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Abstract

The normalized importance sampling estimator allows the target density f to be known
only up to a multiplicative constant. We indicate how it can be derived by a delta method
based approximation of a Rao-Blackwellized acceptance rejection estimator. Using additional
terms in the delta method then results on a new estimator that also only requires f to be
known only up to a multiplicative constant. Numerical examples indicate that the new
estimator usually outperforms the normalized importance sampling estimator in terms of
mean square error.

1 Introduction

Consider the problem of estimating

θ = E[h(X)] =

∫
h(x)f(x)dx,

where X is a random element of Rd with probability density f and h is a function from Rd to
R, with the n−simulation-run importance sampling estimator,

θ̂1 =
1

n

n∑
i=1

h(Xi)
f(Xi)

g(Xi)

where X1, ..., Xn are drawn from g, the importance sampling density, which is any other prob-
ability density on Rd satisfying f(x) > 0 ⇒ g(x) > 0 for all x ∈ Rd, (see [3] or [1] for more
on importance sampling). The normalized importance sampling estimator, which divides the
standard importance sampling estimator by the Monte Carlo average of the likelihood ratios,

∗This material is based upon work supported by the U. S. Army Research Laboratory and the U. S. Army
Research Office under grant number W911NF-11-1-0115.
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θ̂2 =

∑n
i=1 h(Xi)

f(Xi)
g(Xi)∑n

i=1
f(Xi)
g(Xi)

is a well-known alternative of the standard importance sampling estimator whose advantage
over θ̂1 is that in using θ̂2 one needs to know the target density, f(x), only up to a multiplicative
constant, a practical constraint arising quite often in sequential importance sampling, Markov
chain Monte Carlo, and Bayesian statistics, (see [4]).

In this paper (section 2.1), we show how both θ̂2, and our new estimator

θ̂3 =

∑n
i=1 h(Xi)

f(Xi)
g(Xi)∑n

i=1
f(Xi)
g(Xi)

+

∑n
i=1 h(Xi)

f2(Xi)
g2(Xi)

(
∑n
i=1

f(Xi)
g(Xi)

)2
−

(
∑n
i=1 h(Xi)

f(Xi)
g(Xi)

)(
∑n
i=1

f2(Xi)
g2(Xi)

)

(
∑n
i=1

f(Xi)
g(Xi)

)3
(1)

can be derived by approximating a conditional expectation of an acceptance-rejection sampling
estimator of θ. Numerical evidence indicates that our new estimator usually improves upon θ̂2
in terms of mean square error.

2 Obtaining The Estimators by Approximating a Conditional
Expectation of an Acceptance-Rejection Based Estimator

The acceptance-rejection method generates the value of a random variable having density func-
tion f(x) by first generating the value of a random variable having density function g(x). If the

generated value is x, then that value is accepted with probability f(x)
Cg(x) , where C is such that

f(x)
g(x) ≤ C for all x; if the value is not accepted then the process is repeated. Let X1, . . . , Xn

be the first n generated values using the density g, and consider the following estimator of
θ = Ef [h(X)] based on these values.

θ̂ =

∑n
i=1 h(Xi)1{Ui ≤ f(Xi)

Cg(Xi)
}∑n

i=1 1{Ui ≤
f(Xi)
Cg(Xi)

}
,

where Ui’s are independent [0, 1] uniform random variables. Now, suppose that we would like to
use conditional expectation to derive a new estimator of θ which improves upon θ̂ by conditioning
on the simulated values of X1, X2, ...., Xn under g, i.e.,

E[

∑n
i=1 h(Xi)1{Ui ≤ f(Xi)

Cg(Xi)
}∑n

i=1 1{Ui ≤
f(Xi)
Cg(Xi)

}
|X1, X2, ..., Xn]. (2)

An approximation of (2) by the delta method using the first three terms in the Taylor series
expansion of the function f(X,Y ) = X

Y around f(E(X), E(Y )) results in
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θ̂2 =
E[

∑n
i=1 h(Xi)1{Ui ≤ f(Xi)

Cg(Xi)
}|X1, ..., X2]

E[
∑n
i=1 1{Ui ≤

f(Xi)
Cg(Xi)

}|X1, ..., Xn]
=

∑n
i=1 h(Xi)

f(Xi)
g(Xi)∑n

i=1
f(Xi)
g(Xi)

,

the normalized importance sampling estimator. It is a biased but consistent estimator of θ whose
MSE, compared to the classical importance sampling estimator, θ̂1, has been discussed in section
2.5.3 of [4].

