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Abstract

Galaxy Spatial Distributions: Improvements and How They Can Be Used to Inform

the Galaxy–Halo Connection

by

James Kakos

In the modern ΛCDM model of cosmology, galaxies form in the centers of overdense

regions in the cosmic web, known as dark matter halos. The formation and evolution of

galaxies are believed to be connected to the formation and evolution of the halos they

occupy. This concept is referred to as the galaxy–halo connection, and it provides us

with an avenue for understanding the complex physics involved in galaxy formation.

Because we assume every galaxy is located in the center of a halo, drawing parallels

between the spatial distributions of galaxies and halos is an effective way of illuminating

how halo properties may be connected to galaxy properties. However, three-dimensional

spatial information is difficult to obtain accurately in the real Universe, as all information

must be extracted from the emitted light of distant galaxies. In this paper, we apply

the stochastic order redshift technique (sort) to mock redshift surveys to test how well

it recovers the true distribution of galaxies. sort relies on a small (10%) reference

sample of high-quality redshifts that outline the underlying structure of galaxies to

determine new estimates of low-quality redshifts. We find that sort overall improves

redshifts, recovers the redshift-space clustering on scales ≳ 2.5 ℎ−1Mpc, and provides

improved estimates of local densities. Then, we study the clustering properties of central

SDSS galaxies as a function of specific star formation rate (sSFR). We find that central

xix



galaxy auto-correlations show little dependence on sSFR, with the established result

of quiescent galaxies clustering more strongly than star-forming galaxies attributable

to satellites. Because halo assembly history is known to affect distinct halo clustering,

this result implies there is little net correlation between halo assembly history and

central galaxy sSFR. We also find that cross-correlations of centrals with satellites

increase with lower sSFR, suggesting that quiescent centrals have more satellites than

star-forming centrals of the same mass. We compare our findings to the predictions of

empirical models of sSFR using the Bolshoi–Planck 𝑁-body simulation and find that

models dependent on halo assembly history disagree with observations while a model

independent of halo assembly history reproduces well the observed clustering properties

of centrals.
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Chapter 1.

Introduction

§ 1.1. General Overview

In this document, I present the research I did as a graduate student at the University of

California, Santa Cruz. My research focused broadly on the galaxy–halo connection,

which is a widely studied aspect of cosmology aiming to better understand the physics

involved in galaxy formation. The idea behind the galaxy–halo connection is as follows.

In modern ΛCDM cosmology, the matter in the early Universe is comprised of a mixture

of ∼5
6 dark matter and ∼1

6 baryonic matter. Over time, gravity pulls this matter together

into a large structure that we refer to as the cosmic web. In overdense regions of the

cosmic web, matter becomes gravitationally bound and forms dark matter halos. Within

sufficiently massive halos, the baryonic gas cools, collapses to the halos’ centers, and

begins to form galaxies. Galaxy masses continue to grow as they form stars with

available gas and through mergers as halos grow hierarchically, accreting smaller, less

massive halos over time. In this picture, the dark matter and baryonic matter of a halo

have a shared formation and evolutionary history. As such, we expect that properties
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of galaxies will be connected in some way to the properties of the halos in which they

form. The way in which these properties are connected, however, is still uncertain.

Attempts to constrain the galaxy–halo connection range from simple empirical models

to complex hydrodynamical simulations. With empirical models, connections are made

between observations of galaxies and properties of halos as determined by dark matter

cosmological simulations. A simple example of this is abundance matching. With

abundance matching, one connects a galaxy property to a halo property based solely

on the relative abundance of those properties within samples of galaxies and halos. A

standard use case of this is abundance matching galaxy stellar masses to halo masses,

from which we can derive a relation that describes the expected stellar mass of a galaxy

that resides in a halo of some given mass. With hydrodynamical simulations, attempts

are made to model the physics involved in galaxy formation. This can involve processes

like the cooling of gas, formation of stars within a galaxy, and feedback mechanisms that

can eject or recycle gas and affect the rate and duration of star formation (e.g., feedback

effects of black holes which can become effective at quenching galaxies at high masses).

In this paper, we focus on another aspect of the galaxy–halo connection: spatial

distributions. In our current understanding of galaxy formation, galaxies reside at the

centers of dark matter halos. This means that the spatial distribution of galaxies should

mirror that of the underlying structure of halos. In this way, we can connect galaxies

and halos using their environments. This could be done using various methods for

measuring local densities or, commonly, through two-point statistics which measure

the clustering on different length scales. It has been established in various studies that

halo properties (e.g., mass or concentration) can be linked to their environments and

clustering behavior. Searching for similar links between galaxies and their environments
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could help draw connections between which halo properties may be influencing which

galaxy properties. For reviews of galaxy formation and the galaxy–halo connection, see,

e.g., Mo et al. (2010), Somerville and Davé (2015b), and Wechsler and Tinker (2018b).

Each of the two first-author papers I was involved in was motivated by this idea of

the galaxy–halo connection. The first paper was indirectly related, focusing solely on

improvements of galaxy spatial distributions without any analysis surrounding galaxy

or halo properties. The second paper was more directly related, with an emphasis on the

clustering behavior of galaxies as a function of their specific star formation rate (sSFR)

and how it might be influenced by halo properties. As such, while they both fall under

the same umbrella of the galaxy–halo connection, they have fairly distinct introductions

that set up their respective analyses. I will give a brief overview here of each of the

papers but otherwise reserve their introduction for their respective chapters.

§ 1.2. Description of Research

Chapter 2 will present my first first-author paper which focuses on galaxy redshifts.

Galaxy environments are thought to be one of the key aspects in determining galaxy

properties (e.g., Balogh et al., 2004; Kauffmann et al., 2004; Blanton et al., 2005a), and

we can only know environments as well as we can know galaxy locations. Positions

on the sky are relatively easy to measure, but accurately determining the distance of a

galaxy along the line of sight is much trickier. For this, we depend on redshift estimates

of galaxies. Redshifts are inferred from the intensity of light received from distant

galaxies at various wavelengths. As light travels through our expanding Universe, its

wavelength increases in a known way that can be directly related to the distance it
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travels. These redshift estimates are sensitive to the methods used to obtain them, and

naturally, the easiest and cheapest methods will yield the greatest number of redshifts,

whereas the more expensive but more accurate methods will be comparatively limited

(e.g., Spergel et al., 2015; Ivezić et al., 2019). The goal of this paper was to develop a

method that could leverage the more limited sample of high-quality redshifts that will

be available from future surveys and use them to improve estimates of the lower-quality

redshifts we will obtain in a much greater abundance. This ideally would lead to a

clearer picture of the full three-dimensional spatial distribution of galaxies and allow

for improved studies of galaxy environments.

Chapter 3 will present my second first-author paper which focuses more directly

on the galaxy–halo connection. Here, we used clustering statistics to investigate the

dependence of central galaxy specific star formation rate (sSFR) on halo properties. It

has been well-established in the literature that red/quiescent galaxies tend to be more

clustered than blue/star-forming galaxies (e.g., Li et al., 2006; Heinis et al., 2009; Zehavi

et al., 2011; Coil et al., 2017; Berti et al., 2021b), but the extent to which halo properties

are responsible for this is still uncertain (e.g., Blanton and Berlind, 2007; Tinker et al.,

2011; O’Donnell et al., 2021, 2022). The simplest models of the galaxy–halo connection

rely solely on halo mass to be the main determining factor for galaxy properties, but

there are more complicated models that search for dependencies beyond halo mass

(see Wechsler and Tinker, 2018b for a review). It has been shown that the clustering

amplitude of dark matter halos can scale with secondary halo properties (e.g., halo

concentration) at a fixed halo mass; this is referred to as assembly bias (e.g., Wechsler

et al., 2006). Given the established result that quiescent galaxies cluster more strongly

than star-forming galaxies at a fixed stellar mass, studies have been done attempting
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to tie this relation to different halo properties (e.g., Hearin and Watson, 2013; Masaki

et al., 2013; Becker, 2015). The conventional wisdom surrounding this argues that

early-forming halos will host early-forming galaxies. These galaxies will, consequently,

reach the ends of their life cycles (i.e., quench) earlier as they will run out of gas

and cease star formation. A known assembly bias effect is that early-forming halos at

a fixed halo mass are more clustered than late-forming halos (e.g., Gao et al., 2005;

Wechsler et al., 2006). This creates a very natural connection to be drawn to explain why

quiescent galaxies are more clustered than star-forming galaxies. The problem with this

argument is that it attempts to explain a relation (quiescent vs star-forming clustering)

that is based on galaxy samples consisting of both centrals and satellites. The theory

surrounding assembly bias, however, has been developed focusing on distinct halos,

excluding sub-halos. This means that we should be studying central galaxies, excluding

the satellites. Satellite galaxies will have formed within their own sub-halos that are

later accreted by larger halos when they become satellites. This means the satellites will

generally have distinct formation and evolutionary histories from the halo in which they

eventually reside. This makes the connection between satellites and their host halos

more complex. In this paper, we separated centrals from satellites and investigated the

clustering properties of only the centrals as a function of sSFR. Additionally, we tested

simple models of central galaxy sSFR based on the conventional arguments of assembly

bias, as well as a model that assumes no assembly bias, to see how well these models

could reproduce the clustering of observed central galaxies.
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Chapter 2.

Galaxy Correlation Function and Local

Density from Photometric Redshifts Using the

Stochastic Order Redshift Technique (SORT)

§ 2.1. Introduction

In modern cosmology, the large-scale distribution of galaxies arises from the gravita-

tional evolution and hierarchical clustering of primordial fluctuations. Large ΛCDM

𝑁-body simulations of cold dark matter and dark energy predict how these structures

evolve. Such simulations show that many properties of dark matter halos are correlated

with the local density of the regions in which they form on scales of a few megaparsecs

(e.g., Lee et al., 2017a). But baryonic physics is complex, and we are still seeking to

understand how galaxies form and evolve and how that is connected with the proper-

ties of their host dark matter halos and the environments in which they reside (e.g.,

Somerville and Davé, 2015a; Wechsler and Tinker, 2018a and references therein). This

can perhaps be clarified by comparing how halo properties and galaxy properties, such
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as stellar radius, depend on local density and small-scale clustering (e.g., Behroozi et al.,

2022).

We anticipate that this effort will be tremendously aided by the immense quantity of

data that will flow from the giant LSST imaging survey at the Vera Rubin Observatory

(Ivezić et al., 2019) and the higher-resolution imaging surveys by the Euclid Space

Telescope∗ and the Roman Space Telescope (Spergel et al., 2015). These surveys

will provide multi-waveband photometric redshifts for billions of galaxies, of accuracy

𝜎𝑧/(1 + 𝑧) ≈ 0.02 or better. Euclid will also measure grism redshifts of accuracy

𝜎𝑧/(1 + 𝑧) ≈ 10−3 for ∼30 million galaxies (Scaramella et al., 2021). Meanwhile, the

Dark Energy Spectroscopic Instrument (DESI Collaboration et al., 2016) will measure

redshifts of accuracy 𝜎𝑧/(1+ 𝑧) ≈ 10−4 for ∼10 million QSOs and ∼20 million galaxies,

including ∼17 million emission-line galaxies in the redshift interval 0.6 < 𝑧 < 1.6.

In the same regions of the sky where these accurate spectroscopic redshifts are being

measured, the imaging surveys will produce more than an order of magnitude more

photometric redshifts. It is therefore very important to develop methods that can make

efficient use of the combination of a small fraction of spectroscopic redshifts and a

much larger fraction of photometric or grism redshifts in order to measure the local

environments and correlations of distant galaxies. The present paper discusses one such

method.

The basic idea behind these methods is that galaxies cluster, especially on scales of a

few megaparsecs. The idea of estimating redshifts using clustering was first developed

by Seldner and Peebles (1979); Phillipps and Shanks (1987), and Landy et al. (1996).

More recently, Ménard et al. (2013) proposed a method using a small set of reference

∗https://sci.esa.int/web/euclid

7

https://sci.esa.int/web/euclid


Chapter 2. Recovering Galaxy Environments Using the SORT Method

galaxies with spectroscopic redshifts to estimate redshifts for a larger set of galaxies

that are nearby on the sky to the reference galaxies. This was tested with simulations by

Schmidt et al. (2013), compared with spectroscopic redshifts by Rahman et al. (2015),

used to reconstruct redshift distributions from measurement of the angular clustering

of galaxies using a subset of spectroscopic redshifts by Scottez et al. (2016), and tested

with simulations by Scottez et al. (2018). A related method was proposed by Morrison

et al. (2017) See also Gatti et al. (2022), Cawthon et al. (2020), and Hildebrandt et al.

(2021) for more recent applications of clustering redshifts.

A method to estimate redshifts of galaxies with photometric redshifts using proximity

to the cosmic web defined by a subset of galaxies with spectroscopic redshifts was

proposed by Aragon-Calvo et al. (2015), who applied this PhotoWeb method to the

SDSS out to redshift 𝑧 ≈ 0.12. Shuntov et al. (2020) applied this method to a larger

sample of galaxies with spectroscopic redshifts from the SDSS and BOSS surveys out to

redshift 𝑧 = 0.4 to reconstruct the cosmic web using the DisPerSE algorithm (Sousbie,

2011), and they used a convolutional neural network trained with the SDSS and GAMA

surveys to obtain photometric redshifts with mean absolute deviation 𝜎MAD ≈ 0.01 out

to redshift 𝑧 ≈ 0.3 for bright galaxies with 𝑟 < 17.8. They claimed that their version of

the PhotoWeb method improved the accuracy of the redshifts by about a factor of two,

to 𝜎/(1 + 𝑧) ≈ 0.004.

The stochastic order redshift technique (sort; Tejos et al., 2018) is complementary

to these approaches. It considers a patch on the sky where initially two kinds of galaxy

redshift measurements exist: less accurate (e.g., photometric) and precise (spectro-

scopic). The galaxies with precise redshifts are used as a “reference sample,” and it is of

course expected that these correspond to a small fraction of the total number of galaxies.
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New “recovered” redshifts are sampled from the distribution of precise redshifts and

matched one-to-one with the uncertain redshifts such that the rank order of the uncertain

redshifts is preserved. This step is motivated by the fact that random variables drawn

from Gaussian probability density functions (PDFs) with equal, arbitrarily-large stan-

dard deviations satisfy stochastic ordering. By construction, sort is non-parametric as

it does not need to assume any functional form for either the distribution of redshifts or

the relationship between spectroscopic and photometric redshifts. Thus, the power of

sort relies on its simplicity and versatility.

In this paper, we test how well the sort method can use photometric redshifts plus a

smaller set of reference galaxies with spectroscopic redshifts to estimate the correlations

of galaxies and the local densities of their environments out to high redshifts (here we

focus on a redshift interval from 0.5 to 2.5). We test the sort method using mock

galaxy surveys from backward light cones extracted from the Small MultiDark–Planck

and Bolshoi–Planck cosmological ΛCDM simulations (Klypin et al., 2016a; Rodríguez-

Puebla et al., 2016a). The dark matter halos were populated with central and satellite

galaxies using a current version of the Santa Cruz semi-analytic model (SAM), which

has been shown to reproduce well the properties of observed galaxies out to high

redshifts (Somerville et al., 2021 and references therein). We show that sort is indeed

robust and that it can provide unbiased measurement of the redshift-space two-point

correlation function on scales ≳ 2.5 ℎ−1Mpc while also recovering the local galaxy and

mass density, especially in regions of higher than average density where most galaxies

reside.

This paper is organized as follows. In Section 2.2, we briefly describe the method,

while in Section 2.3 we describe the mock galaxy surveys used to study its performance.
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In Section 2.4, we present the results of applying sort to a 2 square degree, mock wide-

field light cone including galaxy redshifts, two-point correlation functions, and inferred

three-dimensional densities of galaxy neighborhoods. In Section 2.5, we provide a

discussion regarding preservation of the redshift rank order, the effects of the sort

parameters, limitations of the method, and potential future improvements. Section 2.6

presents a summary and main conclusions. Appendix A provides the results of applying

sort to a mock CANDELS light cone of area 0.2 square degrees. Appendix B describes

our method for assigning 3D coordinates to satellite galaxies in the Santa Cruz SAM.

Appendix C describes sort performance with larger photometric redshift uncertainties.

Appendix D provides several supplementary figures. All reported distances hereafter

are comoving unless specified otherwise.

§ 2.2. The SORT Method

Here we present a brief overview of the sort method. For a more complete discussion

with illustrative figures, we refer the reader to Tejos et al. (2018).

2.2.1. General Idea

Consider a set of 𝑁 galaxies comprised of a mixture of low-quality (referred to as

photometric) and high-quality (referred to as spectroscopic) redshifts within a volume

𝑉. Assume that there are 𝑁ph galaxies with photometric redshifts and 𝑁sp galaxies with

spectroscopic redshifts. When observing galaxies along some pencil-beam-like sub-

volume, each of these subsets of galaxies will have a redshift probability distribution, 𝑃ph

or 𝑃sp, dependent upon their respective redshift uncertainties. In principle, both 𝑃ph and

10
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𝑃sp can be considered representations of the same underlying true probability distribution

with different levels of noise. Due to the greater expense of obtaining spectroscopic

redshifts than photometric redshifts, the statistics for 𝑃sp are comparatively limited.

However, if 𝑁sp is large enough to be statistically relevant to the total set of 𝑁 galaxies –

i.e. accurately traces the cosmic structure within the volume – the higher quality of the

spectroscopic redshifts will provide us with a higher resolution look at the true galaxy

distribution. In this way, 𝑃ph can be considered a noisier version of 𝑃sp.

We can leverage the relationship between 𝑃ph and 𝑃sp to try to improve the estimates

of the photometric redshifts. To do this, we rely on stochastic ordering, which is defined

as follows. Given two PDFs 𝑃𝐴(𝑥) and 𝑃𝐵(𝑥), the variable 𝑋𝐴 is stochastically less than

𝑋𝐵 if

(2.2.1) 𝑃𝐴(𝑋𝐴 > 𝑥) ⩽ 𝑃𝐵(𝑋𝐵 > 𝑥) ∀𝑥.

To relate this to redshift estimates, consider two observed photometric redshifts 𝑧
ph
𝑖

and 𝑧
ph
𝑗

where 𝑧
ph
𝑖

< 𝑧
ph
𝑗

. We can think of each of these as being random variables

sampled from Gaussian∗ PDFs centered on 𝑧true
𝑖

and 𝑧true
𝑗

, respectively, with equal stan-

dard deviations determined by the measurement uncertainties.∗∗ Even with potentially

overlapping PDFs, 𝑧ph
𝑖

and 𝑧
ph
𝑗

will satisfy stochastic ordering. Therefore, we can say

the most likely scenario is that the underlying true redshifts satisfy 𝑧true
𝑖

⩽ 𝑧true
𝑗

. By

extension, if we have 𝑁ph redshift estimates ordered such that 𝑧ph
1 ⩽ 𝑧

ph
2 ⩽ . . . ⩽ 𝑧

ph
𝑁ph

,

we would also expect the true redshifts to most likely have the same rank ordering such

that 𝑧true
1 ⩽ 𝑧true

2 ⩽ . . . ⩽ 𝑧true
𝑁ph

.

∗The redshift PDFs are not required to be Gaussian, but this is used for simplicity.
∗∗Alternatively, one can think of the Gaussian PDFs as centered on 𝑧ph where the PDF corresponds

to the probability of finding 𝑧true at a given 𝑧.
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Of course, we do not have the “true” redshifts for galaxies, so we rely on high-

quality spectroscopic redshifts instead. To apply the idea, we search in pencil-beam-

like sub-volumes to determine 𝑃sp in that sub-volume. We then randomly sample 𝑁ph

“recovered” redshifts, 𝑧rec
𝑖

, from 𝑃sp. Both the photometric redshifts and the recovered

redshifts are rank ordered and matched one-to-one such that 𝑧rec
𝑖

↔ 𝑧
ph
𝑖

for all 𝑁ph

redshifts. In doing this, we take advantage of the higher resolution provided by 𝑃sp and

simultaneously preserve the rank ordering.

We note that there may be cases where Equation (2.2.1) does not hold true, e.g., in

situations where there is high variance among the individual photometric PDF widths

and/or shapes. However, we can expect that for state-of-the-art photometric redshift

uncertainties, the PDFs will be well-behaved and obey stochastic ordering for the

majority of cases. We also note that sort is a statistical model that should only be

applied to sets of galaxies rather than individual measurements. Overall, sort can

improve redshift estimates of a set, but it can also make individual measurements

worse than the original photometric estimates. Indeed, in some cases, sort may return

individual measurements that are inconsistent with a galaxy’s original PDF (i.e. redshifts

with errors larger than three times the photometric uncertainty).

2.2.2. The SORT Algorithm

For each galaxy 𝑖 in the sample with photometric redshifts, the following steps are taken

(see also Figure 1 from Tejos et al., 2018):

1. A circle with radius 𝑅 is drawn on the sky around the 𝑖th galaxy.

2. Galaxies that fall within a cylinder defined by the radius 𝑅 and a redshift range

12
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𝑧𝑖 ± Δ𝑧 are selected and used for the remaining steps.

3. From the selected galaxies, a check is made to ensure there are at least 𝑁min
ref

galaxies with spectroscopic redshifts. If there are not at least 𝑁min
ref spectroscopic

redshifts, the circle radius is incremented by 𝛿𝑅 until the criterion is met or 𝑅

exceeds some 𝑅max. If 𝑅 exceeds 𝑅max, sort is considered to have failed and does

not return any redshifts. The algorithm then moves to the next galaxy.

4. A redshift histogram of the spectroscopic galaxies is made using a binning of

𝑑𝑧/3. The histogram is then convolved with a Gaussian with 𝜎 = 𝑑𝑧 to have a

smooth version of the discrete d𝑁/d𝑧 distribution associated with the reference

sample.

5. For each of the photometric galaxies within the cylinder, a new recovered redshift

is sampled from the histogram of spectroscopic redshifts.

6. The selected galaxies’ redshifts and the recovered redshifts are each rank ordered

and matched one-to-one so each photometric galaxy is assigned a recovered

redshift. This is the key “sorting” step of sort.

As this procedure is carried out for the remaining galaxies, every time a given galaxy is

within the cylinder of one of its neighbors, it will gain another recovered redshift based

on that selection. In the data presented, there was a median of 43 recovered redshifts for

any given galaxy. After the algorithm completes, each galaxy is assigned the median of

all its recovered redshifts as its sorted redshift, 𝑧sort. The values used for the algorithm

parameters are discussed in Section 2.4.

13
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Table 2.1.: Comparison of the two mock light cones used. Each light cone was restricted
to the redshift range 0.75 < 𝑧 < 2.25. Galaxies were selected from three
complete redshift bins (as shown in Figure 2.1). The light cones were
extracted from different simulations, though the cosmological parameters
are the same for both with the exception of 𝜎8, as described in Section 2.3.

