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Abstract

Factors a↵ecting the streamflow and in-stream nitrate concentration in semi-arid areas:

sub-surface flow-generation, vertical distribution of soil nitrate and drainage properties,

and the connectivity of impervious areas.

by

Xiaoli Chen

The Southern California coastal region is one of the five areas in the world with

Mediterranean climate. The long dry summer and cool wet winter not only attract a

large population, but also create a unique hydrologic signature with strong temporal

and spatial heterogeneity in soil moisture, streamflow and vegetation water use.. The

sandy soil, fractured and uplifting bedrocks in undeveloped areas result in flashy and

non-linear hydrologic responses to storms. Urbanization in this area further alters the

hydrograph by changing the land cover and drainage patterns . These changes alter

both water and nitrate fluxes, which may have substantial impacts on the downstream

and coastal ecosystems, such as Great Kelp forest in the Santa Barbara channel. To

understand and ultimately manage of water resources in this region must take these

multiple factors climate, soil and urbanization into account. Study and modeling of flow

generation and nitrate transport mechanisms in the undeveloped area, and disturbance

of nitrate cycling and nitrate export in the urban areas in this region may reveal new

insight and improve the understanding of hydrologic processes, and provide sustainable

watershed management strategies.

Southern California coastal mountain watersheds are characterized by a Mediter-

ranean climate, sandy soil, shallow rock, flashy hydrologic responses and drought tolerant

vegetation such as oak and chaparral [51, 93]. The geological condition in this area may fit
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the requirement condition of ’Fill & Spill’ hypothesis of subsurface flow generation mech-

anism. We adapted ’Fill & Spill’ submodel in an eco-hydrologic model, Regional Hydro-

Ecologic Simulation system (RHESSys) [23], implemented it in the semi-arid area, and

compare its model performance with the traditional ’Continuous Transmissivity’ model

which assume the soil hydraulic conductivity follows a continuous exponential function

[3]. Our results show that in the recession period, the modeled discharge from ’Fill &

Spill’ model dropped much faster than the one from ’Continuous Transmissivity’ model,

and fit the observed discharge data better. ’Fill & Spill’ model is also less sensitive to

small precipitation events, and tends to increased estimates of peak flow. Assessment

of whether peak flow responses by the ’Fill & Spill’ model are a better representation

of observed dynamics is challenging given that peak flow observed data is prone to un-

certainties from di↵erent sources such as heterogeneity in precipitation distribution and

errors in stream gauge stations, and may not reflect the true hydrologic response of wa-

tershed behavior. In summary, model assessments show that the ’Fill & Spill’ model

results in substantially di↵erent recession behavior and that, for the study watershed,

the ’Fill & Spill’ model may be a better predictor of the watershed hydrologic responses

to precipitation events better than ’Continuous Transmissivity’ model.

The long dry summer and cool wet winter of semi-arid climate in the undeveloped

watersheds results in uneven vertical distribution of nitrate, with most of the nitrate con-

centrated at surface layer and limited in the deep soil [53]. In our conceptual model, we

showed that the vertical distribution of nitrate and its interaction with soil hydraulic con-

ductivity controls the nitrate concentration-discharge patterns in the downstream. The

uneven distribution of nitrate tends to produce an enrichment pattern, and the more

evenly distributed nitrate will lead to a stable or weak dilution. In the eco-hydrologic

model, we tested a combination of di↵erent hydraulic conductivity and vertical distri-

bution of soil nitrate. Results show that at both patch and watershed scales, nitrate
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concentration-discharge patterns are sensitive to the hydraulic conductivity and vertical

distribution of soil nitrate. In patch scale, modeling results match with the conceptual

model. In watershed scale, because of the lateral replenishment of nitrate, concentration-

discharge patterns are more complex and showing a 2-stage pattern with a transition

point where patterns shift from enrichment to dilution. The hydraulic conductivity

controls the transition point, and the interactions between conductivity and vertical

nitrate distribution still a↵ects the concentration-discharge pattern. This result is dif-

ferent from previous researches, which attributes the enrichment and dilution in the

nitrate concentration-discharge relationship as the consequences of lateral expansion and

contraction of saturated area [60, 59]. Our results indicate that, besides the analysis

from horizontal hydrologic connectivity, the distribution of nitrate in the vertical direc-

tion and its interaction with the hydraulic conductivity also contributes to the nitrate

concentration-discharge pattern.

The urbanization and expansion of impervious areas have great impact on the down-

stream nitrate concentration. Previous studies focus on the impact of impervious surface

on collecting nitrate and other pollutant [94, 96]. How the water availability in vegetated

area a↵ecting the nitrate concentration in urban area is less well known and may be

particularly important in semi-arid regions. Our results show that the total impervious

area (TIA), e↵ective impervious area (EIA), and vegetation types all have impacts on

the downstream nitrate concentration. The TIA and EIA control the water availability

in the vegetated land. The reduced TIA and EIA will increase the water availability

in vegetated land and decrease the stream flow. As growth of vegetation and micro-

bial activity in semi-arid areas is water limited, increased water availability can lead to

more nitrate uptake by plant, but may also lead to increased nitrate released through

soil decomposition processes. Results show that, the impact of the enhanced vegetation

uptake is the dominant factor and consequently reducing TIA and EIA generally tends to
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reduce downstream nitrate flux and concentration. In some cases, however, the impact

of a reducing EIA on reducing the stream discharge may o↵set the influence from the

enhanced plant nitrate uptake and increase the nitrate concentration. These results sug-

gest that improve water quality in urbanizing regions, a low EIA will generally but not

always reduce nitrate concentration and the magnitude of this e↵ect varies strongly with

TIA and vegetation type. Thus the design of e↵ective strategies may be improved by

model-based assessments that account for interactions among EIA, TIA, and vegetation

types. These findings are specific to semi-arid regions where additional water availability

has great impacts. In humid environment where the biochemical activities are generally

not water limited, some of the interactions in this study may not occur.
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Chapter 1

Comparisons of Fill & Spill Model

and Continuous Transmissivity

Mechanisms for Hydrologic

Modeling of Subsurface Flow in a

Mountainous Semi-Arid Areas

1.1 Introduction

Subsurface flow is an important component of watershed responses to storm events

in areas with conductive soils. Controlled by the hydrological connectivity on hillslopes,

subsurface flow redistributes soil moisture and nutrients in watersheds [1]. Various fac-

torssuch as antecedent soil moisture, the permeability of underlying bedrock, soil depth,

existence of macropores and local slopea↵ect subsurface flow. Ecological processes also

influence subsurface flow by controlling antecedent soil moisture through evapotranspi-
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Chapter 1: Fill & Spill Chapter 1

ration, and creating preferential flow paths via root channels [2].

In hydrological models, ’Continuous Exponential Transmissivity’ model [3] for sub-

surface flow is widely used, where the subsurface transmissivity decays exponentially with

soil saturation deficit:

K(sat
df

) = Ksat0 ⇥ e�
sat

df

m (1.1)

T (sat
df

) =

sat

dfZ

max sat

df

K(sat
df

) (1.2)

K(sat
df

) is described as the hydraulic conductivity when soil saturation deficit equals

sat
df

, which is calculated as the di↵erence between the soil porosity per unit area and

the water storage per unit area. max sat
df

is the maximum of saturation deficit, Ksat0 is

the saturated hydraulic conductivity at soil surface, T (sat
df

) is the transmissivity when

soil saturation deficit equals sat
df

, and m is the coe�cient controlling the decreasing rate

of transmissivity against soil saturation deficit.

Tromp-van Meerveld and McDonnell [4] proposed the Fill & Spill hypothesis as an

alternative model to explain hillslope threshold-based hydrological responses. Obser-

vations following rainfall show that responses of the subsurface flow are not significant

until a threshold of cumulative precipitation is reached [5, 4, 6, 7]. The Fill & Spill model

explains the threshold behavior as follows: the infiltrated water first fills bedrock depres-

sions, and then follows the preferential flow along the bedrock-soil interface. The Fill &

Spill hypothesis di↵ers from the traditional Continuous Exponential subsurface model by

emphasizing a threshold soil water level above which there is an abrupt change in trans-

missivity in contrast to assuming that subsurface transmissivity decays continuously and

exponentially with soil saturation deficit [3].

While Continuous Transmissivity approach is still widely used in hydrological models,

2



Chapter 1: Fill & Spill Chapter 1

some models have implemented the Fill & Spill alternative to understand the subsurface

connectivity [8, 9, 10, 11, 12, 13, 14], especially in environments with bedrock near the

surface and with seasonal variability in precipitation that causes water tables to rise

and fall. For example, Weiler & McDonnell (2007) used the modified Hill-vi model,

which includes a pipe network to model preferential flows, to highlight the importance

of the inclusion of the bedrock leakage for long-term subsurface flow responses. Hopp &

McDonnell (2009) conducted a series of virtual experiments using a 3-D physics-based

model and identified the interactions between slope angles, soil depth and the storm

size as the hillslope controls on connectivities. Janzen & McDonnell (2015) incorporated

stochastic percolation theory into the virtual experiments and successfully reproduced the

threshold of 55mm cumulative precipitation for nonlinear hydrological responses. They

also explored e↵ects of di↵erent factors on subsurface connectivity and suggested the

need to account for the detailed pattern of the delivery of rainwater to the soil-bedrock

interface. Most of these studies were conducted in small hillslope (0.1 < km2), partly

because the high computational complexity of 3-D models that prohibits their use at the

watershed scale.

None of the studies above have implemented or tested the Fill & Spill hypothesis in

semi-arid watersheds. Compared with humid or arid areas, the succession of dry/wet

periods and wetting up transitions in semi-arid areas can lead to high spatial heterogene-

ity in soil moisture, increasing the complexity of hydrological responses that depends on

catchment wetness [15]. The interactions of processes at di↵erent spatial or temporal

scales often result in non-linear dynamics and poses additional di�culties for hydrolog-

ical modeling in semi-arid areas [16]. As studies have argued that the threshold based

response and lateral preferential flow seem to be a common property of the hillslope

drainage [17], the Fill & Spill hypothesis may still be valid for semi-arid areas, especially

for mountainous area with steep slopes and bedrock near the surface such as southern

3



Chapter 1: Fill & Spill Chapter 1

California coastal mountain area [18]. The existence of macropores and interactions be-

tween preferential flow, soil matrix and bedrock irregularities were found in a study of

semi-arid catchments in Spain [19] and observations indicate similar conditions to those

described in the Fill & Spill conceptual model [4]. The Fill & Spill hypothesis may ex-

plain the non-linear responses to storm events and capture the non-linear dynamics of

catchment connectivity in semi-arid watersheds.

Appropriate temporal resolution is another important factor for numerical modeling

in semi-arid areas. Precipitation characteristics such as the storm duration/intensity,

and temporal variability often controls the catchment runo↵ in semi-arid areas [20, 21].

Modeling the hydrologic consequences of short-duration storms together with the flashy

hydrological characteristics in semi-arid areas may depend on model time step and require

hourly or sub-hourly time step [22].

In this study, we implement the Fill & Spill mechanism in the Regional Hydro-Ecologic

Simulation system (RHESSys) [23] in a semi-arid undeveloped watershed in southern

California and examine the impact on estimates of watershed connectivity. We address

the following questions:

1. Do the Fill and Spill and Continuous Transmissivity models lead to di↵erent esti-

mates of streamflow responses to precipitation inputs in semi-arid regions?

2. Which model more accurately represents the observed flow data during the storm

events? And during the recession periods?

3. Will a more frequent timestep in model simulations improve the predictions com-

pared to the observed flow data?

Two modifications to RHESSys are made: adaptation from the daily time step to an

hourly time step, and integration of a threshold-based Fill & Spill mechanism into the

4



Chapter 1: Fill & Spill Chapter 1

subsurface flow sub-model, replacing the Continuous Transmissivity mechanism. Four

model scenarios were compared: Continuous Transmissivity and Fill & Spill, each with

daily and hourly time steps.

We use these scenarios to compare model behavior between daily and hourly time

steps and between the two di↵erent conceptual models of subsurface flows. The com-

parisons consider model performance when evaluated against the stream discharge, and

model estimates of hydrograph characteristics and spatial patterns of soil moisture under

di↵erent wetness conditions.

1.2 Methodology

1.2.1 Model Description

The physical process-based, distributed hydrological model, RHESSys [23], has been

widely implemented and evaluated in di↵erent climate zones [24, 25, 26], including in

semi-arid regions [27, 28, 29].

RHESSys explicitly models hydrologic connectivity and lateral hydrological fluxes.

The soil profile is represented in two layers: an unsaturated layer and a saturated zone.

The root zone is within the unsaturated layer. Infiltration is modeled as a 1-D vertical

process using a modified version of the Green and Ampt [30] approximations. Lateral

flow from upland areas can be diverted to more than one receiving patch in the downslope

based on the topography. Precipitations in excess of interception and connected upslope

areas can generate surface flow when soil is saturated or when infiltration capacity is

exceeded. RHESSys also models the macropore preferential flow in two ways: (1) the

use of an e↵ective hydraulic conductivity in the shallow subsurface flow model, which is

typically higher than measured soil hydraulic conductivity values, and (2) by diverting

5
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part of surface detention water directly to a deeper groundwater storage, which drains

directly to the stream.

RHESSys uses the Penman Monteith approach [31] to calculate both the evaporation

and the transpiration, including evaporation of the rain intercepted by each canopy layer,

sublimation of intercepted snow, and transpiration of vascular layers. Soil evaporation

is estimated by incorporating energy and atmospheric drivers as well as a maximum

exfiltration rate, as determined by soil properties and the soil moisture. The potential

capillary rise is limited by the water table and soil properties. To account for the subdaily

plant responses, half of the potential capillary rise is allocated to the unsaturated zone

at the start of the day, and the other half left to meet the plant transpiration needs.

Although RHESSys includes biogeochemical cycling and vegetation growth sub-models

to account for the carbon/nutrient cycling, in this paper, we will only focus on hydrologic

implications.

1.2.2 Adapting from daily to hourly time step

RHESSys daily time step runs most processes and sub-models at the end of each day.

To model the e↵ect of temporal variation on runo↵ during the storm events, we have

adapted hydrological routing code in RHESSys to an hourly time step that including

processes: plant interceptions and throughfall, soil infiltration and lateral flows, drainages

to deep groundwater and discharge of groundwater to streams.

During storms, the impact of hourly evapotranspiration (ET) and phenological pro-

cesses on water availability is small compared with other hydrological processes like

drainage and interception; therefore, for computationally e�ciency we continue to model

ET and plant phenological processes at a daily time step. Modeling ET at an hourly

time step would require adding substantial complexity to the plant model to account for

6
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the transport time between roots and leaves.

After these adaptations, RHESSys runs in a hybrid time step that depends on the

time step of the input data. When hourly climate data are available, RHESSys runs

the hydrological processes with the hourly time step for days with hourly data. This

adaptation improves computationally e�ciency by allowing the user to switch between

’daily’ and ’hourly’ within a given simulation and use the ’hourly’ model only when

processes are likely to be sensitive to the time step (e.g., runo↵ during storms).

1.2.3 Adapting from Continuous Transmissivity to Fill & Spill

implementation

Unlike the Continuous Transmissivity model, where the hydraulic conductivity de-

creases exponentially and continuously with the soil saturation deficit level (equation

1.1 1.2), the Fill & Spill model uses a discontinuous relationship. A threshold ’satura-

tion deficit threshold ’ is explicitly set (Figure 1). For the Fill & Spill concept, when

the saturation deficit falls below this threshold, the soil water is trapped by bedrock

depressions, and there is a little leakage from the depressions. When saturation deficit

exceeds the threshold, the infiltrated water has already filled the bedrock depressions

and begins to spill over along macropores at the interface of the soil and the bedrock

as lateral preferential flows. Due to the preferential flow, the soil hydraulic conductivity

has an abrupt increase at the saturation deficit threshold and exceeds the value in the

Continuous Transmissivity model. Some leakage does occur through bedrock fractures

and accounting for this is necessary for modeling subsurface flow responses to multiple

storms [12].

When implemented in RHESSys, three new parameters were used for the Fill & Spill

model. First, the ’Saturation Deficit Threshold ’ is defined as the soil saturation deficit
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needed to fill the bedrock depression. This is the threshold beyond which preferential

flow will emerge and dominate the subsurface flow in a patch, shown as the dashed

line in Figure 1.2. Second, the ’leakage’ is defined as the multiplier to the original

hydraulic conductivity K that is applied when the saturation deficit falls below the

threshold (bedrock leakage). We assume the leakage coe�cient is less than 1. Third,

the ’spillover’ is defined as the multiplier to original hydraulic conductivity k when the

saturation deficit is above the ’Saturation Deficit Threshold ’, representing the abrupt

increase in soil hydraulic conductivities due to the emergence of the preferential flow.

