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Brain Storm Optimization (BSO) is a swarm intelligence optimization algorithm inspired by the 

collective behavior of human beings in solving problems, i.e., brainstorming process. The 

algorithm was proposed by Y. Shi in 2011 inspired by such a behavior. Brainstorming is used 

when there is a difficult problem that cannot be solved by a single individual. Based on several 

tests, BSO has demonstrated great results to be a powerful optimization tool that can be used in 

electromagnetics and antenna engineering. To the best of our knowledge, this is the first time that 

BSO is applied to electromagnetic problem. BSO has been applied to common mathematical 

benchmark functions, the standard method of testing optimization algorithms. For 

electromagnetics and antenna applications, several representative examples such as a Yagi-Uda 

antenna, a Luneburg lens and others have been optimized using both BSO and PSO. Also, a design 

was optimized, prototyped and measured. Additionally, a novel binary version of BSO is proposed 

and applied with success to multiple antenna designs. 
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CHAPTER 1 

1 Introduction 

The goal of this first chapter is to provide a motivation behind the work in this thesis and 

the importance and the need of utilizing optimization tools. Then, a brief overview of global 

optimization will be given. Finally, we explain global optimization in the context of 

electromagnetic applications, and how one can use global optimization tools in conjunction with 

numerical electromagnetic solvers to obtain a good design. 

1.1 Motivation 

Engineers are challenged to push technology further every day. The challenge is to provide 

either a new design; or improve and modify already existed designs. In both cases, designers strive 

for the most optimum designs. With the growing power of computers, engineers are tempted to 

use tools that enables them to push the technology even further by utilizing the massive 

computation power. Besides the tools that enable engineers to model and simulated a very complex 

designs, the tools to optimize those designs will aid engineers to reach the best solutions to the 

most complex problems. The use of trial-and-error techniques can be very time consuming, 

especially, when the effect of different design parameters is unknown. Indeed, this is the case in 

electromagnetics and antenna engineering where it is usually hard to predict how sensitive the 

design to certain parameters and to what extent they affect the results. Additionally, solving an 

electromagnetic structure can take from few minutes to several hours depending on the size and 

complexity of the structure. Thus, the tools of global optimization provide a more systematic and 

better mechanism of finding the optimum designs.   
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1.2 Global Optimization 

An optimization is simply finding values of variables to obtain the optimum (maximum or 

minimum) of a fitness function of those variables that may or may not be subject to certain 

restrictions. The global optimization problem can be formulated as [1] 

 
Optimize (Minimize or Maximize) ( ),

Subject to ( ) , 1, ,

D

i i

f x x

g x b i m

∈
≤ = K

R
  (1.1) 

• 
1( , , )Dx x x= K  is a vector that contains the optimization variables. 

• ( )f x  is the fitness or objective function. 

•  ( )ig x  are constraint functions. 

For simplicity, in this work the optimization scheme will take the form of minimization such 

that the x∗  is called optimal or a solution of Eq. (1.1) if it has the smallest fitness value compared 

to other evaluated vectors. In most optimization applications, x is bounded between a lower bound 

minx and upper bound maxx . This results into a bounded D -dimensional search or solution space, 

and no solution outside of the search space will be tested. Moreover, inside the search space the 

solution may need to satisfy additional constraints ( )ig x that would define what so called a feasible 

space [2]. There are different ways of handling constraints and solutions outside the search space. 

In this work, solutions outside the feasible space will be treated the same as solutions outside the 

search space; those solutions will not be evaluated. Instead, there fitness function will return a very 

large value, when the optimizer is a minimizer, to indicate how bad the solution is. The reason 

behind this approach is sometimes evaluating the fitness function can be time expensive; a huge 

time can be saved using this type of handling. This mechanism of handling solution outside the 

bounded search space is usually referred to as invisible boundary condition.  
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There are various classes and types of optimization; however, the optimization of interest in 

this work is global optimization, which is a subclass of nonlinear optimization. Another subclass 

of nonlinear optimization is local optimization.  As the name indicates, local optimization is used 

to find a point that is locally optimal. This means that point does not necessarily have the lowest 

fitness value in the whole search space; i.e., this point is not guaranteed to be a global optimum.  

For example, 1x  in Figure 1-1 is a local minimum in its neighborhood.  Also, there exist a point, 

2x , that has lower fitness value. Another downside of local optimization method is that they require 

differentiability of the fitness function, and highly dependent on their initialization [2].  

On the other hand, global optimization methods try to find a point that is the global optimum 

of the objective function such as 2x  in Figure 1-1. Moreover, other advantages of global 

optimization are: derivatives are not required in global optimization; variables of optimization can 

be discrete; and a prior knowledge of the fitness function is not required. With the explosive growth 

 

Figure 1-1: Global and local optima of a one-dimensional function 
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of the computation power, various optimization algorithms have been proposed, and a very short 

list of them can be seen in Figure 1-2. 

1.3 Optimization in Electromagnetics  

It has been stated in section (1.2) that the fitness function dictates whether a certain solution 

is better than other. In electromagnetics, the fitness function represents the desired characteristics 

of the system in the optimization. The system could be an antenna, a microwave circuit, an object 

for radar applications. In antenna systems, an optimization could be used to achieve certain pattern 

characteristics such as Directivity, Sidelobe Level, Beamwidth, etc. In microwave circuits, an 

optimization could be used to improve network performance i.e. Gain, Reflection coefficients, 

Isolation, etc.  

The goal of optimization could be to achieve either a single criterion (objective) or multiple 

criteria (objectives). In the case of having only a single objective, the fitness function is rather 

 
Figure 1-2: A sample of optimization algorithms 
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simple which is the single objective of the optimization. For example, the objective is to optimize 

the impedance matching of an antenna. The impedance matching is represented by the reflection 

coefficient Γ  which is computed in general as [3] 

 L s

L s

Z Z

Z Z

−Γ =
+

  (1.2) 

where 
LZ  is the impedance of the load, and 

sZ  is the impedance of the source.  For antennas, the 

previous equation can be written as  

 0

0

in

in

Z Z

Z Z

−Γ =
+

  (1.3) 

where 
inZ  is the input impedance of the antenna, and 

0Z  is the characteristic impedance of the 

transmission line that delivers the power to the antenna. It is common to use the reflection 

coefficient in a decibel scale such that 

 1020logdBΓ = Γ   (1.4) 

 Therefore, the single-objective fitness function can be simply written as  

 
dBf = Γ   (1.5) 

On the other hand, when there is more than one goal in the optimization, the simple and 

most common case is casting the multiple objectives into a single fitness function by using a 

weighted sum of the different objectives.  For example. When, optimizing an antenna to achieve a 

lower sidelobe level while maintaining a high forward directivity, three are various way to write 

the fitness function. A simple way is to write the fitness function when the optimization is a 

minimizer as  

 
1 2( ) ( )f w D w SLL= − ∗ + ∗   (1.6) 
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where 1,2w  are weights of the objectives and it is chosen based on the application and the user 

preference. The minus sign in the first term is due the optimization is a minimizer, and the goal is 

to obtain a higher directivity D . Another way of writing the fitness function is as   

 1 2( )goalf w D D w SLL= ∗ − + ∗   (1.7) 

where goalD  is the directive that the user wishes to obtain.  In the case of having multiple objectives, 

the optimization could be very sensitive to the choice of fitness function [1]. Since in most 

electromagnetic applications one cannot predict the behavior of the fitness function, the fitness 

function is usually developed through experimenting such that it represents the relative importance 

of each desired objective [4].  

It can be seen from the previous discussion that the fitness function provides the interface 

between the physical problem and the optimization algorithm. The electromagnetic parameters 

needed to compute the fitness function such in Eq. (1.7) are usually obtained by solving Maxwell’s 

equations for the problem of interest. 

 
B

E
t

∂∇ × = −
∂

r
r

  (1.8) 

 
D

H J
t

∂∇ × = +
∂

r
r r

  (1.9) 

 D ρ∇ ⋅ =
r

  (1.10) 

 0B∇⋅ =
r

  (1.11) 

 To solve Maxwell’s equations, one needs to apply numerical technique for the problems 

of interest [5]. Examples of numerical techniques in electromagnets are the Finite Element Method 

[6, 7] , the Finite-Difference Time Domain [8, 9], and the Method of Moments [10, 11]. Therefore, 

combining the tool of optimization and the tool of numerical solvers can yields a huge benefit for 
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microwave and antenna engineers. Figure 1-3 demonstrate an example of the optimization process 

in electromagnetics by optimizing a patch antenna to achieve a good impedance matching at the 

desired frequency
cf . Also, the flowchart shows how the two tools of optimization and 

electromagnetic solvers can be linked using an interface program. 

 The use of optimization tool is very common in electromagnetics. Various optimization 

algorithms have been used in the field that yielded very exciting results. Examples of global 

optimization algorithms that have been successfully applied in various electromagnetic 

applications are shown below: 

• Genetic Algorithm [12, 13] 

o Yagi-Uda array [14]. 

o Array Thinning [15]. 

o Nonuniform Luneburg and Two-Shell Lens Antennas [16]. 

o RCS reduction of canonical targets using synthesized RAM [17]. 

• Particle Swarm Optimization [4, 18, 19, 20, 21, 22] 

o Yagi-Uda Array [23]. 

o Reconfigurable E-Shaped Patch Antenna [24, 25] 

o Optimization of a Spline-Shaped UWB Antenna [26]. 

• Invasive Weed Optimization [27] 

o Printed Yagi Antenna [28]. 

o Broadband Cosecant Squared Pattern Reflector Antenna [29]. 

o Large array synthesis [30]. 



8 

 

  

 

Figure 1-3: Flowchart of optimizing a patch antenna 
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1.4 Outline of Work 

A list of the main topics that will be presented in this thesis is shown in Figure 1-4. We 

started this chapter (Chapter 1) with a brief introduction of the concept of global optimization and 

how it can be used in the context of electromagnetic application. That was followed by a brief 

history of applying global optimization algorithms for electromagnetic applications. Moreover, a 

detailed overview of the process of using global optimization tools in conjunction with numerical 

solvers to obtain a satisfactory design was provided in this chapter. To the best of our knowledge, 

this is the first time that BSO is applied to electromagnetic problem. Hence, Chapter 2 will 

introduce the Brain Storm Optimization (BSO) algorithm. It will start with concept behind the 

algorithm. Then, it will provide detailed steps of the BSO algorithm. Moreover, definitions of the 

common terms to be used in the algorithm will be provided to help understand the algorithm more 

effectively. 

Chapter 3 will compare BSO with the Particle Swarm Optimization algorithm. The 

difference between how the two algorithms work is explained as well as the difference in 

terminology between the two.  Then, both algorithms will be applied to common mathematical 

benchmark functions, the standard method of testing optimization algorithms. In chapter 4, a six-

element Yagi-Uda antenna will be optimized using both BSO and PSO to demonstrate the 

performance of BSO, and its potential for electromagnetic applications. Chapter 5 will demonstrate 

the same idea, but with a nonuniform Luneburg Lens antenna in different configurations.  

Chapter 6 will introduce a novel binary version of BSO, and the process of transforming 

the concept of BSO into a binary language. The new parameters introduced along with the binary 

BSO (BBSO) will be explained as well as the selection of their optimum values. In chapter 7, 
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BBSO will be applied to a two-dimensional array thinning problem where the goal is to minimize 

the sidelobe levels to demonstrate the potential of BBSO of optimizing binary-valued variables. In 

Chapter 8, BBSO is applied to a patch antenna problem, where the patch is divided into discrete 

number of elements. The goal is to achieve a dual-band patch antenna by removing those elements 

from the patch.  

Finally, in Chapter 9, BSO is applied to a slotted patch antenna, then the optimized design 

is fabricated and measured. The goal is to achieve a dual-band patch antenna. This chapter shows 

how BSO can be used in the full design process that includes the use of global optimization tools, 

numerical electromagnetics solvers as simulation tools, design fabrication, and finally measuring 

the fabricated design. The final chapter, Chapter 10, will involve the final discussion of the results 

obtained throughout this thesis.  

