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The propositional or rationalist Bayesian approach to learning is contrasted with an interpretation of 
causal learning in associative terms. A review of the development of the use of rational causal models 
in the psychology of learning is discussed concluding with the presentation of three areas of research 
related to cause-effect learning. We explain how rational context choices, a selective association 
effect (i.e., blocking of inhibition) as well as causal structure can all emerge from processes that can 
be modeled using elements of standard associative theory. We present the auto-associator (e.g., Baetu 
& Baker, 2009) as one such simple account of causal structure. 

Newton’s (1687/1934) laws of motion and gravitation describe a world 
that is deterministic and rule-based. Apples fall with a regularity and obedience to 
Newton’s law that would be the envy of any human law-maker. Post-Newtonian 
physics is still rule-based, although the rules are now stochastic. Newton deduced 
his laws but all living organisms have evolved mechanisms that internalize these 
rules. Learning is a mechanism that allows internal adjustments to the physical 
rules of the environment. Consequently an animal’s behavior can be described by a 
series of rules that reflect laws of the external physical world or at least 
transformations or approximations of them. 

Rules by their nature have a structure and, as such, adaptations to the rules 
in the world will appear on the surface to involve propositional or inferential 
processes even when no such processes are involved. Take a simple classical 
conditioning experiment from Pavlov (1927), where a metronome is regularly 
followed by food powder. The rules in the world are: if metronome then food, if no 
metronome then no food. The well-trained dog will come to salivate in the 
presence of the metronome. In addition to the world’s rule about food, the dog has 
additional rules and inferences it must make. It must represent some version of the 
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following rule:  If I eat food then, in the interests of better digestion (homeostasis), 
I had better salivate; however, because the food regularly follows the metronome, I 
should prepare for the food by salivating during the metronome and refrain from 
salivating in the absence of the metronome.

Ethologists might call this description of these rules a functional analysis 
of the behavioral system but, for our purposes, one only need consider that it 
describes an adapted sequence of physical rules in the world, although some rules 
are outside and others are inside the animal. For psychology, there are three major 
issues that need to be addressed. First, which rules in the world does the animal 
internalize and how closely does its behavior map onto these rules? Second, how 
and at what level of abstraction does the animal internalize these rules? Third, how 
are these rules instantiated in the biology of the animal? These three questions also 
reflect three levels of analysis of behavior. There has been a long friction in animal 
learning between these levels of analysis, both concerning which is most important 
and what should be the content of the levels (e.g., Murphy, Mondragon, & 
Murphy, 2008). A similar friction exists in other areas of study. In vision, Marr 
(1982) identified what he called the computational, algorithmic and 
implementation levels of analysis. The computational level defines the rules that 
describe the organism’s response to the events in the world. For example, it might 
report a visual illusion and this might be a ruled based phenomenon. The 
algorithmic level of analysis for instance might involve arguing that form vision is 
a consequence of Fourier Transformations of the visual world (Cornsweet, 1970). 
Finally, the implementation describes the neural basis for these abilities, for this 
paper, we are only interested in the first two levels and will leave the physiological 
implementation to one side. 

Some learning psychologists have even asked if it is legitimate to go 
beyond the first level of analysis. Radical behaviorists, led by Skinner, questioned 
whether “theories” or algorithms were useful. In Skinner’s, often maligned, “black 
box” approach, psychologists were entreated to only consider the inputs (stimuli) 
and the outputs of the system (responses) and the mathematical rules that link 
them. Both stimuli and responses could be very broadly defined. Although this 
approach was often, perhaps unfairly, criticized (e.g., Chomsky, 1959; Fodor & 
Piattelli-Palmarini, 2010), it has stood the test of time. Herrnstein’s (1961) 
matching law is an example of a modern instantiation of this approach and it has 
considerable generality (e.g., Koehler & James, 2009). An animal’s choice of two 
(or more) alternatives is determined by the proportion or ratio of economic returns 
connected to the alternatives. Clearly this is a description about rules or 
contingencies in the world (see also Murphy et al., 2008). Two or more inputs 
determine the output of the system. Like all “rules,” this can be written in 
propositional and even inferential form, even if some consequences might not be 
strictly rational. Radical behaviorists were interested in what the animal computed 
and not in the internal mechanism or algorithm from which this computation might 
emerge.
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Some Background: The North American Behaviorists

In contrast to radical behaviorism a number of other traditions in animal 
learning did accept the second, algorithmic, level. They also foreshadow the 
comparison between the associative and propositional classes of explanations of 
learning that we will discuss further on. Hull, Spence, and Guthrie are 
representative of one camp and Tolman the other. Hull was a stimulus-response (S-
R) psychologist. He and others believed that goal directed behavior could be 
understood by claiming that animals formed associations between stimuli and 
responses. These associations were fueled by the temporal order, timing and 
motivational significance of the stimuli. S-R links could be strengthened by 
rewards (reinforcement). In modern language, Hull believed that the goal-directed 
nature of behavior, and hence expectations, were an emergent property of these 
associative processes. 

Goal directed behavior is interesting because it involves a quest for a thing 
that is not present in the here and now. It is based on an expectation of the future. 
And a materialist theory involving S-R associations and reinforcement has no 
direct representation of expectations of future events (see Dickinson & Balleine, 
1994). This begs the question:  What causes the first step down a maze and fills the 
gap between it and the expected reward? To solve this conundrum, Hull (1943) 
called upon the processes of secondary reinforcement and S-R associations. An 
animal learned to run down a maze to get food through the process of secondary 
reinforcement strengthening chains of S-R associations between stimuli (including 
those internal to the animal) along the maze and, rather molecular, responses, 
presumably steps down the maze, that have been associated with them. When an 
animal first learns to run down the maze, entering the goal box is rewarding 
because food is immediately available and this reward both strengthens the 
tendency to approach the reward but also is paired with stimuli in the maze that are 
present when the reward is encountered, thus giving them value. These stimuli 
themselves become rewarding so “acquiring” them rewards approach responses to 
them. They have a dual role because they also elicit responses through S-R 
associations. This process is mediated by Hull’s anticipatory goal responses and 
goal stimuli (rg and sg). These are an amalgam of the initially consummatory 
responses and their feedback. These intervening variables provide a formal 
structure to mediate the expectations in the maze and help generalize initial goal 
directed behavior throughout the maze and distinguish it from Skinner’s simple 
chaining account. Thus an animal that has learned to run down a maze for food 
takes its first step down the maze not because it is thinking about future food, but 
because the first stimulus in the maze generates a step (through an S-R bond) that 
takes it to the second stimulus that itself, through reinforcement, strengthens the 
initial bond and so on. The rule in the world that describes goal directed behavior –
There is food at the end of the runway so I had better run down there and get it! –
has emerged from a simple associative process. The Grice box experiment was 
designed to test this hypothesis (Hughes, Davis, & Grice, 1960). Its rationale was 
to determine if animals could tolerate a delay of reinforcement for choice behavior 
when the chain of responses and stimuli was broken or made ambiguous. And, of 
course, they could not. Goal directed choice behavior could only develop over very 
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brief delays. Longer delays were mediated by these immediate reinforcement 
mechanisms rather than an appreciation or expectation of the delayed reward.

