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Abstract: The human and Earth systems are intricately linked: climate 
influences agricultural production, renewable energy potential, and water 
availability, for example, while anthropogenic emissions from industry and 
land use change alter temperature and precipitation. Such feedbacks have 
the potential to significantly alter future climate change. These feedbacks 
may also exert significant changes on 21st-century energy, agriculture, land 
use and carbon cycle projections, but little is known about their possible 
magnitudes, or about regional and sector dynamics under different forcing 
scenarios. Here we use an integrated Earth System Model (ESM) featuring 
bidirectional information exchange between an economically-oriented 
integrated assessment model and the ESM to examine how human-natural 
feedbacks operate under high and medium radiative forcing (RF) scenarios. 
Specifically, we examine the effect of changing land productivity on human 
systems, and the effect of changing land use/land cover and CO2 emissions 
on the Earth system. We find that the effect of coupling differs across 
radiative forcing levels and across regions, due to differences in the climate 
signal, human responses to those signals, and regional characteristics. In 
particular, we find reductions in cropland area due to feedbacks in both the 
medium and high RF scenarios. In the medium RF scenario, these reductions 
result in increased area for bioenergy and afforestation and reduced energy 
system CO2 emissions, as the carbon price in this scenario incentivizes low 
carbon energy sources and terrestrial carbon storage; these incentives are 
absent in the high RF scenario. These differences are key to understanding 
the possible future evolution pathways of the integrated Earth system in 
response to 21st century climate change. Additional models and hypothesis 
testing are needed to determine exactly when and how bidirectional 
feedbacks between human and Earth systems should be considered in future
assessments.

1 Introduction

Changes in energy and agricultural production and consumption affect 
anthropogenic greenhouse gas emissions, land use, and land cover (Berndes 



et al. 2003; Houghton et al. 2012) with implications for temperature, 
precipitation, and other aspects of the climate system, resulting in changes 
in energy demand and production (Arent et al. 2014). Likewise, climate-
driven changes to net primary production (NPP) and the carbon cycle affect 
terrestrial carbon storage, forest productivity, and CO2 concentrations (Piao 
et al. 2009), while increases (decreases) in agricultural productivity may lead
to reductions (increases) in cropland area, as more (less) food and fiber can 
be produced the same amount of land (Nelson et al. 2014).

One-way coupling studies have estimated the effects of human activities on 
climate. For example, Collins et al. (2013) quantifies the effect of different 
emissions and concentrations scenario on climate, with 2100 global mean 
temperature rise ranging from 0.3C to 4.8C depending on the climate model
and scenario scales. Brovkin et al. (2013) and Hallgren et al. (2013) show 
that changes in land use have a negligible effect on global climate, but can 
have an effect at local scales. Jones et al. (2013), however, find significant 
effects on global temperature from changes in land use and land cover. 
Other studies have focused on quantifying the effects of climate on human 
activities. For example, Nelson et al. (2014) finds that changes in climate can
result in large changes in cropland extent. Reilly et al. (2007) find that 
increases in greenhouse gases can increase crop yields, but the inclusion of 
ozone pollution results in reduced yield.

Bidirectional feedbacks from climate to energy and land, however, have 
largely been excluded from previous literature: the Representative 
Concentration Pathways (RCPs) (Moss et al. 2010; van Vuuren et al. 2011) 
project future emissions and land use, land-cover change (LULCC) assuming 
the climate is not changing, while estimates of the influence of climate on 
human systems (e.g., the Agricultural Model Intercomparison and 
Improvement Project, AgMIP (Nelson et al. 2014; Rosenzweig et al. 2014)) 
assume that the changes induced do not feed back to the climate. Ignoring 
these feedbacks may bias estimates of climate change and estimates of 
climate impacts (Hallegatte and K. J. Mach 2016; Motesharrei et al. 2016; 
Palmer and Smith 2014), but the unknown magnitude of these feedbacks, 
and the complexity of modeling these interactions, has led to limited 
analyses of bidirectional human—Earth system feedbacks. 