Light Cone Size (deg2) Galaxies Completeness Simulation 𝜎8

Wide Field 2 1,058,366 𝐻 < 27 SMDPL 0.829
CANDELS 0.2 47,404 𝐻 < 25.5 BolshoiP 0.823

§ 2.3. Mock Galaxy Surveys

2.3.1. Simulations and Backward Light Cones

We use mock galaxy surveys constructed by extracting dark matter halos along back-

wards light cones from the Small MultiDark–Planck (SMDPL) and Bolshoi–Planck

(BolshoiP) 𝑁-body simulations (Klypin et al., 2016a; Rodríguez-Puebla et al., 2016a).

The cosmological parameters of SMDPL and BolshoiP are ΩΛ = 0.693, Ωm = 1−ΩΛ,

Ωb = 0.048, ℎ = 0.678, 𝑛𝑠 = 0.96, and 𝜎8 = 0.829 for SMDPL and 𝜎8 = 0.823 for

BolshoiP. A brief summary of the light cones are shown in Table 2.1. The dark mat-

ter halos in the simulations were identified using rockstar (Behroozi et al., 2013a).

The backward light cones were constructed using the lightcone package∗ released by

Behroozi et al. (2019a), and further details are described in Somerville et al. (2021) and

Yang et al. (2021).

The merger histories of the dark matter halos were constructed using an algo-

rithm based on the extended Press–Schechter formalism (Somerville and Kolatt, 1999;

Somerville et al., 2008). The formation and evolution of galaxies within these halos was

then modeled using the Santa Cruz SAM (Somerville and Primack, 1999; Somerville

∗https://bitbucket.org/pbehroozi/universemachine/src/master/
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et al., 2008, 2015). Somerville et al. (2021) presented a suite of light cones that was

designed to represent the geometry and approximate areas of the five fields from the Cos-

mic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS)∗. They

compared the mock survey predictions with the CANDELS observed counts, stellar

mass functions, rest-frame luminosity functions from 0.1 ≲ 𝑧 ≲ 2, and found generally

good agreement. Yung et al. (in preparation) present a suite of 2 square degree mock

light cones that have been populated with galaxies using the same approach (Yung et al.,

2019a,b). In this work, we make use of one of the 2 square degree mock light cones and

one of the mock CANDELS catalogs with field geometry similar to the COSMOS field,

covering an area on the sky of 17× 41 square arcmin in right ascension and declination.

The Santa Cruz SAM does not make use of the 𝑁-body positions and velocities for

dark matter halos once they become “sub-halos” (or satellites) within a larger halo.

Instead, it estimates the galactocentric radius of each satellite from the center of the halo

and its decay due to dynamical friction using an analytic model (see Somerville et al.,

2008 and Somerville et al., 2021). As a result, in order to compute separate redshifts

for the satellites, the 3D positions and velocities must be assigned in post-processing.

For details on our method for assigning these properties to the satellite galaxies, see

Appendix B.

The full catalogs span the range 0 < 𝑧 < 10, though this work uses only galaxies in

the range 0.75 < 𝑧 < 2.25 based on their mock observed redshifts. The lower redshift

limit was imposed to ensure the light cones had large enough cross-sectional areas to

measure the two-point correlation function on scales of ≳ 3 ℎ−1Mpc. Mock observed

∗http://arcoiris.ucolick.org/candels/
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redshifts were calculated using

(2.3.1) 𝑧obs = 𝑧los + 𝛿𝑧 (1 + 𝑧los)

where 𝑧los is the redshift that includes distortions from peculiar velocities along the line

of sight and 𝛿𝑧 is a random sample from a Gaussian centered at zero with standard devi-

ation 𝜎𝑧 (either photometric or spectroscopic). Note that we do not model catastrophic

failures in the photometric sample as we do not expect them to have a significant effect

on the net result of the sort method.

Apparent magnitudes are provided in the mock light cones. For this work, we use

𝐻-band magnitudes given by the “wfc3f160w_dust” output of the Santa Cruz SAM.

The observed-frame IR luminosities are calculated based on the star formation histories

predicted by the Santa Cruz SAM and stellar population synthesis models of Bruzual and

Charlot (2003). Dust attenuation is modeled using a standard “slab” model as described

in Somerville et al. (2012). For more details, we refer the reader to Somerville et al.

(2021).

We adopt a completeness of 𝐻 < 25.5 for the mock CANDELS light cone, which is

a rough limit to which we expect CANDELS photometric redshifts to be accurate. We

expect future surveys to improve this and thus adopt 𝐻 < 27 for the wide-field light

cone. Galaxies were selected from three volume-complete regions within the light cone,

as shown in Figure 2.1. In each of the three regions, 10% of galaxies were randomly

chosen to have mock spectroscopic redshifts while the remaining 90% were given mock

photometric redshifts. After preparing the mock catalogs, the 2 square degree wide-

field light cone had 1,058,366 galaxies (∼147 galaxies per square arcmin) and the mock

CANDELS light cone had 47,404 galaxies (∼68 galaxies per square arcmin). All results
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Figure 2.1. Galaxies were selected from the three volume-complete regions defined by
the dashed lines. Spectroscopic redshifts were assigned within each region randomly to
10% of the galaxies in that region.

in the main text of this paper are drawn from the wide-field light cone as this provides

better overall statistics. Parallel results for the mock CANDELS light cone are shown

in Appendix A and are more representative of present galaxy surveys.

2.3.2. Redshift Types

Here we define several different redshift types that will be discussed in our results:

𝑧cos : These are redshifts that are purely cosmological and include neither redshift-space

distortions from line-of-sight peculiar velocities nor measurement uncertainty.

𝑧spec : These are simulated spectroscopic redshifts that include a small measurement

uncertainty according to Equation (2.3.1).
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𝑧ref : These are the reference sample redshifts. They comprise a relatively small

fraction of the total number of redshifts and have spectroscopic quality.

𝑧phot : These are simulated photometric redshifts. They are generated the same way as

𝑧spec but with larger uncertainties.

𝑧sort : These are the results of running the sort method.

𝑧ctrl : These are the results of the controlled sort algorithm that excludes rank ordering

(see Section 2.5.1 for details).

§ 2.4. Results

Most of the results in this paper were obtained assuming a spectroscopic redshift fraction

of 10%, although we also explored larger and smaller spectroscopic fractions (see

Figure D.2). The spectroscopic and photometric uncertainties used were 𝜎
sp
𝑧 /(1 + 𝑧) =

0.0001 and 𝜎
ph
𝑧 /(1+ 𝑧) = 0.01, respectively, but we also provide results for 𝜎ph

𝑧 /(1+ 𝑧) =

0.02 in Figure 2.7 and Appendix C. The minimum required number of reference galaxies

for each sub-volume was set to 𝑁min
ref = 4. We found sort to be effective with this value

as low as 𝑁min
ref = 2, but increasing to 4 provided a better overall estimate of the two-point

correlation function while other results remained similar. The initial search radius was

set to 𝑅 = 0.01◦ and the redshift bin width was set to 𝑑𝑧 = 0.0003. These correspond to

length scales of around 0.3–0.7 ℎ−1Mpc for 𝑅 and 0.3–0.6 ℎ−1Mpc for 𝑑𝑧 in the range

0.75 < 𝑧 < 2.25. These values were chosen to be able to capture relevant scales of

the cosmic web. The search radius increment was set to 𝛿𝑅 = 0.1𝑅 with a maximum

possible radius of 𝑅max = 0.1◦. If the 𝑁min
ref criterion was not met within 𝑅 ⩽ 𝑅max for a
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given galaxy, that galaxy was removed from the results.∗ The search depth was limited

to 𝑧𝑖 ± Δ𝑧 with Δ𝑧 = 2.5𝜎ph
𝑧 . This depth was chosen to be large enough to capture nearly

all photometric redshifts and their true environments within the same sub-volume. See

Section 2.5.2 for details on these parameters.

Our primary comparison for the results of sort is to 𝑧spec, as spectroscopic redshifts

represent our best estimates of galaxy redshifts and sort uses these to trace the cosmic

web. However, in some cases, we also show results of 𝑧cos despite these redshifts not

being directly observable due to redshift-space distortions. These results are shown for

comparison as they represent the true underlying distribution of galaxies. Figures 2.3

and D.4 show 𝑧cos to illustrate the effects of redshift-space distortions and the alignment

of reference galaxies with the true cosmic web. Density estimates of 𝑧sort are compared

to those of 𝑧cos in Figure 2.8 as Lee et al. (2017a) showed that many halo properties

correlate with local densities using the true 𝑁-body positions of halos (which are

replicated by using 𝑧cos, not 𝑧spec).

2.4.1. Improving Redshift Estimates

A general look at how well sort is able to improve redshift estimates can be seen in

Figure 2.2. Each panel shows a different redshift type plotted against the full declination

of the light cone. The middle panel shows the reference sample, 𝑧ref, which is comprised

of 10% of the spectroscopic sample and is assumed to be known when sort is applied.

This is the structural outline that sort uses to reassign redshifts. In the 𝑧phot panel, the

cosmic structure is almost entirely smoothed out. Even with an optimistic photometric

uncertainty of 𝜎
ph
𝑧 /(1 + 𝑧) = 0.01, one can only get a very rough sense of high- or

∗In the data presented, no such galaxies were removed.
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Figure 2.2. Scatter plot of the projected two-dimensional distribution of galaxies for
𝑧cos, 𝑧spec, 𝑧ref, 𝑧phot, and 𝑧sort. Each panel shows a 0.5◦ slice in right ascension and
the full declination of the light cone. The middle panel, 𝑧ref, corresponds to 10% of
the total galaxies, and the remaining panels show the 90% non-reference galaxies. The
large-scale features of the cosmic web are much more identifiable with 𝑧sort than 𝑧phot.
However, sort’s tendency to group galaxies closely together means that it struggles to
recover low-density regions. Note that the horizontal cuts slightly visible in the 𝑧phot
panel are a result of the completeness condition shown in Figure 2.1.
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Figure 2.3. Right ascension slices (thickness 0.1◦) of galaxy distributions using different
redshifts in a roughly 75×75 ℎ−1Mpc region of space. The red and blue coloring denotes
the direction of the peculiar velocity along the line of sight (red is positive and blue
is negative). The black rings with empty centers are reference galaxies. This region
is dominated by a high-density ring of galaxies that surrounds a void in the upper left
quadrant. We can see that the accurate tracing of this ring by the reference sample allows
sort to recreate it while also preserving the void in the center. We expect that such
voids surrounded by a sufficiently high density of galaxies should largely be preserved
in 𝑧sort. Reference galaxies are rarely found in voids, but may be shifted into them by
redshift-space distortions in cases where dense clusters are positioned along the line
of sight to the void. As such, sort will primarily place galaxies around the voids
where the reference galaxies reside. On the other hand, with photometric redshifts, the
large uncertainties in the measurements of galaxies surrounding the void smooth out
the region, obscuring the underlying structure as shown in the bottom left panel.
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low-density regions. The 𝑧sort panel shows a significant improvement on 𝑧phot. We see

more accurate clustering of galaxies, as well as signs of filamentary structure and voids.

We note that sort’s reconstruction of low-density regions is not particularly good. This

is primarily due to sort’s tendency to place galaxies near other galaxies. Lower-density

regions will be populated with few galaxies, and only a small fraction of those will be

reference galaxies.

A more zoomed-in view of the different redshift types can be seen in Figure 2.3.

Each panel shows a square region of space, roughly 75 × 75 ℎ−1Mpc. The red and blue

coloring represents the direction of the peculiar velocities along the line of sight; red

points have positive velocities and blue points have negative velocities. When comparing

𝑧cos to 𝑧spec, we see that galaxies in denser regions become spread out vertically. The

severity of these distortions will directly impact sort’s ability to reconstruct the cosmic

web. Redshift-space distortions in the reference sample will inherently affect how sort

assigns redshifts. For example, there is a dense cluster of galaxies in Figure 2.3 in front

of a void. The redshift-space distortions cause a number of galaxies, including some

reference galaxies, to be shifted into the void. This results in sort placing galaxies in

the void where they otherwise should not be placed.

We notice also how sort clusters galaxies tightly to the reference sample. In the

lowest density environments, there are cases where galaxies build up around one or two

reference galaxies – e.g., around (0.5, 1.46) in the 𝑧sort panel. Galaxies are pulled along

the line of sight to a nearby reference galaxy, leading to horizontal structures in a plane

perpendicular to the line of sight. This is most prominent in low density environments

because sort has to increase its search radius to find reference galaxies. This allows

galaxies at a wider range of angular separations to be placed at roughly the same
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Figure 2.4. Redshift distributions for 𝑧spec (grey), 𝑧sort (red), and 𝑧phot (blue) with
arbitrary binning of 0.003. The large uncertainty of the photometric redshifts blurs
out the structure of the distribution, which becomes more or less flat over the entire
range. The distribution produced by sort much more closely follows the distribution
obtained with spectroscopic measurements. This is by design, as sort samples new
redshifts based on the distribution of the spectroscopic-quality reference sample within
each sub-volume.

redshift. Overall, though, we see that sort does a fairly good job at reconstructing the

main features in this region of space, especially compared to the photometric redshifts.

In the 𝑧phot panel on the lower left, any sign of the main features in this region is almost

completely lost.

This is further shown when looking at the recovery of the spectroscopic d𝑁/d𝑧

distribution. The one-dimensional redshift distributions are shown in Figure 2.4 for

𝑧spec (grey region), 𝑧sort (red), and 𝑧phot (blue). The peaks and valleys are smoothed out

in the photometric distribution while 𝑧sort shows significant improvement in ability to

outline large-scale structure along the line of sight. By construction, 𝑧sort is meant to

follow the d𝑁/d𝑧 distribution of the spectroscopic reference sample, and that is what

we observe here. Some of the discrepancy is a result of sort pulling galaxies from

low-density regions, where reference galaxies are scarce, to high-density regions.

Figure 2.5 shows the error Δ𝑧/(1 + 𝑧) with respect to 𝑧spec. The grey shaded region

shows the error distribution for 𝑧phot. Since the photometric redshifts were generated
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Figure 2.5. Normalized distribution of Δ𝑧 (excluding the spectroscopic sample) for
𝑧sort, 𝑧phot, and 𝑧ctrl (see Section 2.5.1 for details on 𝑧ctrl.). The photometric distribution
essentially recovers the Gaussian used to create the photometric sample. sort is able
to produce a tall peak surrounding Δ𝑧 = 0 where a significant fraction of redshifts have
been improved. The overall standard deviation of Δ𝑧sort is comparable to Δ𝑧phot as
shown by the broader base of the distribution.

using a Gaussian distribution, the recovered distribution is Gaussian with a standard

deviation of ∼0.01(1 + 𝑧). In red, the results of sort show a significant fraction of

redshifts that have been improved. Overall, Δ𝑧sort and Δ𝑧phot share a similar standard

deviation; however, the large peak shows that 𝑧sort provides much more information than

𝑧phot. This is shown clearly in both Figures 2.2 and 2.4 as 𝑧sort is able to more accurately

outline large-scale structure that is washed out by 𝑧phot.

A direct comparison of redshifts can be seen in Figure 2.6. The left and right panels

show the two-dimensional histograms of 𝑧phot and 𝑧sort compared to 𝑧spec. We continue

to see improvement in redshift estimates after applying sort. The large peak shown in
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Figure 2.6. Two-dimensional redshift histograms for 𝑧phot and 𝑧sort relative to 𝑧spec
with binning of 0.003. The color bar represents the total number of counts in each
bin. We observe significant improvement in redshift estimates by 𝑧sort compared to
𝑧phot. There are much higher counts along the line of equality for 𝑧sort, and this effect
is consistent across the entire redshift range of the light cone. All redshift bins can be
seen in Figure D.5.

Figure 2.5 is now represented by a bright, narrow band of redshifts along the line of

equality where errors are small. This improvement is seen in all redshift bins, which

are shown in Figure D.5.

2.4.2. Recovering The Two-Point Correlation Function

The two-point correlation function (2PCF) is a relatively simple metric that provides

information about the three-dimensional spatial clustering of galaxies. The large un-

certainties associated with photometric redshifts lead to smoothing of spatial clustering

and a highly biased estimate of the 3D 2PCF on relevant scales. As a result, using

only photometric redshifts, one typically calculates the 2D angular 2PCF. Here we test

sort’s ability to recover the 3D 2PCF. We note, however, that this test is somewhat
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conservative because redshift distortions and sort only affect positioning along the line

of sight. Angular correlations do not deviate from their true values.

Estimates of the 2PCF were calculated using various redshift types as a function

of redshift-space distance 𝑠. Both 𝜉cos(𝑠) and 𝜉spec(𝑠) assume 100% of the galaxies

have a known cosmological or spectroscopic redshift.∗ 𝜉ref(𝑠) uses only the reference

sample – i.e. only 10% of galaxies with spectroscopic redshifts. For 𝜉phot(𝑠), 𝜉sort(𝑠),

and 𝜉ctrl(𝑠) (see Section 2.5.1 for details on 𝜉ctrl(𝑠)), 2PCFs were calculated using

their respective 90% non-reference sample redshifts plus the 10% spectroscopic-quality

reference sample. The 2PCFs were calculated using corrfunc (Sinha and Garrison,

2020a) from scales of ∼1 ℎ−1Mpc to ∼18–30 ℎ−1Mpc (larger scales are calculated in

higher redshift bins). Figure 2.7 shows 2PCF results for 0.75 < 𝑧 < 1.25 (see Figure D.3

for 2PCFs in all redshift bins). We note that because sort is dependent upon 𝑧ref, which

comprises a small fraction of the total redshifts, sort’s ability to reconstruct the three-

dimensional distribution of galaxies is susceptible to sample variance in 𝑧ref. As such,

sort was run on the same light cone with 10 different random seeds (which determine

the selection of 𝑧ref) to find an average result for the 2PCF. These averages are shown

in Figure 2.7 along with error bars calculated as the standard deviation across the 10

random seeds. We also note that averaging over the 10 random seeds was done for all

redshift types, though results will not vary much when using 𝑧cos, 𝑧spec, and 𝑧phot.

We see that using only photometric redshifts leads to a very poor estimate of the

2PCF. This is not surprising due to the large uncertainty associated with 𝑧phot. On the

other hand, we observe that sort accurately recovers the spectroscopic 2PCF on scales

of 𝑠 ≳ 2.5 ℎ−1Mpc. At the smallest scales, however, sort overestimates the 2PCF. This
∗It is not expected that sort should recover 𝜉cos (𝑠) since 𝑧ref traces 𝑧spec, not 𝑧cos. These results are

shown for the sake of comparison.
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result stems from the design of the sort algorithm – namely, galaxies will be placed

near other galaxies, resulting in high clustering on smaller scales.∗ The lower limit to

which sort is accurate will depend on the choice of binning the method uses. As our

chosen bin width corresponds roughly to 1 ℎ−1Mpc, we can only expect to be reasonably

accurate at scales larger than this.

2.4.3. Estimating Local Densities

Densities were calculated by searching for neighbors within cylindrical sub-volumes

surrounding each galaxy. The total length of each cylinder was set to 4 ℎ−1Mpc. Photo-

metric redshift uncertainties correspond to scales of 𝜎ph
𝑧 = 0.01(1+ 𝑧) ≈ 30 ℎ−1Mpc for

0.75 < 𝑧 < 2.25. This is much larger than the scale of the cylinder and thus photometric

density estimates will be particularly poor. Nevertheless, we use this cylinder length to

test the limits of sort. We also provide a sample of density estimates using a much

longer cylinder defined by 𝑙 = 2Δ𝑣
𝑐
(1 + 𝑧) with Δ𝑣 = 1000 km s−1 in Figure D.8.

The radius of the cylinder is initially set to 𝑟 = 0.02◦. If there are not at least 𝑛 galaxies

within the cylinder, the radius is incremented by 𝛿𝑟 = 0.001◦ until that condition is met

or 𝑟 reaches 𝑟max = 0.04◦. This method was chosen to make the calculation adaptive.

The range of densities across the entire light cone is large, and having an adaptive

aperture allows for probing different scales. The radius can start small to inspect high-

density regions and expand in low-density regions to estimate an average density where

there may otherwise be only one or two galaxies in the cylinder. The values for 𝑟, 𝛿𝑟,

and 𝑟max were arbitrarily chosen to be similar to the parameters used by sort. Likewise,

∗In the previous sort paper (Tejos et al., 2018), the 2PCF was underestimated on small scales. This
difference stems from the fact that the previous paper did not include satellite galaxies while this one
does.
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Figure 2.7. Two-point correlation functions (2PCFs) of various redshift types as a
function of redshift-space distance 𝑠 shown in three different ways. The results show the
mean value of the 2PCFs along with 1𝜎 error bars after running sort with 10 different
random seeds to determine the reference sample selection. Note that the error bars are
too small to be seen. We observe that 𝜉phot(𝑠) is a poor estimate of the 2PCF at all shown
length scales, and 𝑧ctrl consistently overestimates the 2PCF while 𝜉sort(𝑠) is accurate
(relative to 𝜉spec(𝑠)) for 𝑠 ≳ 2.5 ℎ−1Mpc. See Section 2.5.1 for details on 𝑧ctrl (shown as
black triangles) and Appendix C for details on 𝜉sort(𝑠) using 𝜎

ph
𝑧 /(1 + 𝑧) = 0.02 (shown

as the grey dashed line in the bottom panel).
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the minimum threshold of neighbors was arbitrarily chosen to be 𝑛 = 5. In principle,

these parameters are all adjustable depending on how much ones wishes to constrain the

densities. The results of sort’s estimations of local densities compared to photometric

estimates are generally not sensitive to the choice in these parameters, though.

Figure 2.8 shows three different density estimates in one redshift bin with 𝜌phot in

the top panels and 𝜌sort in the bottom panels. The left panels show number densities,

the middle panels show stellar mass densities, and the right panels show halo mass

densities only considering central galaxies. The color and contours are proportional to

the maximum bin value within each of the individual subplots. The dashed contour

(in red) is set to a limit equal to the minimum contour level in the corresponding 𝜌phot

subplot.

As expected, the photometric densities are underestimated in high-density regions.

