance[7][25].
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Chapter 3

First-Order Boundaries and

Summary of Research Approach

The Doppler spectrum of the radar echo –backscattered signal from the sea–

at the range of high-frequencies (3 to 30 MHz) presents two main peaks – one

from approaching waves and one from receding waves.

Previously, in Section 2.3, we provided an introduction to the radar backscatter

spectra in the range of high-frequencies, HF, (3 to 30 MHz). In this Chapter,

we first describe in detail the Bragg scattering from ocean waves in Section

3.1. Later, we discuss what are the first and the second order regions of the

backscattered spectrum in Section 3.2. Finally, we present our research approach,

which is related to the aforementioned first and second order regions and why is

it important to be able to separate them.
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3.1 Bragg Scattering at the Ocean Surface

3.1.1 Historical Background

Lawrence Bragg and his father William Henry Bragg first proposed what we

know as Bragg diffraction in 1913, due to their discovery that crystalline solids

produced surprising patterns of reflected X-rays. It was four decades later, in

1955, that Crombie examined the temporal power spectrum of 13.56 MHz radio

waves backscattered from the sea and correctly identified Bragg scattering as the

simple physical interaction mechanism responsible for the dominant first-order

peaks appearing in the HF radar backscatter spectrum. Crombie[19] suggested

that "grazing incidence radio waves were coherently backscattered by sea surface

waves with a wavelength one half the wavelength of the incident radio wave,

propagating radially toward, or away from, the radar."

In 1966, Wait[68] studied the scatter of electromagnetic radiation from a

single sinusoidal wave train and found that a principal resonance occurs when

the electromagnetic wavelength is double the wavelength of the sea wave. From

1967 until 1972, Barrick and Peake[12][13] and Barrick[2][3] employed a boundary

perturbation approach to quantitatively explain first-order sea echo from a random

sea surface. Barrick provided a quantitative link between the backscattered energy

recorded by radar and the ocean wave-height spectrum of the sea surface from

which the energy was scattered. By extending the boundary perturbation approach

to second order he showed that a double interaction was responsible for the

scattered energy evident in recorded sea echo spectra at frequencies other than

those predicted by first-order scattering theory.
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Figure 3.1: (Credit: SOCIB - Coastal Ocean Observing and Forecasting System
from the Balearic Islands in Spain) Illustration of Bragg scattering from ocean
waves. The transmitted signal from the SeaSonde HF radar travels at wavelength
λ and the ocean waves traveling directly towards the radar at half this wavelength
λ/2 will be reflected and added coherently to form a strong echo known as
first-order Bragg scattering.

Barrick[2][3][4][5][6][8][9] identified two separate mechanisms which contribute

to the second-order backscattered energy: an electromagnetic contribution that

takes account of double scatter of the incident radiation by two sea surface waves

which results in coherent backscatter, and a hydrodynamic contribution which

results from the backscatter of the incident radiation from second-order ocean

waves which are the product of the nonlinear interaction of two sea surface

wave components. Barrick developed HF radar techniques for extracting r.m.s.

wave height, mean wave period and the non-directional wave-height spectrum,

which involved a weighting function to take account of the second-order coupling

coefficient.
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3.1.2 The Backscatter of Ocean Waves

As described by Kingsley and Quegan[34], waves on the ocean are generated

by local wind (wind waves) or distant storms (swell). The motion of an ocean

wave is carried by particles of water exhibiting, roughly circular motion as the

wave travels passes. Surface gravity waves, both wind waves and swell, propagate

along the interface between water and air under the predominating influence of

gravity. At the surface of the sea, these circular motions of the water particles

can have quite large amplitudes but they quickly fade away with depth.

Any of the waves travelling perpendicular to the radar beam will produce

backscatter and part of the signal will be reflected back to the radar. But only

those having a length equal to half the radar wavelength (λ/2) will generate a

much stronger echo, as illustrated in Figure 3.1. This is because their reflected

radio waves add together coherently, on what is known as Bragg resonant scatter.

For surface radio waves Bragg resonance occurs when the distance between the

echoes from two ocean wave crests is a multiple of λ/2, half the radar wavelength.

As we see in Figure 3.2, and by simple trigonometry, we can infer that

Ln = nλ/2
sin θ (m) (3.1)

and when the radar is at a far enough distance θ = 90 degrees, thus sin θ = 1.
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Figure 3.2: (Credit: Kingsley and Quegan[34]) The distance between two wave
crests is Ln, the radar signal incidence angle is θ and the path difference between
their two echoes is nλ/2 i.e. a multiple of half the radar wavelength. When this
occurs in a periodic medium as the ocean surface, the backscatter will be added
coherently in what we know as Bragg resonance.

For an ocean gravity wave of wavelength Ln, we find the phase velocity Vn

through the dispersion relation in Eq.(3.2), where g is the acceleration due to

gravity.

Vn =
√
g
Ln
2π (m s−1) (3.2)

The Doppler formula describes how the radar Doppler shift fd relates to the

radial ocean wave speed vr and the radar wavelength λ by

fd = 2vr
λ

(Hz) (3.3)

and thus, the Doppler frequency shift that corresponds to the Bragg resonant

ocean wave of wavelength nλ/2 will be:

fn = ±2(Vn sin θ)
λ

(Hz) (3.4)
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Combining Equations (3.1), (3.2) and (3.4) we obtain Eq.(3.5), where we

observe that the Doppler shift from a wave of wavelength nλ/2 has a square-root

dependence on the radar frequency fradar = c/λ.

fn = ±
√
ng
fradar sin θ

πc
(Hz) (3.5)

For the HF frequency band, the corresponding wavelengths of the Bragg

resonant ocean waves are approximately between 5 and 50 meters. The associated

phase velocities, following Eq.(3.2), are about 3 to 10 m/s. The range of frequencies

of these Bragg resonant ocean waves is about 0.2 to 0.6 Hz, and their periods

roughly 2 to 6 seconds.

Figure 3.3 presents a typical sea echo spectrum for a radar working at 25 MHz

frequency, and we observe two strong peaks.

• Peak located in the positive Doppler region, at about +0.45 Hz. This peak

is due to Bragg resonant waves propagating towards the radar.

• Stronger peak found at about -0.55 Hz. This negative Doppler peak is due

to Bragg resonant waves traveling away from the radar.

The large ratio of the negative peak height in Figure 3.3 respect to the positive

peak height is indicative that the receding waves – propagating away from the

radar – have larger wave heights than the advancing waves traveling towards the

radar. This is happening most probably due to wind blowing in the direction

away from the radar.
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Figure 3.3: (Credit: Paduan and Graber[52]) Sample radar backscatter spectrum
at a fradar = 25 MHz and thus λradar = 12 m. In this section we follow the
calculations for the theoretical first-order Bragg frequencies, which correspond to
wavelength λBragg = 6 m and thus their Doppler shift fBragg = ± 0.5098 Hz.
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3.1.3 Example: Bragg Calculations for a 25 MHz Radar

Next, similar to what we observe in Figure 3.3, we present an example of

the first-order Bragg calculations to determine f1 i.e. the theoretical Doppler

frequency shift of the first-order Bragg wave (fBragg in the Figure). The theoretical

f1 frequency is a calculation for zero surface current. As shown in Figure 3.3,

a surface current will shift the actual first order Bragg region away from the

theoretical f1 location for zero current (dashed line).

fradar=25 MHz, c=3x108 m/s, g=9.8 m/s2

λradar = c

fradar
= 3× 108

25× 106 = 12 m

Thus, the first-order Bragg wavelength λBragg will be L1 as we saw in Equation

(3.1) and with the order n=1.

L1 = λradar/2 = 6 m

Continuing with Equations (3.1), (3.2), (3.4) and (3.5), we obtain:

V1 =
√
g
L1

2π =
√
g

6
2π = 3.059 m/s

and the Doppler shift for the first-order Bragg wave:

f1 = ±2(V1 sin θ)
λradar

= ±V1 sin θ
L1

f1 = ±3.059 · sin(90◦)
6 = ±0.5098 Hz
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3.2 First and Second Order Regions in the Bragg

Backscatter

The spectra presented in Figure 2.8 corresponds to the backscattered energy

received by Antenna 3 (the monopole antenna of the SeaSonde radar system)

for all of its ranges, as shown in the vertical y-axis of the figure. During this

research, we study the monopole backscatter energy of each of these radial

range arcs separately to extract the corresponding first-order region

boundaries at that distance from the radar[9][10][40][41][43].

As an example, Figures 3.4, 3.5, 3.6 and 3.7 have a Doppler resolution (fftlen)

of 1024 Doppler bins and they all correspond to the 16th constant-range arc,

usually known as "Range Cell" of that radar site (Refer to Figure 2.9 for a

description of those range cells). The x-axis on this type of spectra graphs can be

centered around the four different aspects described in the figures and we describe

their conversions in Algorithms 7 through 11.

3.2.1 First-Order Bragg Region: Measuring Ocean Currents

The first-order region of the Doppler frequency spectra corresponds to the

backscattered energy due to the radar electromagnetic wave coherently reflecting

off those sea surface waves having a wavelength equal to half the incident radar

wavelength and thus satisfying the Bragg resonant condition[31][67].

The location of the Bragg peaks we observe in the backscatter spectrum in

Figure 3.3 is determined by the phase speed of the resonant waves relative to the

radar.
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The effect of ocean currents present is to shift the frequency spectrum by an

amount equal to the radial component of the surface current. That is why we see

the first-order Bragg peaks with a frequency shift ∆f respect to the zero-current

first-order advancing and receding Bragg resonant waves i.e. ±f0 or ±fBragg shown

in the figure as dashed lines.

As developed in the example above, the theoretical frequency of the first-order

Bragg waves (±f0 or ±fBragg) is due to the phase speed of the Bragg resonant wave

traveling in still water, predicted by the dispersion relation for gravity waves on

the ocean surface. Deviations from this expected Doppler shift can be attributed

to the radial component of the surface current relative to the radar. Therefore,

the surface current measurements are made by estimating the difference between

the measured frequency shift of the Bragg peaks and the theoretical ±fBragg, i.e.

the frequency difference ∆f that we observe in Figure 3.3.

In addition, we see how the Doppler shifts ∆f appear to the left of the theoretical

Bragg waves, which means that the ocean current is moving away from the

receiver, which agrees with our deduction of the wind blowing away from the

receiver as well. If the wind was blowing predominantly towards the radar, then

the region of the advancing Bragg waves (positive Doppler frequency) would be

stronger than the receding one (negative Doppler).
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3.2.2 Second-Order Bragg Region: Measuring Waves

A second region of stronger backscattered energy is visible in the spectrum

when the transmit signal is strong enough and the sea state is high enough –

often the case during storms or strong winds. These second-order region will

present peaks as well, which are due to multiple reflections from ocean waves of

all wavelengths traveling in all directions. The power of these second-order peaks

are typically 20 to 40 dB below the first-order peaks in the spectrum, like we

observe in Figure 3.3.

Starting in the 1970s, Barrick and Lipa studied the connection between this

second- order region of the sea echo Doppler spectrum and the directional spectrum

of the ocean waves[2][3][4][5][6][1][8][9], and also proposed methods of inversion

to extract the ocean wave directional spectrum from the second-order region of

the sea echo[10][40][41][43][45]. In addition, Wyatt[71][72][73][74][75][76][77] also

performed extensive research in the 1980s and 1990s about measurements of the

ocean wave directional spectrum from HF radar Doppler spectra.

One of our objectives in this thesis is to develop methods to exclude second-

order peaks from consideration in determining surface currents. This becomes

important as wave height increases and for situations where there are multiple

peaks of first-order Bragg scattering, as discussed next.

As an example for second-order regions describing ocean waves, Figure 3.8

below (credit to Lipa[43]) presents an instance of SeaSonde backscatter spectra

where we observe the first and second- order regions for the three antennas.

60



Figure 3.8: (Credit to Lipa[43]) Example of SeaSonde cross spectra at the EPSM
site in Portugal for April 19, 2015, 9:50 am. Antenna Loop 1 is shown in red,
while Antenna Loop 2 is presented in green, and finally the Monopole Antenna 3
in blue. The first-order regions are delimited by the first-order boundaries shown
as magenta vertical lines. The spectra exhibit narrow spectral peaks close to
the aforementioned first-order Bragg region produced by swell in addition to the
broader echo from wind-waves further from the first-order Bragg region. The color
bars at the top indicate the regions in the second-order spectrum dominated by
swell (black) and wind-waves (blue).

The first-order regions in Figure 3.8 are delimited by the first-order boundaries

shown as magenta vertical lines. In addition, the three spectra exhibit narrow

spectral peaks close to the first-order Bragg region produced by swell in addition

to the broader echo from wind-waves further from the first-order Bragg region.
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3.3 First-Order Boundaries and Split Bragg

3.3.1 Separating the First and Second Order Bragg Regions

The frequency shift of the first-order scatter from its theoretical still-water

value in deep water, known as Doppler shift, is related directly to the vector

component of the sea surface current moving toward or away from the radar site.

In consequence, studying the Doppler shift present at the first-order region allows

multiple oceanographic radars to generate two-dimensional maps of ocean surface

currents.

The second and higher-order scattering, manifesting as side-bands of the first-

order echo, are caused by coherent reflections from all sea surface waves and

provide, after analysis, more information on the sea surface properties and the

directional wave-height spectra.

Estimation of the first-order line boundaries – that sometimes are referred to

as first-order lines or FOL – shown as pink vertical lines in Figure 3.9, is therefore

key in the task of mapping ocean currents correctly.

Setting a first-order boundary from the monopole antenna spectrum implies

setting both positive and negative thresholds, surrounding a Bragg peak (for

still water, zero surface current), that limit the largest Doppler shift (hence the

maximum corresponding radial surface current) accepted for processing to retrieve

surface currents. It is important to bound the first-order region as accurately as

possible so that second-order echoes that could lead to erroneous ocean current

estimates are excluded properly.
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The radial components of surface currents corresponding to Doppler shifts

larger than the threshold set by that first-order boundary will therefore be rejected.

In turn, accepting erroneous radials would be directly including incorrect and

strong radial currents, due to their Doppler shift being outside the thresholds.

Once we have determined the location of these boundaries for a specific range

bin, we select each Doppler bin within them that produces an echo above the

noise floor. From the backscatter spectral level from each of the Doppler bins we

obtain an estimate of the radial surface current for some azimuth location within

the range bin arc of the range cell we are working with.

Next, the MUSIC algorithm will determine the azimuth location of all of the

retrieved surface current radial component using a state-space method of direction

finding. More details about the MUSIC algorithm can be found on Section 2.3.2,

or the original paper by Schmidt[61] and on the CODAR Ocean Sensors Ltd. U.S.

Patent by Barrick and Lipa[11].

3.3.2 Bragg Splitting: a New Challenge

The dominant peaks of the backscattered Doppler spectrum (the "first-order

Bragg region") are generated, as we learned in this chapter, by the ocean wave

spectrum components with wavelength λ/2 moving forward or receding from the

radar. Under normal conditions, the effect of a surface current on the position of

the Bragg peaks is stable, and the dominant Bragg peak appears as a narrow-band

single spike. Figure 3.10 presents what we know as a typical Doppler backscattered

spectrum, where the two first-order Bragg regions are easily identifiable around

±0.25 Hz.
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Figure 3.10: Example of the Doppler spectrum of the 2nd range cell at the
PILR radar site in Northern California where we can see the first-order Bragg
regions as almost symmetrical peaks on both sides of the Doppler spectrum. The
backscatter from the three antennas is shown as red, yellow and blue lines and
the first-order Bragg peaks appear around the ±0.25 Hz Doppler frequency, 40 to
50 dB above the noise floor.

However, these first-order Bragg regions of the spectrum will migrate, spread

or even split into double-peaked or multiple peaks in the presence of a strong

horizontal surface current shear, eddy or some other non-uniform surface current

fields across the radar field of view.

In addition, the first-order region splitting can also be caused by geographical

features at the location where the radar was installed, and how the ocean currents

behave under those conditions as opposed to their usual circulation in the open

ocean. For example, the presence of the Sangiang island in front of the radar at

the Sunda Strait in Indonesia causes the first-order region to split in certain ranges.

Another site that is particularly affected by the Bragg regions splitting is the

VCOL site located at the Straits of Georgia in British Columbia, Canada. Figure
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Figure 3.11: Map of the VCOL SeaSonde radar site location in the Straits of
Georgia in British Columbia, Canada. The figure also presents semicircular arcs
in different colors that represent some of the range cells regions that reflect the
backscatter energy received back at the radar site.

3.11 presents a map of the VCOL radar site location in the straits and in addition

we have added some range arcs in different colors that represent some of the range

cells regions that reflect the radar backscatter.

The phenomenon of a Bragg peak splitting into a multiple peaked Bragg is

presented in Figure 3.12 corresponding to the VCOL site. As we observe in

the figure, it imposes a problem for surface current mapping since it increases

the difficulty of determining the correct Doppler location of the first-order Bragg

boundaries –described in the previous section– that separate this region from

the second-order spectrum, and therefore the radial components of the currents

present in the field of view of the radar.

66



The backscattered spectra shown in Figure 3.12 corresponds to "Range Cell

18" of the VCOL radar site at the Straits of Georgia. For this radar configuration,

the width of a range cell is approximately 500 meters, therefore the 18th cell

corresponds to a range of about 9 km from the radar.

Note how the positive (approaching waves) Doppler spectrum splits into two

components. The question arises as to whether the lower peak (left) is first-order

and hence used to retrieve surface currents or not.

Figure 3.13 presents the whole backscattered energy spectrum received on

Antenna 3 (the monopole) for all range bins out to range 44.5 km for the same

day and time as Figure 3.12, July 1st 2020 at 07:50 UTC.

We observe that the splits of the energy on the right (advancing) first-order

Bragg region start to manifest around 7 km range from the site. In addition,

multiple splits can be found further in range, above 14 km from the radar.

On the other hand, the split of the left (receding) first-order Bragg region

starts around the 12 km range from the radar’s site. Furthermore, we can see

how the corresponding receding radial currents for the left side of this left Bragg

(receding Bragg wave) are weaker than the right portion of the split, which is

stronger. This means that ocean currents present underneath the receding Bragg

wave are predominantly advancing towards the radar, and their current velocity

is therefore positive.
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In these figures where we can see the whole backscatter spectrum of an antenna,

the red tick marks (± 0.5 Hz) on the horizontal axis mark the Doppler shift of

the waves for zero surface current, i.e. still water.

As we will study in Chapter 4, it will be of particular interest to study the

radial currents present around the Bragg regions splits since in fact, this is where

the conventional method is not be able to track them properly.

3.4 Research Approach

As we have described in this chapter, setting the first-order boundaries correctly

is key for the surface current retrieval process. The conventional method that

has been used to determine the first-order boundaries has a series of limitations,

which lead to some erroneous boundary determinations in challenging scenarios

like storms, strong shear, tides, or the presence of an island across the radar

field of view. In addition, there are radar sites where the backscattered Bragg

regions present splits (discussed in Section 3.3.2), which further complicate the

determination of the first-order boundaries by the conventional method.

Improving the determination of the boundaries between the first and second

order region is therefore the heart of the problem investigated in this thesis. We

develop an alternative method in order to avoid some of the known shortcomings of

the conventional method and consequently improve the surface current estimation

results.
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Finally, a summarized list of the research steps conducted in this thesis and

their corresponding chapters is presented next.

List of Research Steps:

1. Develop an algorithm to find the initial estimates of the first-order boundaries

by using a more complex null detection method. (Chapter 4)

2. Description of the Bayesian estimation techniques studied. (Chapter 5)

3. Combining the null-finding algorithm and the diverse Bayesian estimation

techniques into a Python script that determines the first-order boundaries.

(Chapter 6)

4. Bayesian tracking application for our first-order boundaries problem.

(Chapter 7)

(a) Probabilistic Data Association Filter (PDAF) to resolve multiple options

for a boundary

(b) Bayesian tracking in time and range to provide the final estimates for

the boundaries

5. Demonstration of the validity of the method: (Chapters 8 and 9)

(a) Statistical comparisons against conventional method results.

(b) Comparisons of radial velocity current results against some drifter

measurements obtained in the Straits of Georgia.
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Chapter 4

First-Order Boundaries

Estimation Algorithms

Improving the determination of the boundaries between the first and second

order regions of the Bragg backscatter from the ocean is the heart of the problem

investigated in this thesis. Some of the known shortcomings of the conventional

method discussed in Section 3.4 complicate the determination of the first-order

boundaries, and on that account we developed an alternative method described

in the present chapter with the objective of overcoming those limitations.

Previously in Chapter 3, we described in detail the Bragg scattering from ocean

waves in Section 3.1. In addition, we discussed the first and the second order

regions of the backscattered Bragg spectrum in Section 3.2 and concluded that

determining the first-order boundaries locations correctly is key for a successful

surface current retrieval process.
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Our improved technique to find the nulls (local minimums) that separate

the first and second order regions of the Bragg backscatter is described in this

chapter. It follows some fundamental theoretical principles that distinguish the

regions; those principles were introduced in Section 3.2 and will be outlined again

in Section 4.2 as the basis of the null-finding algorithm.

The aforementioned principles are the foundations for the conventional method

as well, and on that account the core of the alternative method is definitely based

on its predecessor developed by CODAR Ocean Sensors Ltd. As a reminder,

the conventional method that is currently being used on SeaSonde software does

succeed at most of the radar sites, but it has been observed to provide erroneous

boundary determinations in challenging scenarios, like the ones listed below.

• Radar sites where the backscattered Bragg regions present either splits or

has unusual inclined shapes.

• Radar sites where there is an island on its field of view and consequently

the water does not circulate as usual.

• Radar sites when the following occur:

· storms,

· strong shear,

· tides, etc.
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Summarizing, the alternative method described in this Chapter

� is based on the same theoretical principles producing the Bragg regions as

the conventional one;

� applies a characteristic normalization of the signal leading to a more consistent

determination between ranges;

� determines the noise floor differently, resulting in better determination at

longer ranges;

� uses a generally more complex search of the typical nulls in the signal

between the regions that allows temporary multiple locations to be considered;

� searches for split Bragg regions and stores the whole set of possible boundary

locations;

� includes Bayesian estimation techniques that will weight the possible locations

and decide the most probable ones;

� and takes into consideration temporal and spatial previous conditions of the

first-order boundaries by applying Bayesian tracking in both time and range;

which all leads to determining more accurate estimates of boundaries separating

first and second order Bragg backscatter and consequently improves the surface

current estimation results.
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4.1 Overview of the Null-Finding Algorithm

Taking into consideration the three fundamental features that we describe

in Section 4.2 and that distinguish the first and second-order regions of the

backscatter spectrum, we decide that the null-finding algorithm will search for

those nulls (local minimums) in the backscatter spectrum of "SeaSonde Antenna

3" which is the monopole antenna. We use the monopole antenna since it observes

echoes from all azimuth directions equally. Therefore, the null-finding algorithm

steps described below are applied to the entire monopole self-spectrum[9][10][40].

In addition, we need to extract a series of parameters specific to the radar site,

as we will describe in detail in Section 6.2.

– From the Header.txt file in the radar data file we extract:

• fftlen: Number of Doppler frequency bins, each bin represents the amount

of energy that the signal has at that particular Doppler frequency.

• noisefact: Noise level factor used to threshold the spectra.

• nsm: Amount of smearing points chosen to smooth the data.

• currmax: Absolute maximum ocean current velocity expected at the radar

site.

• fdown: Factor to protect first-order region surrounding the Bragg peaks.

• flim: Factor to define minimum power considered first-order which allows

rejection of weaker surrounding side-bands.
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– From the FirstOrderConfigs.plist file in the radar data collection file we

extract:

• fdown, flim and currmax: If different, this values will overwrite the ones

on the Header.txt.

• freject: Minimum threshold of power difference in dB for the backscatter

spectrum of a range to be taken into consideration.

• minBinsBragg: Minimum amount of Doppler bins for a section to be

considered a split Bragg region.

• minSplitBragg: Minimum power magnitude below the Bragg peak for a

section to be considered a split Bragg region.

• Bayesian estimation parameters (Described in Chapter 7 Section 1):

For both Time Tracking and Range Tracking we extract

– Mode Selection

– Initial State Mean Value

– Initial State Covariance

– Initial Model Behavior

– Initial Model Covariance

– New Measurement Covariance

– State to Measurement

The complete algorithm to obtain the final first-order boundaries is divided

into the following steps described in the List of Algorithm Steps below.
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List of Algorithm Steps:

1. Extract the backscatter spectrum of the monopole antenna

2. Normalize the spectrum

3. Apply a noise threshold

4. Smooth the spectrum

5. Limiting the spectral range on both sides

6. Find the possible nulls (initial estimates of the first-order boundaries)

7. Search for split Bragg regions

8. Apply Bayesian tracking in range and time

9. Extract the final estimates of the first-order boundaries

Next, we describe the null-finding algorithm steps in detail, giving the associated

setup parameters, which are set in the Header.txt and FirstOrderConfigs.plist

files in the setup files folder. While this chapter focuses on describing Steps 2

through Step 7, the Bayesian estimation tracking in range and time performed on

Step 8 will be discussed in Chapters 6 and 7.