There are three notable exceptions (see also (Calvin and Bond-Lamberty 
2018)). First, Voldoire et al. (2007) coupled the IMAGE Integrated 
Assessment Model (IAM) with the CNRM-CM3 atmosphere-ocean General 
Circulation Model (GCM), and found that non-climatic factors dominated over 
climatic ones in determining land-use patterns in an SRES A2 scenario. 
Second, the BNU-HESM model coupled the BNU Earth System Model (ESM) to
the DICE IAM, exchanging CO2 emissions and temperature every 10 years 
(Yang et al. 2015). The authors found that including a human component 
improved prediction of temperature, but degraded prediction of CO2 
concentrations in a historical period. Finally, the integrated Earth System 
Model (iESM;  https://github.com/E3SM-Project/iESM; Collins et al., 2015) 



includes a bidirectional information exchange between the IAM and the ESM, 
including land use, land cover, CO2 emissions, and terrestrial productivity 
(see Section 2). Thornton et al. (2017) used the iESM to quantify the effects 
of human—Earth system feedbacks via the terrestrial system in an RCP4.5. 
In that analysis, changes in climate and CO2 increased the productivity of 
land, resulting in the abandonment of cropland and expansion of forest 
cover.  Little is known, however, about how generalizable these results may 
be under different climatic and policy conditions.

Here we use the modeling framework documented in Collins et al. (2015) 
and used in Thornton et al. (2017). This modeling framework links human 
and Earth systems through terrestrial feedbacks, with changes in ecosystem 
productivity in the Earth system altering human dynamics and changes in 
land use, land cover and CO2 emissions in the human system altering Earth 
system dynamics. We use this framework to examine a key sensitivity arising
from the baseline emissions scenario, focusing in particular on the regional 
characteristics of the coupled human—Earth system in a high-emissions 
scenario (RCP8.5). The significance of examining a higher emissions scenario
is two-fold. First, higher emissions lead to a larger climate change signal. At 
the same time, energy and agricultural systems are less constrained by 
climate policy in a higher emissions scenario, altering the magnitude and 
characteristics of human responses to climate feedbacks. Section 2 describes
the modeling framework and scenarios used in this study. Section 3 presents
results related to effects on the human system (Section 3.1), implications for 
the Earth system (Section 3.2), and differences between the RCP4.5 and 
RCP8.5 (Section 3.3). Section 4 provides a discussion of the findings and 
their implications for future climate prediction studies.

2 Methods

2.1 The iESM

The iESM (Collins et al. 2015) is a bidirectional coupling between an IAM (the 
Global Change Assessment Model, GCAM) and an ESM (the Community Earth
System Model, CESM). As a result, the model can capture the effects of 
climate on human systems, as well as the effects of changes in human 
systems on climate. GCAM is a global integrated assessment model, linking 
together representations of the economy, energy system, and agriculture 
and land use system (Wise et al. 2014). The model computes supply, 
demand, and price for a variety of energy and agricultural commodities. 
GCAM calculates land use and land cover change associated with producing 
those agricultural commodities, as well as CO2 emissions from the energy 
system.1 Within each GCAM land region (151 global regions), land is 
allocated across a variety of uses based on expected profit, which is a 
function of commodity price, yield, and the cost of production. Profits will 

1 GCAM also calculates non-CO2 emissions. However, the iESM uses prescribed non-CO2 
emissions from the RCP4.5 scenario, rather than the emissions calculated endogenously by 
GCAM.



change as a result of changes in climate and CO2, through both direct effects
on yield and indirect effects via changes in price. The land system is linked 
to the energy system primarily through bioenergy, which is produced by the 
land and consumed by the energy system. Changes in land profitability, 
therefore, have implications for energy production, use and associated 
emissions. The iESM uses version 3.0 of GCAM.

CESM (Hurrell et al. 2013) couples representations of the atmosphere, ocean,
and land to produce simulations of Earth's climate in the past, present, and 
future. The CESM system comprises the Parallel Ocean Program, version 2 
(POP), the Community Land Model, version 4.0 (CLM 4.0), the Los Alamos 
sea-ice model (CICE), the Community Atmosphere Model, version 5 (CAM), 
and the Community Ice Sheet Model (CISM). CESM is run with active 
biogeochemistry in the atmosphere, ocean, and land (Long et al. 2013). CO2 
concentrations are calculated by CAM based on energy system emissions 
(calculated by GCAM), terrestrial carbon flux (calculated by CLM), and ocean 
carbon uptake (calculated by POP). CLM includes the effects of N stress on 
carbon uptake (Thornton et al. 2009). CESM has lower terrestrial carbon 
uptake than many other ESMs; however, ocean carbon uptake is close to the 
mean across ESMs (Friedlingstein et al. 2014). 