The high uncertainty of the photometric redshifts has the effect of smoothing out high-

and low-density regions causing them to take on a more average density. After applying

sort, low bias in the high-density regime is greatly improved and the distributions

become more aligned with the line of equality. As shown by the dashed contour, sort

struggles in the low-density regime, and the scatter is comparable to the photometric

estimates. sort tends to overestimate its lowest local densities, which is a side effect

of the clustering nature of the method. This is likely not something that can easily be

remedied due to the simplicity of the sort method. By design, sort places galaxies

near where it finds spectroscopic redshifts. Most spectroscopic redshifts will be in areas

of higher density because this is where most galaxies are located. This tends to develop

a cosmic structure that is highly clustered. sort’s ability to reconstruct low-density

regions is dependent upon the quantity of high-quality redshifts found there, which will
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tend to be fairly limited.

sort’s estimates for central halo mass densities are not quite as good as its number and

stellar mass densities, particularly for the mock CANDELS light cone where statistics

are more limited (see Figure A.4). The likely cause of this is the removal of satellite

galaxies. Halo masses for satellites are not tracked once they become sub-halos and

therefore were not considered in these calculations. The problem with this is that sort is

effective on average for the full ensemble of galaxies and does not discriminate different

demographics (e.g., centrals versus satellites). We would not expect results to be as

effective for a given subset of data since there is no mechanism within the method to treat

different subsets differently. By removing satellites, we are decreasing the reliability

of sort, particularly in high-density regions where most satellites reside. However, we

note that despite this, sort still shows improvement over photometric density estimates.

§ 2.5. Discussion

2.5.1. The Effects of Preserving the Rank Order

One of the key aspects of sort is the sorting itself. While it is clear that the reference

sample provides a significant amount of information to sort, one might wonder what

the effect of sorting is (in step 6 of Section 2.2.2). To test this, we ran a control algorithm

that excluded step 6 where the rank ordering is done. The control results were computed

simultaneously with the standard sort results and are identical in every way with the

exclusion of the sorting; hence, the only difference in these two sets of results lies solely

in the rank ordering. We call the results of this control algorithm 𝑧ctrl.

The first result to consider is the Δ𝑧 histogram shown in Figure 2.5. Performing a
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Figure 2.8. Two-dimensional density histograms for 𝜌phot and 𝜌sort in the range 0.75 <

𝑧 < 1.25. The left panels show number densities, the middle panels show stellar mass
densities, and the right panels show halo mass densities using only central galaxies.
The top six panels compare densities to estimates using 𝑧spec, and the bottom six panels
compare densities to estimates using 𝑧cos. The solid contours represent limits of 25, 50,
and 75 percent of the maximum bin value in each subplot. The dashed contour (red)
is set at a limit equal to the minimum contour level in the corresponding 𝜌phot subplot.
As expected, the photometric densities estimates are all poor as the cylinder length
scales are much smaller than the typical photometric redshift error. sort densities show
significant improvement in regions with average or higher density. Overall scatter is
similar when comparing 𝜌sort to 𝜌phot, but 𝜌sort displays much better alignment with the
line of equality and a more peaked distribution surrounding it. See Section 2.4.3 for
details on the density estimates.
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two-sided Kolmogorov–Smirnov test on Δ𝑧sort and Δ𝑧ctrl yields a 𝑝-value of 𝑝 < 0.001.

This indicates with a high level of certainty that sorting indeed changes the distribution

of Δ𝑧. To understand the differences, we consider the two features of Δ𝑧: the narrow,

central peak and the broader base.

When looking at the peak around Δ𝑧 = ±0.001, we see the control sample outper-

forming sort. To interpret this result, we plotted the same diagram with the data broken

into a set of central galaxies and a set of satellite galaxies, shown in Figure 2.9. The

left panel shows only satellites and the right panel shows only centrals. Looking at the

peaks shows that the difference between Δ𝑧sort and Δ𝑧ctrl arises in the satellites. Satellite

galaxies will tend to be situated more closely to their neighbors than a central galaxy.

As such, the peak of Δ𝑧sat will tend to favor environments that are more densely packed.

This is precisely what the control sample provides.

To illustrate this, consider some region of space containing a dense cluster of galaxies.

If we assume there are 𝑁 galaxies along a pencil-beam-like sub-volume encompassing

this dense cluster, we would expect each of those galaxies to have∼𝑁 recovered redshifts

after sort is complete. In other words, since the cluster is dense, we expect most of the

galaxies to fall within the sub-volumes of their neighbors. The sorting aspect of sort will

always assign the lowest-redshift galaxies in this region the lowest recovered redshifts,

and likewise assign the highest-redshift galaxies the highest recovered redshifts. This

is simply following the condition laid out by stochastic ordering. Recalling that 𝑧sort

is taken to be the median of a galaxy’s assigned recovered redshifts, galaxies on the

lower-redshift end of the cluster are biased to have a lower 𝑧sort and vice-versa at the

higher-redshift end. In contrast to this, the control sample has no such bias. Each of

the galaxies in the cluster will receive a random recovered redshift. After the algorithm
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completes, each galaxy will have a mixture of ∼𝑁 high and low recovered redshifts

which will tend to have a median towards the center of the cluster. This centralization

makes the cluster more dense than sort would make it, thus favoring Δ𝑧sat.

Let us now consider the right panel of Figure 2.9, Δ𝑧cent. In this case, we have

observed that there is no appreciable difference between Δ𝑧sort and Δ𝑧ctrl when it comes

to the peak. However, if we look beyond the peak, we can see that sort performs

better than the control sample. Δ𝑧sort tends to have higher counts than Δ𝑧ctrl up until the

point where the tails of their distributions become broader than that of Δ𝑧phot, around

Δ𝑧cent = ±0.015. Beyond this point, Δ𝑧sort has a steeper distribution, signifying its

better overall recovery of redshift estimates. This relative shape is also present for the

Δ𝑧 histogram of the entire set of galaxies, though difficult to see in Figure 2.5.

To further investigate the effects of sorting, we can consider the 2PCF. This metric

provides a better characterization of the full three-dimensional distribution of galaxies

than Δ𝑧. Figure 2.7 shows a clear distinction between 𝑧sort and 𝑧ctrl. sort is able to

accurately reproduce 𝜉spec(s) on scales of 𝑠 ≳ 2.5 ℎ−1Mpc. Due to the centralization

and higher density produced by the control sample, 𝜉ctrl(s) ends up on average around

25% higher than 𝜉sort(s). In other words, 𝑧ctrl is overestimating the clustering while 𝑧sort

is not.

We conclude that while much of the information is provided by the reference sample,

the sorting aspect of sort certainly provides useful information as well. This information

is most evident when considering the 2PCF where the lack of sorting leads to over-

clustering by around 25%. The only drawback to sorting comes with the Δ𝑧 histogram

of satellite galaxies. This is a difficult issue to resolve because sort uses one prescription

to treat two distinct demographics, and information about which galaxies are centrals
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Figure 2.9. Normalized distribution of Δ𝑧 for 𝑧sort, 𝑧ctrl, and 𝑧phot. The left panel shows
the results using only satellite galaxies and the right panel shows the results using only
central galaxies. See Section 2.5.1 for details. The left panel shows that the more
highly-clustered results of 𝑧ctrl favor satellite galaxies. The right panel shows similar
results between 𝑧sort and 𝑧ctrl at smaller errors; however, sort displays better treatment
at larger errors (Δ𝑧/(1 + 𝑧) ≳ 0.02) with more rapidly declining tails.

or satellites is not readily available for real observations.

2.5.2. Sub-volume Parameters

The sort parameters 𝑁min
ref , 𝑅, and Δ𝑧 determine the sizes of the cylindrical sub-volumes

that surround each galaxy during the sort procedure. A balance must be struck for

these parameters in order for sort to produce reasonable results.

Having a larger cylinder radius allows for more of the environment to be taken into

consideration when looking for reference galaxies. This can be useful in cases where

galaxies are near the outer edge of a large cluster of galaxies. If the radius is too small,

the inner region of the cluster may not be detected by the pencil-beam-like sub-volume.

This leaves the galaxy more susceptible to being pulled toward denser regions that may
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be close on the sky but not in redshift. On the other hand, making the radius too large

can also be problematic. With a large radius, galaxies that are not particularly nearby

on the sky, but still within the sub-volume, will be pulled toward the redshifts of denser

regions. Because sort only moves galaxies along the line of sight, these galaxies will

be placed around the same redshift as another group of galaxies but with a seemingly

“incorrect” position on the sky. The result is a distribution of galaxies that becomes

elongated in a plane perpendicular to the line of sight.

This effect can be seen in Figures 2.3 and D.4 and is a signature of the sort method.

In low-density regions (e.g., the upper right corner of the 𝑧sort panel), we see horizontal

formations of galaxies. The magnitude of this effect can be limited by adjusting 𝑅max

or 𝑁min
ref . As 𝑁min

ref becomes smaller, the radius of the average sub-volume will also be

smaller, leading to narrower horizontal formations. This may come at the expense of

sort’s overall performance, though. We found that increasing 𝑁min
ref from two to four

provided a better estimate of the 2PCF, for example. If, instead, 𝑅max is adjusted, one

must take care to not make it too small relative to 𝑁min
ref . If 𝑅max is too small, the fail rate

of the sort algorithm will increase as the maximum sub-volume size is too constrained

to find enough reference galaxies. Likewise, the fail rate will also increase if 𝑁min
ref is

too large for a given sub-volume size.

The redshift cut imposed by Δ𝑧 is a new addition to sort. In the original sort

paper (Tejos et al., 2018) which looked at nearby galaxies in a wider, shallower field,

an apparent magnitude cutoff was imposed such that only galaxies within ±𝛿𝑚 of the

𝑖th galaxy were considered in the sub-volume. When sort is applied to a deeper field,

the magnitude cut is not sufficient to allow sort to perform well. The same range of

magnitudes can be found at opposite ends of the light cone, which leaves too large of a
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range of possible recovered redshifts for a given galaxy.

To limit the range of redshifts that are considered neighbors of the 𝑖th galaxy, a

redshift cut based on a galaxy’s photometric redshift was implemented to replace the

magnitude cut. The length chosen for the cylinder should be based on the photometric

uncertainty. In this case, we have assumed the photometric uncertainties are Gaussian.

As such, we have chosen Δ𝑧 = 2.5𝜎ph
𝑧 to allow the majority of photometric galaxies

the potential of recovering their true redshift. The value of this parameter was not

thoroughly tested, however, and may not be optimal. We emphasize that this parameter,

as well as other sort parameters, should be tested to find optimal values when applied

to different surveys. The values used in this paper correspond to sensible length scales,

but optimal values will likely vary depending on the metric one wishes to optimize.

2.5.3. Limitations

One main limitation of the sort method is its dependence on a reference sample.

The limitations of this dependence are twofold. First, there is a limitation to the

length scale that sort will be able to properly recover. Dispersion velocities of 𝑣 ≈

200 km s−1 correspond to lengths of ∼4–6 ℎ−1Mpc for 𝑧 = 1–2. This is a rough

limit of sort’s accuracy relative to the true distribution of galaxies (i.e. not the

spectroscopic distribution to which results were compared in this paper) due to redshift-

space distortions. Second, sort requires a structural outline by the reference sample to

recover an accurate distribution of galaxies. If the reference sample does not outline a

feature of the cosmic web, then sort will not be able to reconstruct it. This effect is

most significant in low-density regions. The fraction of galaxies found in low-density

regions will naturally be low. An even lower fraction of those galaxies will be reference
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galaxies. Without reference galaxies, sort will not be able to reproduce an accurate

distribution of galaxies in these regions.

A second limitation of the sort method is the fact that it can only improve redshift

estimates collectively for ensembles of galaxies. Figure 2.5 shows a tall peak surround-

ing Δ𝑧 = 0 where a significant fraction of redshifts have been improved, but there is no

way to tell which galaxies are in this peak or which galaxies are in the tails. Despite

sort doing a fairly good job of recovering the large-scale structure of galaxies, there

will undoubtedly be some galaxies placed in the wrong environments. Higher accuracy

redshift estimates are still required to properly place galaxies on an individual basis.

However, as shown in the previous section, sort can still be used to infer local densities

(particularly, average or higher densities) reasonably well.

2.5.4. Future Considerations

One possible next step for sort is updating the assignment of spectroscopic redshifts

to create the reference sample. In this paper, spectroscopic redshifts were assigned

randomly to 10% of galaxies within three complete redshift bins. To make tests of the

sort method more realistic, one could model the reference galaxy selection using the

methods chosen by large imaging surveys (e.g., selecting a mixture of brighter galaxies

and galaxies with high star formations rates that produce strong emission lines).

Another possible step is to improve redshift assignments within sub-volumes as the

sort method is carried out. There are currently no considerations given to the angular

correlations within each sub-volume. As shown in the left panel of Figure 2.9, the

current treatment of satellite galaxies by sort is not optimal.∗ This could potentially

∗That is not to say that 𝑧ctrl is optimal, but it is enough to demonstrate that sort is not.
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be improved by assigning similar recovered redshifts to galaxies that appear highly

clustered on the sky. This could also be implemented when determining the final 𝑧sort

redshift of a galaxy. The final selection from a galaxy’s pool of recovered redshifts

at the end of the method could be biased to redshifts where the galaxy appears more

clustered on the sky, as opposed to taking a simple median. Such considerations could

also prove useful in reducing the horizontal structures produced by sort discussed in

Section 2.5.2.

Yet another improvement would be to treat satellite galaxies more realistically than

we have done, as described in Appendix B. For example, an improved semi-analytic

treatment of satellite galaxies could be based on the recent SatGen papers (Jiang et al.,

2021; Green et al., 2021b,a).

Recently, it has been shown that correlations between galaxy and halo properties

create observable signatures in local environments (Behroozi et al., 2022). In particular,

halo spin, concentration, growth rate, and interaction history have all been shown to leave

scale-dependent signatures in both 2PCFs and the distributions of distances to galaxies’

𝑘th nearest neighbors out to 𝑧 ∼ 2.5. These determinations were based on projected

two-dimensional environments so as to make them observationally accessible with low-

resolution spectroscopy (𝜎𝑧/(1+𝑧) ≲ 0.005). We have shown that sort is able to recover

the full three-dimensional 2PCF as estimated with high-resolution spectroscopy. We

also provide in Appendix D results using sort to estimate three-dimensional distances

to 𝑘th nearest neighbors (see Figure D.9). We expect sort’s ability to reasonably-well

recover local environments may allow for further observationally-accessible detections

of environmental signatures that result from galaxy–halo property correlations.

In this paper, we have not taken advantage of the fact that galaxy properties could
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depend on environment and/or location within the cosmic web. Indeed, it is well known

that, for example, star forming / blue galaxies are less clustered than more quiescent/red

galaxies (see, e.g., Li et al., 2006; Zehavi et al., 2011; Coil et al., 2017; Berti et al.,

2019, 2021a) and that more spheroid-like morphologies are more frequently in denser

environments (e.g., Dressler, 1980; Pearson et al., 2021). Thus, a natural next step within

the framework of sort would be to divide the reference sample by galaxy properties.

By doing so, it is expected that sort would be able to determine even more accurate

redshifts than when not considering galaxy properties.

Finally, we expect to test the performance of sort using real data sets from highly

complete spectroscopic galaxy surveys, e.g., GAMA (Baldry et al., 2018) and DESI

(DESI Collaboration et al., 2016), in order to account for systematics that are present in

real surveys but not properly modeled by our mock experiment. For instance, we expect

that the so-called “catastrophic redshift” failures in photometric redshift methods will

have a minor effect in the performance of sort as these are typically only a small fraction

of the total sample. Other systematic differences include having non-Gaussian PDFs

for the photometric redshifts and having a set of photometric galaxies with variable 𝜎
ph
𝑧

in the sample. For example, COSMOS2020 (Weaver et al., 2022) obtained photometric

redshift precision of ∼4% for the faintest galaxies and better than 1% for the brightest

galaxies.

§ 2.6. Summary and Conclusions

In this paper, we have tested the performance of the sort method (Tejos et al., 2018)

in mock high-redshift surveys. sort is a simple, efficient, and robust method that
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can be used to improve redshift estimates. It relies upon a reference sample of high-

quality spectroscopic redshifts for which a precise distribution d𝑁/d𝑧 is known within

pencil-beam-like sub-volumes of the survey. Within each sub-volume we:

1. sample new “recovered” redshifts from the d𝑁/d𝑧 distribution of high-quality

redshifts

2. match the recovered redshifts one-to-one with the low-quality (photometric) red-

shifts such that the rank order is preserved.

The second step is motivated by the fact that random variables drawn from Gaussian

PDFs with equal, arbitrarily-large standard deviations satisfy stochastic ordering. In

other words, if two redshift estimates 𝑧𝑖 and 𝑧 𝑗 satisfy 𝑧𝑖 < 𝑧 𝑗, then their true redshift

values most likely satisfy 𝑧true
𝑖

⩽ 𝑧true
𝑗

. Thus, preserving the rank order makes the

assigned recovered redshifts more likely to be close to their underlying true value. This

process is repeated for sub-volumes surrounding each galaxy in the survey. The result

is every galaxy with a low-quality redshift is assigned multiple recovered redshifts from

which a new redshift estimate can be determined.

We ran the sort method on a wide-field 2 square degree mock light cone and a mock

CANDELS light cone extracted from the Small MultiDark–Planck and Bolshoi–Planck

𝑁-body simulations, respectively, to test its performance in a pencil-beam-like survey

spanning the redshift range 0.75 < 𝑧 < 2.25. After applying sort, we observe similar

improvement from both mock catalogs and make the following determinations:

1. We observed overall improvement in redshift estimates, allowing for better re-

construction of the three-dimensional distribution of galaxies than photometric
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redshifts alone provide. This can be seen broadly in Figure 2.2 or more close up

in Figure 2.3.

2. We also observed that sort produces much better agreement (by design) in the

one-dimensional d𝑁/d𝑧 distribution, allowing it to better identify large-scale

structure along the line of sight as shown in Figure 2.4.

3. Distributions of redshift errors with respect to spectroscopic estimates were overall

improved throughout the light cone, while the standard deviations remained about

the same. One- and two-dimensional histograms of this are shown in Figures 2.5

and 2.6, respectively.

4. sort accurately recovers the spectroscopic redshift-space 2PCF down to scales

of ≳ 2.5 ℎ−1Mpc while photometric redshifts (with errors of 𝜎ph
𝑧 /(1 + 𝑧) = 0.01

corresponding to scales of ∼20–30 ℎ−1Mpc) drastically underestimate galaxy

clustering. This is shown clearly in the top and bottom panels of Figure 2.7.

5. sort is able to recover three-dimensional local densities in regions of average or

higher density at scales of ≳ 4 ℎ−1Mpc. Three different density histograms are

shown in Figure 2.8, and additional histograms are shown in Figure D.8 at a larger

length scale of 𝑙 = 21000 km s−1

𝑐
(1 + 𝑧).

We expect that such improved determinations of local galaxy environments will help

to distinguish the effects of environmental properties (e.g., local density) on galaxy

evolution from other effects, such as galaxy stellar or halo mass (e.g., Peng et al., 2010;

Woo et al., 2013; Chartab et al., 2020; Behroozi et al., 2022).
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Chapter 3.

Star-forming and Quiescent Central Galaxies

Cluster Similarly: Implications for the

Galaxy–Halo Connection

§ 3.1. Introduction

According to the ΛCDM paradigm, galaxy formation and evolution take place within

massive dark matter halos. A key component of our understanding of galaxy formation

and evolution within this context is the stellar-to-halo mass relation (SHMR). The SHMR

relates the mass of stars within a galaxy to the mass of its host halo. This serves as a vital

tool in connecting the observed properties of galaxies with the underlying dark matter

halos – known as the galaxy–halo connection – allowing us to explore the processes

governing galaxy formation, the impact of feedback mechanisms, galaxy bias, and the

cosmological context in which galaxies form and evolve (for a review, see Somerville

and Davé, 2015b).

The SHMR is derived by measuring the stellar masses of a large sample of galaxies
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and associating them with their corresponding halo masses, which are inferred through

various methods such as gravitational lensing (Mandelbaum et al., 2006, 2016), galaxy

clustering (Berlind and Weinberg, 2002a), galaxy kinematics (More et al., 2011; Wojtak

and Mamon, 2013; Lange et al., 2019), empirical modeling (Behroozi et al., 2019b),

abundance matching techniques (Conroy et al., 2006), or any combination of these

methods (for a review, see Wechsler and Tinker, 2018b). These probes of the galaxy–

halo connection provide a statistical description of the SHMR, which is assumed to

be an increasing one-to-one monotonic relationship. In addition, the SHMR exhibits

scatter, indicating that there is a range of stellar masses for a given halo mass. This

scatter may arise from a combination of factors such as the stochasticity of the star

formation process, varying merger histories, and the influence of environmental effects

on galaxy formation. Previous attempts to constrain the scatter around the SHMR have

found it to be of the order ∼0.15 dex (see, e.g., Rodríguez-Puebla et al., 2015; Behroozi

et al., 2019b; Porras-Valverde et al., 2023).

Whatever is influencing a galaxy’s position in the SHMR should be related to the

assembly history of the galaxy and, ultimately, its star formation activity (or color), i.e.,

linked to its position within the specific star formation rate (sSFR)–stellar mass plane.

Observationally, several previous studies have identified a robust segregation in halo

mass at fixed stellar mass, where quiescent/red central galaxies inhabit more massive

halos compared to star-forming/blue central galaxies (e.g., More et al., 2011; Tinker

et al., 2013; Rodríguez-Puebla et al., 2015; Mandelbaum et al., 2016; Lange et al., 2019).

At least part of the explanation for this segregation is the fact that while a galaxy’s star

formation may cease, its host halo can continue to grow hierarchically, especially in

the case of more massive halos. Consequently, for a given stellar mass, galaxies that
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ceased star formation earlier tend to have larger halo masses, even if they had high star

formation efficiency during their active star-forming phase. Notably, this segregation

in the SHMR becomes more pronounced in massive galaxies, with quiescent central

galaxies residing in halos that are a factor of ∼2 more massive than halos of star-forming

central galaxies (More et al., 2011; Rodríguez-Puebla et al., 2015; Mandelbaum et al.,

2016).

Another way to describe the SHMR segregation is that at fixed halo mass, 𝑀h, star-

forming galaxies have a higher stellar mass, 𝑀∗, than quiescent galaxies. Previous

studies by Moster et al. (2018, 2020) have found an opposite relation, that quiescent

galaxies have a higher stellar mass than star-forming galaxies at a fixed halo mass.

This would seem to imply that quiescent galaxies reside in halos of lower mass than

star-forming galaxies at a fixed stellar mass. However, these authors point out that due

to the scatter in the SHMR, ⟨𝑀∗(𝑀h)⟩ cannot simply be inverted to obtain ⟨𝑀h(𝑀∗)⟩

(see also Rodríguez-Puebla et al., 2013, 2015). The combined effect of Eddington bias

and a higher fraction of star-forming galaxies at lower masses results in the average halo

mass being higher for quenched galaxies than star-forming galaxies at a fixed stellar

mass, which is consistent with observational constraints. This phenomenon has been

described in the literature as the inversion problem (Cui et al., 2021). In addition to

an opposite relation, we note that some papers have found little evidence of such a

segregation in the SHMR (see, e.g., Figure 38 of Behroozi et al., 2019b).