The spillover coe�cient is always larger than 1.(Figure 1.2)

K(sat
df

) =

8
>><

>>:

Ksat0 ⇥ e�
sat

df

m ⇥ Leakage, if sat
df

> Saturation Deficit Threshold .

Ksat0 ⇥ e�
sat

df

m ⇥ Spillover, if sat
df

 Saturation Deficit Threshold .

(1.3)

T (sat
df

=

sat

dfZ

max sat

df

K(sat
df

) (1.4)

1.3 Study Area and Data

1.3.1 Study Area

Rattlesnake Creek catchment is a headwater catchment located on the southern facing

slopes of the coastal Santa Ynez Mountains. Three dominated shrub speciesIt covers the

5.8 km2 area: Ceanothus megacarpus (big pod ceanothus), Adenostoma fasciculatum

(chamise) and Arctostaphylos spp. (Manzanita) [32]. Slope steeper than > 20� and

sandy loams characterize the watershed, which eventually flows into the Santa Barbara

Channel. Investigation shows that the headwater is covered by shallow highly fractured
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bedrock [18, 33]. Catchment elevation ranges from 270 to 1262 m (Figure 1.3).

The climate is semi-arid Mediterranean with warm summers and cool winters. The

year-round average temperature is 18 �C, with an average maximum of 23 �C and an

average minimum of 13 �C. Most of the precipitation events are in the winter, and

the long dry summer has very little precipitation. The annual precipitation averages

around 470 mm/year [28]. The intensity of storms is mild, ranging from 10 mm/day

to 100 mm/day. During storm events, the orographic lift has substantial e↵ects on the

distribution of precipitations. The gauge at the ridgeline with 1000 m elevation shows

210% higher precipitation than the one at 30 m elevation [34].

1.3.2 Data

The observed climate and discharge data come from the Santa Barbara Channel

Long Term Ecological Research (SBC LTER) website http://sbc.lternet.edu/. The

discharge records come from the streamflow gauge station ’RS02’ (Lon: -119.6922, Lat:

34.4576) at the outlet of watershed. Both water pressure and water temperature were

collected and reported hourly with some missing data in 2007. Stage height was calculated

from water pressure and atmospheric pressure, then was converted to discharges using

a rating curve developed with stream channel cross-sections, roughness estimates using

the HEC-RAS model [35]. The observed climate and stream discharge data [36, 37]

from 2004-10-01 to 2005-10-05 are used for the model calibration, and the observed

climate and stream discharge data from 2001-09-01 to 2008-09-01 are used for the model

evaluation. For precipitations, the ridgeline gauge ’El Deseo’ (Longitude: -119.6958,

Latitude: 34.4917) is used because it is the closest precipitation gauge station to the

study area. The precipitation was collected with a tipping bucket gauge and the data are

reported in 5 minute intervals. In the model, precipitation inputs were interpolated from

9
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a single rain gauge based on elevation and a precipitation scaling factor. The precipitation

for a given elevation (P
E

) was interpolated as:

P
E

= P
base

⇥ [s⇥ (E � E
base

) + 1] (1.5)

E is the elevation of given point, E
base

is the elevation of the main precipitation gauge,

and the P
base

is the precipitation at the main gauge [28]. The precipitation scaling factor

s is 0.0015 m�1.

1.4 Model Calibration and Evaluation

We compared the performance of the four di↵erent model implementations: (1) Con-

tinuous Transmissivity model with daily time step (daily continuous); (2) Fill & Spill

with daily time step (daily Fill & Spill); (3) continuous model with hourly time step

(hourly continuous); (4) Fill & Spill with hourly time step (hourly Fill & Spill).

1.4.1 Model Calibration (Monte Carlo Simulation S1)

3600 Monte Carlo simulations (described below) were implemented for each of the

four models, using the observed climate and discharge rate records from 2004-10-01 to

2005-10-07. Hourly simulation outputs were aggregated to a daily time step so that

the output of the four model implementations could be compared. The Nash-Sutcli↵e

E�ciency [38] was used to evaluate the model performance against the observed stream

discharge.

NSE = 1�
P

(Q̂
i

�Q
i

)2P
(Q

i

� Q̄)2
(1.6)

Q
i

is the observed stream discharge at time i, Q̄
i

is the mean observed stream dis-

charge and Q̂
i

is the simulated stream discharge. NSE ranges from -1 to 1. An NSE
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value equals to 1 indicates the best model performance. When NSE is negative, it in-

dicates that the model performance is no better than choosing the average value. The

NSE value is sensitive to high discharges, and it is less sensitive to performance in low

flow or recession periods.

In the Rattlesnake Creek watershed, the modeled peak flow is likely to show substan-

tial errors because of the uncertainty in the precipitation input data and in particular

in the estimation of the spatial distribution in the precipitation data during storms. In

mountain areas, the strong orographic e↵ect can result in high uncertainties while inter-

polating the precipitation over the whole watershed from a single meteorological station

for a particular event [39]. The uncertainty in interpolated precipitation propagates into

errors in the estimation of the peak flow. Hydrograph recession characteristics and low

flow estimates are less sensitive to these errors in storm precipitations [28]. To avoid over

fitting the uncertainty-prone peak flow, the multi-objective calibration that accounts for

the performance of di↵erent components of the hydrograph was used to evaluate the

model performance. The multi-objective function is:

Obj
NSE

all

=
1

3
⇥NSE +

1

3
NSE

recession1 +
1

3
NSE

recession2 (1.7)

NSE is the Nash-Sutcli↵e E�ciency as defined in equation 1.6. NSE
recession1 is

the Nash-Sutcli↵e E�ciency for the recession period from Jan 13, 2005 to Feb 5, 2005.

NSE
recession2 is the Nash-Sutcli↵e E�ciency for the second major recession period from

2005-02-23 to 2005-03-10. The recession period is defined as the period from 4 days after

the streamflow peak to 4 days before the next peak. These two recession periods are

chosen because they are the longest in the observed data. While using the average of

these three NSE values as the objective function, the model’s performance weigh more

on the recession flow.
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The parameter sets for the Monte Carlo calibration were generated by randomly

varying the value of the five drainage-rate-control parameters. The five parameters are:

(1). m, the coe�cient controlling the decreasing rate of the transmissivity against the soil

saturation deficit as in Equation 1.1. (2). Ksat0, the saturated hydraulic conductivity

at soil surface. (3). sd, soil depth. (4). gw1, the percentage of water in detention store

drained to the groundwater directly; this parameter controls the macro-pore flow in the

soil. (5). gw2, the percentage of groundwater storage drained to stream. For the Fill

& Spill model, three more parameters were evaluated: leakage is the leakage multiplier;

spillover is the spillover multiplier; Saturation Deficit Threshold, the threshold for Fill &

Spill and defined as the portion of max saturation deficit. The range of drainage-rates-

control parameters is based on Shields & Tague (2012).

1.4.2 Model Sensitivities to the Spatial Heterogeneity in Satu-

ration Deficit Threshold (Monte Carlo Simulation S2)

Previous studies indicate that in the Fill & Spill model, spatial heterogeneities in

the threshold-related soil properties can help explain the non-linear behavior of stream

discharge [40, 6]. To test the impact of spatial heterogeneities of soil drainage properties

on stream discharge, during the calibration period, another 3600 simulations are imple-

mented in hourly Fill & Spill scenarios with a set of threshold-related values for the Fill

& Spill parameter Saturation Deficit Threshold, based on four soil types in the water-

shed that in turn are selected as quantiles in the remotely sensed normalized di↵erence

vegetation index (NDVI).

Soil Types and Ranges of the Saturation Deficit Threshold

According to the Fill & Spill conceptual model (equation 1.3, patches with a smaller

Saturation Deficit Threshold may drain in high volumes only when the saturation deficit

12
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(sat
df

) is small (high water table), and result in more soil moisture. Patches with a

higher Saturation Deficit Threshold may drain in high volumes even when the saturation

deficit (sat
df

) is high (low water table), and result in less soil moisture. As a result, soil

moisture can be used to at least partly infer the Saturation Deficit Threshold. However,

neither the value of Saturation Deficit Threshold nor direct measurements of the soil

moisture are available. NDVI can be used as an indicator for soil moisture [41, 42], and

we first use NDVI to classify the soil into 4 types and then infer the Saturation Deficit

Threshold range according to the soil types. The 25%, 50%, and 75% quantile from NDVI

histogram (0.69, 0.77, 0.82) is used as threshold to separate the 4 soil types (Figure 1.4).

Soil type 1 covers most of upslope dry areas and is given the highest value of Saturation

Deficit Threshold. Soil type 4 is usually the one in the riparian zone and given the

lowest value of Saturation Deficit Threshold. In these scenarios, all 3600 parameter sets

share the same set of soil drainage parameter, chosen from the initial calibration as the

baseline parameter set, except for the spatial-based Saturation Deficit Threshold, which

is randomly selected from the range of value according to its soil type (Table 1.2). The

performance evaluation metrics are the same as it is in the calibration period.

1.4.3 Model Validation (Simulation S3)

The period from 2001-12-06 to 2008-09-12 is used for model validation. All daily and

hourly stream discharge records are used in the validation. The top 900 parameter sets

with the highest Obj
NSE

all

values were used to validate the model performance. Part of

the observed data are missing from Oct 2007 to Nov 2008. As a result, this period was

excluded for the model validation. The period of time for calibration is also excluded for

model validation. The performance metrics used for the validation are similar to that

for calibration, with the weighted average of NSE and the NSE for recession period, as
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described above.

1.4.4 Uncertainty Estimation

Uncertainty bounds around stream discharge estimates are computed using the Gen-

eralized Likelihood Uncertainty Estimation method (GLUE) [43]. The 97.5% and 2.5%

uncertainty bounds and the maximum likelihood predictions of model’s output are iden-

tified by this process.

1.5 Results

1.5.1 Calibration Results Based on NSE Value

The NSE values of the four models are summarized in Table 1.3. Generally, model

performance with an hourly time step is slightly better than with the daily time step.

This improvement exists with both the Fill & Spill and Continuous Transmissivity im-

plementations. The performance during recession periods is substantially improved from

the Continuous Transmissivity to the Fill & Spill implementation,

1.5.2 Model Behavior Comparison

To better illustrate the di↵erences between the four model implementations, results

from 2005-01-06 to 2005-03-16 are plotted in Figure 1.5. The top 150 parameter sets

with the Obj
NSE

all

greater than 0.5 are used for to determine GLUE uncertainty bounds.

Figure 5 shows three interesting patterns. First, the Fill & Spill models matched the

observed discharge better than the Continuous Transmissivity models by producing a

lower discharge, during the first recession period. The predicted discharge from the

Continuous Transmissivity models begins to deviate from the observed values on 2005-
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01-13 for recession Period 1 and on 2005-02-24 for recession Period 2. In comparison,

the Fill & Spill implementations had satisfactory fitness to the observed data over the

recession period. Second, Fill & Spill models predicts higher peak discharges than the

one from Continuous Transmissivity models. The di↵erence between the two rates is

significant (p < 0.01) based on a t-test for the multi-day mean peak-flow discharge for

the top 150 parameters. Third, the di↵erence between the hourly model and daily model

in peak flow is very small. The di↵erences in mean peak flow between the hourly and

daily model are less than 5% of the mean peak flow for the top 150 parameters. Also,

there is no evidence that the di↵erence grows as mean peak flow increases.

1.5.3 Uncertainty

The range of the uncertainty for the Fill & Spill models is larger than the Continu-

ous Transmissivity models (Figure 1.6), especially for the two small precipitation events

around 2004-02-11 and 2005-02-04. Although the uncertainty bandwidth tends to be

wider for storm events than low flow conditions, the relation between the width of uncer-

tainty and discharge is not simply linear. The observed discharge shows that the largest

uncertainty width is for storm on 2005-02-20, which is the second largest storm. For the

storm on 2005-01-10, which is the largest storm in this year, the uncertainty width grows

to a peak during the recession period, not during the peak flow. The cumulative width of

the uncertainty also shows that the steepest slope is around the median level discharge

rather than the highest discharge (Figure 1.7).

1.5.4 Parameter Distribution

The top 150 parameter sets with Obj
NSE

all

larger than 0.5 from performance rank-

ing were selected out of 3600 parameter sets as the ’good parameter sets’ from Monte
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Carlo Simulation S1. To examine how performance responds to individual parameters

we plot the cumulative frequency of ’good’ parameter values (Figure 1.8). The original

sampling distribution of parameters will plot as a one-to-one line on this figure. Depar-

tures from this line in distributions of ’good parameter sets’ reflect parameter values that

are selected through calibration. A steep upward curve indicates the clustering of ’good

parameters’. We show results only for parameters where ’good parameter’ distributions

showed substantial di↵erences across model implementations.

All models favor m with a value less than 0.5 (Figure 1.8). However, models with an

hourly time step generally prefer smaller m values than the models with daily time step.

The Fill & Spill models prefer smaller m values than Continuous Transmissivity models.

As m is the denominator in a negative exponential expression referenced in Equation

(1), the larger m values means the hydraulic conductivity decreases more slowly against

the soil saturation deficit. The smaller m values mean the soil hydraulic conductivity

sharply decreases from surface soil to deep soil. The accumulative frequency plot of m

indicates that the models with daily time step prefer hydraulic conductivity more gently

decreasing across the soil profile than the hourly time step models, while models with

Fill & Spill setting prefer hydraulic conductivity more sharply decreasing across the soil

profile than the Continuous Transmissivity ones.

The gw2 parameter is the parameter that defines the percentage of groundwater

draining from the deeper groundwater storage to the downstream. The cumulative fre-

quencies plot of parameter gw2 for ’daily Fill & Spill’ model leans to the right of the

one for ’hourly Fill & Spill’ model (Figure 1.8); this indicates that the ’daily Fill & Spill’

model needs more rapid drainage from groundwater stores than the ’hourly Fill & Spill’

model. The distribution plot of the ’daily Continuous’ model lies on the left of the one

of the ’daily Fill & Spill’ model, indicating that in a daily time step, the Continuous

Transmissivity model favors slower groundwater drainage than the Fill & Spill model.
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Both frequency plots are close to 1 once the spillover multiplier reaches 80, indicating

that both ’daily’ and ’hourly’ models prefer spillover multipliers less than 80 (Figure 1.8).

The cumulative frequency of ’hourly Fill & Spill’ model follows a more linear relationship

when the spillover multiplier is less than 80, indicating that the model does not have a

particular preference for the value of this parameter. However, the cumulative frequency

plot for ’daily’ model skews to the left and reaches 0.9 when the spillover multiplier is

around 40. This means that the ’daily Fill & Spill’ model favors the spillover multiplier

with a value less than 40.

The cumulative frequency distributions of parameters like the soil depth and gw1,

which determines the amount of bypass flow to deep groundwater stores, show only

small di↵erences between di↵erent models. It indicates that these parameters are not as

sensitive to model selections as the three parameters mentioned above.

1.5.5 Spatial heterogeneity of Saturation Deficit Threshold and

Its Impact on Model Performance

When assessing the impact of the spatial heterogeneity of Saturation Deficit Threshold

on stream discharge, the top 150 parameter sets with Obj
NSE

all

larger than 0.4 from

performance ranking were selected out of 3600 parameter sets as the good parameter

sets in Monte Carlo Simulation 2. Figure 1.9 is the cumulative frequency plots of these

parameters. SDT1 through SDT4 represent the Saturation Deficit Threshold of soil type

1, 2, 3, 4, which are generated (Section 4.2) by random selecting from the range of

value corresponding to the soil type in Table 1.2. Figure 1.9 shows that the cumulative

frequency curves of the 4 parameters are straight line and nearly identical, indicating that

the spatial heterogeneity in Saturation Deficit Threshold may not results in substantial

impact on the stream discharge.
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1.5.6 Model Validation

The performances in the validation period (Simulation S3) (Table 1.4) are similar

to the ones in calibration period (Simulation S1) (Table 1.3). The ’hourly’ models did

not di↵er substantially from the ’daily’ models. The Fill & Spill models improve the

performance for the recession flow, but not for the peak flow. When considering the

weighted averaged Obj
NSE

all

, the Fill & Spill models have a little wider range of Obj
NSE

all

than the Continuous Transmissivity models.

1.5.7 The Spatial Moisture Distribution

One set of parameters with good performance (Obj
NSE

all

> 0.6) for each of the four

models was selected as an example to illustrate the spatial moisture distribution during

low flows, recessions and storm events. Table 1.5 summarizes the percentage of saturated

area for the four di↵erent model settings.

