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Article

Bearing system health condition
monitoring using a wavelet
cross-spectrum analysis technique

Jie Liu1, Wilson Wang2 and Fai Ma3

Abstract

Rolling-element bearings are widely used in rotary machinery systems. Accordingly, a reliable bearing fault detection

technique is critically needed in industries to prevent the machinery system’s performance degradation, malfunction, or

even catastrophic failures. Bearing fault detection, however, still remains a very challenging task because most of the

bearing fault related signatures are non-stationary. In this paper, a wavelet cross-spectrum (WCS) technique is proposed

to tackle the challenge of feature extraction from these non-stationary signatures for bearing fault detection. The

vibration signals are first analyzed by a wavelet transform to demodulate primary representative features; the periodic

features are then enhanced by cross-correlating the resulting wavelet coefficient functions over several contributive

neighboring wavelet bands. A Jarque-Bera statistic index is suggested for the bandwidth selection. The effectiveness

of the proposed technique is examined by a series of experimental tests corresponding to different bearing conditions.

Test results show that the developed WCS technique is an effective signal processing approach for not only stationary

but also non-stationary feature extraction and analysis, and it can be applied effectively for bearing fault detection.
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1. Introduction

Rolling element bearings are commonly used in various
types of rotary machines. The development of reliable
bearing health condition monitoring and failure prog-
nostic techniques has been the focus of various under-
takings in a wide array of industries to prevent
machinery performance degradation, malfunction, or
even catastrophic failures (Li et al., 1999; Patil et al.,
2008; Timmins, 1998; Zhang et al., 2009, 2011). Bearing
condition monitoring usually involves two sequential
processes: feature extraction and fault diagnosis.
Feature extraction is a process in which health condi-
tion related features are extracted by appropriate signal
processing techniques (Timusk, et al., 2008); whereas
fault diagnosis is a decision-making process to estimate
bearing health conditions based on the extracted rep-
resentative features (Liu et al., 2010). Therefore, feature
extraction plays the key role for bearing health condi-
tion monitoring, whereas non-robust features may lead

to false alarms (i.e., an alarm is triggered by some noise
instead of a real bearing fault) or missed alarms (i.e.,
the monitoring tool cannot recognize the existence of a
bearing defect) in diagnostic operations (Wang et al.,
2004).

Several techniques have been proposed in the litera-
ture for bearing fault-related feature extraction, in
which the analysis can be performed in the time
domain (Heng and Nor, 1998), the frequency domain
(Stack et al., 2006), or the time-frequency domain
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(Li et al., 2008). In time-domain analysis, for example,
a bearing fault is detected by monitoring the variation
of some statistical indices such as root-mean-square
value, crest factor or kurtosis. A bearing is believed
to be damaged if the monitoring indices exceed prede-
termined thresholds; however, it is usually challenging
to determine robust thresholds in real-world applica-
tions. Frequency-domain analysis is based on the trans-
formed signal in the frequency domain. The advantage
of frequency-domain analysis over time-domain analy-
sis is its capability to easily identify and isolate certain
spectral components of interest (Jardine et al., 2006).
Bearing health conditions are assessed by examining
the fault-related characteristic frequency components
in a spectrum (Su and Lin, 1992) or in some extended
spectral expressions such as bispectrum or cepstrum
maps (Stack et al., 2004; Choi and Kim, 2007).
Frequency-based techniques are usually supplemented
with certain signal analysis methods to enhance repre-
sentative spectral components, which include frequency
filters, envelope analysis (McFadden and Smith, 1984),
and modulation sidebands analysis (Blankenship and
Singh, 1995; Sheen, 2007). Classical frequency-domain
techniques, however, are not suitable for the analysis of
non-stationary signatures that are generally related to
machinery defects. Non-stationary or transient signa-
tures can be analyzed by applying time-frequency
domain techniques such as the short-time Fourier trans-
form (FT) (Kaewkongka et al., 2003), Wigner-Ville dis-
tribution (Kim et al., 2007), cyclostationary analysis (Li
and Qu, 2003; McCormick and Nandi, 1998), or wavelet
transform (WT) (Wang et al., 2001). In bearing fault
diagnosis, the WT is a favorite technique, because it
does not contain such cross terms as those in the
Wigner-Ville transform, while it can provide amore flex-
ible multi-resolution solution than the short-time FT.
According to signal decomposition paradigms, the WT
can be classified as the continuous WT (Wang et al.,
2004), discrete WT (Al-Raheem et al., 2008), wavelet
packet analysis (Ocak and Loparo, 2005), and those
WTwith post-processing schemes such as the singularity
analysis (Sun and Tang, 2002), the FT (Wang and Gao,
2003) and the energydensity analysis (Cheng et al., 2005).
A good review of the available methods for bearing fault
diagnostics can also be found in Jardine et al. (2006) and
Tandon and Choudhury (1999).

