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ABSTRACT OF THE DISSERTATION

Conformational Polymorphism Gives Rise to Specialized Function

in Bacterial Microcompartment Shell Proteins

by

Michael Christopher Thompson
Doctor of Philosophy in Biochemistry and Molecular Biology
University of California, Los Angeles, 2014

Professor Todd O. Yeates, Chair

It is well-established that proteins are dynamic molecules, endlessly interconverting back and
forth between different conformational substates. A primary goal of structural biology is to understand the
functional relevance of this conformational polymorphism. The work described here demonstrates the
connection between conformational polymorphism and specialized protein functions in the BMC-domain
superfamily of symmetric protein oligomers that form the semi-permeable, polyhedral shells of bacterial
microcompartment organelles. Three specific structural and biochemical studies of BMC-domain proteins
are presented as examples. The first of these studies focuses on a tandem BMC-domain protein, EutL, in
which broken oligomeric symmetry allows for a conformational rearrangement that relates to molecular
transport functions. The results presented support a model of allosteric regulation of EutL function. The
second study presented highlights a case of a difficult structure determination of a BMC-domain protein,
CemK1 (L11K), in which the arrangement of molecules in the crystal lattice suggests the protein
oligomers have lower internal symmetry than previously believed, resulting from conformational
polymorphism. The third study aims to characterize a BMC-domain shell protein, GrpU, in which an
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unexpected occurrence of broken symmetry allows the formation of a unique iron-sulfur cluster binding
site. These three examples collectively illuminate the role of conformational polymorphism in the BMC-
domain family, and provide interesting insight into the complex transport properties of the bacterial
microcompartment shell, which remains relatively poorly understood. Finally, a crystallographic analysis
is presented that extends the present study beyond the BMC-domain proteins by exploring a novel
methodology for detecting and characterizing conformational polymorphism, which can be applied

broadly in protein crystallography.
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cpEutL trimer, with one chain colored by sequence conservation, with dark magenta
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Some functionally important residues, including those surrounding the ethanolamine
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colored according to electrostatic surface potential, which was calculated by solving the

Poisson-Boltzmann equation. The ethanolamine binding sites carry a strong negative

Xvii



Figure 2.18.

Figure 2.19.

Figure 2.20.
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10mM hydroxocobalamin, while the image on the right shows crystals that were
incubated in mother liquor that was supplemented with several small crystals of solid
hydroXoCobalamin. ..........cceeiierieiiiiie et ettt enee s 52
Preliminary crystallographic analysis of vitamin B,, binding to cpEutL. A) A large
planar feature in preliminary electron density maps (2mF,-DF,, blue; mF,-DF,, green) is
consistent with the corrin ring of hydroxocobalamin, and its position supports ligation of
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Figure 2.21.

Figure 2.22.

Figure 2.23.

A steric clash forms the basis for allosteric regulation. The image depicts the
ethanolamine binding channel as a molecular surface, with the ethanolamine molecules
shown as green sticks surrounded by transparent spheres. The pink polypeptide shows the
open conformation of E. coli EutL superimposed on the cpEutL:ethanolamine complex.
The overlay reveals that ethanolamine binding prevents a rearrangement from the closed
conformation to the open conformation by blocking the space into which the $3-f4 loop
MOVES dUring the tranSItioN. ........ccverevieciieciierierieste e ere et see s e sresereebeeseessaessaeesseenseas 62
Negative allosteric regulation of EutL pore opening by ethanolamine. Ethanolamine
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A new model for EutL function. The proposed allosteric mechanism is consistent with
the enzymology of the Eut MCP. In the absence of the ethanolamine substrate, EutBC
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Figure 3.1.

A model for bacterial microcompartment (MCP) structure and function in the
carboxysome. The illustration highlights the assembly of shell protein monomers into
hexamers, as well as the edgewise association of hexamers to form the tightly-packed
facets of the polyhedral MCP shell. Within the shell, a reaction scheme depicts the
metabolic events that occur in the lumen of the carboxysome. The critical intermediate,
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Figure 3.3.

Figure 3.4.
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Figure 4.1.

Analysis of symmetry and twinning. A) Sections of the self-rotation function (k=180°
and k=60°) indicate that the underlying point group symmetry of the crystal is 622. B)
Sections of a native Patterson map (w=0 and w='2) calculated from observed intensities
show a prominent (47.5% of the origin) packing peak at <uvw> =(5,%,%). C) Intensity
statistics showing that the CcmKI1 L11K crystal specimen is hemihedrally twinned.
N(|L|) is the cumulative distribution of |L|. .......cccceerieriiniiiiieeeeeeeee e 81
Space group assignment and packing arrangement of the two hexameric layers in
the unit cell. A) An initial assignment of space group P3, with one hexameric layer
having its center at the origin and the other layer having its center at (1/3, 2/3, 1/2),
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Electrostatic surface representations of CemK proteins. Electrostatic surfaces,
generated by solving the Poisson-Boltzmann equation, of CemK1, CcmK 1 with the L11K
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proteinaceous shell surrounding a series of internalized enzymes that convert the
substrate, 1,2-propanediol, into the products, ethanol and acetyl phosphate. The chemistry
involves a toxic intermediate (acetaldehyde), which is highlighted by a red box. The first
of these enzymatic steps differs in Pdu-type vs. Grp-type MCPs. Dashed black arrows
represent molecular transport events, while solid black arrows represent enzymatic
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Absorption spectra of GrpU proteins. Absorbance spectra are shown for Clost GrpU
and Pecwa_ GrpU, demonstrating broad peaks at 411nm and 415nm respectively.
Absorption maxima in this region, near 420nm, are characteristic of Fe-S charge transfer
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X-ray crystal structures of GrpU proteins. Hexameric assemblies of Clost GrpU
(blue, left) and Pecwa GrpU (red, right) are shown. Monomers that are
crystallographically unrelated are colored in different shades, and the disordered $3-p4
loops are represented as dashed gray lines. In the center, an overlay of Clost GrpU and
Pecwa_GrpU monomers illustrates their structural similarity..........ccocceeeeveeereecreenneenneene. 96
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A conserved cysteine coordinates the Fe-S cluster. A sequence alignment of 15 GrpU
orthologs (A) shows perfect conservation of a GXCPQ sequence motif, and a conserved
methionine or leucine at another sequence position. Solutions of the purified C67S
mutant lack the characteristic brownish color (B), and absorption spectra of Clost GrpU
and three point mutants (C18S, C47S, C67S) demonstrate that only the C67S mutation
eliminates the signal attributed to the Fe-S cluster (C)......ccoccoevieiiiiiiiiiiiiiieeee, 102
Computational modeling of Clost_GrpU bound to a 4Fe-4S cluster. Using our crystal
structure as a starting point, we prepared a computational model of Clost GrpU bound to
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features in both 2mF,-DF. and mF,-DF, electron density maps (C) indicate that the p4
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An eigen-difference map. Our initial attempt to calculate eigen-difference maps based
on the first principal component of our 14 isomorphous data sets produced electron
density exemplified by these images. While many of the peaks in the density overlap with
the molecular model, the features are difficult to interpret in terms of conformational
polymorphism. The maps were calculated using a 3.0A resolution cutoff, and are
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CHAPTER 1

Introduction

1.1 Bacterial Microcompartments (MCPs): Specialized Internal Structures in Prokaryotes

A common misconception in the study of biology is that prokaryotic cells are simplistic in terms
of their cellular architecture, generally lacking any sophisticated organization of intracellular components.
Indeed, most textbooks contain images depicting the prokaryotic cytoplasm as a homogenous mixture of
biomolecules, often displayed in opposition with elaborate images of eukaryotic cells that show complex
arrangements of membrane-bound organelles and other highly-ordered structures. Historically, this naive,
textbook view of prokaryotic cells is the likely result of their relatively small size when compared to their
eukaryotic counterparts, making them significantly more difficult to view using microscopy techniques.
In contrast, dramatic technological advancements in imaging technology over the last several decades
have led to a revolution in our understanding of prokaryotic physiology®. To date, a significant number of
complex, subcellular structures with dedicated functions have been discovered in prokaryotic cells,
leading to a new paradigm in prokaryotic cell biology’.

Among the numerous internal structures identified in bacteria are giant protein complexes that
facilitate specialized metabolic functions, collectively known as bacterial microcompartments (MCPs). In
1973, Shivley, et al. were the first to characterize the MCPs of the chemoautotroph Thiobacilis
neapolitanus, demonstrating that the observed “polyhedral inclusions” serve a specific metabolic
function™”. Composed entirely of protein subunits, these massive MCP complexes self-assemble from
thousands of individual polypeptide chains, which are typically expressed from a single operon containing
roughly 10-20 open reading frames®” (Figure 1.1a,b). A specific subset of these polypeptides forms a thin
polyhedral shell, approximately 100-150nm in diameter, which encapsulates several sequentially-acting
metabolic enzymes and sequesters them from the cytosol (Figure 1.1¢). Consequently, the MCP satisfies
the functional definition of an organelle: it creates a microenvironment that is distinct from the cytosol, it
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Figure 1.1. Overview of bacterial microcompartments. A) An example of a typical operon encoding an
MCP, in this case for ethanolamine catabolism. Genes encoding enzymes are depicted in yellow, BMC-
domain shell protein genes are colored cyan, a non-BMC-domain shell protein gene is colored magenta,
genes corresponding to encapsulated enzymes are colored yellow, genes for cytosolic components are
colored gray, genes for regulatory components are colored green, and the gene for a transmembrane
ethanolamine transporter is colored blue. B) Transmission electron micrograph of cells expressing MCPs.
The MCP structures appear as dark inclusion bodies (Image courtesy of Jorge Escalante-Semerena). C) A
schematic depicting the general structure of an MCP, in which a proteinaceous shell surrounds a series of

sequentially-acting metabolic enzymes.



enhances metabolic flux by colocalization of enzymes and substrates, and it is capable of retaining
metabolic intermediates that have the potential to cause harm to the cell when exposed to the cytoplasm.
Since their initial discovery, at least 7 homologous MCP systems have been identified, each associated
with a distinct metabolic pathway, and approximately 17% of sequenced bacterial genomes have been

found to contain signatures of MCP operons'”.

1.2 Current Experimental Characterization of MCPs has focused on Three Important Systems

Currently, the majority of our knowledge about MCPs has been derived from experimental
characterization and computational analysis of three model systems®’ (Figure 1.2).

The first of these MCP systems is the carboxysome, found in cyanobacteria and some
chemoautotrophs, which encapsulates the enzymes carbonic anhydrase and ribulose-1,5-bisphosphate
carboxylase/oxygenase (RuBisCO) that are responsible for the initial steps of carbon fixation as part of
the Calvin-Benson-Bassham cycle®'"'">. Oceanic cyanobacteria account for over 50% of global carbon
fixation'’, making the carboxysome highly relevant to our understanding of ecology. Within the
carboxysome, carbonic anhydrase dehydrates bicarbonate and releases carbon dioxide (CO,) in the
vicinity of RuBisCO, an enzyme with notoriously poor catalytic efficiency and substrate specificity'*.
RuBisCO then catalyzes the formation of 3-phosphoglycerate, using CO, and ribulose-1,5-bisphosphate
as substrates. Encapsulation of these metabolic reactions within the MCP serves two important functions.
First, it retains the CO, intermediate, which is gaseous at physiological temperature and pressure, making
it prone to diffusion out of the cell. Second, colocalization of carbonic anhydrase and RuBisCO serves to
enhance the local CO, concentration in the presence of RuBisCO, thereby enhancing productive
metabolic flux through this relatively inefficient enzyme.

The second type of MCP system is involved in the catabolism of propanediol in a number of
saccharolytic bacteria, including both human and plant pathogens. These saccharolytic pathogens degrade
cell-surface carbohydrates from host tissues, releasing 1,2-propanediol. Subsequently, 1,2-propanediol is
converted to propionate, which enters the methylcitrate cycle, serving as a source of metabolic energy.
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Figure 1.2. Relevant examples of MCPs. The three panels each depict a different biochemical pathway
that is encapsulated within an MCP. In each panel, the reactive and/or toxic intermediate compound that
the MCP shell must retain is surrounded with a box. A) The carboxysome is an MCP involved in carbon
fixation. B) Two types of MCPs, Pdu and Grp, are involved in propanediol catabolism. C) The Eut MCP

encapsulates a pathway for ethanolamine catabolism.



The initial steps of this catabolic process involve the intermediate propionaldehyde, which is toxic to cells
and also mutagenic due to its reactivity with biological macromolecules. In order to retain the
propionaldehyde produced by this process, the enzymes that produce and consume this intermediate are
confined together within an MCP'>'®. During the first reaction that occurs within these MCPs, 1,2-
propanediol is dehydrated to propionaldehyde by a diol dehydratase enzyme. Subsequently, two distinct
dehydrogenase enzymes catalyze the formation of either propionyl-CoA or propanol, using the aldehyde
as a substrate. Finally, the propionyl-CoA is converted to propionyl-phosphate by an acyltransferase
enzyme. Two distinct types of propanediol catabolic MCP have been identified to date, which differ
slightly with respect to the first enzymatic step'’. The Pdu type of MCP (short for Propanediol
Utilization), contains a B, coenzyme-dependent diol dehydratase, while the Grp type of MCP (short for
Glycyl-Radical Propanediol) contains a diol dehydratase that functions by a glycyl-radical mechanism.
The third type of MCP system is one that is responsible for the catabolism of ethanolamine, and
therefore has been given the name Eut (short for Ethanolamine Utilization)'”'*. The Eut MCP system is
commonly found in enteropathogenic bacteria that inhabit the human gut and are associated with human
disease'’*’. These bacteria include pathogenic Enterobacteriaceae, such as Salmonella and Escherichia
coli, as well as some phylogenetically-distant pathogens including species from the genus Clostridium.
The selective pressure for encapsulation of ethanolamine catabolism within an MCP results from the
formation of acetaldehyde as an intermediate. As with the propionaldehyde intermediate retained by
propanediol catabolic MCPs, acetaldehyde is chemically reactive and mutagenic, and additionally, unlike
propionaldehyde, acetaldehyde has an extremely high vapor pressure at physiological temperature and
pressure. The high vapor pressure of acetaldehyde, combined with its small size and hydrophobicity,
allow it to evaporate from the cell, leading to loss of nutrients®'. The enzymatic reactions that take place
inside the Eut MCP are highly similar to the reactions that occur within the propanediol catabolic MCPs.
First, ethanolamine is degraded to ammonia and acetaldehyde by the ethanolamine-ammonia lyase
enzyme. Next, acetaldehyde molecules encounter one of two distinct dehydrogenase enzymes, and are
either reduced to form ethanol, or converted to acetyl-CoA by oxidative coupling. A final enzymatic
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reaction (acyltransferase) of acetyl-CoA with orthophosphate creates acetyl-phosphate and releases
coenzyme-A. The products of the reactions that occur within the Eut MCP can subsequently be converted

to other metabolites that are used in the tricarboxylic acid cycle or various biosynthetic pathways.

1.3 The MCP Shell: A Complex Function Emerges from Assembly of BMC-domain Proteins

Like the plasma membranes of their eukaryotic counterparts, MCP shells must operate as
selectively-permeable diffusion barriers between the cytoplasm and the lumen in order for MCP
structures to act as functional organelles. MCP shells must restrict the efflux of small, hydrophobic
metabolic intermediates, while simultaneously allowing the passage of more polar, but similarly-sized,
substrates and products”'>*"**. Additionally, in some MCP types, encapsulated enzymes require access to
cofactor molecules that are significantly larger than the molecular species that need to be retained within
the lumen. The Eut MCP serves as an excellent example of the functional complexity required of the
MCP shell; it must permit the diffusion of ethanolamine, ethanol, and acetyl-phosphate, while at the same
time preventing the escape of acetaldehyde, a molecule with similar size and chemical properties.
Furthermore, the encapsulated ethanolamine-ammonia lyase enzyme sometimes requires the exchange of
bulky cofactors with the cytoplasm following mechanism-based inactivation, leading to a requirement for
transport of molecular species that are much larger than the small aldehyde that must be contained within
the MCP.

The ability of the MCP shell to function as an intricate diffusion barrier is a direct result of its
structure and composition**. The primary building blocks of MCP shells are known as BMC-domain
proteins (BMC for Bacterial Microcompartment)®. The BMC-domain is a small, approximately 100
amino acids, protein domain that adopts a compact fold containing two B-o-f motifs connected by a f3-
hairpin loop (a ferredoxin fold). Although relatively simple, the BMC-domain has a fantastic capacity for
assembly into higher-order structures (Figure 1.3). BMC-domains first oligomerize into hexamers with
cyclic 6-fold symmetry, and roughly hexagonal shape. These hexameric tiles further assemble, in an
edgewise fashion, to form tightly packed, two-dimensional sheets. Integration of pentameric vertex
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Figure 1.3. Assembly and structure of the MCP shell. The major components of the MCP shell are the
BMC-domain proteins, which oligomerize into hexameric tiles that further assemble to form the flat
facets of a polyhedral shell. Multiple BMC-domain paralogs combine with pentameric vertex proteins to
form an essentially solid shell surrounding the interior enzymes. Small pores perforate the centers of some

BMC-domain hexamers.



proteins (BMV proteins) allows these molecular sheets to form a closed polyhedral shell, which is

perforated only by small pores found at the centers of some shell protein hexamers™>

. The specific
chemical properties of these pores (i.e. shape, size, electrostatic potential, etc.) govern their permeability
to various small molecules.

An additional level of complexity with respect to the structure and function of the MCP shell
exists, based on the fact that multiple BMC protein paralogs are simultaneously present within a single

25,27,29

MCP shell'*'"*"** (Figure 1.3). Based on X-ray crystal structures of paralogous BMC proteins , and

phenotypic analysis of MCPs with varied BMC protein mutations® >

, it has become clear that each
paralog serves a unique role within the context of the shell. Among the key differences between
homologous BMC-domain hexamers are differences in the physical and chemical characteristics of their
central pores, which are likely to endow them with distinct transport functions. The putative transport

8,9,23,24

functions of various types of BMC protein paralogs have been reviewed extensively . Examples

include the CcmK sub-family of proteins from the f-carboxysome, whose small, positively-charged pores

25,33

are assumed to transport bicarbonate molecules™, the EutL protein from the Eut MCP, whose central

pore is capable of transitioning between two conformational substates®”>*

, and the PduT protein from the
Pdu MCP, which binds an iron-sulfur cluster at its pore**'** (Figure 1.4). While BMC-domain homologs
display a wide array of central pores which are likely to have highly varied functions, they all appear to

facilitate transport processes that are already thermodynamically favored. In other words, BMC-domain

shell proteins do not perform active transport, but instead serve as a selectivity filter for diffusion.

1.4 Symmetry Influences Structure-Function Relationships in BMC-domain Shell Proteins

The requirement for assembly into a two-dimensional lattice places an obvious constraint on the
structure of BMC-domain proteins and oligomers. These proteins assemble into highly-ordered, semi-
crystalline structures, with well-defined lattice spacings, wherein the individual tiles must be very tightly
packed with virtually no space between®*®. This assembly requirement puts very strict constraints on the
size and shape of the BMC-domain hexamers, because their perimeters must be compatible with the
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paralogs, top panel), large, gated pores (EutL, middle panel), and iron-sulfur clusters (PduT, bottom

panel).



lattice-packing interactions that support layer formation. These requisite interactions were recently
highlighted by Sinha, et al., who pointed out that a specific set of hydrogen-bonding interactions appear to
be required on all six sides of a shell protein hexamer in order for that hexamer to be incorporated into the
MCP shell’’. The structural requirement for symmetric interactions around the perimeter of a hexamer
also limits the functionality of the central pore region when 6-fold symmetry is strictly obeyed. Indeed, all
previous structures of BMC-domain homohexamers show narrow, chemically uniform central pores
(CecmkK, CsoS1, PduA, EutM) or no pores at all (PduU, EutS). While small pores through the MCP shell
appear to be important for substrate and product flux, the chemistries that occur within most MCPs also
require access to molecules that are clearly too large to pass through these small, simple perforations.

In order to create BMC-domain hexamers with more heterogeneous pore regions, nature employs
a strategy based on pseudosymmetry (Figure 1.5). Early on, it was recognized through analysis of BMC-
domain sequences, that within the BMC-domain family of shell proteins there is a subset that are
“tandem” BMC-domain proteins®. As the name suggests, these polypeptides consist of two BMC-
domains, which have been genetically fused to one another. As suspected, biochemical and structural
evidence confirmed that these tandem BMC-domain proteins oligomerize to form pseudohexameric
trimers, which fulfil the symmetry requirement for assembly in terms of their size, shape, and tiling
interactions, but are more structurally diverse in their central pore regions as a result of differences
between the two fused BMC-domains™**343%34

Studies of these tandem BMC-domain shell proteins have revealed specialized functions,
demonstrating an important role for symmetry breaking in enhancing the versatility of the BMC-domain
superfamily. Some examples of tandem BMC-domain proteins with specialized functions include
EutL*"** and CsoS1D, which have been observed in multiple conformations that differ in their porosity,
suggesting gated transport of large molecules, and also PduT, which is known to bind an iron-sulfur
cluster at its central pore, providing evidence of involvement in some type of redox chemistry”~"*’
(Figure 1.4). Within the MCP shell, each of these tandem BMC-domain pseudohexamers contributes its

own specialized function, collectively imparting the shell with complex transport properties.
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Figure 1.5. Symmetry, pseudosymmetry, and BMC-domain oligomerization. BMC-domain proteins
typically form 6-fold symmetric hexamers, as depicted on the left. In the case of the tandem BMC-domain
proteins, two BMC-domains become genetically fused, leading to a pseudohexameric trimer, as depicted
on the right. Lysine residues that are critical for oligomerization are shown as red spheres, demonstrating
that even when strict 6-fold symmetry is not present in the tandem BMC-domain oligomers, key

symmetric interactions are preserved.
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The relationship between broken oligomeric symmetry and function in the BMC-domain family
of proteins is not unique. In fact, this relationship is somewhat common in proteins, and has been studied
by biochemists, biophysicists, and structural biologists for decades*'. Many examples of protein
complexes that rely on various forms of broken symmetry for their function exist, dating as far back as
the earliest X-ray crystal structures of proteins. In the early 1960’s, the work done by Max Perutz and
John Kendrew, which produced the first X-ray crystal structures of protein molecules, winning the 1962
Nobel Prize in Chemistry, led to the understanding that oxygen binding and release by hemoglobin relies

on the pseudosymmetry inherent to the a,p, tetramer***

. Shortly after, Paul Boyer proposed the
“binding-change” mechanism (also called the “flip-flop” mechanism) for ATP synthase catalysis, which
invoked coupling between symmetry breaking and enzymatic function in a large molecular machine®.
Later, this mechanism was structurally verified by John Walker’s research group™, leading to another
Nobel Prize shared by Boyer and Walker in 1997. Symmetry breaking is critical for the catalytic
mechanism of HIV protease®’, an established target of structure-based drug design efforts, as well as for
the regulatory activity of tropomyosin during muscle contraction®, for the allosteric mechanism of
bacterial L-lactate dehydrogenase®, and for the ligand binding activity of the human growth hormone
receptor". The examples provided are not exhaustive, but are just a few prominent examples out of many
available in the literature. Clearly, the importance of broken symmetry with respect to function cannot be
underestimated in the description of oligomeric proteins.

Within oligomeric proteins that exhibit broken symmetry, there is a necessity for structural
polymorphism within the oligomer. In a pseudosymmetric oligomer, such as a tandem BMC-domain
pseudohexamer, or a hemoglobin a,f3; tetramer, the structural polymorphism results from having different
subunits with different sequences. Previous work on the BMC-domain proteins has highlighted a role for
pseudosymmetry, as described above. Interestingly, in some tandem BMC-domain proteins, the structural
polymorphism that results in pseudosymmetry also produces conformational polymorphism in the form of
multiple pore conformations®’***’. The conformational transitions observed in these proteins appear to

behave according to the strict 3-fold oligomeric symmetry of the pseudohexamers. In addition to
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pseudosymmetry, a different type of broken symmetry also exists, termed quasisymmetry, in which
polypeptide chains with identical sequences adopt polymorphic conformations, typically induced by

interactions with a ligand or with other copies of the protein subunit.

1.5 Open Questions in the Study of Molecular Transport through the MCP Shell

While we have gained tremendous insight into the mechanisms of molecular transport through the
MCEP shell, there are still many unanswered questions. Our primary understanding of these mechanisms
has been derived from X-ray crystallographic studies of individual BMC-domain shell proteins. These
structural studies revealed the central pores of the hexamers to be the conduits of molecular flux, and
suggested that their physical and chemical properties lead to the selective permeability of the shell**"*.
Studies of the tandem BMC-domain pseudohexamers demonstrated specialized functions in these
proteins, including the opening of large pores as a result of conformational arrangements>>**. While
structural studies have been highly informative, experimental confirmation and mechanistic descriptions
of transport hypotheses derived from structural analysis is still somewhat scant. For example, the
conformational changes observed in the EutL and CsoSID shell proteins have clear functional
implications; however, the mechanisms by which these motions are regulated have remained elusive,
obscuring our understanding of the roles of these larger, gated pores in molecular transport. Additionally,
we are still lacking a comprehensive understanding of the extent to which symmetry breaking yields
specialized function in this highly-symmetric family of protein oligomers. Finally, the wealth of genetic
information available from high-throughput sequencing is resulting in an ever-growing list of BMC-
domain shell proteins with interesting sequence idiosyncrasies, implying potentially unique and divergent
functions.

Gaining a full understanding molecular transport through the MCP shell will enable the use of
MCPs for interesting synthetic biology and biotechnology applications. Recently, MCPs have received
attention for their potential versatility in synthetic biology endeavours, providing genetically-encoded

building blocks for nanoscale reaction vessels’ >*. While our understanding of MCP assembly has
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=7 our understanding of molecular

enabled targeting of specific protein contents to the MCP lumen
transport through assembled MCP shell is lacking. This gap in our knowledge of MCP transport functions
has, thus far, prevented the creation of MCPs with designed transport properties. Unfortunately, targeting
a designed metabolic pathway to the lumen of an MCP is useless unless those enzymes can access their
substrates, and in order to effectively engineer MCPs with novel functions we must understand how to
engineer MCP shells with appropriate permeabilities. Understanding how nature has designed molecular

transport in the BMC-domain family of MCP shell proteins is a critical first step towards engineering

novel MCP functions.

1.6 Summary of the Dissertation

The research presented as part of this dissertation is organized into four chapters (Chapters 2-5).
Individually, each chapter described below represents a distinct research project. Collectively, Chapters 2-
4 serve to illustrate the intimate connection between conformational polymorphism and specialized
function in the BMC-domain superfamily of MCP shell proteins. Chapter 5 departs from direct
description of biological phenomena, providing the details of a method for detection of structural
heterogeneity in protein crystals using a novel mathematical analysis of X-ray diffraction data sets.

Chapter 2 describes a line of research directed toward understanding how an established
conformational change is regulated in the EutL shell protein. EutL is a tandem-BMC-domain protein, as
described above, which is found within the shell of the Eut MCP. In the case of EutL, the role of broken
symmetry resulting from domain duplication became immediately obvious, owing to a series of four
crystal structures determined by Tanaka, et al. and by Sagermann and Takenoya, et al.””***® These crystal
structures show EutL in two distinct conformations, indicating that the broken symmetry creates the
potential for interconversion between multiple conformations. Of these four structures, two reveal the
trimer to be in a “closed” conformation, where the central region of the symmetric oligomer is tightly
packed, leaving no pore through the center. The other two structures reveal the protein in an “open”
conformation, where a structural rearrangement of the central loops creates a relatively large triangular
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pore perforating the center of the oligomer. While the aforementioned structures demonstrated that EutL
can occupy two distinct conformations, they did not provide a good explanation for how the
interconversion between the two states is regulated. The work presented in Chapter 2 describes efforts to
understand the roles of allostery and redox regulation in controlling pore conformation.

Chapter 3 describes the structure determination of a CemK1 shell protein mutant (L11K) from the
B-carboxysome of the cyanobacterium Synechocystis PCC6803, which presented challenges including
twinning, non-crystallographic symmetry, and packing of hexameric units in a special arrangement.
Following initial difficulties in space group assignment, the correct space group was clarified after model
refinement revealed additional symmetry. This study provides an instructive example for
crystallographers, in which broken symmetry requires a new choice of unit cell origin in order to identify
the highest symmetry space group. Of biological relevance, additional observations related to the packing
arrangement of molecules in this crystal suggest that these hexameric shell proteins might have lower
internal symmetry than previously believed, implying some degree of structural flexibility. Furthermore,
analysis of the electrostatic surface properties of this shell protein mutant yields some insight into the role
of electrostatics in the transport of small molecules through the MCP shell.

Chapter 4 describes studies of an unusual BMC-domain hexamer from the Grp MCP. This shell
protein, GrpU, whose amino acid sequence is particularly divergent from other members of the BMC-
domain superfamily of proteins that effectively defines all MCPs'’. Expression, purification, and
subsequent characterization of the protein showed, unexpectedly, that it binds an iron-sulfur cluster. X-ray
crystal structures of two GrpU orthologs provided the first structural insight into the homohexameric
BMC-domain shell proteins of the Grp system. The X-ray structures of GrpU, both obtained in the apo
form, combined with absorbance spectroscopy and computational modeling, show that conformational
heterogeneity of a conserved amino acid motif leads to broken hexameric symmetry at the central pore of
the cyclic assembly, resulting in a structurally polymorphic iron-sulfur cluster binding site that appears to

be unique among metalloproteins studied to date.
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Chapter 5 diverges from the direction of the previous three Chapters that aim to characterize
specific biological systems, instead describing efforts to develop a method of crystallographic data
analysis that can identify structural heterogeneity in crystalline protein samples. Chapters 2-4 describe
BMC-domain hexamers as being among the many examples of the importance of conformational
heterogeneity in protein function. Obviously, there is a general need to characterize conformational
heterogeneity in protein samples. The work presented in Chapter 5 aims to address this need by using
principal component analysis to examine multiple X-ray diffraction data sets collected from the same
macroscopic crystal. We demonstrated that this method can detect structural heterogeneity at the level of
the crystalline unit cell (i.e. unit cell nonisomorphism), and also can be potentially useful for creating
electron density maps intended to highlight molecular features that display conformational heterogeneity.

Finally, Chapter 6 summarizes the work presented in the dissertation, discussing implications for
the study of MCPs as well as for our understanding of protein function in general. Emphasis will be made

on relating the individual research projects presented to the underlying idea that conformational
polymorphism, which relates directly to broken oligomeric symmetry, is critical for specialized function

in the BMC-domain proteins, ultimately imparting the MCP shells with complex transport properties.
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CHAPTER 2

An Allosteric Model for Control of Pore Opening by Substrate Binding in the EutL

Microcompartment Shell Protein

2.1 Introduction

The intestinal microbiota constitutes a fascinating ecological community. These microorganisms,
primarily bacteria, which colonize the human digestive tract, are roughly an order of magnitude more

numerous than human cells within a single human body>* '

, and they perform a number of functions that
benefit their host. The various species of bacteria aid in carbohydrate digestion and produce vitamins that

can be absorbed by the host®” ®>. Additionally, the ecology of the intestinal microbiota has been directly

linked to human health, effecting many important aspects of physiology including immunological

63,64 65,66

activity™®, tumor growth®, obesity®>®, and even cognitive function®’. Consequently, imbalance within
this ecological community can lead to a variety of human diseases. Typically, the intestinal microbiome
maintains a healthy distribution of species as a result of competitive exclusion; no single species can
become too prolific due to constant competition for resources within the environment®*®.

In order to gain a competitive advantage over other microbes in the gut, certain bacterial species
have evolved the ability to utilize ethanolamine as a metabolic resource'®'”** ", Genomic analysis
revealed that over 100 sequenced bacterial genomes contain the so-called “eut operon,” which contains
genes required for utilization of this small molecule®. Ethanolamine is produced through degradation of
phosphatidylethanolamine, a phospholipid that is present in high quantities within cell membranes. Due to
constant turnover of the intestinal epithelium, as well as the composition of the diet, ethanolamine is

plentiful in the human intestine'""

. The ethanolamine molecule enters bacterial cells through a
transmembrane ethanolamine transporter,’” and is degraded by a well-characterized catabolic

pathway'”'®%_ Initially, ethanolamine is deaminated by ethanolamine-ammonia lyase (EutBC), providing
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ammonia as a nitrogen source, and acetylaldehyde as a carbon source. Subsequently, acetaldehyde is
ligated to coenzymeA, forming acetyl-CoA, which can enter a variety of other metabolic pathways. For
example, acetyl-CoA can be oxidized in the TCA cycle to produce NADH, or it can be a substrate for
anabolic processes such as fatty-acid biosynthesis.