Finally, it is important to note that the radar site parameters mentioned above

should be calibrated periodically. Not only the values of those parameters will

differ for every radar site, but also they should be adjusted during the event of a

strong storm or high tides being predicted. For example, the maximum current

expected at a radar site (currmax in cm/s) might be increased for a period of time

if the site is predicted to experience an unusual meteorological incident.
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4.2 Premise of the Nulls Between the First

and the Second-Order Regions

One of the most critical steps in finding the boundaries that separate the first

and the second-order Bragg regions is the empirical determination of the nulls

(local minimums) between their Doppler shift frequencies, as illustrated in Figure

3.3.

Even the visual identification of the nulls between those regions in frequency can

be challenging at times, either due to

- the spectrum becoming saturated with noise or strong waves

- difficult radar sites like the scenarios listed at the beginning of this chapter.

In consequence, the computational method used to find the nulls has to include

solutions that succeed when the identification is particularly difficult.

The following three fundamental features that distinguish the first and

second-order regions of the backscatter spectrum are validated in prior

literature[1][3][4][27][40], and are the necessary theoretical basis when developing

an algorithm to determine the nulls (local minimums) between their frequencies.

1. The second-order region peaks surround the first-order region on both sides.

2. Second-order spectrum is typically an order of magnitude below first-order,

and the first-order peaks are typically two orders of magnitude above the

second-order continuum.

3. Second-order frequencies are roughly symmetric about the first-order Bragg

peak frequency.
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4.2.1 Typical Backscatter Evaluation for a 13 MHz Radar

Next, we are going to evaluate an example of a typical radar backscatter signal

from the ocean to confirm the three features distinguishing first- and second-order

spectrum listed above.

The ocean backscatter cross spectra received by a SeaSonde HF radar has a

characteristic appearance. As introduced in Section 3.2, the dominant first-order

peaks occur due to scatter from the ocean waves moving directly toward or away

from the radar with wavelength equal to one half the radar wavelength and thus

satisfying the Bragg resonant condition.

– If there were no ocean surface currents present, the first-order peaks would

be narrow – impulse (delta) functions – located at the Doppler shift frequency f1

corresponding to the phase speed of the resonant waves.

– If a surface current is present, the Bragg resonant echo is shifted from

the zero-current Bragg position f1 by an amount ∆f proportional to the radial

component of the current velocity, and we find the displaced peaks at the Doppler

frequency fpeak, as the example below shows.

Due to varying ocean currents present in the radar scatter area, as shown in

Figure 2.9, there is typically a different Doppler shift for each azimuth angle of

return, causing the Doppler spectrum to be spread out in frequency and therefore

the first-order region is broadened and not a delta function. More details can be

found in Section 3.2.1.
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A typical radar backscatter signal from the ocean, as the one presented in

Figure 4.1, exhibits two relatively stronger (first-order) regions in its spectra:

• Left first-order region, located in the negative Doppler shift frequency region,

that corresponds to the receding Bragg ocean wave (moving away from the

radar).

• Right first-order region, located in the positive Doppler shift frequency

region, that corresponds to the advancing Bragg ocean wave (moving towards

the radar).

Similar to the example presented in Section 3.1.3 for a 25 MHz radar, we show

next some calculations for a 13 MHz radar like the one in Figure 4.1.

fradar=13 MHz, c=3x108 m/s, g=9.8 m/s2

λradar = c

fradar

λradar = 3× 108

13× 106 = 23 m

Thus, the first-order Bragg wavelength λBragg will be L1 as we saw in Eq.(3.1)

and with the order n=1.

L1 = λradar/2 = 11.5 m

Continuing with Equations (3.1), (3.2), (3.4) and (3.5), we obtain the velocity of

the Bragg wave – Doppler_Velocity:

V1 =
√
g
L1

2π =
√
g

11.5
2π = 4.192 m/s
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Therefore, we show below the theoretical frequency shift location of the first-order

Bragg wave for this 13 MHz radar site if there was zero ocean current and when

the radar is at a far enough distance so that θ = 90 degrees, thus sin θ = 1.

f1 = ±2(V1 sin θ)
λradar

= ±V1 sin θ
L1

f1 = ±4.192 · sin(90◦)
11.5 = ±0.3645 Hz

We find that the peak of the advancing Bragg wave in Figure 4.1 is located

around +0.34 Hz, which corresponds to the following ∆f displacement from the

theoretical Bragg wave:

∆f = f1 − fpeak = 0.3645− 0.34 = 0.0245Hz

Therefore, as we described in Section 3.2.1, this frequency shift is attributed

to the radial component of the surface current relative to the radar. Since the

displacement of the first-order Bragg peak (located at fpeak) is ∆f = 0.0245 Hz

we find the corresponding radial ocean current through the calculation below.

Vpeak = fpeakL1

sin θ = 0.34 · 11.5
1 = 3.91 m/s

Velocity_Current = V1 − Vpeak = 28.2 cm/s
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The first-order peaks are typically two orders of magnitude higher than the

surrounding continuum, from which they are separated by well-defined nulls. The

continuum emerges from higher-order scatter, the greater part of which arises

from scatter from pairs of ocean waves[1][8]. Ocean wave information is obtained

from interpretation of this higher order spectrum, normalized by the first-order

energy[44][77].

For the 13 MHz example in Figure 4.1 in particular: the peak of the left

first-order region is found around the Doppler shift frequency fL = −0.34 Hz,

while the peak of the right first-order region is located around the Doppler shift

frequency fR = +0.34 Hz. Each of these two first-order regions – shaded in grey

in Figure 4.1 – are surrounded by higher order continuum regions (about 20 dB

below the first-order peaks located at fpeak = ±0.34 Hz), that correspond indeed

to what we know as second-order.

As detailed in Section 3.2.2 and presented in Figure 3.8, the second-order

spectrum is predominantly caused by the interaction of the radar electromagnetic

wave with pairs of ocean waves present on the ocean surface. The maximums of

the four second-order regions in Figure 4.1 are marked with red dashed lines. The

two second-order regions on the left half are surrounding the left first-order Bragg

– the receding Bragg ocean wave (moving away from the radar). On the other

hand, the other two second-order regions surround the right first-order Bragg that

corresponds to the advancing Bragg ocean wave (traveling towards the radar). In

addition, we note that both the first and second order echoes are well above the

noise level indicated by the power level at the wings of the spectrum near ±1 Hz

on Figure 4.1.
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Summarizing, the presence of second-order regions surrounding the first-order

on both sides satisfy "Feature 1" on our list of fundamental features that distinguish

the first and second-order regions of the backscatter spectrum. We observe how

the second-order spectrum energy is indeed at least an order of magnitude below

the first-order peaks (specifically around 15 to 20 dB below in the Figure 4.1

example) and the second-order peaks are roughly symmetric to the first-order

Bragg frequencies (about ±0.1 Hz in this example). Therefore, the characteristics

of the second-order regions do satisfy "Feature 2" and "Feature 3" on our list too.

4.3 Backscatter Spectra of the Monopole Antenna

For the specific cross-spectra file that we are working with, namely css_file,

we extract the self spectra of the monopole antenna (SeaSonde’s Antenna 3),

stored as Antenna3Self.

Figure 4.2 shows the backscatter spectra of the monopole antenna: its relative

signal magnitude in voltage-squared as extracted from the cross-spectra file. In

addition and for clarity, we present its equivalent in decibels in Figure 4.3, converted

following the calculation in Algorithm 1. Note that the decibels unit dBm express

the absolute power level relative to 1 mW (milliwatt).

In Algorithm 1 we find a –40 dB factor which corresponds to the conversion

loss in the receiver, and a +5.8 dB factor which responds to the processing

computational gain[46].
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Figure 4.2: Backscatter spectra example from the monopole antenna (SeaSonde
Antenna 3). The horizontal axis has been chosen to be Doppler bins, the total
fftlen is 1024 Doppler bins. The vertical axis corresponds to its relative signal
magnitude in voltage-squared as extracted from the cross-spectra file.

Figure 4.3: Backscatter spectra example from the monopole antenna (SeaSonde
Antenna 3). The horizontal axis has been chosen to be Doppler bins, the total
fftlen is 1024 Doppler bins. As opposed to Figure 4.2, the vertical axis on
this figure corresponds to the equivalent signal amplitude in dBm received at the
monopole antenna, which provides more clarity about the changes in amplitude.
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Algorithm 1 Conversion Self Spectra in Volts to Decibels (dB)
To convert self spectra Antenna3Self in Volts to decibels:
Antenna3Self_dBm = 10 * log10(abs(Antenna3Self)) - (-40 + 5.8)

4.4 Apply a Noise Threshold to the Spectra

First, before searching for the first-order region boundaries in the monopole

antenna spectra, we apply a threshold to eliminate data that is considered too

noisy. To do so, we need the noise factor noisefact extracted from Header.txt.

For each range in the spectra, and as described in Algorithm 2, we first find the

corresponding noise baseline noise_baseline at that range. The noise baseline

is based on an estimation of the noise in the wings of the spectrum (near ±1

Hz in Figure 4.1), specifically the median value on the backscatter energy in the

wings. Later on, we multiply the baseline of that range by the noise factor to

obtain what we call noise_threshold. Finally, we assign the threshold value

noise_threshold in Volts to all data points in that range that fall below that

threshold.

Algorithm 2 Applying a Noise Threshold
Load the monopole antenna spectrum Antenna3Self
for each RANGE do
left_wing = the left wing portion (about 1/6 of the total Doppler spectra)
noise_baseline = findSNR(side_wing)
noise_threshold = (noisefact × noise_baseline)
indices_below_threshold = Antenna3Self < noise_threshold
Antenna3[indices_below_threshold] = noisefact × noise_baseline

end for
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Figure 4.4 shows the backscatter spectra of the monopole antenna in dB after

applying the noise threshold with noisefact = 3.98 extracted from the Header

file. We observe how the original spectra in dB shown in Figure 4.3 has indeed all

its values falling below noise_threshold = (noisefact × noise_baseline)

filtered out.

Algorithm 3 Smoothing the Monopole Antenna Spectra
Load the cross-spectra array for the current range css_array[RANGE]
Extract the nsm factor for the chosen radar site from the Header.txt
f_smooth[RANGE] is the smoothed cross-spectra array for the current range
for each RANGE do
1) Create a python pandas dataframe

f_smooth[RANGE] = pd.Series(css_array[RANGE])
2) Apply the rolling mean function with a smoothing factor of nsm points

f_smooth[RANGE].rolling(nsm, center=True).mean()
3) Fill the NaN values on the wings (appearing due to smoothing nsm points
at a time) with the minimum value of the array i.e. the noise floor value

f_smooth[RANGE].fillna(min(css_array[RANGE]))
end for
Return the smoothed cross-spectra array f_smooth
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4.5 Smooth the Spectrum

After applying the noise threshold and before determining the null positions,

the spectrum is smoothed through a rolling mean. This smoothing will remove

non-relevant nulls which consequently will be avoided in the determination, and

thus produce a more stable estimate of the first-order boundary locations.

A rolling mean is simply the mean of a certain number of previous samples

in a time series. That number of previous periods is determined by the nsm

factor extracted from the Header.txt. In Python, to calculate the rolling mean

of a pandas data structure, we simply use the a_array.rolling(nsm).mean()

function, as detailed in Algorithm 3.

Once the spectra has been thresheld by noise_fact × noise_level, we

apply the running mean described in Algorithm 3: it performs a smearing over

nsm points, applies a shift to center the spectra back to 0 Doppler frequency,

and fills any empty bins on the wings with the minimum value of the array. The

resulting smoothed spectra after the noise threshold seen in Figure 4.4 is presented

in Figure 4.5. We observe how some of the sidelobes – specially around the right

Bragg region in Figure 4.4 – have indeed been smoothed in Figure 4.5, which

definitely aids in the null-detection steps described in Section 4.8.
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Figure 4.4: Backscatter spectra example from the monopole antenna (SeaSonde
Antenna 3) after applying the noise threshold to the original power signal in Figure
4.3. The horizontal axis is Doppler bins (total fftlen is 1024 bins). The vertical
axis is the equivalent signal amplitude in dBm received at the antenna, and as
opposed to Figure 4.3 we see how the noise threshold has been applied and the
minimum power is now homogeneous.

Figure 4.5: Backscatter spectra example from the monopole antenna (SeaSonde
Antenna 3) after applying the noise threshold and corresponding smoothing to
the original power signal in Figure 4.3. The horizontal axis is Doppler bins (total
fftlen is 1024 bins). The vertical axis is the equivalent signal amplitude in dBm
received at the antenna, and as opposed to Figure 4.3 and Figure 4.4 we see how
the smoothed signal presents less local minima (nulls).
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4.6 Normalize the Spectrum

Besides the original and the smoothed versions of the backscatter spectra,

we generate a “normalized” version as well. As described in Algorithm 4, given

the range-dependent maximum power extracted from the Bragg peaks at each

range, we normalize the spectra into a proportional function spanning from 0 (the

bins where the power is at a minimum) to 1 (the bins where the power is at a

maximum).

Algorithm 4 Normalizing the Monopole Antenna Spectrum
Load the smoothed cross-spectra array f_smooth
for each RANGE do
1) Find a_max, the maximum peak value for the current range

a_max = max(f_smooth[RANGE])
2) Find a_min, the current range minimum value (the noise floor value)

a_min = min(f_smooth[RANGE])
3) Create the normalized spectra array for current range

f_normalized[RANGE]= [(i - a_min) / (a_max - a_min)]
for each bin value "i" in f_smooth[RANGE]

end for
Return the normalized cross-spectra array f_normalized

The process of normalization helps the distinction between Bragg and non-Bragg

energy at higher range cells where the overall signal is weaker, and therefore leads

to a more consistent null detection between ranges because (as opposed to the

conventional method) we apply the power thresholds described in Section 4.7,

that set limiting boundaries for valid current retrieval, to the normalized spectra.

In addition we also use the factor freject to discard far ranges where the

signal strength is negligible because the overall ratio between maximum power

and minimum power in dB is below the freject requirement.
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4.7 Limit the Spectral Range on Both Sides

of the Peak

The first-order region is separated from the second-order by some well defined

energy minimums, which are known as frequency nulls. As we describe in Section

4.8, we want to avoid searching for the nulls within the region that we know is

the stronger first-order, since this region has its own local minimums, as shown in

Figure 4.1. In other words, the null detection should only consider the Doppler

frequencies on the periphery of the first-order region, and using the methods

described in this section we will set a series of limits that restrict the area where

first- and second-order boundaries should fall and avoids searching for nulls outside

of those limits.

On the first hand, there are two sets of limits that we denominate "Power

Threshold Limits":

– The higher energy set depends on the factor fdown and are closer to the Bragg

region peaks, therefore stronger energy; they protect the higher Bragg energy that

we definitely want to classify as first-order spectra.

– The lower energy set of "Power Threshold Limits" depend on the factor flim

and are further in Doppler frequency, closer to the second-order region. In fact,

this set of limits define the minimum ratio of power respect to the peak that any

Doppler bins is required to have to be considered a bin within the first-order region.

On the other hand, there is a third set of limits that are generally further in

Doppler frequency than the ones set by the flim parameter.
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These outer limits are the higher Doppler frequency set of limits associated

with the maximum ocean current estimated possible within the geographical

location of the radar site, which we denominate "Current Velocity Limits".

Next we describe the algorithms necessary for calculating both the Current

Velocity Limits and the Power Threshold Limits.

4.7.1 Velocity of the Bragg Wave in m/s

For those algorithms we first need to calculate the wavelength of the first-order

Bragg wave in Algorithm 5 and its velocity in Algorithm 6. These two algorithms

follow the ocean backscatter descriptions in Section 3.1.2, and specifically Equations

(3.1), (3.2), (3.4) and (3.5).

Algorithm 5 Calculate the Wavelength of the Bragg Wave
· Load Radar_Wavelength as λ
· The Bragg waves wavelengths – Eq.(3.1) – are multiples of λ:

Ln = nλ/2
· The wavelength of the first-order Bragg wave is then:

λBragg = λ/2

Algorithm 6 Calculate the Velocity of the Bragg Wave
· Load the Bragg wave wavelength (Algorithm 5) as λBragg
· Load the gravitational acceleration g = 9.8 m/s2

· The velocity of the Bragg wave – Eq.(3.2) – is then:
Velocity_BraggWave =

√
g · λBragg/(2π)
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4.7.2 Doppler Frequency and Doppler Bin Locations

Like we mentioned in Chapter 3, and showed in Figures 3.4, 3.5, 3.6 and 3.7,

the x-axis of the radar backscatter spectra can be one of the following options:

• Doppler Frequency: the frequency shift of the ocean echo signals scattered

from the moving target. In our case, the moving targets are the Bragg waves.

(Refer to Section 3.1.2 for more information about the Bragg scattering of

the ocean waves) Figure 3.4 shows how the 0 Doppler frequency corresponds

to DC, where there is no frequency shift.

• Doppler Bins: the number of bins that we can separate our Doppler frequency

into, depending on our frequency resolution. The horizontal axis can either

span between 0 and fftlen, or most usually be centered at 0 and have

fftlen/2 negative Doppler bins on the left side (receding Bragg wave) and

fftlen/2 positive Doppler bins on the right side (advancing Bragg wave)

as seen in Figure 3.5.

• Doppler Velocity: the equivalent velocity of the Doppler shift in m/s. The

measured Doppler shift is proportional to the sum of the known velocity of

the Bragg ocean wave and the unknown velocity of the surface current. As

we see in Figure 3.6, the Velocity_Doppler = 0 corresponds indeed to DC.

• Doppler Current Velocity: the equivalent velocity of the ocean currents

underlying below the ocean waves. As we studied in Section 3.2.1 the two

Velocity_Current = 0 correspond to the theoretical Bragg wave frequencies

f0 like calculated in the example above for a 13 MHz radar.
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The currents moving along in the same direction as the Bragg wave will

appear to the right of that Bragg peak (positive current velocity), while the

currents moving opposite to the Bragg wave will appear on the left side of

the corresponding Bragg peak (negative current velocity).

The calculations performed in Algorithms 7 through 11 will be used in many

instances of our code. For example to easily convert between the four aforementioned

units depending on the requirement or application e.g. when we are given a

maximum current velocity currmax in cm/s but we need to find its Doppler bin

location in the corresponding spectra.

Algorithm 7 Transform between Doppler Velocity and Current Velocity
1) Load the velocity of the Bragg wave as Velocity_BraggWave (Algorithm 6)

2) To obtain a Doppler_Velocity:
· Load the current velocity we want to convert as Velocity_Current
if Right Bragg wave (Advancing):
Doppler_Velocity = Velocity_Current + Velocity_BraggWave

else if Left Bragg wave (Receding):
Doppler_Velocity = Velocity_Current – Velocity_BraggWave

end if

3) To obtain a Velocity_Current:
· Load the Doppler velocity we want to convert as Doppler_Velocity
if Right Bragg wave (Advancing):
Velocity_Current = Doppler_Velocity – Velocity_BraggWave

else if Left Bragg wave (Receding):
Velocity_Current = Doppler_Velocity + Velocity_BraggWave

end if
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Algorithm 8 Convert Current Velocity (cm/s) to Doppler Frequency (Hz)
· Load the Bragg wave wavelength (Algorithm 5) as λBragg
· Load the velocity of the Bragg wave as Velocity_BraggWave (Algorithm 6)
· Transform Velocity_Current into Doppler_Velocity: (Algorithm 7)

Doppler_Velocity = Velocity_Current± Velocity_BraggWave
· Calculate the Doppler_Frequency as:

Doppler_Frequency = 2 · Doppler_Velocity/λBragg

Algorithm 9 Convert between Doppler Bin and Doppler Frequency
From the Header.txt file:
· Load fftlen, the amount of Doppler frequency resolution bins
· Load sweep_period in seconds as T.
· Calculate the Doppler_Frequency as:

Doppler_Frequency = Doppler_Bin/(T · fftlen)− 1/(2T)
· Calculate the Doppler_Bin as:

Doppler_Bin = T · fftlen · (Doppler_Frequency + 1/(2T))

Algorithm 10 Convert Current Velocity to Doppler Bin
From the Header.txt file:
· Load fftlen, the amount of Doppler frequency resolution bins
· Load sweep_period in seconds as T.
· Transform Velocity_Current into Doppler_Frequency (Algorithm 8)
· Calculate the Doppler_Bin location:

Doppler_Bin = T · fftlen · (Doppler_Frequency + 1/(2T))

Algorithm 11 Convert Doppler Bin to Current Velocity
· Load Radar_Wavelength
· Load the gravitational acceleration g = 9.8 m/s2

· Transform Doppler_Bin into Doppler_Frequency
and then Doppler_Frequency into Velocity_Current
by following Algorithms 8 and 9
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4.7.3 Current Velocity Limits

To find the locations of each of the four current velocity limits, we consider

the absolute maximum ocean current velocity expected at the site given by the

parameter currmax (in absolute cm/s) from the Header.txt file. Then, as described

in Algorithm 12 we calculate the Doppler frequencies (or equivalent Doppler bin

locations) of the positive maximum current allowed on the site +freq_MaxCurrent

and its negative –freq_MaxCurrent for each of the two halves of the spectra. The

location of these maximum current boundaries are independent in range since

they are based on the factor currmax and radar parameters such as wavelength

and sweep rate, and thus the current velocity limits will only be calculated once.

Figure 4.6 presents an example of the 19th range cell (or bin) of the original

monopole antenna spectra in dB shown in Figure 4.3. For clarity, the x-axis

in Figure 4.6 and Figure 4.7 are set to current velocity in cm/s. Assuming

currmax=150 cm/s for this site, the four magenta vertical lines in the figure

represent the current velocity limits that would be placed due to the maximum

current allowed in the site. If comparing with Figure 4.3, the maximum current

limits would correspond to the Doppler bins ±87 and ±168 approximately.

Algorithm 12 Limiting the Spectrum - Current Velocity Limits
· Load currmax: the maximum expected current in the site
· To determine the current velocity limits:

Find the Doppler bins locations that correspond to the maximum
current (in cm/s) allowed in the site (Algorithm 10)
+freq_MaxCurrent = Doppler_Bin(+currmax)
-freq_MaxCurrent = Doppler_Bin(-currmax)

· Apply those same limits in frequency to all the ranges available in the
cross-spectra, shown as magenta vertical lines in Figure 4.6.
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Figure 4.6: Backscatter spectra from the monopole antenna (SeaSonde Antenna
3) at the VCOL radar site in British Columbia. The first-order boundaries have
to be found within the "Current Velocity Limits" corresponding to the currmax
factor in the Header and marked in the figure by four magenta vertical lines.

Figure 4.7: Backscatter spectra from the monopole antenna (SeaSonde Antenna
3) at the VCOL radar site. The first-order boundaries have to be found within
the higher and lower "Power Threshold Limits" corresponding to the factors fdown
and flim respectively. The higher "Power Threshold Limits" are shown as four
green vertical lines, while the lower ones are presented in light blue.
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4.7.4 Power Threshold Limits

Higher Power Limits: To find the higher power limits for each of the

backscatter spectra halves, we first find the points with the maximum power

a_max_L and a_max_R as described in Algorithm 13. Next we locate the surrounding

points with voltage-squared equal to a_max/fdown, like in Algorithm 14. The set

of higher power limits are shown as four green vertical lines in Figure 4.7. The

factor fdown in the Header has to be chosen carefully. If it is set too small then we

could erroneously select a null around a strong current as the boundary between

first and second order and therefore all the ocean currents below that one would

be incorrectly discarded. On the other hand, if fdown is chosen too large, the

nulls between first and second-order may be missed altogether, and second-order

data included erroneously as ocean currents resulting in wild radial vectors.

Lower Power Limits: The lower power limits for each of the backscatter

spectra halves are set to eliminate spectral points that are too far below the

peak energy a_max. To set the lower power limits we use the factor flim in the

Header, and the limits are set at the points where the voltage-squared is below

a_max/flim, as described in Algorithm 15. The set of lower power limits are

shown as four light blue vertical lines in Figure 4.7.

Algorithm 13 Set the Values of the Bragg Peaks
· Load the cross-spectra array css_array
· Load midfft – the Doppler bin equivalent to 0 Hz Doppler frequency
for each RANGE do
1) Find a_max_L, the maximum left peak value for the current range

a_max_L = max(css_array[RANGE, 0:midfft])
2) Find a_max_R, the maximum right peak value for the current range

a_max_R = max(css_array[RANGE, midfft::])
end for
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Algorithm 14 Limiting the Spectrum - Higher Power Limits
· Load the cross-spectra array css_array
· Load midfft – the Doppler bin equivalent to 0 Hz Doppler frequency
· Load fdown – the factor down in power to protect first-order energy
for each RANGE do
1) Load a_max_L and a_max_R,the Bragg peaks for the current range
2) Find the power threshold limits relative to fdown

± freq_PowerHi_L[RANGE] = ± Doppler_Bin(a_max_L/fdown)
± freq_PowerHi_R[RANGE] = ± Doppler_Bin(a_max_R/fdown)

end for

Algorithm 15 Limiting the Spectrum - Lower Power Limits
· Load the cross-spectra array css_array
· Load midfft – the Doppler bin equivalent to 0 Hz Doppler frequency
· Load flim - factor setting the minimum power requisite for first-order
for each RANGE do
1) Load a_max_L and a_max_R,the Bragg peaks for the current range
2) Find the power threshold limits relative to flim

± freq_PowerLo_L[RANGE] = ± Doppler_Bin(a_max_L/flim)
± freq_PowerLo_R[RANGE] = ± Doppler_Bin(a_max_R/flim)

end for
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4.8 Locating the Possible Nulls

After the steps to generate our Current Velocity Limits and Power Threshold

Limits described in Section 4.7, we are able to restrict the area where to look for

the boundaries between first and second order:

• The upper threshold at every range will be set by the respective "Higher

Power Limits", ±freq_PowerHi_L and ±freq_PowerHi_R.