Tolman (1932, 1948) took another tack and argued that expectations were 
not something that needed to be explained, rather they were fundamental 
primitives of his explanations of goal directed behavior. That is to say, the rule in 
the world called goal directed behavior was internalized within the animal and was 
itself an explanation of behavior rather than a behavior that need be explained. To 
demonstrate the failings of the S-R explanation of goal directed behavior, he 
devised several experiments directly testing the notion that expectation was a 
direct consequence of secondary reinforcement and immediate S-R associations. 
His blocked path experiment illustrates his approach (Tolman & Honzik, 1930). 
The experiment was done in a maze that had three separate paths to the goal each 
longer than the other. A schematic diagram of this maze is shown in Figure 1. 
Once animals were trained in the maze and had experience with all three arms, he 
blocked either the shortest path to the goal (Block A in Fig. 1) or the two shortest 
at a common point (Block B). The rationale rule system in the world for this maze 
was – If there are no blocks then I should choose the shortest path; If I discover 
the shortest path is blocked then I should choose the medium length path; If I 
discover the two shortest paths are blocked then I should switch immediately to the 
longest path. Interestingly, the sg-rg mechanism has little trouble obeying or 
generating the first two rules. Because the string of secondary reinforcers and S-R 
associations grows longer as the path becomes longer, the strength of the 
association that causes the animal to take its first step down an arm, and hence 
choose an alternative, is stronger for the shorter arms. So the animal originally 
(and rationally in the world) chooses the shortest arm. Once he abandons that arm, 
presumably through extinction, he will be drawn down the second longest arm. 
Thus the first two parts of the rules for goal directed behavior have emerged from 
S-R theory without recourse to an expectations or thoughts about future events. At 
this level the theory has provided an explanation of expectancy. However, S-R 
theory also predicts that the animal should choose the second longest arm, 
regardless of whether the shortest or the two shortest arms are blocked, because 
only the sg-rg associations in the chosen short path are extinguished. It is well 
known that Tolman’s rats behaved as if they had an appreciation of the overall 
structure of the maze because those for whom both shorter arms were blocked 
were more likely to directly switch from the shortest to the longer, unblocked, 
path. 
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Figure 1. Diagram of the blocked path maze used by Tolman and Honzig (1930).

This experiment is relevant to our considerations because it reveals several 
enduring features of the analysis of cognitive learning systems. First, it shows how 
quite complex and “rational” behavior can emerge from a system that does not 
have cognitive representations of goal directed behavior. S-R psychology does not 
have expectations or an appreciation of the overall structure of the environment or 
a particularly complex planning system built in. It is parsimonious and these 
interesting features emerge from it. This very parsimonious system is “correct” on 
two of its three choices. Second, the alternative position to simple associationism 
is often couched in propositional or inferential terms. When this is done it is not 
clear if it is being claimed that there is a propositional machine or actor inside the 
organism that is doing this rule-based reasoning. That is, is this a propositional 
algorithm? Or is it just a description of how the animal’s behavior maps onto 
certain rules of the world? If so an algorithm for how this is done must be 
developed. Tolman held the former position but it is not always so clear with 
others. Third, it is hard to disconfirm these propositional theories, because, like 
many such systems, they depend on the premises. If an animal fails to switch 
immediately to the longest path this may be because S-R theory is correct, and it is 
being dragged around the world by fractional anticipatory goal stimuli. Equally 
this might happen because the rat has not developed an appropriate appreciation of 
the maze (called a cognitive map by Tolman, 1948), and thus simply made a 
mistake. Depending on the operator’s assumption, a propositional system can 
either act rationally or not based on the premises, but this in no way disconfirms 
the propositional mechanism, unless, of course, the theorist clearly specifies and 
fixes the underlying premises (see also Mitchell, De Houwer, & Lovibond, 2009). 
In these experiments this is difficult to do and thence often leads to circularity. The 
behavior confirms the premises and the propositional account. If the animal fails, 
then the premises may be different and thus the propositional account is still 
confirmed. Following the work we have just described came the cognitive 
revolution that rejected many of the tenets of traditional North American 
behaviorism or associationism.
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Brewer and the Cognitive Revolution

One consequence of the cognitive revolution was to focus conditioning 
research on the representational questions that the algorithmic level analysis might 
answer. At least partly, this approach was inspired by readers of Chomsky’s (1959) 
review of Skinner’s Verbal Behavior (1957), which argued that the traditional 
associative approach was impoverished and even circular (see also Fodor & 
Piattelli-Palmarini, 2010). For instance, Brewer (1974) argued that conditioning is 
not a mechanistic bottom up process driven directly by associations and 
reinforcement; rather, in humans at least, it is always cognitively penetrable. While 
it is easy to quibble with his characterization of associationism, the important point 
is that there is a great deal of research supporting his position. There is a strong 
prima fascia case for his position. In simple language, the notion of cognitive 
penetrability is that all conditioning represents an internalization of the rules of the 
conditioning experiment. For example, if a person learns an eyeblink response, she 
does so because she learns the CS-US rule. And if asked an appropriate question 
she can usually report the rule and behave as if she has internalized it as a 
proposition and make inferences from it. There is a great deal of research on this 
point, but the general theme can be understood with two examples. Brewer pointed 
out that, in many experiments, only some of the people develop a conditioned 
response. Interestingly, those people who have developed the response are much 
more likely to be able to report the rule (e.g., tone is followed by shock and light 
not) than those who have not. This is consistent with the claim that conditioning 
occurred because they internalized the propositional rule and that that rule is 
available to them. A second finding is also interesting. It seems that a well-
conditioned participant, just like a rat, can have her responding extinguished. 
However, extinction can often be established by simply informing the person that 
the shock will no longer be delivered. Disconnecting the electrodes is even more 
effective. This again implies that the behavior is driven at the time of the test by a 
propositional inference – If tone then shock, so I should blink. However the 
premise is changed by informing the participant of the absence of shock leading to 
a new more cheerful inference.