In the iESM, information is passed from GCAM to CESM and from CESM to 
GCAM every five years (see Figure 1 and Table 1). The information exchange
from GCAM to CESM occurs in all simulations. In particular, gridded land use 
and energy system CO2 emissions are passed from GCAM to CESM. Land use 
and emissions are downscaled from GCAM’s regional representation to a grid
following the protocols developed for the RCPs (Thomson et al. 2011). 
Terrestrial CO2 fluxes are computed within the land component of CESM, and 
change over time as the result of land use change (including deforestation), 
changes in climate, and CO2 fertilization. For non-CO2 emissions, we use the 
original RCP concentrations, and not those generated by GCAM. That is, non-
CO2 emissions evolve in time and vary across RCP, but are not altered by 
climate feedbacks. In the Coupled simulations in this paper, net primary 
productivity (NPP) and heterotrophic respiration (HR) are passed from CESM 
to GCAM, and used to adjust the agricultural yield and terrestrial carbon 
density in GCAM to reflect changes in climate and CO2 fertilization (Bond-
Lamberty et al. 2014). NPP and HR are averaged across time and GCAM 
region. In the Uncoupled simulations, no information is passed back to 
GCAM; instead, agricultural yields exclude the influence of changes in 
climate or CO2 fertilization. For agricultural yields, GCAM includes 12 crop 
categories, representing all agricultural commodities reported by the FAO. 
CESM has a single crop, but the effect of climate on crops will vary across the
12 GCAM crop categories because different crops are grown in different 
regions and thus we aggregate different climate signals for each crop 
category. 

This coupling happens in an online mode; that is, information is exchanged in
code. The coupling time step is five years and information is lagged between 



those coupling steps. The iESM model is available at: 
https://github.com/E3SM-Project/iESM.

Figure 1: iESM Coupling Diagram. Diagram shows the exchange of
information between GCAM (left) and CESM (right). Arrows indicate

the flow of information between components, with the text label
identifying the type of information exchanged. The arrow labeled

“climate, productivity, etc.” is only included in the Coupled
simulations. All other information exchanges occur in all

simulations.

Table 1: Variables that are exchanged dynamically in the iESM,
including the transformations required in the data exchange. Note
that the final two columns only include examples of the direct and

indirect effects of this information exchange. There are further
effects that will occur in each model.

Directi
on of 
Exchan
ge

Variable 
from 
source 
model

Transforma
tion 
required

Variabl
e in 
destina
tion 
model

Examples of 
variables 
directly 
affected in 
destination 
model

Example
s of 
secondar
y effects

GCAM Land use Downscaled Land use Carbon Temperat



to 
CESM

and land 
cover

from 151 
regions and 
27 land 
types to a 1º
grid and 15 
PFTs

and land
cover

storage, 
albedo, 
evapotranspir
ation

ure,

precipitati
on

GCAM 
to 
CESM

Fossil fuel 
and 
industrial 
CO2 
emissions

Downscaled 
from 14 
regions to a 
1º grid

Fossil 
fuel and 
industria
l CO2 
emission
s

CO2 
concentration

Temperat
ure

CESM 
to 
GCAM

Net 
primary 
productivit
y

Upscaled 
from 1º grid 
and 15 PFTs 
to 151 
regions and 
27 land 
types; 
indexed to 
calculate 
change from 
base year

Crop 
yield

Profit rates by
land type, 
crop 
production, 
bioenergy 
production

Land use 
and land 
cover, 
crop 
prices, 
CO2 
emissions

CESM 
to 
GCAM

Net 
primary 
productivit
y (NPP)

Upscaled 
from 1º grid 
and 15 PFTs 
to 151 
regions and 
27 land 
types; 
indexed to 
calculate 
change from 
base year

Vegetati
on 
carbon 
density

Profit rates by
land typea

Land use 
and land 
covera

CESM 
to 
GCAM

Heterotrop
hic 
respiration

Combined 
with NPP, 
upscaled 
from 1º grid 
and 15 PFTs 
to 151 
regions and 
x land types;
indexed to 
calculate 

Soil 
carbon 
density

Profit rates by
land typea

Land use 
and land 
covera



change from 
base year

a Note that changes in carbon density only affect profit rates, and 
consequently land use and land cover, when carbon prices are applied.

