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Kalman Filter-Based Integration of DGPS and Vehicle Sensors for Localization
Shahram Rezaei, Member, IEEE, and Raja Sengupta, Senior Member, IEEE

Abstract—We present a position estimation scheme for cars
based on the integration of Global Positioning System (GPS) with
vehicle sensors. The aim is to achieve enough accuracy to enable
in vehicle cooperative collision warning, i.e., systems that provides
warnings to drivers based on information about the motions of
neighboring vehicles obtained by wireless communications from
those vehicles, without use of ranging sensors. The vehicle sensors
consist of wheel speed sensors, steering angle encoder, and a
fiber optic gyro. We fuse these in an extended Kalman filter. The
process model is a dynamic bicycle model. We present data from
about 60 km of driving in urban environments including stops,
intersection turns, U-turns, and lane changes, at both low and
high speeds. The data show the filter estimates position, speed,
and heading with the accuracies required by cooperative collision
warning in all except two kinds of settings. The data also shows
GPS and vehicle sensor integration through a bicycle model
compares favorably with position estimation by fusing GPS and
inertial navigation system (INS) through a kinematic model.

Index Terms—Global Positioning System (GPS), inertial naviga-
tion, Kalman filtering, localization, navigation, safety, sensors, ve-
hicles.

1. INTRODUCTION

N THIS BRIEF, we describe a real-time loosely coupled dif-

ferential Global Positioning System (DGPS)/vehicle sensors
(VS) system integrated by a Kalman filter to estimate the po-
sition, heading, and velocity of a car. We use a GPS with a
local base station that broadcasts corrections. Hereafter, we say
just GPS for simplicity. The VS are six-wheel speed sensors, a
steering angle encoder, and an optical yaw rate gyro. The aim
is to achieve enough accuracy to enable cooperative collision
warning systems (CCW) [1].

The CCW concept provides warnings or situation awareness
displays to drivers based on information about the motions of
neighboring vehicles obtained by wireless communications
from those vehicles, without use of any ranging sensors. Each
vehicle is assumed to broadcast information like its position,
speed, or heading, periodically. A neighboring vehicle receiving
the information differences the received information from its
own position to know the relative position or velocity of the
sender. This relative information is used to provide collision
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warnings or advisories to the driver when necessary. Commu-
nication is based on dedicated short range communications
(DSRC) [2]. The on-board Wi-wireless and GPS equipment
has the advantage of being potentially inexpensive compared
to the ranging sensors, like radar, required to provide 360°
coverage. CCW would also provide information from vehicles
that may be occluded from direct line of sight. Reliable position
estimation in GPS coordinates is a critical enabling technology
for CCW.

Shladover and Tan [3] have derived the accuracies required in
position, speed, and heading estimates to produce CCW warn-
ings of reasonable accuracy and consistency. It is useful to re-
solve position error into longitudinal and lateral components,
i.e., along and orthogonal to the lane centerline, respectively.
The lateral position errors requirements turn out to be more
stringent than the longitudinal error requirement. It is desir-
able that the standard deviation of the lateral position error stay
within 50 cm. Shladover and Tan also describe speed accuracy
requirements. Speed errors are expected to stay within 2 m/s.
The heading error limits are set by blind spot warning systems.
If the heading error is greater than 5°, a vehicle that is behind
and in the same lane may be incorrectly assumed to be behind
and in the adjacent lane, i.e., in the blind spot.

These numbers represent the system engineering require-
ments on our position estimator design. It is desirable that
these accuracies be maintained in the face of GPS errors and
outages. This has been the emphasis of our testing. We have
put the system through more than 60 km of testing, much of it
in degraded GPS conditions.

We use GPS with a local base station, i.e., DGPS. Our DGPS
sensor gives measurements for position, heading, and inertial
velocity. Under the best conditions, i.e., eight satellites or more,
the GPS error has a standard deviation of about 30 cm. However,
when the number of satellites is seven or less due to buildings
or trees, the average errors are more than a meter. Moreover, at
six satellites or less, the error usually has a bias. Our DGPS is
chosen to have an accuracy similar to a wide area surveillance
satellite (WAAS) enabled GPS receiver [4].