If a bearing is damaged, the generated vibration sig-
nals could be either stationary or non-stationary. It is
relatively easier to analyze the stationary signals using
some classical fault detection techniques, such as FT-
based spectral analyses (Patil et al., 2008; Su and Lin,
1992).

However, it still remains a challenging task to extract
robust representative features from the non-stationary
vibration signals (e.g., those generated from a fault on

bearing rotating components), particularly in real-
world industrial applications (Su and Lin, 1992). This
is because: 1) a bearing is a system instead of a simple
mechanical component, which consists of inner/outer
rings as well as a number of rolling elements; 2) slip-
page often occurs between the rolling elements and
rings in operations; and 3) the machinery operation
conditions are usually noisy. Correspondingly, the
objective of this paper is to develop a new approach,
called wavelet cross-spectrum (WCS) technique, to
tackle this challenge in which the representative peri-
odic features will be enhanced by an integration process
over several contributive wavelet bands.

The rest of this paper is organized as follows. The
proposed WCS technique is described in Section 2.
Experimental tests are conducted in Section 3 to
verify the effectiveness of the proposed technique,
whereas some concluding remarks are summarized in
Section 4.

2. The Wavelet Cross-spectrum (WCS)
Technique

Whenever a fault occurs on a bearing component,
impacts are generated in operation, which in turn
excite the bearing and its support structures. The result-
ing resonance signatures are usually amplitude modu-
lated by the bearing defect (McFadden and Smith,
1984); therefore, the analysis of these resonance signa-
tures plays a key role in vibration-based bearing fault
detection. Figure 1(a) shows part of a typical accelera-
tion signal, measured from the housing of a tested bear-
ing with an inner-race defect when the shaft speed ft is
35Hz. The experimental apparatus is illustrated in
Section 3. When a defect occurs on a bearing rotating
component, the modes and magnitudes of the resulting
resonances often vary over time due to the variation
in angular position of the impacts (Liu et al., 2008).
This non-stationary characteristic of condition-related
signatures makes bearing fault detection still a very
challenging task in both research and industrial appli-
cations. In this work, a WCS technique is proposed as
an alternative approach to investigate the characteris-
tics of these non-stationary resonance signatures for the
purpose of bearing fault detection. The WCS technique
involves five steps for signal processing, which will be
elaborated as follows. Some overlaps in content with
Liu et al. (2008) have been maintained to ensure com-
pleteness and readability.

The first step is to apply the WT to demodulate the
resonance vibration signatures, both stationary and
non-stationary, over a series of wavelet bands. Given
a continuous signal xðtÞ, the wavelet coefficients can be
determined by
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W t, sð Þ ¼

Zþ1
�1

x �ð Þ
ffiffi
s
p

w� s � � tð Þð Þ d� , ð1Þ

where w�ðtÞ denotes the complex conjugation of mother
wavelet function wðtÞ; s and t are the scale and time
variables, respectively, which produce dilation and
translation (Liu et al., 2008).