The presence of the eut operon in the genome and metabolic utilization of ethanolamine have
both been linked to bacterial enteropathogenesis'***">’*. Ethanolamine utilization allows pathogenic
species to proliferate in the host digestive tract by giving them a nutritional advantage over other species,
and also through potential modulation of the host innate immune response'’. A probabilistic analysis of
phylogenetic patterns by Li, et al. identified a strong correlation between the occurrence of eut genes and
the “food poisoning” phenotype”. Experimentally, it has been demonstrated that global virulence

776 and it has also been shown that eut genes

regulators induce expression of eut genes in several species
are down-regulated during commensal colonization of the host by Enterococcus faecalis’’. Furthermore,
Winter and Thiennimitr, et al. concluded that inflammation of the host intestine due to infection is critical
for anaerobic ethanolamine catabolism, because it provides the necessary respiratory electron acceptor,
tetrathionate” ™.

In most enteropathogenic facultative anaerobes that metabolize ethanolamine, the eut operon
contains genes encoding BMC-domain proteins'"'***”*. The presence of these genes is diagnostic of
encapsulation of the Eut metabolic enzymes within a bacterial microcompartment (MCP) structure, and
many organisms are known to make Eut MCPs. The function of these elaborate MCP structures is to

2021 (Figure 2.1). Organisms known to

retain acetaldehyde, a volatile and toxic metabolic intermediate
form “eut MCPs” include Clostridium, Salmonella, E. coli, and Klebsiella, which can have a variety of
negative effects on human health®, ranging from food poisoning to increased risk of colon cancer, and it
has been hypothesized that encapsulation of ethanolamine metabolism within a MCP is critical for
pathogenesis in some bacterial species'***”. Encapsulation of ethanolamine metabolism within an MCP
allows the bacteria to turn over large amounts of this metabolic resource without elevating the

intracellular acetaldehyde concentration, giving them a nutritional advantage over other microbes'’.
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Figure 2.1. The Eut microcompartment. A schematic of the Eut microcompartment illustrates a layer of
hexagonal shell protein tiles surrounding a series of enzymes that catalyze the depicted reactions. Solid
arrows indicate chemical reactions, and dotted arrows represent molecular transport events. The shell
must be permeable to substrates, products, and at least one bulky cofactor (shown in orange), while

simultaneously retaining the acetaldehyde intermediate shown in the red box.
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The shell of the Eut MCP has to solve a challenging problem. The reason for encapsulating
ethanolamine catabolism is to retain a very small, volatile intermediate, acetaldehydezo’m. At the same
time, the biochemical system within the Eut MCP must also exchange at least one large cofactor with the
cytoplasm. The nicotinamide cofactors, as well as coenzymeA, can be recycled within the MCP*""**, but

1869 (Figure

the ethanolamine-ammonia lyase enzyme requires an adenosylcobalamin cofactor for catalysis
2.1). In the enzyme active site, the adenosylcobalamin coenzyme (vitamin B,) is subject to mechanism-
based inactivation in the absence of substrate®, and therefore needs to be replaced. The Eut operon
contains ATP-dependent enzymatic machinery for regenerating adenosylcobalamin®****, but it is unclear
whether this set of enzymes is located inside or outside of the MCP structure. If the cofactor regeneration
system is outside the MCP shell, the shell must support the transport of cobalamin compounds to
replenish the enzyme with fresh cofactor. If the cofactor regeneration system is inside the MCP, then ATP
must be able to enter the MCP. Either of these molecules, cobalamin or ATP, are both much bigger than
acetaldehyde, so the MCP shell must have a mechanism for allowing the passage of larger molecules
without promoting the leakage of the small intermediate.

Previous X-ray crystallographic studies of the EutL shell protein from Escherichia coli have
suggested an important transport role for this tandem BMC-domain pseudohexamer®”****, A pair of X-ray
crystal structures of E. coli EutL determined by Tanaka, et al. revealed two conformations of the protein®’
(Figure 2.2). In the “closed” conformation, the central region of the trimer is occluded by ordered loop
segments. In the “open” conformation a wide triangular-shaped pore is present at the center of the trimer.
This pore — approximately 10A across — is much wider than the pores in typical BMC homohexamers,
and appears large enough for cofactor transport’’. The idea that EutL might provide a gated pore for
transport of large molecules explains how the MCP shell can provide interior enzymes with cofactors,
while still retaining small intermediates like acetaldehyde. While previous crystallographic work has
established that EutL can occupy two conformations, the regulation of the transition between the two
states remains unclear. Understanding the mechanism by which these gated pores are regulated would

substantially enhance our knowledge of how bacterial organelles maintain selective permeability.
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Figure 2.2. Open and closed conformations of EutL. X-ray crystal structures of E. coli EutL in both
"closed pore" (3182, left), and "open pore" (3187, right) conformations. B) Both the open and closed EutL
trimers (blue), along with EutM hexamers (green), are depicted as part of a layer of BMC shell proteins.
Note the significant change in porosity caused by the interconversion of the open and closed

conformations of EutL.
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The goal of the work described in this chapter was to better understand the structural features
responsible for conformational changes that occur in tandem BMC shell proteins like EutL. The present
study focuses on understanding the atomic interactions that govern the transition between the two states.
We address whether this conformational change is triggered by a specific signal, and propose, based on
structural and biophysical data, that the substrate ethanolamine acts as a negative allosteric regulator of

EutL pore opening.

2.2 Results — Initial crystallographic studies of EutL from Clostridium perfringens

Studies of EutL have provided important clues for understanding molecular transport across BMC
protein shells. Previous structures of E. coli EutL supported the idea that the broken symmetry resulting
from domain duplication allows for conformational change at the center of the trimer, which permits the

opening of a large central pore*”*

. While the importance of this conformational change in facilitating
molecular transport seems clear, the details of how it takes place have yet to be fully elucidated. The aim

of the study presented in this section was to shed light on this question through examination of an

uncharacterized EutL. homolog from Clostridium perfringens.

2.2.1 Structure determination of untreated C. perfiringens EutL

We determined X-ray crystal structures of EutL from Clostridium perfringens (referred to
hereafter as cpEutL) in order to elucidate structural features of the protein that contribute to its function.
Using the hanging drop vapor-diffusion method, we grew crystals belonging to two different crystal
forms (Figure 2.3a,b) representing space groups P4;2,2 (tetragonal) and C2 (monoclinic). These crystals
diffracted to resolutions of 2.0 A and 1.7 A respectively. Further details of the data collection and atomic
refinement for these structures are provided in the Methods section and in Table 2.1. Continuous electron
density could be traced for residues 1-216 out of 225 in every polypeptide chain of all three structures,
and additional residues could be modeled in a majority of the polypeptide chains. The two structures are
very similar, having a coordinate RMSD of only 0.42 A on all atoms. The coordinates and diffraction data
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Figure 2.3. Two crystal forms of cpEutL. Comparison of the tetragonal (left) and monoclinic (right)
crystal forms of cpEutL: crystal habit (top panel), unit cell and crystal packing (middle panel), and

asymmetric unit (bottom panel).
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for the two structures have been deposited in the Protein Data Bank under PDB IDs 4EDI (tetragonal),
and 4TLH (monoclinic).
2.2.2 Structural overview

The structures of cpEutL recapitulate the typical topology and oligomerization reported
previously for tandem BMC-domain protein*"*****>**** (Figure 2.3). Within a single monomer, each of
the two genetically fused BMC-domains adopts a permuted o/f BMC-domain fold. Domain 1 contains f3-
strands 1-4 (forming an antiparallel B-sheet) and a-helices A-C. Domain 2 contains p-strands 5-8 (also an
antiparallel B-sheet) and a-helices D-F. A single trimer is present in the asymmetric unit of both crystal
forms, which corresponds to the expected biological assembly of the protein (Figure 2.3c). The three
polypeptide chains of the trimers assemble in the C3-symmetric manner typical of tandem BMC-domain
proteins, giving the trimer the characteristic hexagonal shape required for its incorporation into the two-
dimensional lattice of the MCP shell. In the monoclinic crystal, lattice formation creates layers of two-
dimensional sheets, consistent with assembly of the flat facets that form the MCP shell. The structures of
untreated cpEutL superimpose upon the closed conformation of their E. coli homolog (PDB ID: 3182)

with an RMSD of less than 1.0 A on C-alpha atoms.

2.2.3 Loop structures in the closed conformation

The crystal structures of cpEutL reveal the pseudohexameric trimer in a closed-pore conformation
that is very similar to the closed conformation seen for E. coli EutL*’***®. The closed conformation of
cpEutL, like the homologous E. coli protein, is characterized by a tight packing of three symmetry-related
loops, one from each polypeptide chain in the trimer, about the three-fold molecular symmetry axis
(Figure 2.4). These loops consist of residues 68-82, which connect -strands 3 and 4 in domain 1. The
packing of these loops at the center of the trimer is stabilized by the edge-to-face interaction of three
aromatic rings, and by hydrogen bonding between asparagine residues. Each monomer contributes a

tyrosine residue (Tyr69) and an asparagine residue (Asn74) to this symmetric interaction (Figure 2.4). In
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Side View

Figure 2.4. Overall structure of cpEutL and details of loop interactions. A ribbon diagram depicts the
crystallographic model of untreated cpEutL. The trimeric structure is very similar to the closed
conformation of E. coli EutL. Expanded views (stereo) show the details of the atomic interactions that
stabilize the closed-pore conformation. Hydrogen bonds are shown as dotted yellow lines, and
interactions between aromatic rings of tyrosine side chains are shown as dotted pink lines. Residues that
form these interactions are shown as sticks (Y69, A70, N74, E181, N183). The orange subunit has been

removed for clarity in the lower panel.

26



addition to the B3-p4 loop, the analogous loop region in domain 2, consisting of residues 176-185, which
connects B-strands 7 and 8 in domain 2, also protrudes toward the center of the trimer. This $7-B8 loop
makes contacts, both direct and water-mediated, with the p3-p4 loop within a single monomer, and
between neighboring monomers in the trimer (Figure 2.4). These interactions between the 7-B8 loops
and the B3-B4 loops may be important for stabilizing the closed conformation. While the conformations
of both the 3-f4 and B7-B8 loops in cpEutL are consistent with the closed structure of EutL from E. coli
(PDBIDs 3182 and 3GFH), both of those loop regions are in different and/or disordered conformations in

the open structures of the E. coli homolog (PDB IDs 3187 and 3MPV).

2.2.4 Loose atomic packing in the monomers

7738 we observe small holes in areas of low packing density, one

In line with previous reports
within each of the monomers, in the closed-pore conformation of the trimer (Figure 2.4). These holes,
present also in previous structures of EutL homologs in the closed conformation (PDB IDs 3100, 3182,
3GFH, 4FAY), are located at the N-terminal end of helix A between domains 1 and 2 within an individual
monomer. The openings extend from one face of the trimer to the other, making three narrow, hourglass-
shaped channels through the assembly (Figure 2.4). The openings are lined with conserved acidic and
polar residues on one side (D44, D45, T182), and hydrophobic residues on the other (F112, F184). The
loose atomic packing in this region appears to provide space to accommodate conformational
rearrangements and the formation of alternative interactions in the open-pore conformation of the trimer
(Figure 2.5).

We measured the minimum radius of the opening using the HOLE2 algorithm®, and found that
the narrowest constriction along a traversal from one side of the trimer to the other has a radius of only
1.2 A (Figure 2.6). This measurement is in close agreement with the analysis of E. coli EutL performed
by Sagermann, et al., who calculated a radius of 1.1 A for the narrowest point™. The narrow constriction
points of the ligand-binding channels consist of residues D44, D45, V151, T182, and F184. For

comparison, the van der Waals radius for a carbon atom is approximately 1.7 A** %, Whether these
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Closed Pore Open Pore

Figure 2.5. Conformational rearrangement of the EutL pore. Three narrow channels through the EutL
trimer (one per monomer) are depicted in blue. Residues lining these channels are shown with spheres
surrounding their Co atoms. In order for the EutL pore to open, the 33-B4 loops (magenta) must retract

from the center of the oligomer into these narrow channels.
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Figure 2.6. Dimensions of the channels in EutL. The plot shows pore radius as a function of arbitrary
pore coordinate for one of the narrow channels that perforate the EutL trimer. The narrowest point of the

channel has a radius of only 1.2A.
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openings could support molecular transport (perhaps upon further rearrangement) is an open question. In
our view, the narrowness of the openings and the presence of larger pores in other Eut shell proteins belie

an alternate explanation.

2.2.5 Crystallographic evidence for disulfide bonding in cpEutL.

Analysis of electron density maps calculated from cpEutL diffraction data revealed,
unexpectedly, a disulfide bond in a tandem BMC-domain protein. The refined structure of cpEutL reveals
an interesting triad of cysteine residues — Cys127, Cys196, and Cys200 — poised within disulfide-bonding
proximity. This triad, well conserved among EutL orthologs, consists of a helical CXXXC motif and a
third Cys residue contributed by a neighboring B-strand, which creates an isosceles triangle with the p-
carbons of the three cysteine side chains at the vertices. In our structure of cpEutL, Cys127 of chain A
appears in two alternate rotameric configurations, with one of those rotamers able to form a disulfide
bond with Cys200. Electron density corresponding to such a disulfide bond appears (at a contour level of
1.6 o) in a 2mFo-DFc map (Figure 2.7a). Initial refinement was performed using a model that did not
contain a disulfide bond between those two residues. We modeled the disulfide-bonded rotamer of
Cys127 only after positive density appeared in a difference (mFo-DFc) map. Subsequent refinement was
carried out with Cys127 in two partially-occupied rotamers; the occupancies in the final refined model
were 0.46 and 0.54 for the bonded and non-bonded conformations respectively. To minimize phase bias,
we also calculated a difference map in which the two cysteine residues of the disulfide bond were
excluded from the structure factor calculation. This map also showed positive density (4.95) for both
rotamers of Cys 127 as well as for the Cys 127-Cys200 disulfide bond (Figure 2.7b).

Because disulfide bonds are sometimes broken by intense synchrotron X-ray radiation” ">, we
also studied the effect of X-ray radiation on the electron density features corresponding to the disulfide
bond. First, a difference map was recalculated from diffraction data collected during the first 20° of the
X-ray experiment, which gave a data set that was approximately 82% complete. That density for the

disulfide was stronger in this map than in the original map calculated from the full data set (2.2c versus
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Figure 2.7. Electron density features reveal a disulfide bond in cpEutL. A) A 2mFo-DFc electron
density map contoured at 1.1c shows contiguous electron density between the sulfur atoms of Cys127 and
Cys200, indicating the presence of a partially occupied disulfide bond. B) A difference (mFo-DFc)
electron density map, in which the atoms of Cys127 and Cys200 have been excluded from the structure
factor calculation to eliminate phase bias, shows strong positive density for both conformations of Cys
127 and for the disulfide bond. C) A Fearly-Flate, electron density map, comparing data from the first 20°
of X-ray data collection with the last 20°, indicates that the Cys127-Cys200 disulfide bond is strongly

populated prior to X-ray exposure, and is partially destroyed during the experiment.
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1.60), suggesting that the disulfide bond was partially broken during the course of data collection. To
further demonstrate the radiation-sensitivity of the disulfide bond, we calculated a F,-F, isomorphous
difference map comparing data from the first 20° of the X-ray experiment with data from the last 20° of
the experiment (Feq-Fiae). This map revealed a strong peak of positive density surrounding the sulfur
atom of the bonded rotamer of Cys127 (Figure 2.7¢). These X-ray calculations indicate that the disulfide
bond was well populated in the crystallized protein, with partial loss occurring as a result of radiation

damage.

2.2.6 Analysis of unassigned electron density

During atomic refinement, unassigned electron density became visible, which was incompatible
with the closed-pore conformation of the protein that had been built. These prominent electron density
features could be explained by modeling a small population of the protein molecules in the crystal as
though they instead occupied a putative open conformation. Much of the unexplained density appeared
running through the centers of the small openings described above (Figure 2.8a,b). Similar density
features were present in both 2mFo-DFc and mFo-DFc (difference) electron density maps. We attempted
to model this density with water molecules, as well as several components of the mother-liquor including
HEPES buffer and ethylene glycol, but none of those modeling efforts produced a reasonable fit to the
density as judged by geometric considerations and the appearance of negative density after subsequent
refinement.

Motivated by geometric inconsistencies between the unassigned density and our crystallographic
model, we noticed that the unassigned density resides where the protein backbone of the f3-B4 loop
would be expected if the EutL protein were in an open conformation (based on analogy to the open
structure of E.coli EutL) (Figure 2.8b). Using our crystal structure of cpEutL and the open structure of E.
coli EutL (PDB ID 3187), we created a homology model of the open conformation of cpEutL. We used

this approximate model, along with our crystallographic model of the closed conformation, for a
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simplistic “occupancy refinement” calculation, which revealed conformational heterogeneity within the
cpEutL crystals.

Briefly, we calculated composite structure factors as a linear sum of occupancy-weighted
structure factors derived from closed and open models of cpEutL:

Feaic = aFccipsea + (1 — @) F; open

A traditional R-value between calculated and observed structure factor amplitudes was used to judge the
agreement with observed diffraction data. Whether the R-value was based on reflections in the ‘working
set” (Rom) or the ‘free set’ (Rje.), the minimum residual error was obtained when a=0.93 (Figure 2.8c).
This result is consistent with the conclusion that the cpEutL crystals are structurally heterogeneous, with
most of the molecules in the closed conformation, and about 7% of the molecules in an open

conformation resembling the open conformation of E. coli EutL.

2.3 Results — Experimental validation and functional characterization of disulfide bonding in EutL
Our X-ray crystal structure of cpEutL revealed the first disulfide bond in a tandem BMC-domain
protein. The presence of the disulfide bond in the crystallographic electron density, and the conservation
of the cysteine triad that contains the bond, suggest a functional importance. Because the function of the
EutL shell protein is related to a conformational change, we hypothesized a coupling between the redox
state of the disulfide bond and the conformational equilibrium of the pore. This section describes work

directed toward establishing the hypothesized connection.

2.3.1 X-ray crystal structures of the oxidized and reduced states of EutL

The same crystallization conditions that yielded tetragonal crystals of the untreated protein also
gave crystals of a protein sample that had been chemically reduced by treatment with SmM tris-(2-
carboxyethyl)phosphine (TCEP), as well as a sample that had been oxidized by treatment with 10mM
hydrogen peroxide (H,O,). Crystals of the TCEP- and H202-treated samples diffracted to resolutions of

1.8 A and 2.1 A respectively. Further details of the data collection and atomic refinement for these
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Figure 2.8. Attempt to model conformational
heterogeneity in cpEutl. A) Extra, unassigned
electron density is present in regions of low packing
density. View from the top surface of the cpEutL trimer
(yellow). The 2mFo-DFc map contoured at 1.2¢ is

shown in blue, and the mFo-DFc map contoured at

1 £3.0c is displayed in green and red, representing

positive and negative features respectively. B) The
unassigned density is displayed at an angle rotated
approximately 90° from the view shown in A. A
homology model of the open conformation is shown as
a Ca trace (magenta), which passes directly through the
unassigned density. The homology modeling places
Asn74 in the putative open conformation in a position
in which it could make hydrogen bonds with the highly
conserved Asp45 residue, a feature that is consistent
with positive density in the mFo-DFc map. C) The
average residual error for structure factor calculations
(Rwork,Rfree) is minimized by modeling the closed
conformation at fractional occupancy (a), and the
putative open conformation at complementary
occupancy (1-a). The occupancy calculations were

performed using a 4.5A resolution cutoff.
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structures are also available in the Methods section and in Table 2.1. Final atomic models derived from
the oxidized and reduced samples were strikingly similar to one another, and also to the initial cpEutL
structure determined from an untreated sample. These structures superimpose with an RMSD of only 0.2
A (Ca atoms). It is noteworthy that the electron density features surrounding the Cys127-Cys200 disulfide
bond are nearly identical in the maps derived from the oxidized crystals and from the initial untreated
crystals (Figure 2.7), indicating that cpEutL is prone to spontaneous oxidation when exposed to an
aerobic atmosphere. Also, the disulfide bond is completely absent in the electron density map derived
from the reduced crystals (Figure 2.9). The coordinates of the reduced structure were deposited in the
Protein Data Bank under PDB ID 4FDZ, and the oxidized structure was deposited, but later withdrawn
due to its high degree of similarity with the untreated structure, which was deposited previously (4EDI).
To further illustrate the potential for cpEutL to form disulfide bonds under oxidizing conditions,
we calculated Fijieq-F reanced difference maps from the corresponding isomorphous datasets, using model
phases. Those difference maps showed decisively strong positive density features (>5.4c) situated
between the sulfur atoms of Cys127 and Cys200, indicating that this disulfide bond is present in the
oxidized protein, but not in the reduced sample (Figure 2.10). Interestingly, similarly strong positive
density can be seen between the sulfur atoms of Cys127 and Cys196 (Figure 2.10). This positive density
is accompanied by negative density around the Cys196 residue (since it had been modeled in a non-
disulfide bonded conformation), consistent with the interpretation that Cys196 would have to occupy a
different rotameric configuration to form a disulfide bond with Cys127. The observed electron density
features imply that the oxidized crystals might contain a mixture of Cys127-Cys200 and Cys127-Cys196

disulfide bonds.

2.3.2 Two-dimensional SDS-PAGE

Tryptic digestion of the cpEutL protein followed by two-dimensional SDS-PAGE demonstrates
that tryptic fragments are held together by disulfide bonds formed in the native state. Starting with an
oxidized cpEutL sample, we used iodoacetamide to alkylate any cysteine residues not involved in
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Figure 2.9. Chemical reduction abolishes the disulfide bond in cpEutL electron density.
Representation of 2mFo-DFc electron density surrounding the Cys127/Cys200 residue pair in maps
corresponding to the reduced cpEutL structure. There is no trace of any density corresponding to a

disulfide bond between the thiol groups.

Figure 2.10. Crystallographic comparison of oxidized and reduced cpEutL. Two images of F,;ji.cs
Freaucea 1SOmorphous difference maps show positive peaks in regions between sulfur atoms, demonstrating
that disulfide bonds exist beyond those visible in the normal 2mF,-DF, maps. The maps are contoured at

3.0o.
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disulfide bonds and then digested the protein sample using trypsin. We then used the digested sample in a
two-dimensional SDS-PAGE experiment in which the first dimension was run under non-reducing
conditions and the second dimension was run under reducing conditions. Staining the gel with coomassie
blue revealed several distinct bands corresponding to tryptic fragments of cpEutL. All of the major bands
fell on the gel diagonal with the exception of one, which appeared below the diagonal (Figure 2.11a). The
presence of this band below the gel diagonal demonstrates that one or more tryptic fragments migrate as
lower molecular weight species when chemically reduced, indicating that those fragments are involved in

disulfide bonds in the oxidized state.

2.3.3 Mass spectrometry

Using size-exclusion chromatography coupled to electrospray ionization mass spectrometry
(SEC-MS), we observed multiple species of cpEutL. with different numbers of intramolecular disulfide
bonds. In the mass spectrum of the non-reduced sample, peaks corresponding to cpEutL. form a bimodal
distribution, with maxima at 23,701Da and 23,705Da, indicating two species whose molecular masses
differ by 4Da (Figure 2.11b). When this protein sample was chemically reduced by the addition of 50mM
DTT, the distribution shifted in favor of the higher molecular weight species, demonstrating its increased
abundance (Figure 2.11b). Because these two species have a difference of 4Da, and their relative
abundances are shifted to favor the more massive species upon reduction, we conclude that the higher
molecular weight species corresponds to a polypeptide with two fewer disulfide bonds, and therefore four
additional H atoms. We note that cpEutL contains six cysteine residues, and therefore has the potential to
form multiple disulfide bonds. The mass spectrometry experiments support the possibility of complex
disulfide bonding schemes, consistent with the crystallographic evidence showing multiple disulfide
bonding arrangements for cysteines 127, 196, and 200. At least one additional cysteine residue, whose

identity is yet unknown, would have to participate in a second disulfide bond in the oxidized form.
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Figure 2.11. Biochemical evidence for intramolecular disulfide bonding in cpEutL. A) A two
dimensional SDS-PAGE experiment using a trypsin-digested cpEutL sample and run under non-reducing
(first dimension) and reducing (second dimension) conditions shows spots below the gel diagonal,
demonstrating that cpEutL. contains disulfide bonds formed in the native state. The triangle denotes the
predominant band below the diagonal. B) Mass spectra (SEC-MS) of non-reduced, native cpEutL (black)
and chemically reduced, but otherwise identical, cpEutL sample (red) reveals two species with molecular
masses of 23701Da and 23705Da. The comparison of mass spectra from otherwise identical samples
comparing oxidized and chemically reduced cpEutL samples shows that the higher molecular weight
species is favored under reductive conditions, indicating a 4 Da mass difference resulting from reduction
of two disulfide bonds between the two states. The mass spectrometry signal is plotted on a linear scale

with arbitrary units.

37



2.3.4 NMR spectroscopy

NMR spectra of cpEutL, collected under oxidizing and reducing conditions, illustrate that a
structural change accompanies a change in the redox environment. We collected 'H-""N TROSY-HSQC
spectra of both oxidized and reduced cpEutL in order to determine if a change in the redox environment
might induce structural changes in the protein. Comparison of two-dimensional 'H-""N TROSY-HSQC
spectra collected under oxidizing and reducing conditions revealed that, while the majority of the spectral
features remained unchanged, there are notable differences (Figure 2.12). The presence of differences in
position and/or intensity for a small subset of the NMR peaks is consistent with a structural
rearrangement in limited parts of the protein. To rule out the possibility that the change in NMR signal
was due to a change in oligomerization or partial aggregation of the protein (e.g. due to spurious
intermolecular disulfide bonding), we performed SDS-PAGE and native PAGE on both NMR samples.
Results of both native and SDS-PAGE appear essentially identical under oxidizing and reducing

conditions.

2.3.5 Bioinformatic analysis of disulfide bonding

Motivated by our observation of disulfide bonding in cpEutL, we sought to determine if disulfide
bonds might be common among the tandem BMC domain proteins. At the time of our analysis, the Pfam
database contained 3317 unique entries within the BMC domain protein family (PF00936), 969 of which
were tandem BMC domain proteins. We filtered these sequences based on a 95% identity criterion, which
produced a set of 840 single and 268 tandem domain sequences.

Analysis of potential disulfide bonds in this set of BMC proteins was complicated by the multiple
distinct topological forms these proteins adopt, arising from circular permutations and alternate
arrangements (e.g. clockwise vs. counterclockwise) of tandem domains in the context of a
pseudohexameric trimer. As this would have prevented (linear) sequence alignment to EutL in many
cases, we adapted a method from our earlier work’”, using sequence-structure mapping to identify
prospective disulfide bonds (Figure 2.13a). This approach was enabled by the availability of structural
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Figure 2.12. NMR spectroscopy supports a redox-modulated structural change. Two 'H-"N
TROSY-HSQC NMR spectra of cpEutL, collected under oxidizing (blue) and reducing (red) conditions,
have notable differences in chemical shift and intensity for a subset of peaks, consistent with a structural

rearrangement due to changing electrochemical environment.
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Figure 2.13. Disulfide bonding is widespread among some tandem BMC domain proteins. A) A
flow-chart describes the computational methodology used to find potential disulfide bonds in BMC shell
proteins. B) The results reveal a much greater abundance of disulfide bonds in tandem BMC domain
proteins overall compared to their single domain counterparts. C) Further investigation of the sequences
shown to contain putative disulfide bonds reveals that disulfide bonds are common to specific types of

tandem domain shell proteins, notably those most similar to EutL and PduT.
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templates for BMC proteins in several different topological forms. For each unique Pfam entry (query
sequence), we identified the closest BMC shell protein homolog whose structure had been experimentally
determined (template structure). We mapped each query sequence onto the best hexameric or trimeric
template structure and measured the Ca-Ca distances for all pairwise combinations of cysteine residues,
including those that might exist between different monomers in the context of an intact oligomer. This
equalized the opportunities for disulfide bonds to be identified in the two different kinds of assemblies,
irrespective of the size of the individual protein subunits. If the distance was less than 8 A for any pair of
mapped cysteine residues, that sequence was identified as containing a potential disulfide bond.

We performed this analysis separately for the single and tandem BMC domain proteins. We
found that only 5% of single BMC domain proteins satisfied this approximate test for a potential disulfide
bond, whereas 31% of the tandem BMC domain proteins were positive under the same test (Figure
2.13b). The simple homology modeling-based criterion used here to identify candidate disulfide bonds is
only an approximate indicator for the existence of a true disulfide bond in any one protein sequence, but
the overall results are nonetheless decisive when applied over large sets of sequences. Here the results
show clearly that disulfide bonding is relatively common in (trimeric) tandem domain BMC proteins but
not in (hexameric) single domain BMC proteins.

We examined the subset of sequences predicted to have potential S-S bonds. Overall, potential
disulfide bonds appeared to be common in those tandem domain shell proteins that matched most closely
to the EutL and PduT templates — specific shell proteins from two different MCPs. Approximately 80%
(44/55) of the sequences within the group of EutL-like proteins were identified as having potential
disulfide bonds, whereas 39% (22/57) of those within the PduT-like group were likewise identified
(Figure 2.13c). In contrast, disulfide bonds were predicted to be relatively rare in tandem domain shell
proteins whose sequences more closely matched other templates, including: PduB (Pdu MCP), CcmO (-

carboxysome) and CsoS1D (a-carboxysome).
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2.4 Results — EutL binds to ethanolamine at a site that is incompatible with molecular transport
The closed conformation of EutL is a structural arrangement that leaves three small openings

perforating the pseudohexameric homotrimer, one in each subunit. While the possible movement of small

molecules across these small openings has been discussed’*****, the opening and closing of the large

2734 'We characterized the interaction of

central pore remains the most striking structural feature of EutL
the substrate molecule, ethanolamine, with these sites and evaluated the possibility of molecular transport

through these channels. Our results suggest that EutL is unlikely to transport ethanolamine, but instead

ethanolamine binding to EutL results in negative allosteric regulation of pore opening.

2.4.1 Calorimetric investigation of ligand binding to cpEutL

As a first step toward defining the function of the EutL shell protein, we used isothermal titration
calorimetry (ITC) to determine if cpEutL binds to any of the small molecules involved in the
ethanolamine metabolic pathway. We tested the binding of four small molecules, including ethanolamine,
ethanol, acetate, and acetyl-phosphate. (Acetaldehyde was not included in the analysis because it reacts
with our buffered protein solution, producing a large amount of heat that obscures any potential ligand-
binding signal present in the experiment.) Interestingly, all of the interactions of these ligands with
cpEutL appear to release heat; however, our data for the ethanolamine titration are notably different from
the data for the other titrations (Figure 2.14). Specifically, plots of AH vs. molar ratio of ligand to protein
produce virtually flat lines for all of the ligands except ethanolamine, which produces a logarithmic curve
indicative of a specific protein-ligand interaction.

Our calorimetric data from the ethanolamine titration allowed us to create a binding model that
describes two ethanolamine binding sites per monomer with very different affinities and specificities for
their ligand (Figure 2.15). We fit the binding data to a sequential, two-site binding model to derive
thermodynamic parameters for the interaction (Table 2.2). The quality of the thermodynamic binding
model described by the parameters in Table 2.2 was evaluated using a chi-square analysis, which revealed
an excellent fit of the model to the data. The model describes a high-affinity site, where binding is only
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Figure 2.14. EutL binds specifically and selectively to ethanolamine. A comparison of integrated ITC
data for titrations of several small molecules into a cpEutL solution reveals that ethanolamine is the only
titrant whose interaction with cpEutL releases heat in a manner consistent with a specific binding event.
Additionally, cpEutL seems to be quite selective for ethanolamine over similar small ligands associated

with the Eut MCP.
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Figure 2.15. Isothermal titration calorimetry data. Images depicting the raw (top panel) and integrated
(bottom panel) ITC data measured for a titration of ethanolamine into cpEutL. The data shown were used
to derive thermodynamic parameters for the ethanolamine-cpEutL interaction using a sequential, two-site

binding model.
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Oxidized Reduced
Site 1 Site 2 Sitel Site2
K4 (uM) 91.7+1.1 11,500 + 100 321 +3 97,000 + 700
AH (cal mol™) 298.2 + 0.989 4530 + 15.4 2479+ 1.26 25,550 + 174
AS (cal mol' K™) 17.5 -6.32 15.2 -81.1
“Z/DoF 0.3328 0.2742

Table 2.2. Thermodynamic parameters for cpEutL binding to ethanolamine. Parameters calculated
from isothermal titration calorimetry experiments, carried out at 298K. The data were fit to a two-site,

sequential binding model.
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slightly favored by enthalpy but is accompanied by a significant increase in entropy, and a low-affinity
site, where binding is highly exothermic, but comes at an entropic cost.

