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ABSTRACT 

The effect of genetic ancestry on the genetic architecture of complex traits in admixed 

populations 

Melissa Lee Spear 

Understanding the genetic basis of complex phenotypes is a critical problem in medical and 

evolutionary genetics. The evolutionary forces of natural selection and demography have shaped 

patterns of worldwide genetic variation, which in turn have shaped the genetic architecture of 

human phenotypic variation. Admixed populations, including African Americans and Latinos, have 

recent ancestry from two or more ancestral groups and are highly underrepresented populations 

in human genetics research. As a result, the genetic variation that contributes to the genetic 

architecture of complex traits in these populations has largely been undefined. Here through a 

combination of data analysis, population genetic modeling and statistical genetics, we further our 

understanding of admixed populations and highlight the importance of studying diverse 

populations. First, in a study of bronchodilator drug response (BDR), we identified both population 

specific and shared genetic variants associated with differences in BDR in African American and 

Latino children with asthma. Second, in a study of Hispanics/Latinos, we show that admixture has 

been a dynamic process in the recent history of Mexican Americans, with ancestry proportions 

changing over time due to a complex mixture of small effects from several population and cultural 

factors.  Finally, we draw attention to the biases and potential for continued health disparities that 

persist when utilizing genomic prediction based only on large samples of European individuals in 

Mexican Americans. Through these studies, we improved upon our understanding of the genetic 

diversity within admixed populations, its effects on human phenotypic diversity, and subsequently 

our ability to understand genetic contributions to complex traits and disease. 

 
 

 



 
ix 

TABLE OF CONTENTS 

Chapter 1: Introduction……………………………………………………………………….... 1 

          References.…………….………………………………………………………….............. 6 

Chapter 2: A Genome-wide Association and Admixture Mapping Study of 

Bronchodilator Drug Response in African Americans with Asthma…………………… 

 

10 

          Introduction……………………………………………………………….......................... 11 

          Methods…………………………...………………...………………...………………........ 13 

          Results………………...………………...………………...……………………………….. 21 

          Discussion…………...………………...………………...………………...………..……... 26 

          References……………...………………...……………….……………...……..………… 29 

Chapter 3: Characterization of the recent demographic history and population 

structure of Mexican Americans in the United States…………………………………….. 

 

35 

          Introduction………………...………………...………………...………………………….. 36 

          Methods………………………...………….………………...…………………………….. 37 

          Results………………...………………...………………...……………………..………… 41 

          Discussion………………..…...………………...………………...……………………….. 49 

          References………………...………………...………………...…………………………… 52 

Chapter 4:  Leveraging the genetic ancestry of Mexican Americans to understand 

the genetic architecture of complex traits………………………………………………….. 

 

56 

           Introduction………………...………………..…………...………………...……………… 57 

           Methods………………...…………...………………...……………...…………………… 58 

           Results………………...………………...………………..…………...…….…………….. 59 

           Discussion………………...………………...…………………………...………………… 62 

           References………………..……...………………...………………...………………….... 64 

  



 
x 

Appendices  

         Appendix A: Supplementary Material to Chapter 2……………………………………... 66 

                      Reference………………………………………………………………………….. 77 

         Appendix B: Supplementary Material to Chapter 3……………………….…………….. 78 

         Appendix C: Supplementary Material to Chapter 4 …………………………………... 86 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
xi 

LIST OF FIGURES 

Figure 2.1. Meta-analysis of genome-wide association studies with BDR in African 

Americans……………...……………...……………...……………................... 

 

21 

Figure 2.2. LocusZoom plot of chr9:84653000–85653000……………...……………..... 22 

Figure 2.3. Geographic distribution of allele frequencies of rs73650726……………..... 23 

Figure 2.4. Meta-analysis of genome-wide association studies with BDR in African 

Americans and Latinos……………...……………...……………...…………... 

 

24 

Figure 2.5. LocusZoom plot of chr10:53200000–54200000.……………....……………. 25 

Figure 3.1. Recent dynamics continually shape the continuum of continental ancestry 

Hispanic/Latino populations……………...……………...……………............. 

 

43 

Figure 3.2. Diversity of and within Native American ancestral tracts……………........... 46 

Figure 4.1. Correlation of 66 quantitative traits with global Native American ancestry.. 60 

Figure 4.2. Height and global Native American ancestry in HCHS/SOL Mexican 

Americans……………...……………...……………...……………................... 

