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Metabolomics and isotope tracing

Cholsoon Jang1, Li Chen1, and Joshua D. Rabinowitz1,*

1Lewis Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton 
University, Washington Rd, Princeton, NJ 08544

Abstract

Great strides have made over the past decade towards comprehensive study of metabolism. Mass 

spectrometry has played a central role, by enabling measurement of many metabolites 

simultaneously. Tracking metabolite labeling from stable isotope tracers can in addition reveal 

pathway activities. Here we describe the basics of metabolite measurement by mass spectrometry, 

including sample preparation, metabolomic analysis, and data interpretation. In addition, drawing 

on examples of successful experiments, we highlight the ways in which metabolomics and isotope 

tracing can illuminate biology.

Introduction

Since the discovery of DNA, biological research has steadily accelerated due to ever 

increasing ability to control genes and their protein products. Against the backdrop of the 

revolutionary progress, metabolism research remained for many decades comparatively 

stagnant. The past decade, however, has seen a swell of interest. The ongoing epidemic of 

obesity and metabolic syndrome is one reason for this resurgence. Metabolism, however, 

plays a central role in all areas of biology, from ecology to bioengineering to cancer (Figure 

1). Each of these areas is now being increasingly examined from a metabolic viewpoint. In 

such efforts, there is high value to taking a big-picture perspective. This is feasible due to 

advances in metabolite measurement technologies like NMR and mass spectrometry (Fiehn, 

2002; Beckonert et al., 2007).

Measurement of metabolite concentrations by metabolomics, however, tells only half the 

story. Equally important is understanding pathway activity, which can be quantified in terms 

of material flow per unit time, i.e. metabolic flux (Sauer, 2006). Concentrations and fluxes 

do not reliably align. This is intuitive to drivers: although flux increases with car density 

until traffic slows, a high concentration of cars on the road does not reliably indicate high 

flux (Figure 2A). Indeed, a common cause of high vehicle concentration is narrowing of a 

highway. Similarly in metabolism, a common cause of metabolite build-up is decreased 

consumption. For example, when glucose is removed from yeast, glycolytic efflux drops 
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sharply, leading to build-up of lower glycolytic intermediates even though pathway influx is 

decreased (Figure 2B, Lowry et al, 1971). Because metabolite levels and fluxes provide 

complementary information, metabolic understanding is best achieved by investigating both.

Unlike metabolites, fluxes are not physical entities that can be measured in a mass 

spectrometer. They can be inferred, however, through use of isotope tracers. Classical 

radioactive tracer studies laid the foundations for modern understanding of metabolism. 

Today, similar studies can be performed, using mass spectrometry or NMR to follow the fate 

of non-radioactive stable isotope tracers. Beyond the lack of radioactivity, a key advantage 

of these methods is their ability to measure the quantitative fraction of label incorporation 

into many downstream products in parallel. To quantitate fluxes at the systems level, copious 

tracer data is integrated using computational models. Such efforts, however, remain 

challenging even for labs with specialized flux analysis expertise. Nevertheless, valuable 

biological insights can be obtained by intuitive interpretation of isotope tracer experiments. 

Moreover, intuition can often be effectively complemented by using straightforward 

equations to quantitate key fluxes or flux ratios. Such targeted isotope tracer methods are 

covered together with metabolomics here.

Scope of Metabolism

Metabolism converts incoming nutrients into usable energy and biomass. This is achieved by 

a network of coupled enzymatic reactions, which produce and consume small molecule 

metabolites. Metabolic reactions fit together like pieces of the puzzle – every intermediate 

metabolite must have both a source and a sink. At steady state, the quantitative inflows and 

effluxes from each metabolite must balance (O’Brien et al., 2015).

The scale of the metabolic network varies by organism, from around 500 to a few thousand 

reactions. The biochemical intermediates in these networks—metabolites—are largely 

identical from bacteria to humans. This reflects the fact that all organisms need nucleotides 

and amino acids to make DNA, RNA, and proteins. Moreover, all organisms are surrounded 

in lipid bilayer membrane and store energy as carbohydrate and lipids. A small set of central 

building blocks are involved in both making and breaking down these fundamental biomass 

constituents. These intermediates of glycolysis, the pentose phosphate pathway (PPP), and 

the TCA cycle, together with amino acids and nucleotides, constitute a core set of around 

100 conserved, abundant, high-flux metabolites. While structures of these compounds are 

universal and the reactions making and consuming them nearly so, pathway usage varies 

markedly across organisms, environmental conditions, and disease states.

In contrast to the finite core of metabolism, the full scope of small molecules in biological 

systems is vast. It includes other endogenously produced metabolites of clear organismal 

significance: enzyme activators and inhibitors; donors and regulators of macromolecule 

modifications (Table 1); signaling molecules including neurotransmitters and hormones; 

mediators of interspecies warfare like antibiotics; and structural and energy storage 

molecules such as lipid themselves. Because lipids are so numerous and their biological 

roles and physical properties substantially different from water-soluble metabolites, lipid 

measurement is its own ‘omics field (lipidomics) (Wenk, 2010). In addition to endogenous 
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metabolites, organisms higher in the food chain contain secondary metabolites made by 

other species. Human samples typically also contain drugs, artificial flavors, and other 

xenobiotics, as well as their metabolic byproducts.

Beyond known metabolites, there is substantial interest in the unknown metabolome. While 

the full set of genes and proteins in an organism can be revealed by genome sequencing, the 

full set of metabolites remains ill-defined, due to the catalytic potential of uncharacterized 

proteins, enzyme promiscuity, and the diversity of metabolic inputs coming from food. The 

observation that most peaks in mass spectrometry-based metabolomics studies remain 

unidentified has increased interest in unknown metabolome (Domingo-Almenara et al., 

2018), although many of these peaks are analytical artifacts (Mahieu and Patti, 2017). 

Nevertheless, new metabolites and reactions certainly remain to be discovered.

Metabolomics

Metabolomics, with or without isotope tracing, involves three basic steps: (i) sample 

preparation, (ii) metabolome measurement, and (iii) data analysis (Figure 3). While the 

measurement step involves the glamorous technology, sample preparation and data analysis 

are equally important.

Sample preparation

Success in metabolomics starts with picking the right experiment. In this regard, we hope 

that readers will be motivated by some of the Biological Applications described below, as 

well as Table 2, which highlights many different isotope tracers and their utility. In this 

section, we focus on basic design issues in metabolomics studies, which apply across many 

applications.

Control of the nutrient environment is particularly important. For in vivo studies, this means 

close attention to feeding, fasting, and diet composition. For cell culture studies, it means 

special care in media selection and timing of media changes. Chemically defined media is 

generally preferred to complex biological media like Lysogeny Broth (LB). For mammalian 

cell culture, use of dialyzed fetal bovine serum, which is readily commercially available, 

avoids confounds due to serum metabolites.