There are of course many possible objections to the notion of cognitive 
penetrability. Cognitive representations, including awareness, are supposed to be 
an emergent property of associations, so it would not be surprising that only those 
who behaved (i.e., formed associations), are also aware. Moreover, telling people 
that the shock will no longer occur may engender generalization from other 
experience and certainly changes in the context (Bouton, 2004), both of which can 
immediately change behavior. But, crucially, there is a large corpus of behavior 
supporting this propositional framework and, as we will discuss, the propositional 
position has been very effective in generating empirical results that were not 
obviously coming from within the associationist framework.

The enthusiasm for the rejection of associationism waned with the 
development of connectionist and similar models, although these were rarely 
identified with their behaviorist ancestors. Nonetheless, the idea of cognitive 
penetrability has been kept alive both in animal research and human research (De 
Houwer, 2009; De Houwer, Beckers, & Vandorpe, 2005; Lovibond & Shanks, 
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2002; Mitchell et al., 2009). Indeed, it has even been argued that, given existing 
positive research in humans and rats, the most parsimonious position is to claim 
that all conditioning in all organisms is propositional in nature (De Houwer, 2009; 
Mitchell et al., 2009). Although it must be acknowledged that the authors wonder 
at the plausibility of this claim. From our discussion above, this is not an issue if 
they are talking at the computational level. If so, it is easy to accept the argument 
that a planarian might compute inferences (perhaps in some associative way) with 
its simple nervous system. This level of computation might be a little simpler than 
a human’s. It is not so clear how this might be a meaningful algorithm.

In the subsequent sections of this paper we will discuss three lines of our 
research that we believe will help to reconcile the propositional accounts of 
learning with associative explanations. To foreshadow our eventual conclusions, 
we will argue that propositional accounts can offer useful computational accounts 
of behavior. Moreover they are a very powerful heuristics for generating new 
experiments. However, they are rarely sufficiently well-specified to be considered 
algorithms or explanations of behavior. Thus, they are difficult to disconfirm. The 
potential for disconfirmation is the litmus test for a scientific theory or algorithm. 
Finally, we will argue that simpler mechanistic algorithms can be developed to 
explain this propositional behavior. In the first section, that describes interventions 
to use the most informative context in causal discovery, we will show how a 
propositional analysis motivated these experiments, but also how some wrinkles in 
the data illustrate the weaknesses of underspecified propositional accounts. In the 
second section, investigating blocking of conditioned inhibition in causal 
reasoning, we will test some predictions of a popular, inferential, propositional 
theory and find them wanting. Again we will illustrate the difficulty disconfirming 
various versions of this approach. In the third section, we will discuss some 
experiments investigating novel predictions about how participants construct 
causal chains from negative and positive individual causal links. We will then 
show how these predictions that came from a logical propositional analysis emerge 
from a simple associative model. The model also generates important 
philosophical features of causal reasoning such as temporal precedence and timing 
of cause and effect.

Choosing the Most Informative Context

One of the advantages of having a mental model of the mechanism of a 
cause, over having a simple representation of its effect in a specific context, is that 
it will allow the observer to plan informative interventions. Indeed, the use of such 
strategies, sometimes called causal graph surgery, has been argued to be one of the 
compelling arguments in favor of mental models of cause and the “Bayesian” 
movement in causal reasoning (e.g., Steyvers, Tenenbaum, Wagenmakers, & 
Blum, 2003). That is, if people assume that causal power exists within the cause, 
this implies that they will be aware of the situations in which this power will be 
more effective. The differential informative value of a set of interventions is 
especially obvious in the simplest case in which the target cause and its effect are 
binary, and the influence of the target cause and the sum of the effects of the 
unknown alternative causes (i.e., the causal context) are independent. In this 
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situation clear predictions can be made about the expected rational preference for 
some interventions over others. And this expected preference is different for 
generative and preventive causes. 

A generative cause is analogous to an excitatory stimulus in conditioning; 
it is one whose presence signals an increase in the likelihood of an outcome. The 
actions of a generative cause will be masked in the presence of other alternative 
causes of the same outcome. Consequently, the best situation to observe a target 
cause’s effectiveness is one with no effective, or at least weakly effective 
alternative generative causes. Thus, the best interventions would involve choosing 
to introduce a generative cause in contexts in which the influence of other potential 
generative causes is weak. For example, if we want to study if a new public service 
announcement effectively promotes the use of helmets by bicycle riders, the best 
option would be to test it on a group of people who normally do not wear helmets. 
At the other extreme, it might be quite uninformative to test its effect on people 
who already use helmets.

Preventive causes reduce the likelihood of an outcome and thus are 
analogous to inhibitors in conditioning. For them to show their efficacy there must 
be some outcomes to prevent. Thus, the best contexts to observe their actions will 
be ones in which the effect is frequently generated by the context or alternative 
generative causes, because there will be more instances in which the target cause 
may show its preventive influence. For example, if we want to study if a drug 
effectively prevents headaches, then it would be better to give it to people who 
regularly have headaches. Testing the drug in people who never have headaches 
would give no information about its effectiveness. In fact, Wu and Cheng (1999) 
have shown that people tend to report that causal conclusions are not possible in 
these extreme situations with effect ceilings or floors. We carried out a series of 
experiments designed to test if people actively choose more informative and avoid 
less informative interventions when they are allowed to do so (Barberia, Baetu, 
Sansa, & Baker, 2010).

We studied the way people would intervene in order to choose the most 
informative context to discover a potential causal relationship. In order to show 
people the effectiveness of the contexts or alternative causes, we exposed 
participants to contexts with different outcome base rates. The base rate is simply 
the probability or likelihood of the outcome in the absence of the target cause. 
Subsequently, we asked participants to assess the influence of a potential target 
cause on the effect. To do so, on each trial, the participants could introduce the 
cause in one of the previously trained contexts and observe whether or not the 
effect happened. This strategy differs from the traditional causal discovery task in 
which participants simply observe contingencies, usually with no context switch 
(e.g., Vallée-Tourangeau, Murphy, Drew, & Baker, 1998). The scenario involved 
evaluating whether some unknown folk medicines brought back from the Amazon 
by a group of scientific explorers could provoke, prevent, or have no influence in 
the probability of strokes. The “medicines” could be generative causes, that is, they 
could generate strokes, they could be preventive causes, that is, they could prevent 
strokes, or they could be ineffective. The substances could be tested in several 
populations of patients that differed in their genetic predisposition to, and hence 
their base rate of, strokes. Therefore, the folk medicines were the target causes, 
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having a stroke was the effect and the different populations were the different 
contexts in which the causes could be introduced. 