 

62 

Figure A.1 Quantile-quantile plots for genome-wide allelic associations with BDR in 

a meta-analysis……………...……………...……………...…………….......... 

 

67 

Figure A.2. Genotype-phenotype correlations……………...……………...……………... 68 

Figure A.3. Admixture mapping in SAGE II (n= 759) for African ancestry and BDR….. 69 

Figure A.4. Admixture mapping in SAGE I (n= 190) for African ancestry and BDR…... 69 

Figure A.5. Meta-analysis of admixture mapping in SAGE I and II (n=949) for African 

ancestry and BDR……………...……………...……………...……………...... 

 

70 

Figure A.6. Meta-analysis of admixture mapping in SAGE I, SAGE II, and GALA II 

(n=2,779) for African ancestry and BDR……………...……….……............. 

 

70 

Figure A.7. Distribution of bronchodilator drug response measures for discovery and 

replication cohorts……………...……………...……………...……………...... 

 

71 



 
xii 

Figure B.1. Continental ancestral diversity of HCHS/SOL……………...……………...... 78 

Figure B.2. Concordance of ADMIXTURE and RFMix global ancestry estimates….…. 78 

Figure B.3. RFMix inferred Native American global ancestry proportions plotted over 

time for HCHS/SOL Mexican Americans……………...…………….............. 

 

79 

Figure B.4. Distributions of Native American global ancestry means generated by 

1000 bootstrap resampling iterations within each decade of binned birth 

years……………...……………...……………...……………...……………..... 

 

 

79 

Figure B.5. Replication in the Health and Retirement Study for 705 self-identified 

Mexican Americans……………...……………...……………....……………... 

 

80 

Figure B.6. Diversity of and within Native American ancestral tracts……………........... 81 

Figure B.7. Runs of homozygosity (ROH) in HCHS/SOL Mexican Americans………… 82 

Figure B.8. Ancestry-related assortative mating in HCHS/SOL Mexican Americans 

separated by decade……………...……………...…….………...……………. 

 

83 

Figure B.9. Admixture mapping in HCHS/SOL Mexicans (n=3622) for Native 

American ancestry……………...……………...……………...……………...... 

 

84 

 

 

 

 

 

 

 

 

 

 

 



 
xiii 

LIST OF TABLES 

Table 2.1. Descriptive statistics of SAGE I, SAGE II, & GALA II asthma cases........... 15 

Table 2.2. Genome-wide significant associations identified through a meta-analysis 

within African Americans (SAGE I and II), and within African Americans 

and Latinos (SAGE I, SAGE II, and GALA II)……………….…………….…. 

 

 

22 

Table 2.3. Correlation between the expression of PRKG1 in the lung and minor 

alleles at three intronic SNPs associated with BDR (cis-eQTLs)………….. 

 

26 

Table 3.1. Relationship of Native American global ancestry and birth year for 

Mexican Americans stratified by recruitment region, US born vs not US 

born status, sex and educational attainment………………………………… 

 

 

44 

Table A.1. Distribution of severity of disease in SAGE I, SAGE II, and GALA II……… 72 

Table A.2. Individual genome-wide association study results from SAGE I, SAGE II, 

and GALA II……………………………………………………………………… 

 

73 

Table A.3. Replication results of candidate SNPs in GALA I, SAPPHIRE and SARP.. 74 

Table A.4. Top replication results (MAF >0.05) +/-50 kb of candidate SNPs in GALA 

I and SAPPHIRE……………………………………………………………….. 

 

75 

Table A.5. Candidate SNP replication in meta-analysis of SAGE I and SAGE II.……. 76 

Table A.6. Meta-analysis of admixture mapping results within African Americans 

(SAGE I and II) …………………………………………………………….…… 

 

76 

Table B.1. Association of global ancestries and birth year for all HCHS/SOL samples 85 

Table C.1. Multiple regression table with traits that were significantly correlated with 

global NAM ancestry. ………………………………………………………….. 

 

86 

Table C.2. Height over time in HCHS/SOL Mexican Americans……………………….. 87 

Table C.3. Observed height vs. predicted height in HCHS/SOL Mexican Americans.. 87 

 



 
1 

Chapter 1: Introduction  
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The field of human genetics has exploded over the past two decades as a result of new 

genetic sequencing technologies and insights gleaned from medical and population genetic 

studies. From these studies, we have learned about the rich genetic diversity of populations 

around the world [1, 2] and how the evolutionary forces of demography and natural selection have 

shaped the genetic architecture of human phenotypic variation [3-8]. Despite the progress that 

we have made, the majority of these studies have been performed in individuals of European 

descent and this disparity has continued despite several calls for action [9-11]. Populations vary 

in terms of allele frequencies, linkage disequilibrium, and biological effect sizes of variants that 

affect the identification and importance of risk variants, thus European populations contain only a 

subset of the human genetic variation relevant to complex disease across the world (and many 

risk variants that are exclusive to European ancestries).  