For isotope tracer studies, it is often preferable to avoid metabolic perturbations when 

introducing the tracer, i.e. to maintain “metabolic steady state”. This can be accomplished by 

switching into otherwise identical media with particular nutrient(s) changed from unlabeled 

to labeled form. Duration of labeling depends on the pathways of interest and whether 

aiming for dynamic or steady state data. In cultured cells, steady state labeling (i.e. “isotopic 

steady state”) is typically achieved in glycolysis over ~ 10 min, the TCA cycle over ~ 2 h, 

and nucleotides over ~ 24 h. Very rapid sampling is required to capture glycolytic labeling 

dynamics (e.g., 10 s timescale), whereas TCA dynamics can be probed by sampling at time 

points like 15, 30, 60, and 120 minutes. One-day experiments are often convenient for 

collecting steady state labeling data.
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Another key issue is harvesting metabolites. This is a particular challenge for cells and 

tissues, as many important metabolites naturally turnover within seconds. Thus, obtaining an 

accurate metabolite profile requires stopping metabolic activity nearly instantaneously. This 

remains an area of active research. Typical approaches include freezing and/or enzyme 

denaturation (Figure 3). A variety of extraction and quenching protocols have been reported 

(Winder et al., 2008; Dietmair et al., 2010; Want et al., 2012). For cultured cells, a simple 

approach is to add cold organic solvent directly after media removal by aspiration (for 

adherent cells) or fast filtration (for non-adherent cells). The cold temperature quickly slows 

metabolism, and the organic solvent permanently denatures enzymes. Manipulations that 

may alter metabolism, such as pelleting or washing cells prior to quench metabolism, are 

best avoided (Wittmann et al., 2004).

For tissue specimens, it is most practical to freeze first, and then extract. Quick freezing can 

be achieved by smashing tissue between liquid nitrogen-temperature metal plates, a 

technique known as the Wollenberger clamp (Figure 3) (Wollenberger et al., 1960). Due to 

superior heat transfer, this results in substantially faster freezing than placing tissue pieces 

directly into liquid nitrogen. Tissues can then be stored at −80°C, pulveri zed by grinding, 

and extracted with cold organic solvent. Care must be taken to avoid metabolic alterations 

both before and during sampling. This is not straightforward, as anesthesia or euthanasia can 

each induce metabolic changes (Overmyer et al., 2015). Indeed, even the sight of an 

experimenter (or doctor) may induce a stress response that alters metabolism (Sorge et al., 

2014).

Another complication is that organic solvent may not immediately stop enzymatic activity. 

Persistent catalytic activity is a particular problem for high-energy compounds like NADPH 

and ATP. The degradation products of these abundant metabolites are themselves 

biologically important metabolites, with even modest degradation of NADPH markedly 

increasing NADP, and of ATP markedly increasing ADP and AMP. For biologists interested 

in such compounds, we recommend extracting with a combination of organic solvent and 

acid, as the acid accelerates enzyme denaturation. Specifically, we find that a mixture of 

40:40:20 acetonitrile:methanol:water with 0.1 M formic acid, followed by addition of 

bicarbonate a few minutes later to neutralize the samples, effectively captures these 

metabolites (Rabinowitz and Kimball, 2007; Lu et al., 2017a). Further research is likely to 

yield yet better methods going forward.

The inherent challenges in metabolome sampling render confirmatory measurements 

valuable. For example, does a particular genetic perturbation produce the same metabolic 

changes in liver sampled both from anaesthetized and from euthanized mice? Alternatively, 

certain metabolites can be measured directly in vivo, e.g. using fluorescent reporters (Looger 

et al., 2005; Hung et al., 2011; Rogers and Church, 2016). At the same time, it is important 

to recognize that even imperfectly collected samples can yield valuable insights. Some 

delays in quenching typically occur during tissue sampling in clinical studies, but this is a 

reasonable trade-off for the benefits of human data.
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Mass Spectrometry

With an extract in hand, the challenge is to measure as many metabolites as possible, as 

accurately as possible. In the early days of metabolomics, one-dimensional proton NMR was 

commonly used to produce metabolome profiles. While peaks could be assigned to 

functional groups (e.g., CH2 signal from fatty acid tails), most peaks reflected the integrated 

signals from multiple metabolites. These limitations have been partially resolved by 

multidimensional NMR (Larive et al., 2015; Markley et al., 2017), and NMR continues to 

play an important role in metabolomics due to its capacity for structure elucidation, in vivo 
metabolite measurement (Mancuso et al., 2004; Salamanca-Cardona et al., 2017), and 

universal detection (nearly every metabolite contains a proton and thus gives a proton NMR 

signal). Nevertheless, investigators are increasingly relying on mass spectrometry, due to its 

unmatched capability for detecting low abundance metabolites without interference from 

closely related species (Figure 4).

This reflects the remarkable resolving power and sensitivity of modern mass spectrometers, 

which can quantitate well-ionizing metabolites of nanomolar concentration in complex 

mixtures. In mass spectrometry, resolving power is defined as the ratio m/Δm, where m is 

the analyte mass and Δm is the smallest mass difference that can be distinguished (Figure 

4B). Achieving high resolution allows metabolites with small mass differences to be 

independently measured. For example, creatine (C4H9N3O2) and leucine (C6H13N1O2), with 

accurate positive ion masses of 132.076 and 132.102, can be distinguished at 4,000 

resolution. For isotope tracing, high resolution can distinguish species labeled with different 

heavy nuclei. For example, M+1 palmitate isotopologues with one 2H versus one 13C 

separate at 100,000 mass resolution.

To be detected by the mass spectrometry, a liquid extract must be ionized. This is most 

commonly done by electrospray ionization: applying high voltage to liquid as it flows out 

the tip of a needle, thereby converting the liquid into tiny charged droplets that eventually 

generate gas phase ions (Fenn et al., 1990) (Figure 4A). Electrospray ionization is a 

relatively “soft” (i.e. gentle) ionization process which typically yields the intact 

(de)protonated metabolite ion, (M+H)+ in positive ion mode and (M–H)− in negative ion 

mode. It also generates, however, a diversity of adducts (e.g., (M+Na)+) and fragments, 

which complicate the resulting mass spectra and downstream data analysis.

Common mass analyzers used in metabolomics are time-of-flight (TOF), orbitrap, and 

quadrupole. All three manipulate ions in electric fields. TOF instruments race ions down a 

flight tube. First, ions are accelerated through a voltage drop (ΔV) to impart kinetic energy. 

The ion’s velocity then depends on its mass-to-charge ratio (m/z), with lower m/z ions flying 

faster down the flight tube (Figure 4A). Current TOF instruments typically have mass 

resolving power of 10,000 to 60,000 (Junot et al., 2014). Orbitrap instruments monitor ion 

oscillations up and down a spindle-shaped electrode. Ions are injected into the orbitrap and 

rotate around the spindle, with electrostatic attraction balanced by centripetal force. Due to 

the shape of the spindle, the ions also oscillate along its long axis, with the frequency of 

these Z-axis oscillations dependent only on ion m/z (Zubarev and Makarov, 2013). The 

frequency of these oscillations can be used to determine m/z with resolution in excess of 

100,000, and even up to 1,000,000. Albeit at greater cost, yet higher resolution can be 
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achieved in ion cyclotron resonance instruments, in which cyclic ion movement is induced 

by a strong magnetic field (Marshall et al., 1998).

