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Canopy position influences the degree of light suppression of leaf

respiration in abundant tree genera in the Amazon Forest 
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Abstract

Leaf respiration in the dark (Rdark) and light (Rday) is poorly characterized in diverse

tropical  ecosystems,  and  little  to  no  information  exists  on  the  degree  of  light

suppression in common tree species within the Amazon basin, and their dependences

upon plant functional traits and position within the canopy.  We quantified  Rdark and

apparent  Rday using the Kok method and measured key leaf traits in 26 tree species

distributed in three different crown positions: canopy, lower canopy, and understory.

We found that canopy trees had significantly higher rates of Rdark and Rday than trees in

the  understory.  The  difference  between  Rdark and  Rday (the  light  suppression  of

respiration) was greatest in the understory (68 ± 9%, 95% CI) and lower canopy (49 ±

9%, 95% CI) when compared to the canopy (37 ± 10%, 95% CI). We found that Rday

was significantly and strongly correlated with  Rdark  (r² = 0.76).  Rdark had a significant

relationship to leaf mass area (LMA, r² = 0.26), and phosphorus (P, r² = 0.18) but no
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significant  relationship  with  nitrogen,  sugars,  and starch.  Our  results  highlight  the

importance of including representation of the light suppression of leaf respiration in

terrestrial biosphere models and also of accounting for vertical gradients within forest

canopies and connections with functional traits.

1 Introduction

Autotrophic  respiration  is  one of  the  processes  that  strongly  regulatescontribute to

both terrestrial and global carbon balances  (Tang et al., 2019). However, large uncertainties

remain in the magnitude of biological and environmental controls over tropical autotrophic

respiration, largely due to limited observational studies requiring advanced technologies (e.g.

portable photosynthesis systems) deployed to logistically challenging field sites. In tropical

forests, limited estimates suggested that only 30% of the carbon fixed by photosynthesis is

allocated to the formation of new tissues (biomass), with the rest being respired back into the

atmosphere  (Chambers et  al.,  2004; Malhi et  al.,  2014). Previous work has estimated that

tropical in forests, autotrophic respiration contributes between 20 to 29 Mg C ha year-1, with

leaf respiration being the major, but highly uncertain contributor at an estimated 32-56% of

the total (Chambers et al., 2004; Metcalfe et al., 2010; Malhi, 2012; Malhi et al., 2014). Both

field observations and modeling development of autotrophic respiration is substantially less

studied  than  photosynthesis  (Huntingford  et  al.,  2017).  This  might  be  explained  by  the

difficulty in measuring foliar CO2 release (Meir et al., 2001; Chambers et al., 2004; Heskel,

2018) due  to  the  lower  fluxes  and  higher  signal  to  noise  ratio  when  compared  to

measurements of photosynthesis (Tcherkez et al., 2017a, 2017b). 

In addition, lLeaf respiration can be substantially inhibited by light (Kok, 1948, 1949)

and this metabolism is dynamic and complex, and regulated by changes in enzyme activities

and interactions  with photosynthesis,  photorespiration,  and other  pathways such as nitrate

assimilation  (Tcherkez  et  al.,  2017a,  2017b).  For  example,  (Heskel  and  Tang,  2018)

determined that when the inhibition of leaf respiration in a temperate forest by light is not

accounted for in land models, an overestimation of net primary productivity (NPP) occurs. In

addition, current leaf respiration models generally do not take into account changes in the

vertical gradient of light availability within the forest, which is known to greatly influence

plant metabolism  (Weerasinghe et al., 2014; Heskel and Tang, 2018). Respiratory rates have

also been associated with morphological and nutrient variation of leaves, such as leaf mass

per area,  and nitrogen and phosphorus content (Meir et al., 2001; Atkin et al., 2015; Crous et
2
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al.,  2017;  Rowland  et  al.,  2017),  and  can  be  regulated  by  the  availability  of  respiratory

substrates, such as non-structural carbohydrates including soluble sugars and starch (Collalti

et al., 2019).

           Light is considered a limiting resource in tropical forests (Wu et al., 2016) and

it varies as a function of height in the canopy. For this reason, trees modify their resource

capture  and  use  strategies  according  to  light  availability,  reflecting  changes  in  their

morphological and nutrient composition, due to the high competition for light (Wright et al.,

2004). Studies such as those by  (Kosugi et al., 2012; Weerasinghe et al., 2014; Heskel and

Tang, 2018) reported a large effect of leaf position within the canopy on leaf respiration.

However, little to no information exists on the magnitudes of leaf respiration in common tree

species within the Amazon basin, and their dependence upon position within the canopy.

The difference between apparent respiration in the light (Rday) and respiration in the

dark (Rdark) is known as the light suppression of leaf respiration. Several hypotheses have been

advanced to explain the phenomena ; enzyme deactivation by light which reduces the flux of

carbon into the TCA cycle,  CO2 refixation by photosynthesis,  and interactions  with other

biochemical  pathways during  the  day  (Tcherkez  and  Ghashghaie,  2017;  Tcherkez  et  al.,

2017a;  Gauthier  et  al.,  2020).  The  two  main  approaches  used  to  estimate  Rday  and

consequently light suppression are, the  13CO2 isotopic method  (Loreto et al., 1999, 2001;

Gong et al., 2018) and the Kok method (Kok, 1948, 1949). Thisis isotopic method assumes

that in an atmosphere of 13CO2, all 12CO2 detected is from respiration, and is considered to be

the most accurate method (Tcherkez et al., 2017a). The Kok method uses the abrupt change in

the gradient of the initial slope of the response of photosynthesis to irradiance. Regression

photosynthesis against irradiance points above the Kok kink results in a shallower initial slope

where the y intercept provides an estimate of Rlight (Farquhar & Busch, 2017) (Tcherkez et al.,

2017a, 2017b; Way et al., 2018; Yin et al., 2020).The Kok method uses the abrupt change in

the gradient of the initial slope of the response of photosynthesis to irradiance.  Regression

photosynthesis against irradiance points above the Kok kink results in a shallower initial slope

where the y intercept provides an estimate of  Rday (Farquhar & Busch, 2017) (Farquhar and

Busch, 2017; Tcherkez et al., 2017a, 2017b; Way et al., 2018; Yin et al., 2020).