Figure 1.10 shows the spatial distribution of soil moisture during a low flow period,

with little di↵erence between the four models. None of the patches are saturated during

the low flow condition (Table 1.5). All plots show that the soil is drier in the upland and

wetter in the riparian zone. The south-faced slopes are drier than the north-faced slopess.

This pattern is typical of semi-arid Northern Hemisphere region since south facing slopes

receive more solar radiation and have higher ET leading to lower soil moisture values

during period between storms.

During recession periods, the di↵erences in soil moisture patterns between models are

more apparent 1.11. Fill & Spill models (Figure 1.11 B and D) tend to have greater area

in relatively dry soils than the Continuous Transmissivity models (Figure 1.11 A and

C). Around 0.3% of the total area in ’daily/hourly Fill & Spill’ is fully saturated, while

over 6% of the total area in ’daily/hourly Continuous’ is fully saturated (Table 1.5). All
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of these model results show that the south facing slopes are drier than the north facing

slopes. The di↵erences between daily time-step models and hourly time-step models are

small.

During storms, the di↵erences of heterogeneity in soil moisture distribution between

models are less obvious (Figure 1.12). The Fill & Spill models (Figure 1.12 B and D) dis-

play a little more heterogeneities in the soil moisture than the Continuous Transmissivity

models (Figure 1.12 A and C) during storms. Uphill regions have more rapid drainages in

the Fill & Spill models, which results in a drier (lighter color) areas in the uphill regions

in Figure 1.12 B/D than Figure 1.12 A/C. Table 1.5 also shows that during the storm,

Fill & Spill models have less saturated area. However, while the whole watershed has

been wet up during the storm events, the di↵erence in soil moisture distribution is small

comparing with the ones in the recession period.

1.6 Discussion

1.6.1 Evaluation Metrics

NSE values for the Fill & Spill implementation are substantially lower than those

for the Continuous model (Table 1.3). We note that in mountainous semi-arid system,

the NSE is not always a good indicator of model performances. Modeling of peak flow

is prone to significant uncertainties in semi-arid coastal mountain areas because of un-

certainty in the interpolation of point rainfall measurements over the watershed during

storm, when the strong orographic e↵ects non-linearly enhance the heterogeneity in the

spatial distribution of precipitation, often leading to a poor representation of the spa-

tial pattern [39, 28]. The uncertainties in observed precipitations make it di�cult for a

hydrology model to match the observed peak flow especially when there is only one pre-
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cipitation station in the watershed. As a result, this di↵erence in NSE value may not be

a good indicator for overall performances. In this sense, the NSE
recession1, NSE

recession2

and weighted average objective function Obj
NSE

all

are the better metrics than the NSE

in performance evaluations. Based on these metrics, models with Fill & Spill imple-

mentations have similar overall performance to the Continuous Transmissivity models

but achieve better performances in recession periods, when compared with Continuous

Transmissivity models.

1.6.2 Model Responses in Peak Flow and Recession/Low Flow

Period

Peak Flow

As the soil moisture increases, adjacent patches become hydrological connected when

soil saturation deficit level is above the Fill & Spill Saturation Deficit Threshold. With

this approach, subsurface preferential flow will dominate subsurface flow because the

hydraulic conductivity is much higher than the Continuous Transmissivity models. As

a result, Fill & Spill models have higher runo↵ rates during peak flows, as reflected by

model estimates for storms in 2005-01-09 and 2005-02-20. This result is consistent with

previous modeling work on preferential flows [14].

Recession Flow

Once the water table falls during recession/low flow periods, the soil saturation deficit

falls below the Fill & Spill threshold Saturation Deficit Threshold and the subsurface

hydrological connectivity is lost. In that case, Fill & Spill models have lower soil con-

ductivity than the Continuous Transmissivity models, and thus generate less subsurface

flow and slower recessions. As a result, Fill & Spill models’ results match observed runo↵

rates better during recession periods than the Continuous Transmissivity models (Figure
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1.5).

However, runo↵ rates from Continuous Transmissivity models respond more sensi-

tively to any additional small precipitation events during the recession period than runo↵

rates from Fill & Spill models. For example, around 2005-01-29 and 2005-03-05, Contin-

uous Transmissivity models reproduce the small responses to precipitation events, while

Fill & Spill models do not (Figure 1.5). Because of the threshold mechanism in Fill &

Spill models, the small precipitation fails to meet the threshold and trigger the runo↵

generating mechanism. In contrast, a study in a humid system using Fill & Spill found

that responses to small events were over-predicted [12], These results suggest that there

are threshold runo↵ production conditions that are missed by the current implementation

of the Fill & Spill approach.

1.6.3 Parameter Distributions

The patterns revealed by cumulative frequency curves (Figure 1.8) reflect the dif-

ferences in subsurface flow generating mechanisms. The cumulative frequency curve for

parameter m shows that ’hourly’ models and Fill & Spill models prefer the hydraulic

conductivity to be decreasing more sharply with an increasing saturation deficit. The

hourly time steps and ’Fill and Spill’ models tend to generate more flow following pre-

cipitation events than the ’daily’ or Continuous Transmissivity models. Hourly models

may infiltrate more water into the soil during larger storms and consequently generate

more subsurface flow following storms rather than overland flow during the storm. The

’Fill and Spill’ model maintain greater flow immediately following a storm while the

Saturation Deficit Threshold is not reached. The ’daily’ and Continuous Transmissivity

models may require a lower m (slower decay of hydraulic conductivity with depth) to

maintain a similar volume of subsurface flows following a storm event, as the satura-
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tion deficit begins to decrease. In other words, the lower values of m selected for in the

’daily’ or Continuous Transmissivity models be compensating for the more non-linear

episodic/threshold behavior that can be captured by ’hourly’ or Fill & Spill models re-

spectively. Substantial di↵erences in behavioral parameter selection between models in

general suggest that calibrated parameter values may be compensating for limitations in

process representations [44]. The inclusion of additional information (hourly precipita-

tions) in the ’hourly’ model suggests that it is the more realistic representation. For the

Fill & Spill versus Continuous Transmissivity the choice is less clear but the improved

recession flows as discussed above may suggest that Fill & Spill is more realistic and that

the di↵erences in behavior parameters for the Continuous Transmissivity approach are

partially a compensation for a poorer conceptual model.

While the cumulative frequency curves for gw1, (not shown) which determines the

amount of bypass flow to deep groundwater stores, shows no obvious di↵erences in sen-

sitivity between the four models, the cumulative frequency curves for parameter gw2

shows that ’daily’ models require a faster drainage rate of the deeper groundwater stores

(Figure 1.8). As described above, this may reflect di↵erence in process representations

between the models. If the ’hourly’ model produces greater infiltration during storm

events and consequently greater post-storm subsurface flows than the ’daily’ model, the

calibrated gw2 parameter in the ’daily’ models may be larger to compensate and produce

more flow during this post-storm period. Models with Fill & Spill implementation fa-

vor faster groundwater drainage relative to the Continuous Transmissivity approach. In

the Fill & Spill model, deep groundwater drainages will generally contributes to greater

proportion of streamflow in the low flow period because subsurface flow is very small

once the saturation deficit falls below Saturation Deficit Threshold. To match with the

observed discharge rate, models with Fill & Spill implementations will select relatively

higher groundwater drainage rates gw2 compared with the Continuous Transmissivity
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model. As noted above, these parameter selection di↵erences point to the importance of

di↵erences in process representations that are partially masked by parameter calibration.

While other studies indicate that the spatial heterogeneities of threshold-related soil

parameters may have some influences in explaining the performance of Fill & Spill model

[40, 6], our results indicate that the hydrological performance is not substantially sensitive

to the spatial heterogeneities in our model. This finding may result from the lack of

a correct spatial distribution of soil properties; deducing the parameters range of the

saturation deficit threshold from NDVI is not su�ciently accurate. The range of value

assigned to di↵erent soil types determined by the NDVI quantile may not e↵ectively

represent real spatial characteristics of the soil.

1.6.4 Spatial moisture distribution

The spatial di↵erence in soil moisture distribution across the implementations vary

for di↵erent meteorological and antecedent moisture conditions (Figures 1.10, 1.11, 1.12).

The most substantial di↵erence in spatial moisture distribution occurs during the reces-

sion period (Figure 1.11). During the transition periods between wetting up and drying

down (recession period), spatial soil moisture redistribution depends mainly on non-local

factors such as upslope contributing areas and hillslope hydrological connectivity [45, 15].

In models, these factors are reflected by soil parameters and model structures. In order

to generate the observed hydrograph, calibrated parameters in the Fill & Spill models

tends to lead to higher drainage at the beginning of the recession and during the peak

period, resulting in more rapid drainage and lower water tables in the uphill areas than

Continuous Transmissivity models and greater recharge of riparian areas. As the sys-

tem continues to dry, spatial patterns of soil moisture for Fill & Spill and Continuous

Transmissivity model converge (Figure 1.10).

23



Chapter 1: Fill & Spill Chapter 1

During the storm event, the di↵erence in spatial moisture distribution is less substan-

tial than the recession period. During storm events soil moisture redistribution depends

more on the lateral water movement that is controlled by subsurface flow generating

mechanism rather than local factors (such as ET). During wet periods, more patches are

hydrologically connected in both Fill & Spill and Continuous Transmissivity approaches.

Following initial period of wet up, the soil in many patches is closer to saturation and

show less spatial variance regardless of which method is used for lateral routing. As a

result, the di↵erences between the two models on soil moisture during storms is sensitive

to the storm intensity.

The low flow period has the least di↵erences in spatial moisture distribution between

the four model implementations. During the low flow period, most patches in the water-

sheds are dry and hydrologically disconnected. The soil moisture distribution depends

mainly on local factors such as ET [45] rather than the lateral water movements. While

Fill & Spill and Continuous Transmissivity models are directly controlling the lateral

flow but not ET, they may not directly bring substantial changes to the distribution of

soil moisture during the low flow period.

Although soil moisture patterns generated two approaches are similar during the

wettest and driest periods, spatial di↵erences in soil moisture during the recession period

may have important implications for ecological processes. In semi-arid area, soil moisture

is often the controlling factor for ecological structures and patterns. Because the Fill &

Spill models maintain greater di↵erences in soil moisture distributions between upland

and riparian areas during recession periods, it may have long-term implications for veg-

etation patterns in these water-limited environments. Previous studies have pointed out

that the riparian zone in semi-arid areas has more biodiversity than upland and the water

availability during growing season is the major factor controlling the ecological patterns

in semi-arid area [46, 47]. However, this long-term e↵ect on ecosystem and its feedbacks
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to hydrological processes is beyond the scope of this paper.

Ideally, observed spatial soil moisture data should be collected, converted to numbers

using metrics comparable for model outputs, and the model performance evaluated to

validate the soil spatial moisture distribution. However, there is no soil spatial moisture

data with appropriate resolution in the study area and the comparisons are only aimed

to illustrate the di↵erences resulting from model implementations. Incorporating remote

sensing products of spatially variable soil moisture into the model evaluation in much

larger watershed may be a logical next step.

1.7 Summary and Conclusion

Subsurface flow has been recognized as the dominant hydrological path as well as

an important control for the hydrological connectivity of hillslope in steep terrains. In

this paper, the Fill & Spill hypothesis for the subsurface flow was implemented in an

eco-hydrological model RHESSys and implications explored in a mountains semi-arid

watershed. Unlike other studies that incorporate percolation theory and explicitly create

a stochastic pipeline network for subsurface preferential flow [10, 11], we integrated the

preferential flow by adjusting the soil conductivity profile with an abrupt increase at the

threshold of soil saturation deficit level.

Results show that when the streamflow has been aggregated to daily timesteps, the

simulated streamflow and spatial soil moisture patterns have small di↵erence between

’hourly’ models and ’daily’ models. Di↵erent sub-model representations of the subsurface

flow show substantial di↵erences in calibrated parameters and in estimated hydrographs.

In general, Fill & Spill seems to better capture the streamflow recession characteristics of

the study watershed. It is both the semi-arid climate and the geology condition that leads

to this recession characteristics. The heterogeneity, fractured and uplifted bedrock likely
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leads to a discontinuous set of depressions and small aquifers that are only connected

to the stream under in frequent events. The Fill & Spill models also produce higher

peak flows, but the high sensitivity of peak flows in semi-arid regions to errors in input

precipitation data precludes determining which approach is more realistic. The threshold

behavior of the Fill & Spill approaches leads to greater spatial soil moisture di↵erences

between upland and riparian zones during recession periods relative to the Continuous

Transmissivity models. Di↵erence in soil moisture patterns during this dry period may

have important implications for ecological processes such as vegetation growth and the

soil biogeochemical cycling.
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Figure 1.1: Hydraulic conductivity against soil sat deficit for the Continuous Trans-
missivity model (left) and Fill & Spill model (right). The y-axis is downward in
both plots. Sat

df

is the saturation deficit. Max Sat

df

is the maximum saturation
deficit. Saturation Deficit Threshold is the threshold above which preferential flow
will emerge.
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Figure 1.2: The implementation of Fill & Spill model in patch level. When satura-
tion deficit (Sat

df

) fall below the threshold (Saturation Deficit Threshold), a limited
amount of subsurface flow will be generated (original K times Leakage). Once sat-
uration deficit (Sat df) rises above the threshold (Saturation Deficit Threshold), a
significant amount of subsurface flow will be generated (original K times Spillover)
representing the abrupt increase in soil hydraulic conductivity due to the emergence
of the preferential flow. The y-axis is downward plotted.
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Figure 1.3: Map for Rattlesnake Creek Watershed. ’El Deseo’ is the meterologic
station used for climate input and ’RS02’ provides streamflow data. (Image Source:
’Rattlesnake.’ Google Earth. 34�2802400N and 119�41019.4900W. May 1, 2015. Nov 20,
2015.)
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Figure 1.4: Soil types in Rattlesnake watershed are classified into four types according
to the NDVI image. A: the histogram for the NDVI image. The 25%, 50%, 75%
quantile of NDVI (0.69, 0.77, 0.82) are used to classify the four soil types. Soil type
1 has lowest Saturation Deficit Threshold value range. Soil type 4 has the highest
Saturation Deficit Threshold value range.
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Figure 1.5: Comparisons of model performance during storm and recession periods.
Triangles represent observed runo↵ rates while the solid red line and red shadow
represent the weight average runo↵ rate and the uncertainty bounds, respectively, as
calculated by the GLUE method.
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Figure 1.6: Width of the uncertainty bands during the calibration period.
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Figure 1.7: Cumulative frequency of uncertainty bandwidth against runo↵.
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Figure 1.8: Cumulative frequency distribution for model parameters.
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Figure 1.9: Cumulative frequency distribution for Saturation Deficit Threshold with
spatial heterogeneity. The solid red curve, the soil blue curve are the cumulative
frequency plot for Saturation Deficit Threshold of soil type 1 and soil type 2 (SDT1,
SDT2). The dash red curve and the dash blue one are cumulative frequency plots for
Saturation Deficit Threshold of soil type 3, 4 (SDT3, SDT4)..
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Figure 1.10: Spatial distribution of soil moisture before significant precipitation (pre-
cipitation > 5mm/day) at 12:00 am, Dec 2, 2004. ’daily Continuous Model’ (A),
’daily Fill & Spill Model’ (B), ’hourly Continuous Model’ (C) and ’hourly Fill & Spill
Model’ (D)
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Figure 1.11: Spatial distribution of soil moisture during the recession at 12:00 am,
Jan 27, 2005. ’daily Continuous Model’ (A), ’daily Fill & Spill Model’ (B), ’hourly
Continuous Model’ (C) and ’hourly Fill & Spill Model’ (D)
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Figure 1.12: Spatial distribution of soil moisture during the storm period at 12:00 am,
Jan 28, 2008. ’daily Continuous Model’ (A), ’daily Fill & Spill Model’ (B), ’hourly
Continuous Model’ (C) and ’hourly Fill & Spill Model’ (D)
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Table 1.1: Range of Parameters for Model Calibration
M Ksat0

(mm/day)
sd(m) Gw1 Gw2 Spillove Leakage Saturation

Deficit
Threshold

Min 0.01 40 0.1 0.01 0.01 5 0.1 0.1
Max 1 5000 3 0.5 0.5 100 0.4 0.4
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Table 1.2: Range of value for Saturation Deficit Threshold (SDT) for di↵erent soil
types. SDT1 to SDT4 represent the Saturation Deficit Threshold (SDT) of soil type 1
to 4, respectively. Soil type 1 represents soil in the upland, and soil type 4 represents
soil in the riparian area.

