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ABSTRACT OF THE DISSERTATION

Scale Covariance of Fractal Sets and Measures, A Differential Approach to the
Box-Counting Function of a Fractal, with Applications

by

John Roosevelt Quinn

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, June 2013

Dr. Michel L. Lapidus, Chairperson

Abstract: The scale symmetry of self-similarity is a fundamental one in geom-

etry and in physics. We develop a calculus of the scale space evolution of self-similar

fractal sets via an analysis of box-counting functions on these structures utilizing the

theories of distributions and hyperfunctions. A differential study of the box-counting

function can account for the oscillations in the local geometry of some examples of such

structures, paralleling the theory of the complex dimensions of fractal strings. The al-

gebraic structure on the iterates of the unit interval under an Iterated Function System

admits a tensor product representation we develop to define an intrinsic geometry of

fractals and an integral calculus on these objects.
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1 Introduction: a Brief History of Fractals

Since the discovery of the first fractals by analysts seeking to understand

the limitations of the Fourier Transform in the 19th century, the science of

fractals proceeded slowly at first, then steadily gathered momentum, after

Benoit Mandelbrot coined and popularized the term.

In the early days of fractals, a search for the limits of the uniqueness of

Fourier series motivated Cantor’s definition of his infamous set, upon which a

cumulative density function was defined, dubbed the devil’s staircase, which

was rife with paradoxes. While it was differentiable almost everywhere, with

derivative 0, it was monotone increasing. While the set of points on which

it increases have zero measure in [0, 1], the range of the staircase function

being [0, 1] puts that set of points into surjection onto [0, 1], implying the

uncountability of Cantor’s set.

Analysts Gaston Julia and Pierre Fatou seemed to have first used formal

iterative process to construct fractals, but the iteration of polynomials in C,

will not be our setting. We shall work with fractals that induce simple, easily

recognizable structures in Rn. Geometers such as Poincare and Minkowski,

topologists like Felix Hausdorff, and mathematicians such as Waclaw Sier-

pinski, and Helge von Koch, ushered the fractal through its infancy, but our

framework for the exploration of fractal theory was provided much later by

John Hutchinson.

Benoit Mandelbrot is owed a great debt of gratitude by many of us who
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first experienced the fractal due to his books [Man2]. It was his eye that

seems to have first caught the similarity of many fractal shapes to the rough

objects observed in the natural world all around us, especially the living

world. It seems to have been his idea to automate the process of iteration

of mathematical functions using the electronic computer, and in so doing to

unleash the beautiful images of fractals that still captivate the world today,

most specifically images of his iconic “Mandelbrot set”, and the Julia sets

associated to the family of polynomials z2 + c in the complex plane, thus

becoming that rarest of heroes, the pop-culture mathematician.

The fractal, with all its infinite ruggedness greatly generalized calculus,

daring authors to solve differential equations on them [Strich4], or on regions

with fractal boundaries [Harr],[LapVanF]. Such a calculus turns out to be a

happy, if unexpected, marriage of the theories of measures and distributions,

Fourier analysis and analytic number theory, algebra and analysis. It is to

this generalized calculus that this work belongs.

1.1 Scope of this Work, Outline of Topics, and Re-

search Program

This work is the current implementation of the author’s research program to

develop a natural calculus of fractals. We choose a simple class of fractals

which we find to be easy to understand as emblematic of fractal processes

involving iteration.
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We draw inspiration from the statistical mechanics of critical systems,

which evolve toward a scale invariant power-law state as a parameter we

deem analogous to the scale of observation of a self-similar object such as

a fractal is varied. Such systems display the property of universality, gov-

erned by the critical exponents (analogous to fractal dimension), of critical

systems, along with connectivity and other, debated properties of such com-

plex systems. This work has not yet been able to offer concrete predictions

regarding such systems, but we hope to develop some techniques that will

have such applications.

Central to the influence of this field on our work has been the notions

of log-periodicity, periodic corrections to scaling, discrete and continuous

scale invariance, and oscillations. Our guiding principle has been that such

notions would precipitate from the notions of complex dimensions of fractal

strings, and the non-Minkowski measurability of lattice strings. We derive

periodic correction to scaling from a different approach, however, that of the

evolution, over scales of the box-counting function associated to a fractal set.

We call such evolution the scale-covariance associated to the set.

In the subsequent chapter, we encounter the notion of contractivity, and

the existence of fractal attractors of Iterated Function Systems via Banach’s

Contraction Mapping Principle. We define and differentiate the concepts of

scale invariance and self-similarity in the third chapter, observing that these

symmetries of scale allow for dimensional analysis, and are nothing less than

a fundamental symmetry of nature. The fourth chapter offers a review of
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theories of fractal cosmology and offers a description of space-time under

the families of contractions induced by multiple observers of events, whose

observations must disagree slightly.

The fifth chapter invokes one of our primary characters, the box-counting

function. It is this measure of a set’s evolution through alteration of the scale

of observation, that we track and whose (log-)asymptotics we associate with

the notion of fractal dimension. We find that deterministic fractals’ evolution

in scale space is almost-everywhere differentiable (with zero derivative).

In the spirit of the discovery of Cantor sets to explore the uniqueness

properties of Fourier analysis, a representation theory, we seek tools of rep-

resentation theory to describe fractal sets. In Chapter 6, we review a rep-

resentation theory of fractals by coalgebras, then show that IFS and their

images form the morhpisms and objects of a tensor category.

In chapter 7 we find a tensor (monoidal) representation for IFS fractals,

and explore the theoretical description entailed by that representation. In

ongoing work (see appendices) on this theme we characterize the titular prop-

erty of scale covariance as the dual of the representation contravector, and

solving the fixed flow defined by this vector reveals this object as a functor

from the category of IFS (pre)fractals to that of pointed topological spaces,

preparing such objects for further algebraic understanding.

In chapter 8 we put the representation to work to help compute measures

defined on fractals, and in the appendix, we begin to consider some obvious

analogies to theories of physics.
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Finally, in chapter 9, Appendices containing ongoing research, are pre-

sented. We also characterize important functions relating to Fourier analysis

of fractals as fixed points of the Fourier transform.

Our developments of an almost-everywhere scale derivative and of an ap-

proximate integral make a contribution to the generalization of calculus to

fractals getting our program of the study and application of fractal mathe-

matics to a start. Our future work, discussed further in chapter 10, includes

further defining the applications of our scale derivative to non-deterministic

fractals and almost self-similar sets, and our representation is poised for use

to compute correlation integrals and connectivities for fractals.

Throughout the development of physical theories, the tools of integration

and differentiation have played roles in duality. A system is governed by laws

presented as differential equations, which are satisfied by integral relations.

Often the integral relations are much more succinct or hold in a more

general context. In this work we contrast the log-periodicity of the complex

dimensions of fractal strings with the log-periodicity of the scale evolution

of the box-counting function of a fractal. The first object manifests as the

singularities of the Mellin transform of a measure associated with the com-

plement to the fractal set, i.e. as an integral theory, and the second as a

distributional (double-logarithmic) derivative.

When we observe the graphs of systems in Nature deemed to obey some

kind of power-law, we often notice periodic oscillations in the log-log-plot.

Herein we describe such oscillations in this plot for deterministic fractals of

5



(log-)box counting function vs (log-) of scale, at a given scale r.

1.2 Measures and Transforms

Define a sigma-algebra of sets to be a family of sets closed under countable

unions and complementations, and observe that the set of countable intersec-

tions and unions of subsets of a given set is the smallest such sigma-algebra

defined on a particular set. On this family, we call a function µ : M → R

on the sigma-algebra of measurable subsets M of a topological space X, a

measure if it satisfies:

1. µ(∅) = 0.

2. µ(A ∪B) = µ(A) + µ(B), if A ∩B = ∅.

Integral transforms, particularly of measures, becomes an irreplaceable

tool at our disposable.

Definition 1. The Fourier transform µ̂(k) of µ(x) is given by
∫
R e

2πikx µ(d(x)),

Among many useful properties, in fractal geometry, this transform ex-

plains the frequency information contained in a measure by its asymptotics.

Definition 2. The Mellin transform of a measure η is given,
∫
R x

s−1η(dx).

In the well-established, rigorous theory of fractal strings, [Lap-vanF] this

object’s abscissa of convergence is shown to be the fractal dimension of a

fractal boundary described by η. The singularities of this transform, known
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as the complex dimensions of the fractal string, then give the (often periodic)

oscillations of the asymptotic behavior of the volume of the neighborhood

of the complement of a fractal with the scale of observation. Indeed it is

this property of complex dimension that allows for the first mathematically

rigorous definition of fractality.

1.3 Fractals and Prefractals in Nature and the Human

World

For many years, mankind’s mathematics struggled to describe such shapes as

clouds or mountains. The irregular, inexact patterns were just not amenable

to treatment with the calculus, or other smooth mathematics generated by

polynomial algebra or special functions.Fractals now supply us with computer

images of such objects, and many more. Yet each image and indeed, each

such natural structure is limited to construction through a finite number of

iterations, at a finite energy level corresponding to a cut-off of the lower size

permitted by the naturally occurring approximation.

While we have not treated almost self-similar sets explicitly in the sequel,

we define an ε−almost self-similar set Fε to be one within ε of a set that is

self-similar (and obeys a generalization of the functional relation obeyed by

Fε to a greater range of scales), with respect to the Hausdorff metric that

measures the difference between sets A and B as dH(A,B) = inf{ε ≥ 0 ; A ⊆

Bε and Y ⊆ Aε}, where Aε :=
⋃
x∈X{z ∈M ; d(z, x) ≤ ε}.
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Other naturally occuring (pre-)fractals appear in living organisms, the

brain, communications and other networks, etc. Interestingly the scaling of

the brain is fractal in the zero-asymptotic, but for larger scales, the connec-

tivity of the brain increases exponentially rather than by a power law. This

is one application that has been held firmly in mind to test the descriptive

power of the concept of scale -invariance, in future works.

Notably many human structures such as transportation networks and

cities have (pre-)fractal appearances or distributions that exhibit fractal scal-

ing known as power laws [Bro-Lie]. Yet the human hand is also seen at work

unravelling nature’s fractality [Pad-Sal], smoothing over deserts and forest,

and erecting regular polygons in place of trees. Interestingly, fractal designs

such as the fractal miniaturized antenna, have become commonplace in some

of our more advanced technologies, a nod to the ancient power of nature’s

spontaneous organization.

Even man’s organizations such as armies and corporations bear hierar-

chical resemblances to pre-fractal constructions. Particularly notable in the

keeping of these hierarchical symmetries have been the game worlds of Nor-

man Bel-Geddes, whose tiny mechanized worlds foreshadowed his “Futu-

rama” exhibit at the New York world’s fair in 1939, an exhibit and design

outlook which still influences design today[Szer]. So realistic and interest-

ing were Mr. Bel-Geddes diversions that notables of the time wagered huge

sums, decided policy, and forged enlarged networks of personal connections

at the Bel-Geddes home during his extravagant games [Szer]. Ultimately,
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Bel-Geddes was a proponent of smooth design however, most notably we can

cite his Chrysler Airflow [Szer].

Figure 1: The hierarchy of military units.

1.4 The Theory of Fractal Strings

For the full theory of fractal strings, we refer the reader to [Lap-vanF]. In

the most basic conception, we consider the set of deleted intervals involved

in the construction of a cantor dust on the real line. We call this collection of

lengths of one-dimensional continua the ordinary fractal string L. Since these

9



lengths form a bounded, open subset, the collection is at most countable,

and the sum of the lengths is finite. In fact there is a d ≤ 1 such that

d = infs{ζF (s) =
∑

`∈L `
−s < ∞}, this abscissa of convergence corresponds

to the fractal dimension of the boundary of the string, when embedded in

R. Furthermore, the poles of the analytic continuation of ζF (s) extend above

and below real line in the complex plane, and their periodicity or lack thereof

determines if the micro-local geometry of the string is too oscillatory to allow

for the Minkowski measurability of the string, except in the case of s = 1
2
,

assuming that the Riemann Hypothesis holds (see [Lap-vanF]).

1.4.1 Ordinary Fractal Strings

Definition 3. An ordinary fractal string Ω is a bounded open subset of the

real line. Every such set can be written as a countable union of connected open

intervals with associated lengths L := {l1, l2, ...} written in non-increasing

order. We allow Ω to consist of finitely many open intervals, in which case

L would consist of finitely many lengths.

Remark 1. We refer to L as a fractal string.

Definition 4. We define the Geometric Zeta Function of the fractal string

L to be the Dirichlet series ζL(s) =
∑∞

j=1 l
s
j =

∑
l wll

s where wl represents to

multiplicity of a given length l.

Remark 2. ζL(0) is just the number of connected open intervals and ζL(1)

is just the total length of the fractal string.

10



Theorem 1 (Lap-vanF). Suppose L has infinitely many lengths. Then the

abscissa of convergence of the geometric zeta function of L coincides with D,

the Minkowski dimension of ∂L.

Definition 5. If ζL has a meromorphic extension to all of C, we call DL(C) =

{ω ∈ C : ζL has a pole at ω} the set of complex dimensions of L.

Example 1 (The Cantor String). The geometric zeta function of the Cantor

string is ζCS(s) =
∑∞

n=0 2n · 3−(n+1)s = 3−s

1−2·3−s .

The complex dimensions are found by setting the denominator equal to

zero and solving for s. We get DCS(s) = {D+ inp : n ∈ Z} where D = log3 2

is the Minkowski dimension (abscissa of convergence of the gzf) and p = 2π
log 3

.

We call p the oscillatory period.

1.4.2 Generalized Fractal Strings

“Besides ordinary fractal strings, generalized fractal strings enable us to deal

with strings whose lengths vary continuously or whose multiplicities are non-

integral or even infinitesimal.” [Lap-vanF]

Definition 6. • For a measure η, we denote |η| the total variation asso-

ciated with η, |η|(A) := sup{
∑m

k=1 |η(Ak)|}, where m ≥ 1 and {Ak}mk=1

ranges over all finite partitions of A into disjoint measurable subsets of

(0,∞).

11



• A generalized fractal string is either a locally complex or a locally posi-

tive measure η on (0,∞), such that |η|(0, x0) = 0 for some x0 ∈ (0,∞).

• The dimension of η, denoted D = Dη, is the abscissa of convergence of

the Dirichlet integral ζ|η|(σ) =
∫∞

0
x−σ|η|(dx).

• The geometric zeta function is defined as the Mellin transform of η,

ζη(s) =
∫∞

0
x−sη(dx), for Re(s) > Dη.

Remark 3. The term generalized fractal strings is fitting because this new

definition contains ordinary fractal strings as a special case. In particular,

we associate the discrete measure η =
∑

l wlδ{l−1} with the fractal string

consisting of all lengths in the sum.

Example 2. The harmonic string coincides with the positive measure h =∑∞
j=1 δ{j}. This associated geometric zeta function is equal to the Riemann

zeta function.

1.4.3 Minkowski Measurability of Fractal Strings

For ε ≥ 0, define the ε-neighborhood of an OFS L, as

{x ∈ L such that d(x, ∂L) < ε},

then we define the volume of the ε-neighborhood of L as

V (ε) = vol1{x ∈ L such that d(x, ∂L) < ε}.

12



The dimension of a fractal string L is defined as:

D = DL = inf{α ≥ 0 such that v(ε) = O(ε1−α)}

(Check) We say that L has oscillations of order D in its geometry, if V (ε)

is periodic along the line Re(s) = D.

We define the upper Minkowski content of a fractal string L as

M∗ = M∗(D,L) = lim sup
ε→0+

V (ε)ε−(1−D),

and the lower Minkowski content of a fractal string L as

M∗ = M∗(D,L) = lim inf
ε→0+

V (ε)ε−(1−D),

.

Iff M∗ = M∗, we call the resulting

lim
ε→0+

V (ε)ε−1(1−D) =: M = M(D,L),

the Minkowski content of L, and we say that L is Minkowski measurable.

Theorem 2. An OFS L is Minkowski measurable iff D is a simple pole of

ζL, and is the only pole with Re(s) = D.
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1.4.4 A Rigorous Definition of Fractality

The theory of fractal strings and their complex dimensions allows us to at-

tempt to define the notion of fractality rigorously. We recall that Man-

delbrot’s original definition of fractals [Fal] as being sets whose topological

dimension strictly exceeds their Hausdorff, box-counting, or other fractal di-

mension, was proven inadequate due to the existence of fractal curves such

as the “Devil’s Staircase”, and other sets with fractal dimension equal to

their topological dimension. All such constructions have been found to have

at least one complex dimension with non-zero real part, prompting the fol-

lowing:

Definition 7. A set F is fractal if it has at least one non-real complex

dimension s with real part Re(s) > 0.