2.2 Scenarios

The scenarios described in this paper vary across two dimensions: radiative 
forcing and feedbacks. We include scenarios with and without feedbacks to 
the human system, where feedbacks are communicated as changes in 
productivity of the terrestrial system. We also consider two different 
radiative forcing levels: medium and high. The medium forcing level reaches 
4.5 W/m2 in 2100 in the scenario without feedbacks to the human system, 
and the high forcing level reaches 8.5 W/m2 in 2100 without feedbacks. The 
forcing level in scenarios with feedbacks may differ from those levels; for 
ease of communication, we refer to the scenarios with and without feedbacks
by their no feedbacks forcing level. Table 2 summarizes these scenarios and 
establishes a naming convention used in the paper.

Table 2: iESM Simulations Used in this Paper. Columns indicate 2100
radiative forcing level in the scenario without feedbacks; rows

indicate whether feedbacks to the human system are included. Cell
values are the names of the simulations used in the remainder of
the paper. While the forcing level may differ between the coupled

and uncoupled simulations, we use the same radiative forcing label
for both.

2100 Radiative Forcing

4.5 W/m2 8.5 W/m2

Feedbacks to the
Human System

Excluded Uncoupled45 Uncoupled85

Included Coupled45 Coupled85

2.2.1 The 4.5 W/m2 Scenarios

The Coupled45 and Uncoupled45 scenarios stabilize radiative forcing at 4.5 
W/m2 in 2100 through the imposition of a carbon price. These scenarios are 
updated versions of the RCP4.5 (Thomson et al. 2011). They differ from the 
scenarios described in Thornton et al. (2017) in that these simulations 
exchange information on fossil fuel CO2 emissions directly from GCAM to 
CESM.



2.2.2 The 8.5 W/m2 Scenarios

The Coupled85 and Uncoupled85 scenarios use the GCAM integrated 
assessment model to replicate the RCP8.5, originally produced by the 
MESSAGE model (Riahi et al. 2011). In particular, we use population and GDP
from the RCP8.5 scenario. All other technological assumptions are based on 
those used in the GCAM3.0 (Clarke et al. 2007; Wise et al. 2014). The RCP8.5
scenario, like the original, does not include a carbon price or any other 
climate policy. The resulting scenario has comparable energy system CO2 
emissions and land cover to the original RCP8.5 (SI Figure 1). Note that 
MESSAGE includes a woody bioenergy crop and GCAM includes a grassy 
bioenergy crop. These differences result in differences in total cropland area 
(GCAM is higher due to the inclusion of bioenergy), but non-energy crop area
is virtually identical between the two scenarios.   

2.2.3 Scenario Differences

The difference between the Uncoupled45 and Uncoupled85 used in this 
paper is due to differences in both socioeconomics (income and population) 
and climate policy. To isolate these effects, we supplement the iESM 
simulations with two additional standalone GCAM simulations, 
Socio45_noClimatePolicy and Socio85_withClimatePolicy (see Table 3). These
additional simulations include one case with the Uncoupled85 
socioeconomics and the Uncoupled45 climate policy and one case with the 
Uncoupled45 socioeconomics and the Uncoupled85 climate policy (i.e., no 
policy). As these cases were run in a standalone version of GCAM, they 
exclude climate feedbacks and can only be compared to the Uncoupled iESM
cases.

Table 3: Simulations used to decompose the effects of human-Earth
system feedbacks, socioeconomics, and climate policy. Note that
the four scenarios are equivalent to those introduced in Table 2;

only two additional scenarios are introduced for this decomposition.