It is known that the Kok method can underestimate rates of light respiration (Gong et

al.,  2018; Way et al.,  2018; Yin et al.,  2020), but on the other hand is the most practical
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method to apply in logistically challenging field conditions (Tcherkez et al., 2017a).. The Kok

“effect” has been described as due to not only changes in respiratory rates with light, but also

other physiological and biochemical process (Gauthier et al., 2020; Yin et al., 2020). At least

three phenomenon can explain the Kok “effect”, as decrease in the photochemical efficiency,

refixation of CO2 by photosynthesis, and a decrease of mitochondrial respiration due to light

inhibition (Yin et al., 2020). CO2 reassimilation has been widely discussed, but there are still

disagreements regarding its importance in the Kok “effect”  (Buckley et al., 2017; Farquhar

and Busch, 2017). 

Light is considered a limiting resource in forests understory varying as a function of

height in the canopy (Mulkey et al., 1996). For this reason, trees modify their resource capture

and use strategies according to light availability, reflecting changes in their morphological and

nutrient composition, due to the high competition for light (Wright et al., 2004). Studies such

as those by (Kosugi et al., 2012; Weerasinghe et al., 2014; Heskel and Tang, 2018) reported a

large  effect  of leaf  position  within the  canopy  on  leaf  respiration.  However,  little  to  no

information exists on  the magnitudes of leaf respiration in common tree species within the

Amazon basin, and their dependence upon position within the canopy. 

Given the great biodiversity of tropical forests (Cardoso et al., 2017; ter Steege et al.,

2020),  the  scarcity  of  leaf  respiration  measurements  in  the  tropics,  and  the  known high

sensitivity of leaf respiration to canopy position ((Griffin et al., 2002)REF), there is an urgent

need to  quantify  both  Rdark and the suppression of  respiration  that  occurs  in  the light.  In

particular,  we need in situ measurements to know how it varies across common tree species,

as a function of height within the forest.

 canopy.. 

Due to the great importance of the Amazon rainforest in the global climate context,

this study aims to quantify the biosphere-atmosphere CO2 fluxes resultingRdark and Rday from

leaf  autotrophic  respiration,; the  component  that  most  contributes  to  total  autotrophic

respiration, and is the most sensitive to environmental change (Chambers et al., 2004; Malhi

et al., 2014; Cavaleri et al., 2017). Thus, the questions that guided this work were: i) Does the

Kok method,  which  can be applied  in  the field,  compare  quantitatively  to  ¹³CO2 labeling

method?;  ii) What are the  Rdark and  Rday leaf respiration rates of common “Terra-firme” tree

species in the Central Amazon basin and what is the degree of light suppression?;  iii) Does

canopy position influence the variation of leaf respiration rates and light suppression? and iv)
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What  are  the  relationships  between  respiratory  rates  and  leaf  functional  traits?  In  the

laboratory we compared estimates of  Rdark and  Rday,  using two methods:; the  13CO2 method

based on a portable photosynthesis system coupled to a cavity ringdown isotopic analyzer for
13CO2 and 12CO2, and the Kok method. In the field, we used the Kok method to measure Rdark

and  Rday  in 26 trees occupying three different canopy positions including the canopy, lower

canopy, and understory where we also measured key leaf traits.

2 Material and methods

Determination of leaf dark adapted Rdark and Rday using the Kok and ¹³CO2 methods

For all  gas exchange measurements,  branches were cut and recut in a bucket with

water to restore hydraulic conductivity (Weerasinghe et al., 2014; Albert et al., 2018). For all

leaf gas exchange measurements, the leaf temperature was set (Tblock ) at 31 ± 1 ºC (Slot and

Winter, 2017) and the air flow rate through the chamber was maintained at 300 µmol s -1   (Crous et  
al., 2012; Weerasinghe et al.,  2014; Heskel and Tang, 2018)   and the reference CO2 concentration maintained at 400

ppm(Crous et  al.,  2012;  Weerasinghe et  al.,  2014;  Heskel  and Tang,  2018).  For  the Kok

method,  the  respiratory  CO2 flux  of  the  sampled  leaves  was  measured  using  a  portable

photosynthesis system (Li-6400XT, Li-Cor®, Lincoln, USA). Following the introduction of a

leaf into the chamber with 100 µmol m-  ² s-1   of photosynthetically active radiation (PAR), the

two IRGAs were matched.  Net photosynthetic assimilation values (Anet) were subsequently

recorded for PAR values of 100, 90, 80, 70, 60, 50, 40, 30, 20, 15, 10 and 5 µmol m -  ² s-  ¹ (with

IRGA matching before each recording). Following this, the light source was switched off (0

µmol m-  ² s-  ¹) and the leaf was allowed 10 minutes to acclimate in the dark before matching the

IRGAs and recording the dark adapted respiration rate (Rdark).  Due to the interactions that

occur  in  the  presence  of  light,  the  Kok  method  (Kok,  1948)  was  used  to  estimate  the

“apparent” respiratory rates in the light. The Kok method consists of determining Rday at low

irradiance, due to the "break" that occurs in the light curve near the light compensation point.