2 Contractivity and the Existence of Fractal

Sets

2.1 The Contraction Mapping Principle

In the setting of complete metric spaces, the contraction mapping principle

is the crucial tool used to prove the existence of self-similar fractal sets and

measures. We discuss this principle and its applications. We will show that

self-similarity is fundamental to much of applied science. We also investigate
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the role of Banach’s theorem in the proofs of many fundamental results in

mathematics.

For one example, we recall that the contractivity of the Picard operator,

used to show the existence and uniqueness of the solutions to initial-value

problems via Banach’s theorem can be applied to the solution of certain in-

verse problems of ordinary differential equations. We review also the use of

the contraction mapping theorem to show that the final coalgebra carried by

the set of streams of symbols representing a fractal in a coalgebraic represen-

tation theory is a fixed point of a contractive functor and that thus fractality

is categorical.

As a novel application, we present a scenario in which position uncer-

tainty of locations and the geometric contractivity of the causal history of an

interval of spacetime imply that past events have the structure of spacelike

fractals.

Contractivity appears to be an organizing principle in our universe, with

the attractive forces in the physical world drawing particles closer together

over time, in effect performing a contraction mapping on the configuration

spaces of systems, thus allowing gravity to organize the universe on the largest

scales. Analogously, in the universe of mathematics, we have the existence of

attractors of iterated function systems due to a powerful theorem of Stephen

Banach: the contraction mapping theorem. Loosely speaking, this theorem

states that if a metric space is complete we should expect the process of
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“shrinking” in that space to terminate somewhere in that space. We need

the metric so we can know what shrinking is, and we need completeness so

that there are no “holes” into which the sequence of contracted images could

disappear. Seeing this as such a fundamental organizing principle, we dub

this mighty theorem “Banach’s contraction mapping principle”.

2.2 The Contraction Mapping Theorem

Definition 8. For a subset D of a metric space (X, d), a mapping S : D → D

is called a contraction mapping on D if there is a number c with 0 < c < 1,

such that d(S(x), S(y)) ≤ cd(x, y) for all x, y ∈ D. We call the number c the

scaling ratio, contraction ratio, or Lipschitz constant of S.

Banach’s contraction mapping theorem, known variously as Banach’s

fixed point theorem, or Banach’s contraction mapping principle, is the most

widely applied of the class of fixed point theorems [Smart], which are consid-

ered among the most useful in mathematics. These theorems tell us that a

function satisfying some general hypotheses has a value in its domain which

is fixed under evaluation by the function. In the case of Banach’s theorem,

the condition on our function is that the function be a contraction mapping;

i.e., that the distance between points in the image of the function will be less

than the distance between the corresponding points in the preimage. We re-

quire also that the domain and range of this contraction be a metric space in

which Cauchy sequences converge, that is, we need our space to be complete.
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It is this theorem which implies the existence of attractors of iterated

function systems (IFS), which are families of contraction mappings on com-

plete metric spaces [Hut],[Fal], whose attractors form an important class of

fractals. Since contraction mappings are automatically continuous, they con-

serve compactness of the preimage, so that we expect the limiting attractor

to preserve compactness. But what is perhaps unexpected is that the limit

of the images of the IFS as the number of iterations tends to infinity will be

interesting. After all, the theorem tells us of the existence of a fixed point,

not of a fixed space. Perhaps even stranger, we find that the same attractor

results when we iterate the IFS starting with any nonempty compact set in

the domain of the IFS. By envisioning these attractors as points in a space

of compact sets, endowed with the Hausdorff metric under which this space

is complete, we will see that the existence of attractors of the IFS is a direct

result of Banach’s celebrated theorem.

We now state and prove Banach’s theorem and discuss some of its impli-

cations in section 3.

Theorem 3. (Banach’s Contraction Mapping Theorem) For a complete met-

ric space (X,d) and a contraction mapping S : X → X, there exists a unique

ξ ∈ X such that S(ξ) = ξ and for all x ∈ X the sequence

{xn}∞n=0 := {x, S(x), S(2)(x), ..., S(n)(x), ...}∞n=0,

converges to ξ (where we define S(n)(x) = S(S(n−1)(x)) and S0(x) = x).
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This celebrated result of Steven Banach, (possibly going back at least as

far as Emile Picard in the case of nonlinear contractions in complete metric

spaces) has very many well known applications and implications. A simple

and immediate corollary, proved in the discussion of inverse problems, is the

collage theorem which is often used in fractal image processing and bounds

the distance between the preimage of a contraction mapping and the fixed

point of that mapping.

Proof. First we show uniqueness: If x 6= y and S(x) = x and S(y) = y, then

since c < 1 we have

d(x, y) = d(S(x), S(y)) ≤ cd(x, y) < d(x, y) 6= 0.

Thus we reach a contradiction, d(x, y) < d(x, y), so therefore, the fixed

point must be unique.

For convergence and existence of a fixed point, we show that for any x,

the sequence of iterates under S(x), i.e. the sequence

{x, S(x), S(2)(x), ..., S(n)(x), ...}∞n=0

is Cauchy, then by completeness, we will have convergence. Observe that for

all
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n ≥ 1 we have d(S(n)(x), S(n+1)(x)) ≤ cd(S(n−1)(x), S(n)(x)), so that

d(S(n)(x), S(n+1)(x)) ≤ c2d(S(n−2)(x), S(n−1)(x)) ≤ ... ≤ cnd(x, S(x)).

Then, for some m > n, by the triangle inequality we have

d(S(n)(x), S(m)(x)) ≤
m−1∑
i=n

d(S(i)(x), S(i+1)(x)),

so that

d(S(n)(x), S(m)(x)) ≤ cnd(x, S(x)) + cn+1d(x, S(x)) + ...+ cm−1d(x, S(x))

= (
m−1∑
r=n

cr)d(x, S(x)) ≤
∞∑
r=n

crd(x, S(x)) =
cn

1− c
d(x, S(x)).

Since c < 1, for any ε > 0 we can find N ≥ 1 such that cN

1−cd(x, S(x)) <

ε. Then if m > n ≥ N we have d(Sn(x), Sm(x)) ≤ cn

1−cd(x, S(x)) ≤
cN

1−cd(x, S(x)) < ε. So we see that {x, S(x), S(2)(x), ..., S(n)(x), ...}∞n=0 is a

Cauchy sequence. Since (X, d) is complete there exists a unique ξ such that

xn → ξ as n→∞. Hence, by the continuity of S, ξ is clearly a fixed point

of S.
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2.3 Corollaries, and Applications, Existence of Frac-

tals

Here we see how this theorem is applied in some classic cases:

Definition 9. We call a finite family S of contraction mappings {Si}Ni=1

(with N ≥ 2), an iterated function system or IFS. An IFS acts on a set A

by

S(A) := ∪Ni=1Si(A),

for any subset A of X [Hut].

We call a compact set F invariant under the IFS S = {Si}Ni=1, if F =

∪Ni=1Si(F ). We then refer to F as the attractor of S, and we write F = S(F ),

to denote that F is fixed under S.

Theorem 4. (Existence of attractors of IFS.) For any iterated function sys-

tem S on a complete metric space (X, d), there exists a unique invariant set

F fixed under S, and for any nonempty compact subset E ⊂ X, such that

Si(E) ⊂ E for all i, the iterates S(n)(E)→ F as n→∞.

Sketch. An IFS defined on a complete metric space (X, d), naturally induces

a contraction mapping in the complete metric space of nonempty compact

subsets of X, equipped with the Hausdorff metric [Fal]. Thus, by the con-

traction mapping theorem (Theorem 1), there exists a unique invariant set

F . Iteration of S applied to E ⊂ X as above, results in a decreasing sequence

S(n)(E) of non-empty compact sets containing F. Therefore, the intersection
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∩∞n=1S
(n)(E) = F .

Let us recall that a vector ρ = (ρ1, ρ2, ..., ρN) is called a probability vector

when we have ρi ∈ [0, 1], for all i and
∑N

i=1 ρi = 1.

Definition 10. Let S = {Si}Ni=1 be an IFS, and let ρ = (ρ1, ρ2, ..., ρN) be a

probability vector with ρi ∈ (0, 1) for all i. We call (S, ρ) the IFS weighted

by ρ. It acts on measures acting on sets by

(S, ρ)µ(E) =
N∑
i=1

ρiµ(S−1
i (E)).

We call a measure µ such that (S, ρ)µ = µ an invariant measure under (S, ρ).

Theorem 5. (Existence of invariant measures.) For an IFS S = {Si}Ni=1,

weighted by a probability vector ρ, there exists µ, a unique Borel regular, unit

mass measure with bounded support, such that µ is fixed under (S, ρ).

Sketch. (S, ρ) is a contraction in the complete metric space of Borel-regular

probability measures, under the L-metric [Hut]. Thus, existence and unique-

ness follow, by Theorem 1.

Analogous theorems for random self-similar fractals [Fal], and measures

[Hut-Ru], may also be obtained, but under the weaker conditions of almost

sure convergence and equality as distributions respectively.

Theorem 6. (Existence and uniqueness of solutions to a first order initial

value problem of ordinary differential equations) Suppose g(t, x) and ∂g
∂x

are
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continuous functions on some rectangle a < t < b, c < x < d containing the

point (t0, x0). Then there is an interval t0 − h < t < t0 + h contained in

a < t < b on which there is a unique solution to the initial value problem

ẋ(t) = g(t, x(t)), with x(t0) = x0.

Sketch. The Picard integral operator P (g(t, x(t)) =
∫ t
t0
g(s, x(s)) ds+ x0 is a

contraction mappping on the interval t0 − h < t < t0 + h, and clearly solves

the initial value problem. The result follows from the completeness of R2

and Theorem 1.

This method is referred to as fractal-based in [K-L-M-V] and is suggestive

enough that we will consider an example later.

Theorem 7. (Newton’s method) For a function f(x) ∈ C2([a, b]), with a

simple zero, x̂ ∈ [a, b], there exists a neighborhood Nα(x̂) ⊂ [a, b], of x̂, such

that for G(x) = x − f(x)
f ′(x)

, the sequence {xn}∞n=0 := {x,G(x), G(2)(x), ...},

converges to x̂. We call the neighborhood Nα(x̂), a basin of attraction.

Sketch. For x close enough to x̂, f(x̂) ≈ f(x) + f ′(x)(x̂ − x). Solving for

x̂ gives us a formula for G(x). G′(x̂) = 0 and G(x) ∈ C2([a, b]), so there

is a neighborhood Nα(x) such that G′(x) < 1. Then G(x) is a contraction

mapping within Nα(x̂) ⊂ R. Observe that x̂ is a fixed point of G(x). There-

fore, by completeness of R, by Theorem 1, for any x ∈ Nα(x̂) the sequence

{xn}∞n=0 of iterates of G(x), converges to x̂.

Interestingly, for many functions in higher dimensions, we find these

basins to have intricate fractal boundaries [Pei-Ric].
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Theorem 8. (Inverse Function Theorem) Let f : Rn → Rn be a continuously

differentiable function in an open set containing a, and det(f ′(a)) 6= 0. Then

there is an open set V containing a and an open set W containing f(a)

such that f : V → W has a continuous inverse f−1 : W → V which is

differentiable and for all y ∈ W ,

(f−1)′(y) = [f ′(f−1(y))]−1

Sketch. Inverting the Taylor expansion

f(x) = f(a) + f ′(a)(x− a) + o(‖x− a‖)

we get that the local inverse f−1 : W → V is differentiable at a with

(f−1)′(f(a)) = [f ′(a)]−1

Then, normalizing a = f(a) = 0 and f ′(0) = In, the identity matrix on Rn, so

that continuity of f ′(x) shows that f ′(x) is close to In for x close to 0. Then

with the fundamental theorem of calculus this implies that x 7→ x− f(x) + y

is a contraction mapping on a small ball around the origin for small y. Thus,

by the completeness of Rn and by Theorem 1, the inverse exists, and by

uniqueness of the attractor, it is given by the above formula.

Recall also that the proof of the implicit function theorem relies on the

inverse function theorem.
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2.3.1 Fractal Method of Solutions to Inverse Problems of ODEs

The following result is a well-known and immediate corollary of the Banach

fixed point theorem.

Theorem 9. (Collage Theorem) [K,L,M,V], [Barn]For a complete metric

space (X, d) and a contraction mapping S : X → X, with contraction con-

stant c, if ξ is the fixed point of S, i.e., if S(ξ) = ξ, then for any x ∈ X,

d(x, ξ) ≤ 1

1− c
d(x, S(x)).

Proof. d(x, ξ) ≤
∑∞

i=1 d(S(i−1), S(i)) ≤ d(x, S(x))
∑∞

i=1 c
i, by the triangle

inequality and contractivity of S.

This theorem, a simple and well-known consequence of the contraction

mapping principle (Theorem 1), is a key ingredient in the solutions to many

inverse problems of fractals and contraction mapping techniques. It is some-

times known as the “Collage Theorem” in textbooks on fractals (see e.g.

[Barn] or [K-L-M-V]). Perhaps its best known use is to find an IFS that

adequately fits a given fractal. While this possibility guides our treatment

of self-similarity throughout this paper, i.e., that self-similar fractal sets are

attractors of IFS or can at least be closely approximated by such, here we

concentrate on the contraction mapping theorem’s use in certain inverse prob-

lems of ordinary differential equations.

These inverse problems are viewed as a process of approximating a tar-
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get element in a complete metric space by the fixed point of a contraction

mapping, accomplished by minimizing the distance between the target ele-

ment and its image under a suitable contraction mapping, so that the collage

theorem then would bound the distance between the target element and the

fixed point of the contraction mapping [K-L-M-V].

For an initial value problem, ẋ(t) = f(t, x(t)) with x(0) = x0, we may ap-

proximate solutions by use of a contractive Picard integral operator P (f)(t) =∫ t
0
f(s, x(s)) ds+x0, for Lipschitz continuous functions f(t, x(t)) (recall The-

orem 4). For the first n elements {φi(t, x)}ni=1 of an orthonormal basis of an

appropriate L2 space, we approximate f(t, x(t)) by
∑n

i=1 aiφi(t, x), creating

a Picard operator Pa for each a = (a1, a2, ..., an) ∈ Rn. Then we seek to min-

imize, by classical methods the L2 distance squared of the difference between

x(t) and Pa(x): we have

|x− Pax|22 =

∫
t∈I
|x(t)−

∫ t

0

n∑
i=1

aiφi(s, x(s)) ds|2 dt.

3 Self-Similarity

Self-similarity comes in many flavors, including algebraic, analytic, geometric

and stochastic. We will concern ourselves chiefly with the geometric and

analytic notions, therefore, we will define a set as being self-similar when it

is composed of scaled isometric copies of itself, we see that this describes the
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unique attractor of an IFS e.g.,

F = ∪Ni=1Si(F ) = S1(F ) ∪ S2(F ) ∪ ... ∪ SN(F ).

An example is the unique compact set F which is fixed by the contraction

mapping S in the complete metric space of compact sets under the Hausdorff

metric. Even for self-similar sets that are not formed by iterated function

systems, a contraction mapping based algorithm exists to find an IFS fractal

arbitrarily close to F [Barn]. Thus self-similarity and its implications are very

closely related to contraction mappings and Banach’s fixed-point theorem.

Definition 11. We say that the IFS S = {Si}Ni=1 satisfies the open set

condition if there is an open set U such that ∪Ni=1S(U) ⊂ U , and if i 6= j

then Si(U) ∩ Sj(U) = ∅. For a self-similar set F that is the attractor of an

iterated function system S = {Si}Ni=1, satisfying the open set condition, with

N ≥ 2, and with scaling ratios {ri}Ni=1, we define the similarity dimension of

F to be the unique real solution dS to the equation
∑N

i=1 r
dS
i = 1.

Example 3. Let S = {Si}Ni=1 be an IFS satisfying the open set condition

and with scaling ratios {ri}Ni=1 such that ri = r for all i = 1, ..., N . Then dS

solves N · rd = 1, so that we obtain dS = − logN
logr

.