Do specific halo properties determine a galaxy’s position in the SHMR, or is it instead

influenced by other stochastic factors? Is the strong segregation observed in the SHMR

a genuine phenomenon? If so, does it align with the notion of halo assembly bias – the

concept that the clustering behavior of haloes depends not only on halo mass but also
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on formation history – as a main driver of the assembly histories of galaxies? Two-

point correlation functions are well-explored tools for investigating these questions.

By assuming that the centers of halos and sub-halos serve as the locations of central

and satellite galaxies, we can focus on modeling how galaxies inhabit halos of varying

masses to understand galaxy clustering. In particular, if the segregation is indeed

present, it could be interpreted that the SHMR is primarily a reflection of halo mass as

the determining factor for stellar mass and sSFR. This would suggest that, at a given

stellar mass, the enhanced clustering of quiescent galaxies could be attributed to their

occupancy of more massive halos (Rodríguez-Puebla et al., 2015). On the other hand,

if differences in clustering are influenced by other halo properties, two possibilities

emerge:

1. The scatter around the SHMR may be merely random variation unrelated to galaxy

assembly history, with halo assembly history being the key factor determining how

galaxies cluster (e.g., Hearin and Watson, 2013).

2. There could exist a segregation in the SHMR, and clustering information is shared

between this segregation and halo assembly bias.

These considerations present scenarios that can be tested using various approaches for

measuring two-point correlation functions, as discussed in the main body of this paper.

It is observationally established that red/quiescent galaxies tend to be more clustered

than blue/star-forming galaxies (see, e.g., Li et al., 2006; Heinis et al., 2009; Zehavi

et al., 2011; Coil et al., 2017; Berti et al., 2021b). Recent works by Coil et al. (2017) and

Berti et al. (2021b) studied the auto-correlation functions (ACFs) of PRIMUS, DEEP2,

and SDSS galaxies as a function of their sSFR and stellar mass. They found that in bins
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of stellar mass, the ACF decreases monotonically as sSFR increases, including within

the star-forming and the quiescent populations, which Berti et al. (2021b) refer to as

intrasequence relative bias. They interpret these differences in galaxy clustering as a

function of sSFR as evidence that the scatter in galaxy sSFR is physically connected to

the large-scale cosmic density field.

The degree to which halo properties are responsible for the differing clustering of

star-forming and quiescent galaxies is still uncertain (Blanton and Berlind, 2007; Tinker

et al., 2011; O’Donnell et al., 2021, 2022). The simplest models of the galaxy–halo

connection depend solely on halo mass to determine the properties of galaxies (for a

discussion, see Wechsler and Tinker, 2018b). However, there has been an effort to

expand models of the galaxy–halo connection to include halo properties beyond mass

(e.g., Hearin and Watson, 2013; Masaki et al., 2013; Becker, 2015). Some such studies

aiming to identify halo properties that influence the regulation of SFRs in galaxies have

highlighted two potentially key factors: halo accretion rate and halo concentration.

Halo accretion rate controls the influx of gas into a galaxy’s interstellar medium

(see, e.g., Avila-Reese and Firmani, 2000; Bouché et al., 2010; Dekel and Mandelker,

2014; Wetzel and Nagai, 2015; Rodríguez-Puebla et al., 2016). One might expect halo

accretion rate to be linked to SFR, as having more gas available may allow a galaxy to

form more stars. It has also been shown that, at a fixed halo mass, halos with lower

accretion rates tend to be in higher density environments at low redshifts (Lee et al.,

2017b), so it may also be expected that quiescent galaxies are more clustered than star-

forming galaxies when modeling sSFR based on halo accretion rate. This, indeed, has

been shown by Becker (2015) where the relative clustering amplitudes of quiescent and

star-forming galaxies agree with observations. Additionally, the dispersion in the halo
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accretion rate has been shown to reproduce the width of the SFR distribution in star-

forming galaxies at various redshifts (Dekel and Mandelker, 2014; Rodríguez-Puebla

et al., 2016).

Halo concentration, on the other hand, is linked to the timing of gas infall into the

halo, with more concentrated halos experiencing earlier infall (see, e.g., Avila-Reese

et al., 1998; Wechsler et al., 2002; Gao et al., 2004; Dutton et al., 2010; Matthee and

Schaye, 2019). A prevailing explanation for the difference in clustering for quiescent and

star-forming galaxies is that galaxies that form earlier reach the ends of their life cycles

(i.e., become quiescent) earlier, and earlier-formed halos tend to be more clustered. At

a fixed halo mass, halos with high concentration tend to be the ones that formed earlier

and are more clustered (Wechsler et al., 2006; Gao et al., 2008; Montero-Dorta et al.,

2021), so it is natural to connect halo concentration to galaxy SFR. Indeed, models

based on halo concentration have successfully reproduced the observed clustering of

red and blue galaxies (Hearin and Watson, 2013; Masaki et al., 2013).

In both cases of halo accretion rate and halo concentration, halo assembly bias is

assumed to be important for understanding the distribution and behavior of galaxies

within dark matter halos (Sheth and Tormen, 2004; Gao et al., 2005; Wechsler et al.,

2006; Montero-Dorta et al., 2021). It is important to note that existing descriptions

of assembly bias and density fields have been primarily developed for distinct halos

(i.e., excluding sub-halos). This would correspond to a sample of only central galax-

ies, excluding satellites. Despite sharing the same host halo, centrals and satellites

are expected to have distinct formation and evolutionary histories, which makes the

connection between satellites and the halos in which they reside more complex. We

highlight the fact that past studies of correlation function trends with sSFR or galaxy
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color have generally not made distinctions between centrals and satellites. Notably,

the findings of Coil et al. (2017) and Berti et al. (2021b) are obtained using samples

of central and satellite galaxies together. However, Berti et al. (2021b) showed that a

modified version of the UniverseMachine model (Behroozi et al., 2019b) agrees with

their ACF results and that in this model, central galaxies contribute substantially to the

dependence of clustering on sSFR at a given stellar mass. In this paper, we will test

the sSFR-dependence on galaxy clustering, focusing on central galaxies only. This will

allow for a more direct comparison with the theoretical framework of the galaxy–halo

connection. As we will show, the presence of satellite galaxies introduces additional

variability in the correlations. Furthermore, we find that ACFs alone may not be suf-

ficient to discriminate models of the galaxy–halo connection when considering only

central galaxies, while cross-correlation functions (CCFs) between central and satellite

galaxies prove to be a powerful tool in this regard.

This paper is organized as follows. In Section 3.2, we describe the main data

set we use, including the cuts that were made to define our samples and the group

catalogs used to identify central and satellite galaxies. In Section 3.3, we describe our

methods for calculating correlation functions and binning the data into sub-samples as

a function of stellar mass and sSFR. Section 3.4 presents our results of ACFs and CCFs

within these various sub-samples. Using these results, we test different models of the

galaxy–halo connection in Section 3.5. In Section 3.6, we summarize our results and

provide a discussion of their robustness and comparisons with the literature. Finally, in

Section 3.7, we present our conclusions.
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§ 3.2. Data

3.2.1. Sloan Digital Sky Survey

In this study, we use observations from the Sloan Digital Sky Survey (SDSS) with galaxy

redshifts taken from SDSS Data Release 7 (Abazajian et al., 2009). Stellar masses

and star formation rates (SFRs) are taken from the MPA-JHU catalog (Kauffmann

et al., 2003; Brinchmann et al., 2004) and have a Kroupa (2001) initial mass function.

Brinchmann et al. (2004) used observed emission lines, including Hα, within the central

fiber of the SDSS and modeled them based on the Charlot and Longhetti (2001) stellar

population synthesis model. They showed that using the standard Kennicutt (1998)

conversion factor from Hα to SFR is a good average correction for most of the star-

forming galaxies. The same is not true for quiescent galaxies, however, for which their

SFRs are mostly given by the D4000 break.

3.2.2. Group Catalogs

One of the main goals of this paper is to quantify, separately, the contributions of

central and satellite galaxies to the observed two-point auto-correlation function (ACF)

as well as their cross-correlation function (CCF). Therefore, an important designation

we use for our sample is whether a galaxy is a central or satellite. In this paper, we

utilize the halo-based group catalog by Yang et al. (2012, hereafter Y12) as our primary

database to identify central and satellite galaxies within the SDSS. It is important

to note that we exclusively employ their spectroscopic group sample, comprising a

total of 593,227 galaxies at 𝑧 ≤ 0.2. Since galaxy group finders operate in redshift

space, they are inherently susceptible to errors from redshift-space distortions, making
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it difficult to achieve a perfect galaxy-to-group assignment and introducing systematic

uncertainties in the identifications. To ensure the robustness of our results, we also

incorporate two additional group catalogs: Tempel et al. (2017, hereafter T17) and

Rodriguez and Merchán (2020, hereafter R&M20), containing 571,291 and 648,480

galaxies, respectively, at 𝑧 ⩽ 0.2. It is essential to clarify that our primary aim in using

these alternative catalogs is not to critique or evaluate which group finder performs best

in identifying groups but rather to examine whether all three catalogs yield consistent

results. In each of these catalogs, we define central galaxies as the most massive galaxy

within a group in terms of stellar mass, with any remaining galaxies in the group taken

to be satellites. Note that by this definition, isolated galaxies that have no satellites will

be considered centrals.

3.2.3. Data selection

To calculate two-point correlation functions, we use a random catalog of the SDSS

provided by Blanton et al. (2005b). The random catalog has 1 million points distributed

with constant surface density over the area of SDSS. The SDSS projected sky distribution

has irregular edges and some holes where no objects are catalogued. In order to ensure

consistency between the observations and the random catalog when calculating two-

point correlation functions, we trim the edges of both distributions following Varela

et al. (2012) and Cebrián and Trujillo (2014). The following four cuts are applied:

1. Southern limit: 𝛿 > 0◦

2. Western limit: 𝛿 > −2.555556(𝛼 − 131◦)

3. Eastern limit: 𝛿 > 1.70909(𝛼 − 235◦)
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4. Northern limit: 𝛿 < arcsin
[

0.93232 sin(𝛼−95◦.9)√
1−[0.93232 cos(𝛼−95◦.9)]2

]
.

These cuts can be seen in Figure 2 of Varela et al. (2012) and Figure 1 of Cebrián and

Trujillo (2014). Additionally, we mask out the holes in both the observations and the

random catalog with small rectangular cuts over the affected regions.

After applying these cuts to the data, we then narrow our selection down to the

five mass bins. Each bin will correspond to a volume-limited sample that is complete

in stellar mass over the range of the bin. The mass bins cover the range 10.0 <

log(𝑀∗/𝑀⊙) < 11.5, where the two lower mass bins have widths of 0.375 dex and the

three higher mass bins have widths of 0.25 dex (as listed in Table 3.1). We choose the

lower mass bins to be wider to improve statistics since the lower masses require smaller

volumes to maintain completeness.

To define the sub-volumes, we follow the “Volume1” procedure in Appendix A

of Y12.∗ The redshift limits of the sub-volumes are defined based on a minimum

threshold in the galaxy number density, 𝑛vol(𝑧), for a given sub-volume. In this way,

sub-volumes will have relatively flat 𝑛vol(𝑧) distributions, i.e., number densities that are

near-constant. To determine the redshift limits, in each mass bin, we locate the redshift

corresponding to the peak of 𝑛vol(𝑧) and then travel to lower and higher redshifts until

the distribution falls to 50% of the maximum. For this process, we calculate 𝑛vol(𝑧) in

redshift bins of width 𝑑𝑧 = 0.005 and apply a Gaussian smoothing with 𝜎 = 𝑑𝑧 to the

overall distribution. This smoothing helps to avoid spikes within any single redshift bin

of 𝑛vol(𝑧) biasing the results of the process (e.g., regions of low density due to cosmic

∗Additionally, Y12 defines a “Volume2” procedure following van den Bosch et al. (2008), which
accounts for the differing selection effects of red and blue galaxies in flux-limited surveys, owing to their
different mass-to-light ratios. We find our resulting volumes to be generally consistent with this
alternative completeness limit.
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Figure 3.1. Left panel: stellar mass as a function of redshift for the SDSS. The
rectangles with colored points show the five volume-limited samples used for measuring
correlation functions. Right panel: number densities as a function of redshift for the five
sub-volumes. The solid lines show the histograms over the entire redshift range, while
the colored regions show the selected redshift ranges spanned by the sub-volumes. The
redshift limits of the sub-volumes are determined by traveling in each direction from the
maximum of the distribution to points where the counts drop to 50% of the maximum.
This process was applied to various sub-samples within each sub-volume to ensure
completeness in all of them (see Section 3.2.3 and Figure E.1 for details). Note that
each successive distribution from front to back is scaled up by an additional order of
magnitude for clarity.

variance, rather than a lack of observations, can cross the 50% threshold resulting in

an artificially smaller sub-volume). Using a threshold of 50% was chosen as a balance

between completeness and statistics. Choosing a higher threshold would yield sub-

volumes with a higher degree of completeness; however, the two-point statistics would

become less reliable as the sub-volumes would be smaller with fewer galaxies. Within

each sub-volume, this process is repeated for the individual sub-samples of galaxies that

we work with: all, central, satellite, star-forming, green valley, and quiescent galaxies.

We choose the redshift limits that allow us to satisfy our completeness condition in all

sub-samples simultaneously within a mass bin.
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Table 3.1.: Comparison of the five sub-volumes used. Stellar mass bins cover the range
10.0 < log(𝑀∗/M⊙) < 11.5, with the lower two mass bins having widths
of 0.375 dex and the upper three mass bins having widths of 0.25 dex.
The redshift ranges correspond to the ranges where the number densities
of galaxies are at least 50% of the maximum in a given mass bin (see
Section 3.2.3 and Figure E.1 for details).

𝑀∗ Limits [log(𝑀∗/𝑀⊙)] 𝑧 Limits 𝑁gal

10.0 – 10.375 0.02 – 0.065 23,969
10.375 – 10.75 0.02 – 0.085 48,221
10.75 – 11.0 0.02 – 0.125 57,533
11.0 – 11.25 0.06 – 0.155 51,738

11.25 – 11.5 0.095 – 0.19 27,269

The five sub-volumes are shown in the left panel of Figure 3.1 along with the number

densities in the right panel. The colored lines show the number densities across the

full redshift range in each mass bin, and the shaded regions show the limits that define

the sub-volumes based on our completeness condition. Note that the number densities

are scaled up by increasing orders of magnitude from front to back for clarity. A more

detailed look at the number densities for the individual sub-samples can be seen in

Figure E.1. The result of our selection process is a catalog of 208,730 galaxies across

the five sub-volumes. Specifics for each sub-volume are described in Table 3.1.

As a check of the completeness in our resulting sub-volumes, we calculate the galaxy

stellar mass function (GSMF) across our full mass range. Figure 3.2 shows the GSMF in

each of our five sub-volumes (colored points) compared to a double Schechter function

using the Dragomir et al. (2018) best-fit parameters of SDSS (black line). Overall, we

find generally good agreement between our sub-volumes and the fit, though there is

some discrepancy at low mass. This is likely the result of the 50% limit being too low

and creating a volume that is too large for fainter low-mass galaxies. While this leads to
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Dragomir et al. 2018 best fit
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Figure 3.2. Galaxy stellar mass function (GSMF) of our five sub-volumes compared
to a double Schechter function with the best-fitting parameters from Dragomir et al.
(2018). Our sub-volumes match well with the SDSS GSMF, with a slight discrepancy
at the lowest masses. This is the result of a trade-off between completeness and sufficient
statistics to calculate correlation functions.

a lower level of completeness than our other sub-volumes, the larger volume is required

to obtain reliable two-point statistics.

§ 3.3. Methods

3.3.1. Clustering Measures

Galaxy clustering was measured using two-point correlation functions, which measure

the excess probability over random of finding pairs of galaxies separated by a distance 𝑟.

To mitigate the effects of redshift-space distortions, the correlation function is calculated
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in a projected area broken into components perpendicular to (𝑟p) and parallel to (𝑟π) the

line of sight. Assuming two galaxies are positioned at s1 and s2, a line-of-sight vector

can be defined as l = 1
2 (s1 + s2) and a separation vector can be defined as s = s1 − s2.

With these definitions, 𝑟p and 𝑟π can be calculated as

𝑟p =

√︃
s · s − 𝑟2

π(3.3.1)

𝑟π =
s · l
|l| .(3.3.2)

Correlation functions are calculated using the Landy and Szalay (1993) estimator

(3.3.3) 𝜉(𝑟p, 𝑟π) =
D1D2 − D1R2 − D2R1 + R1R2

R1R2

where D1D2 is the data–data pair counts, D1R2 and D2R1 are the data–random pair

counts, and R1R2 is the random-random pair counts. For CCFs, the subscripts denote

the two different data sets that are being cross-correlated. For ACFs, the subscripts are

all the same and Equation (3.3.3) simplifies to

(3.3.4) 𝜉(𝑟p, 𝑟π) =
DD − 2DR + RR

RR
.

These are then integrated over 𝑟π to find the two-dimensional projected correlation

functions

(3.3.5) 𝑤p(𝑟p) = 2
∫ 𝑟max

π

0
𝜉(𝑟p, 𝑟π)d𝑟π.

For our calculations, we integrate to 𝑟max
π = 20 ℎ−1Mpc. The calculations were done us-

ing corrfunc (Sinha and Garrison, 2020b) in 10 𝑟p bins from 0.1 ℎ−1Mpc to 20 ℎ−1Mpc.

Error bars for correlation functions show the 1𝜎 error after running 200 bootstrap sam-

ples. Since we will show results of both projected ACFs and CCFs, we will use 𝑤a to
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denote projected ACFs and 𝑤c to denote projected CCFs.

Correlation functions can be affected on small scales by fiber collisions. In the SDSS,

galaxies within 55 arcsec of each other cannot receive fibers on the same plate, but some

regions (roughly a third of the sky) were tiled with overlapping plates. We tested for

the impact of fiber collisions by upweighting pair counts for galaxies that had pairs on

small scales by a factor of 3. The largest impact was, as expected, on scales below

𝑟p ≈ 0.1 Mpc for galaxies around log(𝑀∗/𝑀⊙) = 10 and scales below 𝑟p ≈ 0.2 Mpc

for galaxies around log(𝑀∗/𝑀⊙) = 11, with changes at the few-percent level on larger

scales. Hence, we do not expect fiber collisions to affect conclusions for any of the

correlation function analyses in this paper.

3.3.2. Fitting the Star-forming Main Sequence

In this section, we describe how we define the star-forming main sequence (SFMS).

We follow Stephenson et al. (in preparation, see also Rodríguez-Puebla et al., 2020a

and Fang et al., 2018) and briefly describe the method below. This definition will be

the basis for how we break down the sSFR–𝑀∗ plane into a grid of sub-samples (see

Section 3.3.3). The idea is to create bins in sSFR based on distance (in dex) from the

mean of the SFMS at a fixed 𝑀∗. To do this, we use an iterative process of fitting the

sSFR–𝑀∗ relation of star-forming galaxies until the fit becomes stable. The general

process is as follows:

1. Fit a straight line to the data sample of log(sSFR/yr−1) vs log(𝑀∗/𝑀⊙).

2. Shift the line down 0.45 dex in log(sSFR/yr−1) and select all galaxies above the

line to be the new sample.
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3. Repeat until the fit parameters are stable to a maximum tolerance of 10−3.

Once stable parameters are obtained for the straight line fit, we calculate the median

sSFR of all galaxies above the line (i.e., star-forming galaxies) as a function of 𝑀∗ in 10

mass bins. These medians are used to fit a function of the form

(3.3.6) ⟨log[sSFRMS(𝑀∗)]⟩ = log
(
𝜓0

𝑀∗

)
− log

[
1 +

(
𝑀∗
𝑀0

)𝛾]
where𝜓0, 𝑀0, and 𝛾 are fitting parameters (Lee et al., 2015). For our data set, we find the

best-fit parameters log(𝜓0/𝑀⊙yr−1) = 0.829, log(𝑀0/𝑀⊙) = 10.914, and 𝛾 = −0.897.

Equation (3.3.6) defines the mean of the SFMS, which we use to create all other sSFR

bins. We take all galaxies 0.45 dex below this curve or higher to be the SFMS.

3.3.3. The sSFR–𝑀∗ Grid

In order to systematically study ACFs and CCFs in the sSFR–𝑀∗ plane, we break our

galaxy sample into a grid binning by stellar mass and distance from the mean of the

SFMS. The five mass bins defined in Section 3.2.3 are used to mitigate the effects of

mass dependence on the correlation functions and isolate the dependence on sSFR.

Figure 3.3 shows the mean and median masses within each cell of the grid. In every

grid cell, the mean and median mass are similar in value to each other, and in any

given mass bin, they each remain relatively constant as a function of sSFR (the largest

variation within any mass bin is ≲ 0.05 dex). This ensures that, within a given mass

bin, any disparities in the two-point correlation functions across the sSFR ranges will

be solely attributable to their distinct clustering properties rather than being influenced

by internal mass effects within the bin.
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Figure 3.3. Scatter plot of the sSFR–𝑀∗ plane for Y12 central galaxies showing the
grid binning scheme. Correlation functions are calculated within individual cells or
combinations of cells in the grid. The data are broken horizontally into the five sub-
volumes shown in Figure 3.1 and vertically by distance from the SFMS (specifics shown
in Table 3.2). The text boxes show the number of galaxies within each grid cell. Gray
circles and diamonds show the median and mean stellar masses and median sSFR within
each cell. Overall, we find the median and mean stellar masses to be similar in value
and close to constant as a function of sSFR, which helps remove mass effects in the
trends of the correlation functions.
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Table 3.2.: List of sub-samples in the sSFR–𝑀∗ plane and the corresponding ΔMS bin
definitions.