• At each range, we find the lower power limits for each of the backscatter

spectra halves, ±freq_PowerLo_L and ±freq_PowerLo_R. These are set to

eliminate spectral points that are too far below the peak energy.

• On the other hand, +freq_MaxCurrent and –freq_MaxCurrent are the

current velocity limits that focus on eliminating all of those spectral points

that correspond to higher ocean current velocities that are not considered

realistically possible and they are equal across all ranges.

• Finally, for every range the lower threshold will be set as to the highest of

limits between the "Current Velocity Limits" and the "Lower Power Limits".

Following the examples set in Figure 4.6 and Figure 4.7, the area where we

will be searching for local minimums (nulls) will be the non-shaded regions of

frequency shown in Figure 4.8. Therefore, we will search for nulls in those four

regions as it is described in Algorithm 16 and later assign those nulls as the

first-order region boundaries from where the ocean current information will be

derived and the radial ocean current vectors determined (Chapter 6).
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Figure 4.8: Backscatter spectra from the monopole antenna (SeaSonde Antenna
3) at the VCOL radar site. The first-order boundaries have to be found within the
non-shaded regions. The lower energy thresholds correspond to the "Lower Power
Threshold Limits" because they are more restrictive than the "Current Velocity
Limits" in this instance.

Algorithm 16 Finding the Nulls within the Frequency Thresholds
For each RANGE, data is every array from every REGION within our limits.
for each RANGE do
for each REGION between limits do
– Apply the Python function scipy.signal.argrelmin(data)
– argrelmin(data) calculates the relative minima of data and
extracts the locations of the nulls.

end for
end for
If no local minima are found in the REGION, then the output boundary is set
as the "Higher Power Limit" location, which is the most restrictive.
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4.9 Search for Split Bragg Regions

Even though the strongest nulls (local minima within our set of limits) are

found using Algorithm 16, we designed an extra step to further improve the

determination of the first-order boundaries that is not available in the conventional

method. We apply a recursive search for split Bragg regions –as they were presented

in Section 3.3.2– in every range bin (cell) of our radar backscatter spectra.

The full Recursive Split Bragg Search as described in Algorithm 17:

• We start by defining a Doppler window for each half of the spectra.

Each window starts as the interval of Doppler bins from the negative current

velocity limit to the positive current velocity limit, shown as magenta vertical

lines in Figures 4.6 and 4.8.

• Window L1, surrounding the receding (negative) Bragg wave, is placed

in the left half of the spectra, (See Figure 4.9) f < fftlen/2, between

[−freqMaxCurrent : +freqMaxCurrent].

• Window R1, surrounding the advancing (positive) Bragg wave, is placed

in the right half of the spectra, (See Figure 4.9) f > fftlen/2, between

[−freqMaxCurrent : +freqMaxCurrent].

• Apply Algorithm 13 to find the Bragg peaks a_max_L and a_max_R in each

of the Doppler windows – Doppler bins within a window where the voltage

hits a maximum. These are labeled as Vpeak_L1 and Vpeak_R1 in Figure

4.9 to match the windows labels.
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• Apply Algorithm 14 to find the Doppler bin locations going outwards in

frequency from the Bragg peaks where their voltage first crosses the threshold

a_max/fdown in the normalized spectra, using the same scale factoring as

when normalizing the Antenna 3 spectra in Algorithm 4.

• Apply Algorithm 15 to find the Doppler bin locations going outwards in

frequency from the Bragg peaks at where the voltage first crosses the threshold

a_max/flim in the normalized spectra as well, and label them as Vmin.

• Vmin defines the minimum power allowed for that bin to be considered

first-order, and therefore we can reject all the frequencies below the frequency

where Vmin is found and below freqMaxCurrent as well, depending on the

range either of them could be the most restrictive frequency.

• We search for any frequencies spanning between Vmin frequency on each side

of each Bragg up until the freqMaxCurrent further on that side where their

voltage-squared value is above Vmin too.

• If Vmin is found to be further in frequency than freqMaxCurrent, then the

Vmin frequency will be replaced by freqMaxCurrent.

• Apply Algorithm 16 to find the local minimums, nulls, within Window L1

and Window R1 and label them as FOL:

– FOL_L1_L and FOL_L1_R are the first-order boundaries found in L1

– FOL_R1_L and FOL_R1_R are the first-order boundaries found in R1

– See the four primary first-order Bragg boundaries in Figure 4.9

103



• "Split Bragg test": We search for secondary Bragg peaks where their

voltage-squared value is also above amax/minSplitBragg. In addition we

want at least minBinsBragg number of Doppler bins to be above the Vmin

threshold. Note how minSplitBragg and minBinsBragg are parameters

that we collected from FirstOrderConfigs.plist (Section 4.1).

• Each time that the spectra portion passes the "Split Bragg test" we create

a new window that spans between Vmin frequency on that side of the Bragg

up until the corresponding freqMaxCurrent.

• See the new windows in Figure 4.9:

– Window L2L is created on the left side of window L1, while Window

R2R is found at the right side of window R2.

– No additional windows are shown in Figure 4.9 because the frequencies

between Vmin and freqMaxCurrent do not pass the "Split Bragg

test" and thus no further windows are generated.

• Find the secondary Bragg peaks by applying Algorithm 13 into the new

windows L2L and R2R.

– Vpeak_L2L is the secondary Bragg peak found in Window L2L

– Vpeak_R2R is the secondary Bragg peak found in Window R2R

• Repeat the null finding Algorithm 16 in the new windows L2L and R2R to

find secondary first-order boundaries.

– FOL_L2L_L and FOL_L2L_R are the secondary first-order boundaries

found around Vpeak_L2L
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– FOL_R2R_L and FOL_R2R_R are the secondary first-order boundaries

found around Vpeak_R2R

– See the four secondary first-order Bragg boundaries in Figure 4.9

• Recursively continue trying to find more windows if the Bragg is split into

more sections and thus more regions pass the "Split Bragg test". For our

example in Figure 4.9 there are no tertiary or further windows.

Algorithm 17 Recursive Split Bragg Search
· Apply Algorithm 14 and Algorithm 15 to find the threshold limits
and set the initial Doppler windows.
· Apply Algorithm 13 to find the Bragg peaks a_max_L and a_max_R
in each of the Doppler windows.
· Apply Algorithm 16 to find the local minimums, nulls, within the
windows and around the Bragg peaks.
· Run the "Split Bragg test":

1) Search for secondary Bragg peaks where their voltage-squared
value is above amax/minSplitBragg.

2) We require at least minBinsBragg number of Doppler bins to be
above the Vmin threshold.

· If a spectra portion within a window passes the "Split Bragg test"
we create a new window with that portion.
· Recursively repeat the steps at each of the new windows and find the
corresponding boundaries around the secondary Bragg region peaks.
(See secondary Bragg regions in Figure 4.9)
· Repeat again if a tertiary Bragg region is present, etc.
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4.10 Conventional Method Algorithm

In this section we present Algorithm 18, where we list which of the steps

described in this chapter are actually executed in the conventional method to find

the nulls in the spectra and therefore the first-order boundaries.

The conventional method steps include some of the algorithms we have presented

in this section:

1. Smooth the spectra,

2. Find the Current Velocity Limits,

3. Find the Power Threshold Limits,

4. Search the nulls within those limits.

On the other hand, it differs from the method we have designed because:

• The conventional method applies its own calculations for the noise threshold

to apply to the the spectra, by only averaging the first few Doppler bins on

the wings of the spectra.

• The conventional method does not use a normalized spectra to calculate the

power ratio thresholds.

• The conventional method does not include the recursive search for split

Braggs.
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Algorithm 18 Finding the Nulls using the Conventional Method
· Load the cross-spectra array css_array
· Place the calculated Doppler frequency limits in the css_array
· Discard all the regions that do not fall within those thresholds,
shown shaded in Figure 4.8.
· Search for nulls in the frequencies where the first-order boundaries
are allowed to be selected.

for each RANGE do
for each REGION between limits do
– Apply the Python function scipy.signal.argrelmin(data)
– argrelmin(data) calculates the relative minima of data and
extracts the locations of the nulls.

end for
end for
For each RANGE, data is every array from every REGION within our limits.

The complete alternative multi-probabilistic null-finding algorithm we designed

includes all the phases described in this chapter and its steps are summarized in

the next section.

4.11 Multi-Probabilistic Null-Finding Algorithm

Lastly, the complete alternative multi-probabilistic null-finding algorithm we

designed to determine the first-order boundaries includes all the aforementioned

steps and its script is transcribed in Algorithm 19.

The Bayesian tracking mentioned in Step 10 of the complete Algorithm 19 is

detailed in Chapter 5, while the steps that describe its application to observational

radar data can be found in Chapters 6 and 7.
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Algorithm 19 Complete Multi-Probabilistic Null-Finding Algorithm to
Determine the First-Order Boundaries

1. Load the cross-spectra array css_array

2. Apply noise threshold

3. Calculate the normalized version of the spectra

4. Find the locations of the current velocity limits and the power
threshold limits

5. Place all our limits in the css_array: the Doppler frequency
thresholds as described in Algorithms 12, 14 and 15.

6. Discard all the regions that do not fall within those thresholds,
shown shaded in Figure 4.8.

7. Apply the Recursive Split Bragg Search
(Described in Section 4.9)

8. Search for nulls in the frequencies where the first-order boundaries
are allowed to be selected.
for each RANGE do
for each REGION between limits do
– Apply the Python function scipy.signal.argrelmin(data)
– argrelmin(data) calculates the relative minima of data and
extracts the locations of the nulls.

end for
end for
For each RANGE, data is every array from every REGION
within our limits.

9. If no local minima are found in the REGION, then the output
boundary is set as the "Higher Power Limit" location, which is
the most restrictive.

10. Apply Bayesian tracking, as introduced in Chapter 5, to choose
the final decision for the first-order boundaries using Algorithms
31 through 34 in Chapter 7.
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Chapter 5

Object Tracking and Bayesian

Estimation

In this Chapter we first present an introduction to Object Tracking in Section

5.1. The objects we will be tracking are the Doppler bin locations of the first-order

Bragg boundaries (see Chapter 4) that vary with both range and with time

of observation. We provide a description of how to track a single object in

clutter (Section 5.1.2) as well as using a simple Gauss - Hermite or g-h filter

(Section 5.1.3). In Section 5.1.4, we describe our problem: tracking the limits

of the first-order boundaries interpreted as four individual single-object tracking

problems.

Next, in Section 5.2, we introduce Bayesian estimation and describe the most

relevant estimation concepts: Bayes theorem (Section 5.2.1), Gaussian probability

distributions (Section 5.2.2), and at the end the Bayesian estimation solution for

recursive state estimation (Section 5.2.3).
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In Section 5.3, we study the Kalman Filter that we use for our problem, and

describe all of the terms required in the Kalman Filter estimation algorithm

solution. While Section 5.4 focuses on the Bayesian estimation filters needed

when we receive more than one measurement associated with a single first-order

boundary location at a given time and range from the radar. First, the general

Bayesian solution for simultaneous measurements is presented in Section 5.4.1.

This approach is necessary for the times when we are processing simultaneous

multiple measurements received for a single location of a first-order boundary

when they all correspond to a unique time and range.

Since the general Bayesian solution for simultaneous measurements is complex,

two approximations to this general solution are presented:

1. The Nearest Neighbor Filter (Section 5.4.2):

The NNF filter is an approximation of the optimal Bayesian filter recursive

solution for multiple simultaneous measurements that will only choose the

measurement whose statistical distance to the predicted measurement of the

filter is the smallest.

2. The Probabilistic Data Association Filter (Section 5.4.3):

The PDAF is the most robust approximation of the optimal Bayesian filter

recursive solution for multiple simultaneous measurements. It is one of the

most successful algorithms in the class of Bayesian all-neighbors filters,

and it performs by updating the object state estimate using all of the

validated measurements and their respective posterior probability weightings

as described in the corresponding section.
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5.1 Object Tracking

5.1.1 Introduction

The concept of object tracking relates to the technique of using measurements

from a sensor to determine the location, path and characteristics of an object of

interest (target). A tracking filter is generally used to provide an accurate and

precise estimation of the position, velocity, and acceleration of the target in the

presence of uncertainty. This section provides an overview of Object Tracking,

before describing our tracking problem in Section 5.1.4.

Object Tracking: Position, Velocity and Acceleration.

When calculating the predicted position of a target we use Newton’s equations of

motion as:

x = x0 + v0∆t+ 1
2a∆t2, (5.1)

where

x = future target position (m),

x0 = target initial position (m),

v0 = target initial velocity (m/s),

a = target acceleration (m/s2),

∆t = track update interval (s).

In a three-dimensional Cartesian coordinate system the set of target position

(x, y, z), velocity (vx, vy, vz) and acceleration (ax, ay, az) variables are often referred

to as the system state (x, y, z, vx, vy, vz, ax, ay, az).
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We combine the system state variables on what is known as a state space model:

x = x0 + vx0∆t+ 1
2ax∆t

2

y = y0 + vy0∆t+ 1
2ay∆t

2

z = z0 + vz0∆t+ 1
2az∆t

2

In a tracking algorithm, the input is the current measurement of the state

(position). This target position could be inaccurate due to measurement noise,

random errors and uncertainty. One of the outputs of the tracking algorithm

is the predicted future state, which can be a difficult calculation due to the

aforementioned factors. Therefore, it is necessary for a tracking algorithm to

take these uncertainties into account.

5.1.2 Single-Object Tracking in Clutter

Our problem here is tracking a single object state in the presence of noise,

using a combination of false alarms and true target observations.

For this problem we will take into account the following assumptions[17]:

• There is only a single object in the surveillance area, and its position is

unknown.

• The possible trajectory models of the object are assumed known, and the

models are assumed to propagate as Markov chains. (A Markov chain or

Markov process is a stochastic model describing a sequence of possible events

in which the probability of each event depends only on the state attained in

the previous event.)

113



• In each iteration we may receive one measurement per object. The probability

of detection is determined under PD.

• The clutter is either known or estimated from the received measurements.

• The measurements are produced by the sensor with infinite resolution. Each

measurement can only have one source, either from an actual detection of

the object or from clutter.

5.1.3 Simple g-h Filter for Object Tracking

Before introducing the concept of Bayesian Estimation and the Kalman Filter

in particular, that we do apply for our research problem, we first present a simpler

filter known as the g-h filter (or alpha-beta filter). The g-h filter is related to the

Kalman filters (Section 5.3) but does not require a detailed system model as we

present in the Bayesian Estimation Section 5.2.

The g-h filter is often used for object tracking since it is a simplified version

for parameter estimation and smoothing. It approximates by assuming that the

system presents only two internal states and that the first state is determined by

integrating the second state over time. Therefore, this is a low-order approximation

that can be used on simple object tracking problems.

The α and β terms (or g and h), shown in Equation 5.4, are usually found

though experiment, and refer to the two scaling factors: α is the scaling we use for

the reliability of measurements we receive, while β is the scaling we apply to how

the measurement changes over time, in other words, how reliable is our model.
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Generally, larger values of α and β result in a quicker response to transient

changes, while smaller values reduce the noise level in the estimated state. Thus,

the values of α and β should be positive and small for good convergence and

stability[26][49][38].

Example: Design of a g-h filter to track the position of a target

We can use the simplified g-h filter for this problem because the position of the

target can be determined from the time integral of a series of velocity measurements.

Our state variable would be xk, the target’s position predicted at sampling time

k. This position equals to the previous target position xk−1 plus the displacement

∆x. Since we are only receiving measurements of the velocity, every ∆t sampling

time, we can predict xk as:

xk,k−1 = xk−1,k−1 + vk−1,k−1∆t (m), (5.2)

where:

xk,k−1 = predicted position at k, given measurements up to k–1 (m),

xk−1,k−1 = filtered position at k-1 given measurements up to k–1 (m),

vk−1,k−1 = filtered velocity at k-1 given measurements up to k–1 (m/s),

∆t = measurement update interval (s).

Since the velocity is assumed to be constant, vk,k−1 = vk−1,k−1.

The measurement at sampling time k, yk, is expected to deviate from xk,k−1

(the predicted value at time k given all measurements up to k – 1) due to noise

and other effects not included in this simplified model.
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This error, often referred as residual or innovation, is simply expressed as

rk = yk − xk,k−1. (5.3)

Finally the position and velocity estimates for the g-h filter, using the constants

α and β, can be expressed as:

xk,k = xk,k−1 + αrk (m)

vk,k = vk,k−1 + β

∆trk (m/s)
(5.4)

where

α, β = filter constants,

rk = residual at update k (m),

xk,k−1 = predicted position at update k (m),

vk,k−1 = predicted velocity at update k (m/s),

xk,k = filtered position at update k given measurements up to k (m),

vk,k = filtered velocity at update k given measurements up to k (m/s).

Following the equations, the algorithm for the g-h filter proceeds as follows:

1. Select values for α and β.

2. Initialize x0,0 and v0,0 with initial measurement values, or set to zero.

3. Predict state xk,k−1 and vk,k−1 – Eq. (5.4).

4. Calculate the residual rk and adjust the predicted states – Eq. (5.3).

5. Repeat steps (3)–(4) for each new measurement with xk,k and vk,k as

the filter output.
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5.1.4 Our Object tracking Problem: First-Order Boundaries

The heart of the problem we are investigating is to track the four first- order

boundaries, which correspond to the maximum ocean current velocity present in

a specific location at a specific time.

In our case we are tracking the position of the first-order boundary limits separately,

each one being an object in the object tracking problem we perform. As in any

object tracking problem, there will be uncertainties in the measurements and they

will be taken into consideration.

Overview of Our First-Order Boundaries Tracking Problem:

1. What are we tracking?

The location of the first-order boundaries i.e. what is the velocity of the

maximum ocean current present at that time and at that rangebin (Section

3.2). The four first-order boundaries are tracked independently, thus we are

dealing with a single-object tracking in clutter problem (Section 5.1.2) that

we will run four independent times, using data from radar observations of

the Doppler spectra from each single range bin.

2. How do we track them?

We face a state estimation problem where the object states - first order

boundaries - are to be estimated from noisy measurements.

The tracking system consists of the object to be tracked, a sensor (the

SeaSonde radar) which measures some aspect of the object, and also provides

us with some noisy measurements (i.e. the velocity of maximum ocean

current present at that time and at that rangebin). Therefore we will use a

Kalman Filter (Section 5.3) for this tracking problem.
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3. What are our observations or measurements?

From our sensor (the SeaSonde radar) we will be able to process a series

of backscatter spectra files, which correspond to the specific time we are

studying. We will go range bin by range bin using their respective spectra

files, and find the initial estimates for each of the four first-order boundaries

for each range bin spectra file. Those initial estimates are the input noisy

measurements we will be sending to our Kalman Filter (Section 5.3).

4. What if we have multiple initial estimates for a single boundary location?

Sometimes we will have multiple estimates for a single boundary location at

a specific time and range. As we will see, we will apply the concepts of a

Bayesian filter receiving multiple simultaneous measurements (Section 5.4)

to choose between them:

• The Nearest Neighbor Filter (first introduced in Section 5.4.2 and

described in detail in Algorithm 31 in Section 6.5) would be a simple

option to decide between multiple single boundary location possibilities.

• The Probabilistic Data Association Filter (Section 5.4.3 and Algorithm

32 in Section 7.5) is a more complex filter applicable to our problem

which will statistically weight and estimate a boundary location some-

where in between the multiple single boundary location possibilities we

receive as measurements.
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5. How do we filter the four boundaries once we have chosen the complete set

of initial estimates for them?

We realized that tracking in time and range made sense for the first order line

problem, physically the maximum ocean current present should not change

many cm/s (or Doppler bins) when advancing in range (about 5 km step)

or moving forward in time (about 30 minutes time). This two-dimensional

tracking in range and in time is fully described in Chapter 7 and it is a novel

application of Bayesian tracking for this first-order boundaries determination

problem.

5.2 Bayesian Estimation

The Bayesian method is a probabilistic and statistical theory that can be

applied to the modeling and solution of object tracking problems. In most object

tracking problems, measurements from sensors are received sequentially over time.

At each of the measurement cycles, new estimates of the object state are made

by combining new information (measurement) and estimates of the object state

at the current time. At the next stage, the latest estimates are updated in view

of the new measurement coming in.

When developing Bayesian estimation algorithms, we realize how including all

possible sources of information (models, estimates, measurements) will help in

obtaining the best estimate possible, never throwing any information away, no

matter how poor it is. If we only form estimates from the measurement then the

prediction will not affect the result. If we only form estimates from the prediction

then the measurement will be ignored. Therefore, for a successful estimation we

need to take some kind of blend of the prediction and measurement.
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5.2.1 Bayes Theorem

The recursive approach used in Bayesian estimation is based on the Bayes

theorem, which goes back to the work of Thomas Bayes and Pierre-Simon de

Laplace in the 18th and early 19th century, and is now the theoretical framework

for reasoning under uncertainty.

The Bayes Theorem states that

P (X|Y ) = P (X) P (Y |X)
P (Y ) (5.5)

where

X: Random variable of interest, in object tracking X is the state of the object.

Y: Measurement related to X. Given Y we want to update the existing knowledge

of the variable of interest X.

P(X): The prior, attributes probability values to X.

P(X|Y): The posterior, is the conditional probability distribution of X given the

measurement Y.

L(X): Also known as the Likelihood or P(Y|X) is the probability that each X

would result in the measurement Y.

P(Y): The normalization factor, ensures that the resultant probability distribution

P(X|Y) satisfies the axioms of probability[17] and sums to 1.

Let X be the random variable of interest, thus the state of the object under

consideration. Let Y be a measurement of the state of X. We can interpret the

theorem as a rule for updating our knowledge of the event X, given a measurement

labeled as Y.
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A description of Eq.(5.5) would be that "the probability of X given the data

Y is proportional to the probability that the data Y was observed given X and

multiplied by the prior probability of that event X to be true".

posterior = likelihood× prior
normalization factor

(5.6)

The term L(X) = P(Y|X) is known as the likelihood function as a function of X.

The term P(Y) is a normalization factor since it does not depend on the event X

that we are evaluating. On the other hand, the prior probability distribution of

X, the term P(X), is our best estimate of the probability of the event before the

observations are made.

In other words, the conditional probability of event X given an observation

of event Y is equal to P(X,Y) normalized by P(Y). Where P(X,Y) is the joint

probability of events X and Y, and P(Y) is the unconditional probability of event

Y. The resulting distribution of X, P(X|Y), is called the posterior probability

distribution.

5.2.2 Gaussian Distributions

In Kalman filters we express all probabilities as Gaussian distributions, thus

P(X) ∼ N (µ, σ2), where µ is the mean and the variance is σ2.

Equation (5.7) represents a Gaussian probability distribution function:

P (X) ∼ 1√
2πσ2

· e
−

(x− µ)2

2σ2 (5.7)
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As described previously, our objective is to combine prior information with

observations (measurements).

The Bayes Theorem, Equation (5.5), describes how to obtain the probability of

a hypothesis given an observation. As we have seen on Equations (5.5) and (5.6),

the posterior P(X|Y) is proportional to the multiplication of P(Y|X) and P(X),

which are two Gaussian distributions. Thus the posterior P(X|Y) is a Gaussian

as well.

In addition, we can derive the mean and variance of the posterior P(X|Y), from

the formulas of the mean and variance of the product of two Gaussian distributions

presented below.

Gaussian probability density function 1: P(X1) ∼ N (µ1, σ2
1)

Gaussian probability density function 2: P(X2) ∼ N (µ2, σ2
2)

And by multiplying P(X1) and P(X2), we obtain a third Gaussian[38][17] which

has the mean µ and variance σ2 presented below in Eq.(5.8).

Resulting Gaussian probability density function: P(X) ∼ N (µ, σ2), where the

mean µ and variance σ2 of P(X) are:

µ = σ2
1µ2 + σ2

2µ1

σ2
1 + σ2

2
and σ2 = σ2

1σ
2
2

σ2
1 + σ2

2
(5.8)
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Similarly, for the Gaussian posterior density P(X|Y) described in Eq.(5.5), we

can derive its mean and variance as shown below.

Gaussian probability density function of the prior:

P(X) ∼ N (µx, σ2
x)

Gaussian probability density function of the likelihood L(X):

L(X) = P(Y|X) ∼ N (µy, σ2
y)

Resulting Gaussian probability function of the posterior and its mean and variance:

P(X|Y) ∼ N (µ, σ2)

µ =
σ2
xµy + σ2

yµx

σ2
x + σ2

y

and σ2 =
σ2
xσ

2
y

σ2
x + σ2

y

(5.9)

Next, we are going to show two examples of the Gaussian result for a posterior

probability density of our variable of interest X.