Socioecono
mics

Climate 
Policy

Feedba
cks

Scenario Name

RCP4.5 Yes No Uncoupled45

RCP4.5 Yes Yes Coupled45

RCP4.5 No No Socio45_noClimatePol
icy

RCP8.5 No No Uncoupled85

RCP8.5 No Yes Coupled85

RCP8.5 Yes No Socio85_withClimateP
olicy

3 Results



3.1 The effect of human-Earth system feedbacks on the human system

The RCPs (Moss et al. 2010; van Vuuren et al. 2011) were designed around 
specific changes in radiative forcing, determined by various assumptions 
affecting energy, emissions, and land use, resulting in increases in CO2 
concentrations, increases in temperature, and changes in precipitation 
patterns (SI Figure 2). In iESM (like other ESMs, e.g., (Arora and Boer 2014; 
Shao et al. 2013), these changes can increase plant productivity: annual 
global NPP at the end of the 21st century is ~9 Pg C (~18%) higher than 
today in an 8.5 W m-2 simulation and ~7 Pg C (15%) higher in a 4.5 W m-2 
simulation. Those global changes are seen in most, but not all, parts of the 
world (Figure 2). 

Figure 2: Above ground scalar for forest (top) and crops (bottom) in
2071-2090. Scalar is the change in NPP over time. A value of one

indicates no change in NPP due to changes in climate. Values above
one (green colors) indicate increases; values less than one indicate
decreases. CLM calculates NPP at the grid cell; these are averaged

to GCAM regions for this plot. Changes are due to changes in
climate and CO2 fertilization.

Increases in productivity in both scenarios alter agricultural yields. In 
response, crop prices and thus cropland profit rates decline, resulting in less 
cropland area when feedbacks are included (Figure 3). Crop prices in 2090 
decline by 15-16% for corn, 15-17% for oil crops, and 16-18% for wheat. The 
resulting decline in cropland area, relative to the Uncoupled simulations in 
2090, is significant: ~1 million km2 (7%) in the Coupled45 and ~2 million km2

(10%) in the Coupled85. These declines nearly balance the increases in 
productivity, resulting in only small increases in crop production due to 



human—climate feedbacks (~1% in 2090 in both the Coupled45 and 
Coupled85). This balancing is expected given the relatively low price 
elasticity of agricultural demand. However, these declines in cropland area 
do result in increases in non-commercial forestland by 1.3 million km2 (~3%) 
in the Coupled45 and 1.8 million km2 (~6%) in the Coupled85.

Figure 3: Change in global land cover over time due to coupling in
million km2. GCAM calculates changes in land cover by land type at
the regional scale as a result of changes in climate and CO2 from

CESM. Land types are aggregated to seven categories for purposes
of plotting. A full list of land types and their mapping to these

categories is provided in the SM. 

At the regional level, the dynamics are more complex: there are 29 
subregions where cropland expands in the RCP4.5 and 12 regions in the 
RCP8.5; in 36 of these 41 subregions, yields increase (Figure 4; SI Figure 3). 
This effect is because land owners maximize profit; all else equal, an 
increase in yield results in an increase in profit and an increase in land area. 
However, prices adjust to ensure global supply and demand equilibrate; as a 
result, regional yield increases do not always equate to regional cropland 
increases. For example, we see modest increases in cropland area in 
northern Africa and India in Coupled45 (Figure 4). These correspond directly 
to the increases in NPP shown in Figure 2. The effect of these changes on 
forest and other land cover types differs somewhat between the RCP4.5 and 
RCP8.5 (see Section 3.3), but there is a strong relationship between declines 
in cropland area in a region and increases in forest cover.



Figure 4: Change in forest (top) and cropland (bottom) area due to
coupling for 2071-2090 in million km2. Positive numbers (green
colors) indicate increases in area and negative numbers (pink

colors) indicate decreases in area, as a result of changes in NPP and
HR. Forest includes both commercial and non-commercial forests.

Cropland includes all food, feed, and fiber crops, but excludes
dedicated bioenergy crops.

The reallocation of land in the Coupled45 also increases the area of 
bioenergy crops by 0.25 million km2 and its production by 33 EJ yr-1 (~18%) 
in 2090 as compared to the Uncoupled45. The Coupled85, however, has an 
increase of only 0.15 million km2 (9 EJ yr-1, +5%) over the Uncoupled85. The 
increased bioenergy production in both scenarios shifts energy production 
away from fossil fuel technologies, resulting in decreased consumption of 
these fuels. Total fossil fuel consumption in 2100 declines by 13 EJ yr-1 
(~2.5%) in the Coupled45 and by 1.5 EJ yr-1 (~0.5%) in the Coupled85, 
compared to the Uncoupled simulations. The decreased consumption of fossil
fuels also decreases energy system CO2 emissions (Figure 5). The effect is 
small in the Coupled85 (~1% of total emissions), but significant in 
Coupled45, with emissions decreasing by ~700 MtC yr-1 in 2090 (~15% of 
total emissions). The smaller effect on bioenergy and emissions in the 
Coupled85, despite higher productivity gains, is due to the underlying 
scenario assumptions: only the Coupled45 and Uncoupled45 simulations 
include a carbon price as a means of reducing emissions, incentivizing low 
carbon energy technologies, as described in Section 3.3. This incentive 
results in a larger increase in bioenergy consumption and larger decrease in 
energy system emissions due to feedbacks in the Coupled45. Additionally, 
the Uncoupled45 has lower emissions than the Uncoupled85 due to this 