Soil Type 1 Soil Type 2 Soil Type 3 Soil Type 4
Range of
Saturation Deficit Threhold
(SDT)

[0.41, 0.54] [0.27, 0.41] [0.14, 0.27] [0, 0.14]
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Table 1.3: Model performance during calibration period. The ’F&S’ means Fill &
Spill model. ’Continuous’ is the continuous transmissivity model.

Timestep Daily Hourly
Model Imple-
mentation

Continuous F&S Continuous F&S

Highest NSE 0.8 0.64 0.81 0.67
Highest
NSE

recession1

0.81 0.99 0.86 0.99

Highest
NSE

recession2

0.95 0.99 0.92 0.99

Top 150
Obj

NSE

all

0.6 3⇠ 0.79 0.55 ⇠ 0.84 0.54 ⇠ 0.82 0.55 ⇠ 0.82
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Table 1.4: Model performance during validation period. ’Continuous’ is the continuous
transmissivity model. ’F & S’ is the Fill & Spill model.

Daily Hourly
Model Implementations Continuous F&S Continuous F&S

Highest NSE 0.63 0.51 0.74 0.62
2003/3/18 -
2003/3/28

Highest
NSE

0.92 0.99 0.82 0.98

80% quan-
tile

-1.8 -7.3 -1.5 -3.7

2005/1/13 -
2005/2/5

Highest
NSE

0.89 0.99 0.86 0.99

80% quan-
tile

0.83 0.94 0.80 0.92

2005/2/23 -
2005/3/10

Highest
NSE

0.94 0.93 0.92 0.99

80% quan-
tile

0.72 0.62 0.90 0.96

2006/4/6 -
2006/4/20

Highest
NSE

0.64 0.96 0.71 0.96

80% quan-
tile

-0.72 0.11 0.63 0.78

2008/1/6 -
2008/1/17

Highest
NSE

0.28 0.95 0.59 0.95

80% quan-
tile

0.36 -0.27 -2.0 -0.66

2008/2/1 -
2008/2/12

Highest
NSE

0.99 0.99 0.95 0.99

80% quan-
tile

0.65 0.94 0.89 0.95

Top 150 Obj
NSE

all

0.48 ⇠ 0.63 0.24 ⇠ 0.51 0.60 ⇠ 0.74 0.38 ⇠ 0.62
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Table 1.5: Percentage of saturated area during sample events for di↵erent model
settings. ’Continuous’ is the continuous transmissivity model. ’F & S’ is the Fill &
Spill model.

Saturated
Area(%)

Daily Hourly
Continuous F&S Continuous F&S

Low Flow
(2004/12/02)

0.0 0.0 0.0 0.0

Recession
(2005/1/27)

6.7 ⇠ 8 0.02 ⇠ 0.1 6.6 ⇠ 8.2 0.02 ⇠ 0.1

Storm
(2008/1/28)

5.5 ⇠ 20.5 0.1 ⇠ 12 6.2 ⇠ 18 0.1 ⇠ 3.2
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Chapter 2

Sensitivity of Nitrate

Concentration-Discharge Patterns to

Soil Nitrate Distribution and

Drainage Properties in the Vertical

Dimension

2.1 Introduction

Nitrate loss from subsurface soil to streams is an important nitrate-exporting path

and has several impacts on the terrestrial and coastal ecosystems, such as reducing ni-

trate availability for terrestrial plants, increasing nutrient downstream fluxes and possibly

triggering eutrophication [48, 49, 50]. Due to drought in summer and episodic rainfall

in winter and early spring, most nitrate is exported during wet seasons in semi-arid

regions, such as southern California [51, 52, 53]. In order to estimate the subsurface
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nitrate losses from land to streams, it is important to understand the dominant controls

on nitrate-export and how they vary with climate, land cover/land use and disturbance

[51, 54].

Previous studies have developed several hypotheses that link nitrate-export to the

interaction between flow paths and nitrate sources. ’Concentration-Discharge’ relation-

ships are often studied as clues to understand these controlling factors [55, 56]. The

’Nitrate Flushing’ hypothesis has been proposed to explain nitrate concentration peaks

during storm events [57, 58]. When soil saturation deficit (i.e., the di↵erence between

soil porosity and soil water storage) is high, this hypothesis assumes nitrates accumulate

in the upper layer of the soil. As soil saturation deficit decreases, nitrates in saturated

subsurface layers will be washed way from upper layers soil to streams [59]. Further

development of the ’Flushing Hypothesis’ shows how topographic properties and their

influences on variable source area would regulate the ’Nitrate Flushing’ mechanism and

concentration-discharge relationship [60, 61, 62]. Creed & Band (1998a) emphasize that

the rate of expansion of the variable source area, not the total variable source area, reg-

ulates the export of nitrates. Other processes or factors including macropore flow [63],

shallow groundwater linkage [64], hillslope hydrologic connectivity [65] and antecedent

soil moisture conditions [66] also contribute to the regulation of nitrate export.

Most of these studies have focused on hydrologic linkages in the horizontal direction.

Only a few studies look into the vertical dimension and these studies indicate that soil

vertical stratigraphy regulates hydrologic flow paths and water quality dynamics in semi-

arid soil [67]. However, due to substantial uncertainties and lack of details for the semi-

arid soils, the implications of the vertical nitrate distribution and drainage profiles on

nitrate transport have not been extensively examined.

When interpreting enrichment or dilution patterns in the ’Concentration-Discharge’

relationship, most studies indicate that it is the connection with additional nitrate source,
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after a su�ciently long period of disconnection, that brings high nitrate concentra-

tion flow downstream [68, 51]. However, nitrate concentration is the combined result

of nitrate-outflux and water-outflow from a given location, and a more complete ex-

planation may require simultaneously considering both characteristics that determine

nitrate-outflux and water-outflow at di↵erent levels of local saturation deficit. In this pa-

per, we consider how discharge and nitrate-export interact over a vertical profile and how

that interaction may be influenced by the vertical distribution of nitrate and hydraulic

conductivity.

In semi-arid regions, nitrate mass distribution and hydraulic conductivity decrease

with increasing soil depth. During the periods between rainfall events, that are likely

to flush nitrate, nitrate accumulates in the upper layer because organic material inputs

and decomposition rates are higher in near surface layers [51, 32, 53]. Soil saturated-

hydraulic-conductivity typically decays with depth due to soil structural characteristics

such as pore-size distribution and is commonly represented with an exponential declining

function [69, 3, 70]. As a result, the distributions of both soil nitrate and soil hydraulic

conductivity are biased towards the upper soil layer. When the water table increases, it

reaches the upper soil layer with more nitrate and higher hydraulic conductivity, which

means it can release more nitrate and produce higher volumes of water. During this

process, the change of nitrate concentrations in released water with declining saturation

deficit (or high water tables) is determined by the change in soil nitrate flux and the

change in water flux as the water table rises. This scenario o↵ers a new conceptual

model that posits how the vertical distribution of nitrate in soil interacts with the verti-

cal distribution of hydraulic-conductivity, to influence the pattern of concentration-runo↵

relationships. In this paper, we will explore this conceptual model and how di↵erent con-

figurations of soil hydraulic-conductivity and soil vertical nitrate distribution determine

concentration-discharge relationships. We will answer the following questions:
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1. How do di↵erent configurations of the proposed model (e.g di↵erent combinations of

vertical nitrate distribution and hydraulic conductivity distribution) lead to di↵er-

ent Concentration-Discharge patterns at a patch scale in a semi-arid climate? The

patch scale represents an average condition where there is no lateral replenishment

of water and nitrate flux from upslope areas.

2. Will the di↵erent configurations of the proposed model change the Concentration-

Discharge relationship at the watershed scale, where the lateral replenishment be-

tween the upland and the downstream patches can also influence nitrate-export?

2.2 Study Sites and Data

2.2.1 Study Sites

The undeveloped headwater catchment, Rattlesnake Creek, is the study area for

this paper. Rattlesnake Creek watershed is located on the southern facing slopes of

the coastal Santa Ynez Mountains. It covers 5.8 km2 area, with three dominated shrub

species: Ceanothus megacarpus (big pod ceanothus), Adenostoma fasciculatum (chamise)

and Arctostaphylos spp. (Manzanita) [32]. Steep slopes (slopes > 20�) and sandy soil

(sandy loams) are the characteristics of the Rattlesnake Creek watershed. In this semi-

arid Mediterranean climate, the rainy season lasts from October to April. Large storm

events, which last for only a few days, contribute to a substantial portion of the annual

precipitation (30%⇠60%) [36]. From 2000 to 2009, the mean annual precipitation is

645 mm/year, with remarkable inter annual variance (>360 mm/year). The year-round

average temperature is 18 �C, with a maximum of 23 �C and a minimum of 13 �C.

Shrubs re-sprout and herbaceous species establish after rain, greening up the watershed

from winter to late spring. The biomass of vegetation reaches its peak in June [32].
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Shrubs re-sprout and herbaceous species establish after rain, greening up the watershed

from winter to late spring. The mean biomass of vegetation reaches its peak in June [71].

2.2.2 Data

The observed climate and discharge data come from the Santa Barbara Channel

Long Term Ecological Research (SBC LTER). Both the stream discharge data and the

stream chemistry data are from the gauge station ’RS02’ (Longitude: -119.6922, Latitude:

34.4576), which is located at the outlet of Rattlesnake watershed. The stream hydrologic

record was collected as hourly stage values, then converted to discharge using a rating

curve with stream channel cross-sections and roughness estimated by the HEC-RAS

model [37]. The stream chemistry records are collected weekly during non-storm flows

in winter, and bi-weekly during summer. During the winter storms, stream chemistry

samples are collected hourly on rising limbs and at 2-4 hour intervals on falling limbs.

The stream nitrate is measured as ’nitrite + nitrate’ in micro-moles per liter [72], then

converted to micro-gram per liter in this paper. The precipitation was collected in the

gauge ’El Deseo’ (Longitude: -119.6958, Lattitude: 34.4917) with a tipping bucket gauge

and reported in 5 minutes’ interval [36] (Figure 2.1). The observed data from 2004-10-01

to 2005-10-07 is used for this study.

In an analysis of these nitrate measurements, Goodridge and Melack (2012) found

that the Concentration-Discharge relationship in Rattlesnake watershed shows an en-

richment pattern for storm events. In their paper, Goodridge and Melack (2012) provide

an explanation based on catchment connectivity and suggest that during storm events,

more nitrate sources in upland may be connected and more nitrates are flushed to down-

stream, resulting in the enrichment pattern [51]. We will provide a model-based analysis

that examines how vertical properties described by our conceptual model contribute to
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this explanation of the observed concentration-discharge pattern. We configure an eco-

hydrologic model, RHESSys (Regional hydro-ecosystem simulation system), to reproduce

the enrichment pattern, and discuss the general implications of the soil vertical nitrate

distribution and the hydraulic conductivity distribution on the Concentration-Discharge

relationship.

2.3 Methods

2.3.1 Concepts Review

Saturated Hydraulic Conductivity

Soil hydraulic conductivity describes the rate with which water can move through

soil and deeper saprolite layers. Hydraulic conductivity depends on factors like the soil

properties and the degree of saturation. Saturated hydraulic conductivity is the hydraulic

conductivity when soil layer is saturated. Note that in this paper we focus on hydrologic

soil that may include both organic and mineral soil layers as well as underlying saprolite

and fractured bedrock. We use the term ’soil’ since most of the activity occurs in upper

layers that are traditional defined as soil but our conceptual framework does not preclude

the flux of water or nitrate through deeper layers. We do not define an explicit soil

depth, but rather relay on the exponential decay of saturated conductivity with depth

to define an ’e↵ective’ soil depth at which low hydraulic conductivity values result in

negligible lateral flux. In order to model lateral flux we divide the soil into discrete 1000

layers/meter) and the total lateral flux is the summation of lateral flux for each layer.

Soil Water Outflow Rate

Soil water outflow rate is calculated as the integration of hydraulic conductivity over

soil layers below the current water table. A rising water table will lead to an increase of
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soil water outflow rate and an increase of runo↵.

Soil Nitrate Distribution in Vertical Dimension

In semi-arid area, nitrates accumulate on surface during the dry summer and initial

wet up process due to the nitrification and the establishments of micro scale water linkage

between microbial sites and substrates needed for nitrification [51, 32, 53]. As a result,

we assume more nitrates in the upper soil layers. Moreover, we assume this nitrate mass

distribution is static over time. That is, although the total mass of nitrate in soil column

will change, the nitrate mass distribution in vertical dimension will not change.

Total Soil Nitrate Flux in Vertical Dimension

Nitrate is weakly retained by soil matrix. In our conceptual model, nitrate within the

water table can be transported by saturated subsurface flow; we assume no patch-scale

lateral transport of nitrate through flux in unsaturated soil. Nitrate outflux from a patch

is proportional to the soil nitrate mass within the soil layer where saturated later flux

occurs. The total soil nitrate flux is calculated as the integration of the nitrate-outflux

for each soil layer below the soil water table.

Nitrate Concentration in Soil Releasing Water

Nitrate concentration is calculated as

Concentration =
Total Nitrate Outflux

Soil Water Outflow
(2.1)

Nitrate concentration is dynamic in model simulations and is determined by both Total

Nitrate Outflux and Soil Water Outflow. Since the vertical distribution of nitrate mass

and hydraulic conductivity control Total Nitrate Flux and Soil Water Outflow, these two

parameters also influence the nitrate concentration in the releasing water.
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2.3.2 Vertical Profile Controls on the Concentration-Discharge

Relationship at the Patch Scale: A Simple Demonstration

In Figure 2.2 we present a hypothetical illustration of a case where soil nitrate dis-

tribution increases faster than the hydraulic conductivity distribution as the water table

rises (or saturation deficit decreases). These soil nitrate and soil hydrological parame-

ter setting results in an enrichment pattern in the Concentration-Discharge relationship

(subplot 2.2 F).

Following this same approach, in Figure 2.3, we create a scenario to explain a dilution

pattern. The key di↵erence between Figure 2.2 and Figure 2.3 is the nitrate mass distri-

bution in subplot 2.2 A and 2.3 A. In Figure 2.3, although the nitrate mass still increases

in upper soil layers, it is more evenly distributed (Figure 2.3 A). Water flux, controlled

by the distribution of hydraulic conductivity with depth, is the same as in Figure 2.2.

The di↵erence in vertical nitrate distribution between subplot 2.2 C and subplot 2.3 C

is relatively small. However, with a rising water table or increasing discharge/runo↵, the

nitrate concentration in this scenario shows a dilution pattern (as opposed to an enrich-

ment pattern that occurred with a slightly more uneven vertical distribution of nitrate)

(Figure 2.3 F vs Figure 2.2 F).

The uneven nitrate distribution in Figure 2.2 can be transformed into the more even

distribution in Figure 2.3 under certain conditions. For example, after long drought,

nitrate will accumulate on top layer, resulting in a more uneven N distribution more

like Figure 2.2. After sequences of strong precipitations, the nitrate from top layer will

infiltrate into deeper soil layers, resulting in a nitrate distribution more like Figure 2.3.

However, in this study, we focus on longer-term-controls on vertical nitrogen distribution

related to soil structure that do not change with time.
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2.3.3 Vertical Profile Controls on the Concentration-Discharge

Relationship at the Watershed Scale

At the watershed scale, sources of nitrate include lateral inputs from upslope patches

with replenishment of soil nitrate in receiving patches during the storm events.

Figure 2.4 shows an example of consequence of the lateral nitrate replenishment:

at the watershed scale, lateral flow combines with vertical nitrate distribution and hy-

draulic conductivity to regulate the Concentration-Discharge relationship. Without the

lateral nitrate replenishment, the Concentration-Discharges relationship would show a

dilution pattern. However, with additional nitrate replenishment from upslope area,

the Concentration-Discharge relationship would be shifted from dilution to enrichment.

If this patch is a riparian patch, then the resulting nitrate export will influence the

Concentration-Discharge relationship of the stream.

2.3.4 Assumptions of the Conceptual Model

In the conceptual model, we emphasize the importance of soil vertical nitrate distri-

bution and its interactions with lateral subsurface flow, based on three assumptions:

1. Lateral nitrate export exists only in the saturated layer.

2. Soil vertical nitrate mass distribution is proportional to the lateral nitrate out flux

distribution at each soil layer.

3. Although the total nitrate mass in soil column may change, the soil vertical nitrate

mass distribution is static.

The first and second assumptions can be written as:

NO3
flux

(d) =
@NO3(d)

@t
= Sat d⇥NO3(d) (2.2)
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Where NO3 flux(d) is the lateral nitrate out flux from soil layer at depth d, NO3(d)

is the nitrate mass from soil layer at the depth d, Sat d is a dummy variable representing

whether this layer is saturated or not. If soil layer at depth d is not saturated, then Sat d

is 0. Otherwise, it is a none-zero constant. Using this assumption, the distribution of

nitrate flux at each soil layer is deduced from the distribution of nitrate mass, and the

total nitrate flux is calculated by the summation of nitrate flux from each soil layer under

current water table.