Results in Section V show the lateral error standard deviation
for the positioning system described in this brief, is within the
required limits in most, though not all, situations. The situations
in which it fails are described as well. We also compare the lat-
eral positions errors against an absolute threshold for reasons
described in Section V-A. The heading error stays within the
prescribed limits. The results presented are for GPS with an av-
erage of six satellites, i.e., average position measurement errors
of a meter. It may be noted, that while our testing has focused
heavily on degraded GPS conditions, we have not tested in high
slip conditions. Our six wheel speed sensors, suitably averaged,
deliver accurate inertial speeds in low slip conditions. They are
not under high slip conditions [5]. As a matter of fact, we are
not using the GPS inertial velocity measurement at all because

1063-6536/$25.00 © 2007 IEEE
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of its larger delay relative to our wheel speed sensors. Our GPS
runs at 5 Hz. The VS runs at 20 Hz.

This brief is organized as follows. The literature review is in
Section II. The measurement system is described in Section III.
The filter design is given in Section IV. Experimental results are
in Section V.

II. LITERATURE REVIEW

There is an extensive literature on estimating the position
of land vehicles using GPS ([6]-[22]). We have reviewed it
for estimation methodology and the accuracy of position esti-
mates. Since GPS suffers outages and errors, position estima-
tion methods typically fuse GPS with other sensors. Most pa-
pers fuse GPS with INS. Two papers, [6] and [7], estimate po-
sition like us by fusing GPS with vehicle sensors instead of in-
ertial navigation system (INS). The position estimation systems
in these two papers fuse GPS, wheel speed, yaw rate, and an ac-
celerometer. The system in [7] also uses a compass. All these
systems are different variants of Kalman filters. The process
models are kinematic.

By contrast, we use a bicycle model. This kind of higher
order dynamic model has been fused with GPS velocity to es-
timate slip ([5], [23]-[25]). Other parameters estimated include
roll and tire cornering stiffness. By using a dynamic model, we
are able to incorporate a steering angle sensor into the posi-
tion estimation filter. Unlike prior uses of dynamic models, our
emphasis is on its use for position estimation, particularly its
ability to enhance the robustness of estimates to highly degraded
GPS measurements and outage. The results in this brief show
the higher order dynamic model results in more accurate posi-
tion estimates, and greater robustness to GPS error and outage.
This is so even though we do not use accelerometers, INS, or
carrier-phase GPS. The vehicle sensors we use are present as
standard outputs on the controller area network (CAN) bus in
most production vehicles. Vehicles with traction control systems
also have accelerometers. However, the accelerometer measure-
ments are usually not readable on the vehicle bus. They are em-
bedded inside the traction control component. Our accelerome-
ters were very noisy.

Some papers in the literature record the error in the posi-
tion estimates they produce. These are summarized in Table I,
which lists the type of fusion, the standard deviation of errors,
and update rate associated with the DGPS used, the test envi-
ronment, and the accuracy of the position estimates produced
by fusion. The systems in [7]-[9] use carrier phase DGPS. We
use the much more widely used and cheaper code-phase DGPS
(Ashtech G12). The other systems in Table I use code-phase
DGPS. Our positioning accuracies are similar to [10] and [11],
though we tested under more degraded GPS conditions. More-
over, the systems in Table I are all based on kinematic models
and do not use steering angle measurements. Our system is
based on a dynamic model and uses steering angle measure-
ments.

There are a few papers discussing bias and outage in GPS
measurements. Solutions such as fuzzy logic [13] and integrated
multiple models ([14] and [26]) have been implemented in sim-
ulation to address the bias problem. In [14], they change models
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TABLE 1
QUANTITATIVE COMPARISON OF ESTIMATORS IN THE LITERATURE

GPS accuracy Test Positioning
Sensors .
and rate Environment | Accuracy
This | pGpsivs | 03m,5Hz outage <Im
paper
DGPS + VS
[7] + Accel. + 0.05m,2 Hz no outage 0.02m
Compass
[8] DGPS + INS 0.05m, 1 Hz no outage <0.02 m
[9] DGPS+INS | 0.05m, 1 Hz outage <0.5m
simulation
DGPS+INS+
[10] Odometry 0.3 m, 10 Hz no outage, <l'm
[11] DGPS+INS Im,1Hz no outage <lm
[12] DGPS+INS 1l m, 1 Hz no outage <2m