In the first example, we assume that our Gaussian prior has a mean of µ=35

and standard deviation σ=2, thus P(X) ∼ N (µ=35, σ2=4) as presented in Figure

5.1. Having that prior at the present time we would think that the value of X

will be around 35, but we receive a measurement quite far from the prior, Y=15,

shown in red on Figure 5.2. The observation brings some uncertainty, in this case

a large error, which results in a likelihood probability P(Y|X) ∼ N (µ=15, σ2=9).

After combining these two Gaussians –following Eq.(5.9)– we obtain the resulting

posterior P(X|Y)∼ N (µ=28.85, σ2=2.77), as we see in Figure 5.3.
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As expected, the variance of our result is better than the variances of the

prior and the likelihood probability functions, because we are combining two sets

of information and therefore our uncertainty decreases. As for the mean, our

resulting estimation is centered around 28.85 which is closer to the prior because

its variance was smaller, and therefore the system model gives more reliability to

the prior than to the measurement.

For the second example, and as opposed to the first, we assume that our prior

is accurate respect of the true value of X, and that we receive a measurement

which is closer to the mean set by the prior as well.

In this case, our Gaussian prior has a mean of µ=20 and standard deviation

σ=1, thus P(X) ∼ N (µ=20, σ2=1) as presented in Figure 5.4. We receive a pretty

reliable measurement P(Y|X) ∼ N (µ=22, σ2=1.252) with a standard deviation of

σ=1.25 and mean µ=22, shown in red on Figure 5.5.

The result of combining those two Gaussians is the posterior probability density

function shown in orange in Figure 5.6. In this case, the posterior has a mean of

µ=20.78 and its variance has been reduced to σ2=0.61.

Interpretation of the Bayes Theorem for our problem: We are tracking

the First Order Boundaries, which correspond to the maximum ocean current

velocity present in a specific location at a specific time. We track the four

boundaries separately, each one being the object in the object tracking problem

we study. Example: the location of the first order line is at bin 300, and the

variance is 2 bins, thus the Gaussian describing the state of the object would be

P(X) ∼ N (µ=300, σ2=2).
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5.2.3 Bayesian Solution for Recursive Measurements

When receiving measurements at several times k = 1, 2... we apply the recursive

Bayesian solution.

To compute the Bayesian solution at time k, we take the posterior distribution

solution at time k − 1, which can be written as P(X|Y1,Y2, ...Yk−1) and use it as

the prior distribution to compute the posterior at time k.

P(X | Y1, ...Yk) = likelihood× P(X | Y1,Y2, ...Yk−1)
normalization factor

(5.10)

The complete general Bayesian recursive equation for the state conditional

probability density is shown in Eq.(5.11) below and its components are described

next.

P(Xk | Yk) = P(Yk | Xk)
P(Yk | Yk−1)

∫
Xk−1

P(Xk | Xk−1)P(Xk−1 | Yk−1)dXk−1 (5.11)

Note the following terms describing relevant probability densities present at

the general Bayesian recursive equation (5.11). For reference see Challa[17]:

• P(Yk | Xk) is the Likelihood L(X), or probability that each X would result

in the measurement Y.

• P(Xk | Xk−1) is the probability density of the transition from time k − 1 to

time k.

• As seen above, P(Xk−1 | Yk−1) is the posterior probability density function

at the previous time k−1, which now (at time k) is multiplying the transition

density.
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• The integral of the last two terms mentioned, known as the predicted density

at time k, is

∫
Xk−1

P (Xk | Xk−1)P (Xk−1 | Y k−1)dXk−1 (5.12)

and can also be expressed as simply P(Xk | Yk−1), as we will see below in

Eq.(5.13). This is what we use as our prior for time k, as described above

in Eq.(5.10).

• P(Yk | Yk−1) is the normalization factor.

Finally, the four recursive Bayesian algorithm steps are Prediction of the

state of X, Update the prediction with the measurement Y, Normalize the update

and determine the estimate through the Posterior, and they are described below.

1. Prediction step:

The Chapman-Kolmogorov equation[17]

P(Xk | Yk−1) =
∫

Xk−1
P(Xk | Xk−1)P(Xk−1 | Yk−1)dXk−1 (5.13)

produces P(Xk | Yk−1) which is the predicted state of the elements of Xk

given the previous state Xk−1 and all measurements up to k − 1, i.e. Yk−1.

Within the Chapman-Kolmogorov equation integral we find the posterior

probability density function for the previous time, which is P(Xk−1 | Yk−1).

We also see the probability function P(Xk | Xk−1), which is known as the

transition density between the states of our variable.
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2. Update step:

Upon receiving the newest measurement Yk we proceed to the correction

through multiplying by the likelihood L(X)=P(Yk | Xk).

3. Normalize the update:

Obtain the posterior probability density by dividing the normalization factor

P(Yk | Yk−1) and thus normalizing the updated state.

4. Posterior density:

Finally, the full equation for P(Xk | Yk) –Eq.(5.11)– is the posterior probability

density function of the object state Xk conditioned on the available measurements

up to Yk.

At this point, we introduce the additive noise and list a series of assumptions

for optimal Bayesian tracking and Kalman filters.

1. Given a current state of the variable of interest xk, its previous state xk−1

and a measurement at the current time yk; we refer to the Additive White

Gaussian Noise (AWGN) in the state variable at the current time k as vk,

while wk refers to the noise associated with the measurement.

2. The object dynamics and measurement equations in Eq.(5.14) that include

the AWGN are linear. The matrices F andH are assumed to be the functions

containing the transitions from one state to the next.
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3. vk and wk are white, uncorrelated, Gaussian noise sequences with zero mean

and their corresponding covariances are the matrices Qk and Rk.

xk = Fxk−1 + vk yk = Hxk + wk (5.14)

5.3 The Kalman Filter

The most important and most often used estimation algorithm is the Kalman

Filter, named after Rudolph E. Kalman. The original paper[32] published in 1960,

presented a recursive solution to a linear filtering problem with discrete data.

The Kalman filter is optimal in the sense that the estimated error uncertainty is

minimized under the specific conditions listed above, and it follows the concept

of predict and correct described on Section 5.1.3 for the g-h filter. Even when

the minimal conditions are not met, the Kalman filter is still chosen for many

applications since it still performs quite well.

Hence we introduce the Kalman Filter (KF) as a Bayesian Optimal filter that

also assumes the three assumptions[17] we listed in Section 5.2.3 above related to

Gaussian additive noise and linearity of its state equations.

From the object dynamics and measurement equations in Eq. (5.14) and

following the form P(X) ∼ N (µ, σ2) to define a Gaussian probability density

function, we present the subsequent functions that fully define a Kalman Filter[49]:
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• The transition probability density function of the object state from time

k − 1 to the current time k, P(Xk | Xk−1), is a Gaussian with mean Fxk−1

and covariance Qk.

P(Xk | Xk−1) ∼ N (Fxk−1, Qk)

• The posterior probability density function of the object state at time k− 1,

P(Xk−1 | Yk−1), is a Gaussian with mean x̂k−1|k−1 and covariance Pk−1|k−1.

P(Xk−1 | Yk−1) ∼ N (x̂k−1|k−1, Pk−1|k−1)

• The prior or predicted probability density function of the object state at

time k (before receiving the measurement yk), P(Xk | Yk−1), is a Gaussian

with mean x̂k|k−1 and covariance Pk|k−1.

x̂k|k−1 = Fx̂k−1|k−1

Pk|k−1 = FPk−1|k−1FT + Qk

P (Xk | Y k−1) =
∫
Xk−1

P (Xk | Xk−1)P (Xk−1 | Y k−1)dXk−1

=
∫
N (Fxk−1,Qk) · N (x̂k−1|k−1,Pk−1|k−1)

P (Xk | Y k−1) = N (x̂k|k−1,Pk|k−1) (5.15)

• The likelihood probability density function of the measurement or observation

received at time k, P(Yk | Xk), is a Gaussian with mean Hxk and covariance

Rk.

P(Yk | Xk) ∼ N (Hxk, Rk)
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• The normalization factor probability density function of the measurement

received at time k given all the measurements received up to time k − 1,

P(Yk | Yk−1), is a Gaussian with mean ŷk|k−1 and covariance Sk.

ŷk|k−1 = Hx̂k|k−1

Sk = HPk|k−1HT + Rk

P (Yk | Y k−1) =
∫
Xk
P (Yk | Xk)P (Xk | Y k−1)dXk

=
∫
N (Hxk,Rk) · N (x̂k|k−1,Pk|k−1) = N (ŷk|k−1,Sk)

• The posterior probability density function –Eq.(5.11)– at time k given all

the measurements received up to time k, P(Xk | Yk), is a Gaussian with

mean x̂k|k and covariance Pk|k.

x̂k|k = x̂k|k−1 + Pk|k−1HTS−1
k (yk − ŷk|k−1)

Pk|k = Pk|k−1 −Pk|k−1HTS−1
k HPk|k−1

P (Xk | Y k) = N (Hxk,Rk) · N (x̂k|k−1,Pk|k−1)
N (Hx̂k|k−1,Sk)

= N (x̂k|k,Pk|k)
(5.16)
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5.4 Solutions for Object Tracking

with Simultaneous Measurements

For the problem under study in this document, we consider each of the four

first-order boundaries as a separate object tracking problem, and therefore we are

estimating four boundaries independently.

Every time a measurement is received, we want to recursively estimate the

current state of the variable under study – the location of each of those first-order

boundaries. In this section, we take into consideration that multiple measurements

can be received simultaneously for each of the boundaries, e.g. a few different

possible locations for the first-order boundary and we want to estimate a final

location considering those sensor measurements.

Since the optimal Bayesian solution presented in 5.4.1 is the most complex

option, two approximations for this optimal recursion have been successfully used

and implemented:

• the Nearest Neighbor Filter described in section 5.4.2,

• the Probabilistic Data Association Filter presented in section 5.4.3.
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Figure 5.7: Example showing multiple simultaneous measurements received for
the determination of the right first-order boundary, particularly they start at 15
km range from the radar. In this section we will see the possible algorithms to
decide the final estimated location of the boundary when multiple options are
possible. In the figure, we see multiple simultaneous possible locations for the
right first-order boundary, due to the higher power backscattered energy to the
immediate right of the Bragg region between 15 and 21 km range. The null-finding
algorithm described in Chapter 4 accepts multiple possibilities and the algorithms
described in this section will have to determine the most probable location for the
boundary at each range.

134



5.4.1 Bayesian Solution for Simultaneous Measurements

While the object dynamics remain the same as for the recursive solution for

single object tracking in clutter that we saw on Section 5.2.3,

xk = Fxk−1 + vk, (5.17)

the difference in this case relates to the sensor observations.

The recursive Bayesian solution is used when we have a sensor that receives

a single measurement for every epoch k. On the other hand, in the present

Bayesian solution for simultaneous measurements our sensor observations at each

time k = 1, 2, 3, ... result in a set of simultaneous measurements instead of a single

one. Thus, for each time k we receive

yk = {yk(1),yk(2),yk(3), ...,yk(mk)}, (5.18)

where mk denotes the number of received measurements at time k. The whole set

of measurements for all epochs is mk = {m1,m2, ...,mk}.

The posterior density of the target state will not only be conditioned by the

received measurements yk like before, but also on the number of measurements

mk received at each time k, as described next.

• The prior or predicted probability density function of the object state at

time k (before receiving the set of measurements yk), is P(Xk | Yk−1,mk−1).

From Eq.(5.17)⇒ P (Xk | Xk−1) = Pvk
(xk − F(xk−1))
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P (Xk | Y k−1,mk−1) =
∫
Xk−1

P (Xk | Xk−1)P (Xk−1 | Y k−1,mk−1)dXk−1

=
∫
Xk−1

Pvk
(xk − Fxk−1)P (Xk−1 | Y k−1,mk−1)dXk−1

(5.19)

• The joint likelihood probability density function of the measurements or

observations received at time k is P(Yk,mk | Xk,Yk−1,mk−1).

P (Yk,mk | Xk, Y
k−1,mk−1) =

= P (yk(1),yk(2),yk(3), ...,yk(mk),mk | xk,yk−1,mk−1).

• The normalization factor density function of the set of measurements received

at time k given all the measurements up to time k−1 is P(Yk,mk | Yk−1,mk−1).

P (Yk,mk | Y k−1,mk−1) =

=
∫
Xk
P (Yk,mk | Xk, Y

k−1,mk−1)P (Xk | Y k−1,mk−1)dXk.

• Finally, the conditional probability density function (posterior) at time k

given all the measurements received up to time k is P(Xk | Yk,mk) and

follows the Bayes theorems in Equations (5.5) and (5.6).

P (Xk | Y k,mk) =

= P (Xk | Yk,mk, Y
k−1,mk−1) =

= P (Yk,mk | Xk, Y
k−1,mk−1) · P (Xk | Y k−1,mk−1)

P (Yk,mk | Y k−1,mk−1)
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5.4.2 Nearest Neighbor Filter

The Nearest Neighbor Filter, also known as NNF, is an approximation of the

optimal Bayesian filter recursive solution for multiple simultaneous measurements

we studied in Section 5.4.1. This approximation is based on five assumptions[17]:

1. The true object exists and is always detected.

2. The measurement that is closest to the predicted measurement (in a statistical

sense) comes from the object.

3. All other measurements are thus from clutter.

4. The object motion or behavior obeys linear Gaussian statistics.

5. The measurement noise is white Gaussian.

Hence, the main concept of the Nearest Neighbor filter is that only one mea-

surement (among all validated measurements yk = { yk(1), yk(2), ..., yk(mk)} at

time k), denoted yk(i), is considered to be target-originated. That measurement

yk(i) is the one whose statistical distance to the predicted measurement of the

filter is the smallest.

Similarly to how we described the probability densities in Section 5.2.3, we

present the main concepts as well as the equation terms that form the posterior

probability density function of the Nearest Neighbor filter next.

• The object dynamics function F(·) is a linear function of the object state:

xk = Fxk−1 + vk
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• The sensor measurements are also a linear function of the object state:

yk = Hxk + wk

• The object dynamics and measurement equations above are linear. The noise

terms vk andwk are white, uncorrelated, Gaussian noise sequences with zero

mean (AWGN). The noise in the state variable at the current time k is vk,

while wk refers to the white noise associated with the measurement. The

matrices F andH are assumed to be the functions containing the transitions

from one state to the next. The corresponding covariances for the noise

vectors are the matrices Qk and Rk.

• The prior probability density function of the object state from the time k−1

is a Gaussian with mean x̂k−1|k−1 and covariance Pk−1|k−1.

P(Xk−1 | Yk−1,mk−1) ∼ N (x̂k−1|k−1, Pk−1|k−1)

• The transition probability density function of the object state from time

k − 1 to the current time k is P(Xk | Xk−1).

From Eq.(5.17)⇒ P (Xk | Xk−1) = Pvk
(xk − F(xk−1))

Since Pvk
(·) is a Gaussian probability density, the transition probability

density function is given by:

P (Xk | Xk−1) = 1
(2π)n

2 |Qk|
1
2
· exp

{
−1

2(xk − Fxk−1)TQ−1
k (xk − Fxk−1)

}
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Summarizing, and like we saw in Section 5.2.3, the transition probability

density function is a Gaussian with mean Fxk−1 and covariance Qk.

P(Xk | Xk−1) ∼ N (Fxk−1, Qk)

• The predicted probability density function of the object state at time k

(before receiving the set of measurements yk) is P(Xk | Yk−1,mk−1).

Following Eq.(5.19) we can derive:

P (Xk | Y k−1,mk−1) =

=
∫
Xk−1

Pvk
(xk − Fxk−1)P (Xk−1 | Y k−1,mk−1)dXk−1

The terms in the integral are:

Pvk
(xk − F(xk−1)) = P (Xk | Xk−1) ∼ N (Fxk−1,Qk)

P (Xk−1 | Y k−1,mk−1) ∼ N (x̂k−1|k−1,Pk−1|k−1)

Finally, using the normal distribution theorem, the predicted probability

density function can be simplified as presented next.

P (Xk | Y k−1,mk−1) =∫
Xk−1

P (Xk | Xk−1)P (Xk−1 | Y k−1,mk−1)dXk−1

=
∫
N (Fxk−1,Qk) · N (x̂k−1|k−1,Pk−1|k−1) ∼ N (x̂k|k−1,Pk|k−1).

(5.20)

• The likelihood probability density function in the NNF is approximated by

choosing yk(i) from the set of yk by ordering the measurements based on
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their statistical distance to the predicted measurements[17]. Since both the

measurement noise and the model process noise are Gaussian, the statistical

distance is determined by the chi-square test. Among all measurements

received, only one measurement is selected to associate and update the

object state, and the selection is based on the following criterion:

yk(i) = argmin
yk(j), ∀j∈{1,...,mk}

[
yk(j)−Hx̂k|k−1

]T
S−1
k|k−1

[
yk(j)−Hx̂k|k−1

]
,

(5.21)

where Sk|k−1 = HPk|k−1HT + Rk.

• The normalization factor probability density function of the measurement

received at time k given all the sets of measurements received up to time k-1,

P(Yk,mk | Yk−1,mk−1), is a Gaussian with mean Hx̂k|k−1 and covariance

Sk|k−1.

P (Yk,mk | Y k−1, mk−1) =∫
Xk
P (Yk,mk | Xk, Y

k−1,mk−1)P (Xk | Y k−1,mk−1)dXk

where
P (Yk,mk | Xk, Y

k−1,mk−1) = N (yk(i); Hxk,Rk),

and P (Xk | Y k−1,mk−1) = N (yk(i); x̂k|k−1,Pk|k−1).

Finally, it all results in the normalization factor :

P (Yk,mk | Y k−1, mk−1) = N (yk(i); Hx̂k|k−1,Sk|k−1).

• The conditional posterior probability density function of the object state

at time k given all the measurements received up to time k results from
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combining the above equations as shown below. The derivation results in a

Gaussian with mean x̂k|k and covariance Pk|k.

x̂k|k = x̂k|k−1 + Pk|k−1HTS−1
k (yk(i)− ŷk|k−1(i))

Pk|k = Pk|k−1 −Pk|k−1HTS−1
k HPk|k−1

P (Xk | Y k, mk) = N (yk(i); Hxk,Rk) · N (xk; x̂k|k−1,Pk|k−1)
N (yk(i); Hx̂k|k−1,Sk|k−1)

P (Xk | Y k, mk) = N (xk; x̂k|k,Pk|k) (5.22)

As we have seen in this section, the Nearest Neighbor filter chooses which

measurement is nearest to the predicted measurement to update the state. As

opposed to "all-neighbors filters", the nearest neighbor filter can lead to very poor

performance when the density of clutter or spurious measurements is high. This

algorithm does not properly account for the fact that the measurement chosen for

the update may be unrelated to the object, thus it could be choosing clutter as

the most reliable observation.

Therefore, for our estimation problem, we end up choosing to use the Probabilistic

Data Association Filter described next.

5.4.3 Probabilistic Data Association Filter

The Probabilistic Data Association Filter (PDAF) presents one of the most

successful algorithms in the class of Bayesian all-neighbors filters, which is why

we chose it for the first-order boundaries tracking problem on this research, as

detailed in Chapter 7 and particularly in the Data Association step in Section 7.5.

The PDAF algorithm updates the object state estimate using all of the validated

measurements and their respective posterior probability weightings that we will

describe in this section.
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The PDAF is derived by making the following assumptions[17]:

1. The prediction density in the optimal Bayesian recursion given all past

observations is a Gaussian density, although strictly speaking it is a Gaussian

mixture.

2. The object being tracked exists and no other object exists.

3. The object behavior obeys linear Gaussian statistics.

4. Only one measurement of the multiple measurements received can be originated

from the object of interest.

5. The noise of the measurements is white Gaussian.

6. The object may or may not be detected all the time and is detected with

probability of detection PD.

7. All non-object originated measurements are assumed to originate from clutter

that is uniformly distributed in space and Poisson distributed in time.

8. Only measurements that fall within a proximity of the expected measurement

(within a validation gate) are considered for processing.

The object dynamics, as well as the measurement and noise models are the

same as those in the nearest neighbor filter in Section 5.4.2. The transition and

prediction densities are also the same, and they are all listed below.

• The object state function and sensor measurements:

xk = Fxk−1 + vk

yk = Hxk + wk
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The noise terms vk andwk are white, uncorrelated, Gaussian noise sequences

with zero mean (AWGN). The noise in the state variable at the current time

k is vk, while wk refers to the white noise associated with the measurement.

The matrices F and H are the functions containing the transitions from one

state to the next. The corresponding covariances for the noise vectors are

the matrices Qk and Rk.

• The prior probability density function of the object state:

P(Xk−1 | Yk−1,mk−1) ∼ N (x̂k−1|k−1, Pk−1|k−1).

• The transition probability density function of the object state from time

k − 1 to the current time k:

P(Xk | Xk−1) ∼ N (xk; Fxk−1, Qk).

• The predicted probability density function of the object state at time k

(before receiving the set of measurements yk) is:

P (Xk | Y k−1,mk−1) ∼ N (xk; x̂k|k−1,Pk|k−1). (5.23)

• The likelihood probability density function:

The key difference between the NNF and the PDAF is their way to extract

information out of the received measurements.
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The likelihood L of the PDAF is approximated by choosing the subset of

measurements from the total measurement set yk by gating the measurements

based on their statistical distance to the predicted measurements[17]. G is

the validation gate, and PG is the probability that a measurement falls into

the validation gate.

Since the clutter measurements are uniformly distributed and have equal

probability of being at any point within the gate G, we derive the likelihood

probability density function for the PDAF as:

P (Yk | Xk,mk, θk(i)) =

= P (yk(1),yk(2),yk(3), ...,yk(mk) | Xk,mk, θk(i)) =

=
( 1
Vk

)mk−1
P (yk(i) | Xk)

The term P (yk(i) | Xk) is the likelihood of the ith measurement being

object-originated, and the term θk(i) is the association event that the ith

measurement is from the target and the rest are from clutter.

When the complete space is considered, P (yk(i) | Xk) ∼ N (yk(i); Hxk,Rk).

However, since the effective measurement space is truncated by the validity

gate then the likelihood is effectively truncated as well.

By normalizing it with its area in the gate (the gating probability PG) it

can be rewritten as:

P (yk(i) | Xk) = 1
PG
N (yk(i); Hxk,Rk).
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Finally, the likelihood probability function P (Yk | Xk,mk, θk(i)) will be as

follows, where i = 0 refers to the the first measurement.

P (Yk | Xk,mk, θk(i)) =


( 1
Vk

)mk−1 1
PG
N (yk(i); Hxk,Rk), ∀i 6= 0,( 1

Vk

)mk

, i = 0.
(5.24)

• The normalization factor and the joint likelihood.

First, we will describe the derivation of the joint likelihood probability

density function.

From the Bayes theorem in Eq.(5.5) we can derive:

P (Xk | Y k,mk) = P (Yk,mk | Xk, Y
k−1,mk−1) P (Xk | Y k−1,mk−1)

P (Yk,mk | Y k−1,mk−1) (5.25)

The first term in the equation above is the joint likelihood

P (Yk,mk | Xk, Y
k−1,mk−1),

which is the density function of the measurements or observations received

at time k.

Therefore the joint likelihood can be derived as follows:

P (Yk,mk | Xk, Y
k−1,mk−1) =

=
mk∑
i=0

P (yk(1),yk(2), ...,yk(mk) | Xk,mk, θk(i))P (θk(i)|mk)P (mk | Y k−1,mk−1) =
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P (Yk,mk | Xk, Y
k−1,mk−1) =

( 1
Vk

)mk

P (θk(0)|mk)P (mk | Y k−1,mk−1)

+
( 1
Vk

)mk−1 mk∑
i=1

P (yk(i) | Xk)P (θk(i)|mk)P (mk | Y k−1,mk−1)

(5.26)

where:



P (θk(0)|mk) = (1− PDPG) µF (mk)
µF (mk − 1)

[
PDPG + µF (mk)

µF (mk−1)(1− PDPG)
]−1

P (θk(i)|mk) = 1
mk

PDPG

[
PDPG + µF (mk)

µF (mk−1)(1− PDPG)
]−1

Note that µF (mk) is the distribution of mk clutter measurements that are

gated.

The normalization factor probability density function of the measurement

received at time k given all the sets of measurements received up to time

k − 1 is expressed as P(Yk,mk | Yk−1,mk−1) and we describe its derivation

next.

From the Bayes equation Eq.(5.25), the normalization factor in the denominator

can be isolated as:

P (Yk,mk | Y k−1, mk−1) =∫
Xk
P (Yk,mk | Xk, Y

k−1,mk−1)P (Xk | Y k−1,mk−1)dXk.