These assumptions are the simplified settings comparing with the definition of nitrate

flux in existing transportation models, such as SOIL & WATER ASSESSMENT TOOL

(SWAT) [73] and Integrated Nitrogen in Catchments model (INCA) [74], where the lateral

nitrate exports in unsaturated layer are calculated and Sat d is a continuous function of

both water content and soil porosity. However, in our conceptual model, lateral nitrate

export in saturated layer alone is enough to demonstrate the conceptual model. Future

studies can explore the results of considering lateral nitrate exports in both saturated

and unsaturated layers.

The third assumption assumes that the shape of nitrate mass distribution with depth

does not vary with time. In other words, even though the total nitrate mass in soil column

changes, how it is distributed with depth does not change. This assumption follows the

nitrate-flushing hypothesis [59, 23]. Field investigation also suggests that the infiltrating

water may moves through unsaturated layer via macropore, without significant contact

with soil matrix [75, 76]. As a result, this simplification may be reasonable.

2.3.5 RHESSys Model Description

In our conceptual model, illustrated by the example above, we suggest that ni-

trate concentration pattern is sensitive to the soil vertical distribution of nitrate and
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soil drainage properties. To assess how these controls influence nitrate Concentration-

Discharge relationships for a more realistic situation where water and nitrate evolve

dynamically, we configure vertical nitrate distribution and hydraulic conductivity in the

Regional Hydro-Ecologic Simulation system (RHESSys) and test the sensitivity of the

concentration-discharge relationship to these di↵erent configurations. RHESSys is a phys-

ical process-based, distributed hydrological model, which has been widely implemented

in a variety of bioclimatic regions, including in semi-arid regions [27, 28, 29]. RHESSys

explicitly models the catchment connectivity by calculating the volume of water exported

from upland to downstream via lateral movement through adjacent patches [23]. The

soil profile is represented in three layers: a root zone, an unsaturated layer, and a satu-

rated zone. The modified version of Green and Amt approximation is used to calculate

the 1-D vertical infiltration process. The water held in saturated and unsaturated layer

will be updated following the infiltration process. The traditional ’Continuous Expo-

nential’ transmissivity model [3] for subsurface flow sub-model is used to calculate the

subsurface lateral flow, where both the subsurface conductivity and transmissivity decays

exponentially with the soil saturation deficit:

K(sat
df

) = Ksat0 ⇥ e(�sat

df

⇥K

decay

) (2.3)

T (sat
df

) =

Z
sat

df

max satdf

K(sat
df

) (2.4)

K(sat
df

) is the hydraulic conductivity when the soil saturation deficit equals to sat
df

,

max sat
df

is the maximum of saturation deficit, Ksat0 is the saturated hydraulic conduc-

tivity at surface soil, T (sat
df

) is the transmissivity when the soil saturation deficit equals

to sat
df

, and K
decay

is the coe�cient controlling the decreasing rate of transmissivity
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against the soil saturation deficit. For the lateral flow, more than one receiving patches

in the downslope get the lateral flow from the upland area.

Evaporation and transpiration including evaporation of rain intercepted by each

canopy layer, and transpiration of vascular layers, are calculated using Penman Mon-

teith approach [31] in a daily timestep. Soil evaporation is calculated based on energy

and atmospheric drivers as well as a maximum exfiltration rate. The maximum exfiltra-

tion rate is determined by soil parameters and soil moisture. Potential capillary rise is

constrained by soil parameters and the water table. For each day, half of the potential

capillary rise is allocated to the unsaturated zone at the start of the day to account for

the subdaily plant responses, left the other half at the end of the day to meet the plant

transpiration needs.

RHESSys calculates biogeochemical cycling similar to those in BIOME-BGC [77].

Photosynthesis and respiration process are included in the carbon and nitrogen cycling

in a daily timestep [23]. In RHESSys, carbon and nitrogen stores are partitioned into

leaves, roots, stems, and coarse roots. Both live and dead wood components in stem and

coarse-root stores are considered to account for the di↵erences in respiration and C:N ra-

tios. Vegetation nitrogen stores and carbon stores are linked following the stoichiometric

relationships. N-cycling processes such as nitrification and denitrification are modeled

following the CENTURY
NGAS

approach [78]. Decomposition is based on litter and soil

pools, which are determined by organic material and microbial biomass. Potential ni-

trification rates are calculated following the approach by Parton et al.(1996), and the

actual nitrification rate is determined by soil moisture, carbon substrate availability, soil

temperature and soil ammonia. Only mineralized soil nitrogen is used for nitrification.

Denitrification is determined by maximum denitrification rate, soil moisture and soil res-

piration. In the soil column, the vertical distribution of nitrate is assumed to follow an
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exponential distribution.

N(depth) = Coeff1 ⇥N
all

⇥ e(�N decay⇥depth) ⇥N decay (2.5)

Z
depth

Max

d

N(depth) = Coeff1 ⇥N
all

⇥ (e�N decay⇥depth � e�N decay⇥Max

d) (2.6)

Where, depth is the soil depth, Max
d

is the max soil depth, N(depth) is the nitrate

mass of the patch in the soil layer at depth = depth. Coeff1=
1

1�e

(�N decay⇥Max

d

) is the co-

e�cients for N(depth) calculation. N
all

is the total amount of nitrate in that patch, and

N decay controls the vertical decay rate of the nitrate distribution. A high N decay cor-

responds to more unevenly distributed nitrate in soil, with most of the nitrate gathering

in top layers, and a lower N decay corresponds to a less unevenly distributed situation.

The integration of N(depth) from Max
d

to depth, which can be interpreted as the total

nitrate flux below soil depth = depth, also follows the exponential distribution.

2.3.6 Simulations and Analysis

RHESSys model was used to show the sensitivity of the Concentration-Discharge pat-

terns to the vertical distribution of nitrate and soil drainage parameter. A constant decay

rate for soil hydraulic conductivity (K decay) was used from preliminary streamflow cal-

ibration. By varying the vertical soil nitrate distribution parameter N decay, we assess

the impact of nitrate vertical distribution on nitrate Concentration-Discharge pattern in

stream. A range of saturated soil hydraulic conductivity (Ksat) was implemented to vary

the relationship between water flux and nitrate flux and evaluate the e↵ects on nitrate

concentration. All of the simulations were run on both the patch scale and watershed

scale.
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1. Simulations for di↵erent pairs ofN decay andKsat on single patch scale. RHESSys

model was implemented using Rattlesnake watershed as a case study. Simulations

were based on observed meteorological data from 2004-10-01 to 2005-10-07. For

the patch scale simulations, the whole watershed is treated as a single patch, and

assigned a set of spatially averaged soil & vegetation parameters. In this lumped

case there is no lateral subsurface flow within the watershed. 336 di↵erent pairs

of N decay and Ksat are tested, with 21 values between [2, 6] for N decay and

16 values between [1, 1200] (m/day) for Ksat (2.1). The lowest value of N decay

corresponds to the more even nitrate distribution in the vertical dimension. The

highest value of N decay refers to the vertical nitrate distribution where nitrate is

most preferentially distributed near to the surface.

2. Simulations with RHESSys model at the watershed scale. RHESSys model were

set up with approximately 2,000 patches using DEM map with 30-meter resolution

from SBC LTER database [36]. Lateral subsurface replenishment is included in

this scenario. Based on preliminary simulation results, the parameter sensitivity of

N decay on stream nitrate concentration varies under di↵erent spatial scale. As a

result, a wider range of N decay than that from the patch scale simulations is used

in the watershed scale simulation. Together with the hydraulic conductivity, 336

parameter sets are tested (2.1), with observed input data from 2004-10-01 to 2005-

10-07. Parameters were assumed to be homogeneous throughout the watershed.
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2.4 Results

2.4.1 RHESSys Modeling on Single Patch Scale

By varying N decay and Ksat, 336 scenarios were simulated using RHESSys model.

Figure 2.5 compares the results for several examples with Ksat=4, 30, 190, 1200 m/day

and N decay = 2 (evenly distributed) and 6 (concentrated near surface layers).

When N decay = 2 (blue circles, relatively evenly distributed nitrate), the nitrate

concentration-discharge patterns show a flat or a weak dilution pattern across a wide

range ofKsat values. In contrast, when nitrate is preferentially located near to the surface

(N decay = 6 red circle), the nitrate concentration tends to show enrichment patterns.

This is consistent with our simple illustrative model where more evenly distributed soil

nitrate tends to produce a dilution pattern (Figure 2.2) and scenarios where nitrate is

concentrated nearer to the surface produces an enrichment pattern. The higher N decay

(red circle) scenario leading to enrichment is more sensitive to changing Ksat than the

dilution pattern associated with a lower N decay (blue circle). When N decay is high,

for lower values of Ksat, enrichment tends to plateau at higher runo↵ levels. For higher

Ksat values, however, we continue to see enrichment even for very high runo↵ levels.

When N decay is high, concentrations tend to be lower for lower Ksat’s across most

runo↵ values.

To show how ’Concentration-Discharge’ patterns vary across a wider range ofN decay

and Ksat values, we calculated the regression slope in the ’Concentration-Discharge’

plots for storm flow to show the overall trend of the concentration patterns. We define

the storm flow as any runo↵ larger than 97.5% of the runo↵ of water year 2005 (1.3

mm/hour). Then, we computed the regression slope as the average rate of change in

Concentration-Discharge between 97.5th percentile and 100th percentile runo↵ and then

plotted this average slope of Concentration-Discharge plots for N decay and Ksat from
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the 336 simulations (Figure 2.6).

Both N decay and hydraulic conductivity Ksat control average slopes of the concen-

tration discharge relationship during storm flow (Figure 2.6). Similar to results from the

simple illustrative example in Figure 2.2, higher N decay scenarios (yellow & red) gen-

erally result in a steeper slope, corresponding to a stronger enrichment pattern. Lower

N decay cases (blue & black) result in a flat or negative slope, representing a stable or

weak dilution pattern. Hydraulic conductivity Ksat also a↵ects the average slope. With

the increase of hydraulic conductivity, the average slope of enrichment curve in high

N decay cases (red) increases, and the average slope in low N decay cases (blue & black)

is low. However, there is a threshold conductivity value ( 500 m/d) at which the slope

of enrichment curve of high N decay case (red) reaches its maximum and then declines.

This is because soil with higher hydraulic conductivity drains water faster than soil with

lower hydraulic conductivity. With higher soil hydraulic conductivity, it is more di�cult

for subsurface flow to reach top layer, export the nitrate from the surface soil layer, and

harder to produce the stronger enrichment pattern. As a result, while exceeding the

conductivity threshold, the slope of enrichment curve will decline.

2.4.2 Simulations with RHESSys Model in Watershed Scale

We will first examine results for several illustrative scenarios at the watershed scale

(Figure 2.7 a, 2.7 b, 2.7 c), and then show summary metrics for simulations across all

values of N decay and Ksat (Figure 2.8 a & 2.8 b). Since these are at the water-

shed scale, subsurface lateral flow need to move from upland to riparian zone through

series of adjacent patches, resulting in a di↵erent pattern and magnitude of responses

to precipitation than that in patch scale (Figure 2.5). To better show the patterns of

Concentration-Discharge relationships, we plot the x-axis in log-plot and use the regres-

59



Chapter 2: Vertical Distribution of Nitrate and Drainage Property Chapter 2

sion line to represent the general trend of Concentration-Discharge relationship. We also

include Concentration-Discharge relationships derived from observed measurements for

comparison.

Figure 2.7 a is the result from N decay = 0.1 and Ksat = 8 m/day. The modeled

Concentration-Discharge plot (black circles) show a 2-stage pattern: an enrichment for

runo↵ < 0.07 mm/hour, then a dilution for runo↵ > 0.07 mm/hour, with the ’transition

point’ at peak concentration with Runo↵ = 0.07 mm/hour. The observed Concentration-

Discharge also shows a 2-stage patterns, however, its transition period comes at runo↵

= 0.2 mm/hour, which is greater than the simulated transition runo↵ value. In order

to evaluate the impact of parameters on the Concentration-Discharge relationship, two

regression lines are plotted to represent the average slope for the enrichment stage and

dilution stage. The sensitivity of these slopes to parameter values are presented in figures

8a and 8b and discussed in more detail below. To help explain modeled watershed scale

patterns, we use ’Percent Saturated Area’ (green dots), which defines the percent of

the watershed where the water table is at the surface. Percent Saturated Area shows

a 3-stage pattern with transitions when runo↵ reaches 0.005 mm/hour and again at

0.07 mm/hour. During the ’dry period’- between runo↵ from 0.0001 mm/hour to 0.005

mm/hour - the water table is below the surface for the entire watershed (0% saturated

area). Then, during the initial wetting up following precipitation, patches near stream

become saturated and the saturated area expands with more precipitation. As runo↵

increases from 0.005 mm/hour to 0.07 mm/hour, the percent saturated area increases

from 0 to 41% (transition period). After the transition period, it goes into the ’plateau’

stage. At this stage, the percent saturated area stays at 41% but the runo↵ increases

from 0.07 mm/hour to over 7 mm/hour, indicating that fast flowpath such as macropore

flow or overland flow are contributing to the increase in runo↵. In Figure 2.7 a, at the

x-axis (runo↵), this ’plateau’ stage also corresponds to a ’transition point’ where the
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Concentration-Discharge shifts from enrichment to dilution (black circles).

Figure 2.7 b shows the saturated area and Concentration-Discharge relationship for

N decay =0.1 and Ksat = 1200 m/day. While the overall pattern is similar to that for

N decay =0.1 and Ksat = 8 m/day (Figure 2.7 a), the transition point, between enrich-

ment and dilution, occurs at higher runo↵ values, from 0.07 mm/hour to 0.2 mm/hour.

The lowest nitrate concentration also increases from 0.04 mg/l to 0.1 mg/l. As a result,

the slope of regression line of the ’enrichment stage’ is flatter in Figure 2.7 b than in

Figure 2.7 a. Increases in saturated area occur at higher runo↵ values, such that initia-

tion of the ’rising’ stage in ’Percent Saturated Area’ shifts from 0.005 mm/hour to 0.01

mm/hour. The starting runo↵ value for the ’plateau’ stage shifts from 0.07 mm/hour to

0.2 mm/hour. However, the transition period of ’Percent saturated Area’ still overlap

with the transition period of Concentration-Discharge relationship.

The overlap of the transition periods in Figure 2.7 a & 2.7 b indicates that there

may be a shared reason for the transition to the ’plateau’ in ’Percentage Saturated Area’

plot and to the ’dilution’ in the Concentration-Discharge plot. As mentioned above, the

’plateau’ stage for ’Percent saturated Area’ reflects an increase in the importance of fast

flow paths such as macropore flow or overland flow that result in an increase in runo↵

without an expansion in saturated area. In RHESSys, overland flow on saturated surfaces

and flow through macropores, which drain water from ponding surface to groundwater

and to streams, are the two fast flow paths. These fast flow paths may also contribute

to dilution since water traveling through these pathways is unlikely to access additional

nitrate once initial wash-o↵ of surface nitrate from the deposition has been depleted

earlier in the storm. As a result, although the fast flow paths can drain a substantial

amount of water into streams, the lateral nitrate replenishment is limited. Thus as

contributions from these flow paths increase, nitrate concentrations decrease.

Figure 2.7 c is the result with N decay = 10 and Ksat = 1200 m/day. The increase
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of N decay from 0.1 to 10 contributes to several di↵erences between Figure 2.7 b and

Figure 2.7 c: the most substantial change is that the lowest nitrate concentration is

lower for the ’enrichment’ stage (left of the transition point) in Figure 2.7 c. With higher

N decay, when the water table is low and lateral drainage only exports the nitrate from

deeper soil, nitrate export is much less than that in low N decay scenario (Figure 2.7

a). However, Figure 2.7 c is more close to the Concentration-Discharge pattern from the

observed data than the other two scenarios.

To reveal the patterns in the Concentration-Discharge relationship in ’enrichment’

and ’dilution’ stages, regression lines are constructed and the slope of regression lines

are calculated to compare the sensitivity of Concentration-Discharge relationship to the

vertical soil nitrate distribution and soil drainage parameters.

Figure 2.8a summarizes the slopes of regression lines for ’Concentration-Discharge’

relations in the enrichment stage. Red and yellow represents higher N decay with more

nitrates in upper soil layer, and blue & black represents lower N decay, with soil ni-

trate more evenly distributed in the vertical dimension. Figure 8a indicates that higher

N decay will lead to steeper slope of the regression line, representing stronger enrich-

ment. This is similar to results from our conceptual and numerical models for the patch

scale.