We may informally derive the equation in definition 4, above, by rea-

soning that the d-dimensional volume of F scaled by a factor a, vol(aF ) =∑N
i=1 vol(a · ri · F ), by the disjointness provided by the open set condition,
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and by the assumption that vol(aF ) scales as vol(aF ) = adSvol(F ); where

dS is the similarity dimension. This scaling behavior is at the heart of our

notion of self-similarity for measures and functions.

Definition 12. We say that a measure µ or function f is scale invariant

with exponent β if there is a number β such that µ(aE) = aβµ(E) or if

f(ax) = aβf(x), respectively [Sor].

We will see that this notion of self-similarity is fundamental to applied

science, since scale invariance implies that physical laws are independent of

the units used to measure them.

3.1 Symmetry of Scale and Conservation of Physical

Quantities

Fractal research often concerns one particular symmetry in nature: the sym-

metry of scale. Often we will invoke the beauty of fractal images or the

amazing complexity of chaos, but we may not mention that this particular

symmetry is of fundamental importance in science, especially in the field

theories of physics [D-M-S]. Transformations of scale, together with trans-

lations, the special conformal transformations and the Lorentz transforma-

tions, form the group of conformal symmetries, the global symmetry group of

a non-supersymmetric interacting field theory. Loosely speaking then, these

symmetries imply that physical laws should be the same no matter where

we find ourselves (translation subgroup), no matter what speed we are trav-
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elling at (Lorentz subgroup), no matter if we exchange the roles of the very

far and very near (inversions in the special conformal transformations), and

no matter the size of the scale of observation (scale symmetry subgroup).

We recall an impressive theorem of Emmy Noether [Arn].

Theorem 10. (Noether’s Theorem) If an action admits a one parameter

family of diffeomorphisms, it has a first integral.

This theorem is paraphrased in [Sor] as saying that “for every continuous

symmetry of the laws of physics, there must exist a conservation law. For

every conservation law, there must exist a continuous symmetry,” referring

to the vanishing derivative of the first integral as a conservation law. This

theorem is stated in terms of an action e.g. a Lagrangian L = T − V . If the

potential V (~r) has the property that for any scalar α, V (α~r) = αkV (~r) for

some k, i.e. if V is scale invariant, then under the transformations ~r 7→ α~r

and t 7→ βt we have ṙ 7→ α
β
ṙ and T 7→ α2

β2T , so that β = α1− k
2 means that

L(α~r) = T (α~r)− V (α~r) =
α2

β2
T (~r)− αkV (α~r) = αkL(~r),

so that the Lagrangian is invariant when we assume a symmetry of scale.

This calculation demonstrates that the action has a scale symmetry, and

implies the existence of a conserved quantity. The change in scale of the

parameters of the action corresponds to a change in units of meaurement,and

the conservation of the relative quantities then results in the validity of the

science of dimensional analysis. Dimensional analysis has proven useful in the
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study of difficult nonlinear problems, once a suitable choice of a “similarity

variable” has been made [Sor].

3.2 Dimensional Analysis

As a consequence of the scale symmetry of the Lagrangian of a system, we

can justify the use of a tool for forming hypotheses, checking solutions and

determining units of relevant quantities, often greatly simplifying the analysis

of nonlinear problems. Units of measurements are thought of as measuring

what are called the dimensions of a system. In mechanics, these are the

fundamental quantities mass (M), length (L), and time (T ).

The independence of the scale of units demonstrated above implies that

meaningful physical laws must be homogenous in terms of physical dimen-

sions, so that the same dimensions appear on both sides of an equal sign, and

only quantities in the same dimensions can be added or subtracted. Quanti-

ties in differing dimensions are combined by multiplication, so that monomi-

als MµLλT τ represent elements < µ, λ, τ > in a 3-dimensional vector space

over Q with rational powers (MµLλT τ )q of those monomials corresponding

to scalar multiplication of these vectors. In light of this structure, we can

view the choice of fundamental dimensions as a basis of Q3, with the ba-

sis {M,L, T} corresponding to {M,L, T}={(1, 0, 0), (0, 1, 0), (0, 0, 1)} but a

basis consisting of the dimensions force(F ), length (L), and time (T ) corre-

sponds to the basis {F,L, T}={(1, 1,−2), (0, 1, 0), (0, 0, 1)} (with respect to

the basis {M,L, T}) since [F ] = [MLT−2].
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Example 4. In his 1941 theory of turbulence, A. N. Kolmogorov determined

that the velocity ul of the flow in an eddy of size l should be a function of

the energy transfer rate ε = d(u2)
dt

. The relevant quantities have the dimen-

sions [l] = L, [ul] = LT−1 and [ε] = L2T−3, corresponding to the vectors

(0, 1, 0), (0, 1,−1) and (0, 2,−3) respectively. Then we solve (0, 1,−1) =

a[b(0, 1, 0) + c(0, 2,−3)], since we want to express ul in terms of l and ε.

The solution a = 1
3
, b = 1, c = 1 corresponds to multiplying the two variables

and taking the cube root, to obtain ul = c(lε)1/3. The dimensionless constant

c is a result of Buckingham’s Pi theorem, which implies that since there is

one dimension in our basis unused in our formula, there is one dimensionless

constant in the solution [Bar].

Anyone who has tried to determine the dependency of a unit of mea-

surement on other units, has wanted for a systematic way to determine the

sought exponents. The formalism just introduced, of course, reduces this to

a problem in linear algebra.

Proposition 1. To determine the dependency U = (Ua1
1 Ua2

2 ...UaN
N )q of a unit

U in dimensions M1,M2, ...MN with

[U ] = Mµ1
1 Mµ2

2 ...MµN
N

on N independent units U1, U2, ..., UN , with

[Uj] = Mµ1j
1 Mµ2j

2 ...MµN j
N ,
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we solve the matrix equation

[µ1, µ2, ..., µN ] = q[a1, a2, ..., aN ]



µ11 µ21 ... µN1

µ21 µ22 ... µN2

...
...

...
...

µN1 µN2 ... µNN


.

Thus, we obtain

q[a1, a2, ..., aN ] = [µ1, µ2, ..., µN ]



µ11 µ21 ... µN1

µ21 µ22 ... µN2

...
...

...
...

µN1 µN2 ... µNN



−1

Proof. Since the units Uj are independent, the vectors of the exponents

[µ1j, µ2j, ..., µNj] of the dimensions M1,M2, ...,MN , are linearly independent.

Then, since we have N independent vectors with N components, the matrix

[µij] is invertible.

3.3 Self-Similarity and Scale Invariance

We will define the notion of self-similarity for sets (such as fractals) as well as

for time developing phenomena (such as solutions to differential equations).

We will refer to this second notion of self-similarity as scale invariance. We

will see that scale invariance occurs in discrete as well as in continuous forms.
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A time developing phenomenon is called self-similar if the spatial distri-

butions of its properties at various differing moments of time can be obtained

from one another by means of a similarity transformation (we call a compo-

sition of an isometry and a dilation a similarity transformation). A compact

set F is called self -similar if there are N similarity transformations {Φj}Nj=1

on Rd with scaling ratios {rj}Nj=1 ∈ (0, 1)N such that F = ∪Nj=1Φj(F ).

A function f of a parameter x is called scale invariant under the trans-

formation of scale x 7→ λx if there is a function µ of λ such that f(x) =

µ(λ)f(λx), which we verify is solved by the power law f(x) = cxα since

these suppositions imply, since f is scale invariant, cxα = µf(λx) = µλαxα,

so that c = µλα and α = log(c)−log(µ)
log(λ)

, so that the values of f at two different

scales depends on the ratio of the two scales. This definition matches with

that of a self-similar set for N = 1, without the dilatory requirement. We

call this scale invariance discrete or continuous if the defining relationship

f(x) = µ(λ)f(λx) holds for a discrete or respectively, a continuous set of

values λ. In the discrete case, we call the value (or values) λ the preferred

scales of f .

As Gottfried Liebniz famously noticed, the real number line displays a

continuous scale invariance since dilating or contracting R by any finite, non-

zero quantity leaves it fixed. Similarly for RN for any N ∈ N, as for any line

through the origin in RN , thus for the entire set of such lines, so for the real

projective planes RPN . We see that this scale invariance is geometric and

not a topological property since we notice that in any compactified metric
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space, the point at infinity, denoted ∞, is fixed under all dilations and con-

tractions, then so will be the compactified RN ∪ {∞}. But RN ∪ {∞} = SN

topologically, yet we can find homeomorphisms from SN to regular polygons,

whose curvature, concentrated distributionally in the vertices and edges (as

in the Regge calculus), is non-zero, contrasting that of RN ∪ {∞}.

3.4 Examples of Scale Invariance

First examples would include lines (y = cx) and monomials (y = cxn). The

slope fields of the solutions to homogenous differential equations are another

important class of examples, these are equations in e.g. two variables which

can be reduced to an equation in the ratio of those variables. Included here

are the rational linear transformations of the conformal symmetry group (e.g.

y′ = px+qy
rx+sy

), which depending on the number of eigenvalues of the associated

matrix to the transformation (A =

p q

r s

), yield a phase portrait of lines

through the origin, concentric circles or infinite spirals.

3.5 Symmetry of Scale and Conservation of Physical

Quantities

As fractal researchers we are often called upon to explain why we are so inter-

ested in one particular symmetry above all others in nature: the symmetry of

scale. Often we will invoke the beauty of fractal images or the amazing com-
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plexity of chaos, but we do not mention frequently enough that this particular

symmetry is of fundamental importance in science and in the universe. To-

gether with the translations, the special conformal transformations and the

Lorentz transformations, the transformations of scale factor into the largest

possible global symmetry group of a non-supersymmetric interacting field

theory. Loosely speaking then, these symmetries imply that physical laws

should be the same no matter where we find ourselves (translation subgroup),

no matter what speed we are travelling at (Lorentz subgroup), no matter the

size of the scale of observation (scale symmetry subgroup), and no matter if

we exchange the roles of the very far and very near (inversions in the spe-

cial conformal transformations). We recall the impressive theorem of Emmy

Noether, which we paraphrase as saying that for any symmetry in a system,

there is a conserved quantity (i.e. a conservation law). This theorem is for-

mally stated in terms of an action e.g. a Lagrangian L = T−V , so that if the

potential V (~r) is scale invariant so that V (α~r) = αkV (~r) for some k, under

the transformations ~r 7→ α~r and t 7→ βt then ṙ 7→ α
β
ṙ and T 7→ α2

β2T , so that

β = α1− k
2 means that L(α~r) = T (α~r)−V (α~r) = α2

β2T (~r)−αkV (α~r) = αkL(~r),

so that the Lagrangian is invariant when we assume a symmetry of scale.

This calculation formalizes our intuition that a physical quantity is inde-

pendent of the scale at which it is measured, and is codified in the science of

dimensional analysis. While it seems unsurprising that a tool derived under

the assumption of scale invariance should be useful for tackling problems in-

volving a symmetry of scale, the technique of dimensional analysis has proven
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amazingly useful in the study of difficult non-linear problems, once a suitable

choice of a “similarity variable” has been made.

3.6 Dimensional Analysis and Similarity Solutions

Among all of the permissible symmetries of a physical theory, the symmetry

of scales has given us the most practial tool for attacking difficult physi-

cal problems: dimensional analysis. Every given physical question involves

physical quantities measured in units that measure what are called physical

dimensions: quantities such as length (L), time (t), temperature (T ), and

mass (M). Their products like (n-)volume (Ln), speed (LT−1), and energy

(MLT−2) result in integer powers of these dimensions. For a suitable given

problem, there will be a unique combination of the input data that will result

in a meaningful solution, a fact that allows us to quickly outline the solutions

to difficult problems up to dimensionless constants.

For example, in his 1941 theory of turbulence A. N. Kolmogorov deter-

mined that the velocity ul of the flow in an eddy of size l should be a function

of the energy transfer rate ε = d(u2)
dt

. The relevant quantities have the di-

mensions [l] = L, [ul] = LT−1 and [ε] = L2T−3. Since we want ul in terms of

l and ε we have only the choice of multiplying the two variables and taking

the cube root, to obtain ul = c(lε)1/3.

As an example of the use of similarity variables we may consider the

diffusion equation ∂tu = ∂xxu, and seek a u(x, t) such that u = tαf(xtβ) for

some α and β. Making the choice of similarity variable ξ = txβ the equation
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reduces to f ′′ + ξ/2f ′ − αf = 0 using β = −α/2 and the constant mass

property of diffusion we get f(ξ) = Ae−ξ
2/4 so that u = A√

t
e−x

2/4t.

4 Applications of Self Similarity and Scale

Invariance

4.1 Self-Similarity in Cosmology

In effect, the work of great astronomers and physicists, such as Luciano

Pietronero and Bob Oldershaw, suggests that for (a model of) our universe,

U, we have U = SU for S a family of random scaling laws, so that U is a

statistically self-similar fractal. While interesting, this similarity holds only

for a certain range of scales approximately between tens and hundreds of

millions of light years [Old], [Pie]. Like virtually all fractality that is observed

in the natural world, it is approximate [Sta-Sta]. This leads us to wonder

about the breaking of the scale symmetry, an aspect of the phenomenon of

scale covariance.

If the family of scaling laws S should be found describing the distribution

of matter and energy in our universe, and should the equation U = SU hold

over many or all scales then a long-sought, one-line “equation of the universe”

will have been obtained, perfect to print on t-shirts popularizing science and

mathematics. We recall the comment of the Marquis de Laplace that knowing

the initial arrangement of particles in the universe would grant him knowledge
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of the motion of all particles in the universe, so we would expect U = SU to

govern the dynamics of the universe as well, and yield testable conclusions

about the state, composition, size and age of the universe.

Figure 2: A t-shirt depicting a fractal ’equation of the universe’.

Similar catchy slogans have established this link between form and func-

tion (structure and dynamics) previously. Sir Isaac Newton’s second law of

motion F = mA, a dynamical expression to be sure, also expresses struc-

ture in its implication of conical section trajectories for objects in the uni-

verse, moving under the influence of gravitation. Albert Einstein’s equations

E = mc2 and Gµν = 8πTµν , respectively inform us as to the structure and

dynamics of the microscopic and macroscopic worlds, explicitly dealing with

both aspects.

4.2 Application of Contractivity to Causality

The following construction is presented as an example of how simple geomet-

ric assumptions can lead to fractality. It was intended as a counter to the

cosmological assumption that the expansion of the universe can be reversed
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to a single point. It reveals fractals to be a type of multilateral perspective.

The introduction of perspective into the consciousness of western civilization

had huge effects, leading to classical mechanics and non-Euclidean geometry

and relativity [Shlain]. Indeed projective geometry is still a thriving research

field of mathematics. The generalization of geometry offered by the theory

of fractals promises nothing less.

4.2.1 Spacelike Cantor Sets in a Toy Model

The hypothesis that the contents of the universe may be arranged in fractal

patterns [Old],[Pie], seems to suggest that space itself may have an underly-

ing self-similarity. The goal of this section is to explore a simplified scenario

in which spacelike fractal sets can occur. The main ingredients are the do-

main of causal contact viewed as a contraction mapping on intervals of space

as time is reversed, the completeness of Euclidean space, and the almost

sure discrepancy between measurements of positions by differing observers,

when the measurement of the position of the source is taken as a continuous

random variable. This classical scenario blissfully ignores quantum uncer-

tainty, (other) spacetime singularities, and assumes an absolute time and an

impartial observer.

Recall that the domain of influence at time t of an initial condition at

space-time coordinates (x, t) = (x0, 0) is the interval [x0 − ct, x0 + ct] in one

dimension of space, as given by solutions to the wave equation uxx− cutt = 0

[Stra]. We first consider discrete increments in time to study the fractality of
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the origin of a signal in our scenario. Then, this interval, for a given time of

measurement t > 1, with t fixed, in steps of ∆t is contracted by a contraction

factor 2c(t −∆t)/2ct = (t −∆t)/t < 1. Thus, we observe the contractivity

of causally connected regions when looking into the past.