The choice of an appropriate mother wavelet
depends on the signal properties and the purpose of
the analysis. By testing and comparison, Morlet wave-
let is selected as the mother wavelet for the signal anal-
ysis in this work (Liu et al., 2008; Ozturk et al., 2008;
Strang and Nguyen, 1996):

wðtÞ ¼ exp �
t2

2b20

� �
exp j2�f0tð Þ, ð2Þ

where b0 is the spread of the Gaussian function and f0
is the center frequency of the pass-band of the mother
wavelet. As b0f0 increases, the duration of the wavelet
expands, and the time resolution will decrease

correspondingly. As a result, the obtained mother
wavelet wðtÞ may not be suitable to analyze fast-decay-
ing transient signatures. To solve this problem, the
product of the spread and the scaled center frequency
is kept as a constant in this work (Liu et al., 2008), i.e.,

bi fi ¼
b0
si

f0sið Þ ¼ b0 f0 ¼
1ffiffiffiffiffiffiffiffiffiffiffi
2 ln 2
p , ð3Þ

where 2� b0f0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
2=ln 2

p
was given in Strang and

Nguyen (1996); si represents the ith selected scale;
biand fi are the corresponding ith spread and center
frequency, respectively.

Based on the relation between bi and fi as in equa-
tion (3), the mean of the obtained mother wavelet wðtÞ
will be kept less than 10�12 in this case, and the effective
support will vary with the scaled center frequency to
accommodate the variation of the signatures of interest.
At each wavelet scale si, the magnitude of wavelet coef-
ficient function W t, sið Þ

�� �� that represents the demodu-
lated envelope signal is normalized by its standard
deviation, that is,

W t, sið Þ ¼
W t, sið Þ
�� ��

PL
l¼1

W tl, sið Þ
�� ��� 1

L

PL
l¼1

W tl, sið Þ
�� ��� �2

= L� 1ð Þ

 !1=2
,

ð4Þ

where l¼ 1, 2,. . ., L, and L is the total number of sam-
ples; i¼ 1, 2,. . ., I, and I is the number of wavelet scales;
W tl, sið Þ
�� �� is the lth sample of W t, sið Þ

�� ��. To reduce the
interference effects from the low-frequency noisy com-
ponents, in this work, the overall frequency band of
interest is chosen as ½Zft, fs=2:56�, where ft denotes the
shaft rotation speed,Z is the order of shaft harmonics of
interest, Zft represents the lower bound frequency for
feature extraction (Z¼ 35 is used in this case); fs is the
sampling frequency, and the constant 2.56 is selected to
avoid aliasing effects (Girgis and Guy, 1988). The centre
frequencies of the wavelet functions should be deployed
properly to implement the WT over this designated fre-
quency band ½Zft, fs=2:56�, without the overlapping
between the wavelet frequency bands. Based on the FT
of the dilated wavelet wðstÞ, the 3-dB bandwidth BWi

for the ith centre frequency fi is derived from:
BWi ¼ 1� �, 1þ �½ � fi, where � ¼ ln 2=

ffiffiffi
2
p
� is a con-

stant. Beginning with the lower bound frequency Nft,
the centre frequencies fi can be recursively calculated
and positioned as (Liu et al., 2008):

fi ¼
1þ �ð Þ

i�1

1� �ð Þ
i
Zft, i ¼ 1, 2, . . . :, I�1 ð5Þ
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Figure 1. (a) Part of an acceleration signal generated by a

bearing with an inner-race defect; (b) to (h) The normalized

wavelet coefficients obtained from the vibration signal over seven

wavelet bands (i¼ 1, 2, . . . , 7).
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fi ¼
1

2

fs
2:56
þ fi�1 1þ �ð Þ

� �
, i ¼ I ð6Þ

where I is the number of the wavelet scales (I ¼ 7 in this
case). Figures 1(b) to (h) show the respective normal-
ized wavelet coefficients W t, sið Þ over seven wavelet
bands, which are determined based on the vibration
signal as shown in Figure 1(a). It can be seen that the
resonance signatures in Figure 1(a) are usually demon-
strated in several consecutive wavelet bands (Figures
1(b) to (h)) due to the variation of the transient modes.