The participants initially learned about the likelihood that patients of each 
genetic type would have strokes by observing records of individual patients who 
had not been exposed to the folk remedies. To maintain their interest, participants 
predicted if each patient would have a stroke or not. They were then given 
feedback. In the subsequent phases participants were “given” 60 doses of each 
substance. They were then permitted to choose to administer each dose to a patient 
from one of the previously trained genetic types. On each trial, one dose of the 
substance appeared on the computer screen, together with the picture of a patient 
from each genetic type. Participants decided which patient would receive the 
substance by clicking on the patient’s picture. They then predicted if the patient 
would have a stroke after receiving the substance. Once the prediction was made 
and feedback received, the next trial appeared on the computer screen. 
Participants’ estimates of the causal status of the contexts and the target causes 
were recorded, but the critical data here were the proportion of observations they 
chose to make on each population. 

The predictions from the causal model or Bayesian perspective were 
straightforward. Participants should preferentially choose those genetic types in 
which the empirical medicine-stroke contingency will more closely reflect the 
influence or power of the medicine. This implies choosing, for a generative 
harmful medicine, the genetic type showing the lowest base rate of strokes and, in 
the case of a preventive medicine, the genetic type with the highest probability of 
suffering strokes. 

In one experiment participants were pre-trained with three contexts with 
different base rates (BR) of the effect:  a population of a genetic type that never 
had strokes (BR = 0), a population that had strokes half of the time (BR = 0.5) and 
a population always having strokes (BR = 1). After learning about the three base 
rates, participants were presented with three substances that could potentially cause 
or prevent the strokes. They were instructed to find out about their real influence. 
There were three folk medicines. There was a generative medicine that, in the 
absence of alternative causes, produced strokes half of the time. This medicine had 
a causal power (Cheng, 1997) of p = 0.5. The, second, preventive medicine 
prevented the strokes half of the time in a context in which strokes always occurred 
(p = -0.5. Although Cheng represents all powers as positive, we use a minus sign 
to identify preventative powers). Finally, there was a neutral medicine that did not 
influence the probability of the strokes (p = 0). This third substance acted as a 
control. Figure 2 shows the results of this experiment (Barberia et al., 2010, 
Experiment 2 - Group Deterministic). As can be observed in Figure 2, for the 
neutral control substance, there was a preference for the medium base rate context, 
BR = 0.5, maybe because only in this population the potential increase or decrease 
in the probability of the effect could be simultaneously observed. Most 
importantly, and as expected, participants showed a preference for the low base 
rate (BR = 0) population when testing a generative substance, and a preference for 
the high base rate (BR = 1) population when testing a preventive substance.
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Figure 2. Proportion of choices of the low, medium, and high base rate contexts for the Generative, 
Neutral, and Preventive target causes, respectively (data from Barberia et al., 2010, Experiment 2 -
Group Deterministic).

The results of this experiment seem consistent with the expectations of 
propositional reasoning. Mental models or “Bayesian” accounts do suggest that 
people will intervene to choose the most informative context. However, there is a 
problem. It will be observed that, while the participants preferred the more 
informative context, they still continued to choose the least informative context a 
substantial proportion of the time. Indeed, they chose the two less informative 
contexts about 50% of the time. The propositional account has no simple 
explanation of this result. However, it might be possible to argue that the 
participants were using “higher” level strategies such as a belief that the context 
might interact with the outcomes. They might also believe there is some pattern of 
context choices that might “explain” the occurrence of all the outcomes. The latter 
argument is weakened greatly by the fact that elsewhere we have reported other 
experiments in which we used deterministic causes (Barberia et al., 2010, 
Experiment 1). With deterministic causes (i.e., p = 1 or -1), the probability of 
outcomes was either 0 or 100% so there was no pattern, yet people still chose the 
less, and sometimes the entirely uninformative context, a substantial proportion of 
the time as they have done in all of our experiments. 

However, the point here is to demonstrate both a strength and a weakness 
of the propositional explanations of behavior. They provide a very useful heuristic 
for guiding research. It is not clear that we would have chosen to study context 
choices without such a framework. Nevertheless, they are very difficult to 
disconfirm. It is the nature of propositional logic that, if one set of premises is 
untrue, there are many others that are true. Unless serious work is done to constrain 
the number and class of premises, the propositional accounts approach tautology. 
Alternatively, they are folk psychology. We now go on to, very briefly, describe 
some experiments we have done that analyzed a popular propositional description 
of cue competition or blocking in causal reasoning.
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Blocking of Conditioned Inhibition

A number of recent studies asked if people make rational inferences when 
they observe multiple cues that predict the same outcome. When there are multiple 
possible causes of an outcome or, in conditioning, multiple predictors (conditional 
stimuli) of an outcome (unconditional stimulus), cue competition occurs. A 
common example of this competition is blocking (Kamin, 1969), in which the 
presence of a stronger or a previously trained predictor reduces judgments or 
responding to a moderate or new predictor. Propositional inferential accounts 
argue that this blocking occurs because of the inherent redundancy of the blocking 
design. Because the blocking stimulus already predicts, or is a cause, of the 
outcome, then the other stimulus must not be. One can easily see that there are a 
number of implicit premises about the nature of cause within this framework, but 
our goal is not to question them here. 