In our scenario, the emission from a spacelike fractal source, results from

the physical reality that two measurements of our source, with space coor-

dinate in a non-trivial complete metric space, will almost surely yield two

different positions of that source. The idealization of our model suggests that

each such front is independent of which observer will measure it, therefore,

compositions of contraction mappings of each front will be taken with respect

to each of the measurements of the initial position. Let us imagine the sig-

nal observed by the two observers at time t0, with t0 fixed, whose positions

are located in the space-interval (ξ1 − tc, ξ2 + tc), and who detect the source

at spacetime coordinates (ξ1, 0) and (ξ2, 0), respectively, with ξ1 = −ξ2 and

ξ2 > 0 for definiteness. Then we define contraction mappings on the interval

(ξ1 − tc, ξ2 + tc), with time parameterizing the steps of the composition of

the resulting IFS. Taking steps in time at the negative integer powers of the

initial time allows for an infinite number of steps so that the resulting IFS

can converge to a true fractal attractor at the time of emission of the signal.

The result is a spacelike Cantor set in this simplified case of two observations.

Example 5. We embed our images of the interval I = [ξ1 − ct0, ξ2 + ct0] in

I × n at the times n = 1 − log t
log t0

∈ [0,∞] (for t ∈ [0, t0]), in the space of

scales of the initial time t0. We have t = t
log t
log t0
0 ∈ (0, t0], then t = t1−n0 so that
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x = ct 7→ x = ct1−n0 .

Iterating the IFS S = {Si}2
i=1, in steps of n = 1− logt0 t ∈ N, we obtain

a space interval for each contraction mapping at every finite n. We define

S1(x) = r1x + ξ1 and S2(x) = r2x + ξ2, for contraction ratios r1 and r2 and

for ξ1, ξ2, the initial source locations as measured by the observers.

Taking the ratio of the lengths of the successive intervals, at times n + 1

and n, we compute ri :=
2ct

1−(n+1)
0

2ct1−n0

= 1
t0
< 1, thus establishing contractivity

(under the assumption above that t0 > 1, noting that a similar argument

works for small t0) and providing r1 = r2 = t−1
0 so that S1(x) = xt−1

0 + ξ1

and S2(x) = xt−1
0 + ξ2. Then the invariant set F = ∪2

i=1Si(F ) will define a

fractal attractor on the surface t = 0 or n =∞, by contractivity of S applied

to I = [ξ1− ct0, ξ2 + ct0]. A symmetrical argument supplies a fractal attractor

for the future dependecy of present events.

We can easily calculate the fractal dimension of the resulting invariant set

F . For equicontractive self-similar fractals (eventually) without overlap of

the images of the contraction mappings (as e.g. for ξ2 = 1
3

and t0 = 3), the

box-counting dimension, and Hausdorff fractal dimensions are both equal

to the similarity dimension, by Moran’s Theorem [Hut], the exponent dS

that solves the Moran equation with ri = r for all i. Thus we compute

dH(F ) = dB(F ) = dS(F ) = log 2
log t0

. We note that the time of observation is

in the denominator of this expression, suggesting that the dimension of the

fractal source is seen to diminish with the passage of time, and our distance

from the source renders it more pointlike in appearance.

40



5 Box Counting Functions of Compact Sets

Definition 13. Let X be a complete metric space under the metric d : X ×

X → R. A Box-Counting Function of a set E ⊂ (X, d) is a function NE(r) :

E → N such that NE(r) = |U|, where U is a minimal covering of E by sets

of diameter not more than r.

Definition 14. Let X be a complete metric space under the metric d : X ×

X → R. A compact subset K ⊂ X is a set such that for any covering |U|,

there exists a finite sub-collection U = ∪Nn=1Un, such that K ⊂ U .

Proposition 2. Let (X, d) be a complete metric space. For any compact

subset K ⊂ X, a box-counting function N(r) := fr(K) is defined.

Proof. Let Ur be a covering of K by sets of diameter at most r. Since K is

compact, there is a finite sub-collection Ur that covers K. The class of all sub-

collections Ur has a member with minimal cardinality, since the cardinality

of the Ur is finite and bounded below by one. The cardinality |Ur| of this

minimal element Ur is the value of the Box-Counting function N(r).

For general IFS fractals, the box counting function may be somewhat

difficult quantify with precision. We study first the example of the Cantor

set as a simple example that is well-behaved: it has singularities only at the

powers of the preferred scale.

A simple example when this happy condition does not hold is furnished

by the fractal whose complement in [0, 1] is the famous Fibonacci string

[Lap-vanF].

41



Figure 3: The box-counting function of the Cantor set.

Example 6. Let F be the fixed-point attractor of S = {Si(x)}2
i=1, with

S1(x) = 1
2
x and S2(x) = 1

4
x+ 3

4
. Observe that for inverse scale r, NF (4n) =

3n, for n > 0. Yet we see that NF (r) = 2 for r ∈ (1, 2]. Furthermore, we

might guess that this cycle will repeat, multiplied by 3 through each period of

the scale variable through a magnification of 4, so that NF (8) would equal 6,

but we see we can cover F at the scale 1
8

using only 5 boxes.

We can, however, find some things that are usually true about the box

counting function:

• It is non-decreasing with the inverse scale.

• Taking values on the natural numbers, it can have only finitely many

singularities on a “fundamental half-open period” (rn0 , r
n+1
0 ], for a pre-

ferred inverse scale r0, the smallest of the contraction ratios of S.

• NF (rn0 ) = NF (r0)n.
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The first item fails in the case of “negative scaling”. This should relate

to the concept of negative dimension in [Man]. We might like to say that

there can only be m−1 singularities in each such period, but this would rest

upon the perfect log-periodicity of NF (r), which fails by the counterexample

above. This is another example of the log-periodic corrections to scale. The

third item can be defeated by IFS with construction rules that depend on

the scale or stage of the construction.

We will consider the third item a condition on many constructions we

will study. This will characterize an intrinsic geometry of the prefractal at

each appropriate scale of observation, when we allow boxes to fit only within

the prefractal construction at a given scale. We shall see in our study of

representations of fractals that this condition holds for the IFS fractals that

we can represent with vectors and matrices.

5.1 An Equivalent Definition

Mesh Coverings: Covering K ⊂ Rm with a δ-coordinate mesh of cubes of

the form:

[a1δ, (a1 + 1)δ]× · · · × [amδ, (am + 1)δ]

(with the ai ∈ Z), we can define N∗δ (K) to be the number of δ-mesh cubes

that intersect K. If Nδ
√
m(K) is the minimal cardinality of coverings of K

by sets of diameter δ
√
m, then Nδ

√
n(K) ≤ N∗δ (K). Since we can contain

any set ∆ of diameter at most δ in at most 3m mesh cubes of diameter δ, by

43



choosing any cube intersecting ∆ and its 3m−1 neighbors in Rm, we see that

N∗δ (K) ≤ 3mNδ
√
m(K). Then since the number of K-intersecting δ

√
n-mesh

cubes is within a constant multiple of the minimal number of sets of diameter

δ needed to cover K, we can take N∗δ (K) to be the function Nδ(K).

Remark 4. The bounds we have established on the equivalent form of the

counting function leave the fractal dimension of K invariant. See [Fal] for a

detailed proof.

It is this definition of the box counting function that gives us hope of an

algorithmic approach to finding a box counting function of a fractal. We will

fix a grid of unit boxes at the origin, then continuously decrease the scale of

that grin, while counting the number of boxes with nonempty intersection

with Fn = Sn(I). While this NGrid(F )(r) need not take the same values ev-

erywhere as a minimal covering of F by boxes of inverse scale r, we know

that the ratio of its logarithm to that of r converges to the same limit as for

NF (r).

5.2 Box Counting Dimension as Slope of regression

line

Given finite, randomly distributed sample data Y = {y1, ..., yn}, of an under-

lying parameter X = {x1, ..., xn}, we might make a logarithmic regression of

the changes in the sample data over the changes in the parameter times the
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sample mean of the parameter over the sample mean of the data.

Curiously, these quantities will fail to exist for an infinite, power law

distributed data set. Yet, the prescribed ratio will approach a limit, see the

next chapter.

To compute this dependence at the means, since it may change discon-

tinuously at each point, we can compute an ordinary least squares regression

ηXY =
n
∑n

i=1 xiyi −
∑n

i=1 xi
∑n

i=1 yi
n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2

1
n

∑n
i=1 xi

1
n

∑n
i=1 yi

.

On the other hand, if we wish to compute this dependence at a point,

we may compute the following quantity, which requires differentiability of

the data’s dependence on the parameter, or we can work with generalized

derivatives (see next chapter). We can compute the relative rate of change

of Y = y(x) with X = x as

lim
∆x→0

∆y

∆x

x

y
=
dy

dx

y

x
=
d ln y

d lnx
.

5.2.1 Application to economics

This formula is both an estimator of the slope of a double-logarithmic plot

of two variables, as well as the economic price elasticity of demand for X

representing price of a good, or the income elasticity of consumption for

X representing customer (mean) income, with Y indicating the quantity

demanded of the good in question.
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Figure 4: A plot of logNr(C) against log r, its linear interpolation and singu-
larities. Note delta masses are truncated to the height of their coefficients.

Elasticity determines the relative change of a quantity demanded, under

change in the price of a good, or the income of the consumer. We observe that

goods which are strictly needed will have much lower response of quantity

demanded to changes in price, while consumption of luxuries will will respond

markedly to changes in price.

Since economics is the distribution of goods in the presence of scarcity,

this elasticity could be deemed a principle of singular importance in orga-

nizing the entire economy by goods and industries. In recognition that this

quantity is akin to a local fractal dimension (see next chapter), we could

see the importance of (multi-)fractal dimension as an organizing principle of

mathematical functions, at least for those modelling phenomena within the

human world.
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Figure 5: Goods and industries plotted on the axes of price versus elasticity.
The arrows show the author’s hypothesized directions of change in price dur-
ing times of economic contraction. During economic expansion, the arrows
would be reversed.

5.3 Box-Counting Dimension as a Derivative

In effect, the work of scientists who propose fractal geometries to describe

natural structures, suggests that self-similarity holds only for a certain ranges

of scales [Old], [Pie]. Like virtually all fractality that is observed in the nat-

ural world, it is approximate [Sta-Sta]. This leads us to attempt to develop

fractal analysis tools that can estimate the fractal dimension of a set at a

particular scale. Scale dependence of structures is called scale covariance,

or dependence of a phenomenon on the scale of observation, which includes

self-similarity as a special case.

According to B. B. Mandelbrot, “the familiar box dimension DB simply

measures the rate of increase of N(b) with b”, [Man2], see also [Sta]. Thus
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motivated, we begin our study of scale covariance by considering the slope of

a log-log plot of the box-counting function against the scale of measurement

[Bro-Lie], as the generalized derivative, d logN(r)
d log(r)

. Using this derivative, we

can find ODE’s to describe fractals as well as prefractal, almost self-similar

structures. The box-counting dimension is the limit as the scale vanishes of

this derivative, essentially a “boundary condition”, for ODE’s describing scale

covariance. In the remainder of this section, we will employ the convention

of using the variable r, to represent the inverse scale.

Definition 15. The box-counting derivative, is the dependence of the log-

arithm of the box counting function on the logarithm of the inverse scale, a

generalized function on the space of inverse scales r ∈ (0,∞),

∂BoxN(r) := r
dN(r)
dr

N(r)
,

in the sense of generalized derivatives of distributions.

Remark 5. 1. For N(r) a smooth, non-vanishing, mass distribution, ∂BoxN(r)

is the corresponding double logarithmic derivative:

d logN(r)

d log r
= lim

r0→r

logN(r)− logN(r0)

(log r − log r0)

2. Whenever the limit of this quantity exists as r →∞, for a given F , we

see that ∂BoxNF (r) approaches the box-counting dimension dB(F ).

3. For a given F with N(r) a discrete counting function, ∂BoxN(r) is
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a sum of Dirac measures. This singular measure has support at the

singularities of N(r), and we recover the “slope of the log-log- plot”

by evaluating this singular measure at its singularities. This quantity

estimates the box-counting dimension of F , and may vary over changes

in inverse scale r.

Example 7. For N(r) smooth, we can verify that we get the expected power

law solution N(r) = rk, for a fixed constant k, for the equation d logN(r)
d log r

=

logN(r)
log r

by a simple separation of variables and exponentiation. If we suppose

that scale invariance holds only in a range of scales [a, b], and that F scales

as do points outside of [a, b], then separating and integrating we find that

N(r) = e
b
a

k

, that is, N remains constant on [a, b].

Example 8. Let F be the middle thirds Cantor set. Observing that each

increment of (inverse) scale increases the number of “boxes” (line segments

in R) needed to cover F by a factor of 2. Then we can compute the count-

ing function of F in terms of the inverse scale (or magnification factor) as

NF(r) = 2dlog3 re0, where we define dre0 := max(0, dre), and dre is the least

integer greater than or equal to r. Then

∂BoxNF(r) =
r

2dlog3 re0
2dlog3 re0 log 2

∑∞
n=0 δ(r − 3n)

r log 3
=

log 2
∑∞

n=0 δ(r − 3n)

log 3
.

49



We recover the pointwise “slope of the log-log- plot” by computing

∂BoxNF(r) =


0 if log3 r /∈ Z

log 2
log 3

if log3 r ∈ Z.

We see that ∂BoxNF(r) = ∂BoxNF(3r), and it has multiplicative period of 3.

Figure 6: A plot of ∂BoxNC(r).

In the concluding example above, we observed the log-periodicity of the

measure associated to the estimated box-dimension for a given deterministic

fractal. Indeed, for integers n and k, and for log r = n(1+ 2πik
log 3

), we see that r

is in the support of the measure ∂BoxNF(r). This logarithmic period of 2πi
log 3

,

has been observed, in the study of the Cantor string in [Lap-vanF] . This is

one example of log-periodic scaling observed in both fractal geometry and in

the study of critical systems [Sor]. Since this periodicity may be different for
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fractals that share the same box-counting dimension, we propose that this

technique can be useful in evaluating geometrical models of critical systems.

6 Algebra and the Category of Fractals

6.1 Categorical Nature of Self-Similarity

It seems natural to ask, “in what sense are self-similarity and fractality cate-

gorical concepts?” That is, “When can we expect these notions to have pre-

cise meanings in other sub-fields, or even throughout mathematics? What

implications will follow?”

In the work of F. Lawvere we find that (suitably generalized) metric

spaces X are [0,∞]-enriched categories [Law], whose objects are the ele-

ments x ∈ X and with (an object of) morphisms X(x, y) = d(x, y)[Stub-Bo].

Furthermore non-expansive maps, including contraction mappings, are the

functors between these categories [Law]. In a generalized, topological view of

self-similarity [Lei], we find that self-similarity and compact metrizability are

equivalent for topological spaces, giving us a whole category of self-similar

objects, whose objects are the non-negative real numbers a ∈ [0,∞] and with

morphisms Hom(a, b) =

 b− a b ≥ a

0 a > b
.
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6.2 Coalgebraic Representation Theory of Fractal Sets

Extending the theory of self-similar fractals to that of self-similar measures,

as in [Hut], has been a natural step toward understanding the algebra of self-

similarity, since we may define integral transforms of these measures [Stri],

giving us a type of representation theory for these objects [Loom].

Recent work in algebra ([H-J-N]) has developed a representation theory

of the streams of characters comprising the words on the alphabet of indices

of the contraction maps of the iterated function systems that give rise to

self-similar fractals. Indeed, the contraction mapping principle is key to

establishing a bijection between the fractal set itself and the representation

by streams of characters.

Definition 16. An infinite stream of characters is a word a0a1a2... ∈ {0, ..., N−

1}ω, the space of infinite words on {0, ..., N − 1}. For each element x in a

self-similar fractal F given by an IFS, S = {Si}N−1
i=0 , a stream can be cho-

sen so that for all i, x ∈ S(ai) ◦ Sai−1 ◦ .... ◦ S(a0)(I), where, without loss of

generality, I = [0, 1].

A self-similar fractal F ⊂ I resulting from an IFS (here we work without

overlaps, see [H-J-N] and [Lei] for generalizations) can be given a symbolic

representation in terms of words σ = a0a1... ∈ Nω, the space of infinite words

on the alphabet N := {1, ..., N}, we shall call each such word a stream, after

[H-J-N]. Given this stream σ we assign a point [[σ]] in an interval I, calling

the assigment [[ ]] : Nω → I the denotation map and see that its restriction

52



to equivalence classes determined by the elements in F which the streams

indicate, Nω ∼−→ F is bijective by construction, with inverse F
∼−→ Nω called

the representation map.