carbon price; as a result, the same absolute reduction in emissions leads to a
larger reduction in percentage terms in the Coupled45 than the Coupled85. 

Figure 5: Percentage change in energy system CO2 emissions in
2071-2090 due to coupling. Positive values (red colors) indicate

increases in energy system emissions; negative values (blue colors)
indicate decreases.

3.2 The effect of human-Earth system feedbacks on the Earth system

The reallocation of land in the Coupled simulations has significant 
implications for terrestrial carbon sequestration, with more carbon stored in 
the terrestrial system and less in the atmosphere (SI Figure 4). In both the 
Coupled45 and Coupled85, the reduction in carbon in the atmosphere is ~10
Pg C by 2090 with a corresponding reduction in CO2 concentrations of ~5 
ppmv in 2090 in both the Coupled45 and the Coupled85. 

Regions with increases in forest cover (Figure 4) tend to have increases in 
carbon storage (Figure 6), although this is not universally true. For example, 
the Amazon basin shows declines in carbon storage in the Coupled85 despite
increases in noncommercial forest cover. These declines are due to the land 
use and land cover transition and in part to changes in NPP. While 
noncommercial forest increases significantly, some of that increase is at the 
expense of commercial forest, resulting in only modest increases in total 
forest area due to coupling (SI Figure 5). While the region-wide average NPP 
increases (see Figure 2) driving the increase in total forest area, NPP declines
in individual grid cells over large parts of the Amazon (SI Figure 6). This 
decline is likely due to increased evaporative demand (driven by higher air 
temperatures) and drought stresses in the RCP8.5 scenarios that result in 
increased forest mortality and thus carbon loss (Anderegg et al. 2015; Holm 
et al. 2014).



Figure 6: Change in terrestrial carbon storage in 2071-2090 due to
coupling, in gC/m2/yr. Positive values (green colors) indicate

increases in terrestrial carbon; negative values indicate decreases.
Changes in carbon are due to both changes in land use/land cover
and changes in carbon density due to climate and CO2 fertilization.

Such small changes in energy system emissions (Figure 5) and terrestrial 
carbon storage (Figure 6) lead to only small changes in atmospheric carbon 
and a seemingly negligible change in trends and variability of global mean 
temperature (GMT; SI Figure 7). However, local temperature differences can 
be as much as ±1C (Figure 7). The changes in local temperature are 
influenced by local land use change; thus, we see consistent patterns in 
Figure 4 and Figure 7. For example, the Coupled85 shows increases in forest 
cover and more warming in the Siberia as compared to the Uncoupled85. 

Figure 7: Average change in temperature in 2071-2090 due to
coupling in C. Positive values (red colors) indicate increases in

temperature due to human feedbacks; negative values (blue colors)
indicate decreases. Stippling indicates significant changes at the

95% confidence level using a t-test.

3.3 Differences between the 45 and 85

It is important to note that the Uncoupled simulations differ significantly 
between the 4.5 Wm-2 and 8.5 Wm-2, with the 4.5 Wm-2 including significant 
afforestation and the 8.5 Wm-2 including significant increases in CO2 
emissions (SI Figure 8). These differences are due to differences in 



population, income, and climate policy. The Uncoupled85 has a larger 
population and higher total GDP than the Uncoupled45, both factors that 
lead to increases in agricultural demand and cropland area. The 
Uncoupled45 includes an explicit value on carbon, resulting in reductions in 
emissions and increases in forest cover. 