 

Figure 1-4: Outline of work in this thesis 
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CHAPTER 2  

2 Brainstorm Optimization 

Brain Storm Optimization (BSO) is a swarm intelligence optimization algorithm inspired 

by the collective behavior of human beings in solving problems i.e. brainstorming process. The 

algorithm was proposed by Yuhui Shi in 2011 inspired by the behavior of the most intelligent 

creature [31]. Brainstorming is a common method used when a there is a difficult problem that 

cannot be solved by a single individual. The session starts with a group of people where each 

person contributes in generating ideas. Naturally, everyone has a different approach in solving the 

problem creating a set of diverse ideas. Therefore, the probability of solving the problem will 

increase as this interactive collaboration continues. In this process, ideas are generated either 

mostly based on the best existing ideas or as completely new ideas. In optimization, an idea 

represents a point in a search space. The BSO algorithm has three main operations; Grouping, 

Replacing, and Selecting. The concept of BSO is built on clustering or grouping similar ideas 

together and selecting the best idea in each cluster(group) as the cluster center. This will divide 

the search space into several sub-spaces; each cluster center represents a local optimum point in a 

local search space. In the Replacing operation, a cluster center is randomly chosen and replaced 

by a new random idea. In the Selecting operation, a cluster is selected according to the number of 

ideas it contains. The more ideas a cluster contains the higher the chance that cluster is selected. 

The selected idea in the selected cluster does not necessarily have to be the cluster center; 

sometimes, ideas that are not their cluster centers are selected.  Ideas can also be generated based 

on two randomly chosen clusters instead of one cluster. Finally, new ideas are created by adding 

Gaussian noise to the selected ideas. The application of BSO in multiple fields has shown to be 
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successful; examples of those applications includes: 

• Optimal satellite formation reconfiguration [32]. 

• The design of DC Brushless Motor [33]. 

• Economic dispatch considering wind power [34]. 

• Wireless sensor networks [35]. 

2.1 The Concept Behind BSO 

There are many tools and methods the are being used by various organizations to solve 

problems they face. One of the most common methods is brainstorming. Brainstorming is a widely 

used method to facilitate creative thinking among a group of people. Brainstorming was first 

developed and coined by Osborn in 1939 in his advertising company. He introduced his method 

of creative problem-solving in his book Your Creative Power [36]. Late in 1957, Osborn created 

a complete system and a detailed framework of brainstorming in his book Applied Imagination 

[37, 38]. 

When a company faces difficult problems that cannot be solved by a single individual, the 

company will call a group of people to brain storm. With each individual, from different 

background, contributing in generating ideas using different approaches, the probability of solving 

the problem will increase as this interactive collaboration continues. To illustrate this behavior 

with a simple example, 

1. Imagine person A and person B are facing a problem. They both cooperate to solve this 

problem.  

2. Person A comes up with idea X and person B comes up with idea Y.  

3. They compare ideas and decide that person’s A idea X is better.  
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4. Then, both persons will come up with ideas based on idea X; compare new ideas; decide 

which is better to come up with even more ideas. Sometimes, they combine their ideas for 

better solutions. 

5. Repeat until a satisfactory solution is obtained.  

The completer framework and process of brainstorming suggested in [31] is shown in Table 2-1. 

In a brainstorming process, the brainstorming group must obey the Osborn’s original four 

rules of idea generation in a brainstorming process. Osborn’s original rules are shown in Table 2-2 

[31]. The purpose of those rules is to generate ideas as diverse as possible. Rule 1 says there is no 

such thing as a bad idea. This rule encourages people produce ideas more often without having to 

worry about being criticized. Therefore, this rule can significantly help increase the diversity of 

the ideas. Rule 2 says all ideas need to be shared. This helps generate unusual ideas. Rule 2 

Table 2-1:  Steps in a Brainstorming Process 

Step Action 

1 A group of people with as diverse background as possible sit together. 

2 Generate ideas according to Osborn Rules. 

3 Problem owners are chosen to pick up the better ideas to solve the problem. 

4 

Use the ideas picked up by the owners in step 3 as a main source of generating 

more ideas. 

5 Randomly pick up ideas to generate more ideas similar to Step 3. 

6 Let the owners choose several better ideas based on the newly generated ideas. 

7 If no good enough solution is obtained, repeat steps 3-6. 
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supplements Rule 1 in generating diverse idea and avoid being trapped in a box. Rules 3 says to 

generate ideas based on already generated ideas and combine those already generated ideas. This 

rule is achieved by having problem owners in Step 3 of  Table 2-1. Finally, Rule 4 states the more 

ideas the better as quality will eventually come from quantity.  

2.2 BSO The Algorithm 

Since the first time Brain Storm Optimization algorithm was introduced in 2011 [31], there 

has been different versions of BSO proposed in the literature that each provides a different way to 

enhance BSO [39]. First, the original form of BSO will be discussed since it is new to the field of 

electromagnetic applications and antenna engineering. Then, in a later section, a suggested version 

that can be utilized for electromagnetic applications will be discussed. To facilitate the discussion 

and provide a clear picture, a list of common terminology that are used when discussing BSO is 

established. Those terms are listed and defined in Table 2-3. Some of those terms might be called 

differently in literature, and some might not be used in different versions of BSO. Figure 2-1 

provides a pictorial illustration of the solution generation process that follows the steps of Table 

2-1. The figure should provide a smooth transtion from the conept behind BSO to BSO the 

Table 2-2: Osborn’s original rules for brainstorming 

Rule Statement 

1 Suspend Judgment 

2 Anything Goes 

3 Cross-fertilize 

4 Go for Quantity 
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algorithm. 

2.2.1 The Original Form of BSO 

There are three major operations in BSO: Grouping, Replacing, and Selecting. After 

defining the problem to be optimized, and developing a fitness function, one is ready to apply BSO 

algorithm using the following steps.  

A. Population Initialization:  

This step is similar to most population-based algorithm. A population of N individuals/ideas 

is denoted as:   

 1 2[ , ,..., ] |1D

i i i iX x x x x i N= = ≤ ≤   

First, define the boundary of the solution space in each dimension. Then, an individual in the 

 

Figure 2-1: Basic idea generation concept in BSO 
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population is represented by a vector such that the thi  individual is initialized randomly throughout 

the D-dimensional search space as: 

 min max min( ), 1d d d d

ix x x x d Dβ= + − ≤ ≤   (2.1) 

max min( , )d dx x : are the specified minimum and maximum value for each thd  dimension in a D-

dimensional optimization. β  is a random number uniformly distributed between 0 and 1. 

B. Clustering Individuals:  

Basically, we want to divide the N individuals into M groups or clusters based on their location 

in the search space such that individuals that are closer to each other belong to the same cluster as 

shown in Figure 2-2. These clusters represent the problem’s local optima. There are various 

clustering algorithms that can be utilized in the brain storm optimization algorithm. In this work, 

the basic k-means clustering algorithm is utilized [40, 41].  

C. Rank Individuals: 

After evaluating individuals using a pre-defined fitness function, individuals are ranked in each 

cluster. The best individual in each cluster is selected to be the cluster center, such that for every 

cluster we have a cluster center. 

D. Disrupting Cluster Centers: 

This is a simple operation in BSO. To avoid deception, and increase population diversity, we 

occasionally replace a cluster center with a randomly generated idea. This operation is controlled 

by replaceP . A random number between 0 and 1 is generated. If the value is less than a probability 

replaceP ,  randomly generate an idea using Eq.(2.1) to replace the randomly selected cluster center. 
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This step helps individuals escape from local optima. replaceP  is recommended to be small to yield 

better results. The mean solutions obtained by BSO algorithm with different values replaceP  of    are 

within the same order of magnitude in most of the common benchmark functions [42].  

E. Updating Ideas:  

The most important step in BSO, or any optimization algorithm is how new solutions are 

generated. In BSO, it is divided into two parts: the ideas are generated based on either one cluster 

or two clusters. This operation is controlled by generationP . A random number between 0 and 1 is 

generated; if the generated number is less than generationP , the new idea is created based on one 

cluster. Otherwise, an idea is generated based on two clusters: 

 

Figure 2-2: Simple grouping of individuals in 2-D space into 3 groups 
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() generationoneCluster rand P

twoCluster otherwise

<



  (2.2) 

Generating an idea from one cluster improves the exploitation ability in the algorithm by having 

the solution converges within a confined solution region. On the other hand, generating an 

individual from two clusters improves the exploration ability and avoid deception. It has been 

shown that a relatively smaller value of generationP  might improve the results as it increases the 

exploration ability [42].  

I. One-Cluster idea generation: 

A cluster is selected according to the number of ideas it contains. The more ideas a cluster 

contains the higher the chance that cluster is selected. Then, an idea is generated either on the 

cluster center of random individual in the same cluster.  The choice of selecting the cluster center 

or random individual in the cluster is controlled by 
oneClusterP . A random number between 0 and 1 

is generated. If the number is smaller than a pre-determined probability 
oneClusterP , choose the cluster 

center. Otherwise, randomly select an individual in the same cluster. In either case, the idea 

generation as follows: 

 * N( , )d d

new selectedx x ξ µ σ= +   (2.3) 

  Where d  is the dimension index, N( , )µ σ  is a Gaussian random noise with mean µ  and 

variance σ , and ξ  is a weighting coefficient that is calculated as follows: 

 2( ) logsig * (),

T
t

t rand
k

ξ
 − 

=  
 
 

  (2.4) 
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where logsig() is a logarithmic sigmoid transfer function. T is the maximum number of iteration,  

t  is the number of current iteration, and k is for changing logsig() function’s slope. The weighting 

coefficient will have larger values during the initial iterations compared when the algorithm 

reaches its final iterations. This will strengthen the exploration property during the beginning of 

the search. As the search goes on, it will be more in favor of exploitation property.  

II. Two-Cluster idea generation: 

This is similar to the previous step. However, the two clusters are chosen randomly, whereas 

in the one-cluster idea generation, we chose the cluster based on a probability that it is proportional 

to the number of ideas it contains. Then, either select their centers or random individuals in the 

same clusters.  Choosing between cluster centers and random ideas is controlled by 
twoClusterP  in the 

same manner of the one-cluster idea generation strategy is controlled by
oneClusterP . Then, the two 

selected individuals are combined by a weighting sum: 

 [ ]1 2* 1 *d d d

selected selected selectedx R x R x= + −   (2.5) 

where R is a random number between 0 and 1. Then, the new idea is created using Eq.(2.3). The 

BSO algorithm can also be extended to use more than two clusters in generating new ideas to make 

a more complex algorithm [31].  A flow chart of the discussed steps in the BSO algorithm is shown 

in Figure 2-3. 
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Table 2-3: BSO Dictionary 

Term Definition 

Individual/Idea 

Represents a point in the search space that is evaluated by the 

fitness function.  

Population Represents the total ideas  used in the optimization.  

d

ix  Represents the location of  i th individual in the d th dimension.   

Fitness Function 

Represent the quality the generated individual in the current 

population.  

Cluster 

Represents a group of individuals/ ideas that are positioned 

closely together.  

Cluster Center Represents the best idea/individual in a cluster.  

replaceP  

Pre-determined probability to determine whether to replace the 

cluster center with a randomly generated individual/idea. 

generationP  

Pre-determined probability to determine whether to generate 

individuals/ideas based on one or two clusters. 

oneClusterP  

Pre-determined probability that is used, when one cluster is used, 

to determine whether the cluster center or another individual/idea 

in the same cluster. 

twoClusterP  

Pre-determined probability that is used, when two clusters are 

used, to determine whether the cluster center or another 

individual/idea in the same cluster. 

ξ  A weghting coeffecinet to control the speed of convergence. 
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Figure 2-3: Flowchart of BSO Algorithm  
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2.2.2 Modifying BSO For Electromagnetic Problems 

There have been many works suggesting changes to BSO for better performance. Some of the 

attempts to improve BSO are: 

• Brain storm optimization algorithm for multi-objective optimization problems [43]. 

• A modified brain storm optimization [38]. The authors introduce a new grouping and 

solution generation strategies. 

• Brain storm optimization algorithm with modified step-size and individual generation [44]. 