(5.27)

Combining the joint likelihood in Eq.(5.26) into the normalization factor

integral in Eq.(5.27) we obtain the following:
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∫
Xk

(
P (Yk,mk | Xk, Y

k−1,mk−1)P (Xk | Y k−1,mk−1)
)
dXk =

∫
Xk

(TERM1× TERM2× TERM3) dXk,

where



TERM1 = P (mk | Y k−1,mk−1)

TERM2 =

P (θk(0)|mk)
V mk
k

+

mk∑
i=1

P (θk(i)|mk)P (Yk(i) | Xk)

V mk−1
k


TERM3 = P (Xk | Y k−1,mk−1) ∼ N (xk; x̂k|k−1,Pk|k−1)

Next we continue the derivation as:

∫
Xk

(
P (Yk,mk | Xk, Y

k−1,mk−1)P (Xk | Y k−1,mk−1)
)
dXk =

∫
Xk

(
[TERM4 + TERM5] · N (xk; x̂k|k−1,Pk|k−1)

)
dXk

where


TERM4 = P (mk | Y k−1,mk−1) P (θk(0)|mk)

V mk
k

TERM5 =

mk∑
i=1

P (mk | Y k−1,mk−1) P (θk(i)|mk) P (Yk(i) | Xk)

V mk−1
k

After a series of derivations described by Challa[17], we can rewrite the

integral as a sum of two terms:

∫
Xk

(
P (Yk,mk | Xk, Y

k−1,mk−1)P (Xk | Y k−1,mk−1)
)
dXk = TERM4 + TERM7
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Where
TERM7 =

mk∑
i=1

P (mk | Y k−1,mk−1) P (θk(i)|mk)
PGV

mk−1
k

×
∫
Xk
N (yk(i); Hxk,Rk) N (xk; x̂k|k−1,Pk|k−1) dXk

We establish the equation for the mean value ŷk and the covariance Sk and

rewrite the integral in TERM7 below:

ŷk = Hx̂k|k−1

Sk = HPk|k−1HT + Rk∫
Xk
N (yk(i); Hxk,Rk) N (xk; x̂k|k−1,Pk|k−1) dXk = N (yk(i); ŷk,Sk)

(5.28)

Finally the normalization factor can be summarized as:

P (Yk,mk | Y k−1, mk−1) =
P (mk | Y k−1,mk−1) P (θk(0)|mk)

V mk
k

+
mk∑
i=1

P (mk | Y k−1,mk−1) P (θk(i)|mk)
PGV

mk−1
k

× N (yk(i); ŷk,Sk)
(5.29)

• The data association probabilities in the Probabilistic Data Association Filter

PDAF are denoted by βk(i) (also known as "weights"), which are calculated

for the ith validated measurements, i.e. the measurements that fall within

the validation gate Vk.

• The posterior probability P (Xk | Y k, mk) that we are seeking to find to

estimate Xk, in other words the conditional probability density function of

the object state at time k given all the measurements received up to time k

results is studied next. To derive the posterior we need to combine:
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– The joint likelihood in Eq.(5.26)

P (Yk,mk | Xk, Y
k−1,mk−1)

– The predicted density in Eq.(5.23), we use κ for simplification.

κ = P (Xk | Y k−1,mk−1) = N (xk; x̂k|k−1,Pk|k−1)

– The normalization factor in Eq.(5.29), we use δ for simplification.

δ = P (Yk,mk | Y k−1, mk−1)

– The probability PG that a measurement which is object-originated will

fall into the gate.

– The data association probabilities or "weights", denoted by βk(i).

The expression for the posterior density function is derived as follows:

P (Xk | Y k, mk) = 1
P (Yk,mk | Y k−1, mk−1)×

mk∑
i=0

P (yk(1),yk(2), ...,yk(mk) | Xk,mk, θk(i))P (θk(i)|mk)× P (Xk | Y k−1,mk−1)

P (Xk | Y k, mk) =
1
δ

( 1
Vk

)mk

P (Xk | Y k−1,mk−1) P (θk(0)|mk)P (mk | Y k−1,mk−1)

+1
δ

( 1
Vk

)mk−1 mk∑
i=1

P (yk(i) | Xk) κ P (θk(i)|mk)P (mk | Y k−1,mk−1)

The term κ = P (Xk | Y k−1,mk−1) is the predicted density in Eq.(5.23) and

its combination with the likelihood of the ith measurement being object-

originated P (yk(i) | Xk) can be re-written as:
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P (yk(i) | Xk) κ =

P (yk(i) | Xk) · P (Xk | Y k−1,mk−1) = P (yk(i) | Xk) · N (xk; x̂k|k−1,Pk|k−1) =

= P−1
G N (yk(i); Hxk,Rk) N (xk; x̂k|k−1,Pk|k−1) =

= P−1
G N (yk(i); ŷk,Sk)

N (yk(i); Hxk,Rk) N (xk; x̂k|k−1,Pk|k−1)
N (yk(i); ŷk,Sk)

=

= P−1
G N (yk(i); ŷk,Sk) N (xk; x̂ik|k−1,Pi

k|k−1)

where, to simplify, we have multiplied and divided by N (yk(i); ŷk,Sk), the

term that we assigned as TERM7 in Eq.(5.28).

Therefore P (yk(i) | Xk) κ = P−1
G N (yk(i); ŷk,Sk) N (xk; x̂ik|k−1,Pi

k|k−1).

Next we go back to the posterior equation and substitute:

P (Xk | Y k, mk) =
1
δ

( 1
Vk

)mk

P (θk(0)|mk)P (mk | Y k−1,mk−1)N (xk; x̂k|k−1,Pk|k−1)

+1
δ

( 1
Vk

)mk−1
P−1
G

mk∑
i=1

P (θk(i)|mk) N (yk(i); ŷk,Sk)

× P (mk | Y k−1,mk−1) N (xk; x̂ik|k−1,Pi
k|k−1)

(5.30)

Finally, we do the last set of substitutions below, in order to obtain the final

expression of the posterior in Eq.(5.31).

As we saw in Eq.(5.29), the normalization factor δ = P (Yk,mk | Y k−1, mk−1)

could be written as a sum of two terms. Instead of TERM4 and TERM7, we

now assign them as follows, since we want to represent the normalization

factor δ in the form:
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δ = a0 + a1

mk∑
i=1

ei



a0 = P (mk | Y k−1,mk−1) P (θk(0)|mk)
V mk
k

a1 = P (mk | Y k−1,mk−1)
PGV

mk−1
k

√
2πSk

ei = exp{−1
2[yk(i)− ŷk]T S−1

k [yk(i)− ŷk]}P (θk(i)|mk)

bk = a0

a1
= P (θk(0)|mk)

PG|2πSk|
1
2

Vk

Therefore the terms in the posterior probability P (Xk | Y k, mk):

1
P (Yk,mk|Y k−1,mk−1)

( 1
Vk

)mk

P (θk(0)|mk)P (mk | Y k−1,mk−1)⇒ βk(0)

1
P (Yk,mk|Y k−1,mk−1)

( 1
Vk

)mk−1
P−1
G P (θk(i)|mk) N (yk(i); ŷk,Sk)⇒ βk(i)

βk(0) = a0

a0 + a1

mk∑
i=1

ei

= bk

bk +
mk∑
i=1

ei

βk(i) = a1ei

a0 + a1

mk∑
i=1

ei

= ei

bk +
mk∑
i=1

ei

Finally, the posterior probability density function is:

P (Xk | Y k, mk) = βk(0) N (xk; x̂k|k−1,Pk|k−1)

+
mk∑
i=1

βk(i) N (xk; x̂ik|k−1,Pi
k|k−1)

(5.31)
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After this chapter describing the relevant Bayesian estimation calculations that

we use in our study we are able to combine it with the complete description of

the proposed multi-probabilistic null-finding algorithm we designed to determine

the first-order boundaries that we provided in Chapter 4. This combination to

form the final algorithm for finding the first-order Bragg boundaries is presented

in Chapter 6 and Chapter 7.

The application of the Bayesian tracking in range and time to our observational

radar cross-spectra data, which is the Step 10 in Algorithm 19, will be introduced

first in Chapter 6. Included in Section 6.4, Algorithm 21 focuses on obtaining the

initial first-order boundaries which could be multiple. Later on in Chapter 7, the

Probabilistic Data Association recursion Algorithm 32 together with the Range

Tracking Algorithm 33 and the Temporal Tracking Algorithm 34 (both presented

in Section 7.5) will describe how do we study those multiple options and come

up with the final first-order boundaries, which are the ultimate objective of this

research.
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Chapter 6

Combined Algorithm for the

Alternative Method in Python

While the combined algorithm was described in Chapter 6 and illustrated in

the block diagram of Figure 6.1, Chapter 5 developed the mathematical basis

for various steps in the algorithm. The project has been developed in Python,

and in this chapter we will be providing Python pieces of code and pseudo-code

descriptions to analyze the most important steps developed during our research.

First we discuss the reasons to choose the open-source programming language

Python for our project (Section 6.1), and the initial selection of the radar site

within the HF radar network as well as which set of cross-spectra files are we

going to study (Section 6.2).

Next we present the conventional method steps in Section 6.3, which refers to

the algorithms we introduced in Section 4.10. Then in Section 6.4, right after, we

describe the steps to run the alternative "multi-probabilistic null-finding method"

presented in Chapter 4.
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The output of the algorithms presented in Section 6.4 are the "initial estimates"

of the first-order boundaries. With those, we apply our Bayesian estimation

techniques described in Chapter 5 in order to achieve the final decisions on

first-order line boundary locations. In Section 6.5, we introduce the algorithms to

process these "initial estimates" and from there the reader is referred to the full

details on the Bayesian tracking in Chapter 7.

Later, once we have obtained the "final estimates" of the first-order boundaries

we can proceed using the steps below:

1. Generate the corresponding radial current vector maps, as described in

Section 6.6, where we see the status of the current vector fields in the vicinity

of our radar site.

2. Study the validity of these radial vectors and compare them against the

boundaries obtained through the conventional method. These statistical

comparisons are executed as described in Section 6.7, and the reader is

referred to Chapter 8 for complete details.

3. Perform drifter comparisons to see if indeed our method of determining the

Bragg first-order boundaries tends to add radials with Root Mean Squared

errors (see Section 8.1) much smaller than the RMS errors of the radials

that were determined by the conventional method but are rejected by the

proposed method. Section 6.8 introduces the comparisons that are described

in detail in Chapter 9.

The complete algorithm is shown in functional block diagram form in Figure

6.1.
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Figure 6.1: Functional block diagram describing the information flow in the
new alternative line boundary algorithm. Note the iterative steps through a
Probabilistic Data Association Filter that are recursively performed in order to
determine the final estimates of the first-order boundary locations.
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6.1 Choosing Python

Python is an open-source programming language widely used for scientific

computing in both academic and multiple industry fields. Python programming

is in great demand for Big Data and supports multiple platforms. It can run on

Windows, Mac and Linux environments, and it involves fewer lines of codes as

compared to other languages available for programming. Python has scripting

features and in addition it uses many advanced libraries such as NumPy, SciPy,

and Matplotlib which makes it extremely useful for data science.

Python is an excellent tool and a perfect fit as a python – big data combination

for data analysis for the following reasons[60]:

• Open-source: Python is an open-source programming language developed

using a community-based model.

• Library support: Python consists of a large number of well-tested analytics

libraries which include packages like numerical computing, data analysis,

machine learning, statistical analysis and visualization.

• Speed: As a high-level language, it has many benefits which accelerate

the code development. It enables prototyping ideas which makes coding

fast while maintaining the great transparency between the code and its

execution.

• Object-oriented: Python is an object-oriented programming language which

also supports advanced data structures such as lists, sets, tuples, dictionaries

and many more. It supports many scientific computing operations like

matrix operations, data frames, etc. These abilities within Python enhance

its scope to simplify and speed up data operations.
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• Data processing support: Provides advanced support for image and voice

data due to its inbuilt features of supporting data processing for unstructured

and unconventional data which is a common need in big data.

6.2 Step I: Radar Site and Cross-Spectra

The first phase of our method is to choose a radar site within the HF radar

network and to decide which point in time and the associated cross-spectra files

we are going to study. The SeaSonde HF radars we have been working with during

this research operate at the following frequencies:

• 5 MHz (Long-Range): The lowest of the SeaSonde transmit frequency bands

is within 4.4 and 6 MHz. This allows for greater ranges than the higher

frequency bands without any increase in radiated power because the propa-

gation loss is less than at higher frequencies[58][59]. In general, the average

daytime observable range achieved by a SeaSonde operating at this long-

range mode is typically 150-220 km and their range resolution ∼6 km.

• 13 MHz (Mid-Range): The SeaSonde medium range configuration works

with a transmit frequency band around 13 MHz. These mid-range HF

radars can reach typically 60 to 90 km in range from the radar location

with the trade-off of having a better range resolution (between 1 and 3 km)

as compared to the long-range radars.

• 24 MHz (High-Resolution): The short range HF radars work at an operating

frequency around 25 MHz have the shortest range of 20 to 45 km. However,

they present a great range resolution of 0.5 km and a convenient 2.4 cm/s

for radial current resolution.
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SeaSonde
Site

Operating
Frequency
[MHz]

λ
Radar
[m]

Range
[km]

Range
resolution
[km]

Doppler
bins

Time
output
[minutes]

Radial
current
resolution
[cm/s]

HATY 4.5 66 160-220 5.8 1024 30 - 60 3.2
ASBI 13.2 23 60-90 3 512 10 - 15 4.4
VCOL 24.4 12.3 20-45 0.5 1024 10 - 15 2.4

Table 6.1: Comparison of the specifications between the three operating
frequencies of the SeaSonde sites that we use in this study.

Depending on the operating frequency of the HF radar of choice, we will have

different specifications, summarized in Table 6.1. Generally, the most important

factor in the selection of the operating frequency is the desired radar range for

the specific site or application needs, as presented in Figure 6.2.

Next, we have to choose the time frame that we will be studying. The decision

on which days to be analyzed can depend on the study requirements, the time

of interest due to an specific event happening, e.g., tidal cycles, a storm, coastal

upwelling, etc.

Once we have selected the radar site and the set of cross-spectra files that

we will be processing, we need to locate the files described in the list below.

The parameters in Header.txt, AnalysisOptions.txt and FirstOrderConfigs

.plist may vary depending on the season, the tide, the weather predictions etc.

and consequently we can store different versions and the operator should be able

to choose which configuration to use.
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List of configuration parameters:

1. Header.txt

In the "Header" text file we find a series of parameters specific to the

corresponding radar site. These parameters control aspects that are used in

the conversion from Cross-Spectra into Radial Maps and Wave Data. It is

important to verify when this Header was last modified and if it needs to

be updated or any changes have to be made for the present scenario. The

parameters that are most relevant to our research are defined in Chapter 4

when we describe the null finding algorithm.

2. AnalysisOptions.txt

In the "Analysis Options" text file we find some processing settings needed

when turning the cross spectra files into radial current maps. One of the

parameters is the Antenna Pattern Type: if 0 (zero) it specifies to use an

ideal antenna pattern in processing cross spectra into radials, while a value

1 (one) specifies to use a measured antenna pattern in processing. Another

important setting is the Doppler Interpolation parameter. If set to 2 (two), it

tells the SpectraToRadial tool to internally double the number of Doppler

points (using linear interpolation) and then calculate radial velocity and

bearing. This results in a typical 10 to 15 percent increase in the number of

vectors. The theory behind this is that real world signals do not typically

fall exactly onto a Doppler cell and instead will split power between two

Doppler cells; so this technique helps the software better discern between

adjoining vectors.

160



3. MeasPattern.txt and IdealPattern.txt

These files define the antenna pattern used to resolve radial bearings and

therefore place them in the radial maps. IdealPattern.txt is a theoretical

ideal pattern, while MeasPattern.txt is a Radial Site specific measured

pattern that involves measuring the antennas and doing an Antenna Pattern

Measurement. (More information can be found on the "Antenna Pattern

Measure Guide" by CODAR Ocean Sensors Ltd.). The pattern bearings

are CCW (counter-clockwise) degrees referenced from the antenna bearing,

which is found in the Header.txt and is CW (clockwise) degrees from true

North.

4. FirstOrderConfigs.plist

The "First Order Configurations" preference file contains a series of parameters,

described in Chapter 4, that configure the settings for the alternative null

finding algorithm (Algorithm 16), the split Bragg recursive search (Algorithm

17) as well as the Bayesian estimation application in Algorithms 28 through

30.

As we discussed in Chapter 2 and Chapter 3, we study the backscatter spectra

of the monopole antenna (Antenna 3) to extract the first-order region boundaries.

The traditional method for determining the first-order Bragg boundaries is known

as the "conventional" method in this study, which we detailed in Section 4.10. We

are interested in comparing the aforementioned boundaries against the first-order

boundaries obtained using the "alternative" multi-probabilistic null finding method

that we designed – described in Section 4.11 – which first finds the local minima

(nulls) and then applies a multi-probabilistic approach (see Figure 6.1) to obtain

the final decision on the locations of the first-order boundaries.
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6.3 Step II: Conventional First-Order Boundaries

In order to perform the comparisons we will have to extract the conventional

first-order boundaries from the cross-spectra files; we are able to do so if the

version of the cross-spectra file is 6 or newer. However, if we are working with

older versions and we still want to be able to run our comparisons we will need

to "generate" the conventional first-order boundaries by emulating the basic null

finding described in Chapter 4 Algorithm 18.

The pseudo-code in Algorithm 20 describes how to extract the conventional

first-order boundaries (labeled as conventional_FirstOrderBoundaries) if they are

available and stored under the label [’FOLS’] in the cross-spectra file, or how to

generate them using the ConventionalFOL algorithm mentioned above when they

have not been predetermined in the file.

Algorithm 20 Retrieve Conventional First-Order Boundaries
Load cross-spectra file as cs_file
version ← cs_file.version
if version ≥ 6 then
Extract the FOLS field from cs_file
FirstOrderBoundaries ← cs_file.FOLS

else
Run ConventionalFOL algorithm to generate the first-order boundaries
FirstOrderBoundaries ← ConventionalFOL(cs_file)

end if
Return conventional_FirstOrderBoundaries
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6.4 Step III: Alternative First-Order Boundaries

The alternative method to determine the first-order Bragg boundaries, also

known as the "multi-probabilistic null-finding method" in this study, consists of

many steps which are all presented in Chapter 4, specifically in Section 4.11 and

illustrated in Figure 6.1. As a reminder, its two main innovative features are:

1. The null-finding algorithm allows output sets of multiple initial first-order

boundary estimates for each Bragg region boundary and range.

2. Our newly designed algorithm determines the locations of the final unique

first-order boundaries after applying two Bayesian tracking algorithms (both

spatial and temporal) that improve the initial estimates using spatial and

temporal models.

The pseudo-code below, Algorithm 21, summarizes our process to determine

what we denominate as initial_FirstOrderBoundaries, i.e. the "first estimate of

the first-order boundaries". As we describe next, the determination of every single

boundary at a single range reported at initial_FirstOrderBoundaries can consist

of:

• A) a single Doppler bin being the most probable location and therefore our

first-order boundary determination,

• B) a set of possible locations, to which we will later apply the Bayesian

estimation techniques discussed in Chapter 7, to obtain the final boundaries

namely final_FirstOrderBoundaries, as described in Section 7.5.
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Initially, as we see in Algorithm 21, we run the AlternativeFOL method

(Section 4.11). We treat each of the four boundaries as a separate problem and

thus we obtain four independent sets of boundaries following Section 5.1.4.

In addition, we also run the recursive Split Bragg Search Algorithm that we

introduced in Section 4.9 and that we label as BraggSplitAlgorithm in Algorithm

21. The complete Bragg Split Test is described in Algorithm 17 and will try and

find if any of the two Bragg regions has been divided into two or more sections,

returning all the corresponding boundary locations for each of the sections (see

Figure 4.9).

On top of that, a specific first-order boundary for a specific range, even when

the Bragg region does not present a split, might actually output multiple possible

locations as we listed under Option B above. This could happen when the region

around the boundary contains a lot of noise, or if there is more than one null

nearby and therefore the null-finding algorithm is not sure which Doppler bin

should be considered as the most appropriate location for the first-order boundary.

Algorithm 21 focuses on obtaining the initial_FirstOrderBoundaries which

could be multiple. Next, the tracking in range and time presented in Section 6.5

– which refer to the Range Tracking Algorithm 33 and the Temporal Tracking

Algorithm 34 that will be described in Chapter 7 – will cover how we analyze the

multiple initial boundary options and come up with the final decisions (namely

final_FirstOrderBoundaries), which are the ultimate objective of this research.
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Algorithm 21 Initial ’Alternative’ Estimations of the First-Order Boundaries
Load cross-spectra file as cs_file
Run the multi-probabilistic estimation method AlternativeFOL
(Algorithm 19) to determine the first-order boundaries
while running AlternativeFOL do
for each BOUNDARY in [FOL1 ,FOL2 ,FOL3 ,FOL4 ] do
for each RANGE in cs_file do
1) Search for split Braggs
if split Bragg detected then
Run BraggSplitAlgorithm

end if
2) Check for multiple possible locations
if various probable locations detected then
Return set of multiple Doppler locations into
corresponding BOUNDARY and RANGE

end if
end for

end for
[FOL1 ,FOL2 ,FOL3 ,FOL4 ]← AlternativeFOL(cs_file)

end while
FirstOrderBoundaries ← [FOL1 ,FOL2 ,FOL3 ,FOL4 ]
Return FirstOrderBoundaries as initial_FirstOrderBoundaries
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6.5 Step IV: Tracking in Range and in Time

We saw in Algorithm 21 how initial_FirstOrderBoundaries might consist of

some sets of multiple possible Doppler bin locations assigned to a single first-order

boundary at a specific range. As we described in Section 5.4, we have developed

two possible solutions that will determine the final final_FirstOrderBoundaries

given the aforementioned multiple initial first-order boundary estimates:

1. NNF: We can choose the Nearest Neighbor Filter approach to select, between

the existing possible boundary locations, which one is most probable. The

NNF filter is an approximation of the optimal Bayesian filter recursive

solution for multiple simultaneous measurements and to choose the most

probable location NNF will search for the measurement whose statistical

distance to the predicted measurement of the filter is the smallest.

(Described in Section 5.4.2)

2. PDAF: We can choose the Probabilistic Data Association Filter approach to

estimate a first-order boundary location by assigning probabilities (weights)

to the existing possible boundary locations and finally determining a location

that could be anywhere in between all of these possible locations.

(Described in Section 5.4.3)

Since the Bayesian estimation algorithms and their application to tracking

the first-order boundaries is such a relevant step in this research, we decided to

describe them in Chapter 7, where we study their temporal and spatial tracking in

detail. As a reminder, the outputs of this Bayesian tracking correction will be the

sets of "final estimations of boundary locations" that are used in the comparison

algorithms presented in the next sections.
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6.6 Step V: Radial Vector Maps

Once we have obtained the "final estimates" of the first-order boundaries using

our alternative proposed method, we start the process of comparing those solutions

against the conventional first-order boundary estimates introduced in Chapter 4

and Algorithm 18 and extracted as described in Section 6.3. Note that we perform

this comparison to verify how our multi-probabilistic method improves the radial

vector current maps by removing erroneous vectors and adding useful new vectors.

The first step within those comparisons is to generate the corresponding radial

current vector maps (Algorithm 22) where we are able to observe the status of

the current vector fields in the vicinity of our radar site. Many examples of radial

current velocity vector maps are presented in this document, e.g. the radial map

corresponding to the Bodega Bay SeaSonde site in Northern California in Figure

2.9 and the radial maps for the VCOL site in the Straits of Georgia in Figure 8.8,

Figure 8.9 and Figure 8.11.

Algorithm 22 Generating Radial Vector Maps

I. Load conventional_FirstOrderBoundaries as in Algorithm 20.

II. Load proposed_FirstOrderBoundaries after running the corresponding
tracking, either NNF or PDAF, as described in Section 6.5.

III. Run MUSIC algorithm to re-process the cross-spectra files in our set. As
shown in Figure 6.3 we obtain the set of corresponding radial files (.ruv files)
that contain the list of radial current velocities for each detectable bearing
and range arc progressing outwards from the SeaSonde receive antenna.

IV. Generate the corresponding radial current vector maps by placing the radial
vectors given by the radial files.
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Figure 6.3: Functional block diagram showing the process between having
the set of spectra files and the first-order estimates from the two methods into
re-processing through the MUSIC algorithm (Section 2.3.2 and Figure 2.10) and
thus obtaining the resulting sets of radial current velocity vectors and their
corresponding radial current velocity maps.
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The flow diagram in Figure 6.3 shows the process between the set of spectra

files and the first-order estimates from the two methods into the resulting sets

of radial current velocity vectors and their corresponding radial current velocity

maps.

6.7 Step VI: Radial Vectors Comparisons

Once we have both sets of ruv radial files containing all the determined

radial current vectors corresponding to 1) the conventional method, and 2) the

proposed multi-probabilistic method, we are able to compare those vectors within

the radial maps, following Algorithm 23. In addition, we run a series of statistical

comparisons to study the validity of the proposed method radial vectors, described

in detail in Chapter 8. As shown in that same chapter, we are in fact able to

demonstrate how the use of Bayesian estimation techniques in the determination

algorithm properly tracks and corrects the first-order boundaries, improving the

overall accuracy of the radial current vectors by:

• adding radial vectors that statistically compare well with the surrounding

radial vectors in the area,

• while rejecting radial vectors whose standard deviation from the surrounding

ones is indeed higher than the added vectors.

169



Algorithm 23 Comparing Between Radial Vector Sets

I. Load conventional_Radials, the radial current vectors associated with the
conventional_FirstOrderBoundaries.

II. Load proposed_Radials, the radial current vectors corresponding to the
proposed_FirstOrderBoundaries after running the corresponding tracking,
either NNF or PDAF, as described in Section 6.5.

III. Divide the two sets of radial vectors into:

(a) Agreed Radials: Subset of radial vectors that are found by both the
conventional first-order boundaries method as well as by the proposed
multi-probabilistic null-finding first-order boundaries determination
method.