To understand the relative land cover and emissions implications of human-
Earth sytem feedbacks compared to socioeconomic and climate policy 
assumptions in the scenarios, we supplement our analysis with additional 
uncoupled GCAM simulations. These simulations systematically change 
socioeconomics and climate policy to isolate the effects of each.  In 
particular, we examine the following additional uncoupled scenarios: 1) 
RCP4.5 socioeconomics without climate policy, and 2) RCP8.5 
socioeconomics with climate policy (see also Table 3).  

Climate policy has the most significant effect on emissions and land cover 
(Figure 8). Emissions decline by ~20 GtC/yr in 2090 with the imposition of a 
climate policy (17 GtC/yr under RCP4.5 socioeconomics and 22 GtC/yr under 
RCP8.5 socioeconomics). This effect is much larger than the effect of 
changing socioeconomic conditions, which result in a 1.5 GtC/yr (with climate
policy) to 5.5 GtC/yr (without climate policy) reduction in emissions when 
moving from the high population (RCP8.5) to low population (RCP4.5) cases. 
In contrast, human-Earth system feedbacks lead to a decrease in emissions 
of 0.3 (Coupled85) to 0.7 GtC/yr (Coupled45). 



Figure 8: Decomposing the Effect of Socioeconomics, Climate Policy,
and Human-Earth System Feedbacks on CO2 (left), Cropland
(middle), and Non-commercial Forest (right). Figures show

differences due to socioeconomics (top), climate policy (middle),
and human-Earth system feedbacks (bottom). Note that the control
changes to isolate the appropriate factor; the legend indicates the
scenarios that are differenced for each calculation. In the top row,

positive values indicate an increase with RCP4.5 socioeconomics (as
compared to RCP8.5). In the middle row, positive values indicate an

increase with climate policy. In the bottom row, positive values
indicate an increase with human-Earth system feedbacks.

Forest cover increases immediately when the climate policy begins and 
continues throughout the century (~10 million km2 increase in 2090 with 
climate policy); this increase is significantly larger than the small increase 
(~3 million km2 in 2090) associated with lower population and GDP. Human-
Earth system feedbacks result in increases of forest cover of approximately 1
million km2 in 2090. In response to increases in forest cover in scenarios with
climate policy, cropland declines by approximately 3 million km2 in 2090. 
Declines in population and GDP also result in ~3 million km2 decreases in 
cropland, while feedbacks lead to a 1-2 million km2 decrease in cropland area
in 2090. That is, the effect of feedbacks is roughly half the size of the effect 
of changing GDP and population in most cases.

Differences in the underlying dynamics of the scenarios have implications for
the response to climate feedbacks, particularly with respect to land use/land 
cover change. In both the 4.5 Wm-2  and the 8.5 Wm-2, less cropland is 
needed when feedbacks are included due to increases in productivity. 



However, the primary land type that benefits in response to less cropland 
differs by region and scenario (Figure 9, SI Figure 5). In the 4.5 Wm-2, the 
climate policy is applied to the terrestrial system, incentivizing higher carbon
land types and causing an overall decline in cropland that is enhanced when 
feedbacks are included. In the 8.5 Wm-2, such incentives do not exist and 
cropland expands, but at a slower rate when feedbacks are included. As a 
result, the dominant expanding land type due to the inclusion of feedbacks 
depends on the cropland trajectory and the regional land type distribution. 
For example, enhanced crop abandonment leads primarily to forest 
increases throughout South America in Coupled45, while in Coupled85 
reduced cropland expansion primarily retains pasture, grass, and shrub in 
the southern part of the continent.

Figure 9: Dominant expanding land type in 2071-2090 when
feedbacks induce less demand for cropland. That is, the land type
that increases the most in response to reductions in cropland area
for each region. Missing regions (i.e., white colors) have increases

in cropland area.

4 Discussion and Conclusions

We find that the effects of human—Earth system feedbacks differ at different
radiative forcing levels. These differences are due in part to differences in 
the climate signal, resulting in different productivity changes. However, the 
response of human systems also varies because of differences in 
socioeconomic and climate policy assumptions, complicating any comparison
of a single factor shared by the two scenarios. In particular, the RCP45 
incentivizes economic actors to retain and expand (via cropland 
abandonment) carbon-rich ecosystems. Such an effect has been documented



in previous analyses of scenarios with these economic incentives (Thomson 
et al. 2011; Wise et al. 2009). 