In contrast to high-resolution mass analyzers like TOF and orbitrap, which can measure all 

incoming ions, quadrupoles act as low resolution mass filters, filtering out all ions except 

those of a particular m/z of interest (± 0.5 dalton). Quadruples are commonly placed in front 

of high-resolution mass analyzers, to make a hybrid mass spectrometer such as a Q-TOF. 

This enables isolation of ions of a particular mass, followed by their fragmentation (by 

collision with inert gas) and high-resolution analysis of the fragment ions. The resulting 

MS/MS spectra reflect the structure of the parent ion and can be used for metabolite 

identification (Figure 4D). Alternatively, quadruples can be placed in series in the absence of 

a high-resolution mass analyzer, to make a triple quadruple instrument. Triple quadrupoles 

measure only a pre-defined targeted subset of ions, but offer the best sensitivity for 

measuring a single analyte.

Chromatography

By physically separating analytes on a column before mass spectrometry measurement, 

chromatography enhances metabolome coverage and improves the quantitative accuracy of 

mass spectrometry. Chromatography is particularly important due to the competitive nature 

of the electrospray ionization process: abundant ions suppress the signal of co-ionizing 

species (Furey et al., 2013). Chromatographic separation reduces ion suppression, improving 

detection of low-abundance species. It also prevents quantitative artifacts wherein changes in 

the concentration of an abundant species systematically alter the signal intensity of other co-

ionizing metabolites.

Another merit of chromatography is separation of isomers, compounds with same molecular 

formula but different structures, like leucine and isoleucine (Figure 4C). Isomers are 

common in metabolism. For example, there are more than a dozen isomers of hexose 

phosphate, each with distinct biological roles. Isomers are indistinguishable by 

straightforward mass spectrometry, but can be differentiated by chromatography and/or 

MS/MS fragmentation pattern. Chromatography is also critical for distinguishing real 

metabolite signals from imposter signals arising from metabolite fragmentation during 

ionization step, where high ionization energy may break down some metabolites into 

fragments with identical m/z to other metabolites (Xu et al., 2015). For example, citrate 

fragments mimic four different carboxylic acid metabolites. ATP fragments mimic ADP and 

AMP. Thus, while direct mass spectrometry analysis without chromatography can detect a 

large number of ions with high throughput (Link et al., 2015), it is subject to many false 

positives and negatives (Lu et al., 2017b).

Chromatography and mass spectrometry are normally coupled together, as gas 

chromatography-mass spectrometry (GC-MS) or liquid chromatography-mass spectrometry 

(LC-MS). GC requires analytes to vaporize, and separates them based on their partitioning 

between the gas phase (“mobile phase”) and a liquid layer on the chromatography column 

interior (“stationary phase”). It is most commonly coupled to mass spectrometry by electron 

ionization, a hard ionization technique that produces a characteristic set of fragments in lieu 

of the intact metabolite ion. Peaks can be identified by retention time and matching the 

Jang et al. Page 6

Cell. Author manuscript; available in PMC 2019 May 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



fragmentation pattern to spectral libraries. GC has superior chromatographic resolution to 

LC, with GC-MS particularly good for measuring analytes of low molecular weight (e.g., 

acetate), high volatility (e.g., alcohols), or poor ionization by electrospray (e.g., sterols). 

With chemical derivatization, it can also measure medium-sized charged metabolites like 

sugar monophosphates (Lai and Fiehn, 2016).

LC separates metabolites based on their partitioning between solvent and micron-sized 

beads packed within the column. Reversed-phase (RP) chromatography involves 

hydrophobic beads (typically C18) and elution with a gradient from water to organic solvent. 

It works well for many polar metabolites and lipids, but fails to retain hydrophilic 

metabolites like amino acids. It also produces poor peak shape for multiply phosphorylated 

metabolites like ATP. These deficiencies can be corrected by adding to the running buffer a 

moderately hydrophobic cation, like triethylamine, which functions as an ion-pairing agent 

that helps bind anionic metabolites to the column (Coulier et al., 2006). Cationic ion-pairing 

agent, however, causes severe ion suppression in positive mode and can take weeks to rinse 

out of an LC system; thus, a system dedicated to negative mode analysis is required.

Hydrophilic interaction chromatography (HILIC) involves hydrophilic beads and elution 

with a gradient from organic solvent to water. HILIC methods have advanced substantially 

over the past decade, and allow positive and negative mode analysis to be performed on the 

same instrument. A diversity of HILIC column chemistries are available (Jandera, 2011). 

Among these, we find an amide resin to be particularly effective for measuring the core 

metabolome (Bajad et al., 2006; Yuan et al., 2012). Another type of liquid separation, which 

is also well suited to measuring the core metabolome, is capillary electrophoresis, where 

separation is based on differential voltage-driven movement through liquid, rather than on 

column interactions (Soga et al., 2003).

Data Processing

The first step in data analysis is converting raw mass spectrometry data into an annotated 

table indicating peak identities and intensities across samples. This involves computational 

algorithms that pick peaks, align them across samples, and quantitate peak intensities. Most 

of the > 10,000 peaks found in a typical LC-MS run reflect environmental contaminants, 

adducts, or in-source fragments, as opposed to metabolite molecular ions, and can be 

ignored. Interesting peaks (i) correspond to known metabolites or (ii) differ significantly 

across biological conditions.

Given a well-annotated chromatography method, known metabolites can be identified based 

on exact mass and retention time. The open source Maven software (now maintained as 

ElMaven) was designed specifically to pull out intensities and labeling patterns of known 

metabolites peaks (Melamud et al., 2010). Given an accurate library of chromatographic 

retention times (measured using metabolite standards), Maven or related commercial 

software enable both easy review of raw ion-specific chromatograms and streamlined 

processing of these raw data into tables of known metabolites signal intensities.

To find peaks that differ across biological conditions, the open source program XCMS is 

widely used (Smith et al., 2006). It identifies significant changes and facilitates searching for 
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MS/MS spectral matches. XCMS can also be accessed online via a web-based platform. 

Peaks can be identified by matching to retention time and/or fragmentation pattern of known 

standards. Fragmentation patterns, as measured by tandem mass spectrometry (MS/MS), are 

reasonably consistent across instruments, enabling metabolite identification by searching 

MS/MS spectral databases (e.g., HMDB, METLIN) (Smith et al., 2005; Wishart et al., 2007; 

Kind et al., 2017). When no MS/MS match is found, tandem mass spectrometry can 

nevertheless provide hints regarding the functional groups present in unknown compounds. 