Again following [H-J-N], we see that the set of symbolic representatives

of F , Nω carries the final coalgebra ι : Nω ∼−→ N ·Nω for the combinatorial

specification of F , the functor N · ( ) : Sets → Sets, reflecting the N-fold

recursive construction of F . We call this final coalgebra the symbolic fractal

for F , and note its recursive structure. It is this view of the alphabet N as an

IFS which we identify with an algebra χ : N · F → F . Then the (restricted)

denotation map makes the following diagram commute:

N ·Nω N ·[[ ]]χ−−−−→ N · F
∼=
xι yχ

Nω [[ ]]χ−−−→ F

(1)

In the absence of any overlap between the images of I under the functions

in the IFS, Theorem 1 is used to show uniqueness of the denotation map:

Theorem 11. There exists a unique denotation map [[ ]]χ that makes the

diagram (1) commute.

The following sketch highlights the use of Banach’s theorem:
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Sketch. The set of morphisms Sets(Nω, I) is a complete metric space under

d(f, g) = supσ∈Nω{d(fσ, gσ)}. On Sets(Nω, I) the map Φ : F 7→ χ ◦ (N ·

F ) ◦ ι is a contraction map. Therefore, by the Banach fixed point theorem

(Theorem 1), it has a unique fixed point.

6.3 Algebra of IFS Fractals

6.3.1 The Category of IFS fractals

Denote by C the compact subsets of [0, 1]n ⊂ Rn. Any contractive family of

similarities, or IFS S takes an object in C to another object in C, so it is a

morphism in morC. If we allow the “empty composition” of S to be denoted

by S0, then S0 is an identity on C.We may consider also a small category of

images of I under composition powers of an IFS S(n). Then the powers of

S commute, suggesting the structure of a fusion category. We would like to

show that the small category of approximations to an IFS fractal is an object

in a monoidal category in which the tensor product is the application of an

IFS, which we show has a tensor product representation thoery.

Theorem 12. The images of I = [0, 1]n ⊂ Rn under finite families of con-

tractive similarities is a category IFS, with objects ObIFS = Sj(I) : S ∈ S,

and morphisms MorIFS = {Sj : S ∈ S}.

Proof. For the class S = {S : S is a finite family of contraction maps on I}

of families of contractions on I ⊂ RN , let S−1 ◦ Sj = Sj−1, S−j = S−1 ◦
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S−1 ◦ ... ◦ S−1 and S0(I) = I, then for any S, T ∈ S, we have S(j)(I) =

S(j)(T−k(T k(I)), so that SjT−k : T k(I) → Sj(I) is a morphism from T k(I)

to Sj(I), then homIFS(T
k(I), Sj(I)) contains at least one element, SjT−k.

Associativity of these morphisms under composition comes from associa-

tivity of functions under composition.

We can consider the class {Sn(I)}∞n=0 to be the objects of a small category,

with morphisms the {Sn(·)}∞n=0, and their inverses. Topologically, we can

identify I and S−j(I), for any j > 1, so we see the natural monoid structure,

since not every element can have an inverse operation applied to it, much

like for the natural numbers.

Proposition 3. For any given contractive family of similarities S = {Si :

[0, 1]n → [0, 1]n}ni=1, the set of images S(k)([0, 1]n) of (closed) subsets of [0, 1]n

under iterated application of S is a monoid with operation the application of

S, when we define S(0)([0, 1]n) = [0, 1]n.

Proof. Define [0, 1]n = S(0)([0, 1]n) to give that S(0)([0, 1]n), is the identity for

the monoid. For any two iterated compositions S(a) and S(b), we have that

S(a) ◦ S(b) = S(a+b), so that the set of images is closed under compositions.

Since composition is associative, we have that S(a) ◦ (S(b) ◦S(c)) = S(a+b+c) =

(S(a) ◦ S(b)) ◦ S(c).

We can show that the small category with objects {Sn(I)}∞n=0 and mor-

phisms {Sn(·)}∞n=0 is a tensor category.
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Theorem 13. The small category with objects {Sn(I)}∞n=0 and morhpisms

{Sn(·)}∞n=0 is a tensor category.

Proof. Within our small category, the unit object will be 1 = I = S0(I)

with map ι : 1 ⊗ 1 → 1, when we define the tensor product to be ⊗ :

(Sn(I), Sm(I)) → Sn+m(I) with the identification S−k(I) = I, for positive

integers k, the associativity diagram commutes since

(Sn(I)⊗ Sm(I))⊗ Sk(I) = Sn+m(I)⊗ Sk(I) = Sn+m+k(I)

= Sn(I)⊗ (Sm+k(I)) = Sn(I)⊗ (Sm(I)⊗ Sk(I)).

Of course, S0(I) ⊗ Sn(I) = Sn(I). One can easily verify that the pentagon

and unit axioms hold.

Conjecture 1. The small category with objects {Sn(I)}∞n=0 and morphisms

{Sn(·)}∞n=0 is a braided fusion category.

7 Tensor Representations of IFS Fractals

This technique of representing approximations to fractals and their measures

is inspired by graph theoretic adjacency matrix techniques, and, superficially,

by the notion of schemes in Khinchin’s theory of information [Khin]. In

graph theory we are interested in adjancency properties of graphs, so we
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Figure 7: The graphical calculus of the construction of a fractal attractor F
to an IFS S.

need a matrix to encode this information, but fractals on the line are totally

disconnected. Yet, the connectedness properties of the approximations to

the fractal give differential geometric and homological algebraic information

about the fractal and its approximants, and we can use a simple vector to

represent the connected components of these approximations. Schemes in

Khinchin’s work relate probabilities to states, and they are multiplied in a

row-wise format. We will put this to use when the geometry of the IFS images

plays an important role that the topological information cannot communicate

by itself. Similar representations are mentioned [FouSmiSpei], in the context

of computing correlation dimensions and their oscillations.

The core idea is to simplify the computation of composition of contrac-

tion mappings by representing them as a type of multiplication, something
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jokingly referred to as “complication”, the conflation of multiplication and

composition [unpublished remark due to Erin Pearse]. Exposing iterated

function systems as a tensor product allows simplified computation of box-

counting functions and measures, representations and illustrations of fractal

sets, duality pairings between the self-similar measures (and the approxima-

tions thereof) supported on the fractal and the flows on the approximations

and its limits, additional connections to topology, geometry and physics, and

exposes the categorical nature of fractals defined as the attractors of Iterated

Function Systems.

7.1 Representations

Definition 17. We define a (set theoretic) representation of F by an alge-

braic object G to be a function ρ, such that for all x ∈ F and n1, n2 ∈ G,

ρ(1)[x] = x

ρ(n1n2)[x] = ρ(n1)[ρ(n2)[x]].

Much as groups are commonly represented by linear groups, we will be

representing monoids with monoids under tensor products (bi-linear monoids).

While the representation we construct is fairly simplistic, its value lies in its

utility for numerical approximation, and in placing IFS fractals in a context

of measure theoretic, geometrical and algebraic techniques.
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7.2 Tensor Representation Theory of IFS Fractal Sets

and Measures

Our first theorem gives a representation of the connected components of the

n−times iterated image of I under S by the components of ~v⊗
n
, with deleted

intervals represented by {0} , and remaining segments by {1}.

Definition 18. We call an IFS S equicontractive if all the contraction ra-

tios are identical, for each contractive similarity Si(x). We call S (trans-

lationally) dependent if the translations in each Si(x) are a multiple of the

contraction ratios.

In the sequel, be advised that we will not be working with rotations, so

that the transformations engendered by the IFS in our study will be depen-

dent merely upon the contraction ratio and the translation preformed by

each function in an IFS.

Definition 19. (Representation vector, equicontractive case:) A representa-

tion vector ~v = (v1, ..., vN) with elements in F2 represents a set S(I) : I =

[0, 1], with

vi ≈


1
N
λ−1(1) + i−1

N
if vi = 1

1
N
λ−1(1)∗ if vi = 0

,

as a representation, where by λ we mean Lebesgue measure restricted to

the unit interval I = [0, 1], and by λ−1(1), we identify all sets under al-

most everywhere equivalence, so that λ−1(1) refers unambiguously to [0,1]
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(at least as an equivalence class). By λ−1(1)∗, we refer to the deleted inter-

vals as elements of a class of intervals, for treatment of the deleted inter-

vals as an ordinary fractal string (see [LapVanF]). Optionally, the positional

information of the deleted lengths can be stored, in which case we would

have vi = 1
N
λ−1(1)∗ + i−1

N
if vi = 0. As another alternative, we could have

vi = 1
N
λ−1(0)∗ = ∅ if vi = 0, (as an equivalence class) if we truly wish to

delete these intervals.

Remark 6. Once we introduce the tensor product of the representation vec-

tors we shall use the representation induced by the tensor product considering

the kth tensor power of ~v as a vector in its own right and applying the above

definition.

Remark 7. If we consider the λ−1(1) and λ−1(0)’s not as equivalence classes,

we could create more general constructions, but uniqueness would be sacri-

ficed. This would open the door to fractal preimages of the IFS.

Remark 8. The following theorem establishes that the tensor representation

is a valid representation for the sequence of applications of the IFS to an

underlying set. Contrast this with the more ad-hoc definitions above that

characterize the intervals in the successive images of the IFS. We believe

that the tensor representation of measures (in an upcoming section) will have

more inevitability.
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Definition 20. (Kronecker Product of Tensors) Let A =

a11 ... a1N

... ...
...

aM1 ... aMN

and

B =

b11 ... b1Q

... ...
...

bP1 ... bPQ

be tensors of rank one or two, represented by an array,

such as a vector or matrix. The Kronecker Product A ⊗ B of A and B is

defined as A⊗ B =

a11B ... a1NB

... ...
...

aM1B ... aMNB

. Note the dimension of this tensor is

MP × PQ.

Lemma 1. Representation lemma: The tensor category {S(n)(I),⊗}∞n=0 can

be represented by the monoid of tensor powers ({~v⊗n}∞i=1,⊗),.

Proof. Let ρ(Sn(I)) = ~v⊗
n
, that is let Sn(I) be represented by the tensor

~v⊗
n
. we compute

ρ(Sn1(Sn2(I)) = ~v⊗
n1+n2 ,

= ~v⊗
n1 ⊗ ~v⊗n2

= ρ(Sn1(I))ρ(Sn2(I)).

Thus we have a monoid representation for the ~v⊗
i
, which we consider, by

bijection, as a representation of the Si(I).
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Theorem 14. Tensor Representation Theorem, equicontractive case: Let

an IFS on R, S = { vi
N
x + i−1

N
}i∈I⊂{1,2,...,N}, be represented by a vector ~v =

[v1, v2, ..., vN ], with vi ∈ {0, 1}, with 0 representing any deleted subintervals.

The mth iterate, Sm(I), is represented as Sm(I) ∼= ⊗m~v, where we take the

Kronecker product of the vectors as row vectors.

Proof. Using induction on m, for a base case, we use that

S = { vi
N
x+

i− 1

N
}i∈I⊂{1,2,...,N},

for x ∈ I, exactly what is represented by ~v, by construction. Now if we

suppose that, for some k, Sk−1(I) is represented by ~v⊗
k−1

, then

Sk(I) = S(Sk−1(I)) = ∪i∈I⊂{1,2,...,N}Si(Sk−1(I))

= ∪i∈I⊂{1,2,...,N}
vi
N

(Sk−1(I)) +
i− 1

N

which, by hypothesis, is represented by

[v1~v
⊗k−1

, v2~v
⊗k−1

, ..., vN~v
⊗k−1

] = ~v ⊗ ~v⊗k−1

= ~v⊗
k

.
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7.3 The Space of Representation Tensors

Here we further define the representation tensors. Characteristic functions

of the sets represented by the representation tensors reside in L2([0, 1]). We

find a diffeomorphism between our vectors and the usual vectors in RN .

This use of vectors is inspired by the notation and usage of vectors in

array programming languages, such as scilab, for which we can write simple

programs using these notions to approximate density functions of self-similar

measures. In such applications, a partition of an interval will be denoted by

a vector with components equal to the endpoints of the subintervals. In our

usage, the indices of the vector, normalized by its length, represent those

endpoints. Heretofore we use a convention that the 0th index of any tensor

is 0.

Of course, to view the line segment I ⊂ [0, 1] as an N−dimensional space,

we need an independent xi in each of the N subintervals. This is justified,

since we define a weighted uniform mass distribution of each subinterval,

independent of the others except for their overall sum (a degree of freedom

we can restore by normalizing over the sum of the weights).

Proposition 4. Diffeomorphism Between Vectors over RN and Partition

Valued Vectors:

For each {x}Ni=1 ∈ IN = ∪Ni=1Ii = ∪Ni=1
1
N

[i − 1, i] with each xi ∈ I◦i ,(IN

being the interval I=[0,1] partitioned into N equal subintervals (which could

be represented by a vector ~v = [1, ..., 1]), there is a diffeomorphism Φ(x) :
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IN → RN .

Proof. We define a function Φ : R → RN as follows. Let ~w = Φ({x}Ni=1).

Let Φi(x) = wi(xi) = tan [π(Nxi − i) + π
2
], for xi ∈ ( i−1

N
, i
N

). Then ∂Φi
∂xi

=

πN(sec [π(Nxi − i) + π
2
])2 > 0, and for xi = wi ∈ R, Φ−1(xi) = vi(x) =

1
π

(tan−1 (x)− 1
2

)+i

N
, so that ∂Φ−1

∂xi
= 1

Nπ(1+x2)
> 0. Then we see there is a differen-

tiable function with differentiable inverse from the partition of I = [0, 1] by

~v to RN , each with non-vanishing derivative.

We see that the endpoints of each subinterval are sent to ∞ := {±∞},

which is the natural identification for the endpoints of the sub-intervals, as

well as the topological compactification of RN .

Proposition 5. Characteristic functions on the sets represented by the se-

quence of vectors ~v,~v⊗
2
, ~v⊗

3
, ..., when suitably normalized, are L2([0, 1], λ)

functions, and converge to a limit in L2([0, 1], λ), which we define as

lim
k→∞

~v⊗
k

=: ν

.

Proof. Let m =
∑N

i=1 vi be the number of components of ~v that are dif-

ferent than zero. (This foreshadows our application to self-similar mea-

sures). We determine ‖~v‖ = (
∫

[0,1]
(
∑N

i=1
ai
N
χ[ i−1

N
, i
N

](x))2 dx)
1
2 = m

N
, and
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‖~v⊗k‖ = (
∫

[0,1]
(
∑Nk

i=1
(~v⊗

k
)i

Nk χ[ i−1

Nk
, i

Nk
](x))2 dx)

1
2 = mk

Nk . Thus,

lim
k→∞
‖v⊗k‖ = lim

k→∞
((

Nk∑
i=1

mk

N2k
)2)

1
2 =


1 if m = N

0 if m < N

.

.

Remark 9. The above result shows that representation vectors converge to

the equivalence class in L2([0, 1], λ) corresponding to χ[0,1](x), for ~v consisting

entirely of 1’s, and to the equivalence class of 0, for ~v with at least one zero.

Remark 10. ~v with components in F2 is in the Hilbert space H = RN ,

with the normalized inner product and induced norm: (~w,~v) =
∑N

i=1
viwi
N2 .

The Kronecker powers of ~v are elements of a Fock space [Reed-Si] H =

⊕∞n=0H
⊗n.We have ‖ limn→∞⊗n ~w‖ = Π∞i=1(~w, ~w)

1
2 .

Definition 21. We define the intrinsic Fock space of limn→∞ ~v
⊗n to be the

Fock space Hi = ⊕∞n=0H
⊗n
i , where Hi is the Hilbert subspace of R consisting

of the real dimensions in which ~v = (v1, ..., vN) has vi = 1.

Thus ~v has norm one on its intrinsic Fock space.
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8 Generalizations and Applications of Tensor

Representations

In the following we generalize the types of fractals to be represented from the

equicontractive fractals on R to fractals with differing contraction ratios and

corresponding lengths. Then we seek to utilise the representation to approx-

imate self-similar measures on the line. Higher dimensional generalizations

are also easily within reach. Dual spaces of the representation vectors will

provide geometrical information and lead to a physical interpretation of these

fractals and their representations.

8.1 Application to Box-Counting

In the equicontractive case, we obtain a simple formula for the number

NF (Nk) of boxes of inverse scale Nk required to cover the fractal F = S(F ).

(Here let the dimension of the representation vector ~v be N , and let r0 = 1
N

be the preferred scale, also let m =
∑N

i=1 vi be the number of non-zero com-

ponents of ~v).

Proposition 6. Box-Counting Formula, equicontractive case

NF (Nk) =
Nk∑
i=1

(~v⊗
k

)i = mk.