Figure 2.8 b summarizes the slope of regression lines for ’Concentration-Discharge’

relations during dilution stage. Although the slopes of unevenly distributed scenarios are

higher (less negative) than that of evenly distributed scenarios, the di↵erence is small

( 0.1) compared with the di↵erences associated nitrate distribution in the enrichment

stage in Figure 8a ( 0.8). The lower sensitivity to vertical nitrate distribution in the di-

lution stage occurs because once the dilution state has been reached, most of the nitrate

has been exported (during the ’enrichment’ stage) from the nitrate reservoir. Low total

nitrate means that the soil nitrate distribution has a smaller impact on nitrate export.
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Nevertheless, the slope is steeper and the variance of slope across N-decay gets widened

with higher hydraulic conductivity, showing that under higher hydraulic conductivity,

the more evenly distributed nitrate cases will result in the stronger dilution relationship.

Higher hydraulic conductivity and more evenly distributed nitrate will exhaust the soil

nitrate reservoir faster than cases with lower hydraulic conductivity and less evenly dis-

tributed nitrate. If soil nitrate is more evenly distributed, more nitrate is allocated to

middle or lower soil layers than the less evenly distributed cases, and more nitrate in

the lower layers will be exported to downstream with a rising water table. When water

table reaches the top layer and creates saturated area in near-stream riparian zone (’di-

lution’ stage in Figure 2.8 b), fewer nitrates will be left and the nitrate concentration

will be lower in the more evenly distributed nitrate cases, resulting a stronger dilution

relationship.

2.5 Discussion

This study focuses on the implications of the interactions between the soil nitrate and

hydraulic properties on vertical distribution in both patch and watershed scale. Given the

assumptions that both soil nitrate and hydraulic conductivity are higher on surface soil

and lower in deeper soil, even a small di↵erence in the rate of change in vertical soil nitrate

distribution would result in substantially di↵erent concentration-discharge patterns. At

the watershed scale, the subsurface lateral nitrate replenishment from upslope would be

another factor that changes the concentration-discharge pattern.

2.5.1 Important Features of This Study

This paper extends previous analysis of nitrate concentration pattern [60, 61], by

showing how interactions between the vertical distribution of soil nitrate and hydraulic
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properties can give rise to both enrichment and dilution patterns.

Previous hypotheses or conceptual models (such as ’nitrate flushing’ hypotheses) usu-

ally explain the enrichment pattern through the establishment of greater horizontal hy-

drologic connection with more nitrate sources, as water table rises and the spatial extent

of saturated area increases [59, 60, 61]. Our analysis provides an explanation for nitrate

concentration patterns focused on the vertical dimension, specifically the impact of soil

nitrate vertical distribution on the nitrate concentration-discharge relationship. Nitrate

flushing emphasizes that the saturated area contributes not only to the increase of water

flow, but also to the chemical flux where the chemicals have accumulated near or at the

surface [61]. Creed & Band (1998a) state that it is the rate of expansion of the variable

source area, not the total variable source area, that regulates the export of NO3 [60].

Our findings are consistent with this nitrate flushing hypothesis but also indicate that

the relative rate of change in soil nitrate distribution in the vertical dimension, together

with the rate of change in how soil releases water across its vertical profile, controls the

pattern in the nitrate concentration-discharge relationship.

By providing quantitative analysis of the sensitivity of the Concentration-Discharge

relationship to parameters that control nitrate and water flux rates in the vertical di-

mension, we show that even a small change in the vertical soil nitrate distribution will

result in substantial transition in patterns of the Concentration-Discharge relationship.

For the semi-arid undeveloped watershed, with the nitrate concentrated at surface, the

Concentration-Discharge relationship may show an enrichment pattern. However, in the

humid area or irrigated cropland, soil nitrate may accumulate at deeper soil (>1.3 m)

[79, 80], the enrichment pattern may be replaced by a dilution pattern.
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2.5.2 Discussions on RHESSys Model Implementations

In the RHESSys model, an exponential function is used to represent the nitrate dis-

tribution. In semi-arid areas, nitrate accumulates on surface because of the nitrate dry

deposition and suitable environments for microbial activity of mineralization and nitrifica-

tion [51, 53]. An exponential distribution is likely to reflect the nitrate distribution in our

semi-arid watershed. Other distributions including non-monotonic increasing/decreasing

functions may also occur and could be considered in future research.

In Figure 2.7 a and 2.8 b, the ’dilution’ stage in the watershed scale simulation

results requires a fast increase in the volume of overland flow and insu�cient lateral

nitrate replenishment on surface. In semiarid area like Rattlesnake Creek watershed, the

limitation on nitrate supply fits the requirement as the nitrate dry deposition is quite

low (2 kg/ha/year) [71] and there is no substantial sediment flow during water year 2004-

2005. However, this requirement may not be satisfied in some other situations. If with

su�cient surface nitrate replenishment or nitrate supply provided by sediment flow, the

’dilution’ stage on the right side of the transition period may change to an enrichment

stage. For example, for area with high nitrate deposition or area after fire, there will be

much more N available on the surface [81]. In that case, the ’dilution’ stage in Figure

2.7 a, 2.7 b, 2.7 c may not exist.

2.6 Conclusion

In this study, we proposed a conceptual model, which uses vertical soil nitrate distri-

bution and its interaction with soil hydraulic conductivity to quantitatively explain the

nitrate concentration-discharge relationship in a semi-arid watershed. We showed that in

Eco-Hydrologic model RHESSys, the resulting concentration-discharge relationship from

model output is sensitive to the parameter governing soil vertical nitrate distribution
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and soil hydraulic conductivity, in both patch scale and watershed scale. In patch scale,

the uneven distribution of nitrate in vertical direction with majority portion of nitrate

on surface soil tends to result in an enrichment pattern in the nitrate concentration-

discharge relationship. The evenly distributed nitrate will produce a stable or a weak

dilution pattern. In watershed scale, because of the lateral replenishment, the nitrate

concentration-discharge relationship shows a 2-stage pattern (first enrichment, and then

dilution) and a transition point. The hydraulic conductivity and soil vertical nitrate

distribution controls the degree of enrichment or dilution on both stages, and the loca-

tion of the transition point. It is the first study to explain the concentration-discharge

relationship from the vertical dimension with quantitative analysis and emphasis on the

importance of change in vertical distribution of soil nitrate and hydraulic properties. Fu-

ture studies can explore the scenarios that vary the assumptions in the conceptual model,

such as introducing heterogeneity in soil depth and varying the vertical nitrate distri-

bution with infiltration water, or assess the impact of vegetation uptake and microbial

activity on the nitrate concentration-discharge relationship in short term vs. long term.
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Table 2.1: Parameter value range for model simulations in single patch scale and
watershed scale

N decay rate for
patch scale (unitless)

N decay rate for wa-
tershed scale

Hydro Conductivity

Min 2 (more evenly dis-
tributed)

0.1 (more evenly dis-
tributed)

1

Max 6 (more in upper
layer)

10 (more in upper
layer)

1,200
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Figure 2.1: Map for Rattlesnake Creek. ’El Deseo’ is the meteorological station used
for climate input and ’RS02’ provides streamflow data. ((Image Source: ’Rattlesnake.’
Google Earth. 34�2802400N and 119�41019.4900W. May 1, 2015. Nov 20, 2015.)
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Figure 2.2: Consider a case where soil nitrate is distributed unevenly with soil depth
(A), while hydraulic conductivity is less unevenly distributed (B). This scenarios re-
sults in an enrichment Concentration-Discharge pattern (F) as the water table rises
from the 1st to 4th soil layer (nearer to the surface). Circles in subplot A, B, C, D, F
represent: one unit of nitrate (A), one unit of hydraulic conductivity (B), one unit of
total nitrate outflux (C), one unit of water outflow (D) and one unit of concentration
(F). Subplots C and D are derived from subplots A and B by integrating water and
nitrate flux from the corresponding soil layers. For example, the total nitrate outflux
when water table reaches the 3rd soil level is the summations of nitrate fluxes for
lower three layers, proportional to the nitrate mass distribution in these three layers,
which is 0.5 + 1.5 + 5 = 7. Following the same method, the total nitrate out flux
when water table reaches the surface is: 0.5 + 1.5 + 5 + 9 = 16 unit flux. The total
water outflow when water table reaches the 3rd level is: 1 + 2 + 3 = 6 unit water
flow. When the water table reaches the surface, water flux is: 1 + 2 + 3 + 4 = 10 unit
water flow. Subplot E shows how the nitrate concentration at each water table level
computed using the total nitrate outflux divided by total water outflow (Equation
2.1).
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Figure 2.3: A scenario where nitrate is less unevenly distributed compared with Figure
2.2, resulting a dilution pattern. Circles in subplot A, B, C, D, F represent: one unit
of nitrate (A), one unit of hydraulic conductivity (B), one unit of nitrate flux (C), one
unit of water out flow (D) and one unit of concentration (F). Subplots C and D are
derived from A and B by integrating water and nitrate flux from the corresponding
soil layers. For example, total nitrate outflux when water table reaches top layer in
subplot C is calculated as: 16 = 2.5 + 3.5 + 4 + 6, the integration of all layers from
subplot A. The water out flux when water table reaches top layer in subplot D is:
10 = 1 + 2 + 3 + 4 unit water flow. Subplot E shows the nitrate concentration at
each water table level computed using the total nitrate outflux divided by total water
outflow
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Figure 2.4: In watershed scale, the lateral nitrate replenishment will change the con-
centration-discharge relationship from dilution in Figure 2.3F to enrichment in Figure
2.4 D. The green points are results of lateral nitrate replenishments from upland. All
the other labels follow the same definition as Figure 2.2 and Figure 2.3. Without the
lateral nitrate replenishment, the nitrate outflux is the same as that in Figure 2.3 and
the Concentration-Discharges relationship would show a dilution pattern. However,
assuming that when the water table rises to the third level, lateral water movements
brings nitrate replenishments from upland to this patch, increase the total nitrate out-
flux and changes the nitrate concentration. The resulting nitrate concentration with
the rising water table is now: 2.5, 2, 2.67 and 3.0 units, and is thus an enrichment
rather than dilution pattern in Figure 2.3 E and 2.3 F.
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Figure 2.5: The ’Concentration-Discharge’ plot for a single patch for increasing values
Ksat and two contrasting vertical distributions of nitrate. The red circles show results
when nitrate distribution is concentrated hear to the surface (N decay=6). The blue
circles are the nitrate concentration plots for distribution where nitrate is more evenly
distributed (N decay=2).
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Figure 2.6: Average slope for nitrate concentration plots for storm runo↵ in the 336
simulations. Each point represents the average slope of the Concentration-Discharge
relationship. Red points represent scenarios with a more uneven distribution of nitrate
(e.g nitrate more concentrated at the surface). Black or blue represents more evenly
distributed scenarios. The x-axis is the hydraulic conductivity. Y-axis is the average
slope. A greater positive average slope corresponds to a stronger enrichment pattern,
while a more negative average slope corresponds to a stronger dilution pattern.
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Figure 2.7: Concentration v.s Discharge a) N decay = 0.1, Hydro Conductivity

(Ksat) = 8 (m/day). b) N decay = 0.1, Hydro Conductivity (Ksat) = 1200
(m/day). c) N decay = 10, Hydro Conductivity (Ksat) = 1200 m/day. Blue points
are the observed Concentration-Discharge points, black circles are the Concentra-
tion-Discharge results from model, the green dots are the percent saturated area from
model, and the red line is the regression line for the modeled Concentration-Discharge
relationship.
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Figure 2.8: Slope of regression lines for ’Runo↵-Concentration’ plot during the ’En-
richment’ stage (a) and the ’Dilution’ stage (b). X-axis is the hydraulic conductivity,
and y-axis is the slope of the regression line. Red and yellow points represent scenarios
with higher N decay. Blue and black points represent scenarios with lower N decay.
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Chapter 3

The E↵ect of Total Impervious

Surface, Impervious Surface

Connectivity and Vegetation Types

on Nitrate Concentration in Urban

Hillslope

3.1 Introduction

In 2014, more than 54% of the world’s population lives in urban area. This num-

ber is projected to reach 66% in 2050 [82]. The fast growing impervious urban surface

has dramatically changed the urban hydrology [83, 84]. While rapidly exporting runo↵

via the storm drainage, urban impervious surface area reduces infiltration and evapo-

transpiration, resulting in the increased frequency and volume of storm flow, decrease of

the base flow, and ecological impact [85, 86, 87, 88]. However, if the impervious area
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is disconnected from downstream receiving stream, water from these hydrologic discon-

nected impervious areas (HDIA) are diverted to nearby vegetated areas. In contrast, if

impervious areas are directly connected with the downstream receiving water body, re-

tention time will be reducd and result in more rapid drainage than that from hydrologic

disconnected impervious areas. These connected impervious areas are called ’E↵ective

Impervious Areas (EIA)’ [?].

Previous studies have suggested that it is the e↵ective impervious area (EIA), instead

of the total impervious area (TIA), that drives the changes in the urban hydrology

[89, 90, 88]. In semi-arid areas where the ecosystems are generally water-limited, the

decline of water and carbon fluxes from an increase of TIA may be partially or completely

o↵set by an increase of transpiration and NPP in the remaining vegetated area supported

by additional water from disconnected impervious areas [93].

In addition to the hydrologic impact of impervious surfaces on flow regimes, ur-

banization and growing impervious surface area have a substantial influence on urban

stream water quality. Pollutants collected on impervious surfaces will be carried by urban

storm water runo↵, leading to degradation of water quality in receiving urban streams

[94, 95, 96, 97, 98]. As one of the important nutrients and major factor for eutrophication

in the downstream, an increasing nitrate concentration is the major concern for urban

watershed [?, ?]. However, how the connectivity of urban impervious surface a↵ects ni-

trate concentration by controlling the water availability in the remaining vegetated area

is less well studied.

Conceptually in semi-arid areas, the decrease of EIA a↵ects the influence of TIA on

downstream nitrate concentration primarily through increasing water retained in and

transported through the remaining vegetated areas. An increase of retained water pro-

vides additional water availability for plant growth and stimulates nitrate uptaking by

plants, as well as providing more moisture for the litter decomposition. The enhanced
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infiltration associated with additional water inputs may also result in increased nitrate

transport from soil. However this e↵ect may be o↵set by, an increase in transpiration

by the vegetation [93] and plants with adequate water supply may uptake more nitrate

than the plants under drought stress [99].

How additional inputs of water and nitrogen from surrounding impervious surfaces

influences the function of vegetation patches and ultimately nitrogen export is likely to

vary both with climate, particularly the timing and magnitude of water inputs and vege-

tation characteristics. For example, di↵erent plants have distinctive needs for water and

nitrate, which will determine how they make use of additional water and nutrient inputs.

In semi-arid areas, grass usually has less evapotranspiration than oaks or chaparral [93],

resulting in higher discharge. Conversely, grass forms less litter and uptakes less nitrate

than oak or chaparral.

The multiple factors and interactions and feedbacks between factors that determine

the responses of vegetated patches to both TIA and EIA make assessing water quality

impacts challenging. We use computer models to synthesize these interacting e↵ects and

compare the impacts of di↵erent EIA and plants scenarios on nitrate cycling and identify

dominant factors that alter the influence of TIA on nitrate concentration.

We will answer the following three questions:

1. How will impervious surface connectivity a↵ect the mean stream flow rate in three

vegetation scenarios?

2. What is the impact of impervious surface connectivity on mean stream nitrate flux

in three vegetation scenarios?

3. Which one of the scenarios has the lowest mean nitrate concentration and what are

the implications for watershed management?
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We focus on how the downstream water quality is a↵ected by the connectivity of

impervious surface and nitrogen and water inputs from these surfaces and do not consider

potential for additional nitrate sources such as lawn fertilizer and the leaking sewer pipes

within vegetated patches to influence nitrogen cycling.

3.2 Method

3.2.1 Study Area

The study area is in the northeastern Santa Barbara city within the Mission Creek

catchment. Land cover within the catchment includes both vegetated areas and imper-

vious surfaces. The local climate Mediterranean type with a long dry summer and a

cool wet winter, which is right for the drought tolerant plant such as chaparral and oak.

The majority of the precipitation falls in winter and early spring. The mean annual

precipitation from 2005 to 2014 was 427 mm, with a standard deviation of 249 mm [100].