We also performed ITC experiments using protein that had been chemically reduced with tris(2-
carboxyethyl)phosphine. We found that reduction reduced the affinity of EutL for ethanolamine nearly
fourfold at the high-affinity binding site and nearly eightfold at the low-affinity binding site (Table 2.2).
Additionally, the thermodynamic parameters extracted from the data differ significantly between the

oxidized and reduced states.

2.4.2 X-ray crystal structure of ethanolamine-bound cpEutL

We determined the X-ray crystal structure of cpEutL with ethanolamine bound, in order to
elucidate the structural determinants of ligand binding. Using the hanging drop vapor-diffusion method,
we grew cpEutL crystals belonging to space group P4;2,2, as described in section 2.2. Crystals were
soaked in mother liquor supplemented with ethanolamine, cryoprotected, and frozen at 100K. We then
collected diffraction data to a resolution of 1.7A. Data collection and refinement statistics for the
ethanolamine-bound structure are provided in Table 2.1.

In the ethanolamine-bound cpEutL structure, two ligand molecules occupy each of the three
narrow channels that perforate the trimeric assembly. The presence of two ethanolamine molecules per
monomer is consistent with the binding model that was fit to the ITC data. The first ethanolamine
molecule is bound on the cytosolic side of the constriction point of the channel, while the second
ethanolamine lies within the channel on the luminal side of the constriction (Figure 2.16a). This first
ethanolamine molecule packs against Phel12 and Phel84, positioned so that its protonated amine group
forms ionic interactions with acidic residues Asp44 and Glu82 and its hydroxyl group also makes a
hydrogen bond to Glu82 (Figure 2.16b). The second ethanolamine molecule interacts less intimately with
the protein, packing against Phel76, while forming an ion pair with Asp45, a hydrogen bond with
Thr180, and several water-mediated contacts to other residues (Figure 2.16b). The ethanolamine binding
channel is highly conserved, and its acidic nature is illustrated by calculation of electrostatic surface
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Figure 2.16. Ethanolamine binds to the narrow channels that perforate cpEutL. A) X-ray crystal
structures reveal that ethanolamine molecules (magenta in panel A) bind to EutL in the narrow channels
that perforate the trimmers. Each monomer contains a single channel with two bound ethanolamine
molecules. Within each channel, one ethanolamine molecule is bound on either side of the narrow,
hourglass-shaped constriction point. B) Conserved amino acids (magenta in panel B) form hydrophobic
and polar interactions with ethanolamine molecules (cyan in panel B) that occupy each of the two binding
sites. C) Electron density (2mFo-DFc, blue; mFo-DFc omit, green) supports the placement of the

ethanolamine ligands (magenta in panel C) in the crystallographic model.
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Surface Potential (kT/e’)

Highly Conserved

Figure 2.17. Molecular properties of cpEutL. Two images of the cpEutL moleceutule depicting
sequence conservation and electrostatic surface potential. The image on the left shows a cpEutL trimer,
with one chain colored by sequence conservation, with dark magenta indicating highly conserved
positions and dark teal indicating highly variable positions. Some functionally important residues,
including those surrounding the ethanolamine binding sites, are shown as spheres. The image on the right
shows the surface of cpEutL colored according to electrostatic surface potential, which was calculated by

solving the Poisson-Boltzmann equation. The ethanolamine binding sites carry a strong negative charge.
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potential (Figure 2.17). The negative charge of the acidic residues within the channel complements the
positive charge on the primary amine group of the protonated ethanolamine molecule.

Placement of the bound ethanolamine molecules into the model was justified by strong features in
both 2mFo-DFc and mF,-DF, electron density maps. After modeling the bound ethanolamine and
performing several cycles of atomic refinement, we generated an omit map using calculated structure
factors and phases that did not include contributions from the ligand atoms. The resulting map showed
very strong density corresponding to the omitted ligand molecules (average peak height of 13.76 in mFo-

DFc map), verifying their inclusion in the model (Figure 2.16c).

2.4.3 Crystallographic examination of binding site dynamics

In order to explore the possibility that protein dynamics allow for expansion of the ligand-binding
cavities in EutL allowing ethanolamine molecules to traverse the MCP shell, we performed several
specialized crystallographic analyses. First, we determined the X-ray structure of cpEutL at room
temperature, rather than under cryogenic conditions. Next we used both cryogenic and room-temperature
X-ray diffraction data to perform time-averaged refinement of cpEutL structural ensembles.

Motivated by the idea that cryocooling can remodel loosely packed regions of protein structures,
we determined the structure of cpEutL using X-ray diffraction data collected under ambient temperature
conditions (approximately 298K). For the room temperature diffraction studies, we used the tetragonal
crystal form of cpEutL. Interestingly, by comparing the X-ray data from the room temperature and
cryogenic studies, we found that cryocooling shrinks the tetragonal unit cell by 1.1% along the c-axis, and
by 2.5% along the a- and b-axes. This unit cell shrinkage is in line with previous reports’®”’. Also, while
the final structures are nearly identical, as were the refinement protocols used to obtain them, the room
temperature structure gave considerably better refinement statistics, indicating the room temperature
model fits the respective diffraction data better than the cryogenic model (Table 2.1). The overall

similarity of the room temperature and cryogenic structures, especially at the ethanolamine binding sites,
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Apo - Room Temp | Ligand - Cryo Temp | Apo - Cryo Temp

Figure 2.18. Time-averaged refinement of cpEutlL structural ensembles. The images depict the
ethanolamine binding channels in cpEutL. as modeled using time-averaged ensemble refinement against
cryogenic cpEutL diffraction data collected from both apo and ethanolamine-bound (top and middle
panels respectively) crystals, and also against cpEutL diffraction data collected from apo crystals at room
temperature (bottom panel). The residues that form the constriction point of the hourglass-shaped channel
are shown in magenta. The ensembles show that the channels do not undergo any dynamic expansion that

can account for substrate transport.
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proves that the geometry of these sites is not affected by cryocooling in a way that would complicate
interpretation of ligand binding.

Next, we looked for evidence of binding site dynamics using time-averaged refinement of cpEutL
structural ensembles. This method uses molecular dynamics simulation to create a time-averaged
ensemble of structures that provides the best fit to the observed X-ray data™. Starting from our cryogenic
X-ray crystal structures, we created ensemble models for both the apo and ethanolamine-bound states.
The ensemble model of the apo state consisted of 50 individual structures, and fit the diffraction data very
well, with R/R;,=0.1383/0.1680. Similarly, the ensemble model of the ethanolamine-bound state
consisted of 63 individual structures, with R/R;..~0.1350/0.1588. We also created an ensemble model
using our room temperature X-ray data for cpEutL, which consisted of 50 individual structures, with
R/R;=0.1293/0.1571. Based on standard crystallographic R-factors, the ensemble models fit the
diffraction data significantly better than the single-conformer models. In the ensemble models, the
residues that form the narrow constriction points of the hourglass-shaped ligand binding channels show

little structural fluctuation (Figure 2.18).

2.5 Results — Crystallographic studies of vitamin B, binding to EutL
While it appears that the EutL. pore opens to allow the passage of a large cofactor, the identity of
this putative molecule is unknown. To develop a complete model of EutL function, we need to discover

why the pore opens, or in other words, we need to identify the transport substrate of the open pore.

2.5.1 Crystallization of EutL bound to hydroxocobalamin

We were able to obtain crystals of EutL bound to hydroxocobalamin by cocrystalization and by
crystal soaking. When EutL was cocrystalized with the ligand, broad screening of crystallization
conditions gave many initial hits, virtually all of which demonstrated a flat, plate-like habit. These
crystals had a distinct pink hue, characteristic of the hydroxocobalamin compound (Figure 2.19a).
Exposure to X-rays showed that the plate-like crystals universally suffered from lattice translocation
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Figure 2.19. Crystals of cpEutL bound to vitamin B12. A) Examples of crystals that were obtained by
co-crystallization of cpEutL with hydroxocobalamin. These crystas were hexagonal in nature, but suffered
from severe lattice translocation disorders. B) Examples of crystals that were obtained by soaking
tetragonal cpEutL crystals in solutions containing hydroxocobalamin. The image on the left shows a
crystal soaked in mother liquor with 10mM hydroxocobalamin, while the image on the right shows
crystals that were incubated in mother liquor that was supplemented with several small crystals of solid

hydroxocobalamin.
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disorders, which prevented structure determination. Fortunately, we could also obtain crystals of EutL
bound to hydroxocobalamin by soaking our tetragonal crystal form into the compound. The soaking
procedure resulted in dark, pink or red crystals (Figure 2.19b), which remained pink even after washing

and back-soaking the crystals overnight in mother liquor without the ligand.

2.5.2 Preliminary co-crystal structure of EutL. and hydroxocobalamin

The tetragonal cpEutL crystals soaked in hydroxocobalamin diffracted to a resolution of 2.1A.
Data collection and current refinement statistics for the hydroxocobalamin-bound structure are provided
in Table 2.1. Electron density maps show clear, positive difference density features (16.9¢ in mFo-DFc¢
maps) that match the shape of the corrin ring of the hydroxocobalamin molecule (Figure 2.20a).
Placement of hydroxocobalamin into the density positions the imidazole ring of His32 as an axial ligand
to the cobalt atom of the hydroxocobalamin (Figure 2.20b). In this binding orientation, the ligand makes
little contact with the protein aside from the His-Co interaction (Figure 2.20c), presumably giving the
ligand some degree of rotational freedom, which may explain the fact that only the corrin ring is

adequately resolved in the electron density.

2.6 Discussion

Studies of EutL have been critical to our understanding of molecular transport across the protein
shells of MCP structures. Previous structures of E. coli EutL provided early evidence that the broken
symmetry resulting from domain duplication allows for conformational change at the center of the trimer,

273% ‘While the importance of this conformational change

which permits the opening of a large central pore
in facilitating molecular transport seems clear, the details of how it takes place have yet to be fully
elucidated. The crystallization conditions that yielded closed versus open structures are uninformative
with respect to understanding the biologically relevant mechanism of the conformational transition.

Takenoya, et al. have shown that the open conformation can be induced by very high concentrations (1M)

53



54

Figure 2.20. Preliminary crystallographic
analysis of vitamin B,, binding to cpEutL.
A) A large planar feature in preliminary
electron density maps (2mF,-DF., blue;
mF,-DF,, green) is consistent with the corrin
ring of hydroxocobalamin, and its position
supports ligation of the central Co atom to a
histidine residue (H32) in cpEutL. B) The
binding of hydroxocobalamin to cpEutL
occurs by coordination of H32 to the Co
atom of the ligand. This ligation motif
(magenta), wherein a histidine coordinates
vitamin B, while being stabilized by a
nearby acidic residue, is known in other
cobalamin-binding proteins. C) The vitamin
Bi, binding site is located at the edge of the
cpEutL trimer on the luminal face of the
oligomer, and in a position that does not
interfere with the interactions required for

formation of the MCP shell.



of zinc ions, though they are candid regarding their doubts about whether a high zinc concentration is
likely to be physiologically relevant for microcompartment function®*. The experiments presented here
highlight features of EutL that appear to be important in allowing the structural rearrangement to take

place, and suggest a biologically plausible mechanism for regulating the pore opening.

2.6.1 Key structural seatures of EutL facilitate conformational change

Our crystal structures of EutL form Clostridium perfringens (cpEutL) are all strikingly similar to
structures of the E.coli homologs studied previously, occupying conformations that are almost identical to
what is seen for the closed form of the E. coli protein. Critical interactions that stabilize the closed
conformation are consistent between cpEutL and E. coli EutL. This includes important hydrogen-bond
interactions within the B3-f4 and B7-B8 loop regions, and interactions between the aromatic rings at the
center of the trimer (Figure 2.4). Analysis of sequence conservation using the ConSurf algorithm®'®
shows that residues involved in these interactions (Y69, N74, N183) are strongly conserved among EutL
orthologs.

The closed cpEutL structure also reveals features that appear important for enabling an alternate
open conformation, based on comparison with the E. coli structure. Each of the cpEutL monomers
contains a narrow, elongated opening, which would accommodate movement of the $3-4 loop during
opening of the central pore (Figure 2.4). This opening is lined with highly conserved acidic residues
(Figure 2.17). The corresponding aspartate residues in E. coli EutL. make hydrogen bonds with the B3-p4
loop in the open conformation. Finally, the presence of highly conserved glycine residues (G81, G186) at
the ends of the B3-f4 and B7-B8 loops might be explained by a need for flexible movement of those
segments.

Although we observe primarily one major conformation of cpEutL in our crystal structures, in

some electron density maps there is strong evidence for an alternate “open” conformation. We

demonstrated that modeling a small fraction of cpEutL trimers in the presumptive open conformation
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could marginally reduce crystallographic R-factors (Figure 2.8¢), providing possible evidence that cpEutL

is capable of undergoing the same conformational change as the E. coli protein.

2.6.2 X-ray crystallography reveals disulfide bonding in EutL

Our crystallographic electron density shows, for the first time, that EutL is able to form disulfide
bonds. In our untreated (tetragonal) and oxidized crystal structures of cpEutL, there is strong residual
electron density corresponding to a partially-occupied Cys127-Cys200 disulfide bond (Figure 2.7).
Positive electron density in Figiea-Freances difference maps provides additional support for that bond as
well as for a partially occupied, alternate disulfide bond between residues 127 and 196 (Figure 2.10).
While the electron density features are not as clear as expected for fully formed disulfide bonds, we note
that disulfide bonds are generally susceptible to radiation damage by X-rays used for structure
determination®**. The Cys127-Cys200 disulfide might be especially prone to photoreduction because its
dihedral angle, at approximately 124°, is outside the ideal range of 90°+12° (the full range of S-S
dihedrals in the PDB is 27°-153°)'"". Calculation of difference electron density maps comparing wedges
of X-ray data from early and late in the course of data collection (F,;-Fiu.) show positive features that

confirm the Cys127-Cys200 disulfide bond is broken by X-ray irradiation (Figure 2.7).

2.6.3 Attempts to Confirm the Functional Relevance of Disulfide Bonding in EutL

To confirm the presence of disulfide bonds observed in the crystal structures, we used a
combination of mass spectrometry (SEC-MS) and two-dimensional gel -electrophoresis. Mass
spectrometry experiments with non-reduced and reduced cpEutL show that the protein exists as multiple
species, which likely correspond to polypeptides with different numbers of intramolecular disulfide bonds
(Figure 2.11b). A tryptic digestion and two-dimensional SDS-PAGE experiment further confirmed the
presence of disulfide bonds (Figure 2.11a).

Motivated by the idea that disulfide bonds generally have a structural or functional
significance'”’, we sought to determine if their presence in cpEutL might be coupled to the functionally
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relevant conformational change that opens the central pore. NMR experiments ('H-""N TROSY-HSQC)
showed notable differences between the oxidized and reduced spectra, indicating structural differences
between the two states (Figure 2.12). In the absence of specific NMR peak assignments, at the present
time we cannot confirm how closely the underlying conformational changes detected for cpEutL
correspond to those observed previously for E. coli EutL. In light of current structural data for EutL, it is
possible that the structural change detected involves the pore region, although further experimentation
will be required to confirm this hypothesis.

Bioinformatic evidence also points to a functional significance of disulfide bonding in EutL.
Sequence alignment of EutL orthologs reveals that the cysteine triad containing Cys127, Cys196, and
Cys200 is highly conserved. Additionally, a computational survey of disulfide bonding in BMC-domain
shell proteins revealed that EutL orthologs and PduT orthologs are enriched for potential disulfide bonds
(Figure 2.13). BMC-domain proteins are a highly divergent family, including topological variations®'".
It is notable that the two types of tandem domain shell proteins in which disulfide bonds appear to be
common have different topological arrangements and likely play different roles within functionally
distinct MCPs*?°. The presence of disulfide bonds within specific, divergent subtypes of MCP shell

proteins suggests that they could be functionally relevant, though a more complete understanding of their

pattern of distribution and their possible roles awaits further study.

2.6.4 EutL binds ethanolamine, the substrate of the Eut MCP

Recent work by Pang, et al. suggested that a EutL homolog, PduB, interacts with the substrate
molecule of the MCP to which it belongs™, prompting us to investigate the interaction of EutL with
ethanolamine. Using isothermal titration calorimetry, we demonstrated that ethanolamine binds
specifically to EutL, while other small molecules associated with the Eut MCP do not. Titrations of
ethanol, acetate, and acetyl-phosphate into EutL release heat in a manner consistent with nonspecific
interactions, whereas titration of ethanolamine into EutL produces a binding curve with exponential
character, indicative of a specific binding event (Figure 2.14). The data for the titration of ethanolamine
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into EutL could be fit to a binding model that includes two binding sites per EutL monomer, with
significantly different dissociation constants (Figure 2.15). The dissociation constants calculated for the
two binding sites are 91.7uM and 11.4mM. The concentration of ethanolamine in the human gut is in the
range of 0.5-1mM”’, which means that only one of these two sites is likely to be physiologically relevant.
The dissociation constant for physiological binding is consistent with EutL. being bound to ethanolamine
when bacteria inhabit the gut of their human host.

In addition to determining the thermodynamics of ethanolamine binding to cpEutL, we used X-
ray crystallography to visualize, at relatively high resolution, the ligand molecules bound to the protein.
The ethanolamine molecules bind in the narrow channels that perforate each monomer within the closed
conformation of the cpEutL trimer. Two ligand molecules bind in each channel, one on either side of the
narrow constriction point. The ethanolamine molecule bound on the cytosolic side of the channel
constriction point makes numerous direct interactions with amino acid side chains that line the channel,
including ion pairing and hydrogen-bonding of the protonated amine with conserved acidic residues (D44
and E82), and van der Waals contacts with conserved aromatic residues (F112, F184). In contrast, the
ethanolamine molecule bound on the luminal side of the channel appears to interact much less intimately
with the protein molecule, forming only a few direct interactions (a hydrogen bond to T180, an ionic
interaction with D45, and van der Waals interactions with Phe 176) and several indirect, water-mediated
interactions.

The presence of two ethanolamine molecules bound to each monomer is consistent with the
binding model derived from ITC experiments, however it is difficult to deduce from the crystal structure
which binding site is the physiologically relevant, high-affinity site and which is the low-affinity site.
Based on the observed binding interactions, it is tempting to speculate that the ethanolamine molecule
bound to the cytosolic side of the channel represents the higher-affinity site, because it forms more direct
interactions with the conserved residues of the binding site, and as a result, appears to be in a more stable
orientation. Although the ITC experiments demonstrate that the higher-affinity binding site appears to
have a relatively small enthalpic contribution and a larger entropic contribution, this apparently rigid
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binding orientation could be rationalized by considering the potential expulsion of water molecules from
the channel that would accompany ethanolamine binding. Unfortunately, this hypothesis is currently
difficult to assess, because electron density maps for the apo form of the protein are somewhat noisy in
regions within the ligand binding channels, making it difficult to accurately model the ordered water
molecules that occupy these sites. Indeed, further experimentation will be required to confidently assign
the measured thermodynamic parameters to the observed binding sites.

Interestingly, we observed that changing the electrochemical environment of the cpEutL protein
affected its affinity for ethanolamine. Upon reduction, both binding sites decrease their affinity for ligand.
Because the ethanolamine binding channels are only present in the closed form of EutL, the observed
change of the binding constant serves as the best evidence yet that there might be a coupling between
electrochemistry and the conformational equilibrium of the EutL pore, possibly related to the observed
disulfide bond. The high-affinity binding site, which is physiologically relevant, shows a nearly fourfold
increase in the dissociation constant, from 91.7uM to 321uM, following chemical reduction. This
decrease in binding could be explained by a shift in the conformational equilibrium toward the open
conformation, which cannot bind the ligand. Because the concentration of ethanolamine in the human gut
is 0.5-1mM, it is not clear whether this fourfold increase in the dissociation constant is functionally
significant. It is worth noting, however, that there is a link between ethanolamine metabolism by enteric
bacteria and oxidative stress induced by the host immune response, which could provide a physiological

basis for electrochemical regulation of MCP function”.

2.6.5 Ethanolamine binding channels do not conduct substrate transport

Previously, there has been discussion about the possibility of substrate transport through the
narrow channels that form the ethanolamine binding sites in EutL and other homologous tandem BMC-
domain proteins®*******. Based on our analyses, we believe these channels are too narrow to support the
passage of substrates. Our geometric measurements reveal that the narrow constriction point of the
hourglass-shaped channel has a radius of only 1.2A (Figure 2.6). For comparison, the van der Waals
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radius of a carbon atom is 1.7A. Considering that ethanolamine has two sp’-hybridized carbon atoms, we
think it is highly unlikely that this substrate molecule can diffuse through such a narrow pore.
Additionally, the shell of the Eut MCP also contains a homohexameric shell protein, EutM, whose central
pore has a radius of roughly 2-3A*". The energetic barrier for ethanolamine crossing the EutM pore is
likely to be so much smaller than for ethanolamine passing through the narrow EutL channel, that any
potential flux of ethanolamine through EutL becomes irrelevant in the presence of EutM.

While the static X-ray crystal structures of EutL showed narrow ethanolamine binding channels,
we recognized the possibility that protein dynamics might result in expansion of the ligand-binding
channels. In order to investigate this idea, we used a recently developed method known as time-averaged
ensemble refinement, which allowed us to model anisotropic and anharmonic molecular fluctuations
consistent with our measured X-ray diffraction data®®. The structural ensemble corresponding to the apo
form of the protein reveals very little dynamic motion among the residues corresponding to the channel
constriction point (D44, D45, V151, T182, F184). We also generated a structural ensemble using X-ray
data from ethanolamine-soaked crystals, which is virtually identical to the ensemble calculated for the apo
protein, arguing against the hypothesis that ligand-binding induces protein dynamics that open the
channel. The results of the ensemble refinements, taken together, imply that protein dynamics cannot
account for the significant opening of the ethanolamine binding channel that would be required for
substrate transport (Figure 2.18).

Moving one step further, we also wanted to explore the possibility that the geometry and
dynamics of the ligand binding channels are affected by cryocooling. It is known that cryocooling protein
crystals to temperatures below the glass transition can collapse voids in protein structures that result from
imperfect atomic packing, and also that it can remodel conformational distributions of the protein
molecules in the crystal”®”'*'% Because the ethanolamine binding sites in cpEutL are narrow and
hollow, we reasoned they might be subject to some of these negative effects of cryocooling. We collected
X-ray diffraction data at room temperature and used that data for refinement of an atomic model, which
turned out to be essentially identical to the cryogenic structure with respect to the geometry of the
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ethanolamine binding sites, indicating the binding sites are not distorted by cryocooling even though the
unit cell shrinks substantially. Also, time-averaged ensemble refinement against the room temperature
data produced an ensemble that was highly similar to the ensemble models generated from cryogenic
data, confirming that temperature does not have a significant effect on the dynamics observed in the

crystal (Figure 2.18).

2.6.6 Ethanolamine is a negative allosteric regulator of EutL pore opening

Rather than acting as channels for substrate transport, we propose instead that the ethanolamine
binding sites are allosteric sites for negative regulation of pore opening. Crystal structures of E. coli EutL
determined by Tanaka, et al.”” demonstrated that the three channels through the EutL pseudohexamer are
crucial for the conformational change of the pore, because the 3-f4 loops retract into this empty space as
the central pore opens (Figure 2.5). By filling this empty space with atoms, the presence of ethanolamine
molecules in these channels prevents the movement of the loop segments that must rearrange to open the
pore. The steric clash that prevents pore opening in the presence of bound ethanolamine is clearly
illustrated by superimposing a model of the open conformation of EutL on a model of the ethanolamine-
bound structure (Figure 2.21). The incompatibility of pore opening and ethanolamine binding strongly
suggests that this small molecule serves as a negative allosteric regulator of the conformational
rearrangement. Additionally, although there is some ambiguity about which ethanolamine binding site is
physiologically relevant, we note that both molecules bound in the crystal structure produce a steric clash
with the open conformation, consistent with the allosteric model. This model of allosteric regulation
(Figure 2.22) does not provide an explanation for what causes the pore to open, but it does provide

indication of how it can become locked closed.

2.6.7 Vitamin By, is a potential transport substrate of EutL
A major shortcoming in our knowledge about EutL is that we are unaware of the identity of the
molecule that passes through its pore. The chemistry of the Eut MCP suggests that is it either ATP or
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Figure 2.21. A steric clash forms the basis for allosteric regulation. The image depicts the
ethanolamine binding channel as a molecular surface, with the ethanolamine molecules shown as green
sticks surrounded by transparent spheres. The pink polypeptide shows the open conformation of E. coli
EutL superimposed on the cpEutL:ethanolamine complex. The overlay reveals that ethanolamine binding
prevents a rearrangement from the closed conformation to the open conformation by blocking the space

into which the B3-p4 loop moves during the transition.
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Figure 2.22. Negative allosteric regulation of EutL pore opening by ethanolamine. Ethanolamine
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open conformation.
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Figure 2.23. A new model for EutL function. The proposed allosteric mechanism is consistent with the
enzymology of the Eut MCP. In the absence of the ethanolamine substrate, EutBC becomes inactivated

and large cofactors (possibly cobalamins) must cross the shell in order to regenerate enzymatic activity.
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some form of cobalamin, but uncertainties about the subcellular localization of some Eut enzymes leaves
ambiguities about which molecular species has to cross the shell. A preliminary co-crystal structure of
cpEutL bound to hydroxocobalamin, suggests that the cobalamin compounds might bind to EutL. In our
structure, hydroxocobalamin is ligated to His32 through a His-Co coordination bond, positioned so that it
protrudes toward the liminal face of the EutL pseudohexamer. The cobalamin ligation motif observed in
our structure, involving a histidine and an acidic residue (Glu30 in this case), has been seen before in
other cobalamin-bound protein structures'”’. Typically, the imidazole group of a histidine side chain
displaces the axial dimethylbenzimidazole ligand to the Co atom, resulting in the coordination of the
cobalamin to the protein.

While many features of the EutL-hydroxocobalamin co-crystal structure are consistent with some
expected features of protein-cobalamin interactions, there are also some puzzling aspects of this
observation. Notably, the apparent ligation motif (sequential amino acids EPH) that seems to be important
for cobalamin binding is not conserved in EutL homologs, which is not what would normally be expected
for a functionally relevant amino acid sequence. Also, the position of the hydroxocobalamin molecule in
the structure is somewhat odd; the only significant contacts between the ligand and the protein are the
His-Co coordination bond. The ligand molecule is protruding from the luminal face of the pseudohexamer
(Figure 2.20b). If cobalamin compounds were indeed the transport substrates of EutL, one might expect to
see the ligand bound in the pore. It may be possible that the observed binding site is an intermediate
binding position, used in the transfer of cobalamins to or from ethanolamine-ammonia lyase enzymes,
however this idea is purely speculative. Indeed, a great deal more work remains to be done to provide a
complete validation and characterization of the crystallographically determined cobalamin binding site in

EutL.
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2.7 Conclusions - A new model for EutL function

The work presented in Chapter 2 provides a detailed analysis of the structural features within
EutL that are critical for the conformational change that defines its function. Specifically, we have
identified a conserved disulfide bond in EutL, and have provided initial evidence that this bond might be
related to the function of EutL, possibly by shifting the conformational equilibrium in response to
electrochemical environment. Additionally, our analysis focused on three small channels that perforate
the EutL trimer. These channels, which are essential for the conformational rearrangements that open the
central pore, are also the binding sites for ethanolamine molecules. These channels appear too narrow and
rigid to support substrate transport, but instead appear to be allosteric sites, where bound ethanolamine
molecules produce a steric clash with the open conformation of the oligomer resulting in negative
regulation of pore opening. Finally, preliminary structural results suggest that the large cofactor that
passes through the open EutL pore may be a cobalamin compound.

Our results, which suggest negative allosteric regulation of EutL pore conformation by
ethanolamine binding, also provide a new hypothetical model for EutL function within the context of the
Eut MCP. In the absence of substrate, the ethanolamine-ammonia lyase enzyme (EutBC) is susceptible to
inactivation due to damage of the adenosylcobalamin cofactor'®. In order to reactivate the enzyme, the
damaged cofactor needs to be replaced. While the details of this process are unclear, it is evident that in
order for it to take place either ATP or cobalamin compounds must pass through the MCP shell to
become available to the interior enzymes of the MCP**>'® Because of its capacity to open a large
central pore, EutL appears to be the conduit for movement of these larger molecules across the shell. If
the large cofactors are required to pass through the shell when EutBC is inactivated due to the absence of
substrate, then EutL. only needs to open at low ethanolamine concentrations. The finding that
ethanolamine serves as a negative allosteric regulator of EutL pore opening is consistent with this idea

about the cofactor requirements of the Eut MCP (Figure 2.23).
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2.8 Materials & Methods

2.8.1 Cloning, expression, and protein purification

For preparation of our cpEutL construct, we amplified the eutL gene from Clostridium
perfringens chromosomal DNA (ATCC) and ligated the amplicon into the multiple cloning site of the
pET22b expression vector (Novagen). We used the Ndel and Xhol restriction sites, thus incorporating the
non-cleavable Leu-Glu-His6 affinity tag at the C-terminus of the 217-residue native sequence. We also
prepared, in a similar manner, a construct containing an N-terminal Hiss-ENLYFQG sequence, which acts
as a cleavable affinity tag. Dideoxy chain termination sequencing'”’ confirmed the recombinant DNA
sequences.

We expressed recombinant protein using transformed Escherichia coli BL21 (DE3) Rosetta cells
(Novagen). During the exponential phase of cell growth in selective Luria-Bertani (LB) Broth, we added
ImM isopropyl-pB-D-thiogalactopyranoside to induce protein expression for four hours at 30°C. We
collected the cells by centrifugation for 15min at 5,000xg.

Protein purification was identical for all cpEutL. samples used for crystallization. Cells were lysed
by high-pressure emulsification (EmulsiFlex C3 - Avestin). The lysis buffer contained 20mM Tris buffer
and 300mM sodium chloride at pH 8.0 with a protease inhibitor additive (Sigma Aldrich), 10mM MgCl,,
Img/mL lysozyme, and 100units/mL of both DNase and RNase. We clarified the cell lysate by
centrifugation at 30,000xg for 30min, and then we used a HisTrap nickel affinity column (GE Healthcare)
to purify the proteins from clarified lysates, eluting the bound protein with lysis buffer containing 300mM
imidazole. Finally, we dialyzed the eluent against a buffer containing 20mM Tris and 100mM sodium
chloride at pH 8.0. This single purification step resulted in protein of sufficient purity for crystallization.

When working with the N-terminally tagged cpEutL, the following steps, in addition to the initial
metal affinity purification, were taken to remove the affinity tag and produce highly pure protein samples.
First, the peptide tag was removed by overnight cleavage with TEV protease (Img/mL) while dialyzing
the reaction mixture against buffer containing 20mM Tris pH 8.0, 100mM NaCl, and ImM dithiothreitiol
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(DTT). Following overnight protease treatment, the protein sample was once again passed over a nickel
affinity column, except this time, we collected the untagged protein from the column flow through. The
protein was then subjected to two additional purification steps, first using a HiTrapQ anion exchange
column and then a Superdex200 gel filtration column (both from GE Healthcare). The final purification

step left the protein in buffer containing 20mM Tris and 100mM sodium chloride at pH 8.0.

2.8.2 Crystallization

Prior to crystallization experiments, we concentrated the protein samples to approximately 20
mg/mL in 20mM Tris pH 8.0 and 100mM sodium chloride using Amicon Ultra concentrators (Millipore).
We measured the protein concentration with the bicinchoninic acid assay'"’. Unless otherwise noted,
crystallization experiments were performed using the C-terminally His-tagged cpEutL construct.

We carried out initial crystallization screening of the untreated protein by the vapor-diffusion
method in 96-well hanging-drop format using a Mosquito robot and several commercial screening kits.
We identified initial hits of the tetragonal crystal form in condition B4 of the JCSG+ screening kit
(Qiagen) and initial hits of the monoclinic crystal form in condition E8 of the Wizard screen (Emerald
Biosciences).

We optimized the initial crystals in 24-well hanging-drop format (VDX plates — Hampton
Research). The highest quality crystals grew from 0.1M HEPES Buffer pH 7.0, 5% PEG-8000, and 8%
ethylene glycol, or from 0.1M sodium/potassium phosphate buffer pH 6.6, 0.25M sodium chloride, and
10% (w/v) PEG-8000.

All of our modified structures were obtained using the tetragonal crystal form of cpEutL. We
grew the reduced and oxidized crystals in the same fashion as the original tetragonal crystals, except in
both cases we pre-treated the protein with either SmM tris(2-carboxyethyl)phosphine (TCEP) or 10mM
H,0,. We obtained crystals of the ethanolamine-bound form of cpEutL by first growing the tetragonal
crystals and subsequently soaking them overnight in mother liquor containing 20mM ethanolamine.
Crystals of Bj,-bound cpEutL were likewise obtained by overnight soaking in mother liquor with 10mM
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hydroxocobalamin. Alternatively, B;,-bound protein crystals could be obtained by using a fine needle to
add a few small crystals of solid hydroxocobalamin ligand to crystallization drops with pre-formed
crystals.