(b) Added Radials: Subset of radial vectors that are added by
the proposed multi-probabilistic null-finding first-order boundaries
determination method.

(c) Rejected Radials: Subset of radial vectors that were given by
the conventional first-order boundaries method but rejected by
the proposed multi-probabilistic null-finding first-order boundaries
determination method.

IV. Run the statistical comparisons described in Chapter 8 to demonstrate the
advantages of the proposed method.

V. Generate comparison figures like Figure 8.10.
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6.8 Step VII: Comparisons with Drifters

The last step in our series of comparisons (Algorithm 24) is the comparison

against radial currents obtained by drifters in the Straits of Georgia, described in

Chapter 9. Our purpose in doing a drifter comparisons is to perform a sanity check

to see if indeed our method of determining the Bragg first-order boundaries tends

to add radials with Root Mean Squared errors (see Section 8.1) much smaller than

the RMS errors of the radials that were determined by the conventional method

but are rejected by the proposed method.

Algorithm 24 Comparing Between Radial Vector Sets and Drifter Radial Vectors

1. Load Drifter data nearby the radar site and transform the drifter velocities
into radial velocities respect to our radar site (Section 9.3), saved as
drifter_Radials.

2. Run comparisons (Section 9.3) between the drifter radials and the three
subsets of radial currents described in Algorithm 23.

3. Generate Standard Deviation Comparison Figures of radar radials
versus drifter radials, as seen in Figure 9.7.
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Chapter 7

Bayesian Estimation Algorithms

and their Application to

Tracking the First-Order

Boundaries in Time and Range

In this chapter we study the application of the Bayesian estimation and tracking

techniques that we first introduced in Chapter 5.

In particular, in Section 7.1 we first present the algorithm to load the cross-

spectra radar files and select the necessary configuration parameters to create the

desired estimation model, with the particular settings that we need for the current

time, radar site and weather conditions. The relevant parameters for setting up the

model can be either modified depending on our scenario, or multiple configurations

can be stored. The parameters are saved at the Header.txt file, as well as in the

FirstOrderConfigs.plist file as described in Section 6.2.
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Next, in Section 7.2 we introduce the complete recursive Bayesian estimation

cycle with all its inputs and its estimation output. More information about

designing Python algorithms for Bayesian estimation is found in Labbe[38].

The recursion features two paramount steps that we introduced in Section 5.2.3:

1. The predict stage: Propagates the probability density function of the

estimate forward, by combining the previous prediction and the current

behavior of the estimation model as described in the algorithms under

Section 7.3. In other words, we are translating, deforming and spreading

the probability density function.

2. The update stage: Presented in Section 7.4, this step uses the Bayes theorem

to modify the predicted probability density function based on the newly

received measurement.

Recall that the four first-order boundaries we desire to determine as four

separate estimation problems are:

• Left boundary of the Receding Bragg wave

• Right boundary of the Receding Bragg wave

• Left boundary of the Advancing Bragg wave

• Right boundary of the Advancing Bragg wave

As we discussed in Section 5.4 "Solutions for Object Tracking with Simultaneous

Measurements", we might have tracked multiple simultaneous possible measure-

ments for a single boundary location in range e.g. due to measurements in clutter

or the presence of split Braggs.
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Consequently, in Section 7.5 we address the question of how to proceed when

we receive multiple boundary possible estimates for any or all of the four estimation

problems above, i.e. we describe the "data association step". In our scenario,

the sensor measurements for each of the four boundaries under study are received

intrinsically separated, thus can skip the step of "gating" the measurements (Step 3

in the list below), which would take place as soon as the observations are received.

Thus, after the prediction step, if multiple observations are received, we need to

apply the data association step before updating the state of our estimation.

Finally, in Section 7.5.1 and Section 7.5.2 we focus on the temporal and

spatial tracking that we apply to our multiple simultaneous measurements in the

data association step and describe why they improve our final estimations of the

first-order boundaries. This two-dimensional tracking in range and in time is a

novel application of Bayesian tracking for this first-order boundaries determination

problem.

Overview of the Estimation Steps:

1. Set up the estimation model.

2. Prediction.

3. Gating: Not necessary for our problem since the measurements for every

boundary are received separately.

4. Data Association: Step that will determine which of the received observations

is the best match, and therefore its value will be used on the Update step.

5. Update.
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7.1 Setting up the Estimation Models

We start with Algorithm 25 below, which includes the steps to load the

cross-spectra and select the necessary configuration parameters to create the

desired estimation model adequate for the current time, radar site and weather

conditions. Please refer to Chapter 5 for details about the formulation of the

estimation models as well as their behavior and their recursive updates.

The relevant Bayesian estimation parameters mentioned in this chapter were

introduced in Section 4.1 and they all need to be set and stored in the FirstOrder

Configs.plist file.

Firstly, for the initial estimation model we configure the parameters below,

which will be the inputs into the first recursion cycle in Algorithm 26 described

next. The units for this parameters are "Doppler bin" as we saw in Figure 3.5.

• Initial State mean value and covariance (state_0 and state_cov): the

estimated initial state value for the current first-order boundary and the

covariance (uncertainty) of this value.

• Initial Model mean value and its covariance (model_0 and model_cov):

the model (function describing the estimated initial behavior of the variable)

and the uncertainty associated with this model.

It is important to notice that in every cycle of the recursion, including the

initial recursion at time t = 0, themean value of the state variable (first-order

boundary location), its variance and the model behavior and its variance

are all updated. For example, the model behavior variable model_k (which is

initially set as model_k = model_0) changes with each time t and describes our

expected change in the state variable between iterations.
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If model_0 = 1, the model predicts that the Doppler location of the first-order

boundary should not vary, what we describe as a smooth boundaries model. But if

we keep receiving measurements that are far away from the previous state value,

then eventually, following the Bayesian recursion in Chapter 5, the model behavior

at time t = k (model_k) will end up updating and deviating from its initial value.

Secondly we set the parameters below for both the Time_Tracking algorithm

and the Range_Tracking algorithm, since they are not necessarily the same.

• New Measurement Covariance (stored as m_cov_0) is the uncertainty

initially associated with the measurements that we receive.

• State to Measurement (state2measurement) is the function describing

the transition between the state of the variable and the measurement[38].

When the measurement describes the state in the same two-dimensional

space (like in our problem where no transition is needed) then this parameter

state2measurement=1.

• Mode Selection:

The Time_Tracking correction will always be performed forward in time, in

other words: we correct the present boundaries including information about

previous time boundaries. Hence, the mode selection setting applies only

to Range_Tracking. The value of range_tracking_mode can be:

· 1 → Single range tracking inwards towards the radar,

· 2 → Range tracking inwards and then back out,

· 3 → Single range tracking outwards in range,

· 4 → Range tracking outwards and then back towards the radar.
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Initial Bayesian estimation cycle at t=0 :

After the estimation model is set, we start with the first estimation cycle: the

initial recursion at time t = 0. We find the steps in Algorithm 26 below. As

we present in Figure 7.1, the inputs into the first recursion step are the initial

estimates of the first-order boundary and the model behavior at t = 0, while the

output is x̂0, the final estimation of the first-order boundary at t = 0.

Algorithm 25 Loading Cross-Spectra and Creating the Estimation Model
Load the monopole antenna cross-spectra file as cs_file

radar_site: the settings of the radar site given by the cs_file
n_ranges: the number of range bins at the corresponding radar_site

for each BOUNDARY in [FOL1, FOL2, FOL3, FOL4 ] define:
state_0: the estimated initial state value for that first-order boundary
state_cov: the covariance (uncertainty) of the initial state value
model_0: the initial model behavior that we expect on the boundary
model_cov: the covariance (uncertainty) of the initial model

end for

Algorithm 26 Bayesian Estimation (recursion at time t = 0)
Inputs:

state_0 and model_0: initial estimates of the first-order
boundary location and the model behavior at time t = 0

Predict:
x̂0 ← predict(state_0, model_0)

Output:
x̂0 → First-order boundary estimation at time t = 0
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Figure 7.1: Graphic description of Algorithm 26. Inputs are the initial estimates
of the first-order boundary and model behavior at t = 0, while the output is x̂0,
the final estimation of the first-order boundary at t = 0.
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Next, Algorithm 27 describes how we extract each of the sets of simultaneous

measurements that might be associated with each of the four boundaries. The

input for Algorithm 27 is m_k (shown in Figure 7.2) and it corresponds to the

set of measured first-order boundaries received at time k for the specific boundary

and range that we are working with. The complete proposed multi-probabilistic

null-finding algorithm that generates each of the m_k measurement sets can be

found in Section 4.11.

Algorithm 27 First-Order Boundary Measurements at time t = k

for each BOUNDARY in [FOL1, FOL2, FOL3, FOL4 ]:
for each RANGE in n_ranges do
Load m_k[BOUNDARY,RANGE] from the cs_file

m_k is the set of measured first-order boundaries received
at time k for that specific boundary and range.

At any given time k, the set m_k can be a single first-order
boundary location or a number of multiple locations.

end for
end for

7.2 The Recursive Bayesian Estimation Cycle

m_k, the sets of measured first-order boundaries received at time t = k for each

specific boundary and range, are the first inputs into Algorithm 28, described

in Figure 7.2. As a reminder, measured first-order boundaries are the alternative

first-order boundaries, described in Section 6.4 as Step III. This is the continuation

of the recursive Bayesian estimation cycle, executed at any time t = k, where k is

not the initial time t = 0.
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Another input into the algorithm, besides the measurements m_k, is the variable

model_k and it corresponds to the model behavior at time t = k. As we introduced

in Section 7.1, the model behavior is initially set as model_k = model_0 during

Algorithm 25 and its behavior is updated on every recursion cycle following the

Bayesian recursion updates described in Chapter 5 and Algorithm 28.

The last input for this recursive estimation algorithm is x̂k|k−1 that becomes

x̂k−1|k−1, and it is the estimation from previous time t = k − 1 that includes all

measurements up to t = k − 1. We observe those estimated states as well as the

different inputs into the algorithm in Figure 7.2 .

The output of this Bayesian estimation recursive algorithm is the first-order

boundary estimation at time t = k, x̂k. We are able to estimate the output by

combining the updated prediction x̂k|k with the updated model behavior model_k.

Finally, all the variables on this Bayesian estimation recursive algorithm that

we describe in Figure 7.2 go through the two stages of the Bayesian estimation

that we introduced in Section 5.2.3. This important steps are the predict stage

and the update stage that we describe next.

7.3 The Predict Step

The predict step, described in Algorithm 29, focuses on predicting x̂k|k−1.

The predict step combines x̂k−1|k−1 (the value of the first-order boundaries from

the previous state) with the updated model behavior at the current time model_k.

Running predict leads to x̂k|k−1, which will be then passed into the update step

as shown in Algorithm 28. This prediction at time t = k is known in Chapter 5

as the prior or predicted probability density function of the object state at time k,

but before receiving and processing the measurement m_k.
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Figure 7.2: Graphic description of Algorithm 28, the recursive Bayesian
estimation algorithm. Inputs are: 1) m_k, the sets of measured first-order
boundaries received at time t = k for each specific boundary and range; 2)
model_k, the model behavior at time t = k; 3) x̂k|k−1 that becomes x̂k−1|k−1,
and corresponds to the estimation from previous time t = k − 1 that includes all
measurements up to t = k − 1. The output of this recursive Bayesian estimation
algorithm is x̂k, the final estimation of the first-order boundary at the current
estimation time t = k.
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Algorithm 28 Bayesian Estimation (Recursion at time t = k)
Inputs:

m_k: set of measured first-order boundaries received at time t = k for that
specific boundary and range.
model_k: model behavior at t = k.
x̂k−1|k−1 ← x̂k|k−1: estimation from previous time t = k − 1 that includes
all measurements up to t = k − 1.

Predict:
x̂k|k−1 ← predict(x̂k−1|k−1, model_k): uses the previous state at time
t = k− 1 and the updated model behavior to t = k to predict the current
value of the first-order boundaries.

Update:
x̂k|k ← update(x̂k|k−1, m_k) : update the x̂k|k−1 prediction by combining
it with m_k, the measured state of the variable at t = k, which leads to
the updated prediction x̂k|k.

Output:
x̂k ← output(x̂k|k, model_k): estimate the output x̂k by combining the
updated prediction x̂k|k with the updated model behavior model_k.
x̂k → First-order boundary estimation at time t = k
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Algorithm 29 Bayesian Estimation (predict step)
The predict algorithm steps are based on Equations (5.13) and (5.15),
describing the prior probability density function.

P (Xk | Y k−1) =
∫
Xk−1

P (Xk−1 | Y k−1)P (Xk | Xk−1)dXk−1

=
∫
N (x̂k−1|k−1,Pk−1|k−1) · N (Fxk−1,Qk) = N (x̂k|k−1,Pk|k−1)

where P (Xk | Y k−1) is the output x̂k|k−1, i.e. the prediction that will become the
input of the next iteration. From Y k−1 we see that the measurements considered
are only those up to time t = k − 1.

Therefore, the predict algorithm steps correspond to the following Gaussian
multiplications:

x̂k|k−1 = predict(x̂k−1|k−1, model_k) =
gaussian_multiply(previous_posterior, model_transition)

where the previous_posterior is P (Xk−1 | Y k−1) and the model_transition
P (Xk | Xk−1) has been updated from the previous model_k through its
uncertainty model_cov.
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7.4 The Update Step

The update step, described in Algorithm 30, focuses on updating the prediction

x̂k|k−1 that we receive from the predict step. The update step combines it with

the first-order boundary measurement m_k for that specific boundary and range

that we receive at the current time t = k. Running update leads to x̂k|k: the

updated prediction at time t = k, known throughout Chapter 5 as the posterior

probability density function given all measurements up to t = k.

Algorithm 30 Bayesian Estimation (update step)
The update algorithm steps follow Eq.(5.16),

P (Xk | Y k) = N (Hxk,Rk) · N (x̂k|k−1,Pk|k−1)
N (Hx̂k|k−1,Sk)

= N (x̂k|k,Pk|k),

where Xk is the prediction x̂k|k−1 received from the predict step and the
measurements up to measurement m_k are listed as Y k.

Eq.(5.16) follows the Bayes theorem description of the posterior probability
density function in Eq.(5.6),

posterior = prior× measurement
normalization factor

where the actual term likelihood from Eq.(5.6) has been replaced by
measurement for clarity.

Hence, the actual steps to execute in the update step are the following Gaussian
multiplications:

x̂k|k = update(x̂k|k−1, m_k) =
gaussian_multiply(prior, measurement, normalization_factor)
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7.5 The Data Association Step

In addition to the calculations presented in Chapter 4 and Chapter 6 to find

the nulls and the locations of the first-order boundaries, our approach also keeps

track of the spatial and temporal history of data and applies Bayesian estimation

techniques to the observed radar backscatter spectra to correct and filter out

erroneous observations.

Several Bayesian sequential estimation techniques were tested to improve the

estimation of the first-order Bragg echo boundaries. As described in Chapter 5

we studied simple filters like g-h and Kalman as well as more advanced ones like

the Nearest Neighbor and the Probabilistic Data Association filters.

In this section we describe this step known as "data association" that will be

applied in two instances:

1) On the first hand, when we receive multiple detection measurements for any

or each of the four first-order boundary estimations and we want to decide the most

probable location for that boundary. In our scenario, the sensor measurements for

each of the four boundaries under study are received intrinsically separated but

we might have more than one for a single boundary location and range. Therefore

in this case, after the prediction step we need to apply the data association step

before updating the state of our estimation.

2) On the other hand, we also apply "data association" to the tracking in range

and time that we apply to the boundaries. This Bayesian tracking is indeed the

last correction applied to the boundaries which will take into consideration the

values that the boundaries had in previous timestamps and in the surrounding

ranges, as described in detail in Sections 7.5.1 and 7.5.2.
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The data association step for a case where a set of multiple measurements are

received simultaneously for the estimation of a single state variable (described in

Section 5.4) is presented in Figure 7.3:

The figure shows an example when two simultaneous measurements are received.

The horizontal axis are the time steps, while the vertical axis corresponds to the

value of the state variable we are estimating. At the previous iteration t = 1 we

placed the prior estimate at y = 2.4, and we update that estimate by using the

model which gives us the new estimate for the present t = 1 around y = 2.6.

In addition, at the current iteration t = 1 we receive two new measurements

(blue dots) and assign a particular weight to each (β in (Algorithm 32)). At the

update step we combine the new estimate with the new measurements and we

obtain the final prediction (green dot) for the current time t = 1 at y = 2.8.

As we see next, Figure 7.3 is an example of a PDAF result (Algorithm 32)

because the final decision on the prediction is placed at a value between measure-

ments, and not forced to be one of the measurements like an NNF approach would

do.

The Nearest Neighbor Filter recursion (Algorithm 31) is a simplified filter that

chooses which measurement is nearest to the predicted measurement to update

the state. As opposed to "all-neighbors filters", the nearest neighbor filter can lead

to very poor performance when the density of clutter or spurious measurements is

high because the measurement chosen for the update could be erroneously selected

in the clutter and thus unrelated to the object state.
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Figure 7.3: Data association prediction update step: example with two received
measurements. The horizontal axis are the time steps, while the vertical axis
corresponds to the value of the state variable. At the previous iteration t = 1 we
placed the prior estimate at y = 2.4, and we update that estimate by using the
model which gives us the new estimate for the present t = 1. In addition, at the
current iteration t = 1 we receive two new measurements (blue dots) and assign
a particular weight to each. At the update step we combine the new estimate
with the new measurements and we obtain the final prediction (green dot) for the
current time t = 1 at y = 2.8.
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Hence, for our estimation problem we decide to use the Probabilistic Data

Association Filter (Section 5.4.3) instead, described in Algorithm 32, because it

is a robust approximation of the optimal Bayesian filter recursive solution for

scenarios where multiple simultaneous measurements are available and one of the

most successful algorithms in the class of Bayesian all-neighbors filters[17].

Algorithm 31 Nearest Neighbor Filter Recursion
For both SPATIAL and TEMPORAL tracking:
Select the object dynamics, measurement and noise models.
Load the parameters into our ModelNNF.
At time t = 0:

1. Input the initial state estimate and the initial model prediction

2. Update estimation with the two initial values above

3. Update prediction with the updated estimation

4. Output first-order boundary prediction at t = 0

At time t = k:

1. Input first-order boundary measurements at t = k and the first-
order boundary prediction at t = k − 1 is applied as the current
model prediction.

2. Update estimation using the model prediction at t = k and the
first-order boundary estimation from measurements at t = k.

3. Among all the measurements received at t = k, only one of the
measurements is selected to update the prediction. The decision
is based on the following criterion (Equation 5.21):

yk(i) = argmin
yk(j), ∀j∈{1,...,mk}

[
yk(j)−Hx̂k|k−1

]T
S−1
k|k−1

[
yk(j)−Hx̂k|k−1

]

where Sk|k−1 = HPk|k−1HT + Rk.

4. Update prediction at t = k with the updated estimation.

5. Output first-order boundary prediction at t = k.
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The Probabilistic Data Association Filter, presented in Algorithm 32 below,

performs by updating the object state estimate using all of the validated measure-

ments and their respective posterior probability weightings and then estimates a

boundary location somewhere in between the multiple single boundary location

possibilities we have received as validated measurements from Algorithm 21.

7.5.1 Bayesian Tracking in Range

The purpose of applying a spatial Bayesian Tracking in range is to smooth and

correct the boundaries from the understanding that

1. the boundary location in a specified Doppler bin corresponds to the maximum

radial velocity current present in that range cell,

2. oceanographic currents would generally not increase nor decrease excessively

in the relatively reduced distance of 5-10 km corresponding to a range width,

3. thus we study the current variability in the corresponding radar site and

establish a "maximum realistic change" in the ocean current velocity which

we then set as our initial estimated model behavior model_0 on the First

OrderConfigs file corresponding to the site.

4. Generally, we initially set model_0=1 which is a model that we describe

as “smooth boundaries model” which just means that the boundary should

stay constant.

Algorithm 33 presents the Range Tracking steps that we perform to the "initial

first-order boundaries" that resulted from Algorithm 21.

189



Algorithm 32 Probabilistic Data Association Recursion
For both SPATIAL and TEMPORAL tracking:
Select the object dynamics, measurement and noise models.
Load the parameters into our ModelPDAF.
At time t=0:

1. Input initial state estimate and initial model prediction

2. Update estimation with the two initial values above

3. Update prediction with the updated estimation

4. Output first-order boundary prediction at t=0

At time t=k:

1. Input all the first-order boundary measurements at t = k and the
first-order boundary prediction at t = k − 1 as the present
model prediction for time t = k.

2. Update estimation using model prediction at t = k and the first-
order boundary estimation from measurements at t = k.

3. The data association probabilities are denoted by βk(i) (known
as "weights") and are calculated for the ith validated measurements.

4. The posterior probability density function is a first-order boundary
can be a location anywhere within the possible measurements, as in
Eq.(5.31), and will become the updated estimation at this time.

P (Xk | Y k, mk) = βk(0) N (xk; x̂k|k−1,Pk|k−1)

+
mk∑
i=1

βk(i) N (xk; x̂ik|k−1,Pi
k|k−1)

5. Update prediction at this time t=k with the updated estimation.

6. Output first-order boundary prediction at t=k.
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Algorithm 33 Range Tracking to the Initial First-Order Boundaries
1) Load the initial first-order boundary estimates from Algorithm 21

[FOL1 ,FOL2 ,FOL3 ,FOL4 ]← AlternativeFOL(cs_file)

for each BOUNDARY in [FOL1 ,FOL2 ,FOL3 ,FOL4 ] do
for each RANGE do
2) PDAF steps described in Algorithm 32 to:

i. Load the estimates of the possible Doppler bin locations
depending on the tracking mode selected under parameter
range_tracking_mode. (Section 7.1)

ii. Determine the data association probabilities (weights) of
each of those possible Doppler bin locations.

iii. Calculate the posterior probability density function that
is translated into the updated estimation.

iv. Use this prediction at the current time t=k into the new
recursion at time t=k+1.

end for
end for

3) Return FirstOrderBoundaries_Range
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7.5.2 Bayesian Tracking in Time

Similarly to what we described in Section 7.5.1, the purpose of applying a

temporal Bayesian tracking in time is to smooth and correct the boundaries from

the understanding that, since the boundary location in Doppler bin corresponds to

the maximum radial velocity current present in that range cell, this location should

not increase or decrease excessively in the period of time between spectra files

(normally around 10 to 30 minutes). Hence, we usually also consider a “smooth

boundaries model” in time and set model_0=1.

Algorithm 34 presents the temporal tracking steps that recursively update

the boundaries with their immediately preceding estimates from the anterior

timestamp. The inputs of this time tracking algorithm are the first-order boundary

estimates after they have gone through the spatial correction in Algorithm 33 from

Section 7.5.1.

Summarizing this chapter: we developed a set of spatial Bayesian filters, which

track the measurements in range (both outwards from the radar and inwards from

the furthest range) and are based on the assumption that the maximum radial

ocean current found on two neighboring ranges from the radar should not present a

strong variation between them. On the other hand, we also developed a temporal

Bayesian filter, which tracks the estimates in time. In order words, every filtered

set of first-order boundary estimates will be based on all available information

from previously processed datasets.
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Therefore, at the end of the complete Bayesian tracking process, the estimates

have been decided based on a weighted combination of

1. their present measurement,

2. their immediately previous measurement from the neighbor ranges,

3. and their immediately preceding measurement from the anterior timestamp.

Finally, the next two chapters present a series of comparisons that demonstrate

the improved results obtained from applying these Bayesian filters to the proposed

boundary estimates resulting from Algorithm 21.
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Algorithm 34 Temporal Tracking to the Initial First-Order Boundaries
1) Load the first-order boundary estimates from Algorithm 33 that are already
corrected in range.

[FOL1 ,FOL2 ,FOL3 ,FOL4 ]← FirstOrderBoundaries_Range

for each BOUNDARY in [FOL1 ,FOL2 ,FOL3 ,FOL4 ] do
for each RANGE do
2) PDAF steps described in Algorithm 32 to:

i. Load the estimates of the possible Doppler bin locations
from the previous spectra file.

ii. Determine the data association probabilities (weights) of
each of those possible Doppler bin locations.

iii. Calculate the posterior probability density function that
is translated into the updated estimation.

iv. Use this prediction at the current time t=k into the new
recursion at time t=k+1.

end for
end for

3) Return FirstOrderBoundaries_Time
as the final proposed first-order boundary estimates.
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Chapter 8

Demonstration of the Validity

of the Method

In this chapter - as well as in Chapter 9 - we study the performance and the

validity of our proposed, multi-probabilistic method for the determination of the

first-order Bragg line boundaries. We demonstrate how using Bayesian estimation

in the determination algorithm properly tracks and corrects first-order boundaries,

improving the overall accuracy of the radial current vectors by:

• adding radial vectors that statistically compare well with the surrounding

radial vectors in the area,

• while rejecting radial vectors whose standard deviation from the surrounding

ones is indeed higher than the added vectors.