The inferential account is much richer and more complex than the simple 
frame just outlined. Inferential theories argue that people’s causal judgments, and 
their decisions about the possible redundancy of the target cause, are influenced by 
constraints on the maximum or minimum magnitude of the outcome observed. 
According to these theories, an observer can most efficiently analyze the influence 
of an excitatory, or generative, cause only if there is room for the target to actually, 
and observably, influence, usually increase, the outcome magnitude. For instance, 
in a blocking design in which a cause, or cue, is followed by an outcome both 
when presented alone (A - outcome) and when presented with another potential 
cause, B (AB - outcome; Kamin, 1969; Shanks, 1985) the status of B is ambiguous 
because it always occurs in the presence of A which has already been established 
as a cause of the outcome. If this outcome is of maximum observed strength, it 
would mask the ability of the target to show its effectiveness as a cause because 
the outcome already has a known effective cause. The effect of B might be 
disambiguated, however, if the participant could reasonably assume that a 
compound of two effective causes might generate a stronger effect than either 
presented alone. Thus, if B is an effective cause, then a larger outcome should be 
expected when causes A and B are present, if it is assumed that causes have 
additive effects. Since in a normal blocking procedure the same outcome follows 
both A and AB, this provides stronger evidence that B is not an effective cause. 
This strong inference, however, should not be made if a stronger effect than that 
which occurred on A trials is not possible. Although, as mentioned above, the 
weaker inferential structure based on simple redundancy of predictors might still 
operate. Nonetheless, if A alone is followed by the maximum possible outcome, 
then the effectiveness of B cannot be determined because of a ceiling on the 
magnitude of the outcome. Consistent with this idea, a number of studies reported 
stronger blocking effects (i.e., weaker ratings for B) if A and AB were followed by 
an outcome smaller than the maximum possible outcome, than if the maximum 
possible outcome occurred on A and AB trials (Beckers, De Houwer, Pineno, & 
Miller, 2005; De Houwer, Beckers, & Glautier, 2002; Vandorpe, De Houwer, & 
Beckers, 2005; and, in rats, Beckers, Miller, De Houwer, & Urushihara, 2006).

Simpler versions of associative theories, on the other hand, anticipate no 
such influence of outcome magnitude and thus do not account for this result. The 
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simple delta rule used by many associative theories, such as Rescorla and 
Wagner’s (1972) model, changes associations if there is a discrepancy between the 
actual and the expected outcome, so it operates in the same way regardless of 
whether there is the possibility of a larger outcome. This learning rule predicts that 
blocking should occur to the same extent regardless of whether there is a 
possibility for the outcome to be further increased. Hence, the reported outcome 
magnitude effects on blocking have been taken as evidence that causal discovery 
relies on inferential rather than associative processes. Disconfirming this 
associative prediction has been a major impetus for the inferential blocking 
experiments we have described.

No one would question whether people actually make inferences or test 
logical syllogisms when instructed to do so. However, the important question is 
whether this is the fundamental cognitive structure of all conditioning and of 
causal reasoning. And it has been argued that it is (De Houwer, 2009; Mitchell et 
al., 2009). However, many, but not all, of the experiments testing the inferential 
reasoning account have used very simple experiment designs and possibly leading 
instructions. When we used very simple instructions and more complex designs, 
we found a different pattern of results. With minimal instructions and more
complex tasks (our participants learned about many cues simultaneously) we found 
similar, strong, blocking effects regardless of outcome magnitude (Baetu, 2009), as 
anticipated by most associative theories but not by inferential theories. According 
to some instantiations of inferential theories, learning that a cue is followed by an 
outcome requires fewer cognitive resources than making a blocking inference, 
hence, if the complexity of the task prevents participants from making a blocking 
inference, then ratings for the target cue B should be high (De Houwer, 2009; 
Mitchell et al., 2009). Thus, these inferential theories predict that if the task is too 
complex, blocking should not occur regardless of a ceiling in the outcome level. 
Our finding of a blocking effect regardless of outcome magnitude was clearly 
inconsistent with this prediction.

More interestingly, we have extended our findings concerning blocking 
with generative causes to preventative, or inhibitory, relationships (Baetu & Baker, 
2010). We used a blocking of inhibition design analogous to the generative one 
described previously. A cue was followed by the outcome on its own (A -
outcome), but not in the presence of various potentially inhibitory cues (AB - no 
outcome, ABC - no outcome, ADE - no outcome). B is a traditional conditioned 
inhibitor because it prevents the outcome caused by A. It is an unambiguous 
preventive cause in the AB compound. C, on the other hand, is potentially a 
blocked inhibitory cue because it always co-occurs with B and B already predicts 
the outcome’s omission. D and E are control cues for blocking of C because 
neither has been trained separately with A as B was, but they would also 
demonstrate overshadowing of conditioned inhibition, because together they 
predict the outcome’s omission. They are the appropriate control cues to determine 
whether learning about C is blocked by B:  D and E are always trained in 
compound with another inhibitory cue like C, but, unlike C, neither D nor E is 
paired with a cue that predicts the outcome’s omission on its own.

According to inferential theories, one can evaluate the influence of a 
preventive cause most efficiently if there is room for it to decrease the outcome 
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magnitude (Melchers, Wolff, & Lachnit, 2006). Thus, if B already reduces the 
outcome level to its minimum in the AB compound, there is no further room for C 
to decrease the outcome magnitude. In this case, C’s possible inhibitory strength 
might be masked by a floor in the outcome level. Conversely, if there is a 
possibility for the outcome magnitude to decrease below the level of the outcome 
on AB trials, then one should be certain that C has no causal power or 
effectiveness when the same outcome level occurs on ABC trials. Thus, C should 
be more likely to be blocked when there is no floor on the outcome magnitude. 
Associative theories, on the other hand, predict blocking of cue C regardless of 
whether there is a possibility for the outcome level to be further decreased. In this 
experiment we directly compared the level of blocking in a group in which AB 
brought the outcome level to the “floor” with one in which there was room for C to 
act in the ABC compound. We used a scenario from Melchers et al. (2006) in 
which participants discovered whether various food cues influenced a hypothetical 
hormone level (the outcome) in a patient. As in Melchers et al. (2006), we 
manipulated the possibility of a lower outcome magnitude by presenting 
participants in one group only with foods that increased or caused no change in the 
hormone level (Group Floor), while a second group also observed foods that 
decreased the hormone level (Group No Floor). 

Following training with the above cues and compounds as well as other 
control cues (Baetu & Baker, 2010), we assessed the inhibitory strengths of the 
cues of interest using two tests. In the first test we followed the tradition in causal 
reasoning and asked the participants to directly rate the strengths of the inhibitors. 
Negative ratings represent preventive causes. This method of assessment is not
available in experiments with rats but the second, summation, test is. In the 
summation test we paired the causes of interest with a novel excitatory cause and 
observed if the causal strength of the compound was weaker than the strength of 
the excitor. Would the inhibitory cues inhibit the excitatory strength of the novel 
excitor? This test is interesting not only because it is directly comparable to tests 
used with rats, but also because one of the characteristics of causal power is that it 
is a property of the cause and should transfer to novel situations or contexts. It is 
this generality of causal power that is the main justification for theories that 
represent causes as mental models (Waldmann, Hagmayer, & Blaisdell, 2006).