In this method, Rday is estimated as the intercept, on the "y" axis, of the net photosynthesis rate

as a function of PAR, at low light intensity. For each leaf, a linear regression using at least

three points between 5 and 20 PAR was performed to estimate Rday. With data from the dark

adapted measurement of Rdark and the “apparent” estimate of light respiration (Rday), was used

to calculate the light suppression, according to Equation 1:

5

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

9
10



Eq. 1.  S uppression (%)=[ ( Rdark−Rday )

Rdark ]∗100         

For  the  13  CO2 method  (Loreto  et  al.,  2001), two  modifications  were  made  to  the

portable photosynthesis system including 1) a 400 ppm atmosphere of 99% ¹³CO2 (Cambridge

Isotopes) was delivered to the leaf chamber and 2) a fraction (50 ml/min) of the air exiting the

leaf chamber was routed to a cavity ringdown isotopic analyzer for CO2 (G2131-i, Picarro)

which measured the concentration of ¹³CO2  and ¹²CO2  exiting the leaf chamber. This method

assumes that the leaf uses the ¹³CO2  atmosphere for photosynthesis with any ¹²CO2  detected

deriving from leaf respiration  (Loreto  et al., 2001). The experiment was carried out with a

tropical tree species in the family Chrysobalanaceae growing near the laboratory and exposed

to  natural  sunlight  for  6-7  hours  per  day.  To  compare  the  Kok  and  13  CO2 methods  for

determining  Rday,  Rdark,  and  the  degree  of  suppression  by  light  (%),  both  methods  were

performed on six different leaves from the same individual, but each on a different branch. 

Field Study Site

Field data of 26 trees was collected at the Tropical Silviculture Experimental Station

(E.E.S.T - ZF2), managed by the National Institute for Amazon Research (INPA), located

approximately 60 km NW of Manaus, Brazil.  The ZF-2 has an area of approximately 21,000

ha  adjacent  to  extensive  areas  of  undisturbed  tropical  forest.  Data  was  collected  in  a

permanent  plot  installed  in  1996,  known  as  North–South  transect  (2°35'40.3"S,

60°12'28.7"W), located at km 33 of the local road, covering an area of 5 ha (20m x 2,500m)

(Araújo et al., 2020). The predominant vegetation in the reserve is of the typetype of Dense

Tropical Rainforest of "Terra Firme" with a great diversity of woody and herbaceous species.

The North-South transect presents in the plateau areas a predominance of species belonging to

the families Lecythidaceae, Sapotaceae, Burseraceae, and Fabaceae. Among these families,

the most common species belonged to the genera Eschweilera, Pouteria, Protium, Swartzia,

and Inga (Carneiro, 2004). 

Tree Species selection in the field

We sampled 26 trees (Table 1), all located along the North-South Transect, between

200 and 400 meters, in plateau areas. Access to the canopy leaves was obtained by a tree

climber  who scaled trees with a pole pruner and removed a branch. Thus,  the trees were

selected taking into consideration: i) ecological aspects, with a focus on highly abundant tree
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species in the Amazon basin (Ter Steege et al., 2013; Cardoso et al., 2017) and ii) practical,

related to climber access to the individual’s branches. The classification of crown illumination

index was performed according to  (Clark and Clark,  1992). In the 26 individuals studied,

crowns were distributed in different classes (see Table 1). For analysis they eight trees were

classified in understory, nine in the lower canopy and nine in the canopy groups. The ones

with low, medium and high lateral light waswere associated to understory trees, the ones with

some overhead light are lower canopy and trees with full overhead light belong to the canopy.

Determination of leaf Rdark and Rday using the Kok method in the field

The  measurements  were  made  in  2019  during  three  different  field  campaigns,  in

June/July, September and November. Data was collected between 8 am and 2 pm Local Time.

The measurements were made using mature, fully expanded leaves with a good visual aspect.

A fully expanded leaf per tree was selected for each field campaign. Due to the method of

access  to  the  canopy,  the  orientation  for  obtaining  branches  was  not  standardized  and

branches were collected on positions North, South, East, and West of the crown.

Determination of leaf Rdark and Rday using the Kok and ¹³CO2 methods

For all gas exchange measurements, branches were cut and recut in a bucket with

water to restore hydraulic conductivity  (Weerasinghe et al., 2014; Albert et al., 2018).

For all leaf gas exchange measurements, the leaf temperature was maintained at 31 ± 1

ºC (Slot and Winter, 2017) and the air flow rate through the chamber was maintained at

300 µmol s-1  and the reference CO2 concentration maintained at 400 ppm (Crous et al.,

2012;  Weerasinghe  et  al.,  2014;  Heskel  and  Tang,  2018).  For  the  Kok  method,  the

respiratory  CO2 flux  of  the  sampled  leaves  was  measured  using  a  portable

photosynthesis system (Li-6400XT, Li-Cor®, Lincoln, USA). Following the introduction

of a leaf into the chamber with 100 µmol m-² s-1 of photosynthetically active radiation

(PAR), the two IRGAs were matched. Net photosynthetic assimilation values (Anet) were

subsequently recorded for PAR values of 100, 90, 80, 70, 60, 50, 40, 30, 20, 15, 10 and 5

µmol  m-²  s-¹  (with  IRGA matching  before  each  recording).  Following  this,  the  light

source was switched off (0 µmol m-² s-¹) and the leaf was allowed 10 minutes to acclimate

in the dark before matching the IRGAs and recording the dark respiration rate (Rdark).

Due to the interactions that occur in the presence of light, the Kok method (Kok, 1948)
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was used to estimate the “apparent” respiratory rates in the light.  The Kok method

consists of determining Rday at low irradiance, due to the "break" that occurs in the light

curve  near  the  light  compensation  point.  In  this  method,  Rday is  estimated  as  the

intercept, on the "y" axis, of the net photosynthesis rate as a function of PAR, at low

light intensity. For each leaf, a linear regression using at least three points between 5

and 20 PAR was performed to estimate Rday. With data from dark respiration Rdark and

the  “apparent”  estimate  of  light  respiration  (Rday),  was  used  to  calculate  the  light

suppression, according to Equation 1:

Eq. 1.  Suppression(%)=[ ( Rdark−Rday )

Rdark ]∗100          

For the  13CO2 method  (Loreto et al., 2001), two modifications were made to the

portable  photosynthesis  system  including  1)  a  400  ppm  atmosphere  of  99%  ¹³CO2