Wheel Speed Steering angle

Sensor Sensor
Yaw Rate o \‘ﬁiﬁ
\\ .
Yy f GPS
x, >

Fig. 1. Vehicle sensors and GPS on the car.

according to the number of satellites. We found number of satel-
lites does not tell the whole story about the bias in GPS noise.
This is because of the geometric dilution of precision (GDOP)
effect. When satellites are located at wide angles relative to each
other, the possible error margin is small. On the contrary, when
satellites are grouped together or located in a line the geometry
will be poor and result in bias. References [15]-[17] also dis-
cuss GPS outage and attempt to handle it with an accuracy of a
few meters. Here, we try to keep accuracy below a meter.

III. MEASUREMENT SYSTEM

Fig. 1 shows the locations of the VS and the GPS on our car.
Each wheel has a wheel speed sensor. There are six of them:
four for high speeds and two for low speeds. The GPS updates
at 5 Hz and the VS updates at 20 Hz.

The steering angle sensor, yaw rate gyro, and wheel speed
sensor noises have 1°, 0.3 °/s, and 0.3-m/s standard deviation,
respectively, and no bias.

Our GPS gives measurements for position, heading, and in-
ertial velocity. Under the best conditions, i.e., eight satellites or
more with line of sight signals, the GPS error has a standard de-
viation of about 30 cm and no bias. However, when the number
of satellites is seven or less due to buildings or trees, the errors
are as large as 10 m. Moreover, at six satellites or less, the error
usually has a bias in our test areas. Fig. 2 presents the GPS and
true trajectory plots from two experiments. One can see the bias
in plot (a). Plot (b) shows corruption and outage. We have tried
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Fig. 2. Typical GPS measurement errors. (a) Bias. (b) Corruption and outage.

to make our filter deliver acceptable accuracy with these kinds
of noise.

At low speed, the GPS heading measurement has poor accu-
racy. It appears completely random when the vehicle stops (see
Fig. 15).

IV. FILTER DESIGN

Table II describes notations in this section. Fig. 3 shows the
layout of our filter. The VS measurements directly drive the
process model (“prediction” block). This is used to predict the
states of the system at time % based on all measurements till time
k — 1. This prediction is then combined with the GPS measure-
ment in the “update” block to produce the estimate of the states
at time k based on measurements up to time k. Our structure
follows the filter structure in [28]. In the prediction block, the
process model is a bicycle model. Contrary to the commonly
used kinematic model which considers the vehicle as a point
mass, our bicycle model includes the dimensions of the car, its
mass, and moments of inertia. Our state vector is

X=[zdyyq]. (1)

All these are estimated in the GPS coordinate system (west—east,
south—north) with the origin at the local base station.

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 15, NO. 6, NOVEMBER 2007

TABLE II
INDEX OF NOTATION:
(NOT INCLUDING SYMBOLS THAT ARE DEFINED BY FORMULAS)

Notation Description

k Time index

X Vector of Kalman filter states

% )A/ West-East and South-North position

’ estimates in the GPS frame, respectively

P West-East and South-North velocity
X,y estimates in the GPS frame, respectively
q; Heading estimate in the GPS frame

At Sampling interval, S0 msec

v Speed measured by the wheel speed sensor
27 Steering angle

¢' Heading rate, measured by the fiber optic
gyroscope sensor
Longitudinal and lateral displacements

X, YV between two consecutive timestamps in the
body frame, respectively
X, Longitudinal and lateral velocities in the
uru body frame, respectively
V Lateral acceleration in the body frame
P Covariance matrix of X
U Vector of process model inputs including

speed, steering angle, and heading rate

U Vector of speed, steering angle, and heading
rate measurements

Covariance matrix of noise in the speed, yaw

/ rate, and steering angle measurements
Qu te, and steering angl t
R Covariance matrix of noise in the GPS
& measurements
Cornering stiffness of the front and rear tires
C,.Cp | ‘
in N/rad, respectively
Longitudinal distances in meters between the
Ly, L, center of gravity and front and rear tires,

respectively

M Mass of the vehicle in kg.