In Section 8.1 we review the standard statistical methods that are used to

demonstrate the efficacy of our proposed multi-probabilistic method, namely: the

standard deviation and the root mean square error as measures of the

difference between the conventional and the new proposed method.
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In Section 8.2 we present comparisons of the first-order boundary solutions

from the currently-used null finding method (namely the “Conventional” method)

and the proposed Bayesian method we developed that we call ’multi-probabilistic

first-order boundary determination’ method. We will be showing scenarios where

the Bragg region presents splits, like introduced in Section 3.3.2, and where the

proposed multi-probabilistic method is indeed very successful. These comparisons

between methods will be studied both from the radar backscattered cross-spectra

point of view as well as on the corresponding radial current maps that are generated

from these cross-spectra.

Lastly, in Section 8.3, we study a series of statistical comparisons between

the methods. The objective of this statistics is to demonstrate how the use of

multi-probabilistic estimation techniques helps to properly track and correct the

boundaries and improves the overall correlation of the radial current vectors that

are obtained with the proposed method.

For perspective, we note that in Chapter 9 we demonstrate the validity of

the proposed multi-probabilistic method, but –contrary to Section 8.2– focusing

in scenarios where there are no splits in the Bragg regions. We compare the

resulting radial current vectors from the cross-spectra with a series of drifters

deployed along the Straits of Georgia, and we conclude that the vectors added

by the proposed multi-probabilistic method match better with the radial current

velocity vectors extracted from the drifters, as opposed to the rejected vectors

that present a higher average root mean square error when compared to the drifter

velocities.
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8.1 Statistical Comparisons and Error Analysis

In this section we define the statistical methods that are used in this chapter

to demonstrate the efficacy of our multi-probabilistic method and its statistical

comparison against the conventional method. These standard statistical methods

are, namely, the standard deviation and the root mean square error as

measures of difference between the radial velocity vectors obtained by the two

different first-order Bragg boundary determination methods.

The most probable estimate of the mean µ of a random set of observations

is the average
(
x = 1

N

∑
xi
)
of the observations. Assume we have a set of N

data points, distributed according to the Gaussian distribution, with mean µ

and standard deviation σ. Therefore, the probability dPi for making any single

observation xi within the interval dx is given by dPi = pidx, where pi is the

probability density function.

The standard deviation σ is used to measure the spread of data around

the mean. Its form, in Formula 8.1, is the square root of the variance σ2. The

variance is defined as the average of the squared differences of each data point

value from the mean µ.

σ =

√√√√ 1
N

N∑
i=1

(xi − µ)2 (8.1)

The probability Pi of making an observation xi is:

Pi = 1
σ
√

2π
exp

[
−1

2

(
xi − µ
σ

)2
]
. (8.2)
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We define µ′ as the estimated mean, since generally we do not know the actual

value of the mean µ of the distribution. We apply the method of maximum

likelihood, and it states that the most probable value for µ′ is the one that gives

the maximum value for the probability P (µ′).

P (µ′) =
(

1
σ
√

2π

)N
exp

−1
2
∑(

xi − µ′

σ

)2
 . (8.3)

Maximizing the probability P (µ′) is equivalent to minimizing the argument X of

the exponential,

X = −1
2
∑(

xi − µ′

σ

)2

, (8.4)

by setting its derivative to 0.

In other words,

dX

dµ′
= −1

2
∑ d

dµ′

(
xi − µ′

σ

)2

=
∑(

xi − µ′

σ2

)
= 0, (8.5)

which, since σ is a constant, gives

µ′ = x = 1
N

∑
xi. (8.6)

Thus, as we discussed at the beginning of this section, the maximum likelihood

method for estimating the mean by maximizing the probability P (µ′) of Equation

(8.3) shows that the most probable value of the mean is just the average x.
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Estimating the error in the mean µ′: In order to calculate the uncertainty

of the mean, we apply Equation (8.7) to find the variance σ2
µ of the mean µ′.

σ2
µ =

∑σ2
i

(
∂µ′

∂xi

)2
 . (8.7)

If the uncertainties are equal for each data point[14], σi = σ, the partial

derivatives in Equation (8.7) are

∂µ′

∂xi
= ∂

∂xi

( 1
N

∑
xi

)
= 1
N
, (8.8)

and combining Equations (8.7) and (8.8), we finally obtain the variance of the

mean (when all uncertainties are equal) as

σ2
µ =

∑[
σ2
i

( 1
N

)2]
= σ2

N
. (8.9)

Formula (8.9) corresponds to the estimated error in the mean when all

uncertainties are equal, and it demonstrates how the precision of our estimate

of the mean µ improves as the square root of the number of measurements N .

If the uncertainties of the measurements are not equal, we evaluate the differential

in Equation (8.8) differently, as follows:

∂µ′

∂xi
= ∂

∂xi

∑ (xi/σ2
i )∑ (1/σ2
i )

= 1/σ2
i∑ (1/σ2
i )
, (8.10)

and therefore, the general formula for the uncertainty of the mean σ,

σ2
µ =

∑σ2
i

(
∂µ′

∂xi

)2
 =

∑ (1/σ2
i )

[∑ (1/σ2
i )]

2 = 1∑ (1/σ2
i )
. (8.11)
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Another measure we use is the Root Mean Squared Error, which is the

standard deviation of the residuals. While the standard deviation σ is used to

measure the spread of data around the mean, the RMSE is used to measure

distance between predicted and actual values. To compute the RMSE we have

to calculate the residual (difference between the prediction and the truth value)

for each data point, then compute the norm of the residual for each data point,

compute the mean of residues and finally take the square root of that mean. The

RMSE Formula (8.12) is below:

RMSE =

√√√√ 1
N

N∑
i=1

(xi − x̂i)2 (8.12)

RMSE is a measure of how spread out these residuals are. In other words, it

tells us how concentrated the data are around the line of best fit. The RMSE

provides an average model prediction error in units of the variable of interest.

Since the errors are squared before they are averaged, the RMSE gives a relatively

high weight to large errors.
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8.2 Analogy of the TwoMethods Radial Current

Outputs

In this section we present a series of comparisons of the first-order boundary

solutions from the currently-used null finding method (the “Conventional” method)

and the proposed method we developed i.e. the “multi-probabilistic first-order

boundary determination” method.

The differences in the determinations of the first-order boundaries will be

shown

1. on the radar backscattered cross-spectra, where we will observe the two

first-order Bragg regions, one on each side of the zero-Doppler line, and the

determined boundaries drawn on top – separating these first-order regions

from second order echoes and noise or interference that might be present.

2. on their corresponding radial current maps, where a different amount of

vectors will be present depending on the boundaries corrections.

The proposed multi-probabilistic method is particularly successful for instances

where there was splitting of the first order Bragg regions (Chapter 3). We will

observe, indeed, many “added” vectors appearing on the radial current map

corresponding to the proposed multi-probabilistic method, mainly in the ranges

(distance from the radar site) where the Bragg regions had split into multiple

regions as we discussed in Section 3.3.2 and in Chapter 4 as well as observed in

Figure 4.9, Figure 8.3 and Figure 8.4.
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On the other hand, the radial current map for that same cross-spectra, but the

one corresponding to the first-order boundaries determined by the conventional

method, will miss some of those vectors, due to the fact that the method is not

able to track the first-order boundaries properly under the presence of strongly

split Bragg regions.

In addition to displaying results of both methods in terms of the radar back-

scattered cross-spectra, and the corresponding radial current maps for each of the

two methods, we will also present a study of the validity of the proposed first-order

boundary determination algorithm. To do so, we introduce a series of statistical

comparisons with the objective of demonstrating how the implementation of our

multi-probabilistic estimation techniques to properly track and correct the boun-

daries improves the overall correlation of the retrieved radial vectors.

This validation rests the fact that, as we will see below, the proposed multi-

probabilistic method is adding radial vectors that statistically compare well with

the surrounding vectors in the area, while it rejects radial vectors whose deviation

with respect to the vectors around them is indeed higher.

Study of the First-Order Boundaries and the corresponding Radial

Current Velocity Maps for the VCOL site at the Straits of Georgia:

The SeaSonde radar sites at the Straits of Georgia, like the ones shown in Figures

8.1 and 9.3, often present splitting of their Bragg regions. In this case, it happens

due to the behavior of the ocean currents in the strait and the tide cycles associated

with this type of oceanographic feature.

202



Figure 8.1: Location of the VCOL SeaSonde radar site at the Strait of Georgia.
Map credits to Ocean Networks Canada[16]. The VCOL site is found at the
end of the West Shore Coal Terminal, near the Tsawwassen Ferry Terminal in
Delta, British Columbia. The map also shows some ferry routes in dashed lines,
and a fiber-optics cable in a solid white line, along with the square orange and
round yellow symbols that represent other instruments that ONC has on site.
The map also shows other radars (symbols in white with small yellow waves) that
correspond to other SeaSonde sites built by CODAR along the Strait of Georgia.

203



Figure 8.2: Map showing the constant range arcs (range cells) at the VCOL
SeaSonde radar site near the ferry terminal in Vancouver, Canada. Each range
arc, presented in different colors, provides a separate ’Range Spectra’ from which
we should extract the corresponding first-order region boundaries.
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For this chapter we focus on a set of cross-spectra obtained during the first

day of July 2020 from the VCOL SeaSonde radar site located at the West Shore

Coal Terminal near Delta, British Columbia. The exact location of the radar site

(49°01.083’N,123°10.313’W) and the surrounding area are presented in Figure 8.1.

VCOL is a radar site working at 24.4 MHz center frequency and its maximum

range is about 45 km, divided into range rings of about 500 meters width. The

sweep rate for this radar is 4 Hz and every Doppler spectrum is divided into 1024

Doppler bins. We obtain a cross-spectra file every ten minutes at this site, and it

corresponds to a temporal coverage of 15 minutes averaged.

Before we start comparing the first-order boundaries determinations by each

of the methods, it is worth having a first look at an example radar backscattered

signal corresponding to the 7:50 a.m. UTC on July 1st 2020. Figure 8.3 shows the

backscattered signal for the three antennas. Namely, cross-loop Antenna 1 and

Antenna 2, and the monopole Antenna 3 as we introduced in Chapters 2 through

4 (particularly Section 2.3, Section 3.2.1 and Section 4.1).

Overall we can see how the energy backscattered on the three antennas presents

split regions, especially on the right Braggs on Figure 8.3. As introduced in Section

4 the conventional method is not prepared to adapt to split Braggs and when it

is split the method would erroneously place one of the first-order boundaries by

the lowest peak on the split, as we will see later in this section.
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Figure 8.3: VCOL radar site backscattered signal from the 1st day of July 2020
at 7:50 a.m. (UTC). The top two figures correspond to the backscattered spectra
received at the crossed-loop Antennas 1 and 2, respectively. On the other hand,
the bottom section describes the backscattered signal from the monopole Antenna
3. We observe some instances of the Bragg region energy splitting, mainly on the
right Bragg portions on the three antennas.
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An instance of the Bragg region splitting, described in Section 3.3.2, is well

illustrated in Figure 8.4. We observe that the first-order Bragg region for positive

Doppler shift (right hand side) is not a single peak, but has split into two peaks.

8.4 corresponds to the 18th range cell, in other words about 9 km distance from

the radar site, for the 1st of July of 2020 around 7:50 a.m. (UTC).

At the 9 km range presented on Figure 8.4, we easily observe the split of the

right Bragg region. Focusing on the monopole Antenna 3, we see its peak power

slightly above -105 dBm, then the split drops down to below -130 dB. The left

side of the split, weaker than the peak power on the right portion, has a maximum

around -117 dBm at this range.

Next, we start comparing how well the two methods respond to this phenomenon

when applying their respective algorithms to determine the first-order boundaries.

Boundaries from the conventional method:

Our first step is to extract, from the cross-spectra, the original first-order

boundaries as determined by the conventional method. Figure 8.5 presents the

first-order boundaries drawn in red, corresponding to the first-order boundaries

obtained from the conventional method described in Chapter 4 Algorithm 18.

We observe how overall the conventional boundaries are slightly wider than

the strong signal corresponding to the first-order Bragg region. This is especially

evident in the left side of the left Bragg region, that corresponds to the receding

Bragg, around the first 10 km in range. This leads to believe that the power

threshold for the first-order boundaries that was set for this radar at the time of

acquisition was not too restrictive.
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More importantly is what we observe on the right Bragg region. As we can

see, the strongest backscattered signal received is around the center of the right

Bragg region for ranges between 3 and 12 km. In addition, for those ranges the

right Bragg presents a strong split where the backscattered signal is strong on

both sides of the split of the right Bragg, even though it is predominant on the

right split portion.

Each one of the range cells with split Bragg regions in this area would look

similar to what we saw on Figure 8.4 for the 18th range bin, since from Figure

8.5 we observe they all present a similar split.

The fact that the first-order boundaries on some of the ranges, as observed on

the right Bragg on Figure 8.5, miss the split and therefore a relevant portion of

the backscattered energy is neglected, will impact the number of radial current

velocity vectors obtained using the conventional method. As expected, all the

radial current velocity vectors corresponding to those areas of the cross-spectra

in Figure 8.5, will be lost and the MUSIC algorithm will not consider them for

placement in the radial map.

Examples of the radial map solutions will be discussed later in this section,

once we evaluate the results from the Bayesian method for comparison.

Boundaries from the proposed multi-probabilistic null-finding method:

In order to obtain the first-order boundaries as determined by the proposed

multi-probabilistic null-finding method we have to execute two algorithms, which

are detailed in Section 7.5.
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The first stage is to run the proposed null-finding algorithm described on

Chapter 4. This algorithm, contrary to the conventional null-finding method,

allows multiple choices for the location of the boundary separating first and second

order in each of the range bins. This first step provides multiple possible locations

of the First-order boundaries shown in Figure 8.6.

Once we have completed the null finding, the second stage is to apply the

two-steps Bayesian estimation algorithms described on Chapter 5 and Chapter 7.

The first Bayesian step is to perform a tracking in Range (Section 7.5.1 Algorithm

33), which will place each first-order boundary location based on the location of

the previous-range first-order boundary, but nudged by a correction determined

by the observational data at the range under consideration.

Once the boundaries have been corrected in range, we will apply the second

Bayesian step which is the temporal tracking (Section 7.5.2 Algorithm 34). We

filter the boundaries using the Bayesian estimation algorithm in time, in other

words: the final first-order boundaries will be decided based on where the first-

order boundaries were placed at the previous timestamp, but again nudged by the

observational data.

The final decision for the first-order boundary locations - as provided by the

proposed multi-probabilistic null-finding method (first calculated by the proposed

null-finding algorithm and finally corrected through the two steps of Bayesian

tracking) - are presented in Figure 8.7.
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Evaluation of the radial current velocity maps for the VCOL site:

Up until this point, we have evaluated the effects of the proposed multi-

probabilistic method first-order boundaries from the point of view of the back-

scattered cross-spectra. We have determined the first-order boundaries by both

conventional and our new multi-probabilistic methods on a dataset from July 1,

2020 in the VCOL radar site at the Straits of Georgia.

Next, we present the differences that the proposed multi-probabilistic method

brings to the radial ocean surface current velocity maps. As one can imagine,

working with more accurate first-order boundaries like the ones shown in Figure

8.7 as opposed to the erroneous Conventional method first-order boundaries in

Figure 8.5 means that a larger number of radial current vectors are brought into

the radial maps, since a larger region of first-order backscattered energy is accepted

and thus, for a given range bin the MUSIC algorithm will place more vectors at

their estimated bearings from the radar location. Further, some vectors that were

accepted as valid by the conventional method will be rejected, using the new

boundaries.

We assign the following names to the radial current vectors:

• "Agreed Vectors": set of vectors that both the Conventional and the proposed

multi-probabilistic method place in the map.

• "Added Vectors": set of vectors provided by the proposed multi-probabilistic

method that the Conventional method missed.

• "Rejected Vectors": set of vectors from the Conventional method that the

proposed multi-probabilistic method rejects due to the revised boundaries.

214



The objective is, of course, to add as many good vectors as possible, while

rejecting only vectors that do not correspond to actual ocean surface currents

present in the field of view. Next, in Section 8.3, we will evaluate the statistical

features of each of the vector sets.

But first, we are going to evaluate how the aforementioned vector sets look

placed in their corresponding radial maps. To do so, we are presenting two sets of

cross-spectra from the VCOL site in the morning of July 1, 2020. One corresponds

to 3:20 a.m. UTC while the other one is from 7:40 a.m. UTC.

Figure 8.8 presents three panels corresponding to July 1, 2020 at 7:40 a.m.

UTC. The left one corresponds to the set of "Agreed vectors", while the one

in the middle is the smaller set of vectors that the proposed multi-probabilistic

null-finding method adds. We can see how the vectors are placed all around a

smaller region in range. This is because those vectors correspond to the ranges

where there was a split Bragg region (ranges from 3 to 12 km from the radar). As

seen in Figure 8.5 and Figure 8.7, the Conventional method missed some of the

first-order backscattered energy when placing the boundaries, while the proposed

multi-probabilistic method was able to capture it more accurately, as described

in Section 8.3. This translates into a number of vectors being added by the

proposed multi-probabilistic null-finding method mainly in the ranges where the

split Bragg occurs. Finally, the third portion of Figure 8.8 shows the complete

set of vectors as provided by the proposed multi-probabilistic null-finding method.

Similarly, Figure 8.9 shows similar results as Figure 8.8 but corresponds to the

cross-spectra obtained at 3:20 a.m. UTC.

215



F
ig
ur
e
8.
8:

Fi
rs
t
se
t
of

ra
di
al

cu
rr
en
t
ve
lo
ci
tie

s
m
ap

at
th
e
V
C
O
L

ra
da

r
sit

e
in

th
e
St
ra
its

of
G
eo
rg
ia

fro
m

Ju
ly

1,
20
20

at
7:
40

a.
m
.
U
T
C
.T

he
le
ft

m
ap

in
cl
ud

es
th
e
ra
di
al

ve
ct
or
s
pr
ov

id
ed

by
bo

th
th
e
co
nv

en
tio

na
la

nd
th
e
pr
op

os
ed

m
ul
ti-
pr
ob

ab
ili
st
ic

nu
ll-
fin

di
ng

m
et
ho

d
us
ed

to
de
te
rm

in
e
th
e
fir
st
-o
rd
er

bo
un

da
rie

s.
T
he

m
ap

in
th
e
m
id
dl
e
po

rt
io
n

sh
ow

s
th
e
ra
di
al

cu
rr
en
t
ve
lo
ci
tie

s
th
at

th
e
pr
op

os
ed

m
et
ho

d
de
te
rm

in
es

an
d
th
e
co
nv

en
tio

na
lm

et
ho

d
m
iss

es
.
Fi
na

lly
,

th
e
m
ap

on
th
e
rig

ht
pr
es
en
ts

al
lt
he

ve
ct
or
s
pr
ov

id
ed

by
th
e
pr
op

os
ed

m
et
ho

d
co
m
bi
ne
d.

216



F
ig
ur
e
8.
9:

Se
co
nd

se
t
of

ra
di
al

cu
rr
en
t
ve
lo
ci
tie

s
m
ap

at
th
e
V
C
O
L
ra
da

r
sit

e
in

th
e
St
ra
its

of
G
eo
rg
ia

fro
m

Ju
ly

1,
20
20

at
3:
20

a.
m
.
U
T
C
..

T
he

le
ft

m
ap

in
cl
ud

es
th
e
ra
di
al

ve
ct
or
s
pr
ov

id
ed

by
bo

th
th
e
co
nv

en
tio

na
la

nd
th
e
pr
op

os
ed

m
ul
ti-
pr
ob

ab
ili
st
ic

nu
ll-
fin

di
ng

m
et
ho

d
us
ed

to
de
te
rm

in
e
th
e
fir
st
-o
rd
er

bo
un

da
rie

s.
T
he

m
ap

in
th
e
m
id
dl
e
po

rt
io
n

sh
ow

s
th
e
ra
di
al

cu
rr
en
t
ve
lo
ci
tie

s
th
at

th
e
pr
op

os
ed

m
et
ho

d
de
te
rm

in
es

an
d
th
e
co
nv

en
tio

na
lm

et
ho

d
m
iss

es
.
Fi
na

lly
,

th
e
m
ap

on
th
e
rig

ht
pr
es
en
ts

al
lt
he

ve
ct
or
s
pr
ov

id
ed

by
th
e
pr
op

os
ed

m
et
ho

d
co
m
bi
ne
d.

217



8.3 Study of Statistical Differences of the Radial

Current Outputs Between Methods

In Section 8.2 we presented comparisons of the first order boundary solutions

from the currently-used null finding method (the “Conventional” method) and the

proposed method we developed (the “multi-probabilistic” method).

We saw how the proposed Bayesian method helps to properly track and correct

the boundaries, and therefore improves the accuracy of the resulting radial current

vectors maps that are obtained with the proposed method, as we presented in

Section 8.2. We evaluated the results from the radar backscattered cross-spectra

point of view as well as on the corresponding radial current maps.

The radial vectors that we place on the maps are obtained from the cross-spectra

computed between voltage time series from the elements of the receive antenna as

described by Barrick and Lipa (1997) based on the MUSIC algorithm of Schmidt

(1986). In order to estimate cross-spectra from signal voltage time series between

antennas, time averaging is required, typically ranging from several minutes to

about an hour, depending on radar operating parameters.

Finally, in this Section, we study a series of statistical comparisons between

the methods. The objective of this statistics is to demonstrate how the vectors

added by the method using Bayesian estimation techniques improves the overall

correlation of the radial current vectors with the neighborhood vectors in the map.
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8.4 Evaluation of the Error on the First-Order

Boundary Determination Methods

As previously mentioned, we assign the following names to the radial current

vectors:

• "Agreed Vectors": set of vectors that both the Conventional and the proposed

multi-probabilistic method place in the map.

• "Added Vectors": set of vectors provided by the proposed Bayesian method

that the Conventional method missed.

• "Rejected Vectors": set of vectors that the Conventional method had provided

but the proposed Bayesian method decides to reject.

The objective of the proposed multi-probabilistic method is, of course, to

add as many valid vectors as possible, while rejecting only vectors that do not

correspond to actual ocean surface currents present in the field of view.

Study of the First-Order Boundaries and the corresponding Radial

Current Velocity Maps for the VCOL site at the Straits of Georgia:

We make a series of statistical comparisons in order to evaluate how well the

radial vectors from the two methods match with their surrounding vectors. In

other words, we check:

• "Agreed Vectors": Value of the average Standard Deviation of the set of

vectors that both the Conventional and the proposed Bayesian method place

in the map when comparing them with their surrounding Agreed vectors.
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• "Added Vectors": Value of the average Standard Deviation of the set of

vectors provided by the proposed Bayesian method (that the Conventional

method missed) when comparing them with their surrounding vectors.

• "Rejected Vectors": Value of the average Standard Deviation of the set

of vectors that the Conventional method had provided but the proposed

Bayesian method rejects.

As an example, we are going to compare the three sets of vectors presented

in Figure 8.8. We are, therefore, comparing how well the added vectors on the

middle panel of Figure 8.8 correlated with their neighbor vectors.

Figure 8.10 presents two panels:

1) The top panel describes the number of vectors that we are comparing in

average, for each of the timestamps of our VCOL cross-spectra files. The blue

and red lines correspond to the total number of vectors by each method (and the

agreed ones – in green – are included in that average sample size). In this case

we present the comparison of cross-spectra files from the VCOL site starting on

July 1st 2020 at 00:00 until July 2nd 2020 at 7:40 am.

2) In the bottom panel, we can see those same timestamps over the horizontal

axis, while the vertical axis corresponds to the average standard deviation of the

vectors being compared. The average standard deviation is in the same units as

the current velocity of the vectors, which is cm/s.
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Overall, we observe in Figure 8.10 how the added vectors (blue dots) correlate

well with the agreed vectors surrounding them. This means that the radial current

velocity vectors "added" by the proposed Bayesian method are statistically as

good of a match to their surroundings as the "agreed" vectors i.e. the vectors

that both the Conventional and the proposed Bayesian method had placed in

the radial maps. On the other hand, the vectors that the Conventional method

had generated but the proposed Bayesian method rejects - the "Rejected" vectors

marked as red dots - have a higher average standard deviation and don’t match

that well the "Agreed" vectors presented as a green line in Figure 8.10.

Particularly, Figure 8.11 includes a red circle that points to the region where

more vectors have been added by the proposed method. Indeed the range bins –

where those vectors within the red circle are located – correspond with the ranges

in the monopole spectra where there were split Braggs (see Figures 8.5 - 8.7).

We thus conclude, that it was a good decision to remove those "Rejected"

vectors and to add the "Added" vectors, since the resulting surface current radial

maps present higher statistical relevance.