(Cambridge Isotopes) was delivered to the leaf chamber and 2) a fraction (50 ml/min) of

the air exiting the leaf chamber was routed to a cavity ringdown isotopic analyzer for

CO2 (G2131-i, Picarro) which measured the concentration of ¹³CO2 and ¹²CO2 exiting the

leaf  chamber.  This  method  assumes  that  the  leaf  uses  the  ¹³CO2  atmosphere  for

photosynthesis  with any ¹²CO2  detected deriving from leaf  respiration  (Loreto  et  al.,

2001).  The  experiment  was  carried  out  with  a  tropical  tree  species  in  the  family

Chrysobalanaceae growing near the laboratory and exposed to natural sunlight for 6-7

hours per day. To compare the Kok and 13CO2 methods for determining Rday,  Rdark,  and

the degree of suppression by light (%), both methods were  performed on six different

leaves from the same individual, but each on a different branch. 

Leaf traits

Leaves used for gas exchange measurements and others were collected and obtained

six discs of known diameter (1.7 cm). These were dried in an oven at 65  for 72 hours until℃

the constant mass was obtained and was calculated the leaf mass per area (LMA g m -²). For

leaf  nitrogen  and  phosphorus  content,  leaves  were  collected,  following  the  same  drying

process and subsequently the leaf samples were ground in a Wiley mill.  The nitrogen (N)

content was determined by the Kjeldahl method and the phosphorus content (P) obtained by

colorimetry  and  the  absorbance  readings  made  at  660  nm in  a  spectrophotometer  using

ammonium  molybdate  and  3%  ascorbic  acid.  For  nonstructural  carbohydrates,  the  leaf

samples were collected only in the first  campaign (June/July),  kept,  and transported for 3
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hours in a box with ice with a temperature between 0-4  to the laboratory in Manaus, Brazil℃

(consistent with guidelines from (Landhäusser et al., 2018)Landhausser et al. 2018). In the

laboratory, they were placed in microwaves for 90 seconds and dried in an oven for 72 hours

at  65 .  The processed leaf  samples  were ground in a ball  mill  and sent  to  the Pacific℃

Northwest  National  Laboratory  in  Washington  state,  USA  for  the  quantification  of  non-

structural carbohydrates including sugars, starch and total carbohydrates (NSC) as previously

described (Dickman et al., 2019; Zhang et al., 2021).

Data analysis

All statistical  analysis  was performed using R version 3.6.0 (R Development Core

Team, 2019) and IGOR Pro, version 6.37 (WaveMetrics, Inc., United States). A statisticalTo

compare the methods used to estimate  comparison of Rday, Rdark, and the degree of suppression

by  light  (%) obtained  from  the  Kok  and  13CO2 methods,  were   was  performed  a  non-

parametric t-test to compare the two methods (n = 4-6). In the field study, Tto verify the effect

of canopy position on the studied variables, we performed a Kruskal-Wallis test, considering

significant differences if p ≤ 0.05. To access the relations between Rdark and other variables

(i.e  LMA, N and P content,  sugars,  starch and total  NSC concentrations),  we used linear

regression analysis and a Spearman correlation matrix (Supplementary Figure S1) to see the

correlations for all the data (n = 77). All the results are presented as mean ± 95% CI. 

3 Results

Comparison between Kok and 13CO2 methods for estimating Rday and the degree of light

suppression

In order to validate the Kok method for the determination of Rday in the remote central

Amazon field site, an inter-comparison between Kok and 13CO2 methods for estimating  Rday

and the  degree  of  light  suppression  was  performed  at  the  National  Institute  for  Amazon

Research (INPA) campus in Manaus, Brazil by taking advantage of a cavity ringdown CO2

isotope spectrometer that we interfaced to the portable photosynthesis system supplied with
13CO2 (see Material and methods). Due to its proximity to the laboratory, we utilized a tree in

the  family  Chrysobalanaceae  and  observed  statistically  identical  mean  values  of  dark

respiration between the methods (p = 0.94, n = 6).  The mean values of  dark adapted  Rdark

anddetermined using the Kok and ¹³CO2 methods was 0.67 ± 0.17 and 0.68 ± 0.27 µmol CO2
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m-2 s-1 (95% CI), respectively (Figure 1A). Both Kok and ¹³CO2 methods also observed that

estimates of Rday were lower than Rdark (Figure 1B). The mean Rday values, determined by the

Kok method was 0.36 ± 0.17 µmol CO2 m-2 s-1 and the ¹³CO2 method 0.27 ± 0.03 µmol CO2 m-2

s-1. Thus, statistically identical mean values of Rday were observed between the methods (p =

0.73, n = 4). Finally, the percentage of leaf dark respiration suppression by light was also

statistically equal between the Kok and ¹³CO2 methods (p = 0.41, n = 4), with 44 ± 17% (Kok)

and 54 ± 17% (¹³CO2) (Figure 1C).

Effect of crown position on respiratory rates and degree of light suppression in a central

Amazon forest transect

Given the favorable comparison between the Kok and ¹³CO2 methods for estimation of

Rday and the light suppression of  Rdark, we utilized the Kok method to determine these leaf

respiratory rates in an established north-south forest transect with identified species in the

central Amazon. Figure 2 summarizes the leaf respiration measurements from 26 individuals

across 18 common species in the Amazon forest, and grouped according to canopy position

(understory, lower canopy, and canopy). The mean values of  Rdark observed among the 26

individuals ranged from 0.19 ± 0.04 µmol CO2 m-2 s-1  to 0.90 ± 0.26 µmol CO2 m-2 s-1  (95%

CI), whereas mean estimated values of  Rday using the Kok method showed reduced values

ranging from 0.01 ± 0.01 to 0.69 ± 0.27 µmol CO2 m-2 s-1. Thus, the light suppression of Rdark

ranged between 17 ± 6% to 95 ± 4%. Moreover, the pattern of reduced Rday relative to Rdark

was observed for each of the 26 individuals. Overall, a general pattern emerged that higher

rates  of  Rdark and  Rday were  associated  with  lower  values  of  light  suppression  of  Rdark.