•  Maintaining population diversity in brain storm optimization algorithm [45]. The authors 

introduce two kinds of partial re-initialization strategies. 

• Brainstorm optimization with Chaotic Operation [46].  

• Brainstorm optimization algorithm with re-initialized ideas and adaptive step size [47]. 

• An improved brain storm optimization with differential evolution strategy [48]. 

• Random grouping brain storm optimization algorithm with a new dynamically changing 

step size [49]. 

Modifying the step function Eq.(2.4) has been proven to improve the performance of BSO [44، 

48، 47]. The suggested step function is 

 ( ) ()*exp 1
( ) 1

T
t rand

T t
ξ  

= − − + 
  (2.6) 

where ()rand is a random number between 0 and 1. T is the maximum number of iteration, t is 

the number of current iteration. The modification is aimed at improving the balance between 

exploration and exploitation at different searching generations. The new step function provides a 

smooth transition between the exploration and exploitation stages. Figure 2-4 shows the difference 
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between the two step functions without multiplying by a random number to illustrate the behavior 

of the two step functions. 

 Another modification to BSO is also to the step function; there is a big flaw in the solution 

generation mechanism in the original BSO that is shown in Eq. (2.3).  The disadvantage of the step 

function in Eq. (2.6) returns a value within (0,1) and random(0,1) is also a random value within 

(0,1), their product ξ  is still within (0,1).  Then, the step functionξ  is multiplied by a Gaussian 

random value with mean of 0 and variance of 1 in Eq. (2.6). This random noise is with very high 

probability within the range (-3,3), which may be not efficient enough for global search when the 

search space is very large as pointed out in [47, 38]. This is illustrated in Figure 2-5. Also, this 

applies to when the search is too small; solutions in the first iterations will be outside the search 

space. Hence, this approach is very inefficient. To solve this problem, there needs to be a way to 

take the search space into consideration during the solution generation strategy. In [47], it is 

  

(a) Eq.(2.4), original BSO with k=20. (b) Eq.(2.6), the new suggested step function 

Figure 2-4:  Step function comparison without multiplying by a random number. 
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proposed to multiply the step function ξ  by a new parameter, α  that is proportional to the search 

space size. This will transform Eq. (2.6) to  

 ( ) () exp 1
( ) 1

T
t rand

T t
ξ α 

= ⋅ − ⋅ − + 
  (2.7) 

In the is work, the α will be set to  

 max min

1
( )

4
x xα = −   (2.8) 

where 
maxx  and 

minx  denotes the upper bound and the lower bound in the search space, 

respectively. This will ensure that all the solution space is covered during the initial iterations 

where exploration is encouraged. A smaller value of α  can lead to a faster convergence rate. 

However, this also means the distance among ideas will be very close to each other, which might 

 

Figure 2-5: Original BSO solution generation in a large search space 
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lead the algorithm to get trapped in a local optimum due to lack of diversity. Unless otherwise 

stated, values of intrinsic BSO parameters that will be used throughout the thesis is listed in Table 

2-4.   

 

  

Table 2-4: BSO Parameters Used in Thesis  

Parameter Value 

replaceP  0.2 

generationP  0.8 

oneClusterP  0.4 

twoClusterP  0.5 

Clusters 5 

µ  0 

σ  1 
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CHAPTER 3 

3 Comparison Between BSO and PSO 

Due to the stochastic nature of global optimization algorithms, it is difficult to provide an 

analytical proof that one optimization algorithm’s convergence is superior to another optimization 

algorithm’s convergence. Part of the difficulty resides in the lack of knowledge on the behavior of 

the fitness function in most applications. Although the behavior of BSO in a continuous space has 

been analyzed in [50], the analyzed behavior is based on the number of generation goes to infinity 

when the interest of this work is the convergence in as few iterations as possible. Nonetheless, 

population-based optimization algorithms have gained popularity in solving a lot of optimization 

problems. Different types population-based algorithms have emerged in the recent years such as 

nature-inspired optimization algorithms. Swarm intelligence algorithms is one form of nature-

inspired optimization algorithms in which each individual in the population represent a point in 

the search space. One of the most famous optimization algorithms in the EM community is particle 

swarm optimization (PSO) algorithm [51]. One of the key features of PSO is its implementation 

simplicity compared to any other algorithm. PSO has been introduced thoroughly to the EM 

community by Robinson and Rahmat-Samii in 2004 [4]. Furthermore, PSO has been applied to 

many applications in EM problems in the literature [22, 24, 52, 21]. Hence, PSO will be used as 

gauge to measure the performance of BSO and comparing different aspects such as convergence 

speed. 

In this chapter, firstly, an analogy between PSO and BSO will be discussed to further 

explain the behavior of BSO, and facilitate the transition from PSO to BSO, and vice versa. This 
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will illustrate how each algorithm uses its inherent characteristics to optimize a problem. Next, to 

compare the ability of algorithms, one section will be dedicated to the use sets of mathematical 

benchmark functions to provide a general insight of both algorithms. In later chapters, both 

algorithms will be applied to electromagnetic applications, the real purpose of this work. 

3.1 Particle Swarm Optimization  

The use of particle swarm optimization (PSO) is very common in electromagnetic 

applications; however, a short introduction of the PSO algorithm will be given before making a 

comparison between BSO and PSO.  PSO mimics the social behavior of swarm of bees searching 

for flowers.  Each bee relies on its own past experience as well as the experience of other bees in 

the swarm. The bee tries to combine its knowledge with the knowledge of the swarm to find the 

location that is abundant with flowers. Thus, two forces attract a bee in the swarm; the force of the 

best location found personally, and the force of the best location found by the entire swarm. The 

major advantage of PSO the algorithm is the simplicity of its implementation. However, some key 

terms used to describe PSO is explained in Table 3-1.  

The beauty of PSO is the whole algorithm can be explained by two equations. The two 

equations represent the solution generation strategy in PSO i.e. how a solution is generated for 

each particle in the optimization. The two equations can be written as  

 1

1 2* *( ) *( )t t t t t t

best bestv w v c R P x c R G x+ = + − + −   (3.1) 

 1 1t t tx x v+ += +   (3.2) 

Where 1tv +   is the velocity of the particle at iteration 1t + , 1tx + is the particle’s position or 

coordinate in the search space, 
bestP  is the best solution found by the particle, 

bestG  is the best 

solution found by the entire swarm, 
1c and 

2c are weighting factors to determine the amount 
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influence by the personal experience of the particle and the experience of the entire swarm, R  is 

random number between 0 and 1, and w  is the inertial weight that controls the amount of 

adjustment that a particle makes when looking for new solutions.  After random initialization of 

the swarm in the beginning, each particle is updated using Eq. (3.1) and (3.2) for the desired 

amount of iterations or good enough solution is found.  

3.2 Algorithm Comparison  

The purpose of this section is not to show which is better, but to draw a map that helps 

translate from PSO to BSO. They both share the origin of population-based algorithm, and their 

populations are initialized in the same manner. However, they are both built on different 

foundation, or they use different species. The essence of the BSO algorithm is grouping or 

clustering the population. The clustering operation in BSO makes it more complex than PSO in 

which one or two equations are needed to control most of the algorithm. This difference makes 

Table 3-1: PSO Dictionary 

Term Definition 

Particle/Agent 

One single individual in the population (swarm). It represents a point in 

the search space that is evaluated by the fitness function. 

Swarm The entire population of particles 

Pbest 

The personal best of a particle. The location of the best fitness returned 

for a certain particle  

Gbest 

The global best of the swarm. The location of the best fitness returned 

for the entire swarm  
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BSO more expensive computationally. There have been efforts made to remedy this problem by 

introducing a new grouping operator [38]. The positive side is that most electromagnetic problems 

are computationally expensive, which makes the effect of the clustering operation completely 

negligible. Hence, any inherent computational time of the algorithm can be neglected when applied 

for electromagnetic applications.      

When investigating any optimization algorithm, there are two important features that define 

the algorithm. The two features are exploration and exploitation. In other words, how an algorithm 

diverges to avoid deception and escapes local minimum traps, and how it converges towards an 

optimal solution as well as how an algorithm maintains a healthy balance between the two features. 

First, when a particle in PSO moves more towards its personal best, then the algorithm is leaning 

to explore other solutions. In the case of BSO, exploring is achieved by different operations: adding 

noise when generating ideas, disrupting the cluster center; and two-cluster idea generation [45]. In 

the other hand, when a particle in PSO moves more towards the global best, then the algorithm is 

leaning to exploit what it could be the global minimum (or maximum). In the case of BSO, 

converging towards the best solution is achieved via clustering similar ideas together, which is 

strengthened by one-cluster idea generation. 

Maintaining a good balance between the ability is important to obtain good results. PSO has 

been investigated by many researchers to obtain an optimal balance. In PSO, the convergence is 

controlled through adjusting the inertial weight w . In the case of BSO, the parameter to control 

the two abilities were discussed in detail in section 2.2 . However, there yet need to be further 

investigation in how much control these parameters have under different conditions. A summary 

of comparison between BSO and PSO is shown in Table 3-2. 
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This is a small comparison between the basic BSO and the basic PSO. PSO is much older 

than BSO, 16 years older, and has received the attention of many engineering communities. Thus, 

PSO has had a big window to improve. BSO remains young with the opportunity of further 

improvements.  

3.3 Mathematical Benchmark Function Comparison  

Traditionally, when introducing a new optimization algorithm, it is compared with different 

algorithms using different common benchmark functions. It is a tradition in the literature to 

validate and demonstrate optimization algorithms. Mathematical benchmark functions are a good 

way to test and compare different optimization algorithms because they have a fast computation 

time, which is not the case in electromagnetic applications. This allows us to preform thousands 

of tests on those function in a matter of few seconds. Hence, researchers use benchmark test 

Table 3-2: Differences between BSO and PSO 

Aspect BSO PSO 

Population Initialization Random Random 

Updating Individuals Gaussian Noise  Particle velocity 

Controlling Convergence 

Speed 

Weghting Coeffecinet ξ  Inertial Weight 

Achieving Exploitation 

- Clustering   

- One-Cluster Generation 

Moving towards the global 

best 

Achieving Exploration   

- Disrupting the center 

- Two-Cluster Generation 

Moving towards the 

personal best 
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functions as a technique to test and compare global optimization algorithms. With the increasing 

number of global optimization algorithms throughout the years, the number of those test functions 

to validate those algorithms are also increasing [53]. 

The standard procedure for testing global optimization algorithms is to run those algorithms 

many times on each benchmark function, and average those runs to see the performance of the 

algorithm. Most of those benchmark functions are to be minimized. The method of testing many 

runs might lead to undesired results when an algorithm is not guaranteed to converge to a global 

optimum. This happens when the values between the premature runs and the optimized runs are 

different by several orders of magnitude. A one premature run out of total of 50 runs can cause the 

average of those runs to be equal to it, which does not give an efficient insight of the algorithm 

performance. This behavior can be illustrated with the Schwefel function that is defined in D -

dimensional space as   

 
1

( ) 418.9828872724339 [ sin( )]
D

sch i i

i

f x D x x
=

= ⋅ −∑   (3.3) 

Figure 3-2 shows the Schwefel function in two-dimensional space. The function is usually 

evaluated in the search space [ 500,500],ix ∈ −  for all 1, ,i D= K . The function has a global 

minimum at 420.96874636, 1, , .ix i D= ∀ ∈ K  

Using BSO with parameter of 4 individuals and 2 clusters, the two-dimensional Schwefel 

function is optimized 50 times for maximum number of iterations of 2000.  Figure 3-1a shows all 

the 50 runs of the Schwefel function optimization. Out of the 50 runs, 14 runs have premature 

convergence, which indicates that BSO fell into a local minimum trap. Figure 3-1b demonstrates 

the mentioned problem of the premature runs dominating the converged runs despite the fact they  
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(a) All 50 Runs Displayed (b) Averaging with premature convergence runs  

 

(c) Averaging without the premature runs (d) All of the 50 runs with the averaging in (c) 

Figure 3-1: Comparison of different averaging procedures 
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Figure 3-2: Two-Dimensional Schwefel function 
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are fewer than the converged runs. To remedy this problem, the average fitness of the runs is 

plotted with omitting the permute runs as shown in  Figure 3-1c. Therefore, any outliers with two 

order of magnitude higher fitness function than the best-found solution are not included when 

calculating the average fitness. The effect of doing that can be seen in Figure 3-1d where the 

average fitness provides a better insight of the optimization algorithm combined with the 

knowledge of the number of premature runs. This method will be used when BSO and PSO are 

applied to set of mathematical benchmark functions.   