Sub-sample ΔMS bin [dex]
Highly star-forming (HSF) ΔMS > 0.25
Upper main sequence (UMS) 0 < ΔMS < 0.25
Lower main sequence (LMS) -0.25 < ΔMS < 0
Bottom of the main sequence (BMS) -0.45 < ΔMS < -0.25
Green valley (GV) -1 < ΔMS < -0.45
Quiescent (Q) ΔMS < -1

Using Equation (3.3.6) as an initial bin edge, we choose four additional parallel curves

to break sSFR into six bins. In this way, we are binning galaxies by their distance from

the mean of the SFMS, which we define as ΔMS, where ΔMS ≡ log[sSFR(𝑀∗)] −

⟨log[sSFRMS(𝑀∗)]⟩. We follow the bin definitions used in Stephenson et al. (in

preparation) and describe them here. The divisions for star-forming galaxies are made

based on the assumption that the SFMS has a width of 𝜎 ∼ 0.25 dex (see, e.g., Speagle

et al., 2014). Highly star-forming (HSF) galaxies lie at least 1𝜎 above the mean of

the SFMS and potentially include starburst galaxies. Upper main sequence (UMS)

and lower main sequence (LMS) galaxies lie above and below the mean of the SFMS,

respectively, but are constrained to be within ±1𝜎. Bottom of the main sequence (BMS)

galaxies lie at least 1𝜎 below the mean of the SFMS but above -0.45 dex. Green valley

(GV) galaxies are those between 0.45 dex and 1 dex below the mean of the SFMS, and

quiescent (Q) galaxies are all galaxies more than 1 dex below the mean of the SFMS.

These bin definitions are summarized in Table 3.2. Figure 3.3 shows the sSFR–𝑀∗

plane with our grid plotted as black lines on top of it. The second horizontal curve from

the top shows our fit of the mean of the SFMS, from which all other horizontal curvess

are derived. See Table E.1 for details on galaxy counts and mean and median values of
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stellar mass and ΔMS for both centrals and satellites in the grid.

§ 3.4. Results

The primary objective of this paper is to investigate the clustering properties of galaxies

across the sSFR–𝑀∗ plane, as shown in Figure 3.3. Previous studies have primarily fo-

cused on the clustering properties of galaxies by categorizing them into star-forming/blue

or quiescent/red galaxies (see, e.g., Li et al., 2006; Zehavi et al., 2011; Guo et al., 2011;

Hearin and Watson, 2013; Tinker et al., 2013), with only a few exceptions examining

correlations across the sSFR–𝑀∗ plane (Coil et al., 2017; Berti et al., 2021b). To the

best of our knowledge, there have been no reports on two-point correlations across the

sSFR–𝑀∗ plane when distinguishing between central and satellite galaxies or on the

cross-correlations between centrals and satellites. As we will discuss in this paper, a

detailed examination of cross-correlations is essential for understanding how galaxies

are connected to their dark matter halos. In the following sections, we present and

discuss our results on galaxy clustering.

As mentioned in Section 3.2.2, we use three different group catalogs for this work.

All results in Section 3.4 were calculated using each of the group catalogs, and while

we do not show all of these results, we find that they all produce clustering trends that

are consistent with each other and lead to the same conclusions we draw in this paper.

A discussion comparing the group catalogs can be found in Section 3.6.1.

Finally, note that for clarity in all correlation function figures, we do not plot points

where the error exceeds the value of the point itself (unless specified otherwise). Ad-

ditionally, the label at the top of each column in each correlation function figure shows
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the value of the center of that mass bin in log space as a general guide for the stellar

masses to which each column corresponds.

3.4.1. Auto-correlation Functions

Figure 3.4 shows the ACFs of all galaxies (centrals and satellites together) as a function

of ΔMS. The dark and light blue lines in the upper two rows correspond to galaxies in

the upper (HSF+UMS) and lower (LMS+BMS) halves of the SFMS, respectively. The

green lines in the third row correspond to green valley galaxies, and the red lines in the

bottom row correspond to quiescent galaxies. In each column, there is a black dashed

line that remains the same in every row. These lines represent the ACFs of galaxies

in the center of the SFMS (LMS+UMS) and serve as a reference to see how the ACFs

evolve from high to low ΔMS at a fixed mass. We observe a strong and consistent

trend of increasing clustering going below the SFMS. This effect is most pronounced

at lower masses where the clustering amplitude increases up to an order of magnitude

above the SFMS amplitude. In every mass bin, the increase in the clustering amplitude

occurs most strongly at smaller separations, i.e., in the one-halo term where the highly

clustered nature of satellites has the greatest impact on the ACFs. This signal, however,

becomes weaker in the higher mass bins as there are fewer satellites in the sub-samples

at higher masses.

We now investigate the relative contributions of central and satellite galaxies to this

observed trend in the ACFs. Figure 3.5 shows the ACFs of central galaxies only.

With this sample, we notice a drastic reduction in the trends as a function of ΔMS.

The remaining weak trend is only somewhat noticeable in the most quiescent centrals,

especially at lower masses. Note that since these ACFs are of centrals only, we focus
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Figure 3.4. Projected auto-correlation functions (ACFs) of all galaxies as a function of
ΔMS and 𝑀∗. The rows correspond from top to bottom to UMS+HSF galaxies (dark
blue), BMS+LMS galaxies (light blue), GV galaxies (green), and quiescent galaxies
(red). The colored lines show the results within a grid cell, and the black dashed lines
show the ACFs of all galaxies in the center of the SFMS (LMS+UMS). While showing
no evolution across the SFMS, there is a clear trend of increasing clustering amplitude
as ΔMS decreases below the SFMS. The magnitude of this effect tends to decrease
with mass due to the differing galaxy selections in the different sub-volumes. Greater
clustering at small separations is primarily the result of the presence of satellite galaxies,
and the relative fraction of satellite galaxies within each mass bin decreases as the mass
increases (see Figure 3.6).
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primarily on scales larger than 𝑟p ∼ 1 ℎ−1Mpc as we do not expect multiple centrals to

occupy the same halo. Signals below this scale are likely the result of the projection

used to calculate the ACFs and potentially satellites that are misidentified as centrals.

We discuss this further in Section 3.6.1. We conclude that the strong trend and main

contributor of increased clustering amplitude below the SFMS is therefore the product of

satellite galaxies in the sample. Further, the ratio of satellite galaxies to central galaxies

increases with distance below the SFMS. This effect is strongest at lower masses, and

these galaxy samples are precisely where we see the strongest clustering in Figure 3.4.

Figure 3.6 shows the weighted ACFs of all (black), central (dash-dot blue), and satel-

lite (magenta) galaxies to illustrate the relative contributions of centrals and satellites to

the overall ACF of all galaxies. Formally, this is given by

(3.4.1) 𝑤a, all = 𝑓 2
cen𝑤a, cen + 𝑓 2

sat𝑤a, sat + 2 𝑓cen 𝑓sat𝑤c, cen–sat

where 𝑓cen and 𝑓sat are the fractions of central and satellite galaxies, respectively.∗ The

last term in Equation (3.4.1) is a weighted CCF between centrals and satellites. We have

plotted separately the first two terms but omitted this last term in Figure 3.6 to ensure

clarity regarding the relative contributions of the ACFs. We will revisit central–satellite

CCFs in Section 3.4.2.

In Figure 3.6, the ACFs of centrals (dash-dot blue lines) are seen to remain relatively

constant as a function of ΔMS while the ACFs of satellites (magenta lines) grow sub-

stantially with decreasing ΔMS, particularly at small separations and most pronounced
∗To derive Equation (3.4.1), we use the fact that for two samples 𝑖 and 𝑗, the number of galaxy pairs

between them, 𝑁𝑖 𝑗, can be related to the number density of objects in each sample, 𝑛𝑖 and 𝑛 𝑗, and the
correlation function between them, 𝑤𝑖 𝑗, as 𝑁𝑖 𝑗 = 𝑛𝑖𝑛 𝑗 (1 + 𝑤𝑖 𝑗). Note that for auto-correlations, 𝑖 = 𝑗,
which yields pair counts 𝑁𝑖 =

1
2𝑛

2
𝑖
(1 + 𝑤𝑖) where the factor of 1

2 is to avoid double counting.
Equation (3.4.1) can then be derived using the relations 𝑁all = 𝑁cen + 𝑁sat + 𝑁cen-sat and 𝑛all = 𝑛cent + 𝑛sat
(see also Zehavi et al., 2011).
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Figure 3.5. Projected auto-correlation functions (ACFs) of central galaxies as a function
of ΔMS and 𝑀∗. The rows correspond from top to bottom to UMS+HSF galaxies (dark
blue), BMS+LMS galaxies (light blue), GV galaxies (green), and quiescent galaxies
(red). The colored lines show the results within a grid cell, and the black dashed lines
show the ACFs of central galaxies in the center of the SFMS (LMS+UMS). We observe
a drastic reduction in the trends as a function of ΔMS compared to the ACFs of all
galaxies (see Figure 3.4). The remaining trend is only clear in the most quiescent
galaxies. However, because these are ACFs of central galaxies, only scales larger than
𝑟p ∼ 1 ℎ−1Mpc should be considered as we do not expect multiple centrals to exist
within the same halo. Signals below this scale can be caused by the projection used
to calculate 𝑤a and by satellites misidentified as centrals. We discuss this further in
Section 3.6.1.
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Figure 3.6. Projected auto-correlation functions (ACFs) of all (black), central (dash-dot
blue), and satellite (magenta) galaxies as a function of ΔMS and 𝑀∗. ACFs of centrals
and satellites are scaled by their fractional numbers according to Equation (3.4.1) to
show their relative contributions to the overall ACF. The rows correspond from top
to bottom to UMS+HSF galaxies, BMS+LMS galaxies, GV galaxies, and quiescent
galaxies. The increased clustering with decreasing ΔMS in the ACFs of all galaxies
is driven primarily by satellite galaxies, which are highly clustered and tend to be
quiescent. On the other hand, the ACFs of central galaxies show little-to-no trend with
ΔMS at a fixed stellar mass.
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at lower masses where most satellites reside. This reaffirms our conclusion that satel-

lites are the main driver of the trends shown in Figure 3.4 and explains why the trend

weakens with increasing mass. As we consider bins of higher mass, the satellite frac-

tion drops, causing the ACFs to become more weighted by contributions from centrals,

which generally do not change with ΔMS.

In the existing literature, there is substantial empirical evidence indicating that, on

average, a galaxy’s stellar mass increases monotonically with halo mass. Because halo

clustering also increases with halo mass – often referred to as halo bias – one would

expect that the clustering of central galaxies should similarly increase with stellar mass.

Indeed, this is what we observe in Figures 3.5 and 3.6. Apart from halo bias, the

clustering amplitude of halos can vary based on other factors, such as formation redshift

and accretion history, a phenomenon known as assembly bias (see, e.g., Wechsler et al.,

2006). The empirical evidence presented in Figures 3.5 and 3.6 – that is, the almost

nonexistent dependence of the central galaxy ACFs with ΔMS at a fixed stellar mass –

suggests that assembly bias is not producing any significant net effect in central galaxy

clustering in the sSFR–𝑀∗ plane.

3.4.2. Cross-correlation Functions

Since the ACFs of central galaxies show little trend with ΔMS, we further investigate

the clustering properties of centrals by considering cross-correlations of centrals with

satellites. However, we want to do this in a way that will not be influenced by the

clustering trends of the satellites. If, for example, we calculate CCFs within each cell of

the Figure 3.3 grid, we know the clustering amplitudes will be highest in the quiescent

cells – similar to Figure 3.4 – because satellites are highly clustered and tend to be
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quiescent. To avoid this bias, we instead cross-correlate centrals in a grid cell with all

satellites in the same mass bin, regardless of satellite sSFR. By doing this, the CCFs will

be independent of satellite sSFR and, consequently, unbiased by the clustering trends

shown in Figures 3.4 and 3.6.

The central–satellite CCFs are shown in Figure 3.7 using all six ΔMS bins from

Figure 3.3. The upper four rows (blue) show results for the SFMS broken into four

sections (HSF, UMS, LMS, and BMS), followed by green valley (green) and quiescent

(red) centrals. The black dashed lines show the CCFs of centrals in the center of

the SFMS (LMS+UMS) within that mass bin with all satellites in the same mass bin.

Across the SFMS, we see similar behavior in the CCFs. However, looking at green

valley and especially quiescent centrals, there is a general trend of increasing clustering

amplitude at smaller separations, i.e., in the one-halo term. For quiescent centrals, the

CCF clustering amplitude is greater than that of SFMS centrals by up to a factor of ∼3.

Interpreting this increase in clustering is challenging as there are multiple factors at

play in the CCFs. First is the projection that is used when calculating the CCFs. Since

they are calculated in a projected environment, pair counts of centrals with satellites of

another group along the line of sight can lead to higher clustering amplitudes on small

scales. If quiescent centrals tend to live in higher density environments, it may be more

likely to find cases of quiescent centrals along the line of sight of a larger group than

star-forming centrals. Another possibility is pair counts of centrals at the outskirts of

larger halos. Since we calculate the CCFs in mass bins, we are cross-correlating centrals

with satellites of similar masses. It is, therefore, likely that satellites of a similar mass

to a given central will belong to a different, more massive central. There may then be

pair counts from backsplash galaxies (see, e.g., Borrow et al., 2023). These galaxies are
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Figure 3.7. Projected cross-correlation functions (CCFs) of central galaxies as a func-
tion of ΔMS and 𝑀∗. The centrals of a given cell in the grid are cross-correlated with all
other satellites in the same mass bin. For comparison, a black dashed line is included
that represents the CCF of all centrals in the center of the SFMS (LMS+UMS) with
all satellites in the same mass bin. While there is no strong trend in the CCFs across
the SFMS (top four rows in blue), we do see a trend of increasing clustering at small
separations for GV centrals (green) and a further increase for quiescent centrals (red).
Because this increase occurs at small separations, it suggests that more quiescent cen-
trals will tend to have more satellite galaxies.
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ones that once resided in a larger cluster but have moved outward on their orbits. In the

process of this migration, their gas becomes stripped, resulting in these galaxies tending

to be quiescent. A final contributor to the small-scale CCFs is centrals that indeed have

satellites with masses that are similar enough to be in the same mass bin. While these

cases may be rare, it is possible that they could contribute in a significant way to the

small-scale CCFs depending on the frequency of occurrences of the other previously

mentioned factors. If this is the case, it would suggest that quiescent centrals tend to

have more satellites than star-forming centrals.

To check this conclusion explicitly, we calculate the mean number of satellites per

group above a stellar mass of log(𝑀∗/𝑀⊙) = 10 for all, SFMS, green valley, and

quiescent centrals. For this, we create a new volume-limited sample that spans a mass

range of 10 < log(𝑀∗/𝑀⊙) < 12 using the same methodology described in Section 3.2.3.

The left panel of Figure 3.8 shows the results, plotting only the mass bins that contain

at least 50 centrals. As suggested by the CCFs, we see a clear separation in the number

of satellites for SFMS and quiescent centrals, with green valley centrals lying generally

in the middle at higher central masses. The separation is ∼0.15 dex at lower masses,

growing up to ∼0.5 dex at higher masses. Note that in the halo occupation distribution

(HOD) framework, ⟨𝑁sat⟩ will be proportional to halo mass as ⟨𝑁sat⟩ ∝ 𝑀𝛼
vir with 𝛼 ∼ 1

(e.g., Moster et al., 2010; Zehavi et al., 2011). Under the assumptions of HOD, where

halo mass determines all galaxy properties, the segregation we see in ⟨𝑁sat⟩ with ΔMS

reflects the existence of the SHMR segregation, where quiescent galaxies live in higher

mass halos than star-forming galaxies with the same stellar mass.

The right panel of Figure 3.8 further investigates ⟨𝑁sat⟩ by dividing the SFMS into

the HSF, UMS, LMS, and BMS sub-samples. In the stellar mass range of 10.3 ≲
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Figure 3.8. Average number of satellites per central as a function of central galaxy
stellar mass. Only mass bins that contain at least 50 centrals are plotted. Left panel:
The sample is broken into sub-samples of all, LMS+UMS, GV, and quiescent centrals.
We see that quiescent centrals on average have more satellites than SFMS centrals,
which agrees with our conclusion from the CCFs in Figure 3.7. At lower masses
(log(𝑀∗/𝑀⊙) ≲ 10.5), the average difference is ∼0.15 dex, while at higher masses,
it grows up to ∼0.5 dex. Right panel: The SFMS is broken into four sub-samples as
a function of ΔMS. Note that the axes have changed to better show the results. For
10.3 ≲ log(𝑀∗/𝑀⊙) ≲ 10.6, a clear monotonic trend is observed with SFR activity,
where higher ΔMS sub-samples have higher ⟨𝑁sat⟩. For lower masses, the trend is less
evident for UMS, LMS, and BMS centrals though HSF centrals clearly have the most
satellites, exceeding the average of the entire sample (gray solid line, equivalent to the
black dashed line in the left panel). At higher masses, the trend is less clear for all four
sub-samples.
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log(𝑀∗/𝑀⊙) ≲ 10.6, a clear monotonic trend is observed with SFR activity, where

higher ΔMS sub-samples have higher ⟨𝑁sat⟩. However, for masses below this range, the

trend is less evident for UMS, LMS, and BMS. Similarly, for masses above this range,

the trend is less distinct for all four sub-samples. For central galaxies with masses

log(𝑀∗/𝑀⊙) ≲ 10.6, HSF centrals host more satellites than UMS, LMS, and BMS

centrals. Moreover, on average, HSF centrals host ∼1.6 times more satellite galaxies

compared to the entire sample (gray solid line), while UMS, LMS, and BMS centrals

generally host fewer satellites than the overall sample. This trend for HSF centrals aligns

with our findings in Figure 3.7, where the one-halo term of HSF centrals in the lowest

mass bin is marginally above that of all SFMS galaxies. The excess of satellite galaxies

for HSF centrals may contribute to their elevated SFR values due to close interactions

with their satellites (see, e.g., Lin et al., 2008; Yesuf et al., 2021; Bottrell et al., 2024).

§ 3.5. Implications for the Galaxy–Halo Connection

With the signal we have seen in the clustering properties of central galaxies – namely,

that more quiescent centrals tend to have more satellites than star-forming centrals

(shown in Figures 3.7 and 3.8) – we can now use this to test models of the galaxy–halo

connection. To do this, we use the Bolshoi–Planck (BP) 𝑁-body simulation (Klypin

et al., 2016b; Rodríguez-Puebla et al., 2016b). The BP simulation box is 250 ℎ−1Mpc

on each side, containing 20483 particles with a mass resolution of 1.55×108 ℎ−1M⊙ and

force resolution of 1.0 ℎ−1kpc. The cosmological parameters of BP are ΩΛ = 0.693,

Ωm = 1 − ΩΛ, Ωb = 0.048, ℎ = 0.678, 𝑛𝑠 = 0.96, and 𝜎8 = 0.823. Dark matter halos

and sub-halos in the simulation were identified using rockstar (Behroozi et al., 2013b).
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Since our correlation functions thus far have been calculated within five different sub-

volumes, we use five different sub-volumes created from BP snapshots for these tests.

The goal is to have each snapshot cover the same stellar mass and redshift ranges as our

five SDSS sub-volumes.

3.5.1. Mock Catalogs: Redshift Space and Stellar Masses

To create our five samples using BP, we first project snapshots into redshift space. We

start by defining an origin that is centered on one side of the simulation box. Assuming

the snapshot corresponds to a redshift 𝑧BP, we shift all halos away from the origin a

distance 𝑑c(𝑧BP), where 𝑑c(𝑧BP) is the comoving distance to 𝑧BP. This sets the redshift

of the near side of the box equal to 𝑧BP. Then, we infer cosmological redshifts for all

halos moving across to the far side of the box based on their comoving distances from

the origin. Additionally, we add redshift-space distortions according to the equation

(3.5.1) 𝑧obs = 𝑧cos +
𝑣los

𝑐
(1 + 𝑧cos)

where 𝑧obs is the observed redshift with redshift-space distortions, 𝑧cos is the cosmo-

logical redshift inferred from a halo’s comoving distance from the origin, 𝑣los is the

line-of-sight peculiar velocity of a halo relative to the origin, and 𝑐 is the speed of light.

Once every halo has an observed redshift assigned to it, we then cut the snapshots so

each one has the same redshift range as the corresponding sub-volume in our SDSS

samples. In some cases, the snapshot is not large enough to encompass the entire

redshift range of a sub-volume. For these instances, we choose BP snapshots that give
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us a redshift range that is as close as possible to our SDSS sub-volume redshift ranges.∗

Once all the snapshots and redshift ranges have been determined, we assign stellar

masses to all of the halos. To do this, we follow Dragomir et al. (2018, see also Reddick

et al., 2013; Calette et al., 2021) and assume that the halo property that best correlates

with stellar mass and reproduces the observed ACF is

(3.5.2) 𝑉DM =


𝑉max for distinct halos

𝑉peak for sub-halos

where 𝑉max is the maximum circular velocity of dark matter in a distinct halo at the

observed time and 𝑉peak is the maximum circular velocity throughout the entire history

of a sub-halo. Moreover, we follow Rodríguez-Puebla et al. (2012, see also Rodríguez-

Puebla et al., 2013; Guo et al., 2016; Devi et al., 2019) to separately derive 𝑉DM–𝑀∗

relations for centrals and satellites. As shown in Rodríguez-Puebla et al. (2012), using

separate relations for centrals and satellites results in ACFs that are more consistent

with observations than using the same relation for both.

We follow the same procedure described in Section 2.2 of Calette et al. (2021) to

derive the 𝑉DM–𝑀∗ relations based on the numerical deconvolution algorithm discussed

in Appendix D of Rodríguez-Puebla et al. (2020b). One difference with respect to

Calette et al. (2021) is that we assume that their Equation (3) can be written separately

for centrals and satellites as

(3.5.3) 𝜙𝑖(𝑀∗, 𝑧) =
∬

H𝑖(𝑀∗ |𝑉DM)𝜙DM,𝑖(𝑉DM)
Vc(𝑧 𝑓 ) − Vc(𝑧𝑖)

d log(𝑉DM)dVc(𝑧),

where the subscript 𝑖 refers to either centrals/distinct halos or satellites/sub-halos,

∗For the BP snapshots we use, all redshift boundaries are within 0.01 of the corresponding SDSS
sub-volume redshift boundaries.
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Vc is the comoving volume, and 𝑧𝑖 = 0.001 and 𝑧 𝑓 = 0.2 correspond to the red-

shift ranges over which the GSMF that we use has been constrained. The function

𝜙DM,𝑖(𝑉DM) is the halo/sub-halo velocity function and H𝑖(𝑀∗ |𝑉DM) refers to the log-

normal conditional probability distribution function that a halo/sub-halo with velocity

log(𝑉DM) ± 1
2d log(𝑉DM) hosts a galaxy with a mass log(𝑀∗) ± 1

2d log(𝑀∗). We assume

that the dispersion around the 𝑉DM–𝑀∗ relation is 𝜎 = 0.15 dex and the same for both

central and satellite galaxies. Note that Equation (3.5.3) returns the volume-weighted

𝑉DM–𝑀∗ relation of centrals and satellites.