Proof. Since ~v⊗
k

represents Sk(I), and each component of ~v⊗
k

represents a

sub-interval of length N−k, the number of 1’s in ~v⊗
k

gives the number of
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“boxes” of size Nk needed to cover Sk(I), and hence F . Since the other

entries are just 0, the number of ones is
∑Nk

i=1(~v⊗
k
)i.

Claim:
Nk∑
i=1

(~v⊗
k

)i = mk.

Proof. (Proof of Claim) Let
∑M

i=1 ~vi = m, the number of non-zero compo-

nents of ~v. Then suppose that
∑Nk−1

i=1 (~v⊗
k
)i = mk−1. Applying the definition

of the Kronecker product,
∑NK

i=1 ~v⊗~v⊗
k−1

=
∑N

i=1 vi
∑Nk−1

i=1 v⊗
k

i = mmk−1 for

a total of m(mk−1) = mk boxes.

We see then that away from integer powers of r, we have

NF (r) = mmax{dlogN re,0}.

For our equicontractive representations we consider an intrinsic scaling

in which the discontinuities of N(r) occur only at inverse scales mk. That

is to say that the counting function is constant at scales in between those

represented by the iterated tensor powers.

8.2 ∂boxNF (r), Similarity and Box-Counting Dimensions

For an (equicontractive) IFS represented by a tensor ~v with dim(~v) = N , and∑N
i=1 vi = m, we can easily determine the similarity dimension: ds = logm

logN
.

Then by Moran’s Theorem [Hut], we have that logm
logN

= dH = dbox.

With the intrinsic geometry of the IFS fractal (meaning that we consider
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only boxes within the [pre-]fractal image at the scale of interest), we can

compute the box counting derivative as well: we take NF (rk) =
∑Nk

i=1(~v⊗
k
)i =

mk, to see that

NF (r) = m
∑max(0,logN r)
i=0 θ(i),

= mdlogN re0

where θ(x) denotes the Heaviside step function, and where we define dre0 :=

max(0, dre), and dre is the least integer greater than or equal to r. Then

∂BoxNF(r) := r
dN(r)
dr

N(r)

=
r

mdlogN re0
mdlogN re0 logm

∑∞
n=0 δ(r −Nn)

r logN
=

logm
∑∞

n=0 δ(r −Nn)

logN
.

We recover the pointwise “slope of the log-log- plot” by computing

∂BoxNF (r) =


0 if logN r /∈ Z

logm
logN

if logN r ∈ Z.

We see that ∂BoxNF(r) = ∂BoxNF(Nr), and it has multiplicative period of N .

Now observe that, as a hyperfunction, the expression

∂BoxNF (r) =
logm

logN

∞∑
n=0

δ(r −Nn) =
logm

logN
[
∞∑
n=0

(2πi)−1

r −Nn
],

has poles for all k, since ∂BoxNF (log r) = ∂BoxNF (log r + 2πik
logN

), for k ∈ Z.
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We see thus that the oscillatory period of ∂BoxNF (r) is 2π
logN

, in accordance

with the ordinary fractal string correspdonding to the deleted lengths in the

construction of F .

8.3 Higher Dimensions

If we wish, we can represent certain equicontractive fractals F = S(F ) in

R2, with F ⊂ I2, such that S(I) = { 1
M
x+ (i−1) mod M

M
,
M−d i

M
e)

M
}i∈I⊂{1,2,...,M2}.

Here we would label the boxes:

1 2 ... M

M + 1 ... ...
...

... ... ...
...

M2 −M + 1 ... ... M2

.

If F = S(F ) ⊂ IN ⊂ RN , is an equicontractive fractal with trans-

lations a multiple of the contraction factor, we can use a tensor of rank

N , with dimension MN for some M , such that in each of the N direc-

tions, the index is counted away from the origin, then S(I) = { 1
M
x +

( (i1−1) mod M
M

, ..., (iN−1) mod M
M

)}(i1,i2,...,iM )∈IM⊂{1,2,...,N}M .

8.4 The non-Equicontractive Case

In the following we will discuss two methods of computing tensor representa-

tions for attractors of non-equicontractive IFS. We will use this representation

to approximate more general self-similar measures on [0, 1] ⊂ R.
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Figure 8: The third tensor power of a matrix generating the Sierpinski Car-
pet.

8.4.1 Method of Blocks

A first attempt to generalize our construction beyond the equicontractive

case might try to assign multiple 1’s to a subinterval of I with length a

multiple of 1
N

. Quickly we notice we have a problem: consider the IFS

S = {S1(x), S2(x)},

with S1(x) = 1
4
x and S2(x) = 1

2
x+1/2. We might try the vector ~v = [1, 0, 1, 1]

to represent S(I), but we know that S2(I) should have only four connected

components, yet ~v⊗
2
=

[1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1]
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Figure 9: The fourth tensor power of a 2x2 matrix generating a right-angled
Sierpinski triangle. Matrix courtesy of Leo Vu, UCR ’14.

would have 5 connected components under identification of the endpoints of

each subinterval represented by the (~v⊗
2
)i.

For such rationally dependent IFS, we could correct this problem by use

of a reversal of the order of the tensor product for the indices with repeated

ones. For example:

[1, 0, 1, 1]⊗σ [1, 0, 1, 1] = [1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1].

Here the operation ⊗σ, refers to the permutation of the indices:

For n-factors of 1

[..., 1, 1, 1, ...(n− total ones)..., 1, ...]⊗σ ~v = [..., ~v ⊗ (1, 1, 1, ..., 1), ...].
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Figure 10: The third level iteration of a fractal dubbed ‘the skull of doom’
by contributors Nicholas and Joshua Quinn.

When working with this representation, repeated ones within the same

block can be distinguished from other ones by roman numerals. The the per-

muted product becomes repetition by the number of I’s. Thus, our example

becomes (1, 0, II) ⊗σ (1, 0, II) = (1, 0, II, 0, 0, 0, 0, II, 0, 0, IIII). Although the

I’s are components of ~v⊗
k
σ , they are not separated by commas, to indicate

their connection at a given stage of the construction.

Since this technique restricts us to rational contraction ratios, and shifts

dependent on their common denominator, we employ a more powerful tech-

nique, still using the tensor product formalism.
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Figure 11: A star-shaped fractal.

8.4.2 Augmented Tensors

Here, we use a pair of vectors for the representation tensor, one vector

containing the topological information (with connected components at a

given stage of construction represented by ones [in the case of no adjacent

ones]) and another containing the geometric information (lengths). We write

~v = [
~T
~̀ ] to denote the augmentation of the tensors (row vectors) ~̀, corre-

sponding to the sequence of (included and excluded) lengths, and ~T with 1’s

representing the topologically connected components of S(I) and the deleted

segments as 0’s. The corresponding modified tensor product denoted ⊗ ~T
~̀

, is

just the pairwise tensor product of the adjoined pairs of vectors, that is, if

the representation tensors ~v = [ ~v`
~vT

] and ~w = [ ~w`
~wT

], then ~v ⊗ ~T
~̀

~w = [ ~v`⊗~w`
~vT⊗~wT

].
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This modification is reminiscent of the “schemes” of Khinchin’s Information

Theory, and if somewhat ad-hoc, it will provide the power to allow us to rep-

resent arbitrary self-similar fractals on the line, and to approximate measures

on them.

Definition 22. (Representation vector, general case:) A representation vec-

tor ~v = [
~T
~̀ ] over R represents a set S(I) with I = [0, 1], and with

[
Ti
`i

] ≈


`iλ
−1(1) +

∑i−1
j=0 `i if Ti 6= 0

`iλ
−1(1)∗ if Ti = 0

,

where by λ we mean Lebesgue measure restricted to the unit interval I = [0, 1],

and by λ−1(1), we identify all sets under almost everywhere equivalence, so

that λ−1(1) refers unambiguously to [0,1] (at least as an equivalence class).

By λ−1(1)∗, we refer to the deleted intervals as elements of a class of inter-

vals, for treatment of the deleted intervals as an ordinary fractal string (see

[LapVanF]). Optionally, the positional information of the deleted lengths can

be stored, in which case we would have [Ti
`i

] = `iλ
−1(1)∗ +

∑i−1
j=0 `i if Ti = 0.

As another alternative, we could have [Ti
`i

] = λ−1(0)∗ = ∅ if Ti = 0, (as an

equivalence class) if we truly wish to delete these intervals.

Theorem 15. Augmented Tensor Representation Theorem: For an IFS S =

{`ix +
∑i−1

j=0 `i}i∈I⊂{1,2,...,N}, (letting `0 = 0) with m =
∑N

i=1 Ti represented

by an augmented tensor ~v = [
~T
~̀ ], with Ti ∈ {0, 1} and 0 < `i < 1 for all i,

and
∑N

i=1 `i = 1, the mth iterate of I = [0, 1] under S, Sm(I), is represented
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as Sm(I) ∼= ⊗m~T
~̀

~v, where we take the tensor product as represented by the

augmented Kronecker product of the vectors ~T , and ~̀ as row (contravariant)

vectors, which we denote ⊗k~T
~̀

~v = [
~T⊗

k

~̀⊗k ].

Proof. ~T represents an equicontractive fractal, with the same number of con-

nected components at each stage of iteration of the fractal F with S = S(F ).

So we see that each iteration of Ti
`i

has the correct connectedness. Since ~̀

scales the Sk(I), if ~v⊗
k−1 ≈ Sk−1(I), then Sk(I) = ∪i∈I`iSk−1(I) +

∑i−1
j=0 `i,

which is represented by ~v ⊗ ~v⊗k−1
.

Remark 11. If we wish to determine the sequence of mappings of I that

is represented by each term (`⊗
k
)i, we notice that there are Nk such terms,

representing the images of each of the contractions Si, here considering those

subintervals on which Ti = 0 to have contraction mappings fitting I into the

appropriate deleted length. Then we see that the first N of these subintervals

result from the last composition being with S1, and the next N with S2, and

so forth. We recover the formula that (`⊗
k
)i = ρ(Si1...ik(I)), where the (ij)

k
j=1

can be gotten by the formula:

ij = b(i− 1)N j−kc (mod N) + 1,

in other words, the index of the jth function in the sequence of mappings in

Sk(I) represented by (`⊗
k
)i is given by 1 more than the jth digit of the base

N expansion of i− 1.
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Since we have constructed our fractals on a grid of lengths of the images

of I under the mappings and the gaps, we observe that our construction

satisfies the Open Set Condition [Hut], allowing us to use simple counting

techniques to approximate measures.

We may wish to show that we can represent any augmented tensor by the

method of blocks. We would show that any rational sequence of lengths has a

common denominator and could be represented by blocks of the appropriate

lengths, and any non-rational augmented tensor could be approximated to

arbitrary precision by a sequence of such blocks.Now we make explicit the

representation of composition by multiplication:

Proposition 7. Composition Law: For Families of contractions, V and W ,

represented by ~v and ~w, respectively, their composition V ◦W is represented

by ~v ⊗ ~w.

Proof. Sketch: The action of W on I is W (I) = ∪Ni=1Wi(I) = ∪Ni=1wix + ωi,

which is represented by ~w, let ~w have sequence of lengths ~̀w, and let V , acting

on I by V (I) = ∪Mi=1vix + νi have sequence of lengths ~̀v. The composition

V ◦ W = ∪Mi=1 ∪Nj=1 vi(wix + ωi) + ν has lengths and positions given by

{~̀v ⊗ ~̀w)i}MN
i=1 and

∑MN
i (~̀v ⊗ ~̀w)i respectively.

8.5 Application to Self-Similar Measures

Recall Definition 3 of a self similar measure µ, invariant under (ρ, S). We

represent this measure as follows:
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Definition 23. We define the term-wise product of ~v ∈ RN and ~r ∈ RN ,

the vector ~v ∗ .~r ∈ RN := (v1r1, ..., vNrN) and the (augmented) representation

tensor for µ = (ρ, S)µ as ~v = [~r~̀], where ~r := ~ρ ∗ . ~T .

We may place probability measures on the interval that approximate IFS

self-similar measures to arbitrary accuracy by means of this representation.

Theorem 16. Approximation of self-similar measures by augmented

tensor representations: Let S be a family of similarities

S = {Si(x) = `ix+
i−1∑
j=0

`j}i∈I⊂{1,2,...,N},

and let ρ be a vector in [0, 1]N , with zeros in all entries excluded from the

indices of S, with
∑N

i=1 ρi = 1, and ρi ∈ (0, 1) for all I ∈ I (so that ρ is a

probability vector in the included indices). Suppose that ~v =
~T
~̀ represents the

gaps and contraction ratios of (I under) S, and that ~r = (ρi)
N
i=1 represents

the applied weight. Then (ρ, S)µ is represented by ~r ~T
~̀ , with ~r~T = (ρiTi)

N
i=1 .

Then, for x =
∑p

i=1(`⊗
k
)i,

µ([0, x]) =

p∑
i=0

(~r⊗
k

)i.

Proof. Partition [0, x] into subintervals with measure zero overlap as

[0, x] = [0, (~̀⊗
k

)1] ∪ · · · ∪ [

pj−1∑
i=0

(~̀⊗
k

)i,

pj∑
i=0

(~̀⊗
k

)i] · · · ∪ [

p−1∑
i=0

(~̀⊗
k

)i,

p∑
i=0

(~̀⊗
k

)i],
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so that

[0, x] = ∪ppj=1[

pj−1∑
i=0

(~̀⊗
k

)i,

pj∑
i=0

(~̀⊗
k

)i],

so that µ([0, x]) =
∑p

pj=1 µ([
∑pj−1

i=0 (~̀⊗
k
)i,
∑pj

i=0(~̀⊗
k
)i]). Then,

µ([

pj−1∑
i=0

(~̀⊗
k

)i,

pj∑
i=0

(~̀⊗
k

)i]) = (ρ, S)µ([

pj−1∑
i=0

(~̀⊗
k

)i,

pj∑
i=0

(~̀⊗
k

)i])

= (ρ, S)kµ([

pj−1∑
i=0

(~̀⊗
k

)i,

pj∑
i=0

(~̀⊗
k

)i])

=
N∑

i1,...,ik=0

ρi1 . . . ρikµ((Si1,...,ik)
−1([

pj−1∑
i=0

(~̀⊗
k

)i,

pj∑
i=0

(~̀⊗
k

)i])

=
N∑

i1,...,ik=0

ρi1 . . . ρikµ(
[
∑pj−1

i=0 (~̀⊗
k
)i,
∑pj

i=0(~̀⊗
k
)i]−

∑ij−1
j=0 (`⊗

k
)j

(`⊗k)ij
)

=
N∑

i1,...,ik=0

ρi1 . . . ρik


0 = µ(∅) if ij 6= pj

1 = µ([0, 1]) if ij = pj

=
N∑

i1,...,ik=0

(r⊗
k

)pjδij ,pj

= (r⊗
k

)pj

Then, summing over the pj,

µ([0, x]) =

p∑
pj=1

µ([

pj−1∑
i=0

(~̀⊗
k

)i,

pj∑
i=0

(~̀⊗
k

)i]) =

p∑
pj=1

(~r⊗
k

)pj .

=

p∑
i=0

(~r⊗
k

)i.
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Formula 1. Linear Interpolation Formula: For x ∈ [0, 1], with x 6=
∑p

i=0(~v⊗
k
)i,

for any k, we approximate

µ([0, x]) ≈
p−1∑
i=0

(r⊗
k

)i +
[x−

∑p−1
i=0 (`⊗

k
)i](r

⊗k)p
(`⊗k)p

,

where p is such that x ∈ [
∑p−1

i=0 (`⊗
k
)i,
∑p

i=0(`⊗
k
)i).

Proposition 8. For two measures µ and µk that agree on the right end-

points and deleted intervals of [0, 1] in the kth−stage of the construction of

F , supx|g(x) − gk(x)| ≤ supi∈{1,...,Nk}(r
⊗k)i, where g(x) and gk(x) are the

cumulative distribution functions of µ and µk, respectively.