NMR remains, however, the gold standard for small molecule structure elucidation (Caceres-

Cortes and Reily, 2010).

Interpretation

The starting point for interpreting metabolomics data is understanding the relationship 

between signal intensities and concentrations. In mass spectrometry, for any given analyte, 

signal intensity, which is measured in ion counts, generally depends linearly on 

concentration. Thus, relative amounts can be inferred based on ion count fold change. 

Across compounds, however, response factors (e.g., ionization efficiency) vary dramatically. 

Thus, absolute quantitation requires comparison to standards. This is best achieved by 

adding isotopic internal standards at the time of quenching/extraction. Because isotopic 

standards are not available for many metabolites, it is sometimes easier to label the 

biological sample (e.g., by growing cells in [U-13C]-glucose) (Bennett et al., 2008; 

Neubauer et al., 2012; Park et al., 2016). Once absolute metabolite levels are known for a 

reference condition, absolute levels in other conditions can be determined by relative 

quantitation. Thinking in terms of concentrations, as opposed to arbitrary signal intensities, 

helps to contextualize findings. For example, when the metabolite rises in a given condition, 

is it impacting osmolality? Or is it still present only in trace amounts? How does the 

concentration relate to the Km of consuming enzymes?

A good way to visualize overall pattern of concentration changes in a metabolomics dataset 

is clustered heat maps, which can be generated using free open-source tools (e.g., Cluster 3.0 

and Java Treeview). Metabolites that show similar patterns across samples group together, as 

reflected in the dendrogram (tree diagram). Figure 5A shows an example of a clustered heat 

map, in this case for an experiment probing the response of whole cell and mitochondrial 

metabolite pools to different respiratory chain inhibitors (Chen et al., 2016). The heat map 

nicely illustrates that mitochondrial metabolites respond particularly strongly and variably to 

the different inhibitors.

Heat maps can also be clustered by sample, to group together samples that show similar 

metabolic responses. A more refined way of assessing the overall similarity or differences 

between samples is principal component analysis, which identifies linear combinations of 

metabolites that best differentiate samples. Plotting the position of samples along the first 

two principal components graphically highlights which samples have similar metabolite 

profiles (Figure 5B). Such plots can be generated by free software like MetaboAnalyst (Xia 

et al., 2015).

Another basic step in data analysis is to find metabolites (or labeling patterns) that change 

significantly across conditions. This can be done using standard statistical tests like student’s 
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t-test or analysis of variance (ANOVA). Because metabolomics studies measure many 

metabolites, it is expected that some metabolites will yield a p-value < 0.05 based on chance 

alone (on average 5 out of 100). To reduce the false discovery rate, p-values should be 

adjusted using the Benjamini–Hochberg procedure. Findings that are significant after false 

discovery correction can be highlighted in bar graphs (Figure 5C).

For isotope tracing, one convenient way to visualize labeling patterns is stacked bar graphs, 

where each color refers to a particular labeled form. Before analyzing labeling data, it is 

important to correct for natural isotope abundances. The biggest contributor is the natural 

carbon 13 abundance of 1.1%, but it is best to correct for all relevant natural isotopes, taking 

into account the tracer employed and the resolving power of the mass spectrometer. 

Software exists for this purpose (Midani et al., 2017; Su et al., 2017). Labeling fractions 

provide complementary information to the absolute magnitude of labeled forms.

After looking at a clustered heat map and then individually at altered metabolites, key 

messages in the data often begin to crystalize. To facilitate this process, we routinely “get to 

know” any unfamiliar metabolite that shows an interesting concentration or labeling change, 

by examining its structure, checking its production and consumption routes using a pathway 

database like KEGG or MetaCyc (Kanehisa et al., 2016; Caspi et al., 2018), and searching 

for known biological associations using Google or Pubmed. Software has also been 

developed to help identify significantly affected pathways, based on the fraction of pathway 

metabolites showing altered levels in a particular experiment. For example, in the respiratory 

chain inhibitor experiment shown in Figure 5, 45 metabolites show 2-fold concentration 

changes. Pathways enriched in these metabolites can be identified using MetaboAnalyst or 

other similar software (Figure 5D). Alanine, aspartate, and glutamate metabolism (KEGG 

map00250) is one of the top hits (Figure 5E). This example shows the feasibility of pathway 

analysis, but also its current limitations. Alanine, aspartate and glutamate metabolism is not 

actually a classical pathway, and the KEGG pathway diagram does not illuminate the 

biochemical basis for the differential responses of the involved metabolites. These data can 

be rationalized, however, by knowledge of the relationship between the electron transport 

chain, TCA cycle, and amino acids. This is why we rely heavily on learning metabolic 

biochemistry, and reading and discussing broadly, as the cornerstones of effective 

interpretation of metabolomics data.

Biological Application

Here we highlight four general ways in which metabolomics and isotope tracing can 

illuminate biology. In each case, we discuss selected successful experiments. The goal is not 

to review the contributions of metabolomics and isotope tracing, but to discuss a small set of 

experiments with an eye towards inspiring new users.

Finding that Special Metabolite

One of the most powerful applications of metabolomics is finding metabolites with specific 

biological roles. A straightforward case involves identifying the substrates of enzymes. For 

novel or promiscuous enzymes, the physiological substrate can be hard to identify 

biochemically. There are now many examples of successfully employing metabolomics for 
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this purpose. The typical experimental design involves knocking out the enzyme and looking 

for changes in the metabolome. In most cases, enzyme knockout results in buildup of the 

physiological substrate, with software like XCMS effective for pulling out these peaks from 

untargeted MS data (Saghatelian et al., 2004).

Metabolomics can also identify unexpected enzyme products. A particularly important case 

involved active site mutants of the TCA cycle enzyme isocitrate dehydrogenase (IDH1 and 

IDH2) that cause human cancer (Parsons et al., 2008). While initial biochemistry hinted that 

the mutant enzymes were inactive (Zhao et al., 2009), metabolomics analysis revealed that 

cells expressing oncogenic mutant IDH had a normal amount of the enzyme’s typical 

substrate and product, but dramatic increases in three unexpected LC-MS peaks (Dang et al., 

2009). These three peaks all occurred at a single retention time, suggesting that they all 

arose from a single metabolite. One of these peaks proved to be the molecular anion of the 

metabolic error product, 2-hydroxyglutarate, produced by the mutant enzyme. The other two 

were the sodium adduct and in-source dehydration product. Subsequent work showed the 2-

hydroxyglutarate causes cancer by inhibiting histone and DNA demethylation (Figueroa et 

al., 2010).

Metabolomics can also be used to identify metabolites associated with more complex 

biological functions. One approach is to start with an extract that triggers a biological 

response of interest. Size filtration, organic extraction, or heat can be used to determine 

whether the activity resides in a small molecule or macromolecule (e.g., protein). When the 

activity resides in a small molecule, metabolomics can identify those present. The extract 

can then be purified into fractions, looking for MS (or NMR) peaks that track with the 

biological activity. This approach was successful in identifying a catabolite of the amino 

acid valine, 3-hydroxyisobutyrate, as an inducer of fat transport across vascular endothelial 

cells (Jang et al., 2016).