The selected test functions in this section are labeled with different properties such as 

unimodal, multimodal, well-conditioned, ill-conditioned, separable, non-separable, … etc. Table 

3-3 shows the selected test functions that are used in this section. The sphere function is the only 

function that is unimodal while the rest of the functions listed in Table 3-3 are multimodal. It 

Table 3-3: Benchmark Testing Functions 

Name Function Search Space 

Sphere 
2

1

( )
D

sph i

i

f x x
=

=∑  [ 100,100]D−  

Rosenbrock 
2 2 2

1 1

2

( ) [(1 ) 100( ) ]
D

ros i i i

i

f x x x x− −
=

= − + −∑  [ 10,10]D−  

Rastrigin 
2

1

( ) [ 10 cos(2 ) 10]
D

ras i i

i

f x x xπ
=

= − +∑  [ 5,5]D−  

Griewank 
2

1 1

1
( ) [ ] [cos( )] 1

4000

DD
i

gr i

i i

x
f x x

n= =

= − +∑ ∏  [ 600,600]D−  

Schwefel 
1

( ) 418.9828872724339 [ sin( )]
D

sch i i

i

f x D x x
=

= ⋅ −∑  [ 500,500]D−  
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should be noted that Rosenbrock function is a multimodal function except when it is two 

dimensional where the Rosenbrock function is unimodal [54].  Figure 3-3 shows each function 

visualized in a two-dimensional space. The Rosenbrock function has a global minimum at 

1, 1, ,ix i D= ∀ ∈ K , The Schwefel function has a global minimum at 420.96874636,ix =

1, ,i D∀ ∈ K  while the rest of the listed functions have global minima at 0, 1, ,ix i D= ∀ ∈ K . All 

the test functions have the same number of dimensions 50D = , the same number of population 

100N = , and both algorithms will run for 2000 iterations. This will result into 20000 function 

evaluations. Usually, researchers go for much higher number of function evaluations, 10000* D .  

However, this luxury cannot be afforded into electromagnetic applications due to the amount of 

time required to evaluate the fitness function as mentioned before. The lower number of iterations 

will probably cause the algorithms to converge prematurely towards a local optimum. Nonetheless, 

the purpose is to compare the performance of BSO with the well-established PSO algorithm. Also, 

both BSO and PSO will have invisible boundary condition. The parameters used for BSO and PSO 

algorithms are listed in  Table 2-4 and Table 3-4, respectively.  

It should be noted that when analyzing at the results in Figure 3-4 that the y-axis is different 

Table 3-4: PSO Parameters 

Parameter Value 

1c  , 
2c  2.0 

w  0.9-0.4 

maxV  
max min

1
( )

2
X X−  
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in each case; the scaling is different in each plot. Generally, it can be seen that the BSO performs 

the same as PSO for the tested functions. With the exception for the Griewank function, both 

algorithms achieve optimum values of the same order of magnitude in each tested benchmark 

functions. Moreover, it can be noticed that both BSO and PSO have identical convergence speed 

for all functions. The only function where both algorithms perform differently is the Griewank 

function. BSO found an optimum point with value around 310− while PSO found an optimum point 

with value around 510− ; however, 28 runs converged prematurely for PSO optimization.  

In general, the results show that BSO can perform at least as good as PSO; both have the 

same convergence speed. The goal was to test the algorithm using fewer number of function 

evaluations than the numbers used in the literature. This difference in the optimization 

environment explains why the overall results of the algorithm are not comparable to the ones 

published in the field of optimization. In the next sections BSO will be tested using real-world 

electromagnetic applications where time and resources are limited, and no prior knowledge of the 

behavior of the fitness function. 
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(a) Sphere Function (b) Rosenbrock Function 

  

(c) Rastrigin Function (d) Griewank Function 

 

(e) Schwefel Function 

Figure 3-3: Two-dimension visualization of the testing functions 
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(a) Sphere Function (b) Rosenbrock Function 

  

(c) Rastrigin Function (d) Griewank Function 

 

(e) Schwefel Function 

Figure 3-4: Optimization results for the benchmark functions   
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CHAPTER 4 

4 Six-Element Yagi-Uda Optimization 

4.1 Theory and Design of Yagi-Uda Antenna 

Yagi-Uda antenna is a directional antenna that is practical for a wide range of frequencies 

(3-3000 MHz). The antenna is famous for its use as a home tv antenna. The antenna was first 

introduced in Japanese by Shintaro Uda of Tohoku Imperial University, Japan [55]. Then, 

reintroduced and explained by Hidetsugu Yagi [56], which is considered the more famous paper 

[57, 58]. It consists of a number of linear elements in parallel only one of which is excited. A 

folded dipole is usually used as the feed element; the feed element is also called a driven element. 

The rest of the elements are parasitic radiators that transmit energy by the currents that are induced 

by the mutual coupling of the driven element with these elements. The purpose of the parasitic 

elements is to make the antenna have an end-fire radiation pattern. Therefore, the elements that are 

 
Figure 4-1: Three-element Yagi antenna that operates at 50 MHz. The length of longest 

element is 3.1 m [80]. 
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at the side of beam from the driven element are called directors while the ones at the opposite side 

act as reflectors. A typical configuration of Yagi-Uda antenna can be seen in Figure 4-2.  

 The general design of the Yagi-Uda antenna is that the length of the driven element is 

slightly less than / 2λ  to achieve resonance in the presence of parasitic elements. Also, the 

directors’ lengths are smaller than the intended resonant length, in the range of 0.4 - 0.45λ . Hence, 

the directors will have capacitive impedance i.e. the current leads the voltage. The distance 

between the directors is in the range of 0.3 - 0.4λ . Moreover, the lengths and the spacing of the 

direction are not necessarily uniform. Additionally, the reflector’s length is slightly greater than 

/ 2λ , which makes the impedance of the reflector inductive. Hence, the current on the reflector 

lags the voltage induced. With proper elements spacing, the directors form an array with equal 

progressive phase shift. Therefore, the Yagi-Uda antenna is designed as a travelling wave antenna 

[58].  

 
Figure 4-2: Yagi-Uda N-element configuration 
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 The mathematical analysis of the Yagi-Uda Array is based on solving the Pocklington’s 

Integral Equation for the total field generated by an electric current source radiating in free space 

using Method of Moment as presented in [58] 
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Using integration by part, and assuming the current at the end of each wire vanish, this leads to 
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The essence of MoM is discretizing the geometry of interest into smaller segments. For small 

dimeter wires, which have been discretized into N small segments, the current on the thn element 

can be written as 
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After substituting the above equation and considering the interaction of the discretized elements 

on the same wire and with elements on the other white, a system of linear equations is created. The 

total field will take the shape [58] 
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4.2 Setting Up the Optimization Problem  

In this section, The Yagi-Uda antenna will serve as a mean of comparison between BSO 

and PSO. The radiation pattern of a 6-element Yagi-Uda antenna is to be optimized, namely the 

forward directivity and the front-to-back ratio. Those characteristics are controlled by the lengths 

of the all elements, as well as their spacing. The Yagi-Uda antenna has been optimized using 

various optimization techniques [14, 23, 59]. In this optimization, there are two goals to be 

achieved within the performance of the antenna; maximizing directivity and maximizing the front-

to-back ratio. Generally, front-to-back ratio is compromised for forward directivity i.e. receives 

lower weight in optimization than forward directivity. However, for the purpose of the comparison 

in this section, the front-to-back ratio will receive high focus in the optimization to see how far 

each algorithm can go while obtaining higher directivity. Hence, the fitness function to optimize 

the two parameters is: 

 
2(13.5 ) / ,Yagif D F B= − −   (4.8) 

where D  stands for the forward directivity in dB, and /F B stands for the front-to-back ratio. This 

function will be minimized by both BSO and PSO. The variables that are used for the optimization 

are: all the six elements’ lengths 
nd , and their relative spacing from each other s , as shown in 

Figure 4-2. 
1d  refers to the length of the first element, which is the reflector. 

2d  refers to the length 

of the second element, which is the driven element (folded dipole in this case). And, 
12s  refers to 

the spacing between the first and the second element; the same notation is used for the rest of the 



42 

 

elements. Therefore, the optimization will be searching an eleven-dimensional search space (6 

variables for lengths, and 5 for spacings). Next, the solution space is limited to  

 
12

(0.42 ,0.52 ), 1, 2

(0.4 ,0.495 ), 3, 4,5,6

(0.15 ,0.45 )

(0.15 ,0.45 ), 23,34, 45,56.

i

j

kl

d i

d j

s

s kl

λ λ
λ λ

λ λ
λ λ

∈ =
∈ =

∈
∈ =

  (4.9) 

 As for the parameters used both algorithms, BSO and PSO will have the same number of 

population of 25N = , and will run for same number of iterations of 200Max Iteration = . Other 

intrinsic parameters used for BSO and PSO algorithms are listed in Table 2-4 and Table 3-4, 

respectively. The Yagi-Uda antenna is simulated using MATLAB’s Antenna Toolbox™ [60].  

4.3 Optimization Results 

The optimized design variables of both algorithms are shown in Table 4-1. Due to space 

limitation the variables are broken into two tables Table 4-1a shows the elements’ lengths and 

Table 4-1b shows the elements’ spacings. The convergence of both algorithms is shown in Figure 

4-3. Both BSO and PSO had the same convergence speed until the last few iterations where BSO 

was able to achieve relatively better fitness function. Both designs have almost the same forward 

directivity of 11.92 dB for BSO and 11.789 dB for PSO. On the other hand, BSO was able to 

achieve higher front-to-back ratio of 62.46 dB about 3 dB higher than what PSO was able to 

achieve which is 58.98 dB. Figure 4-4 shows the configurations of both designs relative to each 

other; the reflector of both design overlaps, so it is hard to distinguish both designs’ reflectors. It 

can be seen that the lengths of both designs are somewhat similar while there are some differences 

in the spacing between elements. Figure 4-5 and Figure 4-6 shows the radiation pattern in the xz −

plane and yz − plane, respectively.  
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 BSO has demonstrated its potential to be a solid tool for optimization based on its 

performance with respect to the well-known algorithm PSO. BSO has a similar convergence speed 

to PSO and was able to achieve better results in the Yagi-Uda example. In the next chapter, BSO 

will applied to an additional example, and compared with PSO to provide more insight into the 

performance of BSO.  
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Table 4-1: Final Design Parameters of the Yagi-Uda Antenna by BSO and PSO. (a) 

Elements Lengths and (b) Elements Spacings 

 1 /d λ  
2 /d λ  

3 /d λ  
4 /d λ  

5 /d λ  
6 /d λ  

BSO 0.48688 0.49017 0.41129 0.42589 0.40806 0.41431 

PSO 0.48957 0.48814 0.43899 0.43486 0.42028 0.43238 

(a) 
 

 12 /s λ  
23 /s λ  

34 /s λ  
45 /s λ  

56 /s λ  

BSO 0.18591 0.18815 0.23285 0.28333 0.33737 

PSO 0.16346 0.17453 0.19566 0.33139 0.24800 

(b) 

 

Figure 4-3: Comparison of BSO and PSO convergence 
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Table 4-2: Pattern Results of Six-Element Yagi-Uda Antenna for Both Designs 

 Forward Directivity (dB) Front-to-Ratio (dB) 

BSO 11.922 62.46 

PSO 11.789 58.98 

 

 

 

Figure 4-4: Final design configuration of both BSO (blue) PSO (red). 
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(a) (b) 

Figure 4-5: The radiation pattern in the xz-plane. (a) The whole pattern is shown, (b) 

only including values above -30 dB. 