The results of our experiment are clearly consistent with the predictions of 
associative models. The top panel of Figure 3 shows the first, direct, test for 
inhibition. This panel shows the ratings given to B (Inhibitory), D and E (Oversh.), 
C (Blocked), and a neutral, control, cue (Neutral) by two groups of participants, 
one which experienced a lower outcome level than the one shown on AB and ABC 
trials (Group No Floor), and one that did not (Group Floor). Both groups showed a 
similar blocking effect: Ratings of the blocked cue are closer to zero than those of 
the overshadowed cues. It also shows the predicted overshadowing effect whereby 
the overshadowed cues were less inhibitory than B. And, again as the simple 
associative model predicts, the floor manipulation had little effect. It seems the 
potential ambiguity that arises when the AB compound was on the floor did not 
interfere with blocking or overshadowing. The summation tests in which the cues 
were tested in compound with a cue trained to predict the outcome on its own are 
shown in the lower panel of Figure 3. The results of these tests are similar to the 
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single-cue ratings:  The blocked cue reduced the expected outcome level to a lesser 
extent than the overshadowed cues in both groups. Again there was evidence of the 
predicted overshadowing effect. There were, however, overall differences in the 
ratings given by the two groups since they experienced different outcome levels, 
which might render between-group comparisons difficult. Nevertheless, there was 
no reliable difference between the blocked and the neutral cues, demonstrating that 
C was maximally blocked in the two groups. 

Figure 3. Ratings of the target cues tested individually (upper panel) and in summation tests (lower 
panel) in Groups Floor and No Floor of Experiment 2 of Baetu and Baker (2010).

Overall, our finding that, in complex learning tasks, blocking of excitatory 
and inhibitory cues occurs regardless of a ceiling or floor in the outcome 
magnitude undermines the statement that associative mechanisms play no role in 
causal learning and that learning effects such as blocking only occur to the extent 
that inferential reasoning takes place (De Houwer, 2009; Mitchell et al., 2009). 
Associative-like processes do seem to play a part in causal discovery. What we 
take from this experiment is that, at the very least, the generality of the predictions 
of the inferential account is in question. We should also mention that the initial 
inferential model we described which only makes inferences about the redundancy 
of the cues and not the absolute level of the outcome could handle our results. 
However, this demonstrates once more that these accounts are, at the very least, 
quite difficult to disconfirm. Again propositional models are a good heuristic for 
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generating research but at their present level of development do not provide good 
formal models of behavior. We will now discuss some research on learning causal 
chains (i.e., A lead to B leads to C) and an associative model that predicts this 
behavior.

Forming Causal Chains Form the Links

One of the critical features of propositional theories of cause is causal 
precedence. Causes must logically come before effects. Thus, an appreciation of 
the ordering and timing of events is critical to an understanding of causes. It should 
not go un-noted that, likewise, it has been known since the days of Pavlov that 
timing and ordering of events is crucial to conditioning. Similar to causal 
reasoning, when the Conditional Stimulus (CS) comes after the Unconditional 
Stimulus (US), little anticipatory excitatory conditioning is observed. We have 
been developing an associative model that can model the timing and ordering of 
stimuli. In addition, we have carried out experiments that ask whether participants 
can form “causal” chains from links that have only been observed in isolation.

The design of our experiments could be summarized with the following 
syllogism: Participants first learned If A then B and If B then C; they were then 
asked if they subsequently inferred:  If A then C. Instead of being asked to reason 
about propositions, however, our participants discovered the relationships between 
A and B and between B and C in a trial-by-trial manner similar to what would be 
done in a conditioning experiment. That is, they observed instances of the A-B 
link, intermixed with other instances of the B-C link. Rather than reasoning about 
chains in which the links were deterministic, the participants were asked to reason 
about probabilistic links. In these links the two events could occur together or 
apart. With such an arrangement we could program positive or generative links in 
which the first event predicted the presence of the second event or we could 
program inhibitory or preventive links in which the second event was less likely to 
occur when the first was present. This arrangement was instantiated by a display of 
three virtual lights on a computer screen. On any trial only two lights were visible 
and the third was occluded so the participants could not know its state. We did this 
to maintain the fiction that there was a three light chain and that the participants 
were only observing two of the three lights on any trial. Following this training, 
participants evaluated whether A would be followed by C or whether it would 
prevent C. 

The syllogism described above involves a simple chain in which there are 
positive relationships between A and B and between B and C. We were 
particularly interested, however, in the way people would reason about chains that 
include one or two negative links. If A was often followed by B, but B prevented C 
from happening, would people still expect C to follow A? More interestingly, what 
would they infer about the A-C relationship if A prevented B from occurring and B 
prevented C from occurring? From a rational perspective, people should infer that 
A prevents C in the first case because it enables B to prevent C, whereas they 
should infer that A causes C to occur in the second case because it prevents B from 
preventing C. The second event in each link could occur on its own in the absence 
of the first event, and this implies that some, perhaps hidden, alterative cause of the 
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second event exists. So in this case, inhibitory B would inhibit C events that were 
caused by these alternatives, so its elimination would increase the probability of C. 
In fact, we have shown that this kind of reasoning can emerge from Bayesian 
principles if one assumes that A acts upon C only through the influence of B 
(Baetu & Baker, 2009). Cases in which the chain is not made up of only positive 
links are interesting because they rule out certain confounding explanations. For 
example, if all the relations are positive then participants may report a positive A-C 
relationship after having observed positive A-B and B-C links because they have 
been exposed exclusively to positive relationships. Alternatively, they may simply 
base their evaluation of the A-C relationship on an average of the two links. Or 
they may generalize their judgment from any single link in the chain. 

Through the mechanism described above (i.e., A prevents B which would 
otherwise prevent C, so presenting A increases the likelihood of C), reporting a 
positive A-C relationship after having observed negative A-B and B-C 
relationships would be rational and it would rule out all of these alternative 
explanations. Furthermore, participants should report a relationship between A and 
C only if they perceive nonzero causal links between A and B and between B and 
C. It only takes one link to break a chain. Participants should be able to detect 
cases in which one or both links in the chain are “broken,” i.e., chains in which, for 
example, A might influence B, but B would have no influence on C (C would be 
equally likely in the presence and in the absence of B). In that case, one should 
rationally infer that A should have no influence on C. We investigated this 
possibility by having links in which the two events of a link occurred independent 
of one another, that is to say when they were uncorrelated.