Perhaps the greatest interest is in identifying metabolites linked to common human diseases, 

for use as diagnostic or prognostic markers. The potential for metabolites to serve this role is 

well established, with glucose and cholesterol measurements central to modern medicine. 

Importantly, modest changes in concentration (e.g., 50%) in glucose and cholesterol are used 

to guide diagnosis and therapy. To find similar biomarkers via metabolomics, large sample 

sizes are required. To reduce both the effort required for picking peaks and the statistical 

chance of false discoveries, to date, the most successful metabolomics studies of common 

human diseases focused on known metabolites. For example, to discover metabolites 

predictive of type 2 diabetes development, samples of 2,422 individuals followed for 12 

years from the Framingham Offspring Study were analyzed by LC-MS, focusing on the core 

metabolome using triple quadrupole mass spectrometry. This revealed that a modest increase 

(30%) in the concentrations of branched chain amino acids (BCAAs: leucine, isoleucine, 

valine) predicts future insulin resistance (Newgard et al., 2009; Wang et al., 2011). Because 

of the difficulty of proving causation in such population-based human studies, looking for 

the same phenotype in mouse models is valuable. Indeed, elevated BCAAs were found early 

in standard mouse diabetes models (Lynch and Adams, 2014). These models are now being 

used to identify the mechanisms underlying the rise in BCAAs, and how such elevation may 

contribute to pathogenesis. Collectively, these studies highlight the utility of metabolomics 
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in finding metabolites of special biological importance, including new drivers of two of the 

most common diseases, cancer and diabetes.

Seeing the Big Picture

Beyond finding metabolites of special importance, a key virtue of metabolomics is the 

global perspective. In many cases, confidence is increased by seeing multiple related 

metabolites change in parallel. Notable examples include increased levels of all three 

BCAAs (leucine, isoleucine, and valine) in diabetes (Newgard et al., 2009; Wang et al., 

2011), and increased levels of three different nicotinamide-related metabolites in autism 

(Yap et al., 2010). Similarly, while various acetylated spermidine species had been 

previously linked to cancer (Tsuji et al., 1975), interest in these metabolites as a biomarker is 

much increased after it emerged as the strongest cancer predictor in multiple metabolomics 

studies (Johnson et al., 2015; Wikoff et al., 2015).

Beyond putting specific metabolic changes in context, metabolomics can also reveal general 

biological principles. For example, multiple metabolomics studies in microbes support the 

concept that metabolism is relatively robust to genetic changes but sensitive to the nutrient 

environment. In both E. coli and yeast, single knockout of an enzyme has only a modest 

effect on the overall metabolome, mainly accumulation of metabolites directly upstream of 

the eliminated enzyme (Ishii et al., 2007; Ewald et al., 2013). Knockout mutants of 

transcription factors and signaling proteins show weaker but broader changes in 

metabolome, which are relatively subtle but reflective of the gene’s function (Mülleder et al., 

2016; Fuhrer et al., 2017). In contrast, changes in the nutrient environment lead to large 

global changes in metabolite concentrations (Ishii et al., 2007; Boer et al., 2010). Why does 

knockout of a central metabolic enzyme usually produce only focal metabolic changes, 

while nutrient deprivation produces global ones? The metabolic network contains multiple 

partially redundant pathways, which can bypass many blockages. But there is no substitute 

for elemental nutrients. More generally, metabolism is closely tied to the nutrient 

environment by the strong impact of substrate availability on fluxes (Hackett et al., 2016). 

Big metabolite changes in response to nutrient limitation may have a diversity of benefits: 

providing a robust intracellular signal of the nutrient conditions; optimizing survival and 

growth in the difficult nutrient environment; and preparing the cell for rapid recovery when 

nutrient conditions improve (You et al., 2013).

Metabolomics can also be integrated with other ‘omic approaches (Huan et al., 2017). One 

important goal of such efforts is to understand regulatory interactions spanning different 

biomolecule classes. This is often facilitated by dynamic measurements. For example, serial 

metabolomic and transcriptomic measurements of plant responses to light/dark cycling in 

Arabadopsis identified that darkness quickly induces protein-degradation genes (Caldana et 

al., 2011). This is followed by increases in amino acid levels. The increased levels of amino 

acids in turn triggers down-regulation of amino acid biosynthetic genes. Such ‘omics-driven 

hypothesis generation is valuable, with the ultimate proof lying in confirmatory genetic 

experiments testing causing and effect.
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Tracking Pathways in Action

Metabolomics measures metabolite abundances. While informative, metabolite abundances 

do not reveal pathway activities: metabolite levels are determined by the balance of 

production and consumption in a nonlinear way. Increased metabolite levels can be due to 

either faster production or slower consumption. Differentiating these alternatives is often 

critical. For example, when the production of a metabolite is enhanced in a disease state, 

then it is logical to inhibit the pathway. Accordingly, there is great value in probing pathway 

fluxes with isotope tracers.

This can be achieved by introducing the tracer and measuring the dynamics of downstream 

metabolite labeling. Intuitively, faster labeling implies higher flux. Indeed, for a metabolite 

made directly from the tracer, initial rate of label accumulation (measured in molarity or 

moles per cell, not labeling fraction) equals the reaction’s flux. For the immediate 

downstream metabolite, assuming metabolic steady state, flux can also be calculated from 

the labeling half-time and metabolite pool size: flux = ln 2 × pool size / t1/2. For metabolites 

further downstream, however, labeling dynamics depend on both the flux and the pool size 

of all metabolites between the tracer and the measured analyte (Figure 6A–C). For example, 

glycolysis and the PPP often label at similar rates, mirroring glucose-6-phosphate labeling, 

despite glycolysis having much higher flux.

An alternative approach involves determining labeling patterns at isotopic steady state. Such 

experiments advantageously avoid the need to take measurements at many different time 

points. For example, to evaluate flux through the PPP relative to glycolysis, it is more 

effective to use steady state labeling from positionally labeled glucose, than dynamic 

labeling from [U-13C]-glucose. One effective tracer is glucose labeled selectively at carbons 

1 and 2 ([1,2-13C]glucose). Catabolism of this tracer via the oxidative PPP, but not 

glycolysis, can produce M+1 labeled glycolytic metabolites (Figure 6D). Because the natural 

isotope M+1 signal is substantial, proper correction for natural isotope abundance is critical. 