I Moment of inertia about the axis normal to
“ plane of motion in kg/m’

Symbols with ‘hat ()" on top are estimated. Same symbols
without hat on top are the true values.

At timestamp k, process model inputs (v, o, qﬁk) are read
from the wheel speed, steering angle, and yaw rate sensors,
respectively. Then, the bicycle model equations are used to
estimate the states at timestamp k£ + 1. Equations (2) and
(3) (shown at the bottom of the next page) are the prediction
equations. Fig. 4 shows the body coordinate frame and displace-
ments in that frame. First, the measurements (v, o, d)k) are
put into (3) and then the resulting @ (k41> Tu(k+1)s> Yu(k+1)>
and ¥y (x41) are put into (2). SAummarizing (g) and (3) as
Xiyie = f(Xpyp, U(k)) and Xpy1/p = f(Xpyh, U™ (K)),
where U™(k) = (v,a,¢)k, and linearizing them about
(X k/k> U™ (k)) the covariance matrix P11/ of the predicted
state is computed by

Pk = E<[XL(k +1/k) — XX (k + 1/k)]

x [XEGk+ 1/) - X2k + 1/k)]T>
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X Fig. 4. Body coordinate system on the car.
% Update
y ] . . B
- (Kalman Gain)
y~ elements are the variance of the sensor noises, as in the second
P liin paragraph of Section III. The update block equations are
Fig. 3. Layout of the filter. Xk+1/k+1 = Xk+1/k+Wk+1 (Zobs(k"f‘l)_j(k-u/k)
Zobs = (xgpsv ygps,¢gps)
where Wiy = Pk+1/ng+1S;i1
P H :a(j“T)/a(:eﬁg”AT)A =
XL(I{?‘i‘ ]_/k;) — %) ) X XL(k/k) k+1 [ Y ¢] [ yy ¢] Kesisn
X=X(k/k
vy 10000
of Hgpp= |0 1.0 0 0
_J U(k): +
* <8U> s < TR 000 0 1
U=Um (k) T
K 1/m) = (Y KE(k/R) S =Rl T e
= = X
X X=X/ Pri1/k+1 = Prgi/k — Wi Skt Wik ©)
+ < aof ) x U™ (k): — wh;re Rgps is diagonal. The values on the diagonal are the
oUu 5:5(ktl/k) variances of the GPS measurement noises. We have used the
of N ! of T following values in the two test environments discussed in
—_ (2L . Section V
Pietase (ax) sy < DX ax) x=(k/b) -
U=Um™ (k) U=U"™ (k) l(m2) 0 0
af afr\" Rge=| 0 1(m?) 0 |RFS
+ <8U> X=X (k/k) X QU % <8U> X=X (k/k) L 0 0 4(deg2)
U=U™ (k) U=U™ (k) m 9
(4) 0.04(m ) 0 ) 0
Rgps = 0 0.04(m*) 0
where X(k + 1/k) = Xgja/n, U(k) = Up. Since the VS 0 0 4(deg?)

errors are uncorrelated, Qp is diagonal. Values of the diagonal Crows Landing. 6)
4 (%)k/k + (%(k+1) COS(@%k/k) = Yu(k+1) Sin(@’;k/k))
& Tu(k41) COS(dgk/k) = Yu(k+1) Sin((z;k/k)
4 = | @+ (ﬂ?u(k+1> sin(dr/k) + Yu(k+1) COS(¢>k/k)) &
Y . . . -
61 i To(kt1) Sln((l{k/k) + Gu(h-+1) €S(Pr/k)
L br/k + PRt |
Tu(k) =V(k);  Yuk) =0
.u L . .u - L ;
oy = |y <ak _ M) o <_M>] /M
Lu(k) Tu(k)
. . 1.
yu(k—i-l) :y1l,(k)At7 yu(k—i-l) = Qyu(k)Atz
itu(k—‘,—l) :j:u(k')7 Tu(k+1) = xu(k)At (3)
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V. EXPERIMENTAL RESULTS