The second step to implement the proposed WCS
technique is to cross-correlate the wavelet coefficient
functions from the neighboring wavelet bands to
enhance the defect-related periodic features, that is,

Xiðl Þ ¼ E½ �Wðt, siÞ �W�ðtþ l, siþ1Þ�

l¼ 0, 1, 2, . . . ,L�1; i ¼ 1, 2, . . . :, I�1:
ð7Þ

�Xiðl Þ ¼
Xiðl Þ � �i

�i
, ð8Þ

where E½�� is the expectation function; �Xiðl Þ are the
cross-correlation sequences that are normalized by
their standard deviation �i around the mean �i. In esti-
mating the correlation sequence, the method proposed
here is different from the commonly used Pearson’s
approach in which the product-moment correlation
estimation limits �Xiðl Þ to the range of [-1 1]. It is also
noted that the cross-correlations are performed on the
neighboring wavelet bands; this is because the demodu-
lated features from the resonance signatures are usually
reflected on the adjacent wavelet bands. An example is
illustrated in Figure 1 where the extracted features are
marked by arrows. From a physical perspective, each
time as a bearing incipient fault encounters its mating
components, an impact is generated, which in turn
induces the resonance of the local structure.

Corresponding to each impulse, the resonant response
usually occurs over consecutive frequency bands in a
random nature. Figures 2(a) to (f) illustrate the �Xiðl Þ
array determined from six pairs of neighboring wavelet
bands. It is seen that some periodic features are promi-
nent (e.g., in Figures 2(b), (e), and (f)) whereas others
are less pronounced (e.g., in Figures 2(a), (c), and (d)).
Correspondingly, another key process in bearing incipi-
ent fault detection is how to properly choose the more
contributive wavelet bands so as to highlight the periodic
features.

Each periodic feature with high amplitudes will
modify the distribution of correlation sequence and
cause the distribution more skewed and heavily-tailed,
which will be characterized by the Jarque-Bera (JB)
statistic (Croux et al., 2006; Gel et al., 2007) in this

work. The correlation coefficient from each pair of
neighboring wavelet bands is treated as a discrete
random variable, and its probability distribution is
then examined. As an example, Figures 2(a’) to (f’)
show the probability distributions of the correlation
sequences in the corresponding Figures 2(a) to (f). It
is seen that the properties of the tails of the distribution
function vary with respect to its bandwidth. To charac-
terize this effect, a JB statistic-based performance index
Ji is proposed as:

Ji ¼
1

6
S2
i þ

Ki � 3ð Þ
2

4

� �
, i ¼ 1, 2, . . . :, I�1: ð9Þ

where Si and Ki are, respectively, the skewness and
kurtosis that are estimated by using a large number
of samples (L¼ 327,680 in this case). The proposed sta-
tistic index Ji can characterize the abnormality present
in the distribution of correlation sequence by incorpo-
rating the information from both the skewness and the
kurtosis, and both heavily-tailed and heavily-skewed
distributions would increase the index Ji. In bearing
fault detection, a larger Ji is expected when the bearing
is faulty, since it indicates that the periodic features are
highlighted (i.e., with higher magnitudes). Accordingly,
the third step in the implementation of the WCS tech-
nique is to choose more contributive bandwidths in
which the correlation sequences could bring about
larger Ji. Figure 3 shows the values of the index Ji,
i¼ 1, 2,. . ., 6, corresponding to the correlation sequences
shown in Figures 2(a) to (f). It is seen that correlation
sequences #2, #5, and #6 generate greater index Ji.

The fourth step of the proposed WCS technique is to
integrate the correlation coefficient functions from the
contributive bandwidths to achieve a 1-D representa-
tion. In this work, a J-weighted function is suggested
for the integration process:

H lð Þ ¼

P
m2C

Ji �Xi lð ÞP
m2C

Ji
,

I ¼ 1, 2, . . . , ,L; C � f1, 2, . . . , , I� 1g

ð10Þ

where C is a subset of {1, 2, . . . , I� 1}. The selection
of the members of C depends on applications; in
this case, C takes the top half of the members of
{1, 2, . . . , I� 1} whose corresponding correlation
sequences generate greater Ji. Figure 4(a) shows some
examples of the integrated correlation sequence H lð Þ
derived using equation (10). It is seen that the periodic
features, carried by the vibration signal in Figure 1(a),
can be clearly recognized. These periodic features
are spaced by an interval of 118 samples, or with
the repetition rate of approximately 173Hz (i.e., the
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inner-race defect frequency) for a sampling frequency
of 20480Hz.