In addition, it is important to be precise in relating the labeling patterns to pathway 

activities. For example, [1,2-13C]glucose specifically probes the flux from ribose-5-

phosphate generated by the oxidative PPP, back into glycolysis via the non-oxidative PPP 

(Figure 6D). If the ribose is used for nucleotide synthesis, as occurs in proliferating cells, 

there is no M+1 signature in glycolysis. Table 2 provides a list of tracers and heuristics for 

interpreting the resulting labeling patterns. It includes simple and widely used methods like 

feeding uniformly 13C-labeled nutrients and determining their relative contributions to TCA 

intermediates, as well as clever ways of probing specific fluxes with positionally labeled 

tracers. As the field of flux analysis matures, we hope that such heuristics will become 

increasingly well validated and widely used.

For the moment, there continues to be great value in carefully thinking through the atom 

transformations involved in metabolic pathways, and how they relate to observed labeling 

patterns. Such analysis can identify unexpected fluxes of biological significance. An 

important example involves M+5-labeling of citrate in mammalian cells fed 

[U-13C]glutamine (Figure 6D). The standard metabolic route of glutamine metabolism, 

involving its conversion to α-ketoglutarate, followed by oxidative metabolism of α-

ketoglutarate in the TCA cycle, produces M+4 citrate. In contrast, reductive carboxylation of 
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α-ketoglutarate produces M+5 citrate (Yoo et al., 2008; Mullen et al., 2011; Metallo et al., 

2011). This “backwards” TCA flux was rigorously proven by tracing with glutamine labeled 

selectively at its first carbon ([1-13C]glutamine), and eventually by showing loss of the M+5 

citrate upon knockout of IDH1. As such efforts more completely map the functional capacity 

of metabolism, isotope tracing will become more turnkey for the broader biology 

community.

Tracing in multicellular organism

In flux analysis, the immediate frontier is tracing in live animals. This is a blast from the 

past – isotope tracers have been employed in plants and animals from the very beginning of 

biochemistry – but such studies are being revisited now with the power of metabolomics. 

Interpretation is more complicated than for cell culture studies or isolated microbes, as 

labeling in any given tissue reflects not only the average labeling of its component cells, but 

also the tracer’s pharmacokinetics, i.e. the circuiting levels of the tracer and its metabolites.

To deal with this complexity, some relatively simple calculations are valuable. For animal 

studies, one key variable is the tracer infusion rate. The required rate of tracer infusion to 

achieve a particular target enrichment in the circulation can be determined based on 

knowledge of the circulating nutrient’s endogenous production and consumption rates, 

which at steady state must balance and are termed the nutrient’s circulatory turnover flux 

(Fcirc) (Hui et al., 2017): Fcirc = R(1 – L)/L, where R is the infusion rate and L the plasma 

metabolite labeling. It is generally advantageous to achieve enrichment in the range of 10 – 

30%, to minimize perturbation of circulating metabolite levels while having enough tracer 

on board to see labeling of downstream products.

Another useful measurement is the fractional contribution of a circulating nutrient to 

downstream tissue metabolite levels. For example, how much does glutamine contribute to 

the TCA cycle? This can be probed by infusing labeled glutamine until steady state tissue 

labeling is achieved. To estimate glutamine’s TCA contribution, the simplest approach is to 

divide the tissue TCA intermediate labeling by the serum glutamine labeling. This approach 

works well when the nutrient is mainly catabolized within a tissue. For glutamine, it has 

revealed that, despite its dominant contribution to the TCA cycle in cultured cancer cells 

(DeBerardinis et al., 2007), it is a minority contributor for tumors in vivo (Hensley et al., 

2016; Davidson et al., 2016). When the infused nutrient can also feed tissues indirectly, via 

transformation into another circulating metabolite, a more sophisticated approach is needed. 

To identify the direct contribution of different nutrients, it is necessary to conduct tracer 

experiments with all of the circulating nutrients of interest (e.g., glucose, lactate, and 

glutamine). Given data on the labeling of each circulating nutrient by each tracer, as well as 

tissue labeling data, the direct contributions of each nutrient can then be determined by a 

straightforward matrix calculation. Using this approach, we have found that TCA labeling 

from infused glucose mainly occurs via circulating lactate: Certain cells break glucose down 

into lactate, which is secreted into the circulation and used as a primary TCA substrate for 

most tissues and even for tumors (Faubert et al., 2017; Hui et al., 2017). In this manner, 

glycolysis and the TCA cycle are uncoupled in individual tissues, enabling their independent 

Jang et al. Page 13

Cell. Author manuscript; available in PMC 2019 May 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



tissue-specific regulation. Thus, tracing in animals can reveal new design principles of 

organismal metabolism.

Future Directions

An important direction in metabolomics is standardization of analytical procedures (Salek et 

al., 2015). This addresses several needs. First, while the individual steps of analysis are not 

especially complicated, building an effective integrative workflow remains tricky. Second, 

standardization of chromatography is needed to enable effective sharing across laboratories 

of peak identities. Well-vetted libraries of exact mass and retention time should eventually 

enable automated quantitation of known metabolites. Standardized procedures should also 

include posting of annotated data tables, including measured masses, retention times, and 

individual sample peak intensities, to public repositories. With continuous improvements in 

instrumentation, standardization of protocols, and automation of data analysis and sharing, 

metabolomics is poised to be increasingly broadly available and useful to biologists over the 

coming decade.

What are the frontiers? One immediate need is better understanding the scope of 

metabolites. There is a vast gulf between the ~ 200 water-soluble metabolites that many labs 

now routinely measure, and the ~ 10,000 peaks that are found in a typical LC-MS run. Most 

of this difference is the result of individual metabolites producing many different ions, due 

to adduct formation and in-source fragmentation (Mahieu and Patti, 2017). After accounting 

for these phenomena, however, there may still be more unknown than identified metabolites.

A longer term goal is to capture the spatial organization of metabolism. Genetically-encoded 

fluorescent metabolite reporters provide an unmatched combination of spatial and temporal 

resolution and are amenable to live imaging. Effective ones are available, however, for only 

a few metabolites. A promising alternative is imaging mass spectrometry (Bodzon-

Kulakowska and Suder, 2016). Since there is no chromatographic step to separate isomers 

and in-source degradation products, a key challenge in imaging mass spectrometry is 

ensuring accurate peak identification. Current methods have a spatial resolution of about 20 

µm, which is sufficient to assess metabolite levels in different tissue and tumor regions, but 

not across subcellular organelles. To determine organellar metabolite levels, an auspicious 

approach is rapid organelle purification, which is facilitated by genetically encoding an 

affinity tag on the organelle of interest (Chen et al., 2016). Metabolomics can then be 

performed as for any other sample. Users need to be mindful of the potential for metabolite 

alterations, either due to continued enzymatic activity or metabolite leakage during the 

purification process.

Imaging mass spectrometry and organelle purification will both be most valuable in 

combination with isotope tracing. A key opportunity is to use multiple tracers and 

measurement methods to reveal metabolic activity across tissues, cell types, and intracellular 

organelles. A major challenge will be making sense of the data. Graphical representation of 

labeling patterns and intuitive data interpretation is likely to continue to be important, but, as 

complexity increases, mathematical modeling may become more central to driving 

biological discovery. This Primer explicitly does not discuss large-scale quantitative flux 
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analysis, because it currently relies on modeling that is beyond the capacity of most labs. 