Proof. By the theorem on approximation of self-similar measures by aug-

mented tensor representations, if x is in a deleted interval, or on a right

endpoint of a subinterval, µ and µ1 agree, so the difference in their ramp

functions will be zero. Suppose x ∈ [
∑p−1

i=0 (`⊗
k
)i,
∑p

i=0(`⊗
k
)i], a so-called

“island of the k-th level” [Strich3], i.e. a non-deleted interval.

|g(x)− gk(x)| = |µ([0, x])− µ1([0, x])|

= |µ([

p−1∑
i=0

(`⊗
k

)i, x])− µ1([

p−1∑
i=0

(`⊗
k

)i, x])|,

79



for some j, since µ and µ1 agree on deleted intervals. Since

µ([

p−1∑
i=0

(`⊗
k

)i,

p∑
i=0

(`⊗
k

)i]) = µ1([

p−1∑
i=0

(`⊗
k

)i,

p∑
i=0

(`⊗
k

)i]) = (r⊗
k

)p,

|g(x)− gk(x)| ≤ (r⊗
k
)p.

Note that in the last line we have used that µ is a non-atomic measure.

Indeed, if µ were atomic, let x0 be the atom of largest measure under µ, then

we would have µ({x0}) =
∑N

i=1 ρiµ({S−1
i (x0)}) = k > 0. Then we would

have µ({x0}) = µ({S−1
i (x0)}) for all i, then that would imply N = 2, and

S1([0, 1]) ∩ S2([0, 1]) = {x0}, their common endpoint, a contradiction for

N 6= 2. Also, S−1
i (x0) = x0 implies Si(x0) = x0 for all i, but that would

contradict that Lip(Si) < 1 is constant.

The previous theorems then establish that we can approximate the mea-

sure of the interval [0, x] under any self-similar measure µ defined by constant

contraction ratios and constant shifts by collapsing the representation tensor

~r⊗
k
, of the weights ρi, along the appropriate indices i, to an error within

(max ri)
k. Thus given ε > 0, we can pick k such that the error is less than ε,

therefore our construction is a faithful approximation of µ.

Theorem 17. For any self-similar measure µ, on [0, 1] represented by ~v,

given any ε > 0, we can find a power k ∈ N such that |µ([0, x])−
∑p

i=0(r⊗
k
)i| <

ε, where x ∈ [
∑p−1

i=0 (`⊗
k
)i,
∑p

i=0(`⊗
k
)i].

Proof. Pick k > log ε
− logmaxi{ri}i∈I

, and use [] Theorem 16, Formula 1 and Propo-
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sition 8 above.

Figure 12: The ramp function of the natural weight measure on the Cantor
set.

8.5.1 Examples

Example 9. Ordinary Fractal Strings: We may wish to determine the

sequence of lengths of deleted intervals in the construction of F , in order to

utilize the theory of ordinary fractal strings. We see that the deleted lengths

(called “Lakes” by [Strich2]), are represented by zeros in the topological com-

ponent of the representation tensor. Since multiplying by zero always results

in zero, we see that while the intervals (called “islands” in [Strich2]) com-

prising the kth step in the construction of F are vanishing with increasing k,

the deleted lengths gain in numbers until their lengths sum to 1 (exception:

see next example). We notice that each zero results in as many new zeros

as there are non-zero components of ~T (or ~v, for the equicontractive fractals
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represented by the method of blocks). Thus we see that decomposing ~̀ (or just

~v) into two vectors of smaller dimension: ~d = (vi)~Ti=0 for the deleted lengths,

and ~F = (vi)~Ti 6=0 (with the obvious adjustment in the case of the method of

blocks).

Then the elements in the sequence of lengths corresponding to F repre-

sented by ~v, are given by the components of the vectors {~d⊗ F⊗i}∞i=0, which

just states that we multiply each original gap length by each length of an in-

terval in each stage of approximation of F . Observe that this is really just a

permutation of the standard product giving the approximations to F . Thus

we see the complementarity of the fractal set and the fractal string at work.

Thus we derive an explicit formula in the case of the method of blocks, in

the absence of repeated zeros in the original ~v. Given that each subinterval

represented by a component of ~v has length 1
N

, whether it will be assigned to ~d

or to ~F , the above set becomes ∪∞n=0
1
N

n+1
, with a multiplicity of |~d|(N−|~d|)n,

for each length corresponding to n from 0 to ∞.

Example 10. Fat Cantor Set: We represent this important fractal with an

augmented vector that depends on the level of the approximation. Recalling

that, in its most common guise, at each stage n of construction, we delete

2n−1 intervals of length 1
22n

. Letting ~v =
~T
~̀ , Here T = [1, 0, 1] and ` = `n now

depends on n. Specifically, `n = (`n,1, `n,2, `n,3) = [ 2n+1
2n+1+4

1
2n+2

2n+1
2n+1+4

] .

Example 11. Fracas: This is a contractive construction F in which the

family of functions and hence its representation tensor changes at each stage

of the iteration. We would represent F = ρ(⊗∞n=1~vn). Here ~̀ and ~T depend
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on n in general. These represent the most general states in the category.

There is a dichotomy: fractal or not, for fracas represented by infinite prod-

ucts of tensors. Fracas with the last infinitude of tensors in the product

equal to [1] = ρ−1(I) = idρ(IFS),⊗, are defined as the union of subintervals

Sk(I) = ρ(⊗kn=1~vn) of I represented by the products of the finitely many

tensors different than [1], (or just I if F = ρ(⊗∞i=1[1]).

Example 12. Closed forms: While no closed form sums are known for

general partial multinomial row sums , we can find closed forms for measures

of ε balls for fractals with natural weights and dependent gaps using change

of base formulas.

Change of Base formulas: If F is fixed under an equicontrative family

with dependent shifts

S = {Si(x) =
1

N
x+

i− 1

N
}i∈I⊂{1,2,...,...,N}

= ρ(~v) : ~v ∈ FN2 and ΣN
i=0vi = m.

i.e. F is a generalized cantor set with one or more gaps of length 1
N

, repre-

sented by a vector ~v of length N . Then if x ∈ [0, 1], with base N expansion x =

0.x1x2...xk =
∑k

i=1 xiN
−i, then we can find µ([0, x]) =

∑k
i=1 x

∗
im
−i, where
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x∗i =


0 if there is a j < i such that xj is one less than the index of a gap.

xi if xi + 1 ≤ g1 the index of the first gap, and the above does not hold.

xi − s if xi + 1 ≥ gs the index of the sth gap, and the first condition does not hold

.

Proof. Sketch: Observe that, for x =
∑k

i=1 xiN
−i not in a deleted length,

Sx1+1(...(Sxk+1(I)...) =
1

N
(...(

1

N
(

1

N
[0, 1] +

xk
N

) +
xk−1

N
)...) +

x1

N

= [
k∑
i=1

xiN
−i,

k∑
i=1

xiN
−i +

1

Nk
],

which has weight ( 1
m

)k. If x is in a deleted length, then there is an i0 ∈

{1, ..., k} such that xi0 + 1 = j ∈ Ic, that is the first such N -ary digit of x,

then all x ∈ [0,
∑i0

i=1 xi] are not in a deleted length, so that µ[0,
∑i0

i=1 xi] =∑i0
i=1 xim

−i. The further digits of x will make no further contribution, so

that case 1 holds. If no base-N digit of x exceeds (one less than) any index

of any gap then let i0 = k in the above and the second case holds. If x is not

in a deleted interval, and a base-N digit xi exceeds one less than the index

of s gaps, then s
mi

will be subtracted from µ([0, x]), for the deleted intervals,

so that the third case holds.
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Figure 13: The ramp function of a single-gap equicontractive fractal. One
can compute the density function µ([0, x]) using a change of base formula.

9 Appendices

9.1 Work in progress

We have used the row tensor representation in an effort to capture the covari-

ance of scale associated with each fractal’s construction. We seek additional

methods from geometry to assist in the computation of scale derivatives and

counting functions. To every finite-dimensional row vector ~v, we can assign

a dual column vector ~v∗.

For representation vectors we compute the outer product A = ~v⊗~v = ~v∗~v.

Deriving with respect to the representation at each stage, tells us that the

scale derivative is the outer product.
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Figure 14: The ramp function of an equicontractive fractal, whose density
function can be computed using a change of base formula

9.1.1 Duality of Representation Vectors

A representation vector ρ(S) = ~v = [v1, v2, ..., vN ] is defined to be the con-

travariant vector [v1dx1, v2dx2, ..., vNdxN ], a linear functional for the covari-

ant vector

~v∗ =


v1

∂
∂x1

...

vN
∂

∂xN

 .
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9.1.2 Scale Covariance

The dual vector ~v∗ gives the space of flows in the scale space of the self-similar

system, and we solve the system of DE’s

vi
∂xi

∂t
= xi

to obtain “the self similar fixed flow” of the self-similar system, which exists

by duality to the fixed measure under application of the measure represented

by ~v. This action is the infinitesimal generator for the evolution semigroup

of the quantum graph induced by the IFS S.

Solving the above, with t ∈ Rm,

xi = ev
−1
i t

so that xi(t) = xi(t+2πivi), so that we can think of each branch of the fractal

evolution as having a period relating to the relative size of each branch [see

the next chapter for non-uniform contraction ratios]. As the approximating

tensor approaches the limit tensor, the contravariant representation tensor of

the underlying representation represents an uncountable set of points, then

by duality the covariant flow represents an uncountable continuum of loops.

Identifying this group of flows with the homology group of this Cantor-type

dust on [0, 1], an uncountable free product of factors of Z, we conjecture that

the covariant representation tensor is a functor from the category of IFS
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fractals (images of compact intervals under IFS,), to the homology groups of

associated pointed topological spaces (wedges ΛN
i=1(S1)), requiring very little

effort to be taken to the category of free abelian groups.

Conjecture 2. “Fixed Flow” Group structure: We can obtain the fundamen-

tal group of the prefractal Sn(I), under the identification of the endpoints of

the intervals, with imaginary time t ∈ iRm as the space of complete revo-

lutions in the solution space to the “fixed flow equation”. We recognize the

n-fold wedge of circles given in Scale Covariance above.

We conjecture that this group provides us with the scale space evolution

of F . Ignoring differing scaling ratios, the resulting Cayley graphs appear

isomorphic to the covering spaces of free groups, and since the free group on

two generators has free groups of any number of generators as subgroups, we

see that the space C, the cantor space, has the scale evolutions of all other

IFS within it’s scale evolution. This is just the approximation by binary

streams of arbitrary data. This result should be an algebraic corollary to the

result that all non-empty, perfect, compact, metrizable, totally disconnected

spaces are homeomorphic to the Cantor set.

Theorem 18. Periodic sequences of contractive families: A periodic se-

quence {Si}Pi=1 , with each Si being a contractive family {Siji}
P
i=1, with ji ∈

{1, 2, ..., Ni} of mappings is itself a finite family of contraction mappings, and

hence posesses an invariant set F . F is represented by limn→∞(⊗Pi=1~vi)
⊗n

Proof. Apply the representations Si ≈ ~vi, to get Si1 ◦ Si2 ◦ ... ◦ SiM = ~vim ⊗
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...⊗ ~vi2 ⊗ ~vi1 , as a new vector ~v.

9.1.3 Toward Applications to Physics

It is well known that coupled states in classical and quantum mechanics can

be represented as Kronecker products of the state vectors.

By the norm calculations on the normalized representation vectors, we

see that our fractals and their prefractal images are located on the unit ball

of a particular vector subspace of the Fock space that contains the infinite

tensor product representation. This is precisely the subspace of all powers of

tensor products of the subspace of RN containing the representation vector

~v, on which the entries of ~v are non-zero.

Conjecture 3. Special States of Free Quantum Fields are Fractals: Observe

that many particle interactions in quantum mechanics are given by n-fold

tensor products of state spaces and their vectors. States represented by tensor

powers of IFS representation vectors ~vdescribe free fields of many particles

in scale invariant states.

Proposed applications then would be for macroscopic observations of

quantum phenomena of free fields of uniform states due to the scale-invariance,

and for coherent states represented by powers of simple tensors. Within the

confines of current physics research, following [Rodr-Mig-Berg-Lew-Sier], we

can hope to quantify the exact nature of the self-similarity of the quan-

tum observables in their work, estimate dimensions, and perhaps, predict
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new phenomena due to scaling corrections in the appropriate box-counting

derivatives.

Conjecture 4. Continuous Iteration Counts for IFS:

Recall that the coefficients of vk−r11 vr1−r22 . . . vrn−1
n in

Nk∑
i=1

(~v⊗
k

)i = (v1 + ...+ vN)k

are those of the multinomial coefficients for (v1 + ... + vn)k, Then a New-

ton formula can sum over indices for real-valued iteration counts k using a

generalized multinomial formula:

(v1 + ...+ vn)k =
∞∑
r1=0

r1∑
r2=0

· · ·
rn−2∑
r1=1

(
k

r1

)(
r1

r2

)
. . .

(
rn−2

rn−1

)
vk−r11 vr1−r22 . . . vr

n−1

n .

Such a formula would allow us to integrate [see section on integration

with respect to self-similar measures] over regions closed under permutations

of indices of representation of intervals.

9.2 Operator Form of the Representation Tensor

We have the dual pairing vvT = ‖v‖2, of the representation vector v, giving

its euclidean norm squared, but we also have the outer product A = vTv, a

matrix form of the representation. In physics, I propose that this would be

analogous to the operator corresponding to the observable of a particle in a
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state composed of the superpositions of states, i.e. for v = [1, 0, 1], a particles

is in a superposition of two states. Notice that, A is real and symmetric, but

singular, in fact rank 1. The matrix A is an element of a group that gives the

continuous functions that transform representation tensors of fractals with

similar topologies and geometries into one another. So, for our example v,

A =


1 0 1

0 0 0

1 0 1

 ∈ G =




a 0 a

0 0 0

a 0 a

 , ·
 ,

with identity


1
2

0 1
2

0 0 0

1
2

0 1
2

 .

In the present example, for A ∈ G, we calculate A−1 =


1
4a

0 1
4a

0 0 0

1
4a

0 1
4a

 .
More generally, A = ~vT~v generates a group G under matrix multiplica-

tion This group has identity 1∑N
i=1 vi

A, and a given matrix C = cA ∈ G has

inverse 1

c(
∑N
i=1 vi)

2
A. In our formalism, concerned with (the normalization of)

~v, as representing a probability vector, this is not a meaningful result, but in

[Strich3], self-similar measures are allowed to be weighted by positive com-

ponent vectors. In this setting, such a group can effect coordinate changes

between scalar multiples of probability vectors.

The operator A is not unitary, but it preserves the vector ~vT as an eigen-
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vector with eigenvalue ‖~v‖2, since

‖A~v‖ = ‖(~vT~v)~vT‖ = ‖~vT (~v~vT )‖ = ‖~v‖2‖~vT‖.

The operator has 0 as an eigenvalue with multiplicityN−1, these eigenvectors

consist of the vectors with non-zero values only in entries corresponding to

the rows of zeros in A, and other vectors sent to 0 by A, vectors (aivi)
N
i=1,

with
∑

i:vi 6=0 ai = 0.

For an IFS fractal with representation vector in FN2 , (which we can use

with the ⊗σ technique for any IFS fractal with rational contraction ratios),

we observe that we can recover our counting function from the operator form

A = ~vT~v.

Proposition 9. Let A = ~vT~v, for a representation vector ~v ∈ FN2 . For n ∈ Z,

at the scale N−n, we can find the box-counting function for the attractor F

of the IFS represented by ~v by the following means:

1. NF (N−n) = (
∑N

i=1 vi)
n.

2. NF (N−n) = λn, where A~vT = λ~vT .

3. NF (N−n) = (tr(A))−n.

4. NF (N−n) = m, where An~vT = m~vT .

5. NF (N−n) = (U−1A(UT )−1)nNN , the lower right hand entry of the diag-

onalization of A, where U = [~v0,1|...|~v0,N−1| ~v‖~v‖ ], where the ~v0,1 are the

92



normalized eigenvectors of A with eigenvalue 0.

Proof. 1. was proved when the representation was first introduced. 2. holds

since A~vT = ~vT~v~vT = ‖~v‖2~vT = (
∑N

i=1 v
2
i )~v

T = (
∑N

i=1 vi)~v
T , since vi ∈

{0, 1}, then 1. implies 2. 3. follows from 1. as well since tr(A) =
∑N

i=1(~vT~v)ii =

(
∑N

i=1 v
2
i ) =

∑N
i=1 vi. In 4. we havem = (

∑N
i=1 vi)

n, sinceAn~vT = (~vT~v)n~vT =

(
∑N

i=1 vi)
n−1A~vT = (

∑N
i=1 vi)

n. For 5., we know that Rank(A) = 1, and that

A is real and symmetric. so that A has N independent eigenvectors. Since ~vT

is an eigenvector of A with eigenvalue NF ( 1
N

),, the other eigenvectors must

have eigenvalue 0. Normalizing these vectors and placing them as columns

in a matrix U , in ascending order of their corresponding eigenvalue, diag-

onalizes the matrix An with the eigenvalue
∑N

i=1 vi, in the bottom corner

element, since (U−1A(UT )−1)n = U−1An(UT )−1.