Once the integrated cross correlation sequences are
obtained, the fifth (or the final) step is to examine the

characteristic defect frequencies (i.e., the inner race
defect frequency fid, the outer race defect frequency
fod, and the rolling element defect frequency fed (Stack
et al., 2004)) from the averaged autocorrelation spec-
trum. This autocorrelation spectrum analysis involves
two processes (Liu et al., 2008): performing the auto-
correlation on H lð Þ to further enhance the involved
periodic features, and conducting the spectral analysis
for periodic feature extraction. Specifically,

r �ð Þ¼ E½H lð ÞH� lþ �ð Þ�, � ¼ 0, 1, 2, . . . :,L�1 ð11Þ

R fð Þ ¼ F ½r �ð Þ�, ð12Þ

� fð Þ ¼ R fð ÞR� fð Þ, ð13Þ

where F½�� denotes the FT. In implementation, the
spectra obtained by equation (13) from P segments
of measured signals (P¼ 5 in this case) should be
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normalized and averaged to reduce the effects of
random noise,

�� fð Þ ¼
1

P

XP
p¼1

�p fð Þ

max �p 0ð Þ, � � � , �p fuð Þ
� 	, ð14Þ

where fu is the observation upper-bound frequency that
should be larger than the maximum bearing character-
istic frequency (Du and Yang, 2006; McFadden and
Smith, 1984), and fu¼ 300Hz in this case. Bearing
health conditions are estimated by analyzing the related

characteristic frequency components (i.e., fid, fod, and
fed) in the resulting spectra. Figure 4(b) demonstrates
an example of the resulting spectra determined by the
proposed WCS technique on the vibration signal shown
in Figure 1(a). It is seen that the defect frequency
(approximately 173.17Hz) can be clearly recognized;
in this case, the defect occurs on the bearing’s inner
race, that is, fid¼ 173.17Hz when the shaft speed
ft¼ 35Hz.

3. Performance validation

A series of tests have been conducted to verify the effec-
tiveness of the proposed WCS technique in bearing
fault detection; the experimental setup that is employed
for these tests is shown in Figure 5. The shaft is driven
by a 3-hp induction motor. The motor speed ranges
from 20 rpm to 4200 rpm, which is manipulated by a
speed controller. An optical sensor is used to provide a
one pulse per revolution signal for rotation speed detec-
tion. A flexible coupling is employed to damp out high-
frequency vibrations generated by the motor. The roll-
ing element bearing under examination is press-fitted
into the left bearing housing, and the vibration sig-
nals are measured by two accelerometers (ICP-IMI,
SN98697) installed on the housing along both the hor-
izontal and vertical directions. Radial loads are applied
by two pairs of disks. A data acquisition board (NI
PCI-4472) is employed for signal collection.

In the tests, four bearing health conditions are exam-
ined: healthy bearings, bearings with outer race defects,
bearings with inner race defects, and bearings with roll-
ing element faults. Each bearing is tested under seven

Figure 5. The experimental setup: (1)-speed control; (2)-optical sensor; (3)-motor; (4)-flexible coupling; (5)-ICP accelerometer;

(6)-bearing housing; (7)-test bearing; (8)-load disc (the heavy load); (9)- magnetic load system; (10)-bevel gearbox.
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shaft speeds (900, 1200, 1500, 1800, 1920, 2100, and
2400 rpm) and two load levels, respectively. The sam-
pling frequency fs is set at 20480Hz.