 

 
 

(a) (b) 

Figure 4-6: The radiation pattern in the yz-plane. (a) The whole pattern is shown, (b) 

only including values above -30 dB. 
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CHAPTER 5 

5 Nonuniform Luneburg Antenna  

 In 1944, R. K. Luneburg proposed a special type of spherical lenses known as Luneburg 

Lens that has special focusing properties [61]. Luneburg lenses have received the interest of 

antenna designers; they have been investigated and applied to a variety of applications such as 

multi-beam scanning  [62, 63, 64, 65, 66, 67, 68, 16].  This chapter is inspired by the work in [16], 

where a nonuniform Luneburg Lens was optimized using Genetic Algorithms (GA) to obtain a 

desirable radiation characteristic with less number of spherical shells. 

An overview of the concept and theory of Luneburg Lens will be discussed as well as 

applying the mode-matching technique to solve for the electric field in the presence of multilayer 

dielectric sphere. Then, BSO will be applied to optimize a nonuniform spherical lens antenna in 

different configurations. Using the same procedure as Chapter 4, PSO will also be applied to the 

 
Figure 5-1: AT&T's Giant Eyeball Antenna (also known as the Luneburg Lens 

Antenna) [79]. 
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same deigns in order to test the performance and the ability of BSO.  

5.1 Theory and Application of Luneburg Lens 

A Luneburg lens is a symmetrically dielectric sphere that has a decreasing refractive index 

radially out from its center. The dielectric constant 
rε  of an ideal Luneburg lens starts from 2 at 

the center of the sphere then continuously decreasing to 1 at the outer surface. The behavior of 

permittivity of the sphere
rε is expressed as: 

 

2

( ) 2 , (0 ),r

r
r r a

a
ε  = − ≤ ≤ 

 
  (5.1) 

where a  is the radius of the sphere. This gradual variation of the refractive index allows Luneburg 

Lens to of transform the point-source radiation into the plane wave as seen in Figure 5-2 and vice 

versa. The spherical symmetry of Luneburg Lens allows to use a single lens with multiple feeds 

looking in different direction providing a wide-angle and multi-beam scanning systems. Luneburg 

lens can also be used as a radar reflector by metalizing part of the surface.   

 
Figure 5-2: Illustration of a ray picture of Luneburg Lens. 
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 The technology of constructing the radial continuous variation of the permittivity lenses 

does not exist yet. In practice, Luneburg lens is constructed using a discrete number of 

homogeneous spherical shells that has the same behavior of decreasing permittivity from the most 

inner shell to the most outer shell as seen in Figure 5-3. Moreover, the permittivity profile of an 

ideal Luneburg compared with a discrete (5-layer and 10-layer) uniform multi-shell spherical lens 

is shown in Figure 5-4.   

 
Figure 5-3: Luneburg Lens (Theoretical and its Practical Implementation) 

 

 
Figure 5-4: Permittivity distribution of ideal Luneburg Lens (continuous “straight line”) 

vs practical approximation (discrete “dashed line”)  
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5.2 Mode-Matching Solution of Luneburg Lens 

The properties of Luneburg lens are a result of using the principle of ray-tracing techniques 

and Fermat’s principle or what is known as Geometrical optics (GO) [61]. However, GO is not the 

optimum method of analyzing when the dimensions of the lens are comparable to the wavelength. 

Therefore, when designing and analyzing those lenses at microwave frequencies, one needs to 

perform more accurate electromagnetic analysis. There are multiple studies on analyzing the 

properties of Luneburg lens using exact electromagnetic solution of inhomogeneous dielectric 

lenses [69, 70]. Furthermore, the Luneburg Lens model in this chapter is constructed using a 

discrete number of homogeneous spherical shell, which has been analyzed in [68, 64]. The analysis 

method in this chapter is the same method that is found in [68], which is based on the spherical 

vector wave function that uses mode matching technique to solve such a boundary value problem 

in which the solution of the field is obtained from the dyadic Green’s function [71]. The total 

electric field in the presence of such Luneburg lens is written as  

 ( ) ( ) ( ) ( ) ( ), ' . ' '
inc scatt

e s
V

E r E r E r G r r j J r dωµ ν = + = −
 ∫

ur r ur r ur r r ur ur ur
  (5.2) 

 where 
inc

E
ur

is the incident field; 
scatt

E
ur

is the scattered field; ( ), 'eG r r
r ur

 is the total dyadic 

Green’s function responding to an infinitesimal dipole; J
ur

is the current density of the source; 
sµ  

permeability of region s containing the current source. The scattered field 
scatt

E
ur

in the thi region 

due to the arbitrary infinitesimal dipole with current moment ˆIl p in the thj region can be 

expressed as [68, 16] 
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where M
uur

and N
uur

are the spherical vector wave function;
iβ  and jβ  are the complex propagation 

constant of regions i and j , respectively. , , , andni ni ni niA C B D  are unknown coefficients that are 

determined by applying boundary conditions at the inferences of the dielectric shells.   

5.3 Optimizing Luneburg Lens 

The Luneburg lens serves as an interesting example to test the capability of BSO. The 

structure of the optimization problem is the same exact found in [16] in which Genetic Algorithm 

is applied. When comparing a five-shell of 30λ - diameter Luneburg lens with a ten-shell lens that 

has the same diameter, the later design has a superior radiation performance. The thickness and 

the material permittivity of each shell of a five-shell 30λ - diameter Luneburg lens is shown in 

Table 5-1. In general, those type of lens antennas is fed by horn antennas due to their end-fire 

radiation pattern. In this work, the feed is modeled using four infinitesimal dipoles that produce an 

end-fire radiation pattern. The configuration of a five-shell lens with the feed is shown in Figure 

5-5. 

There are two drawbacks of the five-shell uniform Luneburg lens compared to the ten-shell 

lens: (1) the appearance of grating lobes near the main lobe, and (2) lower gain. The radiation 

patterns of those two lenses are shown in Figure 5-6 where the issue of grating lobes in the five-

shell case is very noticeable. Moreover, the gain of the five-shell is about 36.61 dB which is lower 

than the ten-shell case which is about 37.88 dB. Additionally, different configurations in terms of 
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the source position and the existence of 0.05λ  air gap will be analyzed. The patterns of those 

different configurations are also shown in Figure 5-6. Those two cases have even worse radiation 

performance. Besides, having more configurations provides even larger test cases for BSO to give 

a better overview of BSO performance. The next step is to define the variables that need to be 

optimized as well as their search space and the fitness function. Then, we define the optimization 

Table 5-1: Design Parameters of a Five-Shell Luneburg Lens with a Radis of 15λ  

Shell rε  /t λ  

1 1.18 3 

2 1.50 3 

3 1.74 3 

4 1.90 3 

5 1.98 3 

 

 
Figure 5-5: Five-shell 30 λ  diameter Luneburg lens antenna. An end-fire antenna 

consisting of four infinitesimal dipoles models the actual feed. 
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parameters of BSO and PSO, and compare the results of the two algorithms.  

5.3.1 Developing the Optimization Problem 

As discussed, the purpose of the optimization is to design a 5-shell lens with improved 

radiation performance i.e. lowering the side-lobe level while maximizing the boresight gain. It is 

desirable to achieve a similar behavior of decreasing sidelobe levels that is found in the ten-shell 

uniform lens. Thus, an envelope function in the side-lobe region based on the ten-shell lens is 

developed as shown in Figure 5-7 and is written as 

 ( ) 12 38log ( ), 2.5 25 .
5.8

envf dB
θθ θ 

= − ≤ ≤ 
 

o
o o

o
  (5.4) 

The fitness function in this optimization can be written as 

 2 2

0(40 ) ( ) ,F G E= − +   (5.5) 

 
Figure 5-6: Gain pattern of the 30 λ  diameter uniform Luneburg lens Antenna in the x-z 

plane. 
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where 
0G  is the boresight gain, and E  is the same parameter that is used in [19]; it represents the 

goodness of the side lobe level compared to the envelope function. It is calculated as the average 

difference between the envelope function in Eq.(5.4) and sidelobes that are above the envelope 

function. Hence, the equation to calculate E  can be written as  

 ( ) ( )
1

1 N

i env i

i

E G f
N

θ θ
=

= −  ∑    (5.6) 

 where ( )iG θ is the gain pattern of the lens antenna. If one needs to ensure not losing gain even at 

the cost of worse grating lobes, the gain term in the fitness function can have a higher weight in 

the overall sum. It is a trade-off between the two traits and it depends on the desired design 

requirements. In this optimization, the thickness and the permittivity of each shell are the 

optimization variables. the permittivity
riε of each layer of the five-shell lens can take any value 

 
Figure 5-7: Gain pattern of the ten-shell 30 λ diameter uniform Luneburg lens 

antenna with its sidelobe envelope function 
envf in the x-z plane 



55 

 

from 1 to 2. Furthermore, the thickness of the inner shells can have larger values than the outer 

shells to achieve better design [16]. Therefore, the search space of the optimization is defined by 

the set of the following equations. 
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  (5.7) 

 
1 2 3 4 5 15 .t t t t t λ+ + + + =   (5.8) 

Eq.(5.8) is to keep total dimeter of the sphere fixed at 30λ . Also, the thickness of the most inner 

shell i.e. the fifth shell is obtained from the same equation.  

The five-shell lens will be optimized using both BSO and PSO. The two algorithms will 

have the same number of population of 25N =  and run for 400 iterations. This will result in a 

total of 10000 function evaluations, which is the same number of evaluations used in [16]. Also, 

both BSO and PSO will have invisible boundary condition. Other intrinsic parameters that are 

used for BSO and PSO algorithms are listed in Table 2-4 and Table 3-4, respectively.  

Furthermore, there are four different cases of the 5-shell lens, based on the source 

position and the existence of 0.05λ  air gap, that will be optimized to add more room of 

performance evaluation of BSO. For simplicity, these cases will be referred to by their numbers 

that are assigned to them in Table 5-2. 

5.3.2 Optimization Results 

The optimized design variables of Case 1 for both BSO and PSO are shown in Table 5-3a 

and Table 5-3b, respectively. The two designs’ variables are quite different, and this has led to two 

distinct design performances. In this case, BSO achieved better results than PSO as shown in 
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Figure 5-8. BSO was able to obtain a gain of 36.11 dB, which is about 3 dB higher than what PSO 

design was able to achieve. Furthermore, BSO nearly suppressed the grating lobes to the envelope 

level making the design even better than PSO design where the grating lobes levels are 

distinguishingly higher than BSO’s design sidelobes. This distinction in performance results can 

be further seen in Figure 5-9 that shows the convergence curve comparison of the fitness function 

between BSO and PSO. It can be seen that PSO struggled in achieving a good design. PSO seems 

to have stuck in local optimum trap in a very early stage of the optimization and failed to obtain 

any better solution after the 200th iteration. On the other hand, BSO was able to find better solutions 

during the exploration stage. This case demonstrates that PSO is prone to fail in a local optimum 

trap while BSO was able to maintain a good balance of exploration and exploitation which led 

BSO to have superior design results.  

The optimized design variables of Case 2 for both BSO and PSO are shown in Table 5-4a 

Table 5-4b, respectively. Both designs achieved almost identical results both in terms of final 

design radiation performance as seen in Figure 5-10 and convergence speed that is shown in Figure 

5-11. Both designs were able to minimize the grating lobe greatly compared to the uniform 

Table 5-2: Cases of Different Configuration of the Feed Position and Air Gap in the 5-

Shell Lens  

Case Feed distance from sphere ( λ ) Air Gap ( λ ) 

1 0 0 

2 0.5 0 

3 0 0.05 

4 0.5 0.05 
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Luneburg lens.  

 The optimized design variables of Case 3 for both BSO and PSO are shown in Table 5-5a 

Table 5-5b, respectively. Figure 5-12 shows the gain pattern of both designs, and Figure 5-13 

shows the convergence curve of both algorithms. PSO’s design has 1.6 dB higher gain than BSO’s; 

however, PSO’ design has worse grating lobes. Based on the designated fitness function, BSO has 

a slightly better design as shown in the convergence curve.  