To derive the 𝑉DM–𝑀∗ relationship, we use the GSMF of all galaxies, 𝜙(𝑀∗), from

Dragomir et al. (2018). We calculate the GSMF of central and satellite galaxies by

computing the fraction of satellites, 𝑓sat, as a function of stellar mass using the volume-

limited samples described in Section 3.2. The GSMF of central and satellite galaxies

will then, by definition, be given by 𝜙𝑖(𝑀∗) = 𝑓𝑖𝜙(𝑀∗) with 𝑓cen = 1 − 𝑓sat. Using

𝜙𝑖(𝑀∗) on the left side of Equation (3.5.3) allows us to deconvolve the equation to

isolate H𝑖(𝑀∗ |𝑉DM) and calculate stellar masses for all the dark matter halos. Once the

halos have stellar masses assigned to them, we select our final BP samples by choosing

the corresponding stellar mass and redshift ranges to match our five SDSS sub-volumes.

3.5.2. Assigning sSFRs to Dark Matter Halos

We now test different models of sSFR for central galaxies. For this step, we consider

only centrals/distinct halos as we expect satellites/sub-halos to have different formation

and evolutionary histories from the host halos in which they reside. Note that we

model sSFR empirically using our snapshots and SDSS observations at 𝑧 ≤ 0.2; we

do not attempt to model the histories of the haloes. For a given model, we choose
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a halo property, 𝐻, with which sSFR will correlate as either a monotonic increasing

or decreasing relationship.∗ Then, in bins of stellar mass, we rank order all halos by

𝐻 (𝑀∗). Assuming there are 𝑁 halos in a given mass bin, we sample 𝑁 sSFRs from

the corresponding mass bin of SDSS observations. These sampled sSFRs are also rank

ordered and then matched to the halos based on rank (i.e., if 𝐻 and sSFR are positively

correlated, the highest sampled sSFR will be assigned to the halo with the highest value

of 𝐻 (𝑀∗)).

Using this procedure, we test three different models of sSFR: halo accretion rate∗∗

(averaged over a dynamical time), ¤𝑀h, halo concentration, 𝐶vir, and peak circular

velocity, 𝑉peak, which are summarized in Table 3.3. As mentioned in Section 3.1,

halo accretion rate controls the influx of gas into a galaxy’s interstellar medium (see,

e.g., Avila-Reese and Firmani, 2000; Bouché et al., 2010; Dekel and Mandelker, 2014;

Rodríguez-Puebla et al., 2016) and has been shown to reproduce the width of the SFR

distribution in star-forming galaxies at various redshifts (Rodríguez-Puebla et al., 2016)

and, to a lesser extent, the clustering of galaxies (Becker, 2015). Previous studies of 𝐶vir

have shown that it is linked to the timing of gas infall into halos (see, e.g., Avila-Reese

et al., 1998; Wechsler et al., 2002; Gao et al., 2004; Dutton et al., 2010; Matthee and

Schaye, 2019), and models of galaxy color based on 𝐶vir have successfully reproduced

the observed ACFs of red and blue galaxies (Hearin and Watson, 2013).

The ¤𝑀h and 𝐶vir models will be used as tests of whether halo assembly history is

the key factor determining how galaxies cluster in the sSFR–𝑀∗ plane. At a fixed halo

mass, halos with low ¤𝑀h will tend to be the ones in denser environments comprised of
∗These are the most straightforward trends that have a physical basis for sSFR to be correlated with

halo property 𝐻.
∗∗Since we are modeling specific SFR, it is also sensible to correlate this with specific halo accretion

rate ( ¤𝑀h/𝑀h). We tested this model as well and found similar results to the ¤𝑀h model.
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Table 3.3.: Description of the three sSFR models of the galaxy–halo connection. The
correlation direction tells whether a given halo property correlates with sSFR
positively (higher halo property corresponds to higher sSFR) or negatively
(higher halo property corresponds to lower sSFR).

Halo Property sSFR Correlation Motivation
Halo accretion rate
( ¤𝑀h)

Positive Halo accretion rate controls the influx of
gas into a galaxy’s interstellar medium.
We might expect galaxies in halos with
higher accretion rates may have higher
sSFR as they have more gas available to
form stars.

Halo concentration
(𝐶vir)

Negative Halo concentration is linked to the timing
of gas infall into halos where more concen-
trated halos experience earlier infall. We
might expect galaxies in highly concen-
trated halos have low sSFR as they have
run out of gas and ceased star formation.

Halo peak circular
velocity (𝑉peak)

Negative 𝑉peak is strongly correlated with halo mass.
If quiescent galaxies reside in more mas-
sive halos, we can assign lower values of
sSFR to halos with higher 𝑉peak.
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already-formed halos (see, e.g., Maulbetsch et al., 2007; Lee et al., 2017b) and sub-halos

with less dark matter available for accretion. We might expect that the lower accretion

rate leads to less gas available to a halo’s hosted galaxy and therefore a lower sSFR. In

the ¤𝑀h model, we then expect quiescent galaxies to be more clustered than star-forming

galaxies at a fixed stellar mass. Similarly, at a fixed halo mass, halos with high 𝐶vir will

tend to be the ones that formed at earlier times and are more clustered. We then might

expect that the galaxies hosted by such halos also formed earlier and reached the ends

of their life cycles (i.e., became quiescent) earlier. In the 𝐶vir model, we can then expect

that quiescent galaxies will again be more clustered than star-forming galaxies at a fixed

stellar mass.

Contrary to these models, the𝑉peak model will be a test that assumes only a segregation

in the SHMR. 𝑉peak is strongly correlated with halo mass; therefore, assigning lower

sSFR to halos with higher 𝑉peak will lead to quiescent galaxies occupying more massive

halos than star-forming galaxies at the same stellar mass. It is important to note that the

motivation for this model is empirical according to the results from gravitational weak

lensing (Mandelbaum et al., 2006), galaxy groups and clustering (Tinker et al., 2013;

Rodríguez-Puebla et al., 2015), and galaxy kinematics (More et al., 2011), as discussed

in Section 3.1. In this way, the difference in clustering for quiescent and star-forming

centrals will be driven by halo bias. This could be tested more directly with a model

based on halo mass rather than 𝑉peak. However, we tested such a model and found that

𝑉peak overall provided results more consistent with observations.
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3.5.3. Clustering Predictions

For each of the models, we calculate ACFs and CCFs using the same methodology

described in Sections 3.3 and 3.4. Note that because we cross-correlate centrals with all

satellites in the same mass bin regardless of satellite sSFR, these results do not depend

on a model of sSFR for satellites. We show the results of the ACFs and CCFs for the

¤𝑀h, 𝐶vir, and 𝑉peak models in Figures 3.9 and 3.10, respectively. The rows correspond

to HSF+UMS, LMS+BMS, GV, and quiescent centrals from top to bottom. We plot the

ACFs and CCFs of SDSS observations as circles and the models as lines.

We first consider the ACFs of the three models, shown in Figure 3.9. The predicted

ACFs agree fairly well with the SDSS observations, showing little to no trend with ΔMS

at a fixed stellar mass. This result is initially counterintuitive for all models. In the

case of the ¤𝑀h and 𝐶vir models, it may be expected that the assembly bias effects built

into them would result in quiescent galaxies clustering more strongly than star-forming

galaxies of the same stellar mass. For the 𝑉peak model, we effectively assign lower

sSFRs to higher mass haloes at the same stellar mass, leading to the expectation that

halo bias would cause quiescent galaxies to cluster more strongly than star-forming

galaxies at a given stellar mass. However, neither of these effects is observed. To

understand this result, one must consider the behavior of halo bias as a function of halo

mass. The magnitude of halo bias is a function of halo mass and ramps up significantly

at higher masses around log(𝑀h/𝑀⊙) ≳ 13.5 (see, e.g., Wechsler and Tinker, 2018b).

In the 𝑉peak model, the highest halo masses for star-forming and quiescent galaxies

are, on average, around log(𝑀h/𝑀⊙) ∼ 13 and log(𝑀h/𝑀⊙) ∼ 13.5, respectively (see

Section 3.5.4). At these halo masses, the difference in halo bias is not significant enough

to produce a signal in the auto-correlations. For the ¤𝑀h and 𝐶vir models, the highest
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halo masses for star-forming and quiescent galaxies are around log(𝑀h/𝑀⊙) ∼ 13.9 and

log(𝑀h/𝑀⊙) ∼ 13.4, respectively. Note that these models predict that quiescent galaxies

reside in lower mass haloes than star-forming galaxies at fixed stellar mass. Because

these halo masses are higher, the difference in halo bias is stronger. It may then be the

case that halo bias increases the clustering of star-forming galaxies while assembly bias

increases the clustering of quiescent galaxies, resulting in no net difference in the ACFs

as a function of ΔMS. It is also worth noting that assembly bias is an effect at fixed halo

mass, and it is not straightforward how it translates when working at fixed stellar mass

as we are here.

Looking now at the CCFs of the ¤𝑀h and 𝐶vir models in Figure 3.10, we see that these

models produce very similar results. They agree well with the observations at the lowest

masses, aside from the quiescent centrals where they predict higher clustering in the

one-halo term. In the second-lowest mass bin, there is an upturn in clustering amplitude

in the one-halo term for the higher star-forming centrals. This upturn grows with stellar

mass and disagrees strongly with what we observed in the SDSS. As mass increases, the

¤𝑀h and 𝐶vir models produce a trend with ΔMS opposite of what we see in observations;

clustering is highest for the star-forming centrals and lowest for quiescent centrals.

In contrast to the ¤𝑀h and 𝐶vir models, the 𝑉peak model CCFs produce reasonable

agreement with the SDSS observations at all masses but especially in the three higher

mass bins. At lower masses, the SFMS clustering has a tendency to be over-predicted

in the one-halo term. However, the main success of this model is that it generally shows

increased clustering amplitude for quiescent galaxies, which agrees with the trend in

the observations, unlike what the ¤𝑀h and 𝐶vir models predicts.

An important thing to note from these correlation function results is the fact that the
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Figure 3.9. Projected auto-correlation functions (ACFs) of central galaxies as a function
of ΔMS and 𝑀∗. The rows correspond from top to bottom to UMS+HSF, BMS+LMS,
GV, and quiescent centrals. The gray circles show results for SDSS observations and the
lines show results of three different models of sSFR based on different halo properties
using the Bolshoi–Planck simulation. The dash-dot black lines show the ¤𝑀h model, the
dashed blue lines show the 𝐶vir model, and the solid magenta lines show the 𝑉peak model.
Dotted lines show results (without error bars) where the error reaches up to 2𝑤a. We
see that all models are consistent with SDSS and produce ACFs that are very similar.
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Figure 3.10. Projected cross-correlation functions (CCFs) of centrals in a given grid
cell with all satellites in the same mass bin. The rows correspond from top to bottom
to UMS+HSF, BMS+LMS, GV, and quiescent centrals. The gray circles show results
for SDSS observations and the lines show results of three different models of sSFR
based on different halo properties using the Bolshoi–Planck simulation. The dash-dot
black lines show the ¤𝑀h model, the dashed blue lines show the 𝐶vir model, and the
solid magenta lines show the 𝑉peak model. Dotted lines show results (without error
bars) where the error reaches up to 2𝑤c. We see that the ¤𝑀h and 𝐶vir models for sSFR
fail to reproduce the CCF trend in ΔMS that we find in observed data. At higher
masses, clustering amplitude is highest for star-forming centrals, disagreeing strongly
with SDSS. However, the 𝑉peak model is consistent with SDSS at all masses.
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CCFs showed differing results among the models, whereas the ACFs did not. In almost

every region of our sSFR–𝑀∗ plane, all three models predict ACFs that are nearly the

same while the 𝑉peak model was able to clearly distinguish itself via CCFs. What this

tells us is that when considering only central galaxies, ACFs alone may not be sufficient

to discriminate different models of galaxy sSFR. We do add, however, that since the

presence of satellites has a strong impact on clustering trends with sSFR, it is possible

that ACFs of all galaxies (i.e., centrals and satellites together) could differentiate models

of galaxy sSFR, though we are unable to test this given that we do not attempt to model

sSFRs for sub-halos.

Finally, we consider the predictions of ⟨𝑁sat⟩ by the three models, shown in Fig-

ure 3.11. In the SDSS observations, there is a consistent trend at all masses of quiescent

galaxies having more satellites than star-forming galaxies, and this trend is weakest at

lower masses and strongest at higher masses. In these regards, we again see clear failures

in the ¤𝑀h and 𝐶vir models. While the ¤𝑀h model does predict lower ⟨𝑁sat⟩ for star-forming

galaxies at lower masses, there is a reversal of this trend above log(𝑀∗/𝑀⊙) ≈ 10.4,

contrary to what the observations show. Additionally, the ⟨𝑁sat⟩ values for quiescent

and star-forming galaxies are diverging at lower masses rather than converging as the

observations do. The 𝐶vir model incorrectly predicts that star-forming galaxies have

greater ⟨𝑁sat⟩ at all masses, opposite of what the observations show, and has converging

values of ⟨𝑁sat⟩ for quiescent and star-forming galaxies at both high and low masses.

On the other hand, the 𝑉peak model agrees with the observations in its prediction that

quiescent galaxies have greater ⟨𝑁sat⟩ than star-forming galaxies at all masses, with the

difference being the greatest at higher masses. The failures of the ¤𝑀h and 𝐶vir models

show that conventional assembly bias models of sSFR do not reproduce the observed
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clustering of central galaxies. The successes of the 𝑉peak model, however, show that

the clustering of central galaxies in the sSFR–𝑀∗ plane can be largely explained by a

mass-based model, independent of assembly bias.

3.5.4. Stellar-to-Halo Mass Relations

In this section, we analyze the SHMR predictions of the three models. Figure 3.12

shows the resulting SHMRs in the left panels and the inverted SHMRs in the right

panels for each of the three models described in the preceding sections. We note that

none of the three models is affected by the inversion problem (Cui et al., 2021). In

each panel, the blue and red lines represent the SFMS centrals and a sample consisting

of quiescent and green valley centrals (Q+GV), respectively. When using 𝑉peak (top

panels), SFMS galaxies exhibit a larger stellar mass than Q+GV galaxies at a fixed halo

mass (left panel). This outcome is a consequence of assigning increasing values of

sSFR to decreasing values of 𝑉peak, as illustrated in the right panel of Figure 3.12. Since

𝑉peak strongly correlates with halo mass, this effectively results in assigning quiescent

galaxies to more massive halos than star-forming galaxies at the same stellar mass

(consequently, quiescent galaxies will then have lower stellar masses than star-forming

galaxies at the same halo mass). The 𝐶vir and ¤𝑀h models (middle and bottom panels)

result in opposite trends to the 𝑉peak model, both in the SHMR and the inverted SHMR.

These trends can be understood as follows. In the 𝐶vir model, we assign increasing

values of sSFR to decreasing values of concentration at a fixed stellar mass. Since at

𝑧 ∼ 0 halo concentration correlates with halo mass as 𝐶vir ∝ 𝑀−0.1
vir (Macciò et al., 2008;

Klypin et al., 2016b), we are effectively assigning star-forming galaxies to high-mass

halos. For the ¤𝑀h model, increasing values of sSFR were assigned to increasing values
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Figure 3.11. Average number of satellites per central as a function of central galaxy
stellar mass. Only mass bins that contain at least 50 centrals are plotted. The sample is
broken into sub-samples of all, LMS+UMS, and quiescent centrals. The circles show
results for SDSS observations and the lines show results of three different models of sSFR
based on different halo properties using the Bolshoi–Planck simulation. The 𝐶vir model
predicts that star-forming centrals have a greater ⟨𝑁sat⟩ than quiescent centrals, contrary
to the observations. This also occurs in the ¤𝑀h model above log(𝑀∗/𝑀⊙) ≈ 10.4
where the ⟨𝑁sat⟩ relation inverts. The 𝑉peak model, on the other hand, agrees with the
observations that quiescent centrals have more satellites than star-forming centrals at all
masses.
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Figure 3.12. The stellar-to-halo mass relation (SHMR), ⟨𝑀∗(𝑀vir)⟩ (left panels), and
the inverted SHMR ⟨𝑀vir(𝑀∗)⟩ (right panels), for quiescent and green valley (Q+GV)
and SFMS centrals using the 𝑉peak, 𝐶vir, and ¤𝑀h models of sSFR. Only mass bins with at
least 50 galaxies are plotted for the different models. Also shown in the right panels are
determinations using satellite kinematics (More et al., 2011), galaxy groups combined
with galaxy clustering (Rodríguez-Puebla et al., 2015), and weak lensing (Mandelbaum
et al., 2016). We see that while all models produce inverted SHMRs that agree with
observations for Q+GV galaxies, only the 𝑉peak model reproduces the observed relation
for SFMS galaxies. We also note that our model results are not affected by the inversion
problem.
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of halo accretion rate at a given stellar mass. Since ¤𝑀h ∝ 𝑀1.1
vir (Fakhouri et al., 2010;

Rodríguez-Puebla et al., 2016b), we are again effectively assigning star-forming galaxies

to high-mass halos.

Our findings reveal a distinct segregation in the SHMR when considering SFMS and

Q+GV centrals across the three models of sSFR. When compared to earlier determina-

tions using satellite kinematics (More et al., 2011), galaxy groups combined with galaxy

clustering (Rodríguez-Puebla et al., 2015), and weak lensing (Mandelbaum et al., 2016),

we observe that all models agree for Q+GV galaxies, but only the 𝑉peak model aligns

with the trend where quiescent galaxies inhabit more massive halos compared to their

star-forming counterparts.

3.5.5. Caveats and interpretations

In this section, we briefly address some caveats that may affect some of the results of

our models. Regarding the 𝐶vir model, there may be some fraction of halos that exhibit

low values of 𝐶vir because they have not yet relaxed after mergers. These merging halos

are typically found in higher density environments and are expected to host quiescent

galaxies. However, due to their temporarily low 𝐶vir, they could be erroneously assigned

high sSFR values, which might contribute to the unexpected trends seen in Figures 3.10

and 3.11. As for the ¤𝑀h model, in some instances, high mass accretion rates may

involve major mergers, particularly at high masses where the halo should actually host

a quiescent central galaxy. In the model, however, such halos would be assigned high

sSFR. This scenario may also contribute to the unexpected trends in Figures 3.10 and

3.11. While these caveats may impact the results quantitatively, we expect the qualitative

aspects would remain unchanged.
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Turning now to the 𝑉peak model, one might initially assume that the sSFR segregation

imposed in the 𝑉peak–𝑀∗ relation could be attributed, in part, to assembly bias related

to 𝑉peak. This assumption arises from the close relationship between 𝑉peak and 𝐶vir (see,

e.g., Klypin et al., 2016b), where higher values of 𝐶vir will generally correspond to

higher values of 𝑉peak for a given halo mass. However, as shown in Figure 3.12, this

may not necessarily hold true, as the segregation of the SHMR differs between the two

models.

To investigate this further, we consider the formation redshift, 𝑧form, for halos hosting

SFMS and Q+GV galaxies in our models, where 𝑧form is defined as the redshift at which

a dark matter halo reached 50% of its current mass. Figure 3.13 presents 𝑧form as a

function of halo mass (left panels) and stellar mass (right panels). The top row shows

the results of the 𝑉peak model, where halos hosting SFMS and Q+GV galaxies exhibit

minimal difference in 𝑧form as a function of halo or stellar mass. In contrast, both the 𝐶vir

and ¤𝑀h models demonstrate a strong correlation of sSFR with 𝑧form. This is consistent

with the expected behavior of halo assembly bias, where early-forming halos tend to

host quiescent galaxies. These results support our initial hypothesis that the 𝑉peak model

is significantly associated with halo mass.

We conclude that the empirical evidence obtained in this section strongly suggests

that the 𝑉peak model, in which the enhanced clustering of quiescent galaxies is attributed

to the fact that they occupy more massive halos, offers a realistic model of how normal

to massive central galaxies (i.e., log(𝑀∗/𝑀⊙) > 10) inhabit dark matter halos.
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Figure 3.13. Formation redshift, 𝑧form, as a function of halo mass (left panels) and
stellar mass (right panels) for three models of sSFR broken into quiescent and green
valley (Q+GV) and SFMS centrals. Formation redshift is defined as the redshift at
which a halo attained 50 per cent of its current mass. The 𝐶vir and ¤𝑀h models each
create a strong segregation in formation redshift between Q+GV and SFMS galaxies.
This is consistent with the expected behavior of the assembly bias effect that is built into
these models, where early-forming haloes host quiescent galaxies. In contrast, the 𝑉peak
model has no clear bias in formation redshift with sSFR, which supports our hypothesis
that the 𝑉peak model is strongly associated with halo mass.
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§ 3.6. Discussion

In this paper, we have investigated how the clustering properties of galaxies vary across

the sSFR–𝑀∗ plane. To do this, we defined five volume-limited sub-samples that are

complete in stellar mass within their respective mass bins, as outlined in Section 3.2.3.

Additionally, we confirmed that our sub-samples reproduce the SDSS GSMF (Dragomir

et al., 2018), as shown in Figure 3.2.

For each of these five sub-samples, we analyzed the ACFs of all galaxies together

(Figure 3.4) as well as individually for centrals (Figure 3.5) and satellites, all of which

are summarized in Figure 3.6. Our analysis revealed that the ACFs of all galaxies

strongly depend on sSFR at a given stellar mass, while the ACFs of central galaxies are

largely independent of sSFR. We concluded that the presence of satellite galaxies and

the fraction of satellites as a function of sSFR play a crucial role in these differences.

Next, we explored the cross-correlation of central galaxies with satellites across the

sSFR–𝑀∗ plane (Figure 3.7). We demonstrated that there is a consistent trend in all

mass bins of increased clustering amplitude in the one-halo term for lower ΔMS at a

fixed stellar mass. The clustering amplitude of quiescent centrals was as much as ∼3

times greater than that of SFMS centrals. This observation aligns with the expectation

that quiescent central galaxies tend to have more satellites than those on the SFMS. We

supported this observation by showing a difference in the average number of satellites

for SFMS and quiescent central galaxies in Figure 3.8. We found that the average

number of satellites for quiescent centrals is about 2–3 times larger than that of SFMS

centrals at higher masses.

In the following sections, we discuss the robustness of our results and comparisons
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Table 3.4.: Percent agreement of central and satellite designations across all three group
catalogs in our five sub-volumes.

𝑀∗ Limits [log(𝑀∗/𝑀⊙)] Agreement
10.0 – 10.375 68.3%

10.375 – 10.75 72.8%
10.75 – 11.0 78.3%
11.0 – 11.25 84.4%

11.25 – 11.5 90.1%

with the literature.