Moreover, lower rates of Rdark and Rday were associated with higher values of light suppression

of Rdark. Relative to canopy species, understory species tended to have lower rates of Rdark and

Rday but higher values of light suppression of Rdark.

Figure 3 shows the mean Anet versus PAR leaf  gas exchange response curves  for

species in the canopy (Figure 3A), lower canopy (Figure 3B), and understory (Figure 3C).

All  three  canopy positions  showed the  classic  Kok effect  where  a  sudden change  in  the

gradient of the initial slope of net photosynthesis (Anet) occurred at low PAR intensities (0-15

µmol m-2 s-1) which corresponded to the light compensation point (1-6 µmol photons m-2 s-1).

When the mean rate of Rdark and estimates of Rday and the percent light suppression of Rdark was

obtained  for  each  of  the  three  canopy  positions,  a  large  effect  of  canopy  position  was
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observed. Rdark was the highest in canopy trees (0.50 ± 0.07 µmol of CO2 m-2 s-1) and lowest in

the understory trees  (0.25 ± 0.03 µmol of CO2 m-2 s-1)  with the lower canopy trees  with

intermediate values of Rdark (0.36 ± 0.04 µmol of CO2 m-2 s-1) (Figure 3D). A similar pattern

was observed for estimates  of  Rday using the Kok method with canopy trees  showing the

highest rates (0.32 ± 0.07 µmol of CO2 m-2 s-1), understory trees showing the lowest rates

(0.10 ± 0.02 µmol of CO2 m-2 s-1), and intermediate rates in lower canopy trees (0.18 ± 0.03

µmol of CO2 m-2 s-1) (Figure 3E). Thus, there was a decrease in both Rdark and Rday with depth

into the canopy. In contrast, the light suppression of Rdark showed a different trend with respect

to canopy position with canopy trees showing the lowest values (37 ± 10%), understory trees

showing the highest values (68 ± 9 µmol of CO2 m-2 s-1), and lower canopy trees showing

intermediate  values (50 ± 5 µmol of CO2 m-2 s-1)  (Figure 3F).  Thus,  while  Rdark and  Rday

decreased with depth into the forest canopy, the light suppression of  Rdark increased. These

trends were found to be statistically significant (p < 0.001, n = 74 - 7701). 

Relationships between respiratory rates and leaf traits

While tThe mean values of leaf mass area (LMA) for canopy trees decreased from a

maximum inwere 99 ± 5 g m-2   in canopy trees(99 ± 5 , 88 ± 4 g m-2 in lower canopy trees and

86 ± 2 g m-2 in the understory trees. There werethis trend was not no statistically difference (p

= 0.069, n = 77) between the groups (Supplementary Figure S2A). For N and P leaf content

(Supplementary Figures S2 B,C), no clear variation with canopy position was observed (p =

0.29; p = 0.28, n = 77).  We also observed no statistical difference in concentration of sugars

(p = 0.13, n = 26) and total NSC (p = 0.19, n = 26; Supplementary Figures S2D-F). Also,

for starch there was no statistical difference between the groups (Supplementary Figures

S2E; p = 0.47, n = 26), but the mean values for the canopy (0.68 ± 0.19%) was higher when

compared to the lower canopy (0.44 ± 0.11%) and understory (0.40 ± 0.14%).

The relationship between Rday and Rdark (Figure 4A) shows a strong positive correlation

(r²  = 0.76,  p < 0.001).  The  Rday x Light  suppression had a different  trend and significant

relationship (p < 0.001), with a strong explanation (r² = 0.59, p < 0.001), demonstrating that

higher values of daytime respiration have lower values of light suppression (Figure 4B). 

When assessing the relationship between Rdark and leaf mass per area (LMA), we found

26% of explanation (p < 0.001) (Figure 5A). For Rdark and N content the relationship is non-

significant (r² = 0.01, p = 0.37; Figures 5B, C) while the relationship between Rdark and P is
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significant  (r²  =  0.18,  p  <  0.001).  In  addition,  no  significant  correlations  were  observed

between  Rdark and any of the components of NSCs (Figures 5D-F),  including sugars (r² =

0.053, p = 0.26), starch (r² = 0.00053, p = 0.91), and total NSC (r² = 0.047, p = 0.29).

4 Discussion

           Here  we  observed  that  using  Kok  method  we  can  have  an  accurate  estimate  of

apparent light respiration when compare with  13  CO2 labelling (Figure 1). It is important to

highlight in this case that 13  CO2 labelling also does not consider the internal recycling of CO2.

In the field work, our results highlight the influence of the crown position in the rates of Rday

and Rdark. The physiological variables related to  photosynthesis and respiration in the dark and

in  the  light,  differ  according  to  the  crown  position  (Figures  3D,  E).  In  addition  to

physiological variables, light suppression was also influenced by crown position (Figure 3F),

with higher values in the understory and lower values in the canopy trees.  Rdark has a strong

relationship with Rday (Figure 4A) and medium correlation with leaf mass area (Figure 5A),

which indicates that the higher respiration is associated with higher LMA. Trees in the canopy

have higher LMA (Supplementary Figure S2A), which may be associated with the plant's

strategies for using light. In this study, no relationships were found for N (Figure 5B) and

carbohydrates  (Figures  5  D-F).  Otherwise,  relationships  with  P  content  were  significant

(Figure 5C). All these results are very important and have great implications on dynamics

models of carbon assimilation in tropical forests.