Table 5-3: Optimized Variables of case (1) of the Nonuniform Lens Optimization Using 

(a) BSO and (b) PSO 

Shell rε  /t λ  

1 1.4483 2.3134 

2 1.2525 2.0959 

3 1.7537 3.0595 

4 1.8665 1.5888 

5 1.974 5.9424 

(a) 

Shell rε  /t λ  

1 1.7937  0.7959 

2 1.4917 2.0342 

3 1.7738 0.7807 

4  1.2523 2.4318 

5 1.9679 8.9574 

(b) 
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Figure 5-8: Gain pattern comparison between BSO and PSO of case (1) of the five-shell 

nonuniform optimized lens 

 

Figure 5-9: Convergence curve comparison between BSO and PSO of case (1) of the 

five-shell nonuniform optimized lens 
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The optimized design variables of Case 4 for both BSO and PSO is shown in Table 5-6a  

Table 5-6b, respectively. Figure 5-14 shows the gain pattern of both designs, and Figure 5-15 

shows the convergence curve of both algorithms. BSO’s design has a better gain, more than 1 dB 

higher than PSO’s while both designs have similar grating lobes level. Hence, in terms of overall 

performance, BSO has a relatively better design.  

 

   

Table 5-4: Optimized Variables of case (2) of the Nonuniform Lens Optimization Using 

(a) BSO (b) PSO   

Shell rε  /t λ  

1 1.4854 2.0668 

2 1.7563 0.1452 

3 1.2459 2.5 

4 1.867 3.7387 

5 1.9607 6.5475 

(a) 

Shell rε  /t λ  

1 1.5717 2.0787 

2 1.0723 0.3203 

3 1.2672 2.5832 

4 1.7373 3.1411 

5 1.8839 6.8767 

(b) 
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Figure 5-10: Gain pattern comparison between BSO and PSO of case (2) of the five-shell 

nonuniform optimized lens 

 

Figure 5-11: Convergence curve comparison between BSO and PSO of case (2) of the 

five-shell nonuniform optimized lens 
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Table 5-5: Optimized Variables of case (3) of the Nonuniform Lens Optimization Using 

(a) BSO (b) PSO   

Shell rε  /t λ  

1 1.2316 1.1697 

2 1.4021 0.6680 

3 1.3407 3.3015 

4 1.8153 2.4563 

5 1.9293 7.2045 

(a)  

Shell rε  /t λ  

1 1.1825 2.5024 

2 1.3776 1.1830 

3 1.7038 0.6734 

4 1.7945 3.3755 

5 1.9745 7.0657 

(b) 
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Figure 5-12: Gain pattern comparison between BSO and PSO of case (3) of the five-shell 

nonuniform optimized lens 

 

Figure 5-13: Convergence curve comparison between BSO and PSO of case (3) of the 

five-shell nonuniform optimized lens 
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Table 5-6: Optimized Variables of case (4) of the Nonuniform Lens Optimization Using 

(a) BSO (b) PSO   

Shell rε  /t λ  

1 1.1489 2.556 

  2 1.5629 2.3548 

3 1.6714 1.5055 

4 1.787 1.3696 

5 1.8851 7.004 

(a) 

Shell rε  /t λ  

1 1.3811 1.0029 

2 1.0558 2.264 

3 1.5445 3.0220 

4 1.6686 1.5218 

5 1.7882 6.9893 

(b) 
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Figure 5-14: Gain pattern comparison between BSO and PSO of case (4) of the five-shell 

nonuniform optimized lens 

 

Figure 5-15: Convergence curve Comparison between BSO and PSO of case (4) of the 

five-shell nonuniform optimized lens 
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5.3.3 BSO and GA Comparison Using Different Fitness Function 

Since this chapter is inspired by [16], it is great to compare the results of BSO with the 

reported results of GA for extra level of testing. The reason for doing this comparison in a separate 

section is due to the fact that the fitness function used in their work is different. Their fitness 

function is defined as follows 

 
0max( ) min( )F G Eα β= +   (5.9) 

where α and β  are a weighting coefficient of the gain and grating lobes level. α  is set to 1 and 

β  is set to 0.5, to achieve better gain. Furthermore, it should be noted that in the referred paper, 

the fitness function is used as an adaptive fitness function. This means α and β can change during 

the course of optimization. In their work, β  is set to 0 during the first 20% number of fitness 

function evaluations. This method is used to keep the antenna gain in a high level while decreasing 

the sidelobe levels. After that, β  is set to 0.5. This method is beyond the focus of the study, and 

BSO is run with static values of α and β in this section. This might put BSO at a disadvantage, 

but it will still be interesting how BSO preforms compared to GA. Also, Case (2) in Table 5-2 is 

chosen in this comparison because it serves as more applicable design in real world application.  

The optimized variables are shown in Table 5-7. Figure 5-16 shows the gain pattern of both 

designs. BSO’s design has a slightly better gain, 0.3 dB higher, although the adaptive method was 

used for GA to maintain a high gain. The side lobes levels of both designs are fairly similar.   
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Table 5-7: Optimized Variables of Nonuniform Lens Optimization of Case (2) Using the 

New Fitness Function 

Shell rε  /t λ  

1 1.1226 1.7424 

  2 1.2047 1.1660 

3 1.7608 3.9464 

4 1.8549 1.6727 

5 1.9776 6.4725 

 

 

 
Figure 5-16: Gain pattern comparison between BSO and GA in [16] of case (2) of the 

five-shell nonuniform optimized lens 
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5.4 Further Discussion  

In this chapter, the importance of optimization tools for electromagnetic applications is 

demonstrated by improving the radiation performance of a five-shell 30λ -diameter spherical lens. 

That was motivated by comparing a five-shell 30λ -diameter Luneburg Lens with a ten-shell lens 

that has the same diameter; the later design has a superior radiation performance. Furthermore, the 

performance of BSO has been examined using four different configurations of Luneburg Lens by 

comparing BSO with PSO. In one case, BSO showed significantly better results than PSO; a case 

where PSO fell in a local minimum trap during the early stage of optimization. Compared to the 

results obtained by BSO, it is reasonable to say the PSO failed this optimization test. In other two 

cases, BSO was able to attain slightly better designs than PSO. And, in one case both BSO and 

PSO had similar performance. The four cases showed that BSO at worst is as good as PSO, and 

better than PSO at best. PSO showed to be prone to fall in a local optimum trap. Since there is no 

prior knowledge of the fineness function behavior in electromagnetic problems most of the time, 

BSO is a better candidate than PSO as an optimization tool based on the results presented in this 

chapter.   
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CHAPTER 6 

6 Binary BSO 

All the previous discussions were based on applying BSO using a real-valued vector 

representation of the optimized variables such as length, thickness, permittivity…etc. often times, 

the variables of optimization are discrete values. An example of problems that have discrete 

variables is array thinning [15]. Other examples are shown in [18] where PSO is used to optimize 

binary-valued problems. Motivated by the need of binary optimization, and the performance of 

real-valued BSO, we introduce a novel binary brainstorm optimization (BBSO) for discrete 

optimization. It should be noted that to the best of our knowledge this is the first attempt to convert 

BSO into a binary-valued algorithm. 

 In this chapter, a novel binary brainstorm optimization (BBSO) is presented in detail by 

transforming BSO different operations from its real-valued context into a binary context. Also, 

each binary operation is investigated for a better overall performance of BBSO. Then, a two-

dimensional SINC function is optimized using BBSO as a simple introductory problem of 

optimization. 

6.1 Transforming BSO Into Binary Coding  

The BSO algorithm and its all operations are based on solutions that are evaluated using 

real-valued variables in a continuous search space DX ∈ ¡ . Therefore, to use BSO with binary 

encoding, those operations need to be transformed to consider that the solutions are in binary 

strings in which each bit can take either two values of 0 and 1. The operations that need to be 

modified are: the grouping operation, combining two ideas, and solution generation by adding 
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Gaussian noise. 

In real-valued BSO, the measure of similarity among solutions are simple and intuitive. The 

grouping was based on the distance between those points, in which the City Block distance was 

used. The City Block distance between two points, a and b, in D dimensions is calculated as:  

 
1

.
D

i i

i

a b
=

−∑   (6.1) 

Since in binary space, each bit can take either 0 and 1, the Hamming distance is used to determine 

the similarity among solutions. the Hamming distance between two binary strings of equal length 

is the number of positions at which the corresponding bits are different. For example, the Hamming 

distance between the two binary strings ‘110’ and ‘111’ are 1 since the third bit in the two strings 

are different. In BBSO, the k-medoids clustering based on the Hamming distance algorithm that is 

part of the Statistics and Machine Learning Toolbox in MATLAB is used to group the binary ideas 

[72]. Since this is a first attempt into using BSO in binary form, the clustering technique could be 

a potential area where BBSO can be improved.  

 Another modification is needed during the idea selection process, specifically, when two 

ideas are selected as the source of the next idea generation. In real-valued BSO, the two ideas are 

combined using random weighted sum as shown in Eq. (2.5). In binary, this operation is analogous 

to crossover in Genetic Algorithm, where in BBSO a random integer is chosen that corresponds to 

the position of a bit in the binary string.  The selected point is used to break the binary strings of 

the two ideas, and the selected parts are combined to form one idea. This process is shown in 

Figure 6-1. 

 Lastly, a new idea in real-valued BSO is generated by adding a Gaussian noise to the 
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selected idea, which is translated in Eq. (2.3). The purpose of this noise is to search for ideas around 

the selected idea with high probability of the new idea being close to the selected idea in the search 

space. Also, the value of the noise added is controlled by the step function i.e. the added noise to 

the selected idea is decreasing after each iteration. In BBSO, the previous statements need to the 

translated to the binary world. As previously discussed, each dimension i.e. bit in the binary string 

can take either of two values of 0 or 1. In the proposed BBSO, adding noise to an idea that is a 

string of binary bits is basically changing bits from 0 to 1 and 1 to 0. Determining how many and 

which bits are changed should be controlled by similar behavior of decreasing values of the added 

noise in real-valued BSO. The maximum probability of a bit is flipped should be decreasing after 

each iteration. Hence, the term * N( , )ξ µ σ in the idea generation in real-valued BSO needs to be 

restructured in BBSO to accommodate this behavior. In BBSO, the probably of a bit is flipped in 

the selected idea is calculated using  

 ,flip

Q
P

D
=   (6.2) 

where D is length of the binary string i.e. the dimension of the selected idea, andQ  is a real number 

calculated using the modified step function for BBSO 

 
Figure 6-1: Single-Point idea combination in BBSO 
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 | N(0,1) | .Q ξ= ⋅   (6.3) 

 It should be noted that the Gaussian noise can return negative values. Hence, the absolute value 

is taken. And the modified step functionξ  is calculated 

 ( ) ( 1) exp 1 1,
1

T
t D

T t
ξ γ  = ⋅ − ⋅ − + − + 

  (6.4) 

where D is length of the binary string, and γ  is a scaling factor. Since the whole notion of adding 

noise is to explore ideas in the neighborhood of the selected idea, it would be contradictory if every 

bit in the binary string is flipped, hence the scaling factor γ is introduced. Additionally, the 

algorithm ensures that at least one bit is flipped to ensure a new solution is generated. Figure 6-2 

shows a simulation of values of Q  in the optimization process for a binary string with length of 

100 bits using different values of γ . Figure 6-2c shows that 0.25γ = returns a reasonable behavior 

of Q . 

6.2 Optimizing Two-Dimensional SINC Function Using BBSO 

A simple way to demonstrate the capability of BBSO is to use a mathematical function as 

they are very fast in computation time. Hence, BBSO can run dozens of time to avoid any statistical 

error in the results. The selected function is a SINC function that has the form 

 
1

sin( ( 3))
( ) , [0,8] .