During the rainy season, the predominant southwest winds and south orientation of the

watersheds result in substantial orographic rainfall enhancement [34]. The mean annual

precipitation at 1000 m elevation can be 210% greater than that at the elevation of 31 m

[51]. Mission Creek catchment is an urban/suburban mixed catchment. The headwater

is characterized with undeveloped chaparral land and steep slope (slope > 20�), but the

downstream is developed area with relatively gentle slope (slope < 6�). In the developed

area, an average of 21% surface is covered by impervious area and the most developed

area has the highest percentage coverage (81%) of impervious surface [93]. In this study,

a single hillslope (#259) is extracted to represent the moderately urbanized hillslope,

with an area of 0.56 km2 and an average slope of 8� (Figure 3.1). This hillslope has an

average elevation of 200 m, with 39% of the area covered by impervious surface, including
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road, roof area, and parking area [93].

3.2.2 Data

To develop model scenarios, nine years of hourly precipitation data was obtained from

Santa Barbara County Flood Control District at Botanic Garden with elevation of 243 m

(Lon/Lat: -119.70694, 34.45388) [100], adjusted with orographic e↵ects following method

described in previous study [28]. Daily temperature data is from the National Climate

Data Center monitoring station (HCND:USC00047902) near the outlet of Mission Creek

catchment. Msonthly irrigation is estimated and interpolated following data from Shields

and Tague [28] (Figure 3.2). The total impervious area (TIA) and e↵ective impervious

area (EIA) were held constant over the 9 years.

3.2.3 RHESSys Model

RHESSys is a physical process-based, distributed hydrological model. It has been

widely implemented in a variety of bioclimatic regions, including in semi-arid regions

like Mission Creek Catchment [27, 28, 29]. RHESSys explicitly models the catchment

connectivity by calculating the volume of water drained to downstream from upland

via lateral movement through adjacent patches [23]. Two layers are modeled in soil

profile: an unsaturated layer, and a saturated zone. RHESSys calculate the 1-D vertical

infiltration process by the modified version of Green and Amt approximation, where the

time to ponding is constrained by porosity, initial soil moisture content and infiltration

intensity. Following the infiltration process, the water held in saturated and unsaturated

layer will be updated. RHESSys uses the traditional Continuous Transmissivity model

[3] to calculate the subsurface lateral flow for subsurface flow sub-model, where both the

subsurface conductivity and transmissivity decays exponentially with the soil saturation
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deficit.

The Penman Monteith approach [31] is implemented at a daily timestep to estimate

the canopy evaporation and transpiration. Soil evaporation is estimated based on energy,

atmospheric factors and the maximum exfiltration rate. The maximum exfiltration rate

is determined based on soil properties and the soil moisture. Potential capillary rise is

controlled by soil properties and the water table. Only half of the potential capillary rise

is left to meet the plant transpiration needs at the end of day, with the rest of potential

capillary rise allocated to the unsaturated zone at the start of the day to account for the

subdaily plant responses.

Biogeochemical cycling and vegetation growth are modeled in RHESSys sub-models

to account for the carbon and nutrient cycling [23] at a daily timestep. Photosynthesis

is modeled following the Farquhar model, where the net assimilation rate per unit LAI is

constrained by nitrogen availability, electron transport and stomatal conductance [101].

Total maintenance respiration integrates respiration of leaves, roots and stems, following

the model developed by Ryan (1991).

Carbon and nitrogen stores are partitioned into leaves, stems, coarse roots and fine

roots. Vegetation nitrogen stores and carbon stores are linked through the stoichio-

metric relationships. Soil nitrification and denitrification are modeled following the

CENTURY
NGAS

approach [78]. Decomposition is calculated based on litter and soil

pools of di↵erent C:N ratios to account for labile, slow and recalcitrant pools. Potential

nitrification rates are computed following the method by Parton et al. (1996). The actual

nitrification rate is calculated based on the soil moisture, carbon substrate availability,

soil temperature, and soil ammonia. In RHESSys, soil organic nitrogen can be converted

to inorganic N (NH+
4 �N). Through nitrification, ammonium-N will be future converted

into nitrate-N. Soil nitrate will be uptaken by plant, or washed away with subsurface flow,

or be denitrified to N gases and lost to the atmosphere. Denitrification is controlled by
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the maximum denitrification rate, soil respiration and soil moisture.

N(depth) = Coeff1 ⇥N
all

⇥ e�N decay⇥depth ⇥N decay (3.1)

Z
depth

Max

d

N(depth) = Coeff1 ⇥N
all

⇥ (e�N decay⇥depth � e�N decay⇥Max

d) (3.2)

depth is the soil depth, Max
d

is the max soil depth, N(depth) is the nitrate mass of the

patch in the soil layer at depth = depth. Coeff1=
1

1�e

�N decay⇥Max

d

is the coe�cients for

N(depth) calculation. N
all

is the total amount of nitrate in that patch, and N decay

controls the vertical decay rate of the nitrate distribution. With the exponential distri-

bution function, nitrate is assumed to concentrated near upper soil layers in semi-arid

area, which is consistent with previous study [53]

3.2.4 Model Set Up

We consider a total of 36 di↵erent scenarios, including a combination of TIA and EIA

settings and three vegetation types (Table 3.1). The vegetation types in this study are

chaparral, lawn grass and coastal live oak, which are common for Southern California

coastal area [93]. The ecophysiclogical parameters of these vegetation are estimated

following previous studies [93]. For the grass vegetation type, we consider two di↵erent

scenarios: one with and one without irrigation. In this study, we consider a single hillslope

divided into 10 m2 patches. While the observed max TIA on this hillslope is around 39%,

we designed three levels of TIA coverage (12%, 25%, 39%) to examine the e↵ects of total

impervious area on the stream nitrate concentration (Figure 3.3). In RHESSys, once a

patch is defined as impervious area, surface water won’t infiltrate into the soil in this

patch, but will either drain to the outlet of the hillslope or be routed to permeable patches
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nearby, depending on whether it is the e↵ective impervious area or not. For each TIA

scenario, three levels of EIA fraction (10%, 50%, 100%) are assigned to the model setting

to evaluate the impact of impervious surface connectivity on streamflow and stream

nitrate concentration. The location of e↵ective impervious patches are randomly chosen

among the impervious patches assuming that all patches have an equal probability of

being selected as an impervious patch.

RHESSys is used to estimate nutrient cycling and export for each combination of

the TIA and EIA fraction. Key ecohydroological parameters are based on RHESSys

parameter libraries and include parameters that define plant specific di↵erences in N-

cycling including fine root and leaf carbon-nitrogen ratios [93, 103], and using values

come from averaged measurements across these vegetation types (Table 3.2). For each

vegetation type, 240 years of pre-run were implemented to stabilize the soil carbon and

the soil nitrate. Parameters for root depth and root distributions are calibrated so that

the long-term stable root depth for these vegetation types is consistent with field obser-

vation [104, 105] (Table 3.3). The resulting states from pre-run are used as the initial

condition for the 36 model scenarios. The spatial average soil nitrate, plant carbon,

evapotranspiration over the whole hillslope are calculated and evaluated.

3.3 Results

3.3.1 Annual Transpiration

Grass scenarios have the lowest median-annual-transpiration (200 mm), widest vari-

ation of annual transpiration (70 380 mm), and greatest sensitivity to the annual

precipitation (Figure 3.4). With irrigation the median-annual-transpiration in the grass

scenario increases dramatically to 265 mm. Chaparral scenarios have a median-annual-
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transpiration of 230 mm. The Oak scenario has the highest median-annual-transpiration

(350 mm). The ranking order of the transpiration among di↵erent vegetation types is

consistent with the previous study in this region [93].

The di↵erent impervious-surface-connectivity settings (low to high EIA scenarios)

cause substantial variation in annual transpiration estimates (Figure 3.5). With the

expansion of TIA from 12% to 39%, transpirations per hillslope area decrease in all

scenarios. With less vegetation, the total transpiration decreases.

For each TIA level, the increase of EIA also leads to a decrease in the annual tran-

spiration. The impact of EIA on the annual transpiration increases with TIA (Table

3.4) such that when TIA =12%, the median annual transpiration di↵erence between low

EIA and high EIA scenarios is smaller than that in TIA=39%. These results are con-

sistent with Shields and Tague (2015). This increase in the sensitivity of transpiration

estimates to EIA varies with vegetation type. Chaparral and oak have the similar results,

with the annual transpiration di↵erence between low and high EIA scenarios increasing

from around 5 mm when TIA is 12% to around 20 mm when TIA is 39%. For grass-

without-irrigation scenario, the annual transpiration di↵erence between low and high EIA

scenarios increases from 43 mm for TIA of 12% to 77 mm for TIA of 39% scenario. The

larger variance in grass-without-irrigation scenarios than chaparral or oak scenarios can

be explained by the shallower roots of grass than that of chaparral. As a result, the tran-

spiration in grass-without-irrigation scenarios is more sensitive to the water availability

and sensitive to the EIA changes. With irrigation, the additional water input reduces the

water scarcity for all EIA levels, and the ’sensitivity increases with TIA’ pattern is less

significant in grass-with-irrigation scenario and the transpiration in grass-with-irrigation

scenario shows less sensitivity to the EIA changes.
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3.3.2 Annual Evaporation

Annual evaporation is sensitive to vegetation types but not to EIA. Oak and cha-

parral have higher annual evaporation (⇠ 75 mm and ⇠ 80 mm) than the grass-without-

irrigation scenarios (⇠ 50 mm). TOak and the chaparral have higher LAI (>2) than grass

(⇠ 1) and consequently intercept more rain than grass. Oaks also intercept and retain

more long and shortwave energy through the year than grassland [107], providing more

energy for canopy interception evaporation in oak scenarios (Figure 3.6). Soil evapora-

tion has less variation among the four vegetation scenarios. The grass-without-irrigation

scenario has the least soil evaporation (⇠ 30 mm) than the rest of the scenarios (⇠ 40

mm)

3.3.3 Stream Discharge

Since oak and chaparral have higher transpiration and evaporation than grass, grass

scenarios produce the highest stream discharge for the same climatic forcing. Grass-with-

irrigation scenarios have additional water inputs and have the highest annual streamflow,

followed by the grass-without-irrigation and chaparral scenarios (Figure 3.7). The oak

scenarios have the lowest annual streamflow.

The TIA has a monotonic influence on the stream flow (Figure 3.8). The increase of

TIA leads to increase in the mean stream flow for all scenarios.

The consequences of EIA changes on stream discharge are clear. The increase of EIA

results in higher stream flow in all scenarios (Figure 3.8). The di↵erence between high

and low EIA is wider when TIA is 39% than that when TIA is 12% (Figure 3.10)
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3.3.4 Plant Carbon

Oak scenarios have the highest mean plant carbon (⇠ 4 kgC/m2) and second deepest

root (chaparral has the deepest roots). Grass scenarios have the least mean plant carbon

(⇠ 0.13 kgC/m2) and shallowest roots (⇠ 0.2 m). Irrigation increases grass plant carbon,

but the di↵erence in grass plant carbon between irrigation and non-irrigation scenario is

small. The mean plant carbon for the chaparral scenarios is around 3.7 kgC/m2, and its

root depth is around 4 m (Table 3.3 and 3.5).

The expansion of total impervious area (TIA) has a negative influence on the plant

carbon in all scenarios (Figure 3.9). Given the same TIA, the increase of EIA leads to

the decrease in the plant carbon. Figure 3.9 illustrates similar sensitivity of plant carbon

to EIA increases with TIA when TIA shifts from 12% to 39%. When EIA increases from

10% to 50%, the decrease in plant carbon is larger than the decrease when EIA increases

from 50% to 100%.

3.3.5 Soil Carbon and Soil Respiration

Oak scenarios have the highest soil carbon level (⇠ 1.2 kgC/m2), followed by chaparral

scenarios (⇠ 1.1 kgC/m2). Grass scenarios have the lowest soil carbon (⇠ 0.9 kgC/m2)

(Table 3.4). With the irrigation, the soil respiration increases slightly and reduces soil

carbon relative to grass without irrigation scenario. Vegetation types a↵ect the soil

carbon through litter and roots turn over, which controls both quantity and quality of

carbon and nitrogen input for soil and through its impact on soil moisture. Table 3.4

shows the oak scenarios has the largest litter carbon pool (⇠ 0.06 kgC/m2), followed

by chaparral scenarios (⇠ 0.05 kg/m2). Grass scenarios have the least litter carbon

pool (0.02 kgC/m2). While with irrigation, the grass litter carbon pool increases to

0.027 kgC/m2. However, di↵erent EIA/TIA settings have little influence on soil carbon
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(< 1%).

Model output shows that oak and chaparral scenarios have the highest mean soil

respiration rate (> 120 gC/m2/year). Grassland scenarios have a mean soil respiration

rate of 70 gC/m2/year. The soil in semi-arid area is drier and low in organic carbon.

The soil respiration estimates in the results are low but still within the typical range of

the soil respiration rate [108, 109, 110].

Both TIA and EIA level a↵ects soil respiration rates (Figure 3.10). TIA has a more

substantial impact on soil respiration rate (10% ⇠ 20%). With the increase of TIA, soil

respiration rate decreases in all scenarios as expansion of TIA increases the impervious

area and diverts water away from vegetated area and reduces water availability.

At the same TIA level, the increase of EIA reduces the soil respiration. The increase

of EIA means less water availability for vegetated area, limiting the soil respiration.

Again, the ’sensitivity of soil respiration to EIA’ increases with TIA is observed. The

soil respiration shows more sensitive to EIA in higher TIA scenarios than in lower TIA

scenarios.

3.3.6 Soil Nitrate

All scenarios have similar soil nitrate values (Figure 3.11). The grass-without-irrigation

scenarios have the highest mean soil nitrate level (0.5 ⇠ 1.8 gN/m2), followed by oak

scenarios (0.2 ⇠ 1.4 gN/m2) and chaparral scenarios (0.2 ⇠ 1.4 gN/m2). While with

irrigation, the mean soil nitrate level is reduced to 0.2 ⇠ 1.6 gN/m2. The range of soil

nitrate estimated here are comparable with previous studies in this region [32].

The expansion of TIA brings a monotonic increase in the soil nitrate level (Figure

3.12). The expansion of EIA has slightly di↵erent impacts on the three vegetation scenar-

ios, given the same TIA. For chaparral and grass-w/o-irrigation scenarios, the increase of
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EIA level builds up the soil nitrate. For oak, the EIA has little impact on the soil nitrate

level.

3.3.7 Stream Nitrate Flux

Grass-with-irrigation scenarios have the lowest stream nitrate flux, followed by oak

scenarios and chaparral scenarios (Figure 3.13). The modeled nitrate flux (0.005 0.06

gN/m2/year) is slightly lower than the estimations from observed data collected in station

Rocky Nook (⇠ 0.1 gN/m2/year) [100, ?],and likely reflect that the simulation didnt

consider additional nitrate source such as lawn fertilizer and leaking sewer pipes.

The EIA/TIA changes have a substantial influence on the stream nitrate flux (Figure

3.16). The increase of TIA leads to an increase of stream nitrate flux in all scenarios,

except for the grass-with-irrigation one, which shows no increase, or even a slightly

decrease in nitrate flux from low TIA (12%) scenario to high TIA (39%) scenario.

The responses of nitrate outflux to an increasing EIA is a similar to the responses to

an increasing TIA. With the increase of EIA, the stream nitrate export flux increases,

except for the transition from low EIA to medium EIA in 39% TIA for the chaparral and

oak cases Figure 3.16.

3.3.8 Stream Nitrate Concentration

Nitrate concentration is calculated as the nitrate flux divided by stream flow. While

grass-with-irrigation has the lowest nitrate fluxes, it has the highest stream flow, re-

sulting in the lowest nitrate concentration in receiving water. Chaparral scenarios have

the highest nitrate concentration. The max nitrate concentration in scenarios without

irrigation is within the observed range from urban watershed in same area [51, 100].

The pattern of the influence of TIA and EIA on nitrate concentration follows the
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pattern of the influence of EIA and TIA on nitrate exporting fluxes (Figure 3.17). The

increase of TIA generally results in a rise in nitrate concentration, except for the grass-

with-irrigation scenario. This is similar to results found in the nitrate flux analysis where

the nitrate flux has a slight decline with expansion of TIA in the grass-with-irrigation

scenario but otherwise increases with TIA. The increase of EIA does not always result

in greater concentrations even though nitrate flux increases with EIA. For example, in

scenarios with chaparral and oak tree with TIA=25% and 39%, the increase of EIA from

low to medium leads to a decrease in nitrate concentration. In contrast in grass scenarios

with TIA of 25% and 39%, the increase of EIA from low to medium results in an increase

in nitrate concentration.

3.4 Discussion

Increasing TIA and EIA a↵ect nitrate concentrations by altering nitrate availability,

cycling, and transport and stream discharge (Figure 3.18 and 3.19).