Development of software that makes quantitative flux analysis broadly accessible is an 

important goal. For such efforts to maximize their impact, they must ultimately allow flux 

determination in multi-compartment systems, including organs connected via the circulation. 

Combined progress in experimental and computational methods hold the potential to 

produce a picture of metabolism in action, in space and time. The resulting knowledge 

should inform many of society’s greatest challenges, from green technology to cancer 

therapy.
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Figure 1. Applications of metabolomics
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Figure 2. Metabolite levels versus metabolic flux
(A) Concentration and flux are distinct properties. (B) Biological example of divergence 

between concentration and flux. Glucose removal decreases flux throughout glycolysis, but 

some glycolytic intermediates increase. FBP, fructose-1,6-bisphosphate; PEP, 

phosphoenolpyruvate.
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Figure 3. Steps in metabolomic analysis
GC, gas-chromatography; HILIC, hydrophilic interaction chromatography; RP, reversed 

phase.
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Figure 4. LC-MS concepts
(A) LC separation is followed by ionization (typically by electrospray) and MS detection. 

Detector reports signal intensity for specific m/z. (B) Resolution refers to the ability of the 

mass spectrometer to distinguish metabolites of similar mass. (C) Chromatography is crucial 

for separation of isomers that have same m/z. RT, retention time. (D) MS/MS provides 

information about chemical moieties within a compound, facilitating metabolite 

identification.
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Figure 5. Visualization of a metabolomics dataset
The dataset measured whole-cell and mitochondrial matrix metabolome changes in response 

to three different respiratory chain inhibitors (Chen et al., 2016). (A) Heat map of metabolite 

concentration changes. For simplicity, only metabolites showing 2-fold changes in at least 

one condition are shown. In practice, we encourage users to examine all metabolites, as 

those that do not change in concentration can also be informative. (B) Principle component 

analysis. (C) Bar graph showing data for a specific metabolite, aspartate. Statistical 

significance is determined by Student’s t-test with p-values corrected for false discovery rate 

(FDR) by the Benjamini-Hochberg procedure. *p<0.05. (D) Identification of impacted 

metabolic pathways using the MetaboAnalyst software package. Pathways are evaluated on 

two criteria: Enrichment for metabolites showing at least 2-fold concentration change in one 

condition (p-value based on enrichment by hypergeometric test) and “Pathway impact,” a 

less straightforward measure that takes into also whether the altered metabolites are centrally 

or peripherally located in the pathway. Circle size is proportional to –log(p) and redness to 

the pathway impact score. The most “impacted” pathway is alanine, aspartate and glutamate 

metabolism (KEGG map00250). Upon clicking on the dot in (D), the software opens the 

pathway diagram in (E). Each rectangle is a metabolite with its KEGG ID shown. Altered 

metabolites are marked in red.
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Figure 6. Isotope tracing to probe metabolic activity
(A–C) Relationship between labeling patterns and flux. X, Y, Z, P and Q represent 

metabolites. Arrows represent reactions with Fin and Fout the fluxes (reaction rates) making 

and consuming Y, respectively. Graphs reflect pool size of different labeled forms of Y. (A) 

Based on the law of mass conservation, at metabolic steady state, flow into and out of 

metabolite pools must balance. (B) Upon instantaneous switching of X from unlabeled to 

fully labeled, Y becomes labeled over time with single exponential kinetics. Despite the 

isotope labeling, if no other conditions change, the cells remain at metabolic steady state 

with constant pool sizes and fluxes. Labeling kinetics depend on both pool size and flux, as 

shown in the equation. (C) Now consider a case where Y can be produced by two different 

reactions, using substrates P and Q, with P unlabeled and Q labeled. At isotopic steady state, 

the unlabeled versus labeled pool size of Y reveals the relative flux from the two different 

pathways. (D) Atom mapping for [1,2-13C]glucose tracing pentose phosphate pathway flux 

and for [U-13C]-glutamine tracing TCA flux. White balls are 12C atoms. Shaded balls are 
13C atoms. Glycolysis, red; pentose phosphate pathway, blue; classical TCA turning, yellow; 

reductive carboxylation, green.
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Table 1

Selected examples of metabolite-based modifications of macromolecules.

Modification Principal targets Metabolic substrate Metabolic product
and other inhibitors

Phosphorylation Proteins ATP ADP

Acetylation Proteins Acetyl-CoA CoA

Deacetylation Proteins NAD (sirtuins) Nicotinamide (sirtuins inhibitor) Butyrate, 3-hydroxybutyrate 
(HDAC inhibitor)

Methylation DNA, histones S-adenosyl-methionine S-adenosyl-homocysteine

Demethylation DNA, histones α-ketoglutarate O2 Succinate fumarate 2-hydroxyglutarate

GlcNAcylation Proteins UDP-N-acetylglucosamine UDP

Acylation Proteins Acyl-CoA (e.g., palmitoyl-CoA) CoA
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Table 2

Isotopic tracers for measuring pathway activities.

Application Tracer Metabolite readouts Explanation

Pentose phosphate pathway (PPP)

PPP overflow [1,2-13C]glucose Lactate M+1, M+2 Flux through the 
combined oxidative and 
non-oxidative PPP 
generates M+1 lactate 
from [1,2-13C]glucose, 
while glycolysis 
generates only M+2 
lactate (Lee et al., 
1998). PPP overflow / 
glycolysis ≈ LacM+1 / 
LacM+2.

Source of ribose (oxidative 
vs non-oxidative branch of 

PPP)

[1,2-13C]glucose Ribose phosphate M+1, 
M+2

The oxPPP make M1 
ribose phosphate; the 
non-oxPPP makes M2. 
Ratio of M1/M2 
depends on the gross 
flux (net flux + 
exchange flux) of each 
branch: Reversibility of 
the non-oxPPP can 
make M2 even if all net 
ribose production is by 
oxPPP.

Glycolysis, TCA and gluconeogenesis

Glycolytic rate [U-13C]glucose Fructose-1,6,-
bisphosphate (FBP) 
Dihydroxyacetone 

phosphate 3-
phosphoglycerate

Higher flux yields 
faster labeling. 
Labeling results should 
be confirmed by 
glucose uptake and 
lactate excretion 
measurements.

Reversibility of glycolysis 50% : 50% mix of [U-12C] : [U-13C] glucose Glucose-6-phosphate M
+3 FBP M+3

Feeding a mixture of 
labeled and unlabeled 
glucose results in 
unlabeled and M+3 
triose phosphates. 
Reversibility of 
aldolase produces M+3 
FBP. Fructose 
bisphosphatase activity 
yields M3 glucose-6-
phosphate (Park et al., 
2016).