We found that some effects (e.g., global CO2 emissions, global mean 
temperature rise) are small at the global scale but larger at the local and 
regional scale, with significant heterogeneity among regions. At the global 
level, increases in average productivity lead to declines in total cropland 
area. At the regional scale, however, the regions with the largest increases in
productivity (e.g., parts of Europe and Australia) increase their cropland 
area, while relatively less-productive regions contract cropland area. Land 
expansion in response to cropland declines differs across regions, 
particularly in the RCP8.5.

This research explores several key sensitivities in human—Earth system 
coupling. However, there are some limitations to our study and many more 
sensitivities and uncertainties remain. First, we are only including feedbacks 
on the terrestrial system. Many other human-Earth system feedbacks are 
possible, including the effects of climate on energy demand (Clarke et al. 
2018; Zhou et al. 2014), energy supply (Cronin et al. 2018), water availability
(Strzepek et al. 2015; Hejazi et al. 2014; Hanasaki et al. 2013), income 
(Burke et al. 2015; Woodard et al. 2019), behavior (Beckage et al. 2018), etc.
The inclusion of feedbacks in other systems may result in different effects 
(Calvin and Bond-Lamberty 2018). Additionally, we only pass land use/land 
cover and energy system CO2 emissions from GCAM to CESM; we exclude 
any effects of feedbacks on fertilizer application or resulting N2O emissions. 

Second, we are only using a single climate model (CESM) and IAM when 
calculating the effect of climate feedbacks. The range of NPP and land cover 
change across climate models is large, and CESM’s relatively weak response 
of NPP to climate dampens potential feedbacks (Todd-Brown et al. 2013, 
2014). Similarly, previous studies have shown a large range in ocean carbon 
uptake across ESMs, with CESM falling in the middle of that range 
(Friedlingstein et al. 2014). Additionally, previous studies have shown large 
differences in land use (Popp et al. 2014, 2017) and emissions (Clarke et al. 
2014; Riahi et al. 2017) across IAMs. Thus, choosing a different human or 
Earth system model could lead to substantially different results. 

Third, we are using a single crop model (a linear relationship between NPP 
and yield) (Bond-Lamberty et al. 2014), but crop models exhibit significant 
differences in their response of yield to climate (Rosenzweig et al. 2014). 
Furthermore, the crop model includes the effect of climate and CO2 on 
productivity, but excludes the effect of ozone damage which can have 
significant negative effects on yield (Reilly et al. 2007). 

Fourth, while the coupling between the IAM and ESM is in code, we only 
exchange lagged information every five years, i.e. at the IAM time step 
(Collins et al. 2015), potentially introducing lag uncertainties (cf. Voldoire et 
al. (2007)). Future efforts could include simultaneous calculation or a more 
frequent information exchange. 



Finally, previous studies have indicated that some of these feedbacks (e.g., 
permafrost) are too slow for the timeframes analyzed in this paper (see 
Schuur et al., 2015). For example, SI Figure 4 shows little effect on ocean 
carbon uptake due to coupling, suggesting that ocean feedbacks are too 
slow to be altered by human responses at the timescales in this paper 
(decades to century). In short, future research is needed to both strengthen 
the existing linkages between the human and Earth system components of 
iESM, as well as expand these linkages to capture other feedbacks.

Our research underlines the importance of climate model and emissions 
scenario uncertainties in climate studies (Hawkins and Sutton 2009; Kirtman 
et al. 2013), socioeconomics and climate policy in human systems studies 
(Clarke et al. 2014; Riahi et al. 2017), and the critical nature of uncertainty 
and sensitivity analyses in future coupled human—Earth system studies. 
Given the wide range of ESM model results and the inherent difficulties in 
characterizing models’ current and predictive uncertainties (Ricciuto et al. 
2008, 2018), there is a need for more coupled human-Earth system models, 
systematic comparisons between these models, and methods to examine 
uncertainty and sensitivity in such models. In particular, more coupled 
human—Earth system models that include dynamic bidirectional interactions
between the Earth system and various components of the human system 
(e.g., water, population, migration, economics, trade, human health) are 
needed. Additional models and hypothesis testing are needed to determine 
when and how bidirectional feedbacks between human and Earth systems 
should be considered in future assessments of climate change.
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