Crown position and the effect on leaf respiration and light suppression of Rdark

Leaf respiration is affected by the availability of light (Meir et al., 2001; Kosugi et al.,

2012;  Asao et  al.,  2015;  Araki  et  al.,  2017),  as  the  microenvironment  along  the  vertical

gradient of the forest is different, especially when comes to temperature and light (Mulkey et

al.,  1996;  Marenco  et  al.,  2014;  Rey-Sánchez  et  al.,  2016).  The  need  for  light  varies

continuously between species and influences their life strategies, directing the investment of

their resources, whether for growth or survival  (Poorter and Bongers, 2006). These results

demonstrate the importance of the vertical gradient in the physiological characteristics of the

leaves (Kosugi et al. 2012, Weerasinghe et al. 2014, Heskel and Tang 2018).

 The relationship between higher respiration rates and the availability of light may be

related to a higher demand for energy for possible repairs due to photodamage (Weerasinghe

et al., 2014; Santos et al., 2018). In contrast, the lower values in the understory, indicate that
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these trees do not require as much energy. This promotes a positive carbon balance under

light-limited conditions, a typical characteristic of understory species that invest in survival,

waiting for the moment  of increased resources  to invest  in growth  (Poorter  and Bongers,

2006;  Lambers  et  al.,  2008).  Light  suppression  of  Rdark is  higher  in  the  understory  trees

(Figure 3F). However, most studies have not observed differences in light suppression when

assessing the effect of upper and lower position of the same canopy (Weerasinghe et al. 2014,

Heskel and Tang 2018). This divergence between studies can be explained using different

species in different crown positions, since the studies mentioned worked with the intraspecific

variation of the individuals.

The rate of light suppression of respiration and the canopy position had an different

behavior when compared to respiratory rates in light and in the dark. Suppression is higher on

species  in  the understory and is  lower in species  in the canopy (Figure 3F; Figure 4B).

Respiratory activity throughout the day is regulated by the demand for energy and structural

carbohydrates  during  the  photosynthesis  process  (Lambers  et  al.,  2008;  Tcherkez  and

Ghashghaie, 2017; Collalti et al., 2019). Thus, suppression rates are lower in species that have

greater  metabolic  activity.  Higher  irradiance  results  in  greater  demand  for  respiratory

products, such as ATP, NADH, and carbon skeletons, reflecting higher rates of respiration in

the  presence  of  light  (Weerasinghe  et  al.  2014),  and this  also  might  vary  in  function  of

temperature  (Way et al., 2018). To elucidate which factors influences the variation in light

suppression,  it  is  necessary  to  know  the  effect  of  temperature  and  irradiance  on  leaf

respiration (Atkin et al., 2000; Lambers et al., 2008; Way et al., 2015, 2018).

The rate of leaf respiratory inhibition can vary under conditions of water availability

(Crous et al., 2012; Turnbull et al., 2017) and depending on the age of the soils, being higher

in  old  and  P-deficient  soils  (Atkin  et  al.,  2013).  In  temperate  forests,  the  inhibition  of

respiration  varies  seasonally  (Heskel  et  al.,  2014;  Heskel  and Tang,  2018),  as  they  have

defined seasons.  In addition,  apparent  suppression may vary depending on the method of

estimating daytime respiration  (Way et al.,  2018; Keenan et al.,  2019). Knowing the light

suppression  of  respiration  in  different  ecosystems  allows  inferring  carbon  use  efficiency

(CUE).  However,  specific studies  are  necessary,  since  suppression  varies  in  each type  of

ecosystem (Atkin et al., 2013; Turnbull et al., 2017).

In the context of climate change, a higher occurrence of extreme events is expected,

which  will  cause  an  increase  in  the  frequency  of  natural  disturbances  in  the  forest  and,
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consequently, might benefit individuals from the understory, promoting and an increase in

their respiratory rates, as evidenced by this work. Emission of respiratory CO2 is higher in

canopy trees being two times higher than those in the understory. Species in the understory

have slower growth, which is why they invest more in the carbon economy, whereas canopy

species  have  more  light  and  higher  temperatures  available,  respires  more,  emitting  more

amount of atmospheric CO2 through the forest. 

           Although the Amazon rainforest is of great importance for the global carbon cycle, the

quantification of light suppression of respiration in this biome is still limited. Inhibition of leaf

respiration  strongly  influences  the  respiration  estimates  of  the  ecosystem  and  when  not

considered in the models, they cause overestimations and, consequently, underestimate the

NPP (Kroner and Way, 2016; Wehr et al., 2016; Keenan et al., 2019). Studies that estimated

autotrophic respiration of the ecosystem in the Amazon rainforest  (Chambers et al.,  2004;

Malhi et al., 2014), considered the inhibition of light respiration through correction factors

obtained in studies not developed in the Amazon.

Relationships between respiratory rates and leaf traits

Canopy  trees,  which  have  a  relatively  exposed  canopy,  have  higher  values  of

respiration,  leaf  mass  per  area,  and nitrogen rates  (Asao et  al.,  2015;  Araki  et  al.,  2017;

Rowland et al., 2021). Those individuals in the canopy invest in a smaller area and higher

mass to protect them from damage by excessive irradiance,  while those in the understory

invest in a specific leaf area for light interception (Wright et al., 2004; Poorter and Bongers,

2006; Lambers et al., 2008). Respiration in the dark correlates with the levels of phosphorus

(Figure  5C).  Respiratory  substrates  participate  in  nitrogen  assimilation  pathways  and

phosphorus,  present  in  the  ATP molecule,  the  main  respiratory  product  (Tcherkez  et  al.,

2017a; Tcherkez and Ghashghaie, 2017).

Levels of nitrogen and phosphorus prove to be important for improve modeled carbon

fluxes and dynamics  in the forest  (Zhu et  al.,  2019) and also can help to  understand the

response of plants to global warming (Tang et al., 2018). In this study no relationships were

found for N (Figure 5B), but for P we found a significant relationship (Figure 5C). A similar

result was observed by (Meir et al., 2001). It is known that Amazonian soils are limited by

this  nutrient  (Quesada  et  al.,  2010),  and  this  nutrient  is  linked  to  Rdark through  multiple

processes, is essential for the formation of proteins, nucleic acids, phosphate trioses and ADP
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phosphorylation (Tcherkez and Ghashghaie, 2017). On the respiratory process it can restrict

glycolysis and function of the electron transport chain  (Atkin et al., 2015; Rowland et al.,

2017; Tcherkez and Ghashghaie, 2017).