The free (fundamental, i.e. homotopy) group structure of the fixed flow

in the dual geometry of ~v has the homotopy groups of the fixed flows of all

the tensor powers of ~v as subgroups [Munk]. Thus, the first power of the

operator form contains all the algebraic information of the geometry on F .

For this reason, we might try to also consider the matrix A to be a metric

tensor on S(I), or even on F . The inner product ~v· ~w should then relate to the

Hausdorff distance between the prefractals represented by ~v, and ~w. Then

in the Maxwell equation formulation of gravity, we can use an augmented

tensor ~v =
~T
~̀ , with

∑N
i=1 `i = 1 and Ti ∈ R, with at least one i such that
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Ti=0, to obtain analogs of the fields BG and EG. The contraction of the

images of I under ~T is analogous to the divergence of the E field, while the

vector ~̀ preserves the space I, analogous to the divergencelessness of the B

field.

Then since we are constructing a measure on a space of zero Lebesgue

measure, we see the kinship of this construction to that of John Wheeler’s

concept of “mass without mass”, or “charge without charge”. This is reason-

able since a mathematical fractal involves structure at all scales, even below

the Planck scale and corresponding Planck energy, thus the field described

by the energy in the coherent states depicted by the infinite tensor product

representing a fractal, would describe a geon field.

Figure 15: A scenario in which the first stage approximation to a Cantor set
represents the disjoint outcomes of life or death for Schrodinger’s cat. Then
the Cantor set will represent a continuum of such cats.
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9.3 Appendix: The fixed points of the Fourier Transform-

Fractal Functions and Scale Evolutions

We define the Fourier transform of a function f ∈ L1(Rn) to be the function

F(f(x))(ξ) = f̂(ξ) =

∫
Rn
f(x)e−2πiξ·x dx.

Since |
∫
Rn f(x)e−2πξ·x dx| ≤

∫
Rn |f(x)e−2πξ·x |dx =

∫
Rn |f(x)| = ‖f‖L1(Rn),

‖f̂(ξ)‖∞ ≤ ‖f(x)‖L1(Rn). By the continuity of the Fourier transform, then we

have that F : L1(Rn) → BC(Rn). We refer the reader to [Fol] for the many

useful and well known properties of the Fourier transform, but mention in

brief the most useful of those properties.

The Fourier transform takes the input function from the underlying space

we call the time domain to its dual space, the frequency domain. Similar

dualities can be used between configuration and momentum space in quan-

tum mechanics, and others. In the transformed space, differential equations

(for functions with L1 derivatives) are transformed into algebraic equations,

which are then solved and Fourier inverted to find the solutions to the original

differential equation.

Recalling the theory of Pontryagin duality of compact Abelian groups, if

f(x) is periodic in Rn we regard f(x) as a function on Tn, the torus of n

dimensions. Since Tn is compact for all n, T̂n = Z is discrete. The proper

translation invariant measure on Z is the counting measure, hence for such

functions the Fourier transform becomes a series over Z, and we define the
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Fourier Series of f(x) ∈ L2(Rn) as
∑∞
−∞(

∫
Tn f(x)e−2πin·x dx) e2πin·x.

The famous theorem of Plancherel shows that F extends to a unitary

isomorphism on L2 uniquely. Then since the space S of functions that are

rapidly decreasing at infinity are dense in Lp, we can define the Fourier

transform on the dual space S′ of continuous linear functionals on S, the

space of distributions that increase slowly at infinity. For such objects we

define their Fourier transform in terms of the test functions in φ ∈ S. Let

T ∈ S′, then (T̂ , φ) = (T, φ̂).

Also we recall that the Fourier transforms of measures µ on measure

spaces X are defined as µ̂(ξ) =
∫
X
e−2πiξ·x dµ(x).

In our efforts of understanding self-similarity and its implications, we see

that the Fourier transform is tightly interwoven into the theory of fractal

geometry. While fractals are fixed points of contractive similarities, we find

that some fractals, or their scale evolutions are themselves fixed under Fourier

transformation.

9.3.1 Familiar Fixed Points of F

We recall that for a Gaussian, f(x) = e−πa|x|
2
, the Fourier Transform is

f̂(ξ) = a−n/2e−π|ξ|
2/a, so that ˆe−π|x|2 = e−π|ξ|

2
. This fixed point is key in the

theory of Fourier transforms, since this fact is used in the proof of the Fourier

Inversion Theorem.

A famous periodic fixed point of the Fourier Transform is the “Shah func-

tion” ∆(x) =
∑∞

n=−∞ δ(x− n), which can be defined as periodic on T. This
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property gives the Fourier transform useful sampling properties. Computing

its Fourier series, we obtain
∑∞
−∞(

∫ 1

−1
δ(x)e−2πinx dx) e2πinx =

∑∞
−∞ e

2πinx =

δ(x), on T, hence ∆̂(ξ) = ∆(ξ).We have seen that ∂BoxNF (r) = ds
∑∞

n=0 δ(r−

n logN), is a “half-Shah” function and we will use the fact that the shah func-

tion is fixed under F, to compute the Fourier transform of the scale evolution

∂BoxNF (r).

9.3.2 A distributional fixed point of the Fourier Transform

The Dirac-δ function has the Fourier transform 1, and its derivatives have

multiples of powers of ξ. Thus, by duality, we see that the Fourier transforms

of monomials are the derivatives of the δ-distribution. Yet, the negative half-

power distribution is a true distributional fixed point of the Fourier transform

of distributions on R.

Proposition 10. The tempered distribution, f(x) = |x|− 1
2 , is a fixed point

of the (extended) Fourier transform.

We compute the (extended) Fourier transform of f(x) = |x|− 1
2 ,

FE[|x|−
1
2 ](k) =

∫ ∞
−∞
|x|−

1
2 e−2πixk dx

= 2

∫ ∞
0

x−
1
2 cos 2πxk dx

.
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Substituting x = 1
2kπ
y2, and dx = 1

kπ
y dy, then,

FE[|x|−
1
2 ](k) = 2

∫ ∞
0

√
2πk

y
cos(y2)

1

kπ
y dy

=
2
√

2√
|k|π

∫ ∞
0

cos y2 dy

=
2
√

2√
|k|π

√
π

8
=

1√
|k|
.

Interestingly, this fact hints that the (non-smooth) scaling law of a power-

law distribution in dimension 1
2

is a perturbation of one that is fixed under

Fourier transformation.

9.3.3 Fractal functions as Fixed Points of the Fourier Transform

We find that Lacunary Fourier series are identified with their Fourier trans-

forms, when the sequence of coefficients is in `2(R). Thus, we regard these

important fractals as fixed points of the Fourier Transform.

We recall a theorem due to Kolmogorov, which we paraphrase as stat-

ing that if {λk} contains Hadamard gaps, then S(λk, θ) =
∑∞

k=1 ak cos (λkθ)

converges almost everywhere if and only if
∑∞

k=1 a
2
k <∞, where we say that

{λk} has Hadamard gaps if there exists δ > 0 such that limk→∞
λk
λk−1

> 1 + δ.

We then say that such a series is a Fourier series, hence, S is its own

Fourier series, by construction. A famous example is the Weierstrass function

f(x) =
∑∞

k=0 a
kcos(bkπx). We see that {bk} has Hadamard gaps, evaluating

limk→∞
bk

bk−1 = b, so that for {ak} ∈ `2(R), and b > 1, f(x) is its own Fourier
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series, hence we regard it as a fixed point of the Fourier transform.

9.3.4 The “Half-Shah” Function and ∂BoxNF (r)

Let us call
∑∞

n=0 δ(r−n) a “Half-Shah” function, in recognition that it is the

Dirac Comb on the non-negative integers N∪ {0}. For some equicontractive

deterministic fractals, we have ∂BoxNF (r) = ds
∑∞

n=0 δ(r − n logN). Let us

change variables so that we have a function f(r) = k
∑∞

n=0 δ(r − n). Taking∫
R
∑∞

n=0 δ(r − n)e−2πrix dx =
∑∞

n=1 e
2πinx, we compute:

∞∑
n=1

einx =
1

2

∞∑
n=−∞

einx +
1

2

∞∑
n=−∞

sgn(n)einx − 1

2
.

=
∞∑
−∞

δ(x− n) + i
∞∑
n=1

sin(nx).

This formal sum is non-convergent almost everywhere, yet, one term is the

full Dirac comb. We see that we must normalize our half comb with its mirror

image before transforming it, then we observe this pair will be fixed under the

transformation to the frequency domain. This puzzling behavior hints to a

relationship between fractals and tilings, as the negative integers correspond

to “contraction” ratios larger than one. Perhaps we can imagine ‘tiling’ the

real line with expanding Cantor sets to satisfy the weak differential equation

given by the full Dirac comb.
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9.3.5 Approximate Integration via Tensor Representations and

Fourier Transforms of Fractal Measures

The Riemann integral of a function f(x) defined on [0, 1] is
∫ 1

0
f(x) dx =

limn→∞
∑n

k=1 f(x∗k) ∆xk, for sample points x∗k ∈ [xk−1, xk]. We might write∫ 1

0
f(x) dx = limn→∞ ~f · ~∆x, where ~f = (f(x∗k))

n
k=1, and ~∆x = (xk−xk−1)Nk=1,

with x0 = 0.

We can approximate the integral of a continuous function over an IFS

fractal on the line similarly. The augmentation vector ~̀⊗
k

= ((`⊗
k
)j)

N
j=1

serves the role of the ~∆x, and using the right endpoint rule of numerical

integration, we evaluate f at the xi =
∑i

j=0(`⊗
k
)j, multiplying ~f termwise

by Ti in the augmented representation.

Since the continuous functions are uniformly continuous on compact sets,

(since (~v⊗
k
)∞k=1 is a convergent sequence), then we might approximate

∫
F∩[0,ε]

f dx = lim
k→∞

j=dεNke∑
i=0

f(xi)(`
⊗k)i =: lim

k→∞
~fk · ~̀⊗

k ∗ .~χ({1, 2, ..., j}).

Here, we define ~fk := (f(
∑j

i=0(`⊗
k
)j))

Nk

j=1, ~χ({1, 2, ..., j}) ∈ FNk
= [1, ..., 1, 0, ...0],

and the xi are as defined above.

Similarly, we can approximate the integral of f(x) with respect to µF =

(ρ, S)µF , as

∫
F∩[0,ε]

f dµF (x) = lim
k→∞

j=dεNke∑
i=0

f(xi)(r
⊗k)i = lim

k→∞
~fk · ~r⊗

k ∗ .~χ({1, 2, ..., j}).
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The convergence of all such Riemann sums for all f ∈ C([0, 1]) establishes

the following:

Theorem 19. The (weighted) invariant measure µ = (ρ, S)µ supported on

the attractor of S is the (weak) limit limk→∞(~v ∗ .~r)⊗k = [ (~T∗.~r)⊗k

~̀⊗k ].

Proof. (Sketch)By the uniform continuity of f(x) ∈ C([0, 1]), and the con-

vergence of the measure representation, the result follows by the discussion

above.

Now armed with an approximate integration technique, we may numeri-

cally estimate the Fourier transform of the measure µF :

µ̂F (ξ) =

∫
F

e−2πiξx dµF (x) = lim
k→∞

Nk∑
i=0

e−2πixi(r⊗
k

)i.

9.4 The Functorial Hypothesis

We might consider the fixed flow F on the dual geometry ~vT , to be a functor

from ObIFS to ObABGrp, (specifically to a countable product of Z), similarly,

with an indepenedent choice of pole of the hyperfunction representation of

∂box(F )(r) at each inverse scale {Nn}∞n=0, we can regard that object as an

isomorphic functor. Then by the duality isomorphism between ~v and ~vT , we

can estimate the measure represented by ~v by integrating ∂box over a selection

P of its poles .
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Select elements P such that, for any k ∈ Z,

µ([0,
k∑
i=1

(`⊗
n

)i]) =

∫
P

∂Box(F )(r)
dr

r
.

For example, let P be the first xi poles of the hyperfunction representation

of ∂Box(F )(r), at each inverse scale Nn, for x =
∑n

i=1 xiN
−i.

We now find the heretofore perhaps questionable “intrinsic geometry hy-

pothesis” to be a valuable tool in simplifying the above formula, since the

singularities in the measure occur only at powers of the preferred scale, for

the Functorial Hypothesis to hold as formulated, the same should be true

of the box-counting function. This is guaranteed when we count only using

boxes within the approximating prefractal at the given scale.

9.5 Appendix: Very Simple Fractal Code

In the following are some brief scilab codes for computing various quantities

using tensor representations of fractals.

While Scilab includes the Kronecker product as a standard operation,

denoted “.*.”, iterating this operation could become tedious without a little

code:

f unc t i on vn=tensorpower (v , n)

k=v
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for i =1:n−1

k=k . ∗ . v

end

vn=k

endfunct ion

For fractals in the interval, with general real contraction ratios and gap

lengths, we can compute the self-similar measure quite simply.

plotnussm.sce plots non-equicontractive self-similar measures

using tensor representation approximation to nth tensor power

c l f ;

p l o t (cumsum( tensorpower ( l , n ) ) , cumsum( tensorpower ( r , n ) ) )\\

By contrast, systems without a built-in function for Kronecker multi-

plication complicate these matters somewhat. Included here is a brief TI

calculator program for Kronecker products of vectors:

vkron (v ,w)

Prgm

dim(w)[2]−>m

dim( v ) [ 2 ] ∗ dim(w)[2]−>k

newMat (1 , k)−>kron

103



0−> b

For i , 1 , k

mod( i ,m)−>b

I f b=0 Then

m −> b

EndIf

v [ 1 , c e i l i n g ( i /m) ] ∗w[ 1 , b]−>kron [ 1 , i ]

EndFor

Disp kron

EndPrgm

And for square matrices, we can call vkron, above:

mkron2 (v ,w)

Prgm

ClrIO

dim( v)[1]−>m

dim( v)[2]−>n

dim(w)[1]−>p

dim(w)[1]−>q

For i i , 1 ,m

For j j , 1 , p

vkron ( v [ i i ] ,w[ j j ] )

EndFor
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EndFor

EndPrgm

10 Concluding Remarks

We see that fractal concepts and methods stemming from the properties of

self-similarity and contractivity [K-L-M-V],[Law], are fundamental to much

of analysis and physics. By generalizing our notion of fractal dimension into

a notion of scale covariance, we find algebraic structure within the evolution

of fractals.

We have seen that IFS fractal constructions satisfy many algebraic struc-

tures, and we can use this fact to develop simple algebraic representations

of IFS fractals, allowing for computations of measures and their transforms,

and illuminating possible avenues for the applications of IFS fractals to the

physics of particles and spacetime.

Not all our work has been conceptual. Concrete, original contributions

have been made, to wit:

• Log-periodicity of fractals’ scale evolution can be derived from the frac-

tal itself, via ∂box(F )(r).

• A tensor representation allows us to approximate the measure of sets

under self-similar measures.

Yet, much more work lies ahead:
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• An explicit theory of integration on IFS fractals is at hand, perhaps

ready for numerical solutions of differential equations on fractals, and

for computation of integral transforms on fractal measures.

• Experimenting with computer code, particularly, with generalizing the

concept of self-similar measure to the settings of signed measures opens

the door to an entire class of fractal curves and surfaces. Such a model

has been proposed to

• We conjecture that the dual to the representation vector acts as a

functor to the category of abelian groups, as does the box-derivative.

By the isomorphism to the representation vector of a self-similar mea-

sure, we can compute measures by integrating over singularities of the

box-derivative (complex dimensions). Graph theoretic techniques can

advance this approach further, or provide more explicit means to obtain

rigorous proofs.

• State vectors of many particle systems in coherent states are convergent

infinite tensor products. What kinds of states are described by the

representations of fractals by convergent infinite tensor products?

The infinite regress demanded by fractal constructions describe scales that

invoke energy levels beyond all bound. Surely the explorers of this landscape

will harness these powerful forces for the enlightenment of all.
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