In addition to the Bi,-bound crystals described above, we also grew some Bj,-bound crystals that
were not used for structure determination because they suffered from lattice translocation disorders. These
crystals were obtained by cocrystallization of cpEutL, from which the N-terminal affinity tag was

removed by protease treatment, with varying concentrations of hydroxocobalamin.

2.8.3 X-ray data collection and processing

Prior to X-ray data collection, we harvested the crystals and cryoprotected them using 50%
mother liquor with 50% glycerol for the original (untreated, tetragonal and monoclinic) crystals, or 50%
mother liquor with 2M trimethylamine-N-oxide (all other crystals, oxidized, reduced, ethanolamine, By,).
For room temperature data collection, crystals were not subjected to cryoprotectant, but were instead
mounted inside of sealed polyester capillaries (Mitegen) along with a small plug of mother liquor to
prevent crystal dehydration.

We collected single-crystal X-ray diffraction data at the Advanced Photon Source on beamline
24-ID-C. When we collected data from the original tetragonal and monoclinic crystals, this beamline was
equipped with an ADSC Quantum315 CCD detector. Thanks to beamline upgrades, all other data sets
were collected on a Pilatus 6M-F detector. We maintained the crystals at cryogenic temperature (100K)
throughout the course of the data collection, except during our room temperature studies which were
carried out at approximately 278K. For the original tetragonal crystals, we indexed and integrated the
reflection data using DENZO, and performed scaling with SCALEPACK'". For all other crystals, we
performed indexing, integration, and scaling of the X-ray data using XDS and XSCALE, and then
converted intensities to structure factors with XDSCONV''?. Diffraction data were routinely analyzed with

Xtriage to check for crystal pathologies'*'

. Further information regarding data collection and
processing is presented in Table 2.1.
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2.8.4 Structure determination

Using the program PHASER within the CCP4 suite'™''®, we implemented the method of
molecular replacement to calculate phases for diffraction data from the untreated crystals. Initially, we
prepared a molecular replacement search model based on the structures of E. coli EutL. This model
consisted of the core regions of the protein, and excluded any parts of the polypeptide chain that occupy
different positions in the open and closed structures of the E. coli protein. Solutions were found for both
tetragonal and monoclinic crystals, corresponding to spacegroup P4;2,2 and C2 respectively. Following
structure determination from the original cpEutL crystals, the tetragonal model (PDB ID 4EDI) was used
for phase calculation by molecular replacement to solve subsequent crystal structures.

For all crystal structures described in this work, a similar model-building and refinement strategy
was used. First, using electron density maps calculated with phases from molecular replacement, we
rebuilt the missing or incorrect parts of the structures. In some cases, we performed initial atomic
refinement with simulated annealing to remove residual model-bias. We then performed iterative steps of
manual model rebuilding and atomic refinement of the model to convergence with TLS parameters, a
riding hydrogen model, and automatic weight optimization. All model-building was performed using
COOT (v0.6.2)"", and refinement steps were performed with phenix.refine within the PHENIX suite''>'"®,
In cases where ligand molecules were modeled, the ligand coordinates were prepared with

phenix.elbow'”. Further information regarding model building and refinement is presented in Table 2.1.

2.8.5 Analysis of sequence conservation
We used the ConSurf algorithm®'® to analyze the evolutionary conservation of critical amino

acids in EutL orthologs.

2.8.6 Measurement of channel dimensions
To analyze the dimensions of the molecular channels that traverse the cpEutL trimers, we used
the HOLE?2 software®. We selected two points, one on either side of the channel present in chain A of our
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untreated structure, and used them to define a vector that passed through this channel. This vector was

provided as input to HOLE? in order to guide determination of the molecular channel.

2.8.7 Modeling static disorder

In order to model the static disorder in the cpEutL crystals resulting from the presence of a small
population of the open conformation, we first prepared a model of the putative open conformation of
cpEutL. We began by generating a homology model of cpEutL using the I-TASSER webserver'> with the
open conformation of ecEutL (PDB ID: 3187) as a template. Parts of the model not expected to undergo
conformational change based on homology with E. coli EutL were adjusted to match the closed
(untreated) structure of cpEutL. The model of the open conformation was not subjected to atomic
refinement against x-ray data. B-factors for all atoms in the open model were set to the Wilson-B value
for the untreated x-ray dataset (25.7A2). The experimentally determined closed structure was edited by
removing water molecules and converting atomic B-factors to isotropic values using phenix.pdbtools
(v1.7.3-928)'".

For our experimentally determined closed structure and the modeled open structure, we used

phenix.reciprocal_space_arrays (v1.7.3-928)'"

to calculate structure factors (F cpsea and Fi ,pen) from the
models. These calculated structure factors were scaled to the experimentally measured structure factor
magnitudes (|F,,/) from the untreated x-ray dataset by phenix.reciprocal space arrays. We then
calculated hypothetical structure factors wherein the fractional occupancy of the closed conformation was
given by a, and the fractional occupancy of the open conformation was given by the complementary value
(1-a). Hypothetical structure factors were then rescaled with the observed structure factor amplitudes
from the untreated x-ray dataset, and used for crystallographic R-value calculations (Rwork/Rfree).
Performing R-value calculations for a series of relative occupancy values allowed us to determine the
fractional occupancy of the putative open conformation by minimizing the average residual error for
structure factor calculations, despite our inability to clearly observe this conformation in the electron

density.
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2.8.8 Two-dimensional SDS-PAGE

We performed two-dimensional SDS-PAGE experiments using a cpEutL protein sample prepared
in the same manner as the samples used for crystallization. After initial purification by metal affinity
chromatography and dialysis into crystallization buffer, the protein sample was treated with 10mM
oxidized glutathione for 30min and then passed over a Superdex200 10/300GL gel filtration column (GE
Healthcare) to remove any polypeptides which became connected by spurious intermolecular disulfide
bonding. Immediately following gel filtration, we added 0.2% (w/v) SDS and 100mM iodoacetamide, and
incubated for 30min at 37°C to alkylate all cysteine thiols not involved in disulfide bonds. After
alkylation, we removed unreacted iodoacetamide by a two-step dialysis procedure against a 1000-fold
excess of 20mM Tris Buffer, 100mM NaCl, and 0.2% (w/v) SDS at pH 8.0. For the tryptic digestion of
the protein, we used Proteomics Grade Trypsin (Sigma Aldrich). Digestion reactions contained 50uL each
of protein sample and reaction buffer (40mM ammonium bicarbonate, 9% acetonitrile), plus 1pg of
trypsin. We incubated the digestion reaction at 37°C for 16 hours, and quenched the reaction by adding
non-reducing SDS-PAGE loading buffer.

We performed two-dimensional SDS-PAGE experiments according to the methods described by
Boutz, et al.'”', using 16.5% polyacrylamide mini gels (Bio-Rad) and a Tris-Tricine buffer system'**. In
this experiment, the first dimension was run under non-reducing conditions, and the second dimension
was run after reduction with 50mM DTT. We used Coomassie Brilliant Blue G-250 to stain the gel. In
addition to the two-dimensional experiment, we also ran one-dimensional SDS-PAGE using samples
containing trypsin without substrate, in order to verify that the trypsin cannot be detected by the staining

procedure, thus confirming that the bands we see correspond to cpEutL fragments.

2.8.9 Mass spectrometry

For our mass spectrometry experiments, we prepared a cpEutL protein sample in the same
manner as our protein used for crystallization. Two samples were prepared and one was treated with
50mM DTT (reduced), while the other was left untreated (non-reduced). We prepared a 1:10 dilution of
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these protein samples in formic acid, and performed size-exclusion chromatography by HPLC in 90%
formic acid using a column that was set up in-line with the mass spectrometer. Proteins were eluted
directly into a Perkin—Elmer Sciex API III+ triple quadrupole instrument for electrospray ionization mass
spectrometry (ESI-MS) analysis. Whitelegge, et al., have reported further details of the method used for

123
mass spectrometry .

2.8.10 NMR spectroscopy

We prepared "N-labeled cpEutL protein following the same procedure described for the
unlabeled protein, except expression was carried out in M9 minimal media containing "NH,CI, rather
than LB broth, and the expression time was extended from four hours to six hours. We purified the
protein by metal affinity chromatography as described. Following initial purification, we treated the
protein using 10mM oxidized glutathione for 30min at room temperature, and then loaded the sample
onto a HiLoad Superdex200 16/60 gel filtration column (GE Healthcare) equilibrated in 20mM Tris, pH
7.0, and 100mM NaCl to remove both glutathione and any protein molecules linked by intermolecular
disulfide bonding. We concentrated the eluted protein to 0.6mM using an Amicon Ultra concentrator
(Millipore), and added 5% D,O to obtain the oxidized NMR sample.

We recorded the NMR spectrum at 298K on a Bruker Avance 800MHz spectrometer equipped
with a cryogenically cooled triple-resonance TCI ('H, °C, "°N) probe. We recorded the two-dimensional
'H-"N TROSY-HSQC spectrum with 64 transients and 3,586 ('H) x 156 ("’N) complex points. After
recording the spectrum of the oxidized sample, we retrieved the sample and added 10mM DTT, incubated
for 30min at room temperature, and collected the reduced spectrum following the same data collection
protocol used for the oxidized spectrum. We processed the spectra using TopSpin (Bruker), and overlaid

the spectra using the program Sparky.

72



2.8.11 Computational analysis of disulfide bonding

For the quantification of potential disulfide bonds in BMC domain proteins, we applied a
variation of the sequence-structure mapping approach first introduced in earlier work® and then recently
extended”. First, we collected all of the available sequences from protein family PF00936 in the Pfam
database'**, which is comprised of the BMC domain proteins. At the time of our analysis, this protein
family contained 3317 unique entries within the BMC domain protein family (PF00936), 969 of which
were tandem BMC domain proteins. We filtered these sequences based on a 95% identity criterion. Each
query sequence derived from Pfam was matched to its closest BMC domain homolog from the PDB'*
based on pairwise sequence alignments. We identified a potential disulfide bond whenever a pair of
cysteine residues from the query sequence mapped to positions in which the C-alpha atoms of the
corresponding residues in the homologous hexamer or trimer structure was measured to be less than or
equal to 8A. Performing the analysis in the context of a complete hexamer or pseudo-hexameric trimer
provided the two kinds of assemblies the same opportunities for both inter- and intra-domain disulfides to

be identified.

2.8.12 Isothermal titration calorimetry

Isothermal titration calorimetry (ITC) experiments were performed using a protein sample from
which the N-terminal affinity tag had been removed by protease cleavage. In order to very accurately
measure the protein concentration of our ITC sample by UV absorption (A=280nm), we used a molar
extinction coefficient derived from amino acid analysis. The protein sample was concentrated to 0.6mM
in buffer containing 20mM Tris at pH 7.2, and 100mM NaCl. The titrant was prepared by dissolving
ethanolamine hydrochloride in the identical buffer to a final concentration of 50mM. We used the
hydrochloride salt of ethanolamine to prevent pH differences between the protein sample and the ligand.
Titrations were performed at 298K using an iTC-200 calorimeter (GE Healthcare/MicroCal). Similar

titrations were performed using ethanol, acetate, and acetyl-phosphate as ligands.
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We collected ITC data for the chemically-reduced samples by adding 20mM TCEP to the protein
and ligand solutions and repeating the titration described above.

Raw ITC data were processed using the Origin software. The raw data were integrated to give
plots of AH versus molar ratio of ligand to protein. For the ethanolamine titrations, we used Origin to fit
the titration curves to a two-site, sequential binding model and extract thermodynamic parameters for the

EutL-ethanolamine interaction.

2.8.13 Calculation of electrostatic surface potential
Electrostatic surface potentials were calculated using the Poisson-Boltzmann equation, as

implemented in the 4APBS plugin for PyMol'*.

2.8.14 Time-averaged X-ray refinement of structural ensembles

Time-averaged structural ensembles were refined against X-ray diffraction data using the method
developed by Burnley, et al. and implemented in phenix.ensemble_refinement™. We used the original
observed X-ray diffraction data and the final single-copy atomic models of specified cpEutL structures as
inputs for the ensemble refinement procedure. We optimized the ensemble refinement protocol by first
optimizing the ptls parameter, followed by the wxray coupled tbath offset parameter, and then finally
the #x parameter, choosing the models that gave the best R,,« and Rj.. For the final ensemble
refinements, we used values of ptls=0.90 for both the cryogenic and room temperature apo structures, and
ptls=1.0 for the cryogenic, ethanolamine-bound structures, and the default parameters for

wxray_coupled_tbath_offset and tx were found to yield the best results.
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CHAPTER 3

A Challenging Interpretation of a Layered Hexagonal Protein Structure

3.1 Introduction

The B-carboxysome is a well-studied MCP'. It is involved in the carbon fixation reactions of the
cyanobacterial Calvin cycle (Figure 3.1). This MCP sequesters the enzymes carbonic anhydrase and
RuBisCO, thereby increasing the local concentration of carbon dioxide in the vicinity of RuBisCO, an
enzyme with notoriously poor catalytic efficiency and substrate selectivity. This chapter describes the
structure determination of a CemK1 shell protein mutant (L11K) from the B-carboxysome of the
cyanobacterium Synechocystis PCC6803. Within the B-carboxysome, the CcmK paralogs (K1, K2, K3,
K4) are the primary homohexameric components of the shell, and it has been hypothesized that the size,
shape, and chemical properties of their central pores promote the diffusion of substrates and products over
other molecules.

Consistent with the form of their natural biological assemblies, BMC shell proteins often

29,33,127,128

crystallize in hexagonally packed layers Layered structures are generally prone to various

crystal growth pathologies'”, and this has proven to be especially true of BMC shell proteins, where

twinning and lattice translocation disorders have been observed often*>'*’

. The present study involved
another such case in which a specific shift of hexagonal layers in a crystal led to a challenging space
group interpretation. This case demonstrates that when broken crystallographic symmetry leads to
doubling of a unit cell axis, it is sometimes necessary to consider an alternate unit cell origin in order to
identify the highest symmetry space group.

In addition to providing an instructive example for crystallographers, the work presented here

offers interesting insight into the function of the CcmK1 BMC-domain shell protein. The alternating
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Figure 3.1. A model for bacterial microcompartment (MCP) structure and function in the
carboxysome. The illustration highlights the assembly of shell protein monomers into hexamers, as well
as the edgewise association of hexamers to form the tightly-packed facets of the polyhedral MCP shell.
Within the shell, a reaction scheme depicts the metabolic events that occur in the lumen of the
carboxysome. The critical intermediate, CO2, is highlighted in red. In the reaction scheme, solid black
lines depict enzymatic reactions, while dashed lines indicate transport events. (RuBP = ribulose-1,6-
bisphosphate; 3-PGA =  3-phosphoglyceric acid; RuBisCO = ribulose-1,6-bisphosphate

carboxylase/oxygenase).
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conformations of individual shell protein monomers in the crystal form used for this study provide
potential connections to function, implying a certain amount of flexibility and dynamic motion in the
central region of the CcmK1 hexamer. Also, analysis of the electrostatic surface potential of the L11K
mutant in comparison to the wild-type protein demonstrates that the electrostatics of the central pore are

influenced by amino acids outside of the $2-B3 loop.

3.2 Materials & Methods

3.2.1 Cloning, Overexpression, and Purification of Recombinant Protein

The wild-type DNA sequence for residues 1-91 of the CcmK1 protein from the cyanobacterium
Synechococystis sp. PCC 6803 was cloned into the pET-22b expression vector incorporating a C-terminal
hexahistidine tag consisting of amino acids —LeuGluHiss. Specific details of the cloning protocol have
been described previously”. The L11K mutation was introduced by site-directed mutagenesis using the
QuickChange method (Stratagene). The sequence of the mutated plasmid was verified by dideoxy chain
termination sequencing.

We expressed recombinant protein using transformed Escherichia coli BL21 (DE3) Rosetta cells
(Novagen). During the exponential phase of cell growth in selective Luria-Bertani (LB) Broth, 1mM
isopropyl-p-D-thiogalactopyranoside was added to induce protein expression for four hours at 37°C.
Cells were pelleted by centrifugation for 15min at 5,000xg and then lysed by sonication. The lysis buffer
contained 20mM Tris buffer and 300mM sodium chloride at pH 8.0 with a protease inhibitor additive
(Sigma Aldrich), 10mM MgCl,, Img/mL lysozyme, and 100units/mL of both DNase and RNase. We
clarified the cell lysate by centrifugation at 30,000xg for 30min, and then used a HisTrap nickel affinity
column (GE Healthcare) to purify the protein from clarified lysate. The bound protein was eluted with
lysis buffer containing 300mM imidazole, and then dialyzed against a buffer containing 20mM Tris and
100mM sodium chloride at pH 8.0. This single purification step resulted in a highly pure protein sample,
as demonstrated by SDS-PAGE.
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3.2.2 Protein Crystallization

Following purification, the protein was concentrated to approximately 10mg/mL. We crystallized
the CcmK 1 L11K mutant by hanging-drop vapor diffusion in mother liquor containing 1.26M ammonium
sulfate and 0.15M sodium chloride, buffered at pH 9.5 with 0.1M N-cyclohexyl-2-aminoethanesulfonic
acid. Crystallization drops were prepared by mixing a 1:1 ratio of the concentrated protein solution and
the mother liquor in a total volume of 1uL, using a Mosquito pipetting robot (TTP Labtech). The drops
were sealed above 100uL reservoirs and allowed to equilibrate at 23°C. Our initial crystals diffracted
poorly, and we found that addition of 10mM guanidinium chloride to the mother liquor prior to

crystallization produced a large, high-quality crystal that diffracted well.

3.2.3 X-ray Data Collection and Processing

We collected single-crystal X-ray diffraction data using a Rigaku FR-E+ rotating anode X-ray
source operating at the CuKa wavelength (1.54A), equipped with VariMax HF optics and an R-axis HTC
detector. Crystals were harvested and frozen directly in the liquid nitrogen cryostream without additional
cryoprotection, and were subsequently maintained at cryogenic temperature (100K) throughout the course
of the data collection. We indexed and integrated the reflection data to 1.6 A resolution using XDS,
performed scaling with XSCALE, and converted intensities to structure factor amplitudes using
XDSCONV''?. The free set of reflections was assigned using phenix.reflection_file converter'” such that
reflections related by lattice symmetry would belong to the same set. Information regarding data
collection and processing is presented in Table 3.1. We note that the data are strong out to the 1.6 A
resolution limit used in our X-ray experiment; the geometry of the detector setup precluded the collection

of higher resolution data.
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Parameter Value
X-ray Wavelength 1.54A
Nominal Resolution Range 41.24-1.6A (1.64-1.60A)
Unit Cell a=b=70.0A ; c=56.2A
a=p=90° ; y=120°
Space Group P6;
Total Reflections 353,118 (7262)
Unique Reflections 20,387 (1293)
Multiplicity 17.3 (5.6)
Completeness 98.0% (84.6%)
{1/0l) 34.07 (5.55)
R 5.7% (26.8%)
cC,* 100.0 (96.4)
Wilson B-factor 25.0A°
Ryork’ 18.0%
Rl 19.5%
No. of Atoms 1441
Protein Residues 182
Water Molecules 51
Average B-factor:
Protein 19.7A%
Solvent 26.5A°
RMSD(bonds) 0.012A
RMSD(angles) 1.32°
Ramachandran Plot*’:
Favored 97.8%
Allowed 2.2%
Outliers 0.0%
Molprobity Clashscore™ 4.66

TABLE 3.1 Diffraction data and refinement statistics for CcemK1 L11K.
Values in parentheses reflect the highest resolution shell.

* Ryore and Ry are given by the following equation, computed for the working and test sets of reflections

pIARTA|

hkl

respectively: R = ST

hkl

The values of F, used in the calculations include scattering contributions from the riding H atoms.
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3.2.4 Analysis of Symmetry and Twinning

Automatic data indexing by XDS (as describe above) revealed that the crystal lattice was
primitive hexagonal. During the early stages of data processing, we evaluated different Laue symmetries
and also evaluated a self-rotation function using MOLREP"*'* which suggested that the diffraction

113,114
T to

pattern obeyed 622 rotational symmetry (Figure 3.2a). We also ran the phenix.xtriage program
check for crystal pathologies and non-crystallographic symmetry (NCS). The Xtriage analysis revealed a
strong peak in the native Patterson map'**, as discussed subsequently. In addition to revealing
translational NCS, the Xtriage analysis also suggested the presence of hemihedral twinning based on the

results of the L-test (Figure 3.2¢)".

3.2.5 Phasing by molecular replacement

In order to calculate initial phases, we used the method of molecular replacement (MR) with a
structure of the CcmK2 BMC shell protein (PDB ID 3DNC) as a search model. The program Phaser'"
found a solution containing four monomers in a P3 asymmetric unit (2 hexamers per unit cell). This

solution was used as a starting point for model building and refinement of our CemK1 L11K structure.

3.2.6 Model building and refinement
As an initial step toward generating our final model, we subjected the MR solution to simulated-

. - . , 113,118
annealing torsion angle refinement with phenix.refine >

in order to minimize potential model phase
bias resulting from the MR procedure. We began refining our model in space group P3. However, during
the course of the refinement process we noticed that our model was also consistent with the higher-
symmetry space group P6; under a different choice of origin, as discussed subsequently. At that point we
selected two of the four chains from our structure in P3, which corresponded to a P6; asymmetric unit
under the appropriate choice of origin. For subsequent model refinement we merged our diffraction data

to P65 using XSCALE, taking care to conserve the R, flags from our original P3 data. Our early stages of

refinement produced a relatively high-quality model, though some regions of the resulting electron
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Figure 3.2. Analysis of symmetry and twinning. A) Sections of the self-rotation function (k=180° and
k=60°) indicate that the underlying point group symmetry of the crystal is 622. B) Sections of a native
Patterson map (w=0 and w='4) calculated from observed intensities show a prominent (47.5% of the
origin) packing peak at =(14,%3,%2). C) Intensity statistics showing that the CcmK1 L11K crystal specimen

is hemihedrally twinned. N(|L|) is the cumulative distribution of |L|.
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density map appeared fragmented or featureless, and were not consistent with the model in those areas. In
order to resolve these problematic regions of the model, we generated an electron density map in which
questionable regions of the model were not included in the phase calculation. Using this map, we were
able to manually fix incorrectly built regions of the model with the program COOT""". Finally, we refined
the model to convergence against merged structure factor amplitudes with automatic weight optimization
and a TLS model for atomic displacement parameters (10 groups per chain, as determined by a

136,13 . .
"7 and visual analysis of secondary structural elements), as

combination of automated 7LSMD analysis
well as twin refinement with algebraic detwinning, twin operator (k4,-[), and a twin fraction of 0.4.
Hydrogen atoms were added to the model using phenix.reduce (Word et al., 1999), and were included in
the riding positions throughout refinement for the purposes of maintaining good geometry and including
their scattering contributions, but their positions were not independently refined against the X-ray data or
included in the deposited coordinates. We performed the final refinement step using phenix.refine within
version 1.8.2-dev1334 of the PHENIX suite'>'"*.

Our final model includes two protein monomers in the asymmetric unit, including residues 3-94
out 0of 99 in chain A, and 3-92 out of 99 in chain B, as well as 51 water molecules and a single sulfate ion.
Regions of the 2mfF,-DF,. and mF,-DF, maps near the C-termini of the protein chains were somewhat
noisy, indicating that the C-terminal hexahistidine tags might be partially ordered. However the features
were not clear enough to justify extending the model into this density. Following model refinement, we
evaluated the quality of the structure and compared the two crystallographically independent protein

molecules in the unit cell using the PHENIX graphical interface'”. The atomic model has been deposited

in the Protein Data Bank under PDB ID 4LIW.
3.2.7 Calculation of Electrostatic Surface Potential
Electrostatic surface potentials were calculated using the Poisson-Boltzmann equation, as

implemented in the APBS plugin for PyMol'*.
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3.3 Results & Discussion

The CcmK1 L11K shell protein mutant from Synechocystis sp. PCC6803 was expressed and
purified from E. coli, and crystallized by hanging drop vapor diffusion (see Methods). Diffraction data
were collected to 1.6A resolution. The unit cell was determined to be hexagonal (a=b=70.0A , ¢=56.2A),
and data reduction suggested the Laue symmetry to be P6/mmm. Diffraction was strong in all directions,
Bragg peaks were sharp, and no obvious signs of disorder were evident. However, a very strong native
Patterson peak (47.5% of the origin height) was noted at fractional coordinates <uvw> =('4, %, ') (Figure
3.2b). Although this peak appears to be a special position, it does not correspond to any centering
operation in an alternate unit cell. Instead, such a translation interchanges the locations of six-fold and

three-fold symmetry axes in P6.

3.3.1 Initial space group identification (P3)

Some of the essential features of the final structure could be discerned at the outset from the
geometry and symmetry of the unit cell, based on prior experience with crystal structures of similar
proteins from the BMC shell protein family. In many crystal structures, BMC shell proteins pack in
hexagonal layers with a unit cell spacing along a and b in the range between 65A and 70A**'271% I
their natural assembly state, the hexamers pack side by side, and in the same (i.e. upward facing)
orientation, to give an essentially solid molecular layer, except for narrow pores at the centers of the
hexamers. The thickness of one layer of proteins is generally just under 30 A at its thickest point. In the
present case, the unit cell value of ¢=56.25A dictated that two layers of hexamers would be present within
one unit cell. However, a challenge arose immediately from the observed Laue symmetry and the strong
translational NCS peak in the native Patterson at w=1/2. The translational NCS peak required the two
layers in the unit cell to be oriented likewise (i.e. both face up). However, this arrangement would not
give the 622 rotational symmetry (apparent Laue symmetry P6/mmm) observed in the diffraction data.

This conflict was resolved by realizing that the specimen was almost perfectly twinned by hemihedry. An
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evaluation of the overall intensity statistics, using local differences, gave a value for <|L|> =0.394 (Figure

3.2¢). The theoretical expected value of <|L|> is 0.500 for untwinned data and 0.375 for perfectly twinned

data'®®

. This finding allowed for the two layers in the unit cell to share the same molecular orientation;
the additional 2-fold rotational symmetry in the diffraction pattern arises from hemihedral twinning.
Given the two layers in the same orientation, what remained was to establish the shift between
them. The relative shift was dictated by the native Patterson peak at ('3, %5, /2). In this arrangement, the
axis of local 6-fold symmetry in each layer is coincident with a local axis of 3-fold symmetry (where the
corners of three hexamers meet) in the other layer (Figure 3.3a). As a result, the 6-fold symmetry axes
through the centers of the hexamers in one layer are broken by the other layer, leading to a system of
equally spaced 3-fold crystallographic axes of symmetry, as in space group P3. The apparent non-
crystallographic, translational relationship between the two layers (evidenced by the native Patterson
peak), together with the breakage of the 6-fold symmetry, led to a space group assignment of P3 and to a
molecular replacement solution consistent with that symmetry. The asymmetric unit contained two
copies of a third of a hexamer, one in each layer — a total of four polypeptide chains (Fig. 3a). Despite the
absence of 6-fold rotational symmetry in the P3 space group, 6-fold symmetry was present in the
calculated intensities as a result of the local 6-fold symmetry of the hexamers and the special translational
shift between them (in agreement with the 6-fold symmetry of the observed intensities)**'"*’. After
confirming the packing analysis above by molecular replacement, using CcmK2 (PDB ID 3DNC) as the

search model, we were able to refine an atomic model in space group P3 that had good final statistics

(Ruyori/ Ryrec=0.171/0.199).

3.3.2 Identification of higher-symmetry (P6;) by shifting the unit cell origin
During the refinement process, careful analysis of the refined model in space group P3
illuminated an element of symmetry that had been overlooked. A single layer of molecules in our crystal

supports P6 symmetry, with the origin at the center of a hexamer. Our initial space group assignment for
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Figure 3.3. Space group assignment and packing arrangement of the two hexameric layers in the
unit cell. A) An initial assignment of space group P3, with one hexameric layer having its center at the
origin and the other layer having its center at (1/3, 2/3, 1/2), leading to an essentially correct structure, but
with incompletely assigned symmetry. The four crystallographically independent subunits based on this
space group assignment are labeled a-d. B) The correct assignment of P63 symmetry, after shifting the
initial structure to a different origin. Note that the 63 screw axis contains within it a pure 3-fold axis and

a 21 screw axis of symmetry. Only two crystallographically independent subunits (a and b) are present.
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Symmetry elements are illustrated with their conventional symbols.
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the crystal (P3) assumed that although the P6 unit cell doubled along ¢ and the 6-fold symmetry was
broken due to the translational shift between layers of molecules, the origin would remain at the center of
a hexamer. Additionally, when performing the initial space group assignment, we failed to recognize that
although the translational shift breaks a pure 6-fold crystallographic axis, it introduces a 6; axis.
Consequently, our initial MR search was performed in space group P3, rather than in any member of the
P6, family. Upon closer analysis, we realized that an alternate choice for the origin of the unit cell would
allow for a higher symmetry to be assigned, without significant modification of the structure.

The correct space group conformed to P6; (in its standard setting) only when the origin of the
unit cell was placed on a 3-fold axis of symmetry that passes through points in both layers where three
hexamers meet at a corner (Figure 3.3b). The two layers are then related by a 2; screw axis (contained
within the 65 screw axis) through the origin. Under the space group assignment of P6;, the asymmetric
unit contains just one-third of a hexamer, or two adjacent subunits whose slightly different conformations
give the hexamers 3-fold, but not 6-fold, symmetry.

The NCS packing peaks between the two layers (at w=' in the native Patterson map) arise from
a combination of the 2, crystallographic axis with local 2-fold NCS axes through the centers of the
hexamers (along ¢), which are slightly broken by subtle deviations between the two monomers in the
asymmetric unit. The combination of two rotational symmetry elements to produce this translational NCS
introduces another source of confusion in indentifying the presence of 6; and 2, screw axes in P65 ; these
screw axes are typically identified by systematically absent (0,0,I=0dd) reflections, which would also be
absent as a result of a translational NCS operation with z=5.

The correct space group assignment was further confirmed retrospectively by rerunning
molecular replacement in all space groups having Laue symmetry P6/m, where P6; was readily identified
as the correct space group. Additionally, a post hoc analysis of the P3 coordinates with the LABELIT
software'* also identified the higher symmetry P65 unit cell, further confirming our manual analysis.
With this correct space group (and choice of origin), and application of the necessary twin law (&, 4, -[), a
final model was successfully refined (Table 3.1).
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3.3.3 Broken crystallographic symmetry often requires a new choice of unit cell origin

The space group complication in the present study shares some similarities with another recently
described case of symmetry breaking. While studying a new crystal form of human carbonic anhydrase
IL, it was found that alternating protein conformations led to a unit cell doubling compared to a previously

characterized, simpler crystal form'*'

. Unexpectedly, however, the P2, space group symmetry of the
simpler crystal form was also broken under the most obvious choice of origin for the doubled unit cell,
leading to apparent disorder. The correct structure, which was fully ordered, was obtained in retrospect
when it was found that shifting the origin of the doubled unit cell led to recovery of the required
symmetry elements in P2,'**. Likewise in our study, the shifting of a second hexagonal layer relative to
the first layer breaks the P6 symmetry that would have been present in a single layer, leaving what
appears to be P3 symmetry under the original choice of unit cell (Figure 3.3a). The assignment of P3
symmetry is not incorrect, and in our case no apparent disorder resulted from refining the structure in P3,
but higher symmetry (P6;) is in fact present, and is recognized under a different choice of origin (Figure
3.3b). Cases such as these serve as reminders that when symmetry-breaking gives rise to a new crystal
form, identifying the highest possible symmetry in the new form may require a different choice of origin
in order to match the correct space group in its standard setting. This requires either careful manual
intervention or a reanalysis by computational methods able to automatically evaluate new space group
possibilities'**'*.
3.3.4 Symmetry-breaking may play a role in shell protein function

The final model was mainly consistent with previous structures of homologous BMC shell
proteins. However, the packing arrangement of hexamers in this crystal provides potential insight into the
natural symmetry of these cyclic homo-oligomers. If we assume the hexamers are 6-fold symmetric, and
that the hexamers in one layer prefer to not pack directly on top of hexamers from adjacent layers, then

there would be six energetically equivalent translational shifts between hexamers in adjacent layers.
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These six translational shifts admit two distinct positions for the second layer relative to the first. The
energetic equivalence of those two outcomes would lead to growth of a crystal exhibiting a lattice
translocation disorder, with hexamers occupying mutually exclusive (partially occupied) positions within
one layer of molecules. This lattice translocation disorder would produce strong packing peaks in a native
Patterson map at w=0, similar to a case previously observed in crystals of another BMC shell protein'*’.
As evidenced by the lack of packing peaks in the w=0 section (Figure 3.2b), our structure does not exhibit
such a pathology. This indicates that the hexamers add to the crystal in a way that breaks their 6-fold
symmetry. Deviations from 6-fold symmetry, although subtle, were indeed observed in the refined atomic
coordinates. These deviations include small differences in rotameric configurations and backbone torsion
angles between the two crystallographically independent protein molecules in the unit cell. These rotamer
and torsion angle differences cause a departure from perfect B-sheet geometry in chain A versus chain B,
as well as a small difference in the conformation of the C-terminal helix in each chain, which appears to
be a 3 helix in chain A, but not in chain B. The breakage of 6-fold symmetry also brings up an element
of potential biological interest. The broken symmetry implies — by exchange of alternating conformations
— a certain amount of dynamic motion in this family of proteins, which may relate to their roles in
molecular transport. The origin of the alternating conformations might be a need to alleviate a steric clash
created by the crowding of six protein chains into the center of a cyclic oligomer. The role of symmetry-

breaking in these systems is the subject of ongoing analysis.