The relations of  Rdark and N and P levels are higher in areas with soils with lower P

concentration (Crous et al., 2017; Rowland et al., 2017). This can be explained by the high

respiratory cost for investment in leaf nutrients. Saturated photosynthesis is less sensitive than

respiration at low concentrations of P in the soil  (Crous et al., 2017; Rowland et al., 2017).

However, (Meir et al., 2001), when comparing the behavior of dark leaf respiration in the Jaru

forest  in  Rondônia  and  in  a  forest  in  Cameroon,  observed  that  in  Brazil  (Jaru),  LMA

explained 20% of the variation of Rdark. In Brazil, the best predictor variables were LMA and

P content. The relationships between the main characteristics of the leaf (N, P, and LMA or

SLA) with respiration shows a significant biogeographic variation (Atkin et al., 2015; Crous

et al., 2017; Rowland et al., 2017).

Although  some  studies  report  a  strong  relationship  between  respiratory  rates  and

nitrogen content, the characteristics of the study site, such as soil fertility, must be considered

(Crous  et  al.,  2017;  Rowland  et  al.,  2017).  As  for  respiration  responses,  biogeographic

variation is large, which indicates that soil fertility has a strong influence on these responses,

being inversely proportional to the availability of P in the soil (Atkin et al., 2015; Crous et al.,

2017; Rowland et al., 2017). These results are relevant to the modeling of the carbon cycle in

tropical forests, as they support the hypothesis that nutrient limitations affect photosynthetic

and respiratory rates (Lambers et al., 2008; Peng et al., 2021) at different scales.

Non-structural carbohydrates are important for plant metabolism since they provide

carbon skeletons for plant metabolism (e.g growth, reproduction, protection, defense) and are

substrate for respiration process  (Hartmann and Trumbore, 2016; Landhäusser et al., 2018;

Dickman et al., 2019). Here in this study, we found no relationship between soluble sugar

concentration and respiratory rates (Figure 5D), where higher respiratory demand shows a

lower concentration of sugars. For starch concentrations, the relationship with respiration was

also not evident  (Figure 5E).  Asao and Ryan, (2015) report that changes in carbohydrate

levels did not directly affect the responses of photosynthesis and respiration in trees under

branch girdling. However, (Collalti et al., 2019) state that the variation in plant respiration is

dependent on the demand for substrates, demonstrating that respiratory rates vary depending

on the need of the plant, varying between photoassimilates products or investment in biomass.
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The  variation  within  canopy  position  did  not  affect  sugar,  starch  and  total  NSC

concentration (Supplementary Figures S2 D-F). Leaves more exposed to sun usually have

higher levels of soluble sugars when compared to shade leaves  (Weerasinghe et al., 2014;

Dayer et al., 2021). Starch is a reserve carbohydrate and not a fast consumption like sugars

(Dickman et al. 2019), this perhaps can explain why there is higher concentration of starch

and lower concentration of sugars in canopy trees. Other explanation is because our samples

were collected during the early morning and because leaf NSCs peak of accumulation occurs

at midday (Dickman et al., 2019; Gersony et al., 2020) we did not verify the effect of canopy

position on NSCs concentrations.

5 Conclusion

Light suppression of leaf respiration varies according to the degree of canopy position.

So, trees from the canopy had higher rates of light and dark respiration than trees from the

understory. In the opposite light suppression is higher in the understory and lower on canopy

trees. In addition, leaf respiration shows a positive and strong relationship with LMA and P

content.  These  changes  in  physiology  as  a  function  of  light  availability  have  a  great

importance in carbon assimilation and can influence drought responses (Rowland et al., 2021).

When the suppression is not considered in the models, it may cause an underestimation of

NPP.  Furthermore,  knowledge  about  the  impact  of  canopy  position  on  inhibition  of

respiration will allow the refinement of the parameterization of climate models, as canopy

trees  have  lower  suppression  and,  consequently,  have  higher  exchange  of  CO2 with  the

atmosphere than the understory.
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Figures:

FIGURE  1. Comparison between Kok and ¹³CO2 method for estimating leaf respiration
rates in the dark (Rdark, A); in the light (Rday, B), and the suppression of Rdark (Suppression, C).
The line inside the box indicates the median of the data, the colored bar represents the 50%
variation of the data, the vertical lines represent the 90 % of the variation, and the square point
inside the colored box represents the mean. (n =4-6). The test used was non-parametric t-test.

24

738

739

740

741

742

743

744

745

746

747

748
749
750
751
752

753

754

755

756

757

758

759

47
48



25

FIGURE 2. Respiration rate measured in the light (Rday, brown bars) and in dark adapted leaves (purple bar), and light suppression (black
point) for each individual studied. The number after the specie name represent the number of individuals per specie studied. Values are mean ±
standard error (n = 2-3). Data are organized in function of crown position, uUnderstory, lLower canopy and cCanopy. 
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27