The performance of the proposed WCS technique
will be compared with two related classical methods,
the one-scale WT (Wang and Gao, 2005) and the enve-
lope demodulation-based FT (McFadden and Smith,
1984), to verify its effectiveness in non-stationary fea-
ture extraction and bearing incipient fault detection. In
this comparison study, the classical methods are
applied on both structural resonance frequency bands
and entropy-based preselected frequency bands (Shi
et al., 2004). In resonance frequency band investigation,
the one-scale WT is employed with the wavelet center
frequency at 2000Hz; the envelope demodulation-
based FT is conducted with the signal that is band-
pass filtered around the resonant frequency [1500
2500] Hz of the bearing and housing (Liu et al.,
2008). Preselected frequency bands are determined by
using the Shannon entropy-based approach (Shi et al.,
2004). The analysis of these two aforementioned classi-
cal methods is also based on the corresponding aver-
aged autocorrelation spectra.

In frequency-based bearing fault detection, the bear-
ing health is assessed by checking if there exists a pro-
nounced spectral component in the resulting spectra,
which corresponds to one of the bearing characteristic
defect frequencies. If direct spectral examination
cannot reveal clear fault detection information, as
stated before, some supplementary methods should be
properly employed to improve the diagnostic accuracy
(Al-Raheem et al., 2008; Liu et al., 2010). In our inves-
tigation, it is found that when the bearing is in its
normal condition, the shaft speed dominates the result-
ing spectra due to unavoidable imperfections (e.g.,
system unbalance). When an incipient bearing fault
(i.e., inner race defect or outer race defect) occurs, the
bearing characteristic defect frequency will become pro-
nounced if the proposed WCS technique is employed.
The results from these examinations are summarized in
Table 1, in which the numbers represent the percentages
of successful bearing health condition estimation. The
criterion for the successful bearing condition estimation

is given as follows: for a healthy (or normal) bearing,
shaft speed should dominate the corresponding
spectral map (or with the highest spectral magnitude);
for a bearing with an inner/outer race defect, the cor-
responding characteristic defect frequency should be
clearly recognized in the resulting spectra. From
Table 1, it is seen that: 1) in general, the classical meth-
ods with entropy-based frequency band selection can be
more reliable in detecting a bearing fault than those
methods focusing only on structural resonance fre-
quency band; 2) the proposed WCS outperforms these
two classical methods in terms of bearing fault diagnos-
tic accuracy, no matter which frequency band is exam-
ined. In the following context, the processing results
from a typical testing case will be used as an example
to illustrate bearing fault detection processes using dif-
ferent techniques.

3.1. Healthy bearing

As mentioned earlier, when the bearing is in its normal
condition, the shaft speed dominates the resulting spec-
tra due to some unavoidable shaft imperfections (e.g.,
unbalance) and the varying compliance (Tandon and
Choudhury, 1999). For example, Figures 6(a) to 10(a)
show the respective processing results from these three
methods for a healthy bearing ( ft¼ 35Hz). It is seen
that the shaft speed can be clearly recognized by using
the WCS technique (Figure 6(a)). By contrast, the shaft
speed information cannot be clearly identified by using
the one-scale WT and the envelope demodulation-
based FT (Figures 7(a), 9(a) and 10(a)); instead, the
third harmonic of the shaft speed dominates the result-
ing spectra (Figures 7(a) and 8(a)). As a matter of fact,
this frequency may result in false diagnosis since its
value is very close to the outer race defect frequency
( fod¼ 106.83Hz in this case).

3.2. Outer race fault detection

An outer race defect is relatively easier to detect
because the outer ring is fixed and the defect-related
resonance modes do not change over time dramatically.