Throughout this thesis I focus on developing new insights into the genetics of a specific 

group of underrepresented populations: admixed populations. The genomes of recently admixed 

individuals are mosaics of ancestry segments from two or more previously diverged populations.  

The underrepresentation of diverse populations in biomedical research, including admixed 

populations, has impeded our ability to fully understand the genetic architecture of complex traits 

in these populations, and continued underrepresentation may result in further exacerbating health 

disparities. The majority of GWAS have been performed in European populations [9-10] and their 

findings have been leveraged in the clinic through use of polygenic risk scores [11]. However due 

to differences in the demographic history of populations around the world, these findings in 

Europeans do not readily translate to individuals with other ancestries [11].  

In this thesis I highlight new insights into the genetics of admixed populations. First, I 

explore the genetics of differences in bronchodilator drug response in African Americans with 

asthma. I next transition to investigating the admixture dynamics of Hispanic/Latino populations 

living in the United States. I then conclude with examining the biases that exist with using publicly 
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available European based genome-wide association study (GWAS) summary statistics in 

Mexican American individuals.  

 

Asthma and Bronchodilator Drug Response  

Asthma is a complex respiratory disease influenced by social, environmental, and genetic 

factors. An estimated 300 million people worldwide suffer from asthma, but prevalence varies 

widely between populations [12]. It is the most common chronic disease among children 

worldwide [13]. Among U.S. children, asthma prevalence is highest in Puerto Ricans (18.4%), 

followed by African Americans (14.6%), Whites (8.2%) and Mexican-Americans (4.8%) [14, 15]. 

Albuterol, a short-acting β2-adrenergic receptor agonist (SABA), is the most commonly 

prescribed asthma medication to individuals of all racial/ethnic groups [16, 17]. Response to 

albuterol is known as bronchodilator response (BDR), a complex trait involving interactions among 

various tissues and cells, including inflammatory [18], airway epithelium [19], smooth muscle [20], 

and the autonomic nervous system [21].  BDR is quantitatively assessed as a change in forced 

expiratory volume in one second (FEV1) after administration of a SABA. Among children in the 

US, there are great differences in BDR between patients and between racial/ethnic groups. 

African Americans and Puerto Ricans suffer the greatest morbidity due to asthma, and poor BDR 

likely contributes to these disparities. African Americans, in particular, have lower BDR compared 

to European populations even after controlling for asthma severity [22]. Differences in BDR 

between racial/ethnic groups may be due to environmental factors or varying frequencies of 

genetic variants affecting BDR. Their genomes are comprised of both African and European 

ancestry.  

Knowledge of genetic variation that contributes to BDR in African Americans is limited 

[23]. Previous genetic studies in European populations have identified five candidate genes [24-

30] and two genes from GWAS [31, 32] has being associated with BDR. Altogether, however, 

these results provide little information about the contribution of genetic variation to BDR, and 
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there are likely to be additional variation in genes that contribute to variation in BDR in non-

European populations. 

 

Genetics of Hispanic/Latino populations  

The genomes of Hispanic/Latino populations are mosaics of ancestry from three 

different continental populations: Native Americans who founded the Americas, Europeans as a 

result of colonization, and Africans from the subsequent African slave trade [33-36]. Proportions 

of genetic ancestry derived from each of these populations varies considerably, and is 

dependent on regional differences in large scale continental migrations. A limited number of 

studies of Latin American populations have revealed differences in disease prevalence, 

population specific genetic associations with disease phenotypes, and admixture dynamics at 

initial European colonization [33-35, 37-41]. 

The evolutionary forces of natural selection and demography, including migration, have 

shaped patterns of worldwide genetic variation, which in turn have shaped the genetic 

architecture of human phenotypic variation. In the United States, population demography has 

changed immensely over the 20th century as a result of immigration and this will continue to be 

one of the primary modes of population growth as the US approaches a “minority-majority” 

country [42]. Hispanics/Latinos are the largest and fastest growing of these groups [42]. The 

effect of these large-scale migrations in contributing to shaping genetic variation and 

subsequently phenotypic variation is unknown. 