FIGURE 3. Light response curve showing the Kok effect for each class of crown position. A - canopy, B - lower canopy, and C - understory,
showing linear regression for points above the abrupt change in the quantum yield (QY) of net CO2 assimilation. Dotted lines show points 5 to
20, that was used to obtain apparent light respiration (below), estimated using the Kok method. Data are averages of leaves measured during
2019 in three different campaigns. Points are the average, and the vertical line represents the standard error. (understory, n = 24; lower canopy, n
= 27; canopy, n = 26).  The second part of the figure represents boxplots of D - respiration rates in the dark (Rdark), E - apparent respiration rates
in the light (Rday), and F - apparent suppression of light respiration relative to the dark. The line inside the box indicates the median of the data,
the colored bar represents the 50% variation of the data, the vertical lines represent the nineteenth percent of the variation, and the square point
inside the colored box represents the mean (understory, n = 24; lower canopy, n = 27; canopy, n = 24-26). p values are shown for the non-
parametric, Kruskal-Wallis test.
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FIGURE  2. Respiration rates in the light as a function of respiration in the dark (A) and
respiration  in  the  light  as  a  function  of  light  suppression  (B).  The  data  come  from the
measurements collected in understory (blue), lower canopy (green), and canopy trees (red), n
= 74-76.
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FIGURE 5 Respiration rates in the dark as a function of LMA (A), nitrogen (B), phosphorus
(C), (n = 766). Sugars (D), Starch (E) and Total NSC (F), (n = 26). The data come from the
measurements collected in understory (blue), lower canopy (green), and canopy (red) trees.
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TABLE  1. List  of  the  26  individuals  studied  and  their  corresponding  scientific  name,
diameter at breast height (DBH), total height and crown illumination index (Clark and Clark,
1992)

Scientific name Family DBH
(cm)

Height
(m)

Crown
index*

Eschweilera wachenheimii (Benoist)
SandwithProtium strumosum Daly LecythidaceaeBurseraceae 15.826.5 1317 23

Eschweilera wachenheimii (Benoist)
SandwithEschweilera wachenheimii (Benoist)

Sandwith LecythidaceaeLecythidaceae 23.115.8 1513 22
Eschweilera wachenheimii (Benoist)

SandwithEschweilera wachenheimii (Benoist)
Sandwith LecythidaceaeLecythidaceae 12.523.1 1215 22

Protium hebetatum DalyEschweilera
wachenheimii (Benoist) Sandwith BurseraceaeLecythidaceae 13.612.5 13.512 22
Ocotea sp.Licania caudata Prance LauraceaeChrysobalanaceae 14.529.5 1122.5 24

Protium hebetatum DalyEschweilera truncata
A.C.Sm. BurseraceaeLecythidaceae 1224.5 9.520 23

Protium sp.Inga cordatoalata Ducke BurseraceaeFabaceae 12.518.7 11.718 24
Pouteria guianensis Aubl.Protium hebetatum

Daly SapotaceaeBurseraceae 10.413.6 813.5 22
Protium strumosum DalyInga umbratica

Poepp. & Endl. BurseraceaeFabaceae 26.519.5 1721 34
Eschweilera truncata A.C.Sm.Ocotea sp. LecythidaceaeLauraceae 24.514.5 2011 32
Ocotea percurrens A. VicentiniProtium

hebetatum Daly LauraceaeBurseraceae 12.312 149.5 32
Pouteria guianensis Aubl.Swartzia corrugata

Benth. SapotaceaeFabaceae 14.217 1519 34
Ocotea matogrossensis Vatt.Ocotea percurrens

Vicentini LauraceaeLauraceae 1612.3 1714 33
Licania macrophylla Benth.Pouteria sp. ChrysobalanaceaeSapotaceae 14.824.5 15.521 34

Swartzia panacoco (Aubl.) R.S.
CowanTachigali myrmecophyla (Ducke)

Ducke FabaceaeFabaceae 15.117.6 1723 34
Inga umbratica Poepp. & Endl.Pouteria

guianensis Aubl. FabaceaeSapotaceae 14.514.2 16.515 33
Licania caudata PranceSwartzia panacoco

(Aubl.) R.S. Cowan ChrysobalanaceaeFabaceae 11.916 14.520 34
Licania caudata PranceOcotea matogrossensis

Vatt. ChrysobalanaceaeLauraceae 29.516 22.517 43
Inga cordatoalata DuckeLicania macrophylla

Benth. FabaceaeChrysobalanaceae 18.714.8 1815.5 43
Inga umbratica Poepp. & Endl.Swartzia

panacoco (Aubl.) R.S. Cowan FabaceaeFabaceae 19.515.1 2117 43
Swartzia corrugata Benth.Inga umbratica FabaceaeFabaceae 1714.5 1916.5 43
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Poepp. & Endl.
Pouteria sp.Protium sp. SapotaceaeBurseraceae 24.512.5 2111.7 42

Tachigali myrmecophyla (Ducke)
DuckePouteria retinervis T.D.Penn FabaceaeSapotaceae 17.610.9 2316.7 44

Swartzia panacoco (Aubl.) R.S. CowanLicania
caudata Prance FabaceaeChrysobalanaceae 1611.9 2014.5 43

Pouteria retinervis T.D.PennEschweilera
tessmannii R.Kunth SapotaceaeLecythidaceae 10.911.5 16.717 44

Eschweilera tessmannii R.KunthPouteria
guianensis Aubl. LecythidaceaeSapotaceae 11.510.4 178 42

*Classification according to Clark & Clark (1992).

Supplementary data

FIGURE S1. Matrix of correlation between respiration in the light and leaf traits. The “x”

symbol represents correlations with p-value ≥ 0.05.
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Figure S2
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FIGURE S2. Box plots of leaf mass area (A), nitrogen (B), phosphorus (C), (understory, n =
24;  lower  canopy,  n  =  27;  canopy,  n  =  26).  Sugars  (D),  starch  (E)  and  total  NSC (F),
(understory, n = 8; lower canopy, n = 9; canopy, n = 9). The line inside the box indicates the
median of the data, the colored bar represents the 50% variation of the data, the vertical error
lines represent the nineteenth percent of the variation, points are outliers (single leaves) and
the square point  inside the colored box represents  the mean.  The test  used was the non-
parametric, Kruskal-Wallis.
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FIGURE S3 (Graphical abstract):  resume of the main findings of this work. Respiration

rates are higher in trees from the canopy than trees in the understory. But the light suppression

had an opposite behavior, being higher in the understory trees. This may happen because of

higher metabolic activity in sun exposed leaves.  
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