Table 1. Comparison of diagnostic results using different techniques

One-scale

WT

Envelope

demodulation-

based FT

One-scale WT

(preselected scale)

Envelope

demodulation-

based FT (preselected

frequency band) WCS

Healthy bearing 64.3% 71.4% 50.0% 64.3% 100%

Bearing with outer race defect 85.7% 85.7% 92.9% 85.7% 100%

Bearing with inner race defect 50.0% 57.1% 78.6% 92.9% 92.9%

FT: Fourier transform; WCS: wavelet cross-spectrum; WT: wavelet transform.
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As illustrated in Table 1, the proposed WCS technique
can detect the outer race faults in all test cases in
which the outer race defect frequency are clearly recog-
nized in the resulting spectra; one example is shown in
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resonance frequency band (ft¼ 35 Hz): (a) healthy bearing;

(b) bearing with an outer race fault; (c) bearing with an inner

race fault; (d) bearing with a rolling element fault.
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Figure 7. The processing results when the one-scale wavelet

transform is applied on the structural resonance frequency band

(ft¼ 35 Hz): (a) healthy bearing; (b) bearing with an outer race

fault; (c) bearing with an inner race fault; (d) bearing with a rolling

element fault.
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Figure 9. The processing results when the one-scale wavelet

transform is applied on the entropy-based preselected frequency

band (ft¼ 35 Hz): (a) healthy bearing; (b) bearing with an outer

race fault; (c) bearing with an inner race fault; (d) bearing with a

rolling element fault.
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Figure 6(b) when fod¼ 106.83Hz. It is noted that the
one-scale WT and the envelope demodulation-based
FT technique can also detect the outer race defects
although the dominant spectral component may be a
harmonic of the outer race defect frequency, as seen in
Figures 7(b), 8(b) and 10(b).

3.3. Inner race fault detection

The detection of a fault on an inner race is more
challenging than on a fixed outer ring because the
modes of the generated resonance signatures vary over
time. Test results in Table 1 demonstrate that the WCS
technique is more reliable (e.g., Figure 4(b)) than the
related classical methods (e.g., Figures 7(c) to 10(c)) in
detecting bearing faults on rotating rings and in sup-
pressing the noisy spectral components. This is because
the WCS technique is capable of integrating the peri-
odic features from several contributive wavelet bands.
The performance of the related classical methods is
improved when the frequency bands are determined
by using the Shannon entropy analysis (e.g., Figures
9(c) and 10(c)). It is also interesting to see that the side-
bands of the shaft speed around the inner race frequency
harmonics can be slightly observed in Figures 7(c) to
10(c), but can hardly be recognized in Figure 4(b). As
a matter of fact, the sidebands of the shaft speed around
the inner race harmonics physically exist in Figure 4(b);

however, because the proposed WCS technique can
make the inner race defect frequency more dominant
and prominent in the resulting spectra, consequently
these sidebands cannot be clearly recognized from the
corresponding spectral map.

3.4. Rolling element fault detection

The detection of a rolling element fault for ball bearings
is one of the most challenging tasks in bearing health
condition monitoring, especially when the fault is at its
initial stage. This is because: a) the resonance signatures
generated by a ball defect are non-stationary; and b) the
impacts are random since the defect may not always
strike the races. In our tests, it is found that the rolling
element defect frequency can be detected as long as the
shaft speed is sufficiently high (e.g., over 30Hz in this
test), although the related defect spectral component is
not the dominant one in the resulting spectra. It is also
seen that the defect frequency processed by using the
WCS technique (e.g., Figure 6(c)) is more prominent
than those from the two classical methods (e.g.,
Figures 7(d) to 10(d)). In this case, the diagnostic
reliability could be improved by integrating information
from other fault detection techniques such as the time-
domain kurtosis ratio approach (Liu et al., 2010).

4. Conclusion

AWCS technique is proposed in this paper for represen-
tative feature extraction and bearing incipient fault
detection. The WCS technique performs feature extrac-
tion by demodulating the non-stationary resonance sig-
natures generated by bearing incipient defects and then
correlating the periodic patterns over more contributive
wavelet bands. A JB statistic-based performance indica-
tor is suggested to guide the wavelet band selection. The
effectiveness of the proposed WCS technique is verified
by a series of experiments corresponding to different
bearing conditions. Test results show that theWCS tech-
nique is an effective approach for non-stationary feature
extraction and bearing fault detection. It outperforms
the related classical methods such as one-scale WT and
the envelope demodulation-based FT.
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