3.3.5 The L11K Mutation has a Significant Effect on CcmK1 Pore Electrostatics

In order to examine the effect of the L11K mutation on the structure and function of CcmK1, we
compared the coordinate positions and electrostatic surface potentials of the mutant and wild-type
proteins. First, we superimposed the structures of the mutant and wild-type proteins, and found very low
coordinate RMSD values for the structural alignment (0.32A on all atoms). The alignment revealed that
even in the immediate vicinity of the L11K mutation, there is virtually no structural change between the
mutant and wild-type proteins. Next we calculated electrostatic surface potentials for the mutant and wild-
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type proteins using the Poisson-Boltzmann equation'?®. These calculations showed that the L11K
mutation has a significant effect on the electrostatics of the central pore. The pore electrostatics of the
CcmK1 L11K mutant are very similar to the electrostatics of CcmK2, whose sequence is highly identical
to CcmK1, but has arginine at the eleventh position. The electrostatic properties of the CcmK pores have
been hypothesized to influence the diffusion selectivity of the carboxysome shell*>***"***127 This work
begins to highlight important residues, although a more exhaustive study, which includes experimental
verification of structural observations, will be required to develop a complete understanding of how

electrostatics and other chemical properties effect the transport functions of the CcmK proteins.
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electrostatic surface potential (kT/e")

Figure 3.4. Electrostatic surface representations of CcmK proteins. Electrostatic surfaces, generated
by solving the Poisson-Boltzmann equation, of CcmK1, CcmK1 with the L11K mutation, and CcmK?2.
The images demonstrate that a single point mutation can have a relatively dramatic effect on the pore
electrostatics. The L11K mutation makes the CcmK1 surface more similar to CemK2, which has arginine

at the same position as the L11K mutation.
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CHAPTER 4

Identification of a Unique Fe-S Cluster Binding Site in a Glycyl-Radical Type Microcompartment

Shell Protein

4.1 Introduction

Prokaryotic organisms have evolved remarkable metabolic diversity through adaptation to highly
varied environments. Many organisms have specialized metabolic pathways that allow them to utilize
small molecules that are abundant within their specific niches as key carbon sources. In a number of
intriguing cases, however, these specialized metabolic pathways produce intermediate compounds that are
cytotoxic, mutagenic, and/or diffuse freely across the cell membrane at physiological pressure and

temperature7’ 15.21

. In such cases, the bacterial cell gains an advantage be being able to confine the
intermediate within a MCP. An example of one such MCP sequesters the initial steps of 1,2-propanediol
catabolism in saccharolytic pathogens (Figure 4.1)">*®. When these pathogenic bacteria infect their host,
they are capable of hydrolyzing cell-surface glycans from the host tissue, releasing monosaccharides,
which become a primary source of metabolic energy for the proliferating bacteria'**. These carbohydrate
molecules, notably fucose and rhamnose, are first degraded to 1,2-propanediol'*'*’. Propanediol is then
metabolized to propionate, which enters the methylcitrate cycle, providing a source of metabolic energy"’.
The conversion of 1,2-propanediol to propionate proceeds through a reactive propionaldehyde
intermediate, which is both cytotoxic and mutagenic if released into the cytoplasm'”. Organisms that are
capable of propanediol catabolism, therefore, must encapsulate several steps of the pathway within an
MCP to sequester the aldehyde intermediate.

Two distinct types of 1,2-propanediol catabolic MCPs have been identified and studied
previously (Figure 4.1). The first of these two types, the Pdu MCP (for propanediol utilization), has been

studied for a number of years and is relatively well-understood. Within the Pdu MCP, 1,2-propanediol is
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Figure 4.1. Schematic of propanediol
catabolic MCPs. Degradation of 1,2-
propanediol occurs in a MCP.
Homohexameric = BMC-domain  shell
protein  paralogs assemble into a
proteinaceous shell surrounding a series
of internalized enzymes that convert the
substrate, 1,2-propanediol, into the
products, ethanol and acetyl phosphate.
The chemistry involves a  toxic
intermediate (acetaldehyde), which is
highlighted by a red box. The first of
these enzymatic steps differs in Pdu-type
vs. Grp-type MCPs. Dashed black arrows
represent molecular transport events,
while solid black arrows represent

enzymatic reactions.



first converted to propionaldehyde by a vitamin B12-dependent diol dehydratase enzyme (PduCDE)'>'*.

The aldehyde is then converted to propionyl-CoA by an aldehyde dehydrogenase enzyme, or to propanol
by an alcohol dehydrogenase enzyme, which facilitates recycling of the NAD+ cofactor within the
MCP®. In the final enzymatic step that occurs within the MCP lumen, propionyl-CoA is converted to
propionyl-phosphate. The second type of propanediol catabolic MCP has been implicated only recently
through microarray analysis'* and a comparative genomic analysis'®. This MCP degrades 1,2-
propanediol using a series of enzymatic reactions similar to those found in the Pdu MCP, except the
initial dehydration reaction is catalyzed by a glycyl-radical diol dehydratase enzyme, rather than a vitamin
B12-dependent enzyme. Consequently, this MCP has been named Grp, for glycyl-radical propanediol. In
the case of the Grp MCP, it has been suggested that in addition to retaining the propionaldehyde
intermediate, the MCP shell might also maintain an anaerobic environment for the glycyl-radical enzyme,
whose activated state is sensitive to oxygen-mediated cleavage of the polypeptide backbone'**.

In contrast to the Pdu MCP, which has been studied in detail, only limited experimental work has
been done to characterize the Grp MCP. Along with a genomic analysis that highlighted the Grp MCP
operon, Jorda, et al. provided limited biochemical analysis of a BMC domain shell protein from the Grp
MCP'’. Almost simultaneously, Petit, et al. demonstrated that Clostridium phytofermentans expresses
Grp-type MCPs during the fermentation of fucose and rhamnose'*®. Shortly after, Wheatley, et al.
determined the structure of a pentameric vertex protein, GrpN, from the Grp MCP of Rhodospirillum
rubrum®®. These three reports provide the only experimental characterization of the Grp MCP to date.
Because of its overall similarity to the Pdu MCP, some of the functional details of the Grp MCP can be
inferred by analogy. However, the difference in the first enzymatic step between these two systems also
implies a certain degree of functional divergence. For example, the Pdu MCP contains a system of
enzymes (PduGHOS) that regenerates inactivated B12 cofactors™'*'*° while the Grp MCP instead
contains a glycyl-radical enzyme activase'’. Each of these two biochemical systems requires access to a
different set of substrates, cofactors, and reducing equivalents, which indicates that the protein shells of
the Pdu and Grp systems must differ to some extent with respect to their function as a diffusion barrier.
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Therefore, further experimental characterization of the protein shell of the Grp MCP should highlight the
similarities and differences between the Pdu and Grp MCP systems, and will provide insight into how the
Grp MCP supports the activation of an encapsulated glycyl-radical enzyme.

Some Grp operons contain a gene encoding a particularly divergent BMC domain shell protein.
Analysis of various MCP operons revealed that it is fairly common for a particular type of MCP to vary in

gene composition from one species to another®'®

. These species-to-species variations in MCP
composition are presumed to represent functional adaptations that modify the “core” MCP machinery,
which is invariant between species. In the genomic analysis of the Grp MCP, Jorda, et al. counted that 9
out of the 23 Grp operons they examined contain a gene corresponding to a divergent BMC-domain shell
protein'®. The closest homolog of this polypeptide in the Pdu MCP system is the PduU shell protein, and
consequently we have named this divergent Grp shell protein “GrpU.” The GrpU protein is an interesting
subject of inquiry for several reasons. First, because it is not universally conserved within Grp operons, it
represents a functional variation on the core Grp MCP system. Second, the GrpU sequence is highly
divergent from other BMC-domain proteins, and therefore the degree of structural similarity between this
BMC-domain protein and other members of the protein family is unclear.

This chapter describes a structural study of two GrpU orthologs from very different bacteria. The
first of these GrpU proteins is from Clostridiales bacterium 1_7 47FAA, and is referred to hereafter as
“Clost_GrpU.” While little information is available about this particular species, the Clost GrpU
sequence is closely related to GrpU sequences from other Clostridia that are human pathogens, including
C. botulinum and C. tetani, the causative agents of botulism and tetanus. The other GrpU sequence used
in this work is from Pectobacterium wasabiae, a plant pathogen that causes stem rot'>'. This sequence is
hereafter referred to as “Pecwa GrpU.” Our work combines X-ray crystallography, absorbance
spectroscopy, and molecular modeling to demonstrate that the GrpU shell protein is a novel type of BMC-
domain metalloprotein that binds an iron-sulfur (Fe-S) cluster using a conserved, but uniquely

polymorphic, binding motif that has not been observed before. This study represents an important step
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towards a complete understanding of how BMC-domain shell proteins function within the context of the

Grp MCP.

4.2 Results

4.2.1 Spectroscopic evidence of Fe-S clusters in GrpU

Solutions of purified GrpU proteins appear brownish in color, and have spectral features
consistent with the presence of an iron-sulfur cluster. Absorption spectra of purified GrpU solutions
reveal broad peaks near 420nm (Figure 4.2). Specifically, the absorption maxima of these peaks occur at
411nm for Clost GrpU, and at 415nm for Pecwa GrpU. Absorbance in this spectral region is known to
result from iron-sulfur charge-transfer bands'. We note that similar absorbance features have been
observed for the PduT BMC protein®', which were demonstrated (by electron paramagnetic resonance
spectroscopy) to result from the presence of a [4Fe-4S]" cluster. Based on the similarities of the Grp and
Pdu MCP systems, it is likely that GrpU and PduT coordinate similar metal clusters. Furthermore, we
observed that these absorbance features disappeared after storage of the samples for several days at 4°C,

indicating that the Fe-S cluster is somewhat labile and prone to dissociation upon protein oxidation.

4.2.2 GrpU structure determination

We determined X-ray crystal structures of two GrpU homologs, Clost GrpU and Pecwa GrpU,
at 2.5A and 2.8A resolution respectively. In both cases, structure determination presented considerable
difficulty due to high symmetry and high Wilson B-factors for the X-ray data. Despite these difficulties,
solutions were found in space group P23 for Clost GrpU and space group H3 for Pecwa GrpU. In both
crystal structures, GrpU forms homohexamers which sit upon 3-fold crystallographic symmetry axes.
Additionally, 2-fold non-crystallographic symmetry axes lie perpendicular to the crystallographic 3-folds,
resulting in what appear to be homododecameric arrangements of monomers with apparent 622 point
group symmetry. Following molecular replacement, we performed restrained refinement of the atomic
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Figure 4.2. Absorption spectra of GrpU proteins. Absorbance spectra are shown for Clost GrpU and
Pecwa GrpU, demonstrating broad peaks at 411nm and 415nm respectively. Absorption maxima in this

region, near 420nm, are characteristic of Fe-S charge transfer bands.

Overlay

Clostridiales sp. Pectobacterium wasabiae
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Figure 4.3. X-ray crystal structures of GrpU proteins. Hexameric assemblies of Clost GrpU (blue,
left) and Pecwa GrpU (red, right) are shown. Monomers that are crystallographically unrelated are
colored in different shades, and the disordered p3-p4 loops are represented as dashed gray lines. In the

center, an overlay of Clost GrpU and Pecwa GrpU monomers illustrates their structural similarity.
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Parameter Clost GrpU Pecwa GrpU
X-ray Wavelength 0.9791A 0.9792A
Nominal Resolution Range 19.84-2.50A 60.97-2.79A
Unit Cell a=b=c=130.10 a=b=117.85; ¢c=76.02
a=B=y=90° a=p=90°; y=120°
Space Group P2,3 H3
Unique Reflections 25,255 9,715
Multiplicity 4.1 12.9
Completeness 98.3% (99.8%) 99.5% (97.5%)
(I/al) 17.55 (1.06) 10.2 (2.8)
Wilson B-factor 80.94A° 94.70A°
cc,® 0.999 (0.446) 0.997 (0.897)
CcC* 1.00 (0.768) 0.999 (0.972)
CCrori 0.958 (0.664) 0.925 (0.759)
CCpe.” 0.945 (0.650) 0.948 (0.461)
Ry 0.1901 0.2154
Ried 0.2207 0.2671
No. Atoms 2536 2637
Protein Residues 302 317
Solvent Molecules 80 4
Average Atomic B-factor 87.07A° 76.42A°
RMSD (bonds) 0.01A 0.01A
RMSD (angles) 1.26° 1.60°
Ramachandran Plot:
Favored 99.01% 97.48%
Allowed 0.99% 2.52%
Outliers 0.00% 0.00%
Molprobity Clashscore’ 4.07 5.20

Table 4.1 Diffraction data and refinement statistics for GrpU structures.
Values in parenthesis reflect the highest resolution shell. R-factors are calculated with riding hydrogens
present in the model.

R0 and Ry, are given by the following equation, computed for the working and test sets of reflections

ZHFo‘f‘FcH
respectively: R = Y —=——
P y SIE)

hkl
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coordinates, which converged to yield final models that agreed reasonably well with the observed X-ray
data and had excellent molecular geometry (Table 4.1).

In general, the Clost GrpU and Pecwa GrpU structures have similar features (Figure 4.3).
Likelihood-weighted electron density maps (2mFo-DFc and mFo-DFc) used to generate our structural
models were somewhat noisy, likely due to the large proportion of disordered polypeptide in the crystal
lattice (Figure 4.4). Nevertheless, we were able to reliably model residues 1-19, 32-64, and 70-102 of
Clost_GrpU, and residues 2-67 and 72-94 of Pecwa GrpU. Unfortunately, there is no electron density
corresponding to the presumptive Fe-S ligands in either electron density map, likely because the Fe-S
clusters in GrpU are unstable under the crystallization conditions over the time course of the experiment
(approximately 1 week), even in an anaerobic environment. The Clost GrpU and Pecwa_GrpU sequences
are 40% identical, and consequently our two structures have a low coordinate RMSD; any of the four
independent protein molecules in our Clost GrpU structure can be superimposed upon any of the four
molecules in our Pecwa GrpU structure with coordinate RMSDs of 1-2A calculated on Ca atoms. GrpU
molecules that are part of the same hexamer, but are crystallographically independent, can be

superimposed with coordinate RMSDs of less than 1A.

4.2.3 Comparison of GrpU with other BMC domain proteins

Although GrpU has a highly divergent sequence, its structure is quite similar to other BMC
proteins. Our structures of GrpU reveal that the polypeptide assumes a typical BMC domain fold, with the
“circularly permuted” topology previously observed in a number of other BMC domain proteins (Figure
4.3)*7**1% Furthermore, GrpU monomers oligomerize to form homohexamers, consistent with previous
knowledge about BMC protein assembly” . Interestingly, GrpU structures have an average RMSD of
2.1A (calculated on Co atoms), when compared to a representative set of 17 other BMC domain protein
structures from the PDB, but the average sequence identities between these proteins is only 24%, and the
alignments typically have poor coverage due to sequence gaps and circular permutation. Furthermore, a
BLAST search'> against sequences in the Protein Data Bank using a GrpU query sequence does not find
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Figure 4.4. Representative electron density. Representative images of cA-weighted (2mFo-DFc)

electron density maps for Clost GrpU (A) and Pecwa_ GrpU (B), also showing the final models.
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Figure 4.5. Comparison of BMC domain sequences and structures. A plot of sequence identity vs.
Co RMSD for pairwise alignment of 24 BMC-domain proteins, including Clost GrpU and Pecwa GrpU,
demonstrates that GrpU proteins are structurally similar to the rest of the BMC superfamily, despite
having highly divergent sequences. Comparisons involving GrpU are shown in red. Note that the
pairwise sequence identities reported tend to overestimate the degree of similarity between proteins when

there are substantial gaps in alignment, as is the case for many of the GpuU alignments.
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a single hit from the BMC domain family with a significant E-value, indicating that the GrpU sequence is
highly divergent from other members of the BMC protein family. A plot of Ca. RMSD versus sequence
identity for the pairwise comparison of 19 BMC-domain structures, including Clost GrpU and
Pecwa_GrpU, illustrates that while GrpU sequences have low sequence similarity to other BMC-domain

proteins their structures are not particularly different (Figure 4.5).

4.2.4 Disorder in GrpU crystal structures

A striking feature of the GrpU structure is the large percentage of disordered residues, including
the loops that occupy the centers of the individual hexamers (Figure 4.3). Residues 65-69 in each of the
four chains within the asymmetric unit of our Clost GrpU structure, which occupy the central pore region
of the hexamer, lack interpretable electron density. Likewise, in all four chains of the asymmetric unit of
our Pecwa_GrpU structure, residues 68-71 at the centers of the hexamers also lack interpretable electron
density. In addition to the pore residues described above, our GrpU structures suffer from poor or absent
electron density for a segment of residues that lie on the luminal side of the hexamer. As a result, our
structures have additional unmodeled segments corresponding to residues 20-31 in Clost GrpU and 29-32

(chains A and D only) in Pecwa_GrpU.

4.2.5 A conserved sequence motif in GrpU

The disordered loops that occupy the centers of the GrpU hexamers contain a conserved sequence
motif. We performed a multiple sequence alignment of 15 non-redundant GrpU sequences, taken from
Grp operons analyzed by Jorda, et al. in their comparative genomic study'’. We observed that within this
set of representative GrpU sequences, there is a perfectly conserved GXCPQ sequence motif (Figure
4.6a). By mapping the position of the conserved GXCPQ motif onto our structural models of GrpU, we
determined that this motif is located in the loop connecting B-strands 3 and 4. In the context of the GrpU

hexamer, six copies of this loop, one per monomer, protrude toward the central pore region of the
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oligomer. In both of our GrpU crystal structures, this loop region lacks interpretable electron density and

appears to be disordered, as described above.

4.2.6 Identification of cysteine residues that bind the Fe-S ligand in GrpU

Site-directed mutagenesis confirms that the conserved cysteine in the GXCPQ motif (Cys67 in
Clost_GrpU and Cys69 in Pecwa_GrpU) coordinates the putative iron-sulfur cluster. We systematically
mutated each of the cysteine residues in the sequence of Clost GrpU to serine, to determine the effects of
these mutations on the ability of GrpU to bind to its Fe-S ligand. We immediately observed that the
purified C67S mutant lacked the brownish appearance characteristic of the wild-type protein (Figure
4.6b). Cysteine 67 is the conserved cysteine residue found in the GXCPQ motif of Clost GrpU. In
contrast, the other cysteine mutants, C18S and C47S, retained the brownish color seen for the wild-type
protein. Absorbance spectra of these mutants confirmed our visual observation, showing that the C18S
and C47S mutants absorb light at 411nm, while the C67S mutant does not (Figure 4.6c). This result
demonstrates that in Clost GrpU, Cys67 is required for Fe-S cluster binding. Furthermore, we note that
the Pecwa_ GrpU sequence contains only one cysteine (C69), which is found in the GXCPQ motif, and

therefore the Fe-S cluster must be ligated by this residue.

4.2.7 Computational modeling of metal-bound GrpU

Using our crystal structure of Clost GrpU as a starting point, we were able to prepare a
computational model of a Clost GrpU hexamer with a cubic 4Fe-4S cluster bound at its central pore. We
selected the 4Fe-4S cluster over other types of Fe-S clusters based on the probable functional analogy
between GrpU and PduT, a BMC domain protein from the Pdu MCP that has been shown to coordinate a
4Fe-4S cluster’'. Our model demonstrates that a GrpU hexamer is indeed capable of accommodating its
presumptive metal cluster at the proposed binding site. The computational procedure allowed us to model
the pore loops that contain the ligand-binding residues in the context of a complete hexamer, without
substantially altering the portions of the structure that were well-resolved in the crystal structure. Our
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modeling protocol began with a 6-fold symmetric model of a hexamer, and subsequently introduced
ligand restraints between alternating Cys67 residues, while simultaneously relaxing the oligomeric
symmetry from 6-fold to 3-fold. The final, energy-minimized model of the Clost GrpU hexamer with the
cubic 4Fe-4S cluster showed signifcant differences in the conformations of the two independent $3-4
loops. Breakage of 6-fold oligomeric symmetry to give a 3-fold symmetric homohexamer accompanies
binding of a cubic Fe-S cluster in GrpU (Figure 4.7), largely as a result of steric constraints. In our model
of metal-bound GrpU, the Fe-S cluster is positioned very low in the pore, making the luminal side of the
GrpU hexamer appear as a flat surface, in contrast to the concave feature that is typically found on the
luminal side of most BMC hexamers. Additionally, because of its position close to the luminal side of the
hexamer, the Fe-S cluster appears to lie at the bottom of a funnel-shaped cavity when viewed from the

cytosolic face of the hexamer.

4.2.8 A GrpU-like protein from a Pdu MCP

Somewhat surprisingly, an analysis of Pdu operons (i.e. those that encode B12-dependent
propanediol-utilizing MCPs rather than the glycyl-radical type) revealed that at least one organism,
Anaerobaculum mobile, contains a shell protein sequence closely resembling GrpU. This operon can be
identified as a true Pdu operon based on the presence of a B12-dependent diol dehydratase enzyme
(PduCDE), and we note that in addition to the GrpU-like shell protein, this operon contains the normal
repertoire of BMC-domain shell proteins typically found in the Pdu MCP (PduABKJTU)*. The GrpU-
like sequence from this Pdu operon also bears some similarity to the shell protein PduU, including a small
-barrel formed by extended N-termini; however, a phylogenetic tree comparing this sequence to known
PduU and GrpU sequences confirms that this sequence is more closely related to GrpU homologs than it
is to PduU homologs (Figure 4.8a). Furthermore, sequence alignment demonstrates that this polypeptide
contains the conserved GXCPQ sequence motif characteristic of GrpU proteins. Using our Clost GrpU
crystal structure as a template, we were able to create a computational model of this GrpU-like sequence
as well (Figure 4.8b). This model superimposes upon our model of metal-bound Clost GrpU with a
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Figure 4.7. Computational modeling of Clost GrpU bound to a 4Fe-4S cluster. Using our crystal
structure as a starting point, we prepared a computational model of Clost GrpU bound to a 4Fe-4S cluster
(A). A model with 6-fold symmetry was judged to be impossible, based on a steric clash, involving the
Fe-S cluster and the Sy-atoms of alternating Cys67 residues at the center of the hexamer (red arrowheads,
B). Our model demonstrates that this clash can be relieved if the symmetry of the hexamer is relaxed from
6-fold to 3-fold (C) via alternating conformations of the conserved GXCPQ motif, which is shown in

sticks (D).
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Figure 4.8. A GrpU ortholog from a Pdu operon. A phylogenetic tree (A) demonstrates the relationship
of GrpU (blue background) and PduU (green background) protein sequences. Pink lines highlight
Clost_GrpU and another GrpU homolog that is found in a true Pdu-type operon, but clearly clusters with
GrpU sequences. A computational model of this sequence is shown (B), revealing that although clearly a
GrpU homolog, this protein has notable structural similarities to PduU, including a small B-barrel atop the

hexamer (red arrowhead).
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relatively low coordinate RMSD (2.5A, calculated on Co atoms for comparison of two monomers), and
demonstrates that this GrpU-like protein also has the capacity to bind a Fe-S cluster at the central pore of
an assembled hexamer. Interestingly, this GrpU-like sequence has a short N-terminal extension that forms
a small 6-stranded B-barrel in the context of the hexamer (Figure 4.8b), similar to the PduU and EutS

27,103,153

shell proteins . This small B-barrel appears to occlude the central Fe-S cluster from the cytosolic

side of the MCP shell.

4.3 Discussion

Here we provide the first structural insight into the homohexameric BMC domain shell proteins
from the recently-discovered Grp MCP. BMC domain proteins are the major component of MCP shells,
and previous studies of other MCP systems have highlighted the mechanistic understanding that can be
gained from their structural elucidation®*"*. Towards the goal of extracting similar types of insights into
glycyl-radical type (Grp) MCPs, we have determined X-ray crystal structures of two GrpU homologs
(Figure 4.3). One of these homologs is taken from an organism whose genomic sequence is annotated
only as Clostridiales bacterium 1 7 4TFAA. This sequence is 82% identical to the GrpU sequence from
Clostridium saccharolyticum, and GrpU sequences with high levels of sequence similarity (54-67%
identity) are found in species of Clostridia that are human pathogens, including Clostridium botulinum
and Clostridium tetani. The other GrpU homolog used in this study originates from the plant pathogen
Pectobacterium wasabiae. It is interesting to note that although the genera Clostridium and
Pectobacterium both contain a number of pathogenic organisms with Grp operons, they are evolutionarily
distant from one another; Pectobacteria are gram-negative Proteobacteria, while Clostridia are gram-
positive Firmicutes. The conservation of the Grp MCP in such distantly related pathogens suggests its

potential importance in infection or other host-pathogen interactions.
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4.3.1 Structural overview of GrpU

The structure of GrpU is quite similar to other BMC domain proteins, despite its highly divergent
sequence. One feature of GrpU that initially attracted our attention was its apparent dissimilarity to other
BMC-domain proteins. BLAST searches do not identify any alignments between GrpU sequences and
other members of the BMC domain superfamily as having significant E-values, which we initially
interpreted as evidence that GrpU structures might be quite different from other known BMC domain
structures. Surprisingly, our X-ray crystal structures of Clost GrpU and Pecwa GrpU reveal that these
proteins exhibit only minor, though important, structural variation relative to the other members of the
BMC superfamily. In order to quantify the similarities between GrpU and divergent members of the BMC
superfamily, we calculated sequence identities and coordinate RMSDs (calculated on Co atoms) for
pairwise comparisons of 24 BMC proteins of known structure, including Clost GrpU and Pecwa_GrpU.
A plot of sequence identity vs. Co. RMSD for the 276 pairwise comparisons demonstrates that while
GrpU sequences typically have low sequence identities when compared to other BMC proteins, they also
tend to have low Coa RMSDs for the corresponding structural alignments (Figure 4.5), confirming that,
although GrpU proteins have relatively divergent sequences, they are structurally similar to other
members of the BMC superfamily.

Although GrpU appears to adopt a typical BMC domain fold, our X-ray crystal structures reveal
that GrpU also has some unique structural features (Figure 4.3). Notably, GrpU seems to have a large
percentage of unstructured residues relative to other members of the BMC domain superfamily. For
example, in most single-domain BMC proteins, the B3-p4 loop segment is well-defined and imparts the
respective hexamer with a narrow pore through its center. These narrow pores have been hypothesized to
regulate the diffusion of substrates and products through the MCP shell”*"**'*" In contrast, both of our
GrpU crystal structures reveal disordered P3-f4 loop segments protruding toward the centers of the
hexamers, resulting in an apparent void at the center of the oligomer (Figure 4.3). As discussed
subsequently, the intrinsic flexibility of these loop segments is likely to facilitate the Fe-S cluster-binding
activity of GrpU. In addition to disorder at the center of the hexamers, GrpU monomers in our crystal
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structures also exhibit disordered polypeptide segments connecting helix-oA and the p2-strand on the
luminal side of the hexamer (Figure 4.3). Other studies of BMC-domain proteins have demonstrated that
this surface is a likely interaction point between the MCP shell and the internalized enzymes***;
therefore, we suggest that these unstructured loops might be involved in protein-protein interactions that
enable the assembly of the complete MCP.

In both of our GrpU crystal structures, hexamers appear to pack within the lattice as dodecameric
assemblies with local D6 symmetry. The possibility that MCP shells may consist of a double layer of
oppositely faced BMC-domain shell proteins has been raised in previous studies*”'**'**. The dodecameric
assemblies we observed in crystals of Pecwa GrpU and Clost GrpU are distinct from each other, and

neither appears to be arranged in a way that would be compatible with formation of extended double-layer

sheets, though this does not discount the possible relevance of local dodecameric assemblies.

4.3.2 Identification of a Fe-S cluster binding site in GrpU

GrpU likely binds a cubic iron-sulfur cluster at its central pore, similar to the PduT shell protein
from the Pdu MCP. Absorbance spectra of GrpU shell protein samples show features that are consistent
with the presence of an iron-sulfur cluster (Figure 4.2), particularly a broad absorbance peak near 420nm'.
The absorption spectra we observed for GrpU samples are nearly identical to those observed by Parsons,
et al. from samples of the PduT BMC domain shell protein®'. Additional structural and spectroscopic
characterization of PduT revealed that, in contrast to GrpU, it is a tandem BMC domain polypeptide,
which assembles into a pseudohexameric trimer and binds a cubic 4Fe-4S cluster at its central pore™~'.
In order to bind the Fe-S cluster at the center of a symmetric trimer, each of the three PduT monomers
contributes one cysteine, whose sulfur atoms ligate the Fe-S cluster at the three-fold axis of oligomeric
symmetry. In the GrpU shell protein, mutation of a single, perfectly-conserved cysteine residue ablates
the spectroscopic signal assigned to the Fe-S cluster (Figure 4.6b,c), indicating that GrpU binds its Fe-S
ligand in a manner similar to PduT, in which multiple monomers each contribute a single cysteine residue

to a binding site that lies at the center of a homo-oligomer. The key difference is that in GrpU, only three
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of the six chemically identical subunits contribute their cysteines to ligate the metal cluster. Mapping of
these critical cysteine residues onto our structural models confirms their location within loops (which
appear disordered in the absence of the bound metal cluster) near the oligomeric symmetry axis.
Although our absorbance spectra cannot distinguish the specific type of Fe-S cluster that is present in

GrpU, we suggest that it is likely to be a cubic cluster (3Fe-4S or 4Fe-4S) based on analogy with PduT.

4.3.3 Structural features of the ligand binding site

Disorder at the center of the GrpU hexamer, in the B3-B4 loop, breaks the 6-fold oligomeric
symmetry, as required for binding of the Fe-S cluster at this position. There is no known example of a
biological Fe-S cluster with 6-fold symmetry, and to our knowledge there have been no previous
observations of any type of Fe-S cluster present at a coordination site with 6-fold symmetry. However,
because the cubic Fe-S cluster does have 3-fold symmetry, which is also contained within the 6-fold
oligomeric symmetry of GrpU, we propose that the GrpU hexamer binds a 3-fold symmetric metal cluster
in one of two degenerate orientations using a coordination site where the 6-fold symmetry is decisively
broken. In order to explore the feasibility of such an arrangement, we performed a computational
modeling exercise. Our model of Clost GrpU with a cubic 4Fe-4S cluster revealed that a ligation site
with cysteine residues in a 6-fold-symmetric arrangement is not possible, because the Sy atoms of the
cysteine residues that do not participate in the Fe-Sy bonds would clash with the sulfur atoms that are part
of the Fe-S cluster itself (Figure 4.7b). Consequently, we concluded that a GrpU hexamer cannot retain
strict 6-fold oligomeric symmetry when bound to its presumptive 4Fe-4S ligand. By relaxing the
oligomeric symmetry (from 6-fold to 3-fold) while constraining alternating Cys67 residues to form a 4Fe-
4S coordination site, we were able to obtain a model that demonstrates the ability of a GrpU hexamer to
bind its presumptive Fe-S ligand without steric overlap, allowing for a modest structural difference
between alternating chains in the cyclic hexamer (Figure 4.7¢,d). Furthermore, our computational model
suggests that rearrangement of the conserved GXCPQ motif yields the required conformational
heterogeneity (Figure 4.7d). Our crystallographic and computational results, taken together, suggest that
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intrinsic disorder at the center of the GrpU hexamer in the absence of the ligand serves to alleviate a steric
clash resulting from symmetry mismatch between GrpU and the cubic Fe-S cluster. Upon ligand binding,
this disordered region likely adopts a much more rigid, 3-fold symmetric conformation, owing to the
structural constraints imposed by the Fe-S cluster.