Gluconeogenesis [U-13C]lactate [U-13C]glutamine Glucose-6-phosphate M
+2, M+3 3-

phosphoglycerate M+2, 
M+3

Lactate and glutamine 
are major TCA 
substrates. Flux from 
TCA to glycolysis 
catalyzed by PEPCK 
results in triose 
phosphate labeling. 
Fructose 
bisphosphatase activity 
then makes labeled 
hexose phosphates.

Pyruvate carboxylase 
contribution to TCA

[3-13C]glucose [1-13C]pyruvate Aspartate M+3 Malate 
M+3

C1 of pyruvate comes 
from glucose C3/C4. 
Pyruvate C1 is lost in 
making acetyl-CoA, but 
can enter TCA via 
pyruvate carboxylase 
which makes M1 

Cell. Author manuscript; available in PMC 2019 May 03.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Jang et al. Page 29

Application Tracer Metabolite readouts Explanation

oxaloacetate and thus 
M1 aspartate and M1 
malate (Sellers et al., 
2015).

Reductive carboxylation 
(“backwards” TCA flux)

[U-13C]glutamine [1-13C]glutamine Citrate M+5, Malate M
+3 or Citrate M+1, 

Malate M+1

Reductive 
carboxylation of α-
ketoglutarate (derived 
from labeled glutamine) 
produces M+5 (or M
+1) citrate, and 
subsequent ATP citrate 
lyase produces M+3 (or 
M+1) malate (Yoo et 
al., 2008)

TCA carbon sources [U-13C]nutrients Succinate Malate Citrate 
α-ketoglutarate

Carbon enrichment 
(number of 13C atoms 
versus total carbon 
atoms) reflects carbon 
contribution from the 
nutrient; useful in vivo 
with correction for 
circulating nutrient 
enrichment (Davidson 
et al., 2016; Faubert et 
al., 2017; Hui et al., 
2017)

Biosynthesis

Acetyl-CoA sources [U-13C]glucose [U-13C]glutamine [U-13C]acetate Fatty acids (saponified) 
Acetyl amino acids

Fatty acids (e.g., 
palmitate) are made 
from stochastic 
condensation of labeled 
and unlabeled acetyl-
CoA. Acetyl group 
labeling can be inferred 
by binomial fitting of 
fatty acid labeling or by 
comparing steady state 
labeling of acetyl-
amino acids and the 
corresponding free 
amino acids.

De novo fatty acid 
biosynthesis

2H2O Fatty acids (saponified) 2H2O labels newly 
synthesized fat directly 
and via NADPH, with 
21 potential deuterium 
per palmitate (Lee et 
al., 1994; Zhang et al., 
2017).

Purine biosynthesis [U-13C]glycine ATP M+2 GTP M+2 Purine ring contains a 
glycine moiety. Newly 
synthesized purines are 
M2.

Pyrimidine biosynthesis [U-13C]bicarbonate [U-15N]glutamine [U-13C]glutamine UTP M+1 ~ M+4 UDP-
glucose M+1 ~ M+4

Pyrimidines are made 
from carbonyl 
phosphate (which 
contains one 
bicarbonate and one 
glutamine nitrogen) and 
aspartate (which 
typically contains 
glutamine nitrogen and 
carbon (Strong et al., 
1983).

Protein synthesis 2H2O [U-13C]essential AA Amino acids 
(hydrolyzed from 

protein)

2H from 2H2O 
incorporates into non-
essential amino acids 
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Application Tracer Metabolite readouts Explanation

(Busch et al., 2006). 
Essential AA are 
directly incorporated.

One-carbon metabolism

De novo synthesis of 
serine

[U-13C]glucose Serine M+3 Serine is made from 
glucose via the 
glycolytic intermediate 
3-phosphoglycerate. 
Fraction of serine M+3 
indicates fraction serine 
made by de novo 
synthesis (Locasale et 
al., 2011)

Source of folate 1C units [3-13C]serine [U-13C]glycine [U-13C]sarcosine 
[U-13C]formate

dTTP M+1 ATP M+1 ~ 
M+4 Formyl-

methionine M+1 
Formate M+1

dTTP contains a 1C 
unit from cytosolic 
methylene-THF. Purine 
rings contain two 1C 
units from cytosolic 
formyl-THF. Formyl-
methionine contains a 
1C unit from 
mitochondrial formyl-
THF. Excess 1C units 
are secreted as formate 
(Ducker et al., 2016). 
Note that purine rings 
also contain an intact 
glycine; thus, ATP M+2 
may be from glycine 
not 1C.

Location of serine 
catabolism to make 
cytosolic 1C units

[2,3,3-2H]serine dTTP M+1, M+2 Direct cytosolic 
production of 
methylene-THF by 
SHMT1 yields dTTP M
+2. The more circuitous 
route from 
mitochondrial SHMT2 
yields dTTP M+1 
(Herbig et al., 2002; 
Ducker et al., 2016).

Methylation through SAM [Methyl-13C2H3]methionine Methylated lysine (free 
or on histones)

Histones are methylated 
by SAM with the 
methyl group from 
methionine (Zee et al., 
2010).

Redox metabolism

NADH production from 
GAPDH

[4-2H]glucose NADH M+1 Lactate M
+1 (compare to NAD, 

pyruvate)

GAPDH transfers the 
2H of glyceraldehyde-3-
phosphate, derived 
from [4-2H]glucose, to 
NADH. The 2H can 
then be transferred to 
lactate by LDH (Lewis 
et al., 2014).

NADPH sources [1-2H]glucose [3-2H]glucose [4-2H]glucose 
[2,3,3-2H]serine

NADPH (compare to 
NADP) Fatty acids 

(saponified) 2-
hydroxyglutarate

The oxPPP makes 
NADPH from 
[1-2H]glucose (G6PD) 
and [3-2H]glucose 
(PGD) (Fan et al., 
2014). Malic enzyme 
and isocitrate 
dehydrogenase make 
NADPH from malate 
and isocitrate, which 
can be labeled 
indirectly via 
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Application Tracer Metabolite readouts Explanation

[4-2H]glucose (Liu et 
al., 2016). Folate 
metabolism makes 
NADPH from 2H-
serine. 2H can be 
transferred to fatty 
acids or 2-
hydroxyglutarate 
(whose production can 
be induced by mutant 
IDH expression) (Lewis 
et al., 2014).

H-2H exchange between 
NADPH and water

2H2O NADPH (compare to 
NADP) Fatty acids 

(saponified)

NADPH redox-active 
hydrogen undergoes 
water exchange 
catalyzed by Flavin 
enzymes. Knowledge of 
the fraction of NADPH 
undergoing exchange is 
required to determine 
the quantitative 
contribution of the 
oxPPP and other NADP 
reduction pathways 
(Zhang et al., 2017).

Glutathione biosynthesis [U-13C]glycine [U-13C]glutamine Glutathione Glutathione is made 
from glutamate, 
cysteine, and glycine. 
Glutamine is a main 
source of glutamate 
(Mak et al., 2017).
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