It turns out that people behave rationally in all these cases. In our 
experiments the A-B and B-C contingencies were positive, negative, or zero, with 
the constraint that each of the lights turned on on 50% of the trials. For the positive 
links the conditional probability of the second event in the presence of the first 
[i.e., P(Event2| Event1)]  was 0.8 and the probability in its absence was 0.2 so that 
the overall contingency (i.e., the difference between these) is ∆p = 0.6 [where ∆p = 
(P(Event2| Event1) – P(Event2 | noEvent1). For the preventive links these 
probabilities were reversed. Following 40 randomly intermixed A-B trials and B-C 
trials, participants were asked to evaluate the effect of A on C:  whether it would 
turn C on, prevent C from turning on, or whether it would have no effect on C. 
Figure 4 shows the mean ratings of the influence of A on C reported on a scale 
ranging from -10 to +10 (Baetu & Baker, 2009, Experiment 2). When participants 
observed positive A-B and B-C contingencies (Treatment PP in the figure) or when 
they observed negative A-B and B-C contingencies (Treatment NN), they inferred 
that A would turn C on. Conversely, when one of the observed contingencies was 
positive and the other negative (Treatments PN and NP), they concluded that A 
would prevent C from turning on. They also inferred that A would have little effect 
on C if one or both experienced contingencies were zero (Baetu & Baker, 2009, 
Experiments 1A and 1B; data not shown in the figure).
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Figure 4. Ratings of the influence of A on C in Experiment 2 of Baetu and Baker (2009) and 
simulations with the auto-associator.

Our participants behaved rationally and this is consistent with a Bayesian 
analysis. We were more interested, however, in demonstrating that this kind of 
rational behavior could emerge as a result of processes that are not constrained by 
rational premises, but rather from simple associative processes. To do this, we 
asked whether a simple connectionist model, an auto-associator network 
implementing a prediction-error learning rule (McClelland & Rumelhart, 1988), 
would behave in a way similar to our participants and generate a representation of 
the complete chain from experience with the two individual links of the chain. The 
network consisted of a single layer of units that might become connected to each 
other if the stimuli represented by these units co-occur in close temporal proximity. 
Associations between units allow activation in one unit to spread to others. The 
appendix briefly describes the way temporal information is represented in the 
model; the complete model specifications can be found in Baetu and Baker (2009) 
and McClelland and Rumelhart (1988).

The structure of the network was inspired by the traditional analysis of 
conditioning experiments. It consisted of six interconnected units. There was one 
unit representing each of the three events (A, B, and C). There was a unit 
representing the general context. Finally there were two units representing the 
context of the A-B trials and B-C trials (Fig. 5). The different trial types were 
discriminably different because of the presence of the object that would occlude 
the state of either light A or C depending on whether it was an A-B trial or a B-C 
trial. Thus, it makes sense to have different trial type contexts. The presence of 
context units is crucial because, just as has been shown in conditioning inhibition, 
with negative CS-US correlations (Baker, 1977) the context is critical for 
modulating contingency learning (Murphy & Baker, 2004; Vallée-Tourangeau et 
al., 1998).
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Figure 5. This figure illustrates the structure of the auto-associator composed of six units: three units 
representing the three lights (A, B and C), a general context unit, a unit representing contextual cues 
present only on A-B trials, and a unit representing contextual cues present on only B-C trials. The 
arrows represent all the possible unidirectional connections that might develop between the six units. 
Figure adapted from Baetu and Baker (2009).

Once this network had been “trained” we asked it about the A-C chain by 
activating the A unit and monitoring C activation. Figure 4 also shows the results 
of these “queries” and it can be readily seen that they are consistent with the 
participants’ ratings of the A-C relationships in all treatments. The networks also 
behaved appropriately when trained with one or two zero links:  Unit A failed to 
activate unit C, which is analogous to our participants reporting that there was no 
relationship between lights A and C in Experiments 1A and 1B of Baetu and Baker 
(2009). In addition to carrying out these tests, we investigated the strengths and 
polarities of the associations in the net. What we found was that the network had 
“discovered” the causal structure of the events. There were strong and appropriate 
excitatory and inhibitory connection strengths or associations in the correct 
direction between the events A, B, and C. The associations involving the context 
units and the associations in the incorrect direction between A, B and C were much 
weaker (Fig. 6 shows an example of a trained network). What this means is that in 
the case of the simple syllogism between positive events described at the beginning 
of this section when asked “If A?” the network answers “then C!” but if asked “If 
C?” it does not answer. And this is just what would be expected by propositional 
theories that posit mental models of cause; but it is done by a simple associative 
net using standard conditioning assumptions with no formal propositional 
structure.
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Figure 6. Network trained with the negative or inhibitory A-B and B-C contingencies that were 
presented in Treatment NN. The arrows represent connection weights that developed during training. 
Full arrows represent positive connections, and dotted arrows represent negative connections. The 
relative strength of each connection is indicated by the width of the arrow. In addition to the 
connection weights, the activation level of every unit during a test in which only unit A is turned on 
is shown. The radial lines around unit A indicate that only unit A was turned on (i.e., received 
external input). The nuance of each unit indicates how strongly it was activated during this test, with 
darker shades indicating stronger activation. Unit B was inhibited, as indicated by its dotted contour.

Some Conclusions

Yesterday, upon the stair,
I met a man who wasn’t there,
He wasn’t there again today,
I wish, I wish he’d go away...

(Antigonish, Hugh Mearns circa 1899; McCord, 1955)

One of us (AGB) is frequently reminded of the poem Antigonish when 
reading the various instantiations of propositional/ inferential theories. Inferences, 
beliefs and goals are things that we believe psychology should explain and are not 
things that should be used to explain behaviors. We acknowledge that this is an 
article of faith. The level of analysis for research is a meaningful epistemological 
question for all sciences and certainly is for psychology. The question is:  What are 
the fundamental primitives of an appropriate explanation in psychology? Clearly, 
the early associationists believed the fundamental primitives were at the level of 
associations. Inferential and propositional theorists seem to believe that they are at 
the level of propositions or inferences, although, as we have mentioned, they are 
rarely clear about the exact form and constraints on these propositions. Our 
impressions are that, as a theory, they arise deux ex machina to explain findings 
that are difficult to account for with more reductionist explanations. It seems that 
these explanations involve a homunculus that has many of the properties of the 
cognitive processes that we wish to explain.

It would seem from this opening statement that we are unsympathetic to 
the various propositional theories, but we are not. These theories have generated a 
great deal of interesting empirical work and have discovered phenomena that 
might never have been investigated from a purely associationist perspective. 
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Moreover, many of these findings are at the moment very difficult to explain with 
moderately parsimonious associative networks. But it is the nature of science that 
many original mysteries defy reductionist explanations.