In this section, we describe our experimental results. Tests
have been carried out at the Richmond field station (RFS)! and
the Crows Landing air field.2 RFS is an urban environment. The
presence of buildings (5—15 min height) and tall trees (30—-60 m)
beside the roads create multipath problems. We did tests at RFS
with speeds varying between 5 and 25 m/s. The tests included
U-turns, stops, right/left turns, and lane changes. In order to test
high-speed scenarios, we did tests at Crows Landing. There the
multipath problems are insignificant as there is no building or
other tall object within a kilometer. The total data set repre-
sents more than 60 km of driving (40 km in RFS and 20 km in
Crows Landing). The results presented here are either for sam-
ples drawn randomly from the data or worst-case behavior.
The main findings we discuss are as follows:
» correct lane discrimination especially under GPS bias or
corruption (Section V-A) and outage (Section V-B);

 accuracy of our dynamic model relative to the kinematic
model more common in the literature (Section V-B);

* delay in the filter’s response to turns including lane change,
right/left, and U-turn (Section V-C);

e delay in the filter’s response to GPS corrections
(Section V-D); and

 accuracy of estimation at low speeds (Section V-E).

Our data shows the filter is able to correctly discriminate the lane
of the vehicle except in two kinds of conditions. If GPS is lost
or goes bad for a long time (order of 10 s or more) the position
errors become large enough to place the vehicle in the wrong
lane. The exact duration of outage depends on factors like speed,
number of lane changes, etc. The second kind of condition refers
to bad GPS during a turn. If GPS is bad during a turn involving
a large change of heading, such as a U-turn or an intersection
turn, the filter is off on the heading at the end of the turn by a
small amount (less than a degree). However, if the GPS remains
bad or unavailable after the turn, this small heading error cannot
be corrected. It is integrated by the process model eventually
resulting in large position errors.

We are able to detect turns and lane changes with delays of the
order of 100 ms. It is important to keep this delay small because
this filter is a component of on-board safety systems (CCW).
Driver reaction time of an unalerted driver is greater than 1 s
[27]. We aim to have the system warn the driver within 500 ms
or less to avoid the driver perceiving a threat before the system.
100 ms of the 500-ms delay budget is being consumed by the
filter. Observe this is two VS sample times. Thus, the filter does
not give too much weight to the GPS. It remains sensitive to the
accurate and fast VS. At the same time, if GPS is good and there
is a big difference between the position estimated by the filter
and GPS measurement, we would like the filter to converge fast
to the GPS measurement.

The time constant of the response to a GPS step is about
500 ms. Thus, the filter is responding in about 2.5 GPS sample
times. It seems it would be hard to get faster while remaining
sensitive to the VS for fast response to turns and lane changes.

IRFS is part of the University of California at Berkeley and is located in Rich-
mond, CA.

2Crows Landing is affiliated to NASA and located near Patterson, CA.

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 15, NO. 6, NOVEMBER 2007

GPS and Estimated Trajectories

20 - = o
- Estimated
0 ® GPS
-20
-40

South-North
&
o

-100

-120

-140

1 /
-160 ‘
-1 8? L i i 1 i 1 J
-100 0 100 200 300 400 500
East-West

Fig. 5. Car is traveling between two sides of a two-way straight road for the
purpose of lane discrimination examination.

Thus, we feel this filter cannot be tuned to do much better.
Significantly enhanced performance would require significantly
different design.

A. Lane Discrimination

Fig. 5 shows the estimated trajectory of the car and the raw
GPS plot during a test done at RFS. Positions are in the GPS
coordinate system. The road is a straight two-way road with
one lane each way. The true positions of the lane centerlines in
the GPS coordinate system have been determined beforehand
through repeated measurement. The car starts at (0,0) and goes
to the other end of the road while doing some lane changes on
the way. The test driver attempts to keep the center of the car
on the center of the lane when going straight. At the end of the
road, the car makes a U-turn and returns to the starting position
by driving straight. It then makes a U-turn to repeat the pattern.
This loop is traveled thirty times.