In GrpU, a structural feature of the B-sheet (within each monomer) appears to promote structural
disorder at the center of the oligomer. In particular, three successive strands, 2, B3, and B4 have an
unusual geometry that leads to conformational variation of the 3-p4 loop, which occupies the center of
the oligomer. The outer two of these three strands, B2 and B3, appear to splay unusually far apart from
one another at the edge of the sheet. This arrangement of B2 and B3 creates a situation in which the
middle strand, f4, cannot simultaneously form hydrogen-bonds with both of its neighboring strands in the
sheet, leading to two alternative conformations (Figure 4.9a,b) and implying the existence of dynamic
disorder in the absence of the Fe-S cluster. Evidence for both of these conformations can be found in our
Clost_GrpU model and in corresponding electron density maps. After modeling the major conformation
of the B4 strand in Clost GrpU, a strong positive density feature in the mFo-DFc difference electron
density map indicated a second, minor conformation (Figure 4.9c). This difference electron density was
present near all four crystallographically independent molecules in the Clost GrpU structure. We were
able to successfully model the second conformation in one of the four crystallographically independent
molecules, although our attempt to model a second conformation of the B4 strand in the other three
Clost_GrpU molecules led to a drop in Rwork, but not in Rfree, and consequently these conformers were
omitted from the final coordinates. Additionally, in Clost GrpU a methionine residue (Met45) adjacent to
the B4 strand also occupies two alternative rotamers in a fashion that correlates with the alternative
positions of the strand (Figure 4.9c). Failure to model either of these alternate side-chain conformations
results in strong positive peaks in the mFo-DFc difference electron density map. We note that this
methionine residue is well-conserved in GrpU; all GrpU sequences have either methionine or leucine at
this position, indicating that motion of this residue may also play an important role in promoting
structural heterogeneity at the metal binding site.
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Figure 4.9. Multiple conformations of
the B3-p4 loop. A unique splaying of the
B2 and B3 strands in GrpU leads to a
situation in which the strand between them,
B4, cannot simultaneously form H-bonds
with both of its partners, leading to two
alternative conformations (A,B — side and
top views respectively, side chains omitted
for clarity). Positive electron density
features in both 2mFo-DFc and mFo-DFc
electron density maps (C) indicate that the
B4 strand and Met45 occupy alternate

conformations.



4.3.4 Insights into GrpU function

Although we have provided detailed structural characterization of GrpU, our work reveals little
information about the function of this shell protein within the Grp MCP. Based on the presence of the Fe-
S ligand in GrpU, we have developed several hypotheses about its function. Our first hypothesis is that
GrpU facilitates electron transport through the shell of the Grp MCP in order to help generate the glycyl-
radical at the active site of the diol dehydratase enzyme. The glycyl-radical within the diol dehydratase
enzyme is generated with the help of a secondary activase enzyme, which requires S-adenosylmethionine
and a single electron donor'™'**'* 1t is possible that the single electron required for this reaction is
generated by oxidation of a cytoplasmic reductant and then transported through the MCP shell via GrpU.
An alternative hypothesis is that GrpU functions to transport intact Fe-S clusters through the MCP shell.
The activase in the Grp system requires a 4Fe-4S cluster for its enzymatic activity'*, and it is possible
that GrpU transports 4Fe-4S clusters to supply the activase enzyme with fresh cofactor. GrpU might be a
well-suited transport protein for a cubic Fe-S cluster, because it would bind the cluster with only three
cysteine ligands. This might lead to a weaker affinity for the Fe-S cluster relative to another protein that
binds the same cluster with four cysteine residues, leading to an affinity gradient compatible with
directional transport.

Genetic variability between Grp operons creates further confusion about the function of GrpU.
That not every Grp operon contains GrpU indicates that its specialized function may represent a
modification to the core Grp MCP'’. On the other hand, there are Grp operons that contain GrpU
alongside other presumptive Fe-S-containing BMC shell proteins, namely orthologs of PduT, indicating
some functional redundancy in these systems. One such Grp operon that contains GrpU and a PduT
homolog is from the organism Desulfitobacterium halfniense. Additionally, we have identified at least
one true Pdu operon (i.e. encoding PAduCDE enzyme), from Anaerobaculum mobile, that contains a GrpU-
like shell protein. We have shown, by creation of a phylogenetic tree, that this GrpU-like sequence is
more similar to GrpU than it is to PduU, another closely-related shell protein from the Pdu MCP system
(Figure 4.8a). A computational modeling exercise illustrates that this GrpU-like sequence is similar to
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GrpU in its capacity to bind a cubic Fe-S cluster, although it appears to also have a small B-barrel
structure on the cytosolic face of the hexamer like the PduU shell protein (Figure 4.8b). The anomalous
distribution of GrpU across MCP operons is evidence that GrpU plays a complicated role in these MCP
systems. Hopefully, future studies of GrpU will integrate our structural characterization with the results of

genetic and biochemical assays designed to unravel the function of this unusual shell protein.

4.4 Conclusions

The results presented here provide unexpected evidence that a previously uncharacterized GrpU
microcompartment shell protein binds a metal cluster at a unique site of coordination. We used absorption
spectroscopy to demonstrate the presence of a Fe-S cluster in GrpU, and confirmed that a conserved
sequence motif ligates the cluster at the center of a GrpU hexamer. Two X-ray crystal structures of GrpU
proteins at moderate resolutions reveal a disordered binding motif in the absence of the Fe-S cluster. A
subsequent computational study of GrpU demonstrated that 6-fold oligomeric symmetry must break down
in order to accommodate the presumptive 4Fe-4S cluster. Our work with GrpU provides the first insight
into the BMC domain shell proteins of the Grp MCP. Based on the chemistry associated with the Grp
MCEP, it is likely that the presence of the Fe-S cluster in this shell protein facilitates the transport of
reducing equivalents across the shell, although more experiments will be required to develop a full
understanding of GrpU function.

In addition to being the first BMC domain homohexamer from the Grp MCP to be experimentally
characterized, GrpU represents a new variation on BMC domain metalloproteins. The PduT shell protein
is another known Fe-S binding BMC domain protein. The functions of GrpU and PduT are likely similar,
yet the two proteins have dramatic structural differences. GrpU and PduT have different topology (by
virtue of circular permutation), and GrpU is a single-domain homohexamer, while PduT is a tandem-
domain homotrimer. This difference in oligomerization reflects a difference in how these two proteins
break the 6-fold oligomeric symmetry typical of the BMC domain proteins in order to accommodate their
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Fe-S ligands; PduT breaks 6-fold symmetry by domain duplication and fusion (i.e. sequence
polymorphism), while 6-fold symmetry is broken by conformational polymorphism in GrpU. As far as we
are aware, the symmetry-breaking mechanism by which GrpU binds its Fe-S ligand is indeed unique

among metalloproteins studied to date.

4.5 Materials & Methods

4.5.1 Cloning of recombinant GrpU proteins

The codon-optimized DNA sequences corresponding to amino acids 1-101 of the GrpU protein
from Clostridiales bacterium 1 7 47FAA (Clost GrpU) and amino acids 1-99 of the GrpU protein from
Pectobacterium wasabiae (Pecwa_GrpU) were designed using the DNAWORKS web server'*®. Segments
of linear DNA containing the designed sequences were independently assembled from small
oligonucleotides (Integrated DNA Technologies), as suggested by DNAWORKS, using recursive PCR'".
The PCR products were digested with Ndel and Xhol restriction enzymes (New England Biolabs),
purified by agarose gel electrophoresis, and ligated into the pET-22b+ expression vector, which had also
been digested with Ndel and Xhol restriction enzymes, using Quick Ligase (New England Biolabs). The
restriction sites selected for incorporation of the GrpU sequences into pET-22b+ append a hexahistadine
purification tag (sequence: -LEHHHHHH) at the c-terminus of the polypeptides, and place the GrpU
genes under the control of the T7 promoter region. Point mutations (C18S, C47S, and C67S) were
introduced into the Clostridiales GrpU sequence using the QuickChange method (Stratagene). All DNA

. . . . . . 109
constructs were verified by dideoxy chain termination sequencing .

4.5.2 Protein overexpression and purification

Expression plasmids (pET-22b+) bearing the GrpU genes were independently transformed into
Escherichia coli BL21 (DE3) chemically competent cells (New England Biolabs) for protein expression.
For expression of both protein constructs (Clost GrpU and Pecwa_GrpU), we added 1mM isopropyl-f-
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D-thiogalactopyranoside to cell cultures grown in selective Luria-Bertani (LB) broth during the
exponential phase of growth. Growth media was supplemented with ImM L-cysteine and 50mg/L ferric
ammonium citrate when protein overexpression was induced, in order to supply the cells with additional
iron and sulfur. After four hours of protein overexpression at 37°C, the cells were harvested by
centrifugation for 15 minutes at 5,000xg and stored at -20°C.

Cell pellets containing overexpressed Clost GrpU protein were resuspended in buffer containing
20mM Tris, 300mM sodium chloride, and 0.03% polysorbate 20 at pH 8.0 with a protease inhibitor
additive (Roche), 10mM MgCl2, 1mg/mL lysozyme, and 100units/mL of both DNase and RNase, and
then lysed using a high-pressure emulsifier (EmulsiFlex C3, Avestin). We clarified the cell lysate by
centrifugation at 30,000xg for 30 minutes, and then used a HisTrap nickel affinity column (GE
Healthcare) to purify the protein from clarified lysate. The bound protein was eluted with lysis buffer
containing 300mM imidazole, and then dialyzed against a buffer containing 20mM Tris and 50mM
sodium chloride at pH 8.0. The dialyzed sample was then loaded onto a HiTrapQ anion exchange column
(GE Healthcare) that was pre-equilibrated with the dialysis buffer, and subsequently eluted with a linear
gradient of buffer containing 20mM Tris and 1M sodium chloride at pH 8.0. Finally, the eluted protein
sample was dialyzed once again against a buffer consisting of 20mM Tris and 50mM sodium chloride at
pH 8.0.

Pecwa_GrpU protein was purified from cell pellets by first resuspending the cells in buffer
containing 50mM Tris, and 300mM sodium chloride at pH=8.0 with a protease inhibitor additive (Roche).
Cells were lysed by ultrasonic disruption (Vibra-Cell VCX, Sonics & Materials, Inc.) and the cell lysate
was clarified by centrifugation at 30,000xg for 30 minutes. The lysate was loaded onto a HisTrap nickel
affinity column and the bound protein was eluted with lysis buffer containing 350mM imidazole. Finally,
the Pecwa GrpU sample was subjected to gel filtration using a Superdex75 column (GE Healthcare),
which provided a pure protein sample in buffer consisting of 18mM Tris and 100mM sodium chloride at

pH=7.6.
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4.5.3 Absorption spectroscopy

Absorption spectra of Clost GrpU and corresponding point mutants (C18S, C47S, and C67S)
were measured using a Cary-60 spectrophotometer (Agilent Technologies). We performed a wavelength
scan from 250nm to 800nm using a 0.5nm step size and 0.1sec integration time. Spectra were collected
immediately after protein purification and dialysis, in order to minimize loss of the Fe-S cluster upon
exposure to oxygen in the atmosphere. For comparison of the wild-type protein with the various point
mutants, individual spectra of the mutant constructs were scaled to the wild-type spectrum according to
protein concentration.

The absorption spectrum of Pecwa GrpU was measured using a Cary-300Bio spectrophotometer
(Agilent Technologies). We performed a wavelength scan from 240nm to 700nm using a Inm step size
and 0.2sec integration time. Prior to measuring the absorption spectrum, we added SmM dithiothreitol

(DTT) in order to minimize loss of the Fe-S cluster due to protein oxidation.

4.5.4 Protein Crystallization

Purified Clost GrpU protein was concentrated to approximately 12.5mg/mL and crystallized by
hanging-drop vapor diffusion in mother liquor consisting of 2.0M ammonium sulfate, 0.1M sodium
acetate at pH=4.5. Crystallization drops were prepared by mixing 1uL of protein solution with 1uL of
mother liquor, sealing the drop above a 0.5mL reservoir (Hampton VDX crystallization plate), and
allowing the system to equilibrate at 296K. The highest quality Clost GrpU crystals were obtained when
10mM oxidized glutathione was added to the protein sample at least 30 minutes prior to setting up the
crystallization experiment.

Purified Pecwa GrpU protein was crystallized using a hanging-drop protocol similar to the one
used for crystallization of Clost_GrpU. In the case of Pecwa GrpU, the protein sample was concentrated
to approximately 60mg/mL, and crystallized in mother liquor consisting of 30% 2-methyl-2,4-

pentanediol, 0.025M sodium potassium phosphate at pH=5.8.
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We attempted to crystallize both Clost GrpU and Pecwa GrpU in an anaerobic environment, in
order to preserve the Fe-S clusters. Unfortunately, crystals obtained under anaerobic conditions were
identical to similar crystals grown in ambient conditions, and did not provide additional information about

the Fe-S ligands.

4.5.5 X-ray data collection and processing

Prior to X-ray data collection, crystals of Clost GrpU were harvested, cryoprotected using a 1:1
mixture of crystallization mother liquor and 4.0M trimethylamine-N-oxide, and frozen in a liquid nitrogen
cryostream at 100K. We collected single-crystal X-ray diffraction data at the Advanced Photon Source
using beamline 24-ID-C equipped with a Pilatus 6M-F detector and operating at 12663eV. Crystals were
maintained at cryogenic temperature (100K) throughout the course of data collection. We indexed and
integrated reflections to 2.5A resolution using XDS, performed scaling and merging with XSCALE, and
converted intensities to structure factors using XDSCONV''?. The free set of reflections (10%) was
designated by XDSCONYV.

For X-ray data collection from our Pecwa GrpU crystals, harvested samples were cryoprotected
using a mixture of 30% glycerol and 70% crystallization mother liquor and then frozen in a liquid
nitrogen cryostream at 100K. We collected single-crystal X-ray diffraction data at the Advanced Photon
Source using beamline 24-ID-C equipped with a Pilatus 6M-F detector and operating at 12662¢V.
Crystals were maintained at cryogenic temperature (100K) throughout the course of data collection. We
indexed and integrated reflections to 2.8A resolution using DENZO, and performed scaling and merging
with SCALEPACK'"". Intensities were converted to structure factors using Ctruncate and the free set of
reflections (5%) was assigned using Uniqueify, both within the CCP4 utility sca2miz'"°.

Information regarding data collection and processing for both Clost GrpU and Pecwa GrpU is

provided in Table 4.1.
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4.5.6 Phase calculation by molecular replacement

Initial phase determination for the Clost GrpU diffraction data was performed using the
phenix.mr_rosetta software'®, using an initial, lower-resolution (3.2A) dataset. Fragment files and
alignment information required for phenix.mr_rosetta were obtained from the Robetta and hhpred web
servers respectively. The solution obtained by phenix.mr rosetta at 3.2A was subsequently used as a
search model in a straightforward molecular replacement procedure with the 2.5A data set, implemented
using the Phaser software'".

In order to find an acceptable molecular replacement solution for Pecwa GrpU, we first had to
expand our data from space group H3 to the lower-symmetry space group Pl. Using the P1 data, we
performed a molecular replacement search using the Phaser software''”’, with a search model consisting
of a full BMC hexamer constructed from PDB: 3IA0Q. Once a solution was found in P1, we selected four
polypeptide chains corresponding to an asymmetric unit in space group H3, and proceeded with a model

corresponding to the trigonal space group.

4.5.7 Model building and refinement

Following molecular replacement, atomic models of GrpU proteins were prepared by iterative
steps of model-building and automated refinement of the model coordinates against the observed X-ray
data. Model building was performed with Coot v0.7'"". The final model of Clost_GrpU was refined using
BUSTER (version 2.10.0) with automatic NCS restraints and automatic refinement of TLS parameters' ™.
The final model of Pecwa GrpU was generated by restrained refinement using REFMAC (version

10 The final models were

5.8.0049) with automatic NCS restraints and a single TLS group for each chain
deposited in the Protein Data Bank (PDB)'* under accession codes PDB: 40LO and PDB: 40OLP for

Clost_GrpU and Pecwa GrpU respectively. Refinement and model validation statistics are provided in

Table 4.1.
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4.5.8 Sequence and structural alignment of BMC-domain proteins
Pairwise sequence and structure alignments of 24 BMC-domain proteins, including both

161 The PDB accession codes

Clost_GrpU and Pecwa_GrpU, were performed using the DALI web server
for the 22 non-GrpU proteins used in the comparison are: 3BN4, 2A1B, 2A10, 2EWH, 3H8Y, 3FCH,
3196, 4AXI, 316P, 4AX1J, 3N79, 3PAC, 3NWG, 3182, 4EDI, 3U27, 4FAY, 3NGK, 3CGI, 4HTS5, 3100,

31IA0. These 22 BMC-domain homologs were selected in order to represent a variety of different species

and MCP systems.

4.5.9 Multiple sequence alignment of GrpU homologs

For multiple sequence analysis of GrpU homologs, we used a set of 15 non-redundant GrpU
sequences. Fourteen of these sequences, including the Pecwa GrpU sequence, were taken from the
original bioinformatics analysis of the Grp operon performed by Jorda, et al.'’, and the fifteenth sequence

is that of Clost GrpU. We used the MUSCLE software to perform the multiple sequence alignment'®*.

4.5.10 Computational modeling of metal-bound GrpU

A computational model of Clost GrpU bound to a cubic 4Fe-4S cluster (which was present after
purification, but lost during crystallization) was prepared in several steps. First, we used MODELLER
(version 9.10) to model the disordered loop regions for a single monomer from the Clost GrpU crystal
structure'®. The model of the complete monomer was then assembled back into a hexamer by applying a
6-fold symmetry operator. This hexameric model was subjected to two cycles of structure relaxation

* followed by symmetry-restrained relaxation using CNS (version 1.2)'°*'%° This

using Rosetta'®
hexameric model was then subjected to energy minimization allowing backbone flexibility, using
MODELLER (version 9.10) '®. During this energy minimization step, we constrained the hexamer to
have 3-fold symmetry (thereby modeling two independent chains), and we harmonically restrained the
distances of alternating cysteine Sy atoms so that they would form an equilateral triangle with a side

length of approximately 6.5A. This distance restraint places the sulfur atoms in positions which can
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accommodate ligation of an Fe-S cluster. After obtaining this 3-fold symmetric model, we attached the
Fe-S group to the corresponding cysteine residues, and performed one last energy minimization step with
CNS (version 1.2)'°*'% in the presence of the ligated Fe-S cluster.

In addition to the model of ligand-bound Clost GrpU, we also prepared a model of a GrpU-like
protein from the phylogenetically remote bacterium Anaerobaculum mobile, also bound to a cubic 4Fe-4S
cluster. This model was prepared using the same protocol that was used for Clost GrpU, except in this
case the crystal structure was not known, so we first prepared a homology model using MODELLER with
a template (PDB: 4AXI, 23% sequence identity) identified by MUSTER'®’.

The computational models were judged to be plausible, based on above-average scores from the

MolProbity geometry analysis web server™.

4.5.11 Analysis of Pdu operons

A reliable set of 28 Pdu operons was defined by computationally identifying operons containing
both PduCDE genes and genes for BMC-domain shell proteins. Computationally identified operons were
confirmed by manual inspection. By carefully analyzing shell protein sequences within this manually-
curated set of Pdu operons, we identified a GrpU homolog in the Pdu operon of Anaerobaculum mobile

(KEGG: Anamo_0124)'%,

4.5.12 Calculation of a phylogenetic tree comparing GrpU and PduU

As a first step towards generating a phylogenetic tree comparing GrpU and PduU sequences, we
created a multiple sequence alignment including 28 PduU sequences, 15 GrpU sequences, and the GrpU-
like sequence from the Pdu operon of A. mobile. The phylogenetic tree was generated from this multiple

sequence alignment using the PhyML software'®, and the results were visualized using FigTree.
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CHAPTER 5

Detection of Non-Uniform Structural Polymorphism in a Single Protein Crystal: from Non-

Isomorphous Unit Cells to Conformational Fluctuations

5.1 Introduction

170-175
d

The fact that protein molecules exhibit dynamic movement is firmly establishe , and there

are many examples of how conformational fluctuations are critical for protein function'”®. Interconversion

. . .. . . . 177-179
of conformational substates is critical for biological phenomena such as enzymatic turnover'’” '”,

180181 “signal transduction'®>'®, force generation'*, and even evolution'®. Despite the obvious

allostery
functional importance, characterizing the atomic details of conformational heterogeneity in protein
molecules remains a major challenge in structural biology.

The preeminent technique used to obtain structural information for protein molecules is X-ray
crystallography, which provides atomic models with a high level of coordinate precision'*’; however,
traditional crystallographic studies are not well-suited to describe conformational heterogeneity. With

IS8 the models derived from crystallography typically represent the single,

several notable exceptions
lowest-energy conformation of the molecules in the crystal lattice. The general singularity of
crystallographic models results from the nature of the diffraction experiment — it is not instantaneous and
it requires a large ensemble of molecules, leading to a spatiotemporal averaging of the derived electron
density over all the unit cells in the crystal and throughout the duration of the data collection. The effect
of this averaging is that only highly-populated conformational states are visible in the electron density.
Because individual X-ray diffraction experiments tend to yield “snapshots” of molecules, the study of

conformational heterogeneity by crystallographic methods can be laborious. In order to provide the

correct series of snapshots to elucidate structural fluctuations and their underlying mechanisms,
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crystallographers are often required to obtain multiple crystal forms of the same protein, apply various
different crystal treatments, and collect individual data sets from many different crystals'*”'*.

In contrast to the laborious process of solving multiple independent structures using different
crystals, we hypothesize that it might be possible to detect significant structural differences by comparing
multiple X-ray data sets collected from different regions of a single crystal. It is well know that the
physical manipulation required to remove a crystal from its growth environment and prepare it for a
diffraction experiment can alter the crystal in observable ways. For example, it has been documented that
dehydration and freezing can both alter the unit cell dimensions and packing interactions in

97,191,192
macromolecular crystals’®?”"""

. The fact that these sorts of structural perturbations to the crystal lattice
are not uniform is also known. Crystallographers often calculate the “mosaicity” of their X-ray diffraction
data, which is essentially a measure of long-range rotational disorder throughout the irradiated volume of
the crystal. The work presented in this chapter serves to explore the possibility that long-range disorder in
protein crystals might not only represent rigid body movements of molecules that perturb the lattice, but
also might also include interesting conformational rearrangements.

The method that we propose is intended to detect and utilize structural differences within a single
crystal, and the work presented here is intended to demonstrate the feasibility of this idea. First, we
demonstrate that a microfocal X-ray beam can be used to probe the structural landscape of an individual
protein crystal and identify significant differences between different spatial regions. Next, we attempt to
outline a procedure for detecting conformational differences in electron density maps when numerous
isomorphous X-ray data sets are available. In our case, the isomorphous data sets are independent, but
collected from the same crystal, connecting our electron density analysis to the idea that conformational
heterogeneity can be identified within a single crystal. The methodology outlined here relies on
calculating pairwise correlations (R-factors) between data sets, and subsequently using principal

component analysis to provide useful geometric representations of the differences between them. Using a

specific test case, the EutL microcompartment shell protein from Clostridium perfringens, our initial
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results confirm the viability of this analysis for detecting and visualizing structural polymorphism in

crystalline protein samples.

5.2 Materials & Methods

5.2.1 Protein preparation and crystallization

For the present study, we sought to collect diffraction data while exposing the smallest possible
volume of the crystal to the X-ray beam. In order to achieve this goal, we wanted to grow crystals that
diffracted well, but were thin in at least one dimension. The monoclinic crystal form of the EutL tandem
BMC-domain protein from Clostridium perfringens, cpEutL, described in detail in Chapter 2, fulfills this
requirement; these crystals are only about Sum in their thinnest dimension (Figure 5.1a). We prepared a
protein sample following the same protocol described in Chapter 2, and crystallized the protein in
hanging-drop format from 0.1M sodium/potassium phosphate buffer pH 6.6, 0.25M sodium chloride, and

10% (w/v) PEG-8000.

5.2.2 X-ray data collection

Prior to X-ray data collection, we harvested a single, plate-like crystal from a crystallization drop
and cryoprotected it using 50% mother liquor with 2M trimethylamine-N-oxide (Figure 5.1b).

X-ray diffraction data were collected at the Advanced Photon Source on microfocal beamline 24-
ID-E, equipped with a Sum beam aperture and an ADSC Quantum315 CCD detector. Using this highly
focused X-ray beam, we collected 18 data sets from essentially random, non-overlapping positions on the
crystal (Figure 5.1c). Each data set was collected using the same strategy, which measured a 75° wedge of
reciprocal space with 90% theoretical completeness. We maintained the crystal at cryogenic temperature
(100K) throughout the course of the data collection.

We performed indexing, integration, and scaling of the X-ray data using XDS and XSCALE, and
then converted intensities to structure factors with XDSCONV''?. A brief description of data quality
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Figure 5.1. Crystallization and data
collection. A) Monoclinic crystals of
cpEutL grow as flat plates, which are
Sum or less in their thinnest
dimension, but still appreciably large
in their other two dimensions, making
them ideal for our study. B) The single
cpEutL crystal used to collect our 18
data sets is shown mounted and frozen
in a nylon cryoloop. C) Locations on
the crystal from which the 18 data sets
were collected. The crystal has been

false-colored to help with viewing.



Parameter Worst Best
Max. Resolution 2.5A 1.9A
Completeness 83.3% 90.8%
(I/a) overall 7.37 10.54
(I /o) last shell 2.01 3.14
R,eqs OVerall 15.7 7.6
R,...s last shell 54.4 32.2

Table 5.1. Data collection statistics. A table showing some data statistics that demonstrate the range of

quality for our 18 data sets. While there is some variation, all of the data are of sufficient quality.
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statistics describing the group of data sets is provided in Table 5.1. All data sets were scaled to the same

reference set during data reduction.

5.2.3 Pairwise comparison of X-ray data sets
Following data reduction, we performed several calculations to compare each of the data sets to
one another. First, using structure factors, we calculated crystallographic R-factors for all possible pairs of

data sets, according to Equation 1.

_ Lkl ||Fobs(1)| - |Fobs(2)||
Bl YnkilFops)

(Eq. 1)

Next, we wanted to compare unit cell geometries, in order to check for potential non-
isomorphism between the data sets. This test was based on comparison of unit cell metric tensors for each
pair of data sets. First, for each pair of metric tensors, we calculated a 3x3 distortion matrix, D. This
distortion matrix, D, operates by multiplication on the second metric tensor, G, to yield the first metric
tensor, G, according to Equation 2.

G, = DG, (Eq.2)
To obtain the matrix D, we simply multiply both sides of Equation 2 by the inverse of the second metric
tensor, G,”', yielding Equation 3.
D = G,G3! (Eq.3)
We note that when the unit cells are perfectly isomorphous their metric tensors are necessarily equivalent
(G=G)), and the distortion matrix becomes the identity matrix (D=I).

In order to analyze the unit cell non-isomorphism captured by the distortion matrices in terms of a

single metric, we calculated a “pairwise distortion index” by comparing the distortion matrices to the

identity matrix and computing the sum described by Equation 4, where d;; and i; represent equivalent

elements in the distortion matrix and the identity matrix respectively.

distortion index = Z (|dl-j — il-]-|/2) (Eq.4)
all ij
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Figure 5.2. High pairwise R-factors are correlated with non-isomorphism. A plot comparing pairwise
crystallographic R-factors between our 18 data sets with the corresponding pairwise measurements of
isomorphism (distortion index) between the data sets shows that high R-factors are due to non-

isomorphous crystal lattices.
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Figure 5.3. PCA clustering of 18 data sets. Projection of the 18 data sets onto the first two principal

components following PCA. Two clear groups are evident.
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The metric described by Equation 4 was found to be a useful estimator of the fractional difference
between two unit cells.
For each pairwise comparison of data sets, we plotted the calculated R-factor against the

calculated distortion index (Figure 5.2).

5.2.4 Data set clustering by principal component analysis

In order to visualize the relationships between the 18 individual data sets, we performed principal
component analysis (PCA).

By formulating a geometric representation of our 18 X-ray data sets as 18 points in 18-
dimensional space, we could represent the pairwise “distances” between these points in terms of their
pairwise R-factors. Using this representation, we constructed an 18x18 “distance matrix,” D, whose
elements were equal to the pairwise R-factors between the corresponding data sets i and j (see Equation

5).

. s s | [Fop
p=1|: =~ i|;dy= | g’s(‘zL l) | (Eq.5)
dlj dU hki\" obs

Note that this distance matrix is square, symmetric, and contains zeroes along its diagonal. Furthermore,
using the information in the distance matrix, D, we can calculate the distance from each of the data points

to the center of mass of the 18-dimensional set of coordinates, according to Equation 6.

Zd ( ”Z’ 1 > (Eq. 6)

Next, given the set of pairwise distances, we sought to place the data points within an 18-

dimensional coordinate system whose origin lies at the center of mass, with orthogonal axes representing
the principal components (eigenvectors) of the data. The coordinates of the data points in this 18-

dimensional coordinate system can be expressed as column vectors () in an 18x18 matrix, X. Given the
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definition of X, the matrix X" contains row vectors (JTJ) expressing the same 18-dimensional coordinates.

Consequently, X" X is also a symmetric, 18x18 matrix, whose elements are equal to xij (Equation 7).

X= ] XT =[x %] and X'X = : : (Eq.7)

Defining the matrix X'X would allow us to factorize by eigenvalue decomposition to obtain X.
Using the elements in our distance matrix, D, and the calculated distance of each data point to the center
of mass, we can compute the dot products X;X; using the law of cosines as described by Equation 8.

XX, = (d2 +dy; - (Eq.8)
Equation 8 can be used to define X'X, allowing subsequent factorization by eigenvalue decomposition to
obtain X.

After obtaining X, we projected the 18 data points representing our X-ray data sets onto the first
two principal components (eigenvectors), in order to most effectively visualize the differences between
them (Figure 5.3). Projection of the data onto these first two principal components captures 86% of the
variation between the X-ray data sets, based on their eigenvalues. This analysis revealed that the 18 data

sets could be clustered into two groups, a major group of 14 members, and a minor group of 4 members.

5.2.5 Determination of “average” structures from clustered data sets

Following our PCA, we determined that the main difference between the two groups of data sets
was unit cell non-isomorphism. Subsequently, we were able to successfully merge measured reflection
intensities from X-ray data sets belonging to the same group. We merged data sets 1-8, 10, and 13-17 to
create a “group 1 average” data set, and we merged data sets 9, 11, 12, and 18 to create a “group 2
average” data set. The merging was performed with XSCALFE, and the merged intensities were converted
to structure factors with XDSCONV''?. The differences between the two unit cells in the two “average”
data sets are summarized in Table 5.2. The free set of reflections was designated according to the original

data set used to determine the monoclinic crystal structure of cpEutL.
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Group | N datasets a b c a B Y Rerge
1 14 118.74A 66.14A 80.14A 90° 108.53° 90° 13.2%
2 4 118.72A 66.14A 78.58A 90° 111.22° 90° 13.5%

Table 5.2. Comparison of non-isomorphous unit cells. The table compares unit cell parameters derived

for the two non-isomorphous unit cells present in our crystal. The minor group (group 2) corresponds to a

unit cell with a shorter c-axis and a wider  angle. The R-factors provided show that the data sets are

reasonably consistent within the two individual groups.
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We used our “average” data sets to determine the structures of the two different, non-
isomorphous packing arrangements. First, a molecular replacement search was carried out using
Phaser'", with the original monoclinic cpEutL as a search model. Solutions were readily found for both

113,118

average data sets, refined briefly with phenix.refine , and inspected to determine the differences in

crystal packing.

5.2.6 Principal component analysis of the major data set group

In order to further search for conformational differences within our single crystal specimen, we
performed a second round of PCA, this time considering only the 14 data sets from the major group
identified in the first round of PCA (data sets 1-8, 10, and 13-17). The mathematical procedure used to
perform this analysis was identical to the procedure described for the initial round of PCA, except this
time we started with a 14x14 distance matrix describing the correlation (R-factors) between only the 14
data sets that comprise the major group.

We again projected the 14 data points representing our X-ray data sets onto the first two principal
components (eigenvectors) (Figure 5.4). For this round of PCA, projection of the data onto these first two
principal components captures 52% of the variation between the X-ray data sets, based on their
eigenvalues. The second round of PCA did not reveal clear sub-groupings of the 14 data sets within the

major group.

5.2.7 Novel electron density calculations

As a next step towards using our single crystal analysis to define relevant conformational
polymorphism, we have started to develop two new types of electron density maps that are intended to
highlight the most significant structural differences between isomorphous data sets. Both of these novel
map types rely on PCA, as discussed above, to define the contributions of many different data sets to the

final electron density.
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Figure 5.4. PCA of 14 isomorphous data sets. Projection of the 14 isomorphous data sets which
comprise the major group onto the first two principal components following PCA. No clear groupings can

be found.
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We refer to the first of these new map types as the “eigen-difference” map. This type of map is
essentially a generalization of the classic F,-F, isomorphous difference map, however it is generalized to
the case of N data sets rather than just two. To calculate this eigen-difference map, we first select an
eigenvector calculated from our PCA. The structure factor amplitudes used for the map synthesis are
calculated according to Equation 9, where x, denotes the coordinate of a particular data set (n) projected

onto the selected eigenvector, and F,, denotes a structure factor from data set n.