( 3)

D
Di

SINC

i i

x
f x x

x

π
π=

−= ∈
−∏   (6.5) 

A 2D
SINCf is chosen to be optimized, which has a maximum at 1 23.0, 3.0x x= = .  The behavior 

of 2D 
SINCf  is shown in Figure 6-3. Since 

SINCf  is evaluated in a real-valued search space, a 

decoding method is needed to transfer the binary data in BBSO to real decimal numbers to be 

evaluated by 
SINCf . A binary decoding method from an N bit string to a set of real decimal numbers 
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is given by [13] 

 ( )
1

max min
min

0

2
2 1

N
n

i nN
n

x x
x b x

−

=

− = + − 
∑g   (6.6) 

 An example of decoding a binary idea to a pair of decimals numbers in a real-valued, and 

two-dimensional search space is shown in Figure 6-4. In this optimization, each real dimension is 

represented by 16 binary bits which results into each idea in BBSO is a 32-bit binary string. Also, 

BBSO is run with a popualtion of 20 ideas and 4 clusters for a maximum number of iteration of 

  

(a)  (b)  

  

(c)  (d)  

Figure 6-2 Simulated value of Q in each iteration with different value of γ for binary 

string of length of 100 bits 
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50. Moreover, to further investigate the effect of the scaling factor γ , the function is optimizaed 

with  different values of  γ . Furthermore, BBSO is written as a minimzer algorithm, therefore, the 

fitness function is multiplyed by -1.   

 

Figure 6-3: Two-Dimensional SINC function shown in Eq. (6.5) 

 

Figure 6-4: Decoding a 32-bit binary string into a 2D real-valued search space.  Each 

real dimension is represented by 16-bit binary string and [0,8]Dx ∈   
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To overcome statistical errors, BBSO is applied to the fitness function 100 times. The 

average of those 100 independent runs is shown in Figure 6-5.  The results demonstrates that BBSO 

has a fast convergence.  Also, the effect of the scaling factor γ  is notiecble; the smaller the value 

the better. However, there is no signifact adavantgae for 0.15γ ≤ . This example demonstrates the 

ability of BBSO to have a good performance and a fast convergence for binary-valued optimization 

problems. Armed with the obtained information in this example, BBSO is ready to be applied to 

electromagnetic applications where the variables of optimization are discrete. 

 

  

 

 
Figure 6-5: Optimization convergence of averaged 100 runs of BBSO of 2D SINC 

function with different values of γ .  
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CHAPTER 7 

7 Array Thinning Using BBSO 

In chapter 4, the Yagi-Uda was an example of antenna arrays where certain directivity 

characteristics can be achieved by increasing the number of radiative elements. Different patterns 

of an array with identical elements can be achieved by changing the type of element (dipole, patch, 

etc.), the geometrical configuration, spacing between elements, and the excitation of the individual 

elements. The total far-field of an array of identical elements can be calculated using pattern 

multiplication  

 ( , ) ( , ) ( , )tot srcE E AFθ φ θ φ θ φ= ⋅
r r

  (7.1) 

where ( , )srcE θ φ
r

is the far-field radiation patter of a single element in the array, and ( , )AF θ φ  is 

the array factor. Generally, the array factor is a function of the excitation magnitude, phase of each 

elements, and the spacing between each element. The feature of array factor allows designers to 

synthesize desired patterns by manipulating those variables. Therefore, antenna arrays have been 

widely solved by global optimization algorithms [15, 18, 12, 30]. One of the desired characteristics 

in antenna arrays is lower sidelobe levels (SLL). In periodic arrays where the spacing of the 

elements are identical, the sidelobe levels are suppressed by optimizing amplitude and/or phase 

excitation of the individual elements. Another approach to minimize the SLL is to use aperiodic 

arrays where the spacing between the elements is not uniform. Such aperiodicity can be achieved 

by either nonuniform array or thinned array. In nonuniform arrays, the number of the total elements 

in the array is fixed while changing the spacing between the elements is changed such that the 

elements have unequal spacing.  In thinned arrays, starting from a periodic array, different 
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elements in the array are turned OFF, which results in lower number of elements needed. The two 

different approaches are shown in Figure 7-1. The thinned array approach requires a discrete 

optimization where each element can have either of two states. Hence, array thinning serves a good 

candidate to test BBSO.  The array factor for a planar array in the x-y plane is calculated by [15] 

 
1 1

( , ) 4 cos[(2 1) sin cos ] cos[(2 1) sin sin ]
N M

mn x y

n m

AF a m d n dθ φ π θ φ π θ φ
= =

= − × −∑∑   (7.2) 

where 

mna = Amplitude of element mn , 1 for ON or 0 for OFF 

M = number of elements in the y-direction, 

N = number of elements in the x-direction, 

yd  = spacing in the y-direction, 

xd  = spacing in the x-direction, 

 

Figure 7-1:  Different types of arrays based on elements spacing  
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7.1 Developing the optimization problems 

In this example, BBSO is used to thin a 40 40×  uniform periodic planar array of isotropic 

sources with spacing of / 2λ  between each element with the purpose of achieving lower relative 

SLL. Thus, the fitness function in the optimization is simply the worse SLL in the two orthogonal 

planes (azimuth and elevation). The array is simulated using MATLAB’s Phased Array System 

Toolbox [73]. Figure 7-2 shows the radiation pattern of the full array placed in the yz-plane 

simulated in both planes (azimuth and elevation cut). The SLL is about 13 dB for the full 40 40×  

planar array. 

In BBSO, an idea is a binary string, therefore, a planar array is transformed into a linear 

array; if an element has the ON state, it will take the value 1 in the binary string, and 0 if it has the 

OFF state. Since each element can be either of the two states, this results into 16002  different 

possible combinations. One can take the advantage of symmetry in planar arrays; the search space 

is reduced by applying the thinning procedure to only quarter of the array, therefore, this results in 

4002  different possible combinations.  Also, a proper initialization is a big factor of the 

convergence rate when optimizing thinned arrays by having more elements in the center than at 

the edges [13, 15]. Hence, the BBSO will starts with partially pre-initialed ideas that have their 

center elements turned ON in the beginning of search. BBSO parameters used in this optimizing 

are: population number is 200, number of clusters is 4, and 0.25γ = . The optimization will run 

for 100 iterations. 
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(a) Azimuth cut, elevation angle = 0  

 

 

 

 

(b) Elevation cut, azimuth angle = 0 

 

Figure 7-2: Radiation pattern of 40x40 uniformly spaced planar array: (a) azimuth cut 

(a) elevation cut 
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7.2 Optimization Results 

A relative SLL of -23.86 dB is achieved with 47.25% fill rate. Figure 7-3 shows BBSO 

convergence where the fitness function is the relative SLL. BBSO was able to achieve a relative 

SLL of -20 dB in 21 iterations. Figure 7-4 shows the optimized design of a thinned 40x40 planar 

array. The elements with ON state are represented by white squares while elements with OFF state 

are represented by black squares. Figure 7-5 shows the difference in the radiation patterns between 

a full 40x40 uniformly spaced planar array with relative SLL of about -13 dB and optimized 

thinned array with relative SLL of -23.86 dB. This example clearly shows the ability of BBSO in 

optimizing discrete problems with a good convergence rate. 
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Figure 7-3: Convergence curve of BBSO where the fitness function corresponds to the 

relative SLL. 

 

 

Figure 7-4: Optimized design of a thinned 40x40 planar array. elements with ON state 

are represented by white squares while elements with OFF state are represented by 

black squares. 
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(a) Azimuth cut, elevation angle = 0  

 

 

(b) Elevation cut, azimuth angle = 0  

 

Figure 7-5: Radiation pattern comparison between a full 40x40 uniformly spaced planar 

array and optimized thinned array: (a) Azimuth Cut (a) Elevation Cut 
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CHAPTER 8 

8 Pixel Patch for Dual-Band Applications 

8.1 Introduction to Patch Antennas  

A planar rectangular sheet mounted over a large sheet of metal is all what is needed to create 

one of if not the simplest antenna i.e. patch antenna. This type of antenna is used a lot in various 

types of applications such as satellite, missile, aircraft, mobile, and wireless communications 

applications. Some of the features that led to the widespread of the antenna are [58] 

• The low cost of manufacturing this antenna. This feature makes them attractive for 

applications that require large quantity. 

• The antenna is low profile and can be mounted to planar and non-planar surfaces.  

Therefore, the integration of the antenna with MMIC designs is simple. 

• The antenna can be designed with different resonant frequency, polarization, 

impedance, which makes it very versatile.  

Patch antennas can be classified based on the feeding method, with the probe-fed being the 

simplest one as shown in Figure 8-1. Nonetheless, those advantages of patch antennas come at a 

cost; patch antennas have disadvantages such as low efficiency, high cross polarization, and low 

bandwidth [58].  In wireless communications, the higher the bandwidth the more information that 

can be transmitted. There are various methods to increase the bandwidth and introduce new 

resonance frequencies of patch antennas. Increasing the height of substrate is a simple way of 

increasing the frequency bandwidth but to a certain limit [58]. Another way of achieving 
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broadband patch antennas is by adding passive resonating elements to the antenna; however, this 

means also increasing the size of the antenna, which can be undesirable in certain applications 

[13]. Another common method of adding more bandwidth is by introducing slots to the antenna in 

which a new resonant frequency is added [13]. A popular application of the use of slots into patch 

antenna is E-patch antenna [74, 25].  Optimization tools can be utilized by randomly adding slots 

to the patch [13, 75, 22], which is the method that will be used in this chapter. In the next section, 

BBSO will be used to find the slots placements of a simple rectangular patch antenna by 

discretizing the patch into smaller elements ‘pixels’. 

8.2 Developing the Optimization Problem 

To demonstrate its capability in optimizing binary-valued problems, BBSO will used to 

design a dual-band antenna element for wireless communication (1.9 GHz and 2.4 GHz) 

applications. The design is inspired by the work documented in [75] where the authors utilize 

Genetic Algorithm (GA) to design the same antenna. However, the authors use method of moments 

 

 

(a) (b) 

Figure 8-1: Coaxial probe-fed rectangular patch. (a) top view, (b) side view 
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(MoM) to evaluate the structure while in this work the High Frequency Spectrum Simulation 

(HFSS) is used [76]. HFSS uses the finite element method (FEM) as a numerical solver. The 

authors start form E-patch antenna design to take the relevant dimension of the representative patch 

antenna. Then, the rectangular patch is discretized into 8 by 12 array with each cell in the array is 

a 6mm 6mm× square. The cell can take either of two values in the optimization (ON/OFF), thus 

BBSO is used. To ensure that the probe is electrically connected to the patch, the 4 cells that are 

connected to the probe will always stay ON. Additionally, to avoid high cross-polarization, 

structure symmetry is imposed along the E-plane. Hence, the number of pixels that will be 

optimized by BBSO is 46 pixels (reduced to half). This will lead to 462  possible solutions. This 

process is illustrated in Figure 8-2. The structure dimensions are: 150 mmgL = and 110 mmgW =

for the ground, 72mmL = , 48mmW = , 15mmh = for the patch, and the feed location is 

36 mm,
2

f

L
L = = 5mmfW =  . As stated, the goal is to obtain a design that operates in the desired 

bands of interest (1.9 GHz and 2.4 GHz). Therefore, the fitness function for the dual-band antenna 

is written as 

 ( )11 1.9 11 2.4max | , | .f GHz f GHzf S S= ==   (8.1) 

 An idea in BBSO will be a string of 46 binary bits to represent a solution. BBSO parameters 

used in this optimizing are: population number is 25, number of clusters 4, and 0.25γ = . The 

optimization will run for only 100 iterations due to time constraints as a single function evaluation 

can take from 7 to 15 minutes using HFSS. This will result into 2500 function evaluation, which 

is only 5% of what is used in [75] where a parallelization scheme was used to speed up the whole 

optimization process. In this work, the luxury of parallelization is not used so that BBSO will have 

to find a good design in much less number of function evaluations.  
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(a) Regular patch (b) Discretizing the patch into 8 by 12 array 

 

(c) Imposing structure symmetry 

 

Figure 8-2: Process of establishing the optimization problem starting from a regular 

patch ending with a 2-D rectangular array of 46 (ON/OFF) metallic elements with field 

symmetry condition along the E-plane. 
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8.3 Optimization Results  

Figure 8-3 shows BBSO’s convergence where the fitness function is the worst return loss 

of the two frequencies of interest. BBSO was able to achieve a satisfactory design (
11 10 dBS < − ) 

within 41 iterations. The return loss of the optimized design is shown Figure 8-4. The return loss 

at the two frequencies (1.9 GHz and 2.4 GHz) are nearly the same with 
11 11 dBS ≅ −  .  Although 

it was completely unintentional, the design has two resonance frequencies close to each other (1.96 

GHz and 2.28 GHz) which led to a wide bandwidth (from roughly 1.9 GHz to 2.4 GHz) where 

11 10 dBS < − . Figure 8-5 shows how the design looks in terms of pixels. The elements with ON 

state are represented by yellow squares while elements with OFF state are removed. 