Considering additional terms in the delta method used to approximate (2) now yields the
new estimator. More particularly, using the delta method with the first six terms in the Taylor
series expansion of the function f(X,Y ) = X

Y around f(E(X), E(Y )) yields

E[
X

Y
] ≈ E[X]

E[Y ]
+

Var(Y )E[X]

(E[Y ])3
− cov(X,Y)

(E[Y ])2
, (3)

The proof of the following Lemma is in the Appendix.

Lemma 1 Approximating (2) by using the first six terms yields the estimator

θ̂3 =

∑n
i=1 h(Xi)

f(Xi)
g(Xi)∑n

i=1
f(Xi)
g(Xi)

+

∑n
i=1 h(Xi)

f2(Xi)
g2(Xi)

(
∑n
i=1

f(Xi)
g(Xi)

)2
−

(
∑n
i=1 h(Xi)

f(Xi)
g(Xi)

)(
∑n
i=1

f2(Xi)
g2(Xi)

)

(
∑n
i=1

f(Xi)
g(Xi)

)3
(4)

Remark: Note that θ̂3 does not depend on C and also allows the target density to be known
only up to a multiplicative constant. In addition, like the normalized importance sampling
estimator, it is a biased but consistent estimator of θ.

2.1 A Numerical Example

In the following example we compare θ̂3, with the normalized importance sampling estimator,
θ̂2, in terms of mean square error (MSE).

Example: Consider estimating P (Y > x) where Y is a Weibull random variable with density

f(x) = βxβ−1e−x
β
, g is the Weibull density g(x) = θβxβ−1e−θx

β
, where we use the result from

[2] and set θ = 1/xβ. Table 1 below shows the estimates of Var(θ̂i) and MSE(θ̂i), i = 2, 3. These
estimates are based on 1000 simulation runs.
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MSE(θ̂2) Var(θ̂2) MSE(θ̂3) Var(θ̂3) β x P (Y > x) n

6.592× 10−4 6.500× 10−4 4.397× 10−4 4.179× 10−4 .5 .1 .7289 5000

1.900× 10−4 1.891× 10−4 1.390× 10−4 1.386× 10−4 .3 .05 .6656 104

8.98× 10−6 8.95× 10−6 8.78× 10−6 8.762× 10−6 .2 20 .1619 104

Table 1: Comparing MSE of θ̂2 and θ̂3 for θ = P (Y > x) in the Weibull case

Appendix

Proof of Lemma 1

Set X ≡
∑n
i=1 h(Xi)1{Ui ≤ f(Xi)

Cg(Xi)
}, Y ≡

∑n
i=1 1{Ui ≤

f(Xi)
Cg(Xi)

} and Z ≡ (X1, ..., Xn). Recall
the following identity from section 2,

E[
X

Y
] ≈ E[X]

E[Y ]
+

Var(Y )E[X]

(E[Y ])3
− cov(X,Y)

(E[Y ])2
,

And that we derive θ̂3 by conditioning all the expectations on the right hand side of the above
approximation on Z, i.e., we are to show that

E[X|Z]

E[Y |Z]
+

Var(Y |Z)E[X|Z]

(E[Y |Z])3
− cov(X,Y |Z)

(E[Y |Z])2

is equal to θ̂3, which is,

θ̂3 =

∑n
i=1 h(Xi)

f(Xi)
g(Xi)∑n

i=1
f(Xi)
g(Xi)

+

∑n
i=1 h(Xi)

f2(Xi)
g2(Xi)

(
∑n
i=1

f(Xi)
g(Xi)

)2
−

(
∑n
i=1 h(Xi)

f(Xi)
g(Xi)

)(
∑n
i=1

f2(Xi)
g2(Xi)

)

(
∑n
i=1

f(Xi)
g(Xi)

)3

It is then fairly straight forward to arrive at the above mentioned equality merely by noting
that,

Var(Y |Z) =
n∑
i=1

f(Xi)

Cg(Xi)
−

n∑
i=1

f2(Xi)

C2g2(Xi)
, cov(X,Y |Z) =

n∑
i=1

h(Xi)
f(Xi)

Cg(Xi)
−

n∑
i=1

h(Xi)
f2(Xi)

C2g2(Xi)

E[X|Z] =
n∑
i=1

h(Xi)
f(Xi)

Cg(Xi)
, (E[Y |Z])j =

1

Cj
(
n∑
i=1

f(Xi)

g(Xi)
)j

where j = 1, 2, 3 are used in the derivation of θ̂3.
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