3.6.1. Robustness of Results: Group Catalog Comparison

In this section, we will discuss comparisons of the group catalogs used and the results

obtained from them. Since the results of this paper depend on the identification of

central and satellite galaxies, it is important to consider the same analysis using other

group catalogs. While it is not possible to directly check the accuracy of any given

group catalog, checking for systematic trends in our results among different catalogs

will test the robustness of our findings.

The simplest metric for comparing different group catalogs is to compare the central

or satellite designation of a given galaxy across the catalogs. Note that not every galaxy

in our sample has a designation in every group catalog. About 3% of galaxies have

designations in only two catalogs, 3% have no designations, and fewer than 1% have

designations in only one catalog. For comparison, we consider only galaxies that have

a designation in all three catalogs. We find generally good agreement across the three

group catalogs, ranging from ∼70% to 90% with the agreement improving with mass.

The values for each mass bin are shown in Table 3.4.
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Figure 3.14. Ratios of central to satellite galaxies in each mass bin for each of the three
group catalogs. T17 generally has the lowest ratio, i.e., the most galaxies designated as
satellites. This is useful for testing central-only samples as one would expect T17 to
have a more conservative estimate of centrals, leaving a sample with less contamination
from satellites misidentified as centrals.

Another relevant statistic in the group catalogs is the relative numbers of central and

satellite galaxies. Group catalogs that identify a higher ratio of centrals to satellites may

have a higher rate of contamination where satellites are misidentified as centrals. On

the other hand, group catalogs that identify a lower ratio of centrals to satellites may

have a more pure sample of centrals. The ratios of centrals to satellites for the three

group catalogs are shown in Figure 3.14. All three catalogs are fairly similar, though

T17 has a clear lower ratio.

As a comparison to Figure 3.5, we show the same results of ACFs of centrals using

T17 in Figure 3.15. We see the same lack of a distinct trend in the central ACFs that we
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saw using the Y12 catalog. One notable difference, however, is the lack of a signal at

small separations. If, indeed, T17 provides a more pure sample of only central galaxies,

this would suggest the apparent signal at small separations for low-mass centrals in

Figure 3.5 is most likely the result of satellites misidentified as centrals in the Y12

group catalog. We note also that this apparent signal occurs primarily in the quiescent

sub-sample, and we know the satellite fraction is highest when considering quiescent

galaxies. Thus, any systematic bias in the misidentification of satellites as centrals

would manifest most strongly in the quiescent galaxy sub-sample. Additionally, we

can compare to the ACFs of centrals using R&M20. From Figure 3.14, we know that

R&M20 has a ratio of centrals to satellites that is comparable to Y12, with a slightly

higher ratio in the lowest mass bin and a slightly lower ratio in the next three mass

bins. In the results of the R&M20 central ACFs, we saw the strongest small separation

signal of the three catalogs for low-mass quiescent (and green valley) centrals, as well

as a signal in the next three mass bins similar to Y12. This result is consistent with

our expectations of potential satellite contamination based on the ratios of centrals to

satellites.

In Figure 3.16, we show the results of the CCFs for the three different group catalogs.

Each row shows a simplified version of Figure 3.7 for each group catalog. Since we

observe no trends in the CCFs across the SFMS in any of the group catalogs, we show

only a single blue line per each grid cell corresponding to the CCF of all SFMS centrals

with all satellites. As before, the green lines show the CCFs of GV centrals and the

red lines show the CCFs of quiescent centrals. The values of the CCFs are generally

consistent across the group catalogs, and, similar to Figure 3.7, we see the same trend

of increasing clustering amplitude in the one-halo term with decreasing ΔMS present
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Figure 3.15. Projected auto-correlation functions (ACFs) of central galaxies identified
by T17 as a function of ΔMS and 𝑀∗. The rows correspond from top to bottom to
UMS+HSF galaxies (dark blue), BMS+LMS galaxies (light blue), GV galaxies (green),
and quiescent galaxies (red). The colored lines show the results within a grid cell, and
the black dashed lines show the ACFs of central galaxies in the center of the SFMS
(LMS+UMS). Similar to Y12, there is no strong trend in the ACFs as a function of ΔMS,
though there is a slight bias to higher clustering for the quiescent centrals. Unlike Y12,
there is no signal in the quiescent centrals above the SFMS ACFs at small separations.
See Section 3.6.1 for details on this.
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Figure 3.16. This shows a simplified version of Figure 3.7 where the grid has been
collapsed vertically and each row now presents the results of a different group catalog.
Shown are the cross-correlation functions of SFMS (blue), GV (green), and quiescent
(red) centrals with all satellites in the same mass bin. This highlights the consistent
trend across all group catalogs of increasing clustering at small separations as ΔMS
decreases.

in both T17 and R&M20. These results reinforce our conclusion that quiescent central

galaxies are more likely to have a greater number of satellites than central galaxies

located on the SFMS.

3.6.2. Comparison with the Literature

Projected ACFs of galaxies as a function of sSFR and stellar mass have been measured

by Coil et al. (2017, hereafter C17) and Berti et al. (2021b, hereafter B21). C17

study higher redshift galaxies from the PRIMUS and DEEP2 galaxy redshift surveys
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spanning the redshift range 0.2 < 𝑧 < 1.2. B21 study lower redshift SDSS galaxies in

the redshift range 0.02 < 𝑧 < 0.04 using the same stellar mass and SFR measurements

we use in this paper. While different galaxy samples are studied in these two papers,

they ultimately draw similar conclusions about the clustering trends with sSFR and

stellar mass: namely, that clustering amplitude is as strong (or stronger) a function

of sSFR as it is of stellar mass. However, this conclusion is based on ACFs of all

galaxies without distinguishing between centrals and satellites. As we have shown in

Figure 3.4, we confirm the presence of a strong sSFR-dependent clustering amplitude

when considering centrals and satellites together. However, as we have shown in

Figure 3.6, this trend is almost entirely produced by satellites which are predominantly

quiescent galaxies. This possible explanation for the observed trend is mentioned in

Section 6.3 of C17, and we confirm it in this paper for the stellar mass and sSFR ranges

we study.

Another conclusion of C17 and B21 is the existence of intrasequence relative bias

(ISRB), i.e., that within the star-forming (or quiescent) population, galaxies with higher

sSFR have lower clustering amplitude than galaxies with lower sSFR. While we do not

attempt to make any determination about this for quiescent galaxies, we can compare

results of similar sub-samples for star-forming galaxies. In general, we do not observe

ISRB within the SFMS, even when measuring clustering using centrals and satellites

together. However, we do not believe our results are necessarily at odds with their

conclusion. This effect may be more prominent at lower masses as C17 and B21 use

samples that go well below our lower limit of log(𝑀∗/𝑀⊙) = 10. We attempt here to

illustrate this but note that the wider mass bins used by C17 and B21 make it difficult to

give this as the definitive explanation.
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We can investigate this by comparing our results with Figure 1 of B21. In the rightmost

panels (their “𝑀∗/sSFR grid”), we can compare the results of the black and blue regions,

which are in a fixed mass bin from 9.75 < log(𝑀∗/𝑀⊙) < 10.4 with mean sSFRs of

log(sSFR/yr−1) = −9.82 and −10.33, respectively. These regions roughly correspond

to star-forming galaxies above and below the center of the SFMS in our lowest mass

bin: 10.0 < log(𝑀∗/𝑀⊙) < 10.375 with mean sSFRs of log(sSFR/yr−1) ≈ −9.9 and

−10.3, respectively. While these sub-samples do not directly correspond to each other,

they are sufficiently similar for the sake of this comparison. We can see their clustering

amplitudes are fairly similar, as we also observed in our results. There is a difference in

clustering amplitude at larger separations for the higher and lower sSFR sub-samples,

but the difference looks to be within the error bars. However, if we compare their purple

and magenta regions, which are at a lower mass of 9.25 < log(𝑀∗/𝑀⊙) < 9.75 but in

the same sSFR bins as the black and blue regions, we see a much larger increase in

clustering going from the purple (higher sSFR) to the magenta (lower sSFR) sub-sample.

This suggests that the ISRB within the SFMS may indeed be much more prominent at

lower stellar masses, which we do not probe in this paper.

A final consideration we give to this effect is the potential mass trend within a mass

bin. In this paper, we have chosen narrower mass bins to attempt to limit the extent to

which the mean stellar mass within a given mass bin can vary. Clustering amplitude

will generally increase as stellar mass increases, so it is important to bear this in mind

when attempting to isolate clustering trends with sSFR. We do not attempt to quantify

the magnitude of the mass effect on clustering amplitude, but we simply note that the

wider mass bins used by C17 and B21 are more susceptible to intra-bin mass trends.

The aforementioned black and blue sub-samples used in B21 have a difference in mean
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stellar mass of 0.08 dex while our comparable bins have a difference of only 0.016 dex.

This difference may also play a role in explaining the differences between our results

and those of B21. We do note, however, that the mean mass difference for the purple

and magenta sub-samples is only 0.04 dex, which suggests that intra-bin mass trends in

this case likely are not the cause of the ISRB observed in C17 and B21.

We note that Figure 12 of B21 plots the 3D ACFs of central and satellite galaxies

separately predicted by the revised UniverseMachine, showing that the ACFs of both

centrals and satellites are higher for quiescent and lower for star-forming galaxies. In

initial tests, we found that the SFR-dependence of the clustering signal for central

galaxies in the UniverseMachine is largely driven by backsplash halos that have

lost at least 10% of their peak mass and that non-backsplash halos have nearly no

SFR-dependence in their clustering. As backsplash galaxies are expected to be drawn

from the same population as satellite galaxies (and hence have much higher quenched

fractions than field galaxies), it would be difficult to remedy the clustering of the

UniverseMachine by adjusting backsplash galaxies alone. This would suggest, along

the same lines as in Cui et al. (2021), that non-backsplash centrals must actually have

an inverse SFR-dependence in their clustering so that the clustering of the entire central

sample has no SFR dependence (see also O’Donnell et al., 2021, 2022, who reached

similar conclusions). We will follow up on this possibility in future work.

§ 3.7. Conclusions

In this paper, we analyzed the clustering properties of galaxies in the sSFR–𝑀∗ plane

by calculating two-point auto-correlation functions (ACFs) of all, central, and satellite
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galaxies and cross-correlation functions (CCFs) of centrals with satellites as a function

of distance from the mean of the star-forming main sequence (SFMS) in various mass

bins. These calculations were done using a spectroscopic sample of galaxies from the

SDSS in the redshift range 0.02 < 𝑧 < 0.2 with stellar masses and star formation rates

from the MPA-JHU catalog (Kauffmann et al., 2003; Brinchmann et al., 2004). To

define central and satellite galaxies, we used three different group catalogs from Yang

et al. (2012), Tempel et al. (2017), and Rodriguez and Merchán (2020). In each of

these group catalogs, central galaxies were defined as the galaxy with the largest stellar

mass in each group. For details on the catalogs and data selection, see Section 3.2. We

draw the following conclusions from our analysis based on the Yang et al. (2012) group

catalog for galaxies with stellar masses in the range 10.0 < log(𝑀∗/𝑀⊙) < 11.5:

1. At a fixed stellar mass, ACFs of all (central and satellite) galaxies together depend

strongly on sSFR (Figure 3.4). Green valley and quiescent galaxies have greater

clustering amplitudes than SFMS galaxies, with quiescent clustering amplitudes

increasing up to as much as an order of magnitude larger than that of SFMS

galaxies.

2. When considering only central galaxies, ACFs show little-to-no dependence on

sSFR at a fixed stellar mass (Figures 3.5 and 3.15). The ACFs do, however,

increase with stellar mass. Since galaxy stellar mass increases monotonically

with halo mass, and halo clustering also increases with halo mass (known as halo

bias), we conclude that the increased galaxy clustering with stellar mass is driven

by halo bias. However, halo clustering can also vary depending on secondary

factors such as formation redshift and accretion history (known as assembly bias).
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Because the observed central galaxy ACFs do not vary with sSFR at a fixed stellar

mass, this suggests that assembly bias is not producing any significant net effect

in central galaxy clustering in the sSFR–𝑀∗ plane.

3. By calculating the ACFs of centrals and satellites separately, we found that satel-

lites are the main contributor to the strong sSFR dependence of all-galaxy ACFs

(Figure 3.6). Since satellites are innately highly clustered and tend to be quiescent,

they drive up the clustering amplitudes as lower sSFR samples are considered at

a fixed stellar mass.

4. Cross-correlations of central galaxies as a function of sSFR with satellite galaxies

of any sSFR show that more quiescent centrals have higher clustering amplitudes

in the one-halo term than SFMS centrals in all stellar mass bins studied in this

paper (Figure 3.7). CCFs of quiescent centrals are larger than those of SFMS

centrals by up to a factor of ∼3 in the one-halo term. This suggests that quiescent

centrals tend to host more satellites in their dark matter halos on average than

SFMS centrals. We confirmed this conclusion by directly calculating ⟨𝑁sat⟩ as

a function of sSFR (Figure 3.8). Within the context of the halo occupation

distribution, this implies that quiescent centrals reside in higher mass halos than

SFMS centrals of the same stellar mass, which is consistent with observations.

All results were additionally checked using the group catalogs from Tempel et al.

(2017) and Rodriguez and Merchán (2020) to test for robustness. We find that our

conclusions are valid regardless of the choice in group catalog employed for clustering

analysis (see Section 3.6.1 and Figure 3.16).

We used these conclusions to test whether different models of the galaxy–halo con-

99



Chapter 3. Clustering Statistics and the Galaxy–Halo Connection

nection could reproduce, at the same time, the sSFR–𝑀∗ plane and the ACFs, CCFs,

and ⟨𝑁sat⟩ as a function of distance from the mean SFMS. Additionally, we directly

calculated the resultant stellar-to-halo mass relations (SHMRs) from these models for

star-forming and quiescent galaxies. We assigned sSFR values to dark matter halos in

the Bolshoi–Planck 𝑁-body simulation using three different models based on (1) halo

accretion rate, ¤𝑀h, (2) halo concentration, 𝐶vir, and (3) peak circular velocity, 𝑉peak.

From comparing the models to the observations, we draw the following conclusions:

1. ACFs of central galaxies from the three different models of sSFR all show similar

results that agree well with observations (Figure 3.9). It may be expected that the

assembly bias built into the ¤𝑀h and 𝐶vir models would lead to trends in the ACFs

with sSFR at a fixed stellar mass, but no trends were observed. This may be the

result of competing biases within the models or the assembly bias effect being

lessened or removed when binning by stellar mass rather than halo mass.

2. Modeling sSFR based on ¤𝑀h or 𝐶vir did not reproduce trends in the CCFs of

observed SDSS galaxies (Figure 3.10). Instead, these models predicted a trend

opposite to what is observed. We also saw an opposite trend when considering

⟨𝑁sat⟩ for star-forming and quiescent galaxies (Figure 3.11). However, modeling

sSFR based on 𝑉peak produced CCFs that were consistent with observations and

showed quiescent centrals with greater ⟨𝑁sat⟩ than star-forming centrals at all

stellar masses, also agreeing with SDSS observations. These results suggest that

the cross-correlation clustering of centrals with satellites in the sSFR–𝑀∗ plane

may be primarily driven by halo mass, as 𝑉peak is strongly correlated with halo

mass.
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3. While ACFs showed similar results for all models, the capability of CCFs and

⟨𝑁sat⟩ to differentiate models of sSFR based on halo properties has proven to be

a powerful tool for constraining different models of the galaxy–halo connection.

4. Comparing the SHMRs of the different models showed that all models agree with

observations of the SHMR of quiescent galaxies, but only the 𝑉peak model agreed

that star-forming galaxies reside in halos of lower mass than quiescent galaxies at

a fixed stellar mass. The accretion rate and concentration models both predicted

that star-forming galaxies reside in halos of higher mass at a fixed stellar mass,

again, opposite of what the observations show.

5. In the 𝑉peak model, halos hosting SFMS and quiescent galaxies show minimal

difference in formation redshift. This suggests that the 𝑉peak model is primarily

associated with halo mass and rules out being influenced by assembly bias related

to the relationship between 𝑉peak and 𝐶vir.

In our 𝑉peak model, the difference in clustering for quiescent and star-forming centrals

is driven primarily by a segregation in the SHMR, wherein quiescent centrals reside in

halos of higher mass than star-forming centrals at the same stellar mass. The evidence

obtained from both observations and our models of sSFR suggests that the 𝑉peak model

offers a realistic model of how massive (log(𝑀∗/𝑀⊙) ≥ 10) centrals inhabit dark matter

halos.

Early-forming halos form in denser regions of the Universe, and they are therefore

more clustered. It is tempting to imagine that this assembly bias of early-forming

halos helps explain why galaxies with lower sSFR are more clustered. In more detail,

the idea is that early-forming halos host early-forming galaxies, which also quench
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early. But if this were true of central galaxies, the quenched centrals would be more

correlated than SFMS centrals, which we have shown is not true. This implies that

central galaxies in early-forming halos do not, in general, quench earlier than central

galaxies in later-forming halos of the same mass.

Our finding that the central galaxy ACFs are unchanged as a function of sSFR at a

fixed stellar mass leaves the door open for multiple possible explanations that require

further testing. While the𝑉peak model does not include assembly bias, one could imagine

a model that uses both a segregation in the SHMR and assembly bias to reproduce the

observed ACFs. With a segregation in the SHMR such that quiescent galaxies reside in

more massive halos than star-forming galaxies at a fixed stellar mass, it may be expected

that quiescent centrals should be more clustered than star-forming centrals of the same

stellar mass, as a result of halo bias. Since we do not observe this, it suggests, perhaps,

that there could be an additional effect increasing the clustering amplitude of star-

forming galaxies, leading to an overall lack of clustering trend with sSFR. Interestingly,

this would be an example of assembly bias favoring higher clustering for star-forming

galaxies rather than quiescent galaxies, as is often considered.

An astrophysical example of this is provided by the Simba large-volume cosmological

hydrodynamic simulation (Davé et al., 2019; Cui et al., 2021), in which late-quenching

galaxies live in early-formed halos and early-quenching galaxies live in later-formed

halos. In Simba, this occurs because of a combination of astrophysical effects: central

galaxies in early-forming halos accrete more cold gas and AGNs in such galaxies are less

effective in quenching them, while late-forming halos have mainly hot-mode accretion

and the associated jet-mode AGN feedback quenches them early. For example, Section 3

of the Supplementary Information for Cui et al. (2021) describes three types of halos of
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the same mass at 𝑧 = 0, in which the central galaxies in the early-forming halos quench

last, and the central galaxies in the late-forming halos quench earliest. Consistent with

this, Wang et al. (2023) note that both observations and the EAGLE simulation indicate

that early-formed halos tend to have a higher ratio of stellar mass to halo mass, and their

analysis of SDSS galaxies implies that late-formed halos tend to host quiescent galaxies.

We leave to a future paper further study of such large-volume simulations, including the

ACFs and CCFs of their central and satellite galaxies. Our preliminary finding is that

the Simba central galaxy ACFs and the dependence of 𝑁sat on the sSFR of the central

are consistent with our analysis of the SDSS.
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A. SORT Performance in a Mock CANDELS

Light Cone

In addition to the 2 square degree wide-field light cone, sort was tested on a narrower

17×41 square arcmin light cone with 47,404 galaxies (∼68 galaxies per square arcmin).

All model parameters were kept the same, and we observed that sort continues to

perform well at improving redshift estimates and determining local galaxy environments.

Here we provide parallel results of the main text for sort applied to this light cone with

minor adjustments detailed hereafter.

Figures A.1 and A.2 show the one- and two-dimensional redshift histograms com-

paring 𝑧sort and 𝑧phot to 𝑧spec. Figure A.1 is a direct parallel to Figure 2.5 and shows

similar overall improvement in redshift errors. For Figure A.2, however, because statis-

tics are more limited in the mock CANDELS light cone, all three redshift ranges of

width Δ𝑧 = 0.5 were stacked on top of each other to create composite histograms. This

allows recovery of similar distributions to those shown in Figure 2.6. In particular, the

photometric redshifts maintain their Gaussian error distributions while sort redshifts

build up along the line of equality.

As before, sort was run on the same light cone with 10 different random seeds

(which determine the selection of 𝑧ref) to find an average result for the 2PCF. The
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Figure A.1. Normalized distribution of Δ𝑧 (excluding the spectroscopic sample) for
𝑧sort, 𝑧phot, and 𝑧ctrl using the mock CANDELS light cone (see Section 2.5.1 for details
on 𝑧ctrl). We recover a distribution of redshift errors similar to Figure 2.5 using the
wide-field light cone. In particular, the Δ𝑧sort distribution is dominated by a tall, central
peak of improved redshifts.

average 2PCF estimates are shown in Figure A.3 for each of the redshift types in the

range 0.75 < 𝑧 < 1.25. The error bars represent the standard deviations of 𝜉(𝑠) for

each of the 10 seeds within each bin. Due to the narrower geometry of this light cone

compared to the wide-field light cone, the 2PCFs were only calculated out to 8 ℎ−1Mpc.

Similar to Figure 2.7, we see that sort provides a much better estimate of the 2PCF

than using photometric redshifts.
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A. SORT Performance in a Mock CANDELS Light Cone
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Figure A.2. Two-dimensional redshift histograms for 𝑧phot and 𝑧sort relative to 𝑧spec
with binning of 0.004 using the mock CANDELS light cone. The color bar shows the
total number of counts in each bin. The data represent the full catalog of redshifts
broken into the three complete redshift bins of size Δ𝑧 = 0.5 that have been stacked on
top of each other. In doing so, we are able to observe similar improvement in redshift
estimates to the wide-field light cone after applying sort.
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Figure A.3. Two-point correlation functions (2PCFs) of various redshift types as a
function of redshift-space distance 𝑠 shown in three different ways using the mock
CANDELS light cone. In each panel, the values plotted represent the mean result of
running sort with 10 different random seeds to average out sample variance when
selecting the reference galaxies. We continue to see that 𝜉phot(𝑠) is a poor estimate of
the 2PCF and 𝑧ctrl overestimates the 2PCF while 𝜉sort(𝑠) is accurate (relative to 𝜉spec(𝑠))
for 𝑠 ≳ 2.5 ℎ−1Mpc. See Section 2.5.1 for details on 𝑧ctrl (shown as black triangles.
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Figure A.4. Two-dimensional density histograms for 𝜌phot and 𝜌sort in the range 0.75 <

𝑧 < 1.25 using the mock CANDELS light cone. The left panels show number densities,
the middle panels show stellar mass densities, and the right panels show halo mass
densities using only central galaxies. The solid contours represent limits of 25, 50, and
75 percent of the maximum bin value in each subplot. The dashed contour (red) is set at
a limit equal to the minimum contour level in the corresponding 𝜌phot subplot. Densities
were calculated with a fixed cylinder length of 4 ℎ−1Mpc and a radius check this starting
at ∼0.5 ℎ−1Mpc and expanding up to ∼2 ℎ−1Mpc as needed to encompass at least five
galaxies. As with the wide-field light cone, we continue to see improvement in density
estimates by sort compared to photometric estimates. See Section 2.4.3 for details on
the central halo mass densities.
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B. Assigning Three-Dimensional Coordinates

to Satellite Galaxies

The mock galaxy surveys used for this paper do not provide full three-dimensional

coordinates for satellite galaxies. Instead, all satellite galaxies are assigned the same

redshift as the dark matter halo they occupy. We used the following procedure to assign

new three-dimensional coordinates and velocities to each of the satellites.