 

Summary 

In summary, this thesis contains three pieces of work, each involved in studying the 

genetics of admixed populations. In chapter 2, I conduct a genome wide association and 

admixture mapping study of bronchodilator drug response in African Americans with asthma. 

This study was, to my knowledge, the first genome-wide association or admixture mapping 
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study of BDR in African Americans with asthma, to date. Through these analyses, I identified 

both population specific and shared genetics variants associated with differences in BDR in 

African American and Latino children with asthma.  

 In chapters 3 and 4, I investigate how the admixture dynamics of Hispanics/Latinos in 

the US have changed over time and the implications this has for the genetic architecture of 

complex traits. Specifically in chapter 3, I highlight how global Native American ancestry has 

increased over time in Mexicans Americans and how this is due to a mixture of multiple genetic 

and social factors. In chapter 4, I examine the relationship between global Native American 

ancestry and multiple complex traits. Through these analyses, I identify a correlation between 

many of these traits and global Native American ancestry. For height specifically, I demonstrate 

that polygenic risk scores for height in Mexican Americans utilizing European GWAS summary 

statistics perform poorly and are biased based on proportions of global European ancestry. Both 

of these results illustrate the importance of including diverse populations in biomedical research 

or risk increasing health disparities.  
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INTRODUCTION  

Albuterol, a short-acting β2-adrenergic receptor agonist (SABA), is the most commonly 

prescribed asthma medication worldwide [1]. SABAs cause rapid smooth muscle relaxation of the 

airways. Bronchodilator drug response (BDR) is a measure of a patient’s clinical response to 

SABA treatment and is quantitatively assessed as a change in forced expiratory volume in one 

second (FEV1) after administration of a SABA. BDR is a complex trait involving interactions among 

inflammatory cells [2], airway epithelium [3], smooth muscle cells [4], and the autonomic nervous 

system [5].  Variation in BDR is likely influenced by both population-specific and shared 

environmental and genetic factors [6-8]. In the United States (U.S.), BDR in children with asthma 

differs significantly between racial/ethnic groups [9]. Specifically, African Americans have lower 

BDR compared to European populations even after controlling for asthma severity [10]. 

Compared to European Americans, African Americans suffer increased asthma morbidity and 

mortality [7, 9, 11] and decreased BDR likely contributes to these disparities in disease 

progression and outcomes. The extensive use of albuterol as a first-line therapy for asthma, 

coupled with the decreased drug response (BDR) and increased disease burden in African 

Americans underscores the importance of identifying genetic factors that influence BDR in African 

American children with asthma. Once identified, these factors may lead to the generation of novel 

therapies and targeted interventions that will serve to improve patient care and asthma outcomes 

in an over-burdened and under-studied population.  

To date, knowledge of genetic variation that contributes to BDR in African Americans is 

limited to a single genome-wide association study (GWAS) in 328 individuals [12]. Previous 

GWAS and candidate gene studies performed in populations of predominantly European ancestry 

with asthma have identified several BDR candidate genes [8, 13-22]. A recent study in Latinos 

with asthma replicated a number of these findings, and also identified novel population-specific 

associations with BDR [6]. Genetic effects identified in one population are not always 

generalizable across populations and several population-specific asthma-risk variants have been 
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discovered in African-descent populations (i.e. African Americans and Latinos) [23-25]. 

Additionally, previous studies have shown that the varying degrees of African and European 

ancestry present in the African American population can be leveraged, through a technique known 

as admixture mapping, to identify the missing heritability of complex traits [26]. Admixture 

mapping is a genome-wide approach that uses the variable allele frequencies of multiple SNPs 

between different ancestral populations to test for an association between local ancestry and 

phenotype [26]. The likelihood of population-specific effects, the limited number, and scale, of 

prior studies of BDR performed in African Americans, and ability to perform admixture mapping 

analysis highlights the possibility of gaining novel information through evaluating the impact of 

common genetic factors on BDR in African American children with asthma.   