 BBSO was able to perform well even though the maximum number of function evaluations 

is much less than the number used in [75].  BBSO needed only 41 iterations (1025 function 

evaluations) to find a satisfactory design out of 462  possible solutions. Moreover, this example 

shows the beauty of global optimization tools, a design was created from what it can be considered 

a completely bad design. Figure 8-4 shows the return loss of the original patch (all pixels ‘ON’) 

for comparison. Additionally, the example has shown the integration of BBSO with a common 

EM solver, HFSS. The two tools combined can be used for additional designs for more interesting 

results.  

 The radiation characteristics of the antenna at frequencies 1.9 GHz and 2.4 GHz are shown 

in Figure 8-6 and Figure 8-7, respectively. Figure 8-6a shows 3D radiation pattern of the optimized 

antenna; the antenna has directivity of 7.35 dB at 1.9 GHz and 8.64 dB at 2.4 GHz. Figure 8-6a 

shows the normalized H-plane (xz-plane in Figure 8-2) co-pol ( Eφ ) and cross-pol ( Eθ ) far field 

patterns. The simulated cross-pol levels are roughly 5.5 dB down from the co-pol peak. This is 
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expected since rectangular patch antennas generally suffer from high cross-pol levels in the H-

plane [77] in addition to the optimization was done solely for matching. Since the cross-

polarization is very low (at least 45 dB below) in the other orthogonal plane i.e. E-plane, the E-

plane patterns are not shown. 

  

 

Figure 8-3: BBSO Convergence 
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Figure 8-4: Input return loss of the optimized patch. The original patch where all the 

pixels are “ON” is shown for comparison. 

 

 

 

 

Figure 8-5: The optimized design after applying symmetry. The yellow squares are the 

patch pixels. 
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(a) 3-D radiation pattern (b) Normalized co-pol and cross-pol far-field 

components (xz-plane) 

  

Figure 8-6: Radiation characteristics of the optimized patch at 1.9f GHz=   

 

  

(a) 3-D radiation pattern (b) Normalized co-pol and cross-pol far-field 

components (xz-plane)  

 

Figure 8-7: Radiation characteristics of the optimized patch at 2.4f GHz=  
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CHAPTER 9 

9 Slotted Patch Antenna for Dual-Band Applications: Simulation 

And Measurement 

9.1 Introduction 

Chapter 8 covered the discussion on the utility of patch antennas, and how their low profile 

makes them a common candidate in various applications. Also, the concept of adding more 

bandwidth to a patch antenna is by introducing slots to the antenna in which a new resonant 

frequency is added has been demonstrated. The approach taken in that chapter is to convert the 

patch into discrete number of elements i.e. pixels, and different designs are realized by removing 

pixels from the patch. That approach required the use of BBSO to perform a binary optimization. 

In this chapter, the same problem will be tackled with the difference being is that the problem will 

have real valued variables that need to be optimized. This requires the use of BSO to optimize the 

real-valued variables. Additionally, the optimized design will be fabricated and measured to 

demonstrate how the optimization tool can be a part of the full design process.  

The design concept is proposed by [78], where slots are introduced by cutting a half-U-slot 

and a rectangular slot on the edges of the patch as shown in Figure 9-1. The two slots add additional 

resonance frequencies to the patch. BSO will be used to design a dual-band antenna element for 

wireless communication (1.9 GHz and 2.4 GHz) applications. In this work, the High Frequency 

Spectrum Simulation (HFSS) is used to evaluate the structure [76], which uses the Finite Element 

Method (FEM) as a numerical solver.  
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9.2 Developing the Optimization Problem 

The slotted patch is designed on RT/duroid 5880 substrate with thickness of 3.1 mm75h =

and 2.2rε = . As stated, the goal is to obtain a design that operates in the desired bands of interest 

(1.9 GHz and 2.4 GHz). Therefore, the fitness function for the dual-band antenna is written as 

 ( )11 1.9 11 2.4max | , | .f GHz f GHzf S S= ==   (9.1) 

BSO parameters used in this optimization are: population number is 20, number of clusters is 4, 

and. The optimization will run for 300 iterations. A single function evaluation can take from 7 to 

20 minutes using HFSS. Termination criterion is added since time was a big factor in this design. 

Next, the optimization variables and their ranges are defined. There is a total of ten variables in 

this optimization that define the ten-dimensional search space. These variables are taken with 

reference to Figure 9-1. Two variables that define the outer geometry of the patch which are the 

length L  and the width W and their ranges in (mm) are defined as: 

 
Figure 9-1: Coaxial probe-fed slotted rectangular patch. 
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 [30,70],W ∈   (9.2) 

 [30,70],L ∈   (9.3) 

rectangular slot variables and their ranges are defined as: 

 [1,10],rW ∈   (9.4) 

 [0,50],rL ∈   (9.5) 

 [ 10,10],rP ∈ −   (9.6) 

rP   is the offset the center of the rectangular slot from the center along the y-axis, with positive 

values to indicate that the slot is offset above the center, and negative is below the center. The half-

U slot variables and their ranges are defined as:  

 [1,10],uW ∈   (9.7) 

 [7.5,70],hL ∈   (9.8) 

 [5,35],vL ∈   (9.9)  

feed location variables and their ranges are defined as: 

 [0,30],xf ∈   (9.10) 

 [0,10].yf ∈   (9.11)  

The ground size will be relative to the size of the patch i.e. 

 6gW W h= +   (9.12) 

 6gL L h= +   (9.13) 

Moreover, sets of constrains need to be enforced in this design such that any design would be 

meaningful in a physical sense. For example, not only does the feed need to be inside the patch 

geometry defined in Eq.(9.2) and Eq.(9.3), but also on the conductive part i.e. outside the slot 
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region; these two constraints are written as equalities such that: 

 ,
2

x

L
f <   (9.14) 

 .y v uf L W< −   (9.15) 

Additional constraints are enforced as shown below. 

 ,hL L<   (9.16) 

 ,rL L<   (9.17) 

 .
2 2

r
r

WW
L P< − +   (9.18)  

The number of constraints in this optimization adds a layer of difficulty on top of the fact that this 

problem is a highly dimensional optimization problem. Both properties combined make this 

optimization problem more difficult. 

9.3 Optimization Results  

Figure 9-2 shows BSO convergence where the fitness function is the worst return loss of 

the two frequencies of interest. BSO was able to achieve a (
11 25.5 dBS = − ) within 187 iterations 

only, which led to the decision to stop the optimization as the obtained value is good enough to 

save time to start the fabrication process and then start the measurement. Table 9-1 shows the 

slotted patch antenna optimized dimensions (in mm) with reference to Figure 9-1. 

Figure 9-3 shows the two sides of fabricated slotted patch antenna. Figure 9-4a shows the 

measurement setup of the fabricated antenna to obtain the return loss using Vector Network 

Analyzer (VNA). Figure 9-4b shows the measurement setup of the fabricated antenna inside a 

spherical near-field antenna chamber that uses automated software performing near-field to far-

field transformation. 
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 The return loss of the optimized design is shown in Figure 9-5, which shows a good 

agreement with simulated design. The measured directivity of the fabricated antenna at frequencies 

1.9 GHz and 2.4 GHz are 5.8 dB and 7.8 dB, and their radiation characteristics are shown in Figure 

9-6 and Figure 9-7, respectively.  

 

  

Table 9-1: Slotted Patch Antenna Optimized Dimensions (in mm) 

W  L  rW  
rL  

rP  
uW  

hL  
vL  

xf  yf  

65.96 60.45 6.45 6.82 -5.21 7.04 54.10 22.85 22.43 7.69 

 

 

Figure 9-2: BSO Convergence 
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(a) Top (b) Bottom 

Figure 9-3: Picture of the fabricated slotted patch antenna.  

 

  

(a)
11S  measurement (b) Pattern measurement 

Figure 9-4: Fabricated slotted patch antenna for port and radiation pattern 

measurements 
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Figure 9-5: Input return loss of the optimized patch. 
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(a) xz-plane (b) yz-plane 

 

Figure 9-6: Normalized co-pol and cross-pol far-field components in dB of the optimized 

patch at 1.9f GHz=   

 

  

(a) xz-plane (b) yz-plane 

 

Figure 9-7: Normalized co-pol and cross-pol far-field components in dB of the optimized 

patch at 2.4f GHz=  
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CHAPTER 10 

10 Conclusions 

Throughout this thesis, BSO has demonstrated great results to be a powerful optimization 

tool that can be used in microwave and antenna engineering.  A detailed discussion on the concept 

of BSO was provided as well as how it is compared to PSO. Then, both algorithms were applied 

to common mathematical benchmark functions with different characteristics to test their 

convergence and robustness. Both algorithms had similar performance results and convergence 

speed. The goal was to test the algorithm using fewer number of function evaluations than the 

numbers used in the literature. This difference in the optimization environment explains why the 

overall results of the algorithm are not comparable to the ones published in the field of 

optimization. 

Then, BSO and PSO were applied to two electromagnetic problems, which is one of the 

main objectives of this work. As already mentioned, to the best of our knowledge, this is the first 

time that BSO is applied to electromagnetic problems. First, a six-element Yagi-Uda antenna was 

optimized. The goal was to achieve higher forward directivity and front-to-back ratio. BSO has 

demonstrated its potential to be a promising tool for optimization based on its performance with 

respect to the well-known algorithm PSO. BSO has a similar convergence speed to PSO and was 

able to achieve better results in the Yagi-Uda example. The second problem was optimizing 

Luneburg Lens, where the objective was to the lower the sidelobes level while maximizing the 

boresight gain. Different configurations of the design were optimized to provide more insight into 

their performance. In one configurations of Luneburg Lens, BSO showed significantly better 
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results than PSO; a case where PSO fell in a local trap during the early stage of optimization. 

Compared to the results provided by BSO, it is reasonable to say the PSO failed this optimization 

test. In other two cases, BSO was able to attain slightly better designs than PSO. And, in one case 

both BSO and PSO had similar performance. The four cases showed that BSO at worst is as good 

as PSO, and better than PSO at best. PSO showed to be prone to fall in a local optimum trap. Since 

there is no prior knowledge of the fineness function behavior in electromagnetic problems most of 

the time, BSO might be a better candidate than PSO as an optimization tool based on the results 

presented in the two examples. 

The next main part of this work was the introduction of a novel binary version of BSO that 

can be used for problems where variables of the optimization have discrete representation. To the 

best of our knowledge this is the first attempt to transform BSO to a binary BSO. The BBSO 

parameters were discussed, and the reasons behind the choice of their values demonstrated. Then, 

BBSO was applied with success to a two-dimensional array thinning problem where the goal was 

to minimize the sidelobe. The test showed BBSO to be a potential candidate for binary 

optimization. After that, BBSO is applied to a pixel patch antenna, where the patch is divided into 

discrete number of elements. The goal was to achieve a dual-band patch antenna by removing 

those elements from the patch. This example showed the beauty of global optimization tools, 

where a design was created from a non-working design. Additionally, the example demonstrated 

the integration of BBSO with a common electromagnetic solver, HFSS.  

Finally, we provided a demonstration of how BSO as an optimization tool can be used in 

the full design process. The process started with selecting a slotted patch antenna as a 

representative design example. BSO was used as a global optimization tool in conjunction with 

HFSS as a numerical electromagnetic solver and a simulation tool. Finally, the optimized design 
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was fabricated and measured.   
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