Along the road, there are trees and buildings that deterio-
rate the GPS signal. The variation in the number of satellites
is shown in Fig. 6. This road is at RFS, i.e., is a small of-
fice campus. The average number of satellites during this run
is about six. With six satellites, our GPS position readings usu-
ally have more than 1 m error.

We first discuss lane discrimination when the vehicle is
driving straight. The lateral position error is shown in Fig. 7 for
the return legs (there are thirty of them) of the drive shown in
Fig. 5. Recall, the car drives straight back to the starting point
during the return. The lateral position error is the deviation of
the car from the center of the lane in the direction normal to
the centerline of the lane. The standard deviation of the lateral
position error for the data in Fig. 7 is 0.3 m. The CCW standard
deviation requirement is 0.5 m [3].

The “lane boundary” lines in the figure are at £90 cm. The
standard width of a lane is 3.6 m and the width of the car is about
1.8 m, so if the center of the car is off by more than 90 cm from
the center of the lane, it would be considered to be partly in the
next lane. This could activate a warning signaling a vehicle in
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Fig. 7. Lateral position error of the car, this data corresponds to 15 km of
driving.

the next lane, when there is none. Note some of this error is due
to the test driver.

There are a few points at which the filter error crosses the =90
cm boundary. We discuss two of them since the reasons leading
to these deviations are representative of all the other cases we
have observed. The points are plotted at high resolution in Fig. 8.
It shows the lateral position error of the car in the road frame
versus time. The number of satellites is also shown. Large errors
occur at points 1 and 2 for the two reasons described in the third
paragraph of this section. Point 1 occurs after a U-turn. Fig. 6
shows GPS is also bad at the same time. Adding digital map
information to the filter may address this problem. However,
maps of the required accuracy are not yet a commercial reality.
At point 2, continuous bad GPS (more than 20 s) sends the filter
in the wrong direction.

Fig. 9 is a plot of error in our heading estimates for the same
data used to generate Fig. 7. It shows heading error is always
within £5° which is one of the requirements.

The bias in GPS position outputs is hard to handle with the
filter. Fig. 10 shows the results of an experimental test at RFS.
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Fig. 10. Bias in GPS noise is handled by the estimator.

At the marked zones, we observed 2—-5-m bias in GPS lateral
position. The estimator follows the true path. However, the bias
will eventually pull the estimator in the wrong direction if it lasts
long enough.
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GPS and Estimated Paths Comparison
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B. Comparison of Process Model, GPS Outage

In this section, we compare the performance of our dynamic
model to the kinematic model common in the literature. We
show this by simulating the GPS outage problem. Fig. 11 shows
the trajectory plot for a run, including a left turn, carried out
at Crows Landing. The GPS path is very accurate (less than
20-cm error from the true path), because GPS coverage is good
throughout this run. We consider the GPS path as the true path.
Estimated trajectories, as computed by integrating both dynamic
and kinematic process models, are also shown. GPS updates are
cut deliberately after 10 s. The VS data continues to flow to the
filter. Thus, the filters are running open loop (just by running the
dynamic or kinematic model) after 10 s.

Fig. 12 presents the absolute innovation (the Euclidean dis-
tance between the point on GPS path and the corresponding
point on the estimated path) and lateral position error versus
time. Lateral error is computed by projecting the innovation on
the direction normal to the heading of the car. The dynamic
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Fig. 13. Delay in response to turn for point 1 in Fig. 5.

model does better. Its lateral error is below the lane boundary
even though the outage is more than 30 s long. In fact, the kine-
matic model does not see the inertial delay and as a result, during
turns it turns earlier and causes error. In this run, the speed is
about 20 m/s when going straight and 10 m/s during the turn.
Similarly, the curves for total position error show the dynamic
model does better.

We also did many tests during which the car just goes straight
and there is a GPS outage. The open-loop system diverges from
the true path as expected. Consistently, the dynamic model di-
verges less.

C. Delay in Response to Turn

We illustrate the delay exhibited by the filter in responding
to a turn by using the test in Fig. 5. We focus on one point,
point 1 (shown with an arrow on Fig. 5). We compare the true
starting time of the turn and the starting time as determined
from the heading output of the filter (see Fig. 13). In Fig. 13,
steering angle, heading deviation from 20°, and yaw rate values
are scaled by 80.