Finally, as we will see in Chapter 9, there will be situations where we do not see

clearly that the added vectors are better correlated to the agreed as compared to

the rejected. But when comparing the vector sets with the velocities determined

by drifters in Chapter 9, we see that indeed the added vectors present radial

velocities that match with the drifter velocities better than the rejected vectors.
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Figure 8.10: Average standard deviation comparison between vector sets. The
top panel describes the amount of vectors that we are comparing in average, for
each of the timestamps of the selected set of VCOL cross-spectra files (starting
on July 1st 2020 at 00:00 until July 2nd 2020 at 7:40 am). In the bottom panel,
we can see those same timestamps over the horizontal axis, while the vertical axis
corresponds to the average standard deviation of the vectors being compared.
The average standard deviation is in the same units as the current velocity of the
vectors, cm/s. The line in green corresponds to the vectors placed by both the
Conventional method and the proposed Bayesian method. On the other hand, the
blue dots represent the vectors added by the proposed Bayesian method. Finally,
the red dots correspond to the vectors determined by the conventional method
but rejected by the proposed Bayesian method. We can see how the added vectors
(blue dots) correlate better with the agreed vectors surrounding them, and present
a lower average standard deviation. This means that the radial current velocity
vectors "added" by the proposed Bayesian method are statistically significant and
matching the "agreed" vectors.
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Figure 8.11: Radial current velocities map at the VCOL radar site in the Straits
of Georgia from July 1, 2020 at 7:40 a.m. UTC presenting all the vectors provided
by the proposed method to determine the first-order boundaries. The red circle in
the figure points to the region where a higher amount of vectors have been added
by the proposed method. Indeed the range bins – where those vectors within the
red circle are located – correspond with the ranges in the monopole spectra where
there were split Braggs (see Figures 8.5 through 8.7).
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Chapter 9

Assessing the Validity of the

Multi-Probabilistic Method

through Comparisons with

Drifters

9.1 Introduction to the UBC Drifters

A remarkable amount of fresh water enters the Strait of Georgia from the

Fraser River, which then mixes with the salty ocean water in the Strait and

eventually flows out into the Pacific Ocean.

Professor Rich Pawlowicz and his team at the University of British Columbia

have worked for years on their "ODL Drifter Project" deploying drifters along

the Straits of Georgia[54][55][56][64] in order to track the movement of the water

parcels and thus determine how fast and how far they go, and to learn about

turbulence of the circulation in the Strait as well.

224



Figure 9.1: This map presents a series of drifter tracks, from several deployments
along the Straits of Georgia. The buoys are mainly deployed from the south of
Richmond, BC and then they will drift freely with ocean currents. As we will
see in Figure 9.5, some drifters travel all the way up the Strait towards Quadra
Island.

Professor Pawlowicz allowed us to study more than 400 drifter tracks dated

from September 2014 until the end of March 2018, from several of their drifter

deployments shown in Figure 9.1. The high-resolution expendable surface UBC

drifters used were designed at the University of British Columbia and their perfor-

mance was evaluated by Page et al.[53].

As shown in Figure 9.2, the UBC drifters consist of flat wooden floats above a

rigid cross-shaped drogue of sheet metal about 50 cm across and 40 cm tall, their

cross-sectional area is about 1800 cm2. These drifters are optimized for measuring

average ocean currents in the upper 50 cm of the water column.
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Figure 9.2: Design of a UBC Drifter [54]

9.2 Differences in Surface Current Measurements

Performed by Drifters and by HF Radar

Drifters are small buoy-like instruments with GPS, which send their locations

to satellites as they drift on ocean currents. Their location gets tracked for weeks

or months at a time and they provide an exceptional amount of location-based

data regarding surface currents. As mentioned above, the UBC drifters used in

this study are optimized for measuring average currents in the upper 50 cm of the

water column.

Stewart and Joy [65] used theoretical arguments to estimate that HF radars

respond to velocity measurements that are an exponentially-weighted average over

the uppermost λBragg/4π of the water column, approximately 0.5 m at 25 MHz.

This estimate of the effective depth of HF current measurements corresponds

reasonably well with the drifter effective depth of 0.5 m.
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However, there are a variety of effects that could cause differences between HF

radar and drifter measured currents. Carter Ohlmann[50] summarized them in

several types, as follows:

1. Resolution of High-Frequency radar Doppler spectra i.e. ∼2.5 to 5 cm/s

difference.

2. Vertical scale of measurements – we have a good match in this respect.

3. Horizontal scale of measurements – HF radar data is averaged over 0.25 km2

while drifter drifts with currents over a path length of ∼0.8 km in an hour.

4. Measurements by HF radar and drifter not necessarily coincident in time.

5. Stokes drift may not be reconciled consistently among platforms – and it

corresponds to about a 0.8% of wind speed. [25][48].

6. Use of "ideal" versus "measured" antenna patterns could add ∼10 cm/s error.

We have tried to limit these sources of error to the extent possible. We suspect

that the largest source of error would be in the accuracy of the antenna pattern

measurements. Based on previous studies [50], as we will discuss in Section 9.3,

we expect that the hourly ocean current fields are likely to have random errors

of about 15 cm/s, and biases around ±5 cm/s. However, there can be significant

variation – in one instance, the difference increases from near zero to more than

20 cm/s within 2 hours.

Our purpose in doing a drifter comparison is to perform a sanity check to see

if indeed our method of determining the Bragg first-order boundaries tends to add

radials with Root Mean Squared errors (see Section 8.1) much smaller than the
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RMS errors of the radials that were determined by the conventional method but

are rejected by the proposed method. Here, we simply remind the reader of the

typical differences between the high-frequency radar and the drifters approach and

quote results of previous investigations that focused on those differences between

measurements.

9.3 Drifters Dataset and Calculation of the Radial

Velocities from their Trajectories

For the present research, we processed this drifter data in order to find corres-

pondence between the locations where the drifters crossed the fields of view of the

three SeaSonde sites in the area of study in the Strait of Georgia.

These sites are, from North to South: VATK at the Point Atkinson Lighthouse,

VION at the Iona island and finally VCOL at the Westshore Coal Terminal as

shown on the map in Figure 9.3.

Thus, the first step was to find which of the drifter tracks traveled in front of

our three radar sites of interest. Unfortunately, we have very limited SeaSonde

radar radial currents with correspondence in time and space with the drifter

tracks. Contrary to other studies, like the ones performed by Halverson[25] or

Ohlmann[50], the purpose was to validate HF radar ocean current measurements

by deploying drifters on the field of view of those radar sites. In our case,

conversely, the drifters were circulating freely and most of the times we do not

find them crossing the coverage area of the radars, within 40 km from the shore.
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Figure 9.3: Map of the three SeaSonde locations along the Straits of Georgia and
near Vancouver, British Columbia (Credit to ONC - Ocean Networks Canada[16]).
Northernmost we show the VATK SeaSonde site at Point Atkinson, in the
municipality of West Vancouver, BC. Next, the VION radar site is located on Iona
Island near Richmond, BC. Finally, the southernmost SeaSonde radar location in
the map is VCOL, at the Westshore Terminals in Delta, BC. The solid line that
ONC includes in this map corresponds to a fiber-optics cable present in that
location, while the dashed lines correspond to instrumented Ferry routes. On
the other hand, the smaller white symbols mark the locations of stations and
platforms for other instruments.
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When we have a set of drifter tracks that pass nearby the radar location,

we extract the velocities of each drifter from their locations at each time of

measurement, i.e. their velocity on the trajectory direction. On the other hand, a

single HF radar site measures line-of-sight velocities which are commonly referred

to as radials. We choose to compare drifter velocities to radial velocities because

radial velocities are more fundamental[25] whereas total velocities (U , V) are

derived by combining radial velocities from multiple HF radar sites, where U is

the eastward component and V the northward component.

First, to calculate a drifter radial velocity we need to compute the U and V

components with a centered finite difference of consecutive GPS positions and

times. Next, to compute radial velocities, the drifter velocities are projected on

to the vector connecting the radar radial cell closest to the drifter and the radar

station location. The angle of this vector is the bearing of the corresponding radial

grid cell. The sign convention is such that a positive radial velocity indicates flow

toward the radar site, while a negative velocity indicates flow away from the radar

site.

Once we have a set of radial velocities from a given location and time, we

compare them with the radial velocities obtained from the corresponding high-

frequency radar site that fall into the "comparison grid" for that given time. The

area of this grid has been determined by evaluating the resolution of the bins:

the maximum range bin size is 0.5 km and the bearing bins resolution of 5◦, as

mentioned in 9.1, which corresponds to a maximum arc length of 1.2 km at the

further range.
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Finally, in the next Section we compare how well the drifter radial velocities

within the comparison grid match with the HF radar radial velocities on that grid

obtained from:

• the "conventional" method

• the proposed "Bayesian" method

• the radial vectors that both methods agree on.

9.4 Statistical Comparisons of the Radial

Vectors from the HF Radars against

the Corresponding Drifters

As we introduced at the beginning of this chapter, and opposed to the different

comparisons evaluated in Section 8.2, there are times where the number of "added"

vectors obtained from the proposed Bayesian method is minimal, when comparing

to the set of vectors provided by the Conventional method.

Most of the time, this is due to the fact that the Bragg regions do not present

splits and therefore when evaluating the Bayesian method results we will observe

a smaller number of added radial current vectors, as compared to instances where

there were split Braggs and our proposed method was able to output many more

vectors. In addition, when there are no split Braggs, the difference in vectors

output is mainly from the smoothing of the boundaries and the removal of outliers

performed by the Bayesian method.
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As presented in Figure 9.4, and as opposed to what was shown in Figure 8.10

in Chapter 8 Section 8.3, if we apply the same comparison statistics between

first-order boundary determination methods for instances where we do not see

relevant split Braggs, we do not observe remarkable differences on the average

standard deviation of the output radial current vectors. Both sets seem to have

similar characteristics. Thus, in order to evaluate the validity of the proposed

method for the cases where the Bragg lines are not split and the number of added

vectors is small, we compare with the series of drifters deployed along the Straits

of Georgia, as described previously in this Chapter. Also the drifter comparison

is a different method and provides a separate validity check. More specifically,

to measure how close every set of radial vectors is to the drifters data points we

calculate the Root Mean Square Error (RMSE), as described in Section 8.1.

As we will see next, the proposed method added vectors that match better with

the radial vectors extracted from the drifters, as opposed to the rejected vectors

that present a higher average RMSE. Even with no split Braggs, we observe that

the added vectors present better correlation with their neighbors, while the vectors

that the proposed Bayesian method rejects have indeed a lower correlation.

Results when comparing HF radial currents with Drifters on Deployment 21:

Figure 9.6 presents a subset of drifter tracks from Deployment 21 (full set shown

in 9.5 ) that we compare against the radial current vectors obtained from the

VATK radar site. This set of drifters corresponds with available radar data from

the Point Atkinson (VATK) SeaSonde site, shown in Figure 9.3.
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Figure 9.4: Comparison statistics for a dataset at the VATK site in Point
Atkinson, West Vancouver, British Columbia. As seen, for a situation like this
where there are no split Braggs in the radar backscattered cross-spectra, both of
the sets of output radial current vectors present similar average standard deviation
with their corresponding neighbors and therefore we can not assume that one
first-order determination method would be better than the other. For this type of
scenario, we apply the validation through comparing with drifter radial velocities
to prove that the proposed Bayesian method provides improved results that are
statistically significant.

233



F
ig
ur
e
9.
5:

"D
ep
lo
ym

en
t2

1"
D
rif
te
rt

ra
ck
s.

T
he
se

U
BC

dr
ift
er
s
we

re
de
pl
oy
ed

fro
m

Ja
nu

ar
y
22

to
Fe

br
ua

ry
20
,2

01
8.

T
he

co
m
pa

ris
on

re
gi
on

is
ne
ar

Va
nc
ou

ve
r
an

d
R
ich

m
on

d.

234



Using this match-up data set we can study the success of the proposed Bayesian

method when retrieving radial ocean surface currents from the VATK site by

comparing the results of the radar’s radial current vectors against the radial

velocities from the set of drifter tracks on Deployment 21.

The corresponding comparison results are presented in Figure 9.7, which is

divided in three sections.

All three of them have a curve in common, the one with a color gradient. This

multi-colored curve represents the change in radial velocity over time as detected

by the UBC drifters. The color changes depending on how far the drifter was

from the VATK radar site, as noted in the legend of each of the Figure sections,

namely (A), (B) and (C).

We added this color change along the curve to evaluate a potential range dependency

on the correlation between the radial velocity measurement from the drifters and

from the radar, but we concluded that there is no apparent direct correlation.

The first section, (A), presents the comparison between the drifters radial

velocities and the set of radar radial vectors that both the ’conventional’ method

and the proposed ’Bayesian’ method agree on. As we can see, for this comparisons

during January 30th 2018, the correlation of the drifters with the agreed vectors

is about 0.6 and their RMSE is 16 cm/s.

The middle section, (B), of Figure 9.7 presents the same comparisons but

this time the buoy radial velocities are compared against the vectors added by

the proposed ’Bayesian’ method. The correlation is somewhat worse, around 0.3

while the RMSE between the vectors has increased to almost 30 cm/s.
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Figure 9.6: Detail of the portion of drifter tracks that travel around the VATK
site and that are being compared against the radial currents provided by this
SeaSonde radar.

Finally, in the third portion, (C), of 9.7 we compare the drifter radial velocities

against the vectors that the ’conventional’ method accepted but the proposed

’Bayesian’ method rejected. We expect to see that rejecting these vectors was a

good decision due to their lack of consistency with their neighbor vectors. We see,

indeed, that those vectors have a very low correlation, of only 0.021, and a high

Root Mean Square Error of 64.4 cm/s.

Using data from the Straits of Georgia and also when comparing with drifters,

we conclude that the vectors added by the proposed Bayesian method had higher

correlation with their neighbor vectors and lower deviation σ from the mean.
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9.5 Discussion of the results

Previous studies comparing CODAR radial velocities to drifter-derived radial

velocities have found Root Mean Square (RMS) differences ranging from 1.4

to 13.3 cm/s, and bias values ranging from -9.3 to 10.7 cm/s as described by

Ohlmann[50].

Paduan et al.[51] and Lipa et al.[45], using 25 MHz radar systems like in our

case, calculate RMS differences of 8.5 cm/s to 12.7 cm/s and bias values of -4 to

-1 cm/s. Further results from prior work comparing HF radar and current meter

measurements report similar differences as well, e.g. Janopaul et al.[30], Schott

et al.[62], Graber et al.[24], Chapman et al.[18] and Emery et al.[21].

In conclusion, the studies above suggest that we should expect comparison

errors as as high as 15 cm/s in RMS differences, and biases as high as ±5 cm/s.

As shown in the previous Section, even with the small number of drifter tracks

that we can compare to, the RMSE of 16 cm/s seems acceptable for this type of

drifter comparison and the results are within tolerance of what prior work has

published. We also conclude that the vectors added by the proposed Bayesian

method are statistically more significant when compared to the ’rejected’ vectors

which present a lower correlation. Note that the rejected radial vectors are the

ones that the proposed Bayesian method rejects, but the ’conventional’ method

had mapped as reliable.
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Chapter 10

Summary, Conclusions,

Contributions to Knowledge and

Topics for Future Research

In this final chapter we present a summary of our study and sum up the

success of using our proposed multi-probabilistic method especially in challenging

scenarios. In addition, we review our contributions to knowledge, draw conclusions

and propose some future research topics.

First we presented the principles of high-frequency radars and its applications

to oceanography and particularly surface current mapping in Chapter 2.

A few fundamental radar calculations were discussed in Section 2.2 while some

relevant concepts about HF radar for oceanography were presented in Section 2.3:

· On the one hand, we learned that HF radar systems estimate surface currents

by analyzing the spectra of the Bragg resonant scattering region of the radar echo

– returned signal–, which is also known as the first-order Bragg region.
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· In addition, we reviewed Doppler frequency shift and how each Doppler bin

within a constant-range bin in the radar’s field of view represents the amount of

energy received at that particular Doppler frequency and range.

· On the other hand, we also presented the MUSIC algorithm which determines

the azimuth direction of the signals scattered off the ocean surface in every range

and Doppler bin. We note that our research applies to the radar data processing

stream before application of the MUSIC direction finding stage.

Next, Chapter 3 focuses on the main concept that we study in this thesis: the

first-order Bragg region boundaries and why their determination is so important.

We first introduce the idea of Bragg scattering when an HF radar illuminates the

ocean surface in Section 3.1 and then we describe the importance of separating

the stronger first-order Bragg region from the second-order and the noise and

interference in Section 3.2. Right afterwards, we discuss the challenge of having

the first-order Bragg region split into multiple components (Section 3.3 – split

Braggs phenomenon) and how that is one of the main challenges for our study

described in Section 3.4 on Research Approach.

From there, we started to detail the necessary milestones to achieve our main

research objective: determination of the boundaries of the first-order Bragg region

in the Doppler spectrum from a constant range arc on the ocean surface. To get an

overview of the process we suggest the reader review the List of Algorithms

on pages xxv and xxvi of the introductory sections of this document.

I) First, in Chapter 4 we start describing the null-finding method necessary

to separate the first-order and the second-order regions of the Bragg backscatter.
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The List of Algorithm Steps in Section 4.1 provides a summary of this

method and we remind the reader with the list below.

1. Extract the backscatter spectrum of the monopole antenna

2. Normalize the spectrum

3. Apply a noise threshold

4. Smooth the spectrum

5. Limiting the spectral range on both sides

6. Find the possible nulls (initial estimates of the first-order boundaries)

7. Search for split Bragg regions

8. Apply Bayesian tracking in range and time

9. Extract the final estimates of the first-order boundaries

After all those steps are detailed in Sections 4.3 through 4.9, we present the

implementation of the conventional null-finding method in Section 4.10 and the

complete implementation of the proposed multi-probabilistic null-finding method

in Section 4.11. We develop the conventional null finding method to use it as a

standard of comparison to help evaluate our new method.

II) Secondly, in Chapter 5 we describe the Bayesian estimation techniques

applied in our tracking problem. The list Overview of Our First-Order

Boundaries Tracking Problem in Section 5.1 provides an in depth review

of the subject and it is provided next.
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1. What are we tracking?

The location of the first-order Bragg line boundaries i.e. what is the Doppler

shift corresponding to the radial velocity of the maximum ocean current

present at that time and at that range bin (Section 3.2). The four first-order

boundaries (boundaries with Doppler shifts above and below both the Bragg

lines associated with approaching and receding ocean waves) are tracked

independently, thus we are dealing with a single object tracking in clutter

problem (Section 5.1.2) that we will run four independent times, using data

from radar observations of the Doppler spectra from each single range bin.

2. How do we track them?

We face a state estimation problem where the object states – first-order

boundaries – are to be estimated from noisy measurements.

The tracking system consists of the object to be tracked, a sensor (the

SeaSonde radar) which measures some aspect of the object, and also provides

us with some noisy measurements (i.e. the velocity of maximum ocean

current present at that time and at that range bin). Therefore we will use

a Kalman Filter (Section 5.3) for this tracking problem.

3. What are our observations or measurements?

From our sensor (the SeaSonde radar) we will be able to process a series

of backscatter spectra files, which correspond to the specific time we are

studying. We will go range bin by range bin using their respective spectra

files, and find the initial estimates for each of the four first-order boundaries

for each range bin spectra file. Those initial estimates are the input noisy

measurements we will be sending to our Kalman Filter (Section 5.3).
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4. What if we have multiple initial estimates for a single boundary location?

Sometimes we will have multiple estimates for a single boundary location at

a specific time and range. As we will see, we will apply the concepts of a

Bayesian filter receiving multiple simultaneous measurements (Section 5.4)

to choose between them:

• The Nearest Neighbor Filter (first introduced in Section 5.4.2 and

described in detail in Algorithm 31 in Section 6.5) would be a simple

option to decide between multiple single boundary location possibilities.

• The Probabilistic Data Association Filter (Section 5.4.3 and Algorithm

32 in Section 7.5) is a more complex filter applicable to our problem

which will statistically weight and estimate a boundary location some-

where in between the multiple single boundary location possibilities we

receive as measurements.

5. How do we filter the four boundaries once we have chosen the complete set

of initial estimates for them?

We realized that tracking in time and range made sense for the first order line

problem, physically the maximum ocean current present should not change

many cm/s (or Doppler bins) when advancing in range (about 5 km step)

or moving forward in time (about 30 minutes time). This two-dimensional

tracking in range and time is fully described in Chapter 7 and it is a novel

application of Bayesian tracking for this first-order boundaries determination

problem.
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III) Combine the null-finding algorithm and the diverse Bayesian estimation

techniques into a Python script that determines the first-order boundaries in

Chapter 6. Please refer to the List of Algorithms in pages xxv and xxvi for

a full chronological overview of the complete algorithm steps.

IV) Bayesian tracking application for our first-order boundaries problem, which

is described in Chapter 7. The estimation steps are listed at the start of Chapter

7 and a review is provided next.

Overview of the Estimation Steps:

1. Set up the estimation model.

2. Prediction.

3. Gating: Not necessary for our problem since the measurements for every

boundary are received separately.

4. Data Association: Step determining which of the received observations is

the best match, and therefore its value will be used on the Update step.

Probabilistic Data Association Filter (PDAF) to resolve multiple options

for a boundary. Bayesian tracking in time and range to provide the final

estimates for the boundaries.

5. Update.
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Then, once the proposed method has been described in Steps I through IV,

Chapter 8 proceeds with a series of statistical comparisons to demonstrate the

validity of our new multi-probabilistic method versus the conventional method.

We present comparisons of determined first-order boundaries on the radar back-

scatter spectra as well as comparisons of the corresponding results mapped into

surface current radial maps.

Finally, in Chapter 9 we look at a validation of our method from a different

aspect using HF radar and drifting buoy data collected in the Straits of Georgia.

In this study we compare the radial current vectors from both line boundary

determination methods against a series of radial velocities obtained from drifters

that were deployed by the University of British Columbia in the Straits of Georgia.

In both these test our multi-probabilistic method is as good as or better than the

conventional method. In challenging situations our new method proves to be

superior.

Contributions to Knowledge:

Next, we review the contributions to knowledge and draw some conclusions.

• Current surface current measurements using compact HF radars are presently

handicapped, especially under challenging conditions, by inclusion of radar

data that results in some erroneous radial vectors and not making use of

radar data that can produce useful radial current vectors. These errors are

often caused by incorrect determination of the first order Bragg Line (FOL)

boundaries in the Doppler spectrum of a given range bin arc. We make two

major innovations:
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– Development and application of a new null finding algorithm and a

series Bayesian estimation techniques.

– Application of probabilistic data association filtering (PDAF) to resolve

multiple options in setting the first-order Bragg line (FOL) boundaries.

Using these developments we show that we can better define the first order

Bragg line (FOL) boundaries, especially under adverse circumstances (see

Chapter 2) and thus include more useful surface current vectors while at the

same time excluding data that results in erroneous surface current vectors.

Our improvements are most useful for cases when Doppler spectra show

peculiar characteristics e.g. in challenging conditions, such as

– Split Braggs, e.g., from islands in the radar coverage area

– Second order scatter at high sea states

– Interference, e.g., ionospheric echoes

• We demonstrate the validity of our techniques by comparison with the

conventional techniques using both surrounding current measurements and

drifter measurements of surface currents. Our multi-probabilistic method

added vectors that match better with the radial vectors extracted from the

drifters, as opposed to the rejected vectors that present a higher average

RMSE. Even with no split Braggs, we observe that the added vectors present

better correlation with their neighbors, while the vectors that the proposed

Bayesian method rejects have indeed a lower correlation.

246



• The impact of our improvements mean that compact antenna, HF radars can

make measurements in some adverse conditions where useful measurements

were previously impractical. Our improvements mean that oceanographic

and practical applications are less susceptible to problems caused by the

erroneous radial vectors distorting results. For example, surface currents

over large areas for a very useful surface boundary condition for ocean

circulation models. The more accurate the boundary condition, the more

accurate will be the circulation model.

Conclusions:

The objective of this thesis is to devise and improved methods for selecting that

portion of the radar echo data that allows valid radial current vectors to be retrieve

from the radar observations of compact antenna, decameter wavelength, ground

wave radars. The aspect of this issue that we address is the correct identification

of the Doppler boundaries of the first-order Bragg line echoes from a range bin,

arc on the ocean surface.

We conclude that the application of our multi-probabilistic method does signi-

ficantly improve the correct identification of these boundaries and hence, improves

the quality of the surface current, radial vectors, especially in challenging situations.

Such situations are most frequent for radar observation with islands in the radar

footprint, flows in straits, tidal flows, coastal upwelling and similar situations.

Future work:

Below are several topics that we think are worth pursuing to improve and

validate the results of work as well as moving forward with improvements to the

method.
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• Further testing of our multi-probabilistic algorithm on a broader range of

radar sites where problematic issues like split Braggs or islands or high sea

states are present. For each different site we would set up some of the basic

parameters for the estimation models corresponding to the circumstances

of the site location. We think this activity could lead to a pathway with

further details on how to choose the first-order configuration specifications

for the radar, depending on the site and the issue it deals with.

• Investigation of our update model that is currently very simple. Although

supported by general knowledge of ocean surface current variability, a more

thorough investigation into regional variations could allow improvement in

our update model.

• Invetigators at Codar Ocean Sensors and other users of compact ocean

sensing radars continue to improve the methods for retrieval of ocean surface

currents. Investigation of these improvements could lead to improvements

in the multi-probabilistic method developed in this thesis. Radar data

processing, such as being able to study and compare the relative phases,

the relative amplitudes, the angle of arrival and the pattern distance values

between Doppler bins. We anticipate that an additional layer of comparisons

could help in our first-order determination when they are applied into the

Bayesian correction and tracking stage.

• Application Bayesian estimation to the MUSIC direction finding step in the

processing might lead to a reduction of the misplacement in azimuth angle

of the radial current in a given Doppler bin. Investigation of this issue could

lead to the improvement of radial current retrievals.
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