An increase in TIA directly alters nitrate availability by reducing the vegetated areas,

Reductions in vegetated areas can result in less plant uptake, less litter fall, and less

nitrification. The reduced plant uptake may leave more soil nitrate for nitrate export.

Decreasing nitrification and decomposition, on the other hand, may produce less nitrate

in soil, and consequently less nitrate for outflux. However, this study found as previous

studies suggest, that plant uptake is often the dominant process [53] compared with

nitrification or mineralization.

However, nitrate concentration shows a more complex response to TIA because an

increase of TIA also tends to increase stream discharge by decreasing the total evapo-

transpiration, thus increasing the peak flow and the total annual runo↵ [112, 85]. This

additional water can lower the e↵ective concentration associated with a given nitrate
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flux.

Although TIA has impacts on both nitrate availability and stream discharge, the

strength of these impacts is not the same. The net e↵ect of an expansion in TIA for most

scenarios is an increase in nitrate concentration, indicating that the influence of TIA on

increasing nitrate flux is larger than the impact on increasing stream discharge. While

previous studies emphases that the pollutant in impervious area carried by storm water

may deteriorate the stream water quality [94, 113], our results indicate that the decrease

in plant uptake may be the dominant factor a↵ecting the water quality in urban streams

in semi arid areas. Further we suggest that EIA as well as TIA will be a key control on

the magnitude of the plant uptake e↵ect.

For a given TIA, a change of EIA will moderate the nitrate availability through

changing the amount of water diverted from HDIA to vegetated area (Figure 3.19). A

conceptual model (Figure 3.20) explains how EIA controls the nitrate outflux. Many of

these mechanisms have been demonstrated in field-based studies here we use the model

to demonstrate the combined e↵ect. An increase of EIA does not expand the total im-

pervious area. However, it diverts more water to downstream directly and reduces the

water availability on vegetated patches, leading to consequences for plant nutrient uptake

and soil nitrate availability (Figure 3.20 A). The reduced water availability may decrease

overall biomass and root nutrient uptake capacity [114], resulting in less vegetation up-

take, and more nitrate left. Conversely, reduced soil moisture may reduce microbial

activity [115, 116], and the mineralization and nitrification/denitrification processes [53],

and result in less soil nitrate. The net e↵ect of these contradictory factors is an increase

in nitrate flux, indicating the reduced nitrate plant uptake is the dominant e↵ect of the

expansion of EIA (Figure 3.16).

Both TIA and EIA impact not only nitrate availability but also the amount of water

available for export and resultant nitrate concentrations. The increase of EIA also diverts
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more flow directly to the receiving water. For TIA of 25% and TIA of 39%, the increase

of EIA from low to medium results in a lower nitrate concentration in chaparral and

oak tree scenarios, indicating that in these cases, the rise of EIA has a more substantial

impact on increasing the stream discharge than increasing the nitrate flux (Figure 3.17)

and can o↵set the impact of an expanding TIA on increasing the nitrate flux. While EIA

increases from medium to high, nitrate concentration increases in the chaparral and oak

tree scenarios with TIA of 25% and TIA of 39%, indicating that in these scenarios, the

rise of EIA has a more substantial impact on increasing the nitrate flux than increasing

the stream discharge.

Vegetation types strongly influence both the impact of TIA and how this impact is

moderated by EIA. If the landscape is dominated by more deeply rooted, larger biomass

species such as oak and chaparral, the increase in nitrate flux with increasing TIA is

greater that it is for grass, reflecting the greater nitrate uptake by shrubs and trees.

The type of vegetation plays a role in terms of the sensitivity of nitrate concentration

to EIA. EIA determines the amount of water being diverted to vegetated area, which

controls the vegetation growth. Di↵erent plant types respond di↵erently to water inputs

and thus to the EIA, which in turn a↵ects biochemical reaction rates, nitrate availability,

nitrate export and stream discharge. Plants also di↵er in their nitrogen uptake rates.

Chaparral uptakes more nitrate than grass, leaving less soil nitrate available for export

(Figure 3.11), and potentially decreasing nitrate concentration. However, chaparral uses

more water than grass for evapotranspiration, which decreases the volume of water in

downstream and potentially increasing nitrate concentration. Figure 3.17 shows that

in the end, the chaparral has lower nitrate concentration than grass, indicating that

the plant nitrate uptake is the dominant controlling factor for nitrate concentration in

downstream.

Vegetation types explain the di↵erent inter-annual-variance in nitrate ouflux and ni-

91



The E↵ects of Impervious Surface on Nitrate Concentration Chapter 3

trate concentration. This is because with shorter roots, the nitrate uptake in grass

scenarios in more sensitive to inter-annual variation in water availability associated with

climate forcing, resulting in more inter-annual-variance. While under drought stress, the

grass-without-irrigation uptakes less nitrate and leaves more soil nitrate than scenarios

with adequate water supply. However, with irrigation, the water availability is more

stable and the impact of climate variances on nitrate outflux is less substantial than it

is in the grass-without-irrigation scenario.

The ’sensitivity increases with TIA’ shows that EIA has a more substantial e↵ect in

higher TIA cases than lower TIA cases. This is particularly true for nitrate concentration

(versus flux). The reason for this sensitivity increases with TIA pattern is that in higher

TIA scenarios, both the EIA and HDIA have larger area than in lower TIA scenarios,

and their impact on diverting water to either vegetated area or to receiving water is

larger than that in the lower TIA case. Notice that in this study, the max TIA is

39%, which is much lower than the highly developed area (above 80%). However, the

’sensitivity increases with TIA’ may still hold in higher TIA, unless there is a threshold

where the vegetated area is small enough and the e↵ects are negligible. Further more,

39% is high for this type of landuse and results of this paper are focused scenarios where

landuse includes a mixture of impervious surface and vegetated patches found in low to

medium density urban areas, places where connectivity to vegetated patches might be

modified by suburban and urban design. Previous studies note that the EIA is a better

indicator for impact of urbanization on stream ecosystem and emphasis its impact on

geomorphic variables [117]. Our study focuses on the impact of EIA on plant nitrate

uptake and subsurface nitrate export. While recent studies state the aim of storm water

management should be restoring the flow regime [92], our results suggest that med EIA

will not always result in lower nitrate concentration, especially for higher TIA case. To

restore both the hydrologic and biogeochemical condition, one should design the EIA
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based on TIA level and vegetation types.

The vertical distribution of nitrate in soil and its dynamic interaction with water table

a↵ects the nitrate export and downstream nitrate concentration. Soil nitrate is assumed

to concentrated near upper soil layers in semi-arid area [53]. RHESSys uses exponential

function to represent this distribution ?? and only moves nitrate out of patches from

saturated zone. In the model, nitrate outflux from a given patch is proportional to the

nitrate within the saturated zone (under the water table). When the saturation deficit

is small (water table is high), the saturated zone accesses most of the patch nitrate pool,

and is able to export larger portion of total soil nitrate. While the saturation deficit is

high (water table is low), the total accessible nitrate is smaller, so the nitrate flux is a

much smaller fraction of the total soil nitrate.

The type of modeling approach here may be used to estimate the role of vegetated

patches and EIA in controlling n-export and concentration. However, there are several

challenges to broad application of this approach. One of them is the modeling uncer-

tainty from initial condition and the location of EIA or HDIA. Other modeling studies

have shown that estimates of nitrate export are sensitive to the initial condition [118].

Although the total impervious area can be determined from landuse image, it is not easy

to determine the location of the EIA patches or the HDIA patches. Previous research

has attempted to estimate the fraction and the location of EIA [119, 93].Recently new

methods have identified roads, side walks, parking lots, green sports fields, roofs and ir-

rigated lawns in high-resolution [?], and may reduce the uncertainty in locations of EIA,

and facilitate the application of this type of model based analysis to asses the impacts of

current EIA-TIA-vegetation type setting.
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3.5 Conclusion

In this study, we set up an eco-hydrogical model in an urban hillslope and explored the

impact of impervious surface connectivity and vegetation types on stream discharge and

stream nitrate concentration. These findings are specific to semi-arid regions where ad-

ditional water inputs to vegetated patches from impervious surfaces can have substantial

impacts on vegetation growth, water uptake and nitrogen cycling.

Modeling results show that a reduction of TIA leads to the decrease in nitrate concen-

tration in all scenarios except for the grass-with-irrigation scenario, indicating that the

enhanced plant uptake, rather than its impact on water balance, is the dominant mech-

anism through which TIA a↵ects nitrate concentration in urban streams in semi-arid

areas. Within a given TIA scenarios, a decreasing EIA provides more water for plants in

vegetated area, stimulating growth and enhancing the plant nitrate uptake as well as soil

nitrate generation. In most cases, the enhanced plant uptake dominates the impact of

reduced EIA on nitrate concentration, and results in a decrease in nitrate flux and concen-

tration. For some deeply rooted water consumptive species, however, reduced streamflow

dominate the impact, and decreasing EIA actually leads to increasing nitrate concentra-

tion. While these results suggest that reducing both TIA and EIA can contribute to

restoring a watersheds’ hydrologic and biogeochemical conditions and improving water

quality, consideration of vegetation type and non-linearities in TIA-EIA interactions is

needed. Future studies will explore the impact of impervious area on mixed vegetation

types in vegetation area, and their e↵ects on nitrogen cycling and nitrate concentration

in streams and receiving waters.
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Figure 3.1: Study area is the hillslope #259 in the Mission Creek catchment in
the northeast Santa Barbara (Google Maps, latitude: 34.4376, longitude: -119.7018,
2016).
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Figure 3.2: Precipitation records and estimated irrigation value for the study area
from 2005 2013
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Figure 3.3: Three di↵erent TIA setting for the study area. Low, Medium, and High
TIA are the scenarios with TIA = 12%, 25%, 39%. Yellow area represents the per-
meable surface, and the read area represents the impervious surface.
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Figure 3.4: Annual transpiration (in mm) for the four scenarios: chap (chaparral),
grass (grass lawn without irrigation), grass irr (grass lawn with irrigation) and oak
(coastal live oak). The box-plot is the annual transpiration across all EIA/TIA from
water year 2005 to 2013.
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Figure 3.5: Annual transpiration with di↵erent EIA, TIA and vegetation settings.
Three TIA scenarios are: 12%, 25%, and 39%. Three EIA scenarios are: L (10%),
M (50%), H (100%). Four vegetation and irrigation scenarios are: chap (chaparral),
oak (live oak), grass (grass lawn without irrigation), and grass irr (grass lawn with
irrigation). The box plot describes the variation of annual transpiration across water
years 2005 to 2013.
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Figure 3.6: Annual evaporation (in mm) for the four scenarios: chap (chaparral),
grass (grass lawn without irrigation), grass irr (grass lawn with irrigation) and oak
(coastal live oak). The box-plot is the annual evaporation across all EIA/TIA from
water year 2005 to 2013.
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Figure 3.7: Annual runo↵ (in mm) for the four vegetation scenarios: chap (chaparral),
grass (grass lawn without irrigation), grass irr (grass lawn with irrigation) and oak
(coastal live oak). The box-plot is the annual runo↵ across all EIA/TIA from water
year 2005 to 2013.
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Figure 3.8: Annual runo↵ with di↵erent EIA, TIA and vegetation settings. Three
TIA scenarios are: 12%, 25%, and 39%. Three EIA scenarios are: L (10%), M (50%),
H (100%). Four vegetation and irrigation scenarios are: chap (chaparral), oak (live
oak), grass (grass lawn without irrigation), and grass irr (grass lawn with irrigation).
The boxplot describes the variation of annual runo↵ across water years 2005 to 2013.
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Figure 3.9: Plant carbon with di↵erent EIA, TIA and vegetation settings across water
years 2005 to 2013. Three TIA scenarios are: 12%, 25%, and 39%. Three EIA scenar-
ios are: L (10%), M (50%), H (100%). Four vegetation and irrigation scenarios are:
chap (chaparral), oak (live oak), grass (grass lawn without irrigation), and grass irr
(grass lawn with irrigation).
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Figure 3.10: Soil respiration (gC/year/m

2) in di↵erent EIA, TIA and vegetation
settings across water years 2005 to 2013. Three TIA scenarios are: 12%, 25%, and
39%. Three EIA scenarios are: L (10%), M (50%), H (100%). Four vegetation and
irrigation scenarios are: chap (chaparral), oak (live oak), grass (grass lawn without
irrigation), and grass irr (grass lawn with irrigation).
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Figure 3.11: The box-plot is the soil nitrate (gN/m

2 ) across all EIA/TIA from water
year 2005 to 2013. The four vegetation scenarios: chap (chaparral), grass (grass lawn
without irrigation), grass irr (grass lawn with irrigation) and oak (coastal live oak).
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Figure 3.12: Soil nitrate (gN/m

2) across water year 2005 to 2013. Three TIA scenarios
are: 12%, 25%, and 39%. Three EIA scenarios are: L (10%), M (50%), H (100%).
Four vegetation and irrigation scenarios are: chap (chaparral), oak (live oak), grass
(grass lawn without irrigation), and grass irr (grass lawn with irrigation).
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Figure 3.13: Nitrate flux, (gN/m

2 ) across all EIA/TIA from water year 2005 to 2013.
The four vegetation scenarios: chap (chaparral), grass (grass lawn without irrigation),
grass irr (grass lawn with irrigation) and oak (coastal live oak).
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Figure 3.14: How nitrate is distributed in soil profile.
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Figure 3.15: Mean saturation deficit (in mm) across all EIA/TIA from water year 2005
to 2013. The four vegetation scenarios: chap (chaparral), grass (grass lawn without
irrigation), grass irr (grass lawn with irrigation) and oak (coastal live oak).
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Figure 3.16: Annual nitrate exporting flux (gN/m2/year) across water year 2005 to
2013. Three TIA scenarios are: 12%, 25%, and 39%. Three EIA scenarios are:
L (10%), M (50%), H (100%). Four vegetation and irrigation scenarios are: chap
(chaparral), oak (live oak), grass (grass lawn without irrigation), and grass irr (grass
lawn with irrigation).
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Figure 3.17: Mean annual stream nitrate concentration (mg/L) across water year
2005 to 2013. Three TIA scenarios are: 12%, 25%, and 39%. Three EIA scenarios
are: L (10%), M (50%), H (100%). Four vegetation and irrigation scenarios are: chap
(chaparral), oak (live oak), grass (grass lawn without irrigation), and grass irr (grass
lawn with irrigation).
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Figure 3.18: Summary of impact of an increase in TIA on nitrate concentration.
Upper arrow means increase, and down arrow means decrease.
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Figure 3.19: Summary of impact of an increase in EIA on nitrate concentration. Upper
arrow means increase, and down arrow means decrease.
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Figure 3.20: The decrease of EIA will divert more flow to the vegetated area, increase
the infiltration in vegetated area, a↵ect the nitrification and mineralization, increase
the plant uptaking of nitrate and increase the subsurface flow. Model results show
that the net e↵ect of the decrease of EIA is the decrease of nitrate concentration. Blue
arrow represents the water flow. Black arrow represents the nitrate flux.
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Table 3.1: Scenario settings
TIA EIA Vegetation
12% 10% Chaparral
25% 50% Grass(w/o irrigation))
39% 100% Oak
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Table 3.2: Vegetation properties used in RHESSys model
Vegetation Chaparral Grass Oak
Leaf Turnover
Rate

0.28 0.00 0.27

Livewood
Turnover Rate

0.25 0.00 0.5

Fine Root
Turnover Rate

0.3 0.5 0.27

Daily Mortality
Turnover

0.005 0.001 0.005

Leaf litter CN 90 40 90
Livewood CN 63.7 0.25 250
Fineroot CN 88 47.8 100
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Table 3.3: Long-term stable root depth for three vegetation types in model output
Chaparral Grass Oak
⇠4 m ⇠ 0.2 m ⇠ 4 m
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Table 3.4: The di↵erence of transpiration between low EIA and high EIA in series of
TIA settings (in mm/unit area)

TIA 12% 15% 39%
Chap 2 8 19
Grass 43 62 77
Grass irr 3 4 21
Oak 5 11 25
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Table 3.5: Mean plant carbon (kgC/m

2), soil carbon(kgC/m

2), litter
carbon(kgC/m

2) and soil respiration (gC/m

2
/year) for di↵erent vegetation types

Plant Carbon Soil Carbon Litter Carbon Soil Respiration
Chap ⇠ 3.7 ⇠ 1.1 0.045 ⇠ 0.05 122
Grass 0.13 ⇠ 0.9 ⇠ 0.02 70
Grass irr 0.14 ⇠ 0.9 ⇠ 0.03 72
Oak ⇠ 4.0 >1.2 0.06⇠ 0.07 120
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