We assume the true starting time of the turn (shown with an
arrow in Fig. 5) is when there is an increase in absolute value
of yaw rate measured by the yaw rate sensor. We know this to
a precision of 50 ms. The steering angle plot may also be used
to determine the true time. The heading estimated by the filter
starts responding within 100 ms. The delays observed in the rest
of our data are similar. The response delay of the filter to a turn
is about 100 ms. At point 1, the number of satellites is just 3 and
at point 2 it is 7. Hence, the delay is not related to GPS quality.
This is because we have a good process model and heading is
predicted directly using the yaw rate sensor output.

D. Delay in Response to GPS Correction

We are interested in the response delay to GPS inputs. When
GPS is good we would like the filter to converge fast to the GPS
readings. We illustrate the response of our filter using the test
run in Fig. 2(b). Numbers on the figure mark different zones
visited during the trip. This test was executed at RFS. The car
travels from the start point (0,0) toward zone 1, then to 2, makes
a U-turn there, then comes back to 1. From 1, the car travels



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 15, NO. 6, NOVEMBER 2007

T T T

—— Experiment ||
Al bl b LA E KR F L L L] copess Theory
14+
12 :
E 10 1
3 i
E 8
6 |
4 Ay WY '\[ FImY ]
A 74T HARA'A
; ML NI IR RRL RN R RE N SR
296 297 298 299 300 301 302 303 304
Time (in's)

Fig. 14. Comparison of experimental step input response and a first-order
model with time constant 500 ms.

along a loop by passing zones 3-5. Finishing the loop, the car
goes to the end point and stops there. Timing information of
turning points are as follows (some zones are visited multiple
times):

Point Time(s) Point Time(s)
1| 90,210,315 4 270
2 160 5 105, 190, 295
3 65,230, 330

The average number of satellites for this run is less than 5,
which means average GPS position errors worse than 2-3 m. To
see the misleading effect of bad GPS readings, consider the por-
tion of time the car travels along the loop, particularly on the part
connecting 3 to 4 and 5 (between 210 and 300 s). GPS outage
before and after 4 together with faulty observations at 4 mean
the filter is essentially running open loop with bad initial condi-
tions. This causes divergence from the true path and significant
error. The discontinuity in the estimated path at zone 5 is due to
this. Fig. 14 plots the data right after GPS data becomes good in
zone 5. On reaching good GPS coverage, the filter removes the
error using the GPS observations. The solid line in Fig. 14 plots
innovation, i.e., the difference between the GPS measurement
and the filter position output. One can see the filter is stable.
The dashed line is the step response of a first-order system with
a time constant of 500 ms. The dashed curve has been a good fit
to all the data we have analyzed. Thus, the filter time constant
seems to be about 500 ms or about 2.5 GPS sample times. The
filter appears to reduce error reasonably fast.

E. Low Speed

GPS heading is very poor at low speeds and it appears com-
pletely random when the vehicle stops. Nevertheless our data
shows our filter is able to compensate for this. The RFS runs are
almost all with the vehicle traveling under 15 m/s. It starts and
stops frequently. The filter is able to maintain accurate tracks
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Fig. 15. GPS heading measurements have higher error in low speed.

even as the vehicle stops and starts. Fig. 15 shows GPS and es-
timator heading error versus time when the vehicle is at a stop
sign. The stop sign is located on the trajectory in Fig. 5. As seen,
when the vehicle stops, the GPS heading error reaches 160°.
However, the estimator heading estimate remains within +5°.

VI. CONCLUSION

In this brief, we discussed a real time position estimator, de-
signed and implemented on cars. An extended Kalman filter in-
tegrated vehicle sensors including wheel speed, yaw rate gyro,
and steering angle with DGPS observations. A dynamic bicycle
model was used as the process model in order to enhance the
performance at high speeds and during fast turns. We analyzed
the performance of the filter using about 60 km of experimental
tests carried out in environments with good and bad GPS cov-
erage. The filter is designed to enable CCW systems. The data
indicates it can meet CCW requirements in many but not all cir-
cumstances.
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