N
|Fhkl| = Z xanobs(n)| (Eq.9)

n=1
Phases for these maps are generated using the atomic coordinates of the average structure, determined
from a single data set containing merged structure factors. The effect of this map should be to cancel out
all molecular features that are the same in each of the data sets while highlighting, as positive and
negative map features, the conformational differences represented by the differences in the structure
factors. Using our major group of 14 data sets, we calculated two eigen-difference maps as described
above. These two maps correspond to the first two eigenvectors identified during PCA.

Our second type of new electron density map is referred to as the eigen-delta map. Once again, to
begin the map calculation, we select a single eigenvector calculated from PCA. The structure factor
amplitudes for these maps are then derived according to Equation 10, where x, denotes the coordinate of a
particular data set (n) projected onto the selected eigenvector, F,, denotes a structure factor from data

set n, and A denotes the eigenvalue associated with the selected eigenvector.

N
|Frkil = (|Fobs|) & AlFpii| , where A|Fp| = (1/4) X Z %n| Fobsqny| (Eq.10)

n=1
As with the eigen-difference maps, phases are generated using the atomic coordinates of the average
structure. We note that when calculating structure factor amplitudes for the eigen-delta maps, it is
possible to either add or subtract the A|F),,| term from the average value of |F,;|. Both of these strategies
are equally valid mathematically, and it is possible that certain structural differences might be more

apparent in the density under one operation versus the other. We used our major group of 14 data sets to
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calculate four eigen-delta maps. These four maps represent the first two eigenvectors identified by PCA,
and for each eigenvector we calculated the eigen-delta map using both positive and negative values of
AF .

For both map types, we experimented with various resolution cutoffs and scaling protocols. We
found that both the eigen-difference and eigen-delta maps looked best at 2.5-3.0A resolution, after global

isotropic scaling of the 14 data sets with Scalelt in CCP4'"°.

5.3 Results & Discussion

The overall goal of the experimental strategy presented here is to expose and exploit the potential
nonuniformity of structural perturbations within a single crystalline specimen to obtain information about
structural polymorphism in proteins. Our strategy is based on the idea that multiple crystal forms
containing different molecular conformations can be simultaneously present in a single macroscopic
crystal. Our approach requires collecting multiple independent data sets from a single crystal using a
microfocal synchrotron X-ray beam, and subsequently comparing the data sets using principal component
analysis (PCA). The results described in this section begin to demonstrate that the information derived
from PCA of diffraction data can be utilized to highlight structural differences between the underlying

crystal structures.

5.3.1 Eighteen independent data sets from a single crystal

In order to perform our designed structural analysis, the first step was to select an appropriate
crystal specimen. Our assumption was that we would obtain the best chance of finding differences within
an individual crystal by collecting diffraction data while irradiating the smallest number of unit cells,
thereby averaging the resulting diffraction experiment over a smaller number of molecules. Consequently,
we sought crystals that were thin in one dimension (i.e. plate-like crystals), but diffracted well and were
reasonably robust to radiation damage. Fortunately, we had identified such crystals in our earlier work
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with the bacterial microcompartment shell protein EutL. The monoclinic crystal form of EutL from
Clostridium perfringens (cpEutL) forms thin plates that are only about Sum in their thinnest dimension,
making them ideal for this study (Figure 5.1a).

Using a single, monoclinic cpEutL crystal, we collected 18 independent data sets. The data sets
were collected using a microfocal X-ray beam with a Sum cross-sectional diameter, capable of delivering
a very large number of photons to a very small region of the crystal. The high intensity of the microfocal
X-ray beam was the impetus for using crystals that were robust to radiation damage. Because the cross-
section of the X-ray beam was so small, it was easy to collect 18 data sets from completely non-
overlapping positions on the crystal (Figure 5.1c), making each of these individual data sets truly
independent. Additionally, we note that the original crystal structure of monoclinic cpEutl was
determined using a 70pm beam. A simple geometric calculation demonstrates that this 70pm X-ray beam
would expose roughly 200 times the volume of the crystal that was exposed by the Sum beam used in the
present study.

All 18 of the data sets collected are of relatively high quality, although there is some statistical
variation between sets (Table 5.1). These statistical differences were early indications of the non-
uniformity of the crystalline specimen. All of the data sets have a resolution of 2.5A or better, with some
as high as 1.9A, and all of the data sets have <I /ol > greater than 2.0, and merging R-factors that indicate
reasonable internal consistency. We chose to collect data over a 75° wedge of reciprocal space, centered
on a vector normal to the flat face of the plate-like crystal, giving approximately 90% completeness
(theoretical) in space group C2. We collected this wedge of data, because we determined that it provided
the best compromise between data completeness and irradiation of the smallest possible crystal volume.

After scaling and merging the 18 data sets independently, we converted intensities to structure
factor amplitudes, which we used to perform the rest of our analyses. Additionally, it is important to note
that the same set of free reflections was designated for each of the 18 data sets, consistent with the free set

used for initial structure determination of monoclinic cpEutL.
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5.3.2 Pairwise comparison of data sets reveals non-isomorphism

As a first step towards identifying differences between our 18 data sets, we calculated all possible
pairwise R-factors between them. We noticed that the calculated R-factors tended to be either small
(<20%), or rather large (~40%), with virtually no intermediate values. This observation prompted us to
explore the possibility that large R-factors result from unit cell non-isomorphism between the two data
sets, rather than from conformational differences. We answered this question by also calculating a lattice
“distortion index,” which was intended to serve as a single metric describing the fractional deviations
between two unit cells. By plotting these two calculations, R-factors and distortion indices, against one
another, we observed that R-factors and distortion indices are highly correlated, confirming that
differences in structure factor magnitudes do indeed result from unit cell non-isomorphism (Figure 5.2).
While this simplistic analysis clearly correlates R-factors with lattice distortions and demonstrates the

presence of non-isomorphism in the crystal, it does not indicate how many different unit cells are present.

5.3.3 Principal component analysis reveals two unit cells in the same macroscopic crystal

While the pairwise comparisons of our 18 data sets demonstrated that there were non-
isomorphous regions within our single crystal, we sought a more detailed understanding of how this
structural variation was distributed. For this purpose, we turned to principal component analysis (PCA), to
cluster our data sets into isomorphous groups. Starting with a correlation matrix defined by pairwise R-
factors, we could formulate a geometric construction that allowed us to treat our 18 data sets as points in
18-dimensional space. PCA then allowed us to place those points into a coordinate system defined by the
principal components (eigenvectors) of the data. Projection of those 18 points onto the first two principal
components captured 82% of the variation between the X-ray data sets, and revealed two very obvious
groups (Figure 5.3). The major group consisted of 14 data sets, including sets 1-8, 10, and 13-17. The
minor group consisted of 4 data sets, including sets 9, 11-12, and 18.

When we identify the beam position used for each data set with respect to the crystal, it can be
seen that the minor group of data sets represents four locations along the same side of the crystal (Figure
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5.5). This mapping of unit cell dimensions onto the crystal shows that the perturbations to the unit cell are
not spatially uniform, but instead that there are two distinct domains within the crystal. Based on the
location of the domain representing the minor group of data sets, near the edge of the crystal and nylon
loop, it is tempting to speculate that the cause of the lattice perturbation might be dehydration, faster
cooling, or mechanical interaction with the loop, however there is no evidence for any of these
mechanisms. Ultimately, the cause of the lattice perturbation is unimportant for our study; what matters is
that our mapping provides evidence that this type of multiple data set X-ray analysis can be used to find
structural polymorphism within a “single” crystal specimen.

After identifying the presence of two non-isomorphous domains in our crystal, we wanted to
define the specific structural differences between the two domains. We started by merging the individual
data sets within the two groups, to give two “average” data sets, one representing each of the two
domains. Comparison of the unit cell parameters calculated for each average data set show that the minor
unit cell has a wider B angle and a shorter c-axis (Table 5.2). We solved the two structures by molecular
replacement, and performed preliminary atomic refinement of the coordinates. We analyzed the two
structures, and noticed that the differences between the two unit cells are attributed to a subtle shearing of
the monoclinic cell, which makes the 3 angle wider in one crystal form, as well as to a slight compression

between the layers of molecules along a vector normal to the ab plane of the unit cell (Figure 5.6).

5.3.4 Steps toward identifying conformational polymorphism using principal component analysis

While it is interesting that we were able to identify non-isomorphism within a single crystal, we
ultimately want to identify functionally relevant conformational polymorphism. Therefore, we applied our
PCA-based strategy to the major group of 14 data sets, hoping that we could identify sub-groups that
represented different crystal structures. Unfortunately, for this group of 14 data sets, the PCA does not
result in such an obvious clustering (Figure 5.4).

Even in the absence of obvious substructures within the large domain of our crystal, we reasoned
that it might be possible to still exploit differences between the data sets by looking at electron density
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Figure 5.5. Non-isomorphous
domains in a single crystal. Mapping
the locations of the data sets onto the
crystal relative to their unit cells
reveals that there appear to be two

discreet, non-isomorphous domains.

Figure 5.6. Displacements resulting in unit cell non-isomorphism. The two non-isomorphous unit cells
identified in our crystal differ as a result of unit cell shearing and compression between the layers of

molecules.
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maps generated from algebraic sums of structure factor amplitudes that were weighted according to the
results of our PCA. To this end, we generated two novel types of electron density maps.

The first of these maps, the eigen-difference map, is essentially a generalization of the classic Fo-
Fo map to the case of N data sets rather than two. The F,-F, map is an established method for identifying

differences between isomorphous data sets'”

, and our eigen-difference map is intended to provide a
similar representation of structural heterogeneity, wherein positive and negative features in the map
correspond to alternative conformations of the molecules in the crystal. We generated two of these eigen-
difference maps, according to Equation 9, and analyzed the features therein. We noticed that in general,
these maps contain more positive features than negative ones, and also that these features do most often
cover the protein molecule (Figure 5.7). Admittedly, the features in these maps do not highlight any
obvious conformational polymorphism, however it is interesting to note that some of the density features
lie on segments of the protein molecules that have been shown to occupy multiple conformations®’~*.

The second new type of electron density map we generated is referred to as the eigen-delta map.
This map, generated according to Equation 10, is intended to have features that look like a protein
molecule (i.e. more like a 2F,-F,. map), but be modified in a way that reflects conformational differences
between the data sets. We generated four of these maps, and inspected them. Unfortunately, we found that
these maps were relatively uninformative, as they were nearly identical to the 2F,-F, map calculated for
the average structure.

The electron density analysis presented here falls short of the goal of identifying conformational
polymorphism between isomorphous data sets. Although there are some interesting features in our eigen-
difference maps, which is encouraging, they are largely uninterpretable, and our eigen-delta maps are also
uninformative with regard to conformational heterogeneity. At the present stage, it is not clear whether
our maps are uninformative because the method is not a viable strategy for identifying conformational
heterogeneity, or because our system does not display the fluctuations we seek to find. A proper test of
the eigen-difference and eigen-delta maps will require synthetic data wherein the extent and nature of the

conformational heterogeneity is known a priori.
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Figure 5.7. An eigen-difference map. Our
initial attempt to calculate eigen-difference
maps based on the first principal component
of our 14 isomorphous data sets produced
electron density exemplified by these images.
While many of the peaks in the density
overlap with the molecular model, the
features are difficult to interpret in terms of
conformational polymorphism. The maps
were calculated using a 3.0A resolution

cutoff, and are contoured at 3.0c.



5.4 Conclusions

The ideas and results described in Chapter 5 serve to provide new insight into methodology for
understanding conformational fluctuations in protein molecules using X-ray crystallography.
Development of such techniques addresses a significant challenge in structural biology. Specifically, we
have demonstrated that due to non-uniform perturbations of the crystalline molecules, information about
multiple conformational states might be extracted by collecting and comparing multiple independent data
sets from a single crystalline sample. We used PCA to highlight the differences between multiple data
sets, and used the relationships that emerged from PCA to guide our search for structural variation and
map the structural domain landscape of our crystal specimen. Our analysis revealed two spatially distinct
structural domains in the crystal, with non-isomorphous unit cells. This work highlights another use for
microfocal X-ray beams, which have emerged as useful tools for specialized X-ray diffraction
experiments'*. Finally, we have laid out the fundamental mathematics for generating new types of
electron density maps that might further illuminate conformational polymorphism in proteins; however,

the true utility of these maps has yet to be tested rigorously.
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CHAPTER 6

Conclusions

The study of bacterial microcompartments (MCPs) over the last several decades has contributed
to a paradigm shift in field of prokaryotic biology. The cytoplasm of the prokaryotic cell was once
thought of as being more or less homogenous, without any sophisticated internal organization. In contrast
to this outdated view, we now recognize that prokaryotic cells do, in fact, have a repertoire of complex
subcellular structures that fulfill specific physiological roles’. These structures effectively function as
organelles in prokaryotic cells, even if they are morphologically different from their membrane-bound,
eukaryotic counterparts. Given their role in sequestering specific metabolic reaction pathways, MCPs are
among the group of prokaryotic structures that can be classified as functional organelles™®*’. The studies
presented here further our understanding of MCPs and provide a greater comprehension of the historically
underappreciated complexity of prokaryotic cells.

Owing to their structural and functional complexity, the study of MCPs provides a wealth of
opportunities to explore biochemical and biophysical phenomena. MCPs are beautiful, highly-ordered
structures that self-assemble from thousands of protein subunits, forming a semi-permeable, polyhedral
shell that surrounds a specific set of metabolic enzymes™***. Despite several decades of research, there
are still many unanswered questions about the molecular mechanisms of MCP function and assembly.
Recently, the maturation of the field of synthetic biology has fueled interest in MCPs because of their
potential to be engineered as genetically-encoded, biochemical reaction vessels®>*>*.

The selective permeability of the MCP shell is critical for the function of these elaborate protein
complexes, and we have yet to fully elucidate the structural mechanisms responsible for this feature™>*,
X-ray crystallography has been instrumental in developing our understanding of molecular transport
through the MCP shell. Early crystal structures showed simple pores through the centers of tightly-
25,27,29

packed, symmetric BMC-domain hexamers could support transport of small substrates and products
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Subsequently, further structural characterization of the pseudohexameric tandem BMC-domain shell
proteins demonstrated that the broken symmetry resulting from domain duplication confers an important
functional advantage on the tandem BMC domain proteins relative to their single-domain counterparts,
giving them the ability to form more structurally and chemically diverse pores with apparently more
complex transport properties®”******. One example of such a discovery was the observation that the EutL
tandem BMC-domain pseudohexamer can populate two distinct conformations, which differ in the
presence or absence of a large central pore, indicating that large cofactors likely traverse the shell through

773 In this particular case, the pseudosymmetry of the protein oligomer allows for

gated pores
conformational heterogeneity that imparts EutL with its unique function as a gated pore into the MCP
lumen.

The goal of this dissertation is to expand our knowledge of the functional mechanisms that permit
the MCP shell to act as a semi-permeable diffusion barrier. The work undertaken in fulfillment of that
goal began with the exploration of the mechanism by which pseudosymmetry and other molecular
phenomena facilitate conformational polymorphism of the EutL shell protein. In this case, the presence of
conformational polymorphism was known, and we sought to define the structural basis of the functional
transition between conformational states. Several additional, but initially unrelated, structure
determination efforts fortuitously revealed additional roles for conformational polymorphism and broken
symmetry in facilitating the specialized molecular transport functions of BMC-domain proteins. In the
cases of these projects, we identified an unanticipated role for conformational polymorphism in
promoting BMC-domain function.

Collectively, the research projects presented here illustrate the intimate connection between
conformational polymorphism and broken symmetry in BMC-domain proteins, and demonstrate that the
functional mechanisms of the shell proteins within this family universally display these two features. Two
main ideas have been explored, which are somewhat opposite in nature. The first is the idea that in the
EutL tandem BMC-domain protein and its homologs, boken symmetry in the form of pseudosymmetry

gives the oligomers the capacity for functional conformational polymorphism. On the other hand, the
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second idea is that for single BMC-domain shell proteins, conformational heterogeneity leads to
quasisymmetry which is required for function.

The studies presented in Chapter 2 were conducted in attempt to better understand the atomic
basis for the conformational fluctuations that arise from pseudosymmetry of the EutL tandem BMC-
domain protein from the Eut MCP. The Eut MCP is of intrinsic interest, because associations of
genotypes and phenotypes have implicated the Eut MCP as being the molecular entity responsible for

bacterial enteropathogenesis (food poisoning)'**%7*™

. EutL is likely to be critical for the function of the
Eut MCP, acting as a gated pore for large cofactor molecules®’**. Although it is recognized that EutL is
structurally polymorphic it is not known how the conformational equilibrium between the open and
closed states is regulated. Our results support a model of negative allosteric regulation of pore opening by
ethanolamine binding. Furthermore, some evidence suggests that the allosteric mechanism might be
modulated by electrochemical environment; however this hypothesis has yet to be tested rigorously. The
model of allosteric regulation by the substrate ethanolamine is consistent with our hypotheses about when
and why the EutL pore needs to be open or closed. The EutL pore is assumed to allow the transport of
large cofactor molecules that need to be exchanged with the cytosol when the absence of ethanolamine
leads to inactivation of the cofactors in the active site of the ethanolamine-ammonia lyase enzyme.
Additionally, it has been shown that the oxidative burst created by the host immune response is necessary
for ethanolamine utilization, which provides a possible connection to our observation that EutL contains a
disulfide bond and oxidation of the protein appears to stabilize the closed conformation of the pore””.
Next, Chapter 3 describes the structure determination of the L11K point mutant of the CcmK1
single BMC-domain protein from the B-carboxysome. The primary goal of this work was to highlight an
instructive example of how to handle a challenging situation in crystallographic structure determination.
Specifically, we wanted to point out that sometimes broken crystallographic symmetry requires a new
choice of unit cell origin in order to identify the highest symmetry space group. Although primarily
intended for a crystallographic audience, this work also revealed an interesting several interesting features

of the CcmK1 protein that relate to its biological function. First, the L11K mutation gave some insight
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into the electrostatic properties of the small pore at the center of the CcmK 1 hexamer. More interestingly,
the crystal packing arrangement of the molecules in our CcmK1 crystal revealed that even the highly-
symmetric CcmK1 hexamer might actually have subtle deviations from perfect 6-fold symmetry. This
potentially broken symmetry implies, by exchange of alternative conformations, that CemK1 might
display dynamic motion leading to some type of reciprocating mechanism. If the broken symmetry in
CcmK1 involves the pore region, it might result from a need to alleviate steric clashes at the center of the
symmetric oligomer.

Chapter 4 of the dissertation describes studies of another single BMC-domain shell protein, GrpU
from the Grp MCP, which revealed unexpected conformational heterogeneity and broken symmetry with
functional implications. Initially, purification and spectroscopic characterization of this protein
demonstrated that it binds to an iron-sulfur cluster. While tandem BMC-domain, iron-sulfur

metalloproteins are known to exist in the shell of the Pdu MCP***"*

, we were surprised to find that GrpU
bound to a similar metal cluster, because it is a single BMC-domain hexamer. Crystallographic structure
determination and molecular modeling demonstrated that GrpU has a structurally disordered central pore
that contains a conserved iron-sulfur cluster binding motif. The disorder allows GrpU to assume a
quasisymmetric configuration upon binding an iron-sulfur ligand with lower symmetry. In addition to
revealing another connection between conformational polymorphism, broken symmetry, and function,
these studies provided the first structures of BMC-domain proteins from the Grp MCP, and also identified
a unique type of iron-sulfur cluster binding site, previously unobserved in metalloproteins.

In Chapter 5, the work described departs from exploring the functional mechanisms of specific
proteins, and instead provides details about progress toward developing a novel method for identifying
structural heterogeneity in macromolecular crystallography. As demonstrated by Chapters 2-4, the ability
to detect and characterize conformational polymorphism is critical in structural biology, which is often
achieved through the laborious process of solving multiple structures using different crystal specimens.
Chapter 5 presents methodology that attemps to circumvent the bottleneck in the crystallographic analysis

of structural polymorphism by collecting multiple independent X-ray datasets from a single crystal and
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using principal component analysis (PCA) to cleverly search for significant differences between those
data sets. Using a specific test case wherein multiple nonisomorphous domains existed in a single crystal,
we demonstrated that data collection with a microfocal X-ray beam followed by dataset clustering with
PCA can illuminate significant structural differences within a single crystal. Additionally, we have
outlined the mathematical formalism for computing crystallographic electron density maps that we feel
may find utility in revealing conformational polymorphism, however the practical utility of these maps
has not been explored extensively.

The work presented in this dissertation represents a comprehensive discussion of the role of
conformational polymorphism in BMC-domain shell protein function. Forming a series of illustrative
examples, this work demonstrates that conformational polymorphism and associated broken oligomeric
symmetry are defining features of the functional mechasims that allow these proteins to collectively form
a semi-permeable diffusion barrier in the context of a bacterial organelle. BMC-domain shell proteins are
not, however, unique in the emergence of function from conformational polymorphism and broken
symmetry*'. Indeed, we have seen further into the world of MCPs because we have stood on the shoulders
of such giants as Max Perutz, Richard Feynman, Daniel Koshland, and Paul Boyer, who, among others,
pioneered the idea that structural fluctuations and broken symmetry are important determinants of protein
function, especially for oligomeric proteins. Following in this legacy, we have provided further examples
of this phenomenon, and also attempted to contribute methodology to facilitate future explorations of the

connection between conformational polymorphism and protein function.

147



REFERENCES

10.

11.

12.

Sweeney, W.V. & Rabinowitz, J.C. (1980). Proteins Containing 4Fe-4S Clusters: An Overview.
Annu. Rev. Biochem. 49, 139-161

Shorte, S.L. & Frischknecht, F. (Springer: 2007). Imaging Cellular and Molecular Biological
Functions: With 13 Tables.

Shively, J.M. (Springer: 2006). Complex Intracellular Structures in Prokaryotes.

Shively, J.M., Ball, F., Brown, D.H. & Saunders, R.E. (1973). Functional Organelles in
Prokaryotes: Polyhedral Inclusions (Carboxysomes) of Thiobacillus neapolitanus. Science 182,
584-586

Shively, J.M., Ball, F.L. & Kline, B.W. (1973). Electron Microscopy of the Carboxysomes
(Polyhedral Bodies) of Thiobacillus neapolitanus. J. Bacteriol. 116, 1405-1411

Yeates, T.O., Kerfeld, C.A., Heinhorst, S., Cannon, G.C. & Shively, J.M. (2008). Protein-based
organelles in bacteria: carboxysomes and related microcompartments. Nat. Rev. Microbiol. 6, 681—
691

Cheng, S., Liu, Y., Crowley, C.S., Yeates, T.O. & Bobik, T.A. (2008). Bacterial
microcompartments: their properties and paradoxes. BioEssays News Rev. Mol. Cell. Dev. Biol. 30,
1084-1095

Yeates, T.O., Crowley, C.S. & Tanaka, S. (2010). Bacterial microcompartment organelles: protein
shell structure and evolution. Annu. Rev. Biophys. 39, 185-205

Kerfeld, C.A., Heinhorst, S. & Cannon, G.C. (2010). Bacterial microcompartments. Annu. Rev.
Microbiol. 64, 391-408

Jorda, J., Lopez, D., Wheatley, N.M. & Yeates, T.O. (2013). Using comparative genomics to
uncover new kinds of protein-based metabolic organelles in bacteria. Protein Sci. Publ. Protein Soc.
22, 179-195

Cannon, G.C., Bradburne, C.E., Aldrich, H.C., Baker, S.H., Heinhorst, S. & Shively, J.M. (2001).
Microcompartments in Prokaryotes: Carboxysomes and Related Polyhedra. Appl. Environ.
Microbiol. 67, 5351-5361

Badger, M.R. & Price, G.D. (2003). CO2 concentrating mechanisms in cyanobacteria: molecular
components, their diversity and evolution. J. Exp. Bot. 54, 609—622

148



13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

The Cells That Rule the Seas. at <http://www.scientificamerican.com/article/the-cells-that-rule-the-
s/>

Ellis, R.J. (2010). Biochemistry: Tackling unintelligent design. Nature 463, 164—165

Sampson, E.M. & Bobik, T.A. (2008). Microcompartments for B12-dependent 1,2-propanediol
degradation provide protection from DNA and cellular damage by a reactive metabolic
intermediate. J. Bacteriol. 190, 29662971

Havemann, G.D. & Bobik, T.A. (2003). Protein content of polyhedral organelles involved in
coenzyme B12-dependent degradation of 1,2-propanediol in Salmonella enterica serovar
Typhimurium LT2. J. Bacteriol. 185, 50865095

Kofoid, E., Rappleye, C., Stojiljkovic, I. & Roth, J. (1999). The 17-gene ethanolamine (eut) operon
of Salmonella typhimurium encodes five homologues of carboxysome shell proteins. J. Bacteriol.
181, 5317-5329

Stojiljkovic, 1., Baumler, A.J. & Heffron, F. (1995). Ethanolamine utilization in Salmonella
typhimurium: nucleotide sequence, protein expression, and mutational analysis of the cchA cchB
eutE eut] eutG eutH gene cluster. J. Bacteriol. 177, 1357-1366

Garsin, D.A. (2010). Ethanolamine utilization in bacterial pathogens: roles and regulation. Nat. Rev.
Microbiol. 8, 290-295

Rondon, M.R., Horswill, A.R. & Escalante-Semerena, J.C. (1995). DNA polymerase I function is
required for the utilization of ethanolamine, 1,2-propanediol, and propionate by Salmonella
typhimurium LT2. J. Bacteriol. 177, 71197124

Penrod, J.T. & Roth, J.R. (2006). Conserving a volatile metabolite: a role for carboxysome-like
organelles in Salmonella enterica. J. Bacteriol. 188, 2865-2874

Tanaka, S., Kerfeld, C.A., Sawaya, M.R., Cai, F., Heinhorst, S., Cannon, G.C. & Yeates, T.O.
(2008). Atomic-level models of the bacterial carboxysome shell. Science 319, 1083—1086

Yeates, T.O., Thompson, M.C. & Bobik, T.A. (2011). The protein shells of bacterial
microcompartment organelles. Curr. Opin. Struct. Biol. 21, 223-231

Yeates, T.O., Jorda, J. & Bobik, T.A. (2013). The shells of BMC-type microcompartment organelles
in bacteria. J. Mol. Microbiol. Biotechnol. 23, 290-299

Kerfeld, C.A., Sawaya, M.R., Tanaka, S., Nguyen, C.V., Phillips, M., Beeby, M. & Yeates, T.O.
(2005). Protein structures forming the shell of primitive bacterial organelles. Science 309, 936938

149



26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Wheatley, N.M., Gidaniyan, S.D., Liu, Y., Cascio, D. & Yeates, T.O. (2013). Bacterial
microcompartment shells of diverse functional types possess pentameric vertex proteins. Protein
Sci. Publ. Protein Soc. 22, 660—665

Tanaka, S., Sawaya, M.R. & Yeates, T.O. (2010). Structure and mechanisms of a protein-based
organelle in Escherichia coli. Science 327, 81-84

Bobik, T.A., Havemann, G.D., Busch, R.J., Williams, D.S. & Aldrich, H.C. (1999). The
Propanediol Utilization (pdu) Operon of Salmonella enterica Serovar Typhimurium LT2 Includes
Genes Necessary for Formation of Polyhedral Organelles Involved in Coenzyme B12-Dependent
1,2-Propanediol Degradation. J. Bacteriol. 181, 5967-5975

Crowley, C.S., Cascio, D., Sawaya, M.R., Kopstein, J.S., Bobik, T.A. & Yeates, T.O. (2010).
Structural insight into the mechanisms of transport across the Salmonella enterica Pdu
microcompartment shell. J. Biol. Chem. 285, 37838-37846

Cheng, S., Sinha, S., Fan, C., Liu, Y. & Bobik, T.A. (2011). Genetic analysis of the protein shell of
the microcompartments involved in coenzyme B12-dependent 1,2-propanediol degradation by
Salmonella. J. Bacteriol. 193, 1385-1392

Parsons, J.B., Dinesh, S.D., Deery, E., Leech, H.K., Brindley, A.A., Heldt, D., Frank, S., Smales,
C.M.,, Liinsdorf, H., Rambach, A., Gass, M.H., Bleloch, A., McClean, K.J., Munro, A.W., Rigby,
S.E.J., Warren, M.J. & Prentice, M.B. (2008). Biochemical and Structural Insights into Bacterial
Organelle Form and Biogenesis. J. Biol. Chem. 283, 1436614375

Parsons, J.B., Frank, S., Bhella, D., Liang, M., Prentice, M.B., Mulvihill, D.P. & Warren, M.J.
(2010). Synthesis of Empty Bacterial Microcompartments, Directed Organelle Protein
Incorporation, and Evidence of Filament-Associated Organelle Movement. Mol. Cell 38, 305-315

Tanaka, S., Sawaya, M.R., Phillips, M. & Yeates, T.O. (2009). Insights from multiple structures of
the shell proteins from the beta-carboxysome. Protein Sci. Publ. Protein Soc. 18, 108—120

Takenoya, M., Nikolakakis, K. & Sagermann, M. (2010). Crystallographic insights into the pore
structures and mechanisms of the EutL and EutM shell proteins of the ethanolamine-utilizing
microcompartment of Escherichia coli. J. Bacteriol. 192, 6056—6063

Pang, A., Warren, M.J. & Pickersgill, R.W. (2011). Structure of PduT, a trimeric bacterial
microcompartment protein with a 4Fe-4S cluster-binding site. Acta Crystallogr. D Biol. Crystallogr.
67,91-96

Dryden, K.A., Crowley, C.S., Tanaka, S., Yeates, T.O. & Yeager, M. (2009). Two-dimensional
crystals of carboxysome shell proteins recapitulate the hexagonal packing of three-dimensional
crystals. Protein Sci. 18, 2629-2635

150



37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

Sinha, S., Cheng, S., Sung, Y.W., McNamara, D.E., Sawaya, M.R., Yeates, T.O. & Bobik, T.A.
(2014). Alanine Scanning Mutagenesis Identifies an Asparagine-Arginine-Lysine Triad Essential to
Assembly of the Shell of the Pdu Microcompartment. J. Mol. Biol. d0i:10.1016/j.jmb.2014.04.012

Heldt, D., Frank, S., Seyedarabi, A., Ladikis, D., Parsons, J.B., Warren, M.J. & Pickersgill, R.W.
(2009). Structure of a trimeric bacterial microcompartment shell protein, EtuB, associated with
ethanol utilization in Clostridium kluyveri. Biochem. J. 423, 199-207

Pang, A., Liang, M., Prentice, M.B. & Pickersgill, R.W. (2012). Substrate channels revealed in the
trimeric Lactobacillus reuteri bacterial microcompartment shell protein PduB. Acta Crystallogr. D
Biol. Crystallogr. 68, 1642—1652

Klein, M.G., Zwart, P., Bagby, S.C., Cai, F., Chisholm, S.W., Heinhorst, S., Cannon, G.C. &
Kerfeld, C.A. (2009). Identification and structural analysis of a novel carboxysome shell protein
with implications for metabolite transport. J. Mol. Biol. 392, 319-333

Goodsell, D.S. & Olson, A.J. (2000). Structural symmetry and protein function. Annu. Rev. Biophys.
Biomol. Struct. 29, 105-153

Perutz, M.F. (1970). Stereochemistry of cooperative effects in haemoglobin. Nature 228, 726739
Perutz, M.F. (1972). Nature of haem-haem interaction. Nature 237, 495-499
Perutz, M.F. (1963). X-ray analysis of hemoglobin. Science 140, 863-869

Boyer, P.D. (1993). The binding change mechanism for ATP synthase--some probabilities and
possibilities. Biochim. Biophys. Acta 1140, 215-250

Boyer, P.D. (2001). Toward an adequate scheme for the ATP synthase catalysis. Biochem.
Biokhimiia 66, 10581066

Prabu-Jeyabalan, M., Nalivaika, E. & Schiffer, C.A. (2000). How does a symmetric dimer recognize
an asymmetric substrate? A substrate complex of HIV-1 protease. J. Mol. Biol. 301, 1207-1220

Brown, J.H., Kim, K.H., Jun, G., Greenfield, N.J., Dominguez, R., Volkmann, N., Hitchcock-
DeGregori, S.E. & Cohen, C. (2001). Deciphering the design of the tropomyosin molecule. Proc.
Natl. Acad. Sci. U. S. A. 98, 8496-8501