§ B.1. Calculating the Position

New positions were calculated for each satellite assuming that the satellites have the

same radial distribution as the dark matter (see, e.g., Berlind and Weinberg, 2002b;

Cooray and Sheth, 2002).∗ The radial density profile was approximated using the NFW

formula (Navarro et al., 1996, 1997)

(B.1.1) 𝜌NFW(𝑟) = 4𝜌𝑠
(𝑟/𝑅𝑠) (1 + 𝑟/𝑅𝑠)2 .

∗Improved treatments based on observations are discussed in Watson et al. (2012); Wechsler and
Tinker (2018a); Lange et al. (2019); van den Bosch et al. (2019).
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B. Assigning Three-Dimensional Coordinates to Satellite Galaxies

It is determined by two parameters, in this case 𝜌𝑠 and 𝑅𝑠. Alternatively, it can be

determined by the halo mass, 𝑀vir, and the halo concentration, 𝑐vir, which is defined as

(B.1.2) 𝑐vir =
𝑅vir

𝑅𝑠

.

The scale radius, 𝑅𝑠, is the radius at which the log-space derivative of 𝜌NFW(𝑟) is -2.

This could be found by fitting the NFW profile to each halo in the simulation. However,

a more robust method is to find the Klypin scale radius using the 𝑀vir–𝑉max relation

under the assumption of an NFW profile (Klypin et al., 2011). The parameter 𝑉max is the

maximum circular velocity of the halo (i.e. the maximum of
√︁
𝐺𝑀 (𝑟)/𝑟, where 𝑀 (𝑟)

is the mass enclosed within a radial distance 𝑟). For an NFW profile, the maximum

circular velocity occurs at 𝑅max = 2.1626𝑅𝑠 (Klypin et al., 2011; Behroozi et al., 2013a).

With this, we calculated the Klypin concentration, 𝑐vir,K, by numerically solving

(B.1.3)
𝑐vir,K

𝑓 (𝑐vir,K)
= 𝑉2

max
𝑅vir

𝐺𝑀vir

2.1626
𝑓 (2.1626)

where

(B.1.4) 𝑓 (𝑥) = ln(1 + 𝑥) − 𝑥/(1 + 𝑥).

The radial distribution for an NFW profile can also be written in terms of the halo’s

mass as

(B.1.5) 𝑀ℎ(𝑟) = 𝑀vir × 𝑢vir(𝑟)

where 𝑢vir(𝑟) is

(B.1.6) 𝑢vir(𝑟) =
ln(1 + 𝑐vir,K𝑥) − 𝑐vir,K𝑥/(1 + 𝑐vir,K𝑥)

ln(1 + 𝑐vir,K) − 𝑐vir,K/(1 + 𝑐vir,K)
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B. Assigning Three-Dimensional Coordinates to Satellite Galaxies

with 𝑥 = 𝑟/𝑅vir. We can use this to sample new radial positions for the satellites within

a halo. For each satellite in a given halo, the following procedure was followed.

1. Generate three random numbers 𝑈𝑟, 𝑈𝜃, and 𝑈𝜙, each uniformly distributed be-

tween 0 and 1.

2. Sample a radius from the distribution 𝑢vir(𝑟). This can be done by finding the

value 𝑟 such that 𝑈𝑟 − 𝑢vir(𝑟) = 0.

3. Assign the new spherical coordinates (𝑟, 𝜃, 𝜙) to the satellite relative to the halo’s

center where 𝜃 = 𝜋𝑈𝜃 and 𝜙 = 2𝜋𝑈𝜙.

4. Assign new Cartesian coordinates r = (𝑥, 𝑦, 𝑧) relative to the halo using

𝑥 = 𝑟 sin 𝜃 cos𝜙(B.1.7)

𝑦 = 𝑟 sin 𝜃 sin𝜙(B.1.8)

𝑧 = 𝑟 cos 𝜃.(B.1.9)

5. Get the position of the satellite relative to the box of the simulation using R =

Rh + r, where Rh is the position of the halo relative to the simulation box. A

cosmological redshift, 𝑧cos, can be inferred from the new satellite position.

§ B.2. Calculating the Velocity

To find the line-of-sight redshift, 𝑧los, of each satellite, we must account for the effects

of the peculiar velocity along the line of sight. The peculiar velocity of each satellite

will depend on its position within a halo. Using the new radial distribution of satellites,
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B. Assigning Three-Dimensional Coordinates to Satellite Galaxies

as well as properties of the halos within which the satellites reside, we can estimate new

satellite velocities.

1. By assuming that the satellite velocities trace the dark matter particle velocities

within an NFW halo, we can calculate the velocity dispersion of the satellites at

a distance 𝑟 from the halo’s center using

(B.2.1) 𝜎2(𝑟) =
𝑐vir,K𝑉

2
vir

𝜇(𝑐vir,K)
𝑟

𝑅𝑠

(
1 + 𝑟

𝑅𝑠

)2 ∫ ∞

𝑟/𝑅𝑠

𝜇(𝑥)d𝑥
𝑥3(1 + 𝑥)2

where 𝜇(𝑥) is defined as

(B.2.2) 𝜇(𝑥) = ln(1 + 𝑐vir,K𝑥) − 𝑐vir,K𝑥/(1 + 𝑐vir,K𝑥).

2. Sample a velocity 𝑣 from the Gaussian distribution

(B.2.3) 𝑃(𝑣) = 1√︁
2𝜋𝜎2(𝑟)

exp
(
− 𝑣2

2𝜎2(𝑟)

)
.

3. Generate two random numbers 𝑈𝜃 and 𝑈𝜙, each uniformly distributed between 0

and 1.

4. Using 𝜃 = 𝜋𝑈𝜃 and 𝜙 = 2𝜋𝑈𝜙, the components of the satellite’s velocity vector

v = (𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧) relative to the halo’s center are

𝑣𝑥 = 𝑣 sin 𝜃 cos𝜙(B.2.4)

𝑣𝑦 = 𝑣 sin 𝜃 sin𝜙(B.2.5)

𝑣𝑧 = 𝑣 cos 𝜃.(B.2.6)

5. With respect to the box of the simulation, the satellite’s velocity is V = Vh + v,

where Vℎ is the halo’s velocity with respect to the simulation box.
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B. Assigning Three-Dimensional Coordinates to Satellite Galaxies

The component of the velocity along the line of sight can be found by the new position

and velocity vectors:

(B.2.7) 𝑣los = V · R̂

where R̂ is the unit vector pointing to the satellite’s position. The final redshift can be

calculated using

(B.2.8) 𝑧los = 𝑧cos +
𝑣los

𝑐
(1 + 𝑧cos),

where 𝑐 is the speed of light.
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C. SORT Performance with Larger

Photometric Uncertainties

Our fiducial photometric uncertainty is somewhat optimistic at 𝜎
ph
𝑧 /(1 + 𝑧) = 0.01,

though not entirely unrealistic as future redshift estimates are expected to have photo-

metric uncertainties of 𝜎ph
𝑧 /(1+ 𝑧) ≈ 0.02 or better. Nevertheless, here we present brief

results of sort for larger photometric uncertainties.

We reiterate that stochastic ordering holds true for Gaussian PDFs with arbitrarily-

large standard deviations. We should therefore expect to see similar redshift improve-

ment when increasing the photometric uncertainty. The results for Δ𝑧 are shown in

Figure C.1 with the fiducial results in black and the results with higher photometric

uncertainties in red and blue. The histograms have been normalized by the photometric

uncertainty to show the relative performance of sort as 𝜎
ph
𝑧 is increased. To deal with

biases from sample variance in 𝑧ref, the histograms show the collection of sort results

using 10 different random seeds. We observe that sort’s improvement of redshifts with

respect to a given photometric uncertainty remains largely unchanged as 𝜎ph
𝑧 increases.

In all three cases we see the same general features: (i) a similar overall standard de-

viation in Δ𝑧sort and Δ𝑧phot, (ii) a modest increase in scatter at the tail ends of Δ𝑧sort

compared to Δ𝑧phot, and (iii) a tall central peak of improved redshifts.

115



C. SORT Performance with Larger Photometric Uncertainties

4 3 2 1 0 1 2 3 4
(z− zspec)/[σ

ph
z (1 + z)]

10 4

10 3

10 2

10 1

100

No
rm

ali
ze

d 
Co

un
ts

σph
z = 0.03

σph
z = 0.02

σph
z = 0.01

Figure C.1. Normalized distributions of Δ𝑧 (excluding the spectroscopic sample) for
𝑧sort and 𝑧phot using three different photometric uncertainties. The distributions are
normalized by their respective photometric uncertainties. We observe that the relative
improvement of redshifts by sort with respect to a given 𝜎

ph
𝑧 is generally independent

of 𝜎ph
𝑧 . There are some dissimilarities, however. In particular, asymmetry in the tails

of the distributions grows with 𝜎
ph
𝑧 , and the width of the peak decreases with increasing

𝜎
ph
𝑧 .

The two most notable differences are an increase in asymmetry in the tails of the

histograms and a decrease in peak width as 𝜎
ph
𝑧 increases. The asymmetry of the tails

will be mostly irrelevant to the net result of sort as the counts are around two orders

of magnitude lower than the peak which dominates the distribution. Though we do not

test this here, the width of the peak is likely more relevant to the final results of sort.

However, even with a photometric uncertainty of 𝜎ph
𝑧 /(1+ 𝑧) = 0.02, sort is still able to

fairly well recover the 2PCF at similar scales of 𝑠 ≳ 2.5 ℎ−1Mpc (shown in the bottom

panel of Figure 2.7).
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D. Additional Figures

Here we provide additional supplementary figures that support the main text. Fig-

ure D.1 shows two-dimensional histograms of the redshift errors as a function of the

chosen redshift – either 𝑧phot or 𝑧sort. Figure D.2 shows redshift errors for sort with

varying spectroscopic fractions. Figure D.3 shows results of the 2PCF in each of the

three complete redshift bins. Figure D.4 shows another square region of space (sim-

ilar to Figure 2.3) using different redshift types. Figure D.5 shows two-dimensional

redshift histograms for each of the three complete redshift bins. Figure D.6 shows

two-dimensional histograms that correspond to the errors of densities shown in Fig-

ure 2.8. Figure D.7 shows stellar mass densities in each of the three complete redshift

bins using cylinders of length 4 ℎ−1Mpc. Figure D.8 shows densities similar to Fig-

ure 2.8 but calculated at a larger length scale of 𝑙 = 21000km s−1

𝑐
(1 + 𝑧). Figure D.9 show

two-dimensional histograms of 3D distances to 𝑘th nearest neighbors for 𝑘 = 3, 5, and

7.
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Figure D.1. Normalized two-dimensional histograms for errors in 𝑧phot and 𝑧sort relative
to 𝑧spec. The contours show the limits where counts are at least 25, 50, or 75 percent
of the maximum value in each of the two subplots. While only the range 𝑧 = 1–1.3
is shown, the results are representative of the entire light cone. There is a clear bias
in the error of 𝑧phot in regions of higher density. This bias is shown as a blue line
which designates the median value of all redshifts within a series of bins along with 1𝜎
error bars. As with Figure 2.5, both Δ𝑧phot and Δ𝑧sort have similar standard deviations.
After applying sort, though, the error bias is almost completely removed for the entire
redshift range of the light cone.
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Figure D.2. Normalized distribution of Δ𝑧 (excluding the spectroscopic sample) for
𝑧phot and 𝑧sort using three different spectroscopic fractions. As the spectroscopic fraction
increases, sort produces a taller peak surrounding Δ𝑧 = 0. Even with a spectroscopic
fraction as low as 5%, sort still improves redshift estimates for a significant fraction
of galaxies. The efficiency of sort is rooted in the fact that most galaxies will tend to
occupy a relatively small volume. Therefore it only takes a relatively small fraction of
galaxies to reasonably trace the underlying distribution.
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Figure D.3. Two-point correlation function (2PCF) ratios using 𝑧ref, 𝑧phot, 𝑧sort, and 𝑧ctrl
with respect to 𝑧spec as a function of redshift-space distance 𝑠 in three complete redshift
bins. The 2PCFs were calculated out to distances of ∼18–30 ℎ−1Mpc, limited by the
sizes of each redshift bin. The results show the mean value of the 2PCFs along with 1𝜎
error bars after running sort with 10 different random seeds to determine the reference
sample selection. Note that the error bars are too small to be seen. The 2PCF estimates
provided by 𝜉sort(𝑠) show significant improvement over 𝜉phot(𝑠) and accurately recover
𝜉spec(𝑠) at scales of 𝑠 ≳ 2.5 ℎ−1Mpc. We also observe the continued trend of 𝜉ctrl(𝑠)
overestimating the 2PCF at all scales relative to 𝜉sort(𝑠) (see Section 2.5.1 for details).
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Figure D.4. Right ascension slices (thickness 0.1◦) of galaxy distributions using differ-
ent redshifts in a roughly 44 × 44 ℎ−1Mpc region of space. The red and blue colouring
denotes the direction of the peculiar velocity along the line of sight (red is positive and
blue is negative). The black rings with empty centers are reference galaxies. Using the
outline of the reference galaxies, sort is able to recover the distinctive features in this
region – in particular, the large filamentary structure across the top and right side of
the panels, as well as the more dense group of galaxies in the lower left. We also note
the presence of a characteristic feature found in sort galaxy distributions – namely,
horizontal rows of galaxies where there are few reference galaxies. In these areas, the
radii of the sub-volumes within which sort searches must expand to find reference
galaxies. Galaxies are then pulled along the line of sight to an incorrect redshift, cre-
ating elongated features in a plane perpendicular to the line of sight. See Section 2.5.2
for details.
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Figure D.5. Normalized two-dimensional redshift histograms for 𝑧phot and 𝑧sort com-
pared to 𝑧spec in all redshift bins. The 𝑧sort distributions show significant improvement
as counts build up along the line of equality while overall scatter for larger redshift
errors is only modestly increased. This effect is consistent across all redshift ranges.
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Figure D.6. Two-dimensional density error histograms for 𝜌phot and 𝜌sort. Densities
were calculated in cylinders of length 4 ℎ−1Mpc. The left panels show number density,
the middle panels show stellar mass densities, and the right panels show halo mass
densities using only central galaxies. The solid contours represent limits of 25, 50, and
75 percent of the maximum bin value in each subplot. The dashed contour (red) is set
at a limit equal to the minimum contour level in the corresponding 𝜌phot subplot. The
horizontal dashed line represents zero error. While sort struggles with lower densities,
we observe much improvement from the highest densities down to average densities.
sort distributions show better alignment with the zero error line while photometric
densities all tend to be underestimated except in the lowest-density environments.
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Figure D.7. Two-dimensional stellar mass density histograms for 𝜌phot (top panels) and
𝜌sort (bottom panels) for all redshift ranges of the light cone using a cylinder length
of 4 ℎ−1Mpc. The solid contours represent limits of 25, 50, and 75 percent of the
maximum bin value in each subplot. The dashed contour (red) is set at a limit equal to
the minimum contour level in the corresponding 𝜌phot subplot. We observe consistent
improvement in density estimates with sort at all redshifts. Biases in regions of average
or higher density are greatly reduced. sort distributions are more symmetric across the
line of equality and overall scatter is lower.
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Figure D.8. Two-dimensional density histograms for 𝜌phot (top panels) and 𝜌sort (bottom
panels) in the range 0.75 < 𝑧 < 1.25. Densities were calculated within cylinders of
length 𝑙 = 21000 km s−1

𝑐
(1 + 𝑧). The left panels show number density, the middle panels

show stellar mass densities, and the right panels show halo mass densities using only
central galaxies. The solid contours represent limits of 25, 50, and 75 percent of the
maximum bin value in each subplot. The dashed contour (red) is set at a limit equal
to the minimum contour level in the corresponding 𝜌phot subplot. The longer length of
the cylinder significantly improves sort density estimates, most notably for stellar mass
densities.
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Figure D.9. Two-dimensional histograms of 3D distances to 𝑘th nearest neighbors
using 𝑧phot (top panels) and 𝑧sort (bottom panels) compared to 𝑧spec for 𝑘 = 3, 5, and 7.
Overall scatter is slightly increased using 𝑧sort, but alignment with the line of equality
is improved, particularly at smaller scales. At larger scales (corresponding to lower
densities), sort underestimates 𝑅𝑘 as it packs galaxies too closely together in low-
density environments. See Section 2.5.4 for details.
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E. Sub-volume Completeness

The main goal of this paper was to study the clustering properties of centrals in the sSFR–

𝑀∗ plane. Doing this involved breaking down our full galaxy sample into different sub-

samples: primarily central, satellite, star-forming, green valley, and quiescent galaxies.

Our objective was to isolate clustering trends in sSFR and therefore worked within five

bins of stellar mass. Each bin would then represent a volume-limited sample complete

in stellar mass over the mass range of the bin. To create such sub-volumes, we used the

number density distributions as a function of redshift, 𝑛vol(𝑧), for each of the various

sub-samples to find redshift bounds within which every sub-sample was complete. The

specifics for our definition of completeness are described in Section 3.2.3. The 𝑛vol(𝑧)

distributions used to define the redshift limits of our sub-volumes are shown in Figure E.1

(note that they have been normalized and scaled for clarity). The colored lines show

𝑛vol(𝑧) for the full redshift range, and the shaded regions show the limits where each

sub-sample is complete. The final limits of each sub-volume, shown as vertical black

lines, are taken as the redshift limits within which every sub-sample is complete.
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Figure E.1. Joint completeness of different sub-samples within each of our five sub-
volumes. The full ranges of number densities are shown by the colored lines, and the
shaded regions show the limits of completeness for each sub-sample. The vertical black
lines denote the chosen redshift limits for each sub-volume, which are selected as the
highest low-redshift limits and lowest high-redshift limits that allow for completeness
in every sub-sample within each sub-volume. Note that the distributions have been
normalized and scaled by increments of 0.5 dex for clarity.
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E. Sub-volume Completeness

Table E.1.: List of sub-samples in the sSFR–𝑀∗ plane with the corresponding mean and
median values of log(𝑀∗/𝑀⊙) and ΔMS and counts of central and satellite
galaxies from Yang et al. (2012).

𝑀∗ Limits [log(𝑀∗/𝑀⊙)] Sample log(𝑀∗/𝑀⊙) ΔMS [dex]
𝑁galMean Median Mean Median

Centrals
10.0 – 10.375 HSF 10.179 10.177 0.389 0.353 1,456

UMS 10.172 10.165 0.115 0.111 2,930
LMS 10.181 10.174 -0.120 -0.117 2,989
BMS 10.194 10.198 -0.344 -0.342 1,483
GV 10.194 10.192 -0.705 -0.691 2,111
Q 10.210 10.220 -1.404 -1.406 3,729

10.375 – 10.75 HSF 10.544 10.539 0.428 0.392 2,814
UMS 10.536 10.523 0.115 0.111 4,137
LMS 10.538 10.529 -0.121 -0.121 4,266
BMS 10.548 10.540 -0.348 -0.347 2,380
GV 10.557 10.554 -0.720 -0.714 4,597
Q 10.568 10.572 -1.455 -1.478 13,273

10.75 – 11.0 HSF 10.859 10.852 0.474 0.425 3,614
UMS 10.855 10.845 0.124 0.125 3,452
LMS 10.860 10.852 -0.125 -0.124 3,419
BMS 10.864 10.857 -0.349 -0.348 2,546
GV 10.869 10.866 -0.735 -0.737 6,901
Q 10.870 10.868 -1.412 -1.424 21,203

11.0 – 11.25 HSF 11.096 11.084 0.503 0.454 2,703
UMS 11.095 11.083 0.120 0.119 2,250
LMS 11.100 11.091 -0.125 -0.123 2,489
BMS 11.104 11.095 -0.353 -0.351 2,202
GV 11.108 11.101 -0.736 -0.739 6,953
Q 11.112 11.105 -1.353 -1.360 23,229

11.25 – 11.5 HSF 11.334 11.319 0.534 0.475 954
UMS 11.342 11.326 0.117 0.119 815
LMS 11.341 11.326 -0.131 -0.132 1,066
BMS 11.345 11.334 -0.351 -0.350 1,123
GV 11.349 11.336 -0.768 -0.796 3,637
Q 11.350 11.339 -1.294 -1.296 15,007
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Satellites
10.0 – 10.375 HSF 10.172 10.168 0.404 0.358 437

UMS 10.167 10.165 0.112 0.109 871
LMS 10.170 10.163 -0.126 -0.130 971
BMS 10.191 10.195 -0.349 -0.345 607
GV 10.179 10.176 -0.723 -0.722 1,367
Q 10.191 10.191 -1.452 -1.467 3,855

10.375 – 10.75 HSF 10.539 10.524 0.433 0.403 761
UMS 10.537 10.526 0.115 0.113 1,080
LMS 10.533 10.516 -0.123 -0.119 1,206
BMS 10.543 10.535 -0.352 -0.354 813
GV 10.547 10.539 -0.732 -0.731 2,192
Q 10.555 10.551 -1.499 -1.527 8,433

10.75 – 11.0 HSF 10.859 10.849 0.477 0.428 715
UMS 10.855 10.849 0.119 0.119 724
LMS 10.856 10.851 -0.125 -0.125 776
BMS 10.863 10.857 -0.356 -0.357 626
GV 10.866 10.860 -0.737 -0.744 2,200
Q 10.863 10.858 -1.437 -1.453 8,409

11.0 – 11.25 HSF 11.088 11.073 0.499 0.458 384
UMS 11.091 11.078 0.109 0.102 357
LMS 11.098 11.086 -0.130 -0.126 443
BMS 11.101 11.090 -0.354 -0.354 471
GV 11.100 11.089 -0.728 -0.722 1,521
Q 11.101 11.091 -1.379 -1.385 5,903

11.25 – 11.5 HSF 11.319 11.307 0.516 0.456 115
UMS 11.327 11.304 0.118 0.124 96
LMS 11.338 11.321 -0.129 -0.127 114
BMS 11.339 11.325 -0.354 -0.358 144
GV 11.333 11.320 -0.765 -0.785 482
Q 11.338 11.325 -1.308 -1.313 2,135
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