So how do we reconcile propositional accounts and associative accounts? 
We have argued that the levels of analysis outlined by Marr (1982) produce a 
useful perspective on this problem. He argued that a primary level of analysis is 
computation. Research asks just what the organism “computes” in the world. That 
is to say, what aspects of the physical world is the organism sensitive to and what 
is the nature of the response to these aspects? The world of physics includes rules 
about the behavior of objects and these can be written in mathematical or 
propositional from. No one would argue that, because a falling body follows the 
propositions of physics, it has instantiated them in its nature. Likewise, the world 
of cognition implies a series of rules and propositions. As we have mentioned 
before, these rules include descriptions of the rules of causal inference but also 
include the rules relating the events in conditioning (see also, Baker, Murphy, & 
Vallée-Tourangeau, 1996). 

Thus, when a researcher shows that an organism’s behavior maps onto a 
syllogism or other propositional structure, there are two possibilities of what this 
means. First, and we believe noncontroversially, it shows that the organism is 
sensitive to these rules about the world and presumably this sensitivity is an 
adaptation to accommodate them in behavior. But second, the organism may have 
an internal representation or algorithm that directly represents the rules of the 
world and this is what generates the behavior. Alternatively, some other 
mechanism, possibly associative, generates the computation. While it is obviously 
our position that the best and most parsimonious algorithm involves an associative 
approach, this does not mean we are correct. It is possible that the fundamental 
primitives necessary to explain causal reasoning and conditioning involve 
propositions. But, if so, it is crucial that proponents of this position generate 
theories with constraints that are potentially falsifiable. However, even if this is not 
done, the propositional approach has historically been, and still is, a useful 
heuristic for generating research.

The three research sections we have presented here illustrate this position. 
We initiated the research on choosing the most informative context from principles 
derived from causal model and power theory (Cheng, 1997; Lagnado, Waldmann, 
Hagmayer, & Sloman, 2007). The results were at least partially consistent with the 
theory but the finding that participants did not abandon the less informative 
contexts was not – unless new and unexpected propositions were generated to 
explain them. In the experiments on blocking of conditioned inhibition, we tested 
the argument that blocking would be more effective if the blocked stimulus could 
be unambiguously shown to have no effect or causal power. We found that this 
prediction of one version of inferential learning theory, in our hands at least, was 
not confirmed. And all of our results were broadly consistent with Rescorla and 
Wagner’s (1972) associative model. But again we showed that an unconstrained 
inferential approach could accommodate the findings. In the final experiments on 
building causal chains from their links, we generated the predictions concerning 
the polarity and strength of the chains from formal logic and then verified them 
computationally with probability or contingency theory using the notions of causal 
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power and its derivative ∆p (Cheng, 1997). We found that people’s behavior 
mapped onto this analysis very well. We then showed how a simple associative net 
could account for this “propositional” behavior including the critical elements of 
timing and causal precedence.

We would be remiss in not pointing out that we have used the notion of 
parsimony rather cavalierly throughout. As Mitchell et al. (2009) have pointed out, 
associative theories are not necessarily parsimonious if for every new problem a 
new theory is generated. And, although our auto-associator has only six units in it, 
it does have many links. However, it should be emphasized that it computes 
predictions about timing and event sequencing. We are also trying to extend its use 
to a wider range of phenomenon but leaving it largely unchanged. Nonetheless, it 
should be emphasized that we are not immune to the parsimony argument we have 
used against the propositional accounts as algorithms. Nevertheless, it is our 
position that at least in terms of face validity the associative models are more 
plausible candidates for implementing in the physiology of the organism.

In conclusion we have argued that propositional accounts of cognition are 
very useful for generating research. They provide a useful framework for 
formalizing the rules of the world and asking what behavioral adaptations an 
animal might have that map onto them. However, for them to provide a useful 
theory or algorithm of behavior they must be more formally specified and be 
clearly falsifiable. Until this is done we still are concerned with the “… man who 
wasn’t there.”
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Appendix

Like a few other associative models (e.g., Aitken & Dickinson, 2005; Wagner, 
1981), this model represents events in real time. When a stimulus is physically present, the 
unit or units representing it receive some external input that causes their activation level to 
gradually increase. When the external stimulation ceases, the activation level of the units 
will gradually decay back to a resting level of zero. An active unit may spread its activation 
to other units via its connections. Depending on whether these associations are excitatory 
or inhibitory, the active unit will excite or inhibit the units connected to it. 

The connections in the network do not represent temporal relationships (as in the 
temporal coding hypothesis; Matzel, Held, & Miller, 1998). Instead, the model learns 
temporal relationships merely as a result of units being active at various points in time. For 
instance, if a stimulus (A) is presented for a brief period of time, the activation level of the 
unit or units that represent it gradually increases and then decays back to zero when the 
stimulus ceases. If a second stimulus (B) is presented before the activation level of A has 
decayed, then there is an opportunity for an association from A to B to form. If B is 
presented at a later period of time when the activation level of A is very low, then the 
opportunity for an association to form is lost. Thus, the model explains the effect of delays 
between a potential cause and an effect simply by allowing a stimulus representation to 
decay from memory once the stimulus is no longer perceived.

Connections might form between any two units in the network. The model uses 
the delta learning rule (also used in the model developed by Rescorla and Wagner, 1972) to 
change the strength of the associations. According to this rule, the change in the connection 
from unit A to unit B (∆WA-B) is computed as follows:

∆WA-B = (external activation of B – internal activation of B) x total activation of A 
(Equation 1)

Each unit has two sources of input that contribute to its activation level: an external source 
and an internal source. The external activation of B refers to the input that the unit receives 
from perception while stimulus B is presented. The internal activation of B refers to the 
input that the unit receives when other units activate it if they have become associated with 
B. Thus, when B is presented for the first time, its external input is positive, but its internal 
input is zero because its presentation was unexpected (i.e., no other unit predicted that B 
would occur). Since the difference between the external and internal input to unit B is 
positive, this allows A to develop an association with B, but only if the activation of A is 
not zero. This is because the change in the association from A to B depends not only on 
how surprising the occurrence of B is [represented by the term (external activation of B –
internal activation of B)], but also on the activation level of A.

Of direct relevance to learning directed chains of events, the model also predicts 
that the association from A to B (A→B) becomes stronger than the association from B to A 
(B→A) if A precedes B in training. The B→A association is weaker because by the time B 
occurs, unit A no longer receives external input. Thus, after training, A might be able to 
activate the representation of B through the A→B association, but B will not be able to 
activate the representation of A since the B→A association is weak.