Iwata, S., Kamata, K., Yoshida, S., Minowa, T. & Ohta, T. (1994). T and R states in the crystals of
bacterial L-lactate dehydrogenase reveal the mechanism for allosteric control. Nat. Struct. Biol. 1,
176-185

151



50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

De Vos, A.M., Ultsch, M. & Kossiakoff, A.A. (1992). Human growth hormone and extracellular
domain of its receptor: crystal structure of the complex. Science 255, 306312

Lassila, J.K., Bernstein, S.L., Kinney, J.N., Axen, S.D. & Kerfeld, C.A. (2014). Assembly of robust
bacterial microcompartment shells using building blocks from an organelle of unknown function. J.
Mol. Biol. 426, 22172228

Tsai, S.J. & Yeates, T.O. (2011). Bacterial microcompartments insights into the structure,
mechanism, and engineering applications. Prog. Mol. Biol. Transl. Sci. 103, 1-20

Howorka, S. (2011). Rationally engineering natural protein assemblies in nanobiotechnology. Curr.
Opin. Biotechnol. 22, 485-491

Lin, M.T., Occhialini, A., Andralojc, J.P., Devonshire, J., Hines, K.M., Parry, M.A.J. & Hanson,
M.R. (2014). B-carboxysomal proteins assemble into highly organized structures in Nicotiana
chloroplasts. Plant J. Cell Mol. Biol. doi:10.1111/tpj.12536

Held, M., Quin, M.B. & Schmidt-Dannert, C. (2013). Eut bacterial microcompartments: insights
into their function, structure, and bioengineering applications. J. Mol. Microbiol. Biotechnol. 23,
308-320

Fan, C., Cheng, S., Sinha, S. & Bobik, T.A. (2012). Interactions between the termini of lumen
enzymes and shell proteins mediate enzyme encapsulation into bacterial microcompartments. Proc.
Natl. Acad. Sci. U. S. A. 109, 14995-15000

Fan, C., Cheng, S., Liu, Y., Escobar, C.M., Crowley, C.S., Jefferson, R.E., Yeates, T.O. & Bobik,
T.A. (2010). Short N-terminal sequences package proteins into bacterial microcompartments. Proc.
Natl. Acad. Sci. U. S. 4. 107, 7509-7514

Sagermann, M., Ohtaki, A. & Nikolakakis, K. (2009). Crystal structure of the EutL shell protein of
the ethanolamine ammonia lyase microcompartment. Proc. Natl. Acad. Sci. U. S. 4. 106, 8883—
8887

Savage, D.C. (1977). Microbial Ecology of the Gastrointestinal Tract. Annu. Rev. Microbiol. 31,
107-133

Guarner, F. & Malagelada, J.-R. (2003). Gut flora in health and disease. Lancet 361, 512-519

Sears, C.L. (2005). A dynamic partnership: celebrating our gut flora. Anaerobe 11, 247-251

Cummings, J.H. & Macfarlane, G.T. (1997). Role of intestinal bacteria in nutrient metabolism. Clin.
Nutr. 16, 3-11

152



63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

Steinhoff, U. (2005). Who controls the crowd? New findings and old questions about the intestinal
microflora. Immunol. Lett. 99, 12—-16

Bjorkstén, B., Sepp, E., Julge, K., Voor, T. & Mikelsaar, M. (2001). Allergy development and the
intestinal microflora during the first year of life. J. Allergy Clin. Immunol. 108, 516-520

Ley, R.E., Turnbaugh, P.J., Klein, S. & Gordon, J.I. (2006). Microbial ecology: human gut microbes
associated with obesity. Nature 444, 10221023

Turnbaugh, P.J., Ley, R.E., Mahowald, M.A., Magrini, V., Mardis, E.R. & Gordon, J.I. (2006). An
obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027—
1031

Tillisch, K., Labus, J., Kilpatrick, L., Jiang, Z., Stains, J., Ebrat, B., Guyonnet, D., Legrain—
Raspaud, S., Trotin, B., Naliboff, B. & Mayer, E.A. (2013). Consumption of Fermented Milk
Product With Probiotic Modulates Brain Activity. Gastroenterology 144, 1394-1401.e4

Tsoy, O., Ravcheev, D. & Mushegian, A. (2009). Comparative genomics of ethanolamine
utilization. J. Bacteriol. 191, 7157-7164

Roof, D.M. & Roth, J.R. (1988). Ethanolamine utilization in Salmonella typhimurium. J. Bacteriol.
170, 3855-3863

Blackwell, C.M., Scarlett, F.A. & Turner, J.M. (1976). Ethanolamine catabolism by bacteria,
including Escherichia coli. Biochem. Soc. Trans. 4, 495497

Cotton, P.B. (1972). Non-dietary lipid in the intestinal lumen. Gut 13, 675-681

Randle, C.L., Albro, P.W. & Dittmer, J.C. (1969). The phosphoglyceride composition of Gram-
negative bacteria and the changes in composition during growth. Biochim. Biophys. Acta 187, 214—
220

Li, H., Kristensen, D.M., Coleman, M.K. & Mushegian, A. (2009). Detection of Biochemical
Pathways by Probabilistic Matching of Phyletic Vectors. PLoS ONE 4, 5326

Korbel, J.O., Doerks, T., Jensen, L.J., Perez-Iratxeta, C., Kaczanowski, S., Hooper, S.D., Andrade,
M.A. & Bork, P. (2005). Systematic association of genes to phenotypes by genome and literature
mining. PLoS Biol. 3, e134

Lawhon, S.D., Frye, J.G., Suyemoto, M., Porwollik, S., McClelland, M. & Altier, C. (2003). Global
regulation by CsrA in Salmonella typhimurium. Mol. Microbiol. 48, 1633—1645

153



76.

77.

78.

79.

80.

81.

82.

83.

&4.

85.

86.

87.

Kelly, A., Goldberg, M.D., Carroll, R.K., Danino, V., Hinton, J.C.D. & Dorman, C.J. (2004). A
global role for Fis in the transcriptional control of metabolism and type III secretion in Salmonella
enterica serovar Typhimurium. Microbiol. Read. Engl. 150, 2037-2053

Bourgogne, A., Hilsenbeck, S.G., Dunny, G.M. & Murray, B.E. (2006). Comparison of OG1RF and
an Isogenic fsrB Deletion Mutant by Transcriptional Analysis: the Fsr System of Enterococcus
faecalis Is More than the Activator of Gelatinase and Serine Protease. J. Bacteriol. 188, 2875-2884

Winter, S.E., Thiennimitr, P., Winter, M.G., Butler, B.P., Huseby, D.L., Crawford, R.-W., Russell,
J.M., Bevins, C.L., Adams, L.G., Tsolis, R.M., Roth, J.R. & Béaumler, A.J. (2010). Gut
inflammation provides a respiratory electron acceptor for Salmonella. Nature 467, 426-429

Thiennimitr, P., Winter, S.E., Winter, M.G., Xavier, M.N., Tolstikov, V., Huseby, D.L.,
Sterzenbach, T., Tsolis, R.M., Roth, J.R. & Baumler, A.J. (2011). Intestinal inflammation allows
Salmonella to use ethanolamine to compete with the microbiota. Proc. Natl. Acad. Sci. U. S. A. 108,
17480-17485

Winter, S.E. & Baumler, A.J. (2011). A breathtaking feat: to compete with the gut microbiota,
Salmonella drives its host to provide a respiratory electron acceptor. Gut Microbes 2, 58—60

Huseby, D.L. & Roth, J.R. (2013). Evidence that a metabolic microcompartment contains and
recycles private cofactor pools. J. Bacteriol. 195, 28642879

Cheng, S., Fan, C., Sinha, S. & Bobik, T.A. (2012). The PduQ Enzyme Is an Alcohol
Dehydrogenase Used to Recycle NAD+ Internally within the Pdu Microcompartment of Salmonella
enterica. PLoS ONE 7, e47144

Kaplan, B.H. & Stadtman, E.R. (1968). Ethanolamine Deaminase, a Cobamide Coenzyme-
dependent Enzyme II. PHYSICAL AND CHEMICAL PROPERTIES AND INTERACTION WITH
COBAMIDES AND ETHANOLAMINE. J. Biol. Chem. 243, 1794-1803

Mori, K., Bando, R., Hieda, N. & Toraya, T. (2004). Identification of a Reactivating Factor for
Adenosylcobalamin-Dependent Ethanolamine Ammonia Lyase. J. Bacteriol. 186, 6845-6854

Buan, N.R., Suh, S.-J. & Escalante-Semerena, J.C. (2004). The eutT gene of Salmonella enterica
Encodes an oxygen-labile, metal-containing ATP:corrinoid adenosyltransferase enzyme. J.
Bacteriol. 186, 5708-5714

Karplus, P.A. & Diederichs, K. (2012). Linking crystallographic model and data quality. Science
336, 1030-1033

Lovell, S.C., Davis, . W., Arendall, W.B., 3rd, de Bakker, P.ILW., Word, J.M., Prisant, M.G.,
Richardson, J.S. & Richardson, D.C. (2003). Structure validation by Calpha geometry: phi,psi and
Cbeta deviation. Proteins 50, 437-450

154



88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

Chen, V.B., Arendall, W.B., Headd, J.J., Keedy, D.A., Inmormino, R.M., Kapral, G.J., Murray,
L.W., Richardson, J.S. & Richardson, D.C. (2009). MolProbity : all-atom structure validation for
macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12-21

Smart, O.S., Goodfellow, J.M. & Wallace, B.A. (1993). The pore dimensions of gramicidin A.
Biophys. J. 65, 2455-2460

Burmeister, W.P. (2000). Structural changes in a cryo-cooled protein crystal owing to radiation
damage. Acta Crystallogr. D Biol. Crystallogr. 56, 328-341

Weik, M., Ravelli, R.B., Kryger, G., McSweeney, S., Raves, M.L., Harel, M., Gros, P., Silman, 1.,
Kroon, J. & Sussman, J.L. (2000). Specific chemical and structural damage to proteins produced by
synchrotron radiation. Proc. Natl. Acad. Sci. U. S. A. 97, 623628

Weik, M., Berggs, J., Raves, M.L., Gros, P., McSweeney, S., Silman, 1., Sussman, J.L., Houée-
Levin, C. & Ravelli, R.B.G. (2002). Evidence for the formation of disulfide radicals in protein
crystals upon X-ray irradiation. J. Synchrotron Radiat. 9, 342-346

Garman, E.F. (2010). Radiation damage in macromolecular crystallography: what is it and why
should we care? Acta Crystallogr. D Biol. Crystallogr. 66, 339-351

Mallick, P., Boutz, D.R., Eisenberg, D. & Yeates, T.O. (2002). Genomic evidence that the
intracellular proteins of archaeal microbes contain disulfide bonds. Proc. Natl. Acad. Sci. U. S. A.
99, 9679-9684

Jorda, J. & Yeates, T.O. (2011). Widespread disulfide bonding in proteins from thermophilic
archaea. Archaea Vanc. BC 2011, 409156

Juers, D.H. & Matthews, B.W. (2001). Reversible lattice repacking illustrates the temperature
dependence of macromolecular interactions. J. Mol. Biol. 311, 851-862

Fraser, J.S., van den Bedem, H., Samelson, A.J., Lang, P.T., Holton, J.M., Echols, N. & Alber, T.
(2011). Accessing protein conformational ensembles using room-temperature X-ray
crystallography. Proc. Natl. Acad. Sci. U. S. A. 108, 16247-16252

Burnley, B.T., Afonine, P.V., Adams, P.D. & Gros, P. (2012). Modelling dynamics in protein
crystal structures by ensemble refinement. eLife 1, €00311-e00311

Ashkenazy, H., Erez, E., Martz, E., Pupko, T. & Ben-Tal, N. (2010). ConSurf 2010: calculating
evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids
Res. 38, W529-W533

155



100.

101.

102.

103.

104.

105.

106.

107.

108.

1009.

110.

111.

112.

Glaser, F., Pupko, T., Paz, ., Bell, R.E., Bechor-Shental, D., Martz, E. & Ben-Tal, N. (2003).
ConSurf: Identification of Functional Regions in Proteins by Surface-Mapping of Phylogenetic
Information. Bioinformatics 19, 163—164

Pellequer, J.-L. & Chen, S.W. (2006). Multi-template approach to modeling engineered disulfide
bonds. Proteins 65, 192-202

Marino, S.M. & Gladyshev, V.N. (2012). Analysis and functional prediction of reactive cysteine
residues. J. Biol. Chem. 287, 4419-4425

Crowley, C.S., Sawaya, M.R., Bobik, T.A. & Yeates, T.O. (2008). Structure of the PduU shell
protein from the Pdu microcompartment of Salmonella. Struct. Lond. Engl. 1993 16, 1324-1332

Rasmussen, B.F., Stock, A.M., Ringe, D. & Petsko, G.A. (1992). Crystalline ribonuclease A loses
function below the dynamical transition at 220 K. Nature 357, 423-424

Tilton, R.F., Jr, Dewan, J.C. & Petsko, G.A. (1992). Effects of temperature on protein structure and
dynamics: X-ray crystallographic studies of the protein ribonuclease-A at nine different
temperatures from 98 to 320 K. Biochemistry (Mosc.) 31, 2469-2481

Halle, B. (2004). Biomolecular cryocrystallography: Structural changes during flash-cooling. Proc.
Natl. Acad. Sci. U. S. A. 101, 47934798

Drennan, C.L., Matthews, R.G. & Ludwig, M.L. (1994). Cobalamin-dependent methionine
synthase: the structure of a methylcobalamin-binding fragment and implications for other B12-
dependent enzymes. Curr. Opin. Struct. Biol. 4,919-929

Toraya, T. (2003). Radical Catalysis in Coenzyme B12-Dependent Isomerization (Eliminating)
Reactions. Chem. Rev. 103, 2095-2128

Sanger, F., Nicklen, S. & Coulson, A.R. (1977). DNA sequencing with chain-terminating inhibitors.
Proc. Natl. Acad. Sci. U. S. A. 74, 5463-5467

Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A K., Gartner, F.H., Provenzano, M.D.,
Fujimoto, E.K., Goeke, N.M., Olson, B.J. & Klenk, D.C. (1985). Measurement of protein using
bicinchoninic acid. Anal. Biochem. 150, 76-85

Otwinowski, Z. & Minor, W. Processing of X-ray Diffraction Data Collected in Oscillation Mode.
Methods Enzymol. 276, 307-326

Kabsch, W. (2010). XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125132

156



113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

Adams, P.D., Afonine, P.V., Bunkdczi, G., Chen, V.B., Davis, . W., Echols, N., Headd, J.J., Hung,
L.-W., Kapral, G.J., Grosse-Kunstleve, R.W., McCoy, A.J., Moriarty, N.W., Oeffner, R., Read, R.J.,
Richardson, D.C., Richardson, J.S., Terwilliger, T.C. & Zwart, P.H. (2010). PHENIX: a
comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D
Biol. Crystallogr. 66,213-221

P H Zwart, R. W.G.-K. Xtriage and Fest: automatic assessment of X-ray data and substructure
structure factor estimation.

McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C. & Read, R.J.
(2007). Phaser crystallographic software. J. Appl. Crystallogr. 40, 658—674

Winn, M.D., Ballard, C.C., Cowtan, K.D., Dodson, E.J., Emsley, P., Evans, P.R., Keegan, R.M.,
Krissinel, E.B., Leslie, A.G.W., McCoy, A., McNicholas, S.J., Murshudov, G.N., Pannu, N.S.,
Potterton, E.A., Powell, H.R., Read, R.J., Vagin, A. & Wilson, K.S. (2011). Overview of the
CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235-242

Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. (2010). Features and development of
Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486—501

Afonine, P.V., Grosse-Kunstleve, R.W., Echols, N., Headd, J.J., Moriarty, N.W., Mustyakimov, M.,
Terwilliger, T.C., Urzhumtsev, A., Zwart, P.H. & Adams, P.D. (2012). Towards automated
crystallographic structure refinement with phenix.refine. Acta Crystallogr. D Biol. Crystallogr. 68,
352-367

Moriarty, N.W., Grosse-Kunstleve, R.W. & Adams, P.D. (2009). electronic Ligand Builder and
Optimization Workbench ( eLBOW ): a tool for ligand coordinate and restraint generation. Acta
Crystallogr. D Biol. Crystallogr. 65, 1074—1080

Roy, A., Kucukural, A. & Zhang, Y. (2010). I-TASSER: a unified platform for automated protein
structure and function prediction. Nat. Protoc. 5, 725-738

Boutz, D.R., Cascio, D., Whitelegge, J., Perry, L.J. & Yeates, T.O. (2007). Discovery of a
thermophilic protein complex stabilized by topologically interlinked chains. J. Mol. Biol. 368,
13321344

Schagger, H. (2006). Tricine-SDS-PAGE. Nat. Protoc. 1, 16-22

Whitelegge, J.P., Coutre, J. le, Lee, J.C., Engel, C.K., Privé, G.G., Faull, K.F. & Kaback, H.R.
(1999). Toward the bilayer proteome, electrospray ionization-mass spectrometry of large, intact
transmembrane proteins. Proc. Natl. Acad. Sci. 96, 10695-10698

157



124. Punta, M., Coggill, P.C., Eberhardt, R.Y., Mistry, J., Tate, J., Boursnell, C., Pang, N., Forslund, K.,
Ceric, G., Clements, J., Heger, A., Holm, L., Sonnhammer, E.L.L., Eddy, S.R., Bateman, A. & Finn,
R.D. (2011). The Pfam protein families database. Nucleic Acids Res. 40, D290-D301

125. Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer Jr., E.F., Brice, M.D., Rodgers, J.R.,
Kennard, O., Shimanouchi, T. & Tasumi, M. (1977). The protein data bank: A computer-based
archival file for macromolecular structures. J. Mol. Biol. 112, 535-542

126. Baker, N.A., Sept, D., Joseph, S., Holst, M.J. & McCammon, J.A. (2001). Electrostatics of
nanosystems: Application to microtubules and the ribosome. Proc. Natl. Acad. Sci. 98, 10037—
10041

127. Tsai, Y., Sawaya, M.R., Cannon, G.C., Cai, F., Williams, E.B., Heinhorst, S., Kerfeld, C.A. &
Yeates, T.O. (2007). Structural Analysis of CsoS1A and the Protein Shell of the Halothiobacillus
neapolitanus Carboxysome. PLoS Biol 5, e144

128. Samborska, B. & Kimber, M.S. (2012). A Dodecameric CcmK2 Structure Suggests 3-
Carboxysomal Shell Facets Have a Double-Layered Organization. Structure 20, 1353—-1362

129. Zwart, P.H., Grosse-Kunstleve, R.W., Lebedev, A.A., Murshudov, G.N. & Adams, P.D. (2008).
Surprises and pitfalls arising from (pseudo)symmetry. Acta Crystallogr. D Biol. Crystallogr. 64,
99-107

130. Tsai, Y., Sawaya, M.R. & Yeates, T.O. (2009). Analysis of lattice-translocation disorder in the
layered hexagonal structure of carboxysome shell protein CsoS1C. Acta Crystallogr. D Biol.
Crystallogr. 65, 980-988

131. Diederichs, K. & Karplus, P.A. (1997). Improved R-factors for diffraction data analysis in
macromolecular crystallography. Nat. Struct. Mol. Biol. 4,269-275

132. Vagin, A. & Teplyakov, A. (1997). MOLREP : an Automated Program for Molecular Replacement.
J. Appl. Crystallogr. 30, 1022-1025

133. Potterton, E., Briggs, P., Turkenburg, M. & Dodson, E. (2003). A graphical user interface to the
CCP4 program suite. Acta Crystallogr. D Biol. Crystallogr. 59, 1131-1137

134. Patterson, A.L. (1934). A Fourier Series Method for the Determination of the Components of
Interatomic Distances in Crystals. Phys. Rev. 46, 372-376

135. Padilla, J.E. & Yeates, T.O. (2003). A statistic for local intensity differences: robustness to
anisotropy and pseudo-centering and utility for detecting twinning. Acta Crystallogr. D Biol.
Crystallogr. 59, 1124-1130

158



136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.
149.

Painter, J. & Merritt, E.A. (2006). Optimal description of a protein structure in terms of multiple
groups undergoing TLS motion. Acta Crystallogr. D Biol. Crystallogr. 62,439—-450

Painter, J. & Merritt, E.A. (2006). TLSMD web server for the generation of multi-group TLS
models. J. Appl. Crystallogr. 39, 109-111

Iwasaki, H. (1972). On the diffraction enhancement of symmetry. Acta Crystallogr. Sect. A 28, 253—
260

Sadanaga, R. & Ohsumi, K. (1979). Basic theorems of vector symmetry in crystallography. Acta
Crystallogr. Sect. A 35, 115-122

Poon, B.K., Grosse-Kunstleve, R.W., Zwart, P.H. & Sauter, N.K. (2010). Detection and correction
of underassigned rotational symmetry prior to structure deposition. Acta Crystallogr. D Biol.
Crystallogr. 66, 503-513

Robbins, A.H., Domsic, J.F., Agbandje-McKenna, M. & McKenna, R. (2010). Structure of a
monoclinic polymorph of human carbonic anhydrase II with a doubled a axis. Acta Crystallogr. D
Biol. Crystallogr. 66, 628—634

Robbins, A.H., Domsic, J.F., Agbandje-McKenna, M. & McKenna, R. (2010). Emerging from
pseudo-symmetry: the redetermination of human carbonic anhydrase II in monoclinic P2(1) with a
doubled a axis. Acta Crystallogr. D Biol. Crystallogr. 66, 950-952

Lebedev, A.A. & Isupov, M.N. Space group validation with Zanuda. CCP4 Newsl. at
<http://www.ccp4.ac.uk/newsletters/newsletter48/articles/Zanuda/zanuda.html>

J R Vercellotti, A.A.S. (1977). Breakdown of mucin and plant polysaccharides in the human colon.
Can. J. Biochem. 55, 1190-6

Obradors, N., Badia, J., Baldoma, L. & Aguilar, J. (1988). Anaerobic metabolism of the L-rhamnose
fermentation product 1,2-propanediol in Salmonella typhimurium. J. Bacteriol. 170, 2159-2162

Petit, E., LaTouf, W.G., Coppi, M.V., Warnick, T.A., Currie, D., Romashko, 1., Deshpande, S.,
Haas, K., Alvelo-Maurosa, J.G., Wardman, C., Schnell, D.J., Leschine, S.B. & Blanchard, J.L.
(2013). Involvement of a bacterial microcompartment in the metabolism of fucose and rhamnose by
Clostridium phytofermentans. PloS One 8, €54337

Saxena, R.K., Anand, P., Saran, S., Isar, J. & Agarwal, L. (2010). Microbial production and
applications of 1,2-propanediol. Indian J. Microbiol. 50, 2—11

Frey, P.A. (2001). Radical Mechanisms of Enzymatic Catalysisl. Annu. Rev. Biochem. 70, 121-148
Cheng, S. & Bobik, T.A. (2010). Characterization of the PduS Cobalamin Reductase of Salmonella
enterica and Its Role in the Pdu Microcompartment. J. Bacteriol. 192, 5071-5080

159



150. Sampson, E.M., Johnson, C.L.V. & Bobik, T.A. (2005). Biochemical evidence that the pduS gene
encodes a bifunctional cobalamin reductase. Microbiol. Read. Engl. 151, 1169-1177

151. Dung, J.K.S., Johnson, D.A. & Schroeder, B.K. (2012). First Report of Pectobacterium wasabiae
Causing Aerial Stem Rot of Potato in Washington State. Plant Dis. 96, 1819-1819

152. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. (1990). Basic local alignment
search tool. J. Mol. Biol. 215, 403-410

153. Pitts, A.C., Tuck, L.R., Faulds-Pain, A., Lewis, R.J. & Marles-Wright, J. (2012). Structural Insight
into the Clostridium difficile Ethanolamine Utilisation Microcompartment. PLoS ONE 7, €48360

154. Cai, F., Sutter, M., Cameron, J.C., Stanley, D.N., Kinney, J.N. & Kerfeld, C.A. (2013). The
structure of CcmP, a tandem bacterial microcompartment domain protein from the B-carboxysome,
forms a subcompartment within a microcompartment. J. Biol. Chem. 288, 16055-16063

155. Frey, M., Rothe, M., Wagner, A.F. & Knappe, J. (1994). Adenosylmethionine-dependent synthesis
of the glycyl radical in pyruvate formate-lyase by abstraction of the glycine C-2 pro-S hydrogen
atom. Studies of [2H]glycine-substituted enzyme and peptides homologous to the glycine 734 site.
J. Biol. Chem. 269, 12432—12437

156. Hoover, D.M. & Lubkowski, J. (2002). DNAWorks: an automated method for designing
oligonucleotides for PCR-based gene synthesis. Nucleic Acids Res. 30, 43

157. Prodromou, C. & Pearl, L.H. (1992). Recursive PCR: a novel technique for total gene synthesis.
Protein Eng. 5, 827-829

158. Terwilliger, T.C., DiMaio, F., Read, R.J., Baker, D., Bunkoczi, G., Adams, P.D., Grosse-Kunstleve,
R.W., Afonine, P.V. & Echols, N. (2012). phenix.mr_rosetta: molecular replacement and model
rebuilding with Phenix and Rosetta. J. Struct. Funct. Genomics 13, 81-90

159. Blanc, E., Roversi, P., Vonrhein, C., Flensburg, C., Lea, S.M. & Bricogne, G. (2004). Refinement of
severely incomplete structures with maximum likelihood in BUSTER-TNT. Acta Crystallogr. D
Biol. Crystallogr. 60, 2210-2221

160. Murshudov, G.N., Skubak, P., Lebedev, A.A., Pannu, N.S., Steiner, R.A., Nicholls, R.A., Winn,
M.D., Long, F. & Vagin, A.A. (2011). REFMAC 5 for the refinement of macromolecular crystal
structures. Acta Crystallogr. D Biol. Crystallogr. 67, 355-367

161. Holm, L. & Rosenstrom, P. (2010). Dali server: conservation mapping in 3D. Nucleic Acids Res. 38,
W545-W549

160



162.

163.

164.

165.

166.

167.

168.

169.

170.

171.

172.

173.

174.

Edgar, R.C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high
throughput. Nucleic Acids Res. 32, 1792-1797

Eswar, N., Webb, B., Marti-Renom, M.A., Madhusudhan, M.S., Eramian, D., Shen, M.-Y ., Pieper,
U. & Sali, A. (2007). Comparative protein structure modeling using MODELLER. Curr. Protoc.
Protein Sci. Editor. Board John E Coligan Al Chapter 2, Unit 2.9

Simons, K.T., Ruczinski, 1., Kooperberg, C., Fox, B.A., Bystroff, C. & Baker, D. (1999). Improved
recognition of native-like protein structures using a combination of sequence-dependent and
sequence-independent features of proteins. Proteins 34, 82-95

Brunger, A.T. (2007). Version 1.2 of the Crystallography and NMR system. Nat. Protoc. 2, 2728—
2733

Briinger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L., Gros, P., Grosse-Kunstleve, R.W., Jiang,
J.S., Kuszewski, J., Nilges, M., Pannu, N.S., Read, R.J., Rice, L.M., Simonson, T. & Warren, G.L.
(1998). Crystallography & NMR system: A new software suite for macromolecular structure
determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905-921

Wu, S. & Zhang, Y. (2008). MUSTER: Improving protein sequence profile-profile alignments by
using multiple sources of structure information. Proteins 72, 547-556

Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y. & Hattori, M. (2004). The KEGG resource for
deciphering the genome. Nucleic Acids Res. 32, D277-D280

Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W. & Gascuel, O. (2010). New
algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of
PhyML 3.0. Syst. Biol. 5§9,307-321

Feynman, R.P., Leighton, R.B. & Sands, M.L. (Addison-Wesley Pub. Co.: Reading, Mass., 1963).
The Feynman lectures on physics.

Hilser, V.J., Garcia-Moreno E., B., Oas, T.G., Kapp, G. & Whitten, S.T. (2006). A Statistical
Thermodynamic Model of the Protein Ensemble. Chem. Rev. 106, 1545—1558

Frauenfelder, H., Sligar, S.G. & Wolynes, P.G. (1991). The energy landscapes and motions of
proteins. Science 254, 1598-1603

Fraser, J.S. & Jackson, C.J. (2011). Mining electron density for functionally relevant protein
polysterism in crystal structures. Cell. Mol. Life Sci. CMLS 68, 1829—-1841

Koshland, D.E. (1998). Conformational changes: How small is big enough? Nat. Med. 4, 1112—
1114

161



175. Fersht, A. (W. H. Freeman: New York, 1998). Structure and Mechanism in Protein Science: A
Guide to Enzyme Catalysis and Protein Folding.

176. Karplus, M. & Kuriyan, J. (2005). Molecular dynamics and protein function. Proc. Natl. Acad. Sci.
U.S. 4. 102, 6679—6685

177. Eisenmesser, E.Z., Millet, O., Labeikovsky, W., Korzhnev, D.M., Wolf-Watz, M., Bosco, D.A.,
Skalicky, J.J., Kay, L.E. & Kern, D. (2005). Intrinsic dynamics of an enzyme underlies catalysis.
Nature 438, 117-121

178. Fraser, J.S., Clarkson, M.W., Degnan, S.C., Erion, R., Kern, D. & Alber, T. (2009). Hidden
alternative structures of proline isomerase essential for catalysis. Nature 462, 669—-673

179. Boehr, D.D., McElheny, D., Dyson, H.J. & Wright, P.E. (2006). The Dynamic Energy Landscape of
Dihydrofolate Reductase Catalysis. Science 313, 1638—1642

180. Hilser, V.J., Wrabl, J.O. & Motlagh, H.N. (2012). Structural and Energetic Basis of Allostery. Annu.
Rev. Biophys. 41, 585-609

181. Gunasekaran, K., Ma, B. & Nussinov, R. (2004). Is allostery an intrinsic property of all dynamic
proteins? Proteins 57, 433443

182. Li, P., Martins, I.LR.S., Amarasinghe, G.K. & Rosen, M.K. (2008). Internal dynamics control
activation and activity of the autoinhibited Vav DH domain. Nat. Struct. Mol. Biol. 15, 613—618

183. Huse, M. & Kuriyan, J. (2002). The conformational plasticity of protein kinases. Cell 109, 275-282

184. Warshaw, D.M., Hayes, E., Gaffney, D., Lauzon, A.-M., Wu, J., Kennedy, G., Trybus, K., Lowey,
S. & Berger, C. (1998). Myosin conformational states determined by single fluorophore
polarization. Proc. Natl. Acad. Sci. 95, 8034-8039

185. Tokuriki, N. & Tawfik, D.S. (2009). Protein Dynamism and Evolvability. Science 324, 203207

186. Fenwick, R.B., van den Bedem, H., Fraser, J.S. & Wright, P.E. (2014). Integrated description of
protein dynamics from room-temperature X-ray crystallography and NMR. Proc. Natl. Acad. Sci.
U. S. 4. 111, E445-454

187. Lang, P.T., Ng, H.-L., Fraser, J.S., Corn, J.E., Echols, N., Sales, M., Holton, J.M. & Alber, T.
(2010). Automated electron-density sampling reveals widespread conformational polymorphism in
proteins. Protein Sci. Publ. Protein Soc. 19, 1420-1431

188. Levin, E.J., Kondrashov, D.A., Wesenberg, G.E. & Phillips, G.N., Jr (2007). Ensemble refinement
of protein crystal structures: validation and application. Struct. Lond. Engl. 1993 15, 1040-1052

162



189.

190.

191.

192.

193.

194.

Van den Bedem, H., Dhanik, A., Latombe, J.-C. & Deacon, A.M. (2009). Modeling discrete
heterogeneity in X-ray diffraction data by fitting multi-conformers. Acta Crystallogr. D Biol.
Crystallogr. 65, 1107-1117

Ren, Z., Chan, P.W.Y., Moffat, K., Pai, E.F., Royer, W.E., Jr, grajer, V. & Yang, X. (2013).
Resolution of structural heterogeneity in dynamic crystallography. Acta Crystallogr. D Biol.
Crystallogr. 69, 946-959

Artiukh, R.I., Kachalova, G.S., Lanina, N.F., Nikol’skii, D.O., Timofeev, V.P. & Bartunik, K.D.
(2002). [Effect of various humidity on local dynamic structure of lysozyme in a spin-labeled
tetragonal crystal]. Biofizika 47, 795-805

Harata, K. & Akiba, T. (2004). Phase transition of triclinic hen egg-white lysozyme crystal
associated with sodium binding. Acta Crystallogr. D Biol. Crystallogr. 60, 630—-637

Rupp, B. (Garland Science: New York, 2009). Biomolecular Crystallography: Principles, Practice,
and Application to Structural Biology.

Evans, G., Axford, D., Waterman, D. & Owen, R.L. (2011). Macromolecular microcrystallography.
Crystallogr. Rev. 17, 105-142

163