In this study, we performed a GWAS and admixture mapping study of bronchodilator drug 

response in 949 African American children with asthma from the Study of African Americans, 

Asthma, Genes & Environments (SAGE I and II) [27]. To increase power and distinguish between 

population-specific vs. shared associations, we also performed a trans-ethnic meta-analysis 

across our SAGE I and SAGE II participants and 1840 Latinos from GALA II (Genes-environments 

and Admixture in Latino Americans) studies [24], respectively (total N=2,789).  We further 

attempted replication of our population-specific and trans-ethnic meta-analysis results in 416 

Latinos from the Genetics of Asthma in Latino Americans study (GALA I) [7, 28], 1,325 African 

Americans from the Study of Asthma Phenotypes and Pharmacogenomic Interactions by Race-

Ethnicity (SAPPHIRE) [29] and 290 African Americans from the Severe Asthma Research 

Program (SARP) [30, 31].  
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METHODS  

Study subjects from the Study of African Americans, Asthma, Genes & Environments  

The Study of African Americans, Asthma, Genes & Environments (SAGE) is an ongoing 

case-control study of asthma in children and adolescents recruited from the San Francisco Bay 

Area in California [27]. Subjects were eligible if they were 8-21 years of age and self-identified all 

four grandparents as African American. Exclusion criteria included: (1) 10 or more pack-years of 

smoking; (2) any smoking within 1 year of recruitment date; (3) pregnancy in the third trimester; 

or (4) history of one of the following conditions: sickle cell disease, cystic fibrosis, sarcoidosis, 

cerebral palsy, or history of heart or chest surgery. Asthma was defined by physician diagnosis, 

asthma medication use and reported symptoms of coughing, wheezing, or shortness of breath in 

the 2 years preceding enrollment. Detailed clinical measurements were recorded for each 

individual whom DNA was collected from. In addition, trained interviewers administered 

questionnaires to obtain baseline demographic data, as well as information on general health, 

asthma status, social, and environmental exposures. Pulmonary function testing was conducted 

with a KoKo® PFT Spirometer (nSpire Health Inc., Louisville, CO) according to American Thoracic 

Society recommendations [32], to obtain forced expiratory volume in one second (FEV1) in 

addition to other standard measurements of airway obstruction. Subjects with asthma were 

instructed to withhold their bronchodilator medications for at least 8 hours before testing. After 

completing baseline spirometry, subjects were given albuterol administered through a metered-

dose inhaler (90 mcg/puff) with a spacer, and spirometry was repeated after 15 minutes to obtain 

post-bronchodilator measurements. The dose of albuterol was different in early stages of SAGE 

recruitment (2001-2005: SAGE I) than in more recent participants (2006-present: SAGE II). In 

SAGE I, post-bronchodilator FEV1 values were measured after providing the participants 2 puffs 

of albuterol (180 µg) if they were younger than 16 years of age and 4 puffs of albuterol (360 µg) 

if they were 16 years of age or older. In SAGE II, two doses of albuterol were delivered. For the 

first dose, 4 puffs of albuterol (360 µg) were provided independently of the age of the participant. 
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For the second dose, two puffs (180ug) for children < 16 years old were administered and 4 puffs 

for subjects older ≥ 16 years. 

Body mass index (BMI) was calculated for each participant using weight and height 

measures and converted to a categorical scale of underweight, normal, overweight, and obese 

according to the Centers for Disease Control and Prevention. For participants under 20 years 

old, standardized sex- and age-specific growth charts were used to calculate BMI percentiles 

(http://www.cdc.gov/nccdphp/dnpao/growthcharts/resources/sas.htm) and categorize their BMI 

as: underweight (BMI percentile<5th), normal (5th≤BMI<85th), overweight (85th≤BMI<95th), and 

obese (BMI≥95th). For participants older than 20 years old, BMI categories 

(http://www.cdc.gov/healthyweight/assessing/bmi/adult_bmi/index.html - interpretedAdults) were 

defined as: underweight (BMI<18.5), normal (18.5≤BMI≤24.9), overweight (25≤BMI≤29.9) and 

obese (BMI≥30). Further information about SAGE can be found in Appendix A.  

Institutional review boards approved the study and all subjects/parents provided written 

assent/consent, respectively. 

 

Genotyping and quality control (SAGE)  

A total of 1,819 samples (1,011 asthma cases and 810 controls) were genotyped with the 

Axiom® World Array 4 (Affymetrix, Santa Clara, CA) at ~800,000 SNPs. Quality control was 

performed by removing SNPs that failed manufacturer’s quality control, had genotyping call rates 

below 95%, and/or had a deviation from Hardy-Weinberg equilibrium (p<10-6) within controls. 

772,135 genotyped SNPs passed quality control. Samples were filtered based on discrepancy 

between genetic sex and reported gender and cryptic relatedness (PI_HAT>0.3). We excluded 3 

subjects who were outliers for BDR (BDR of >60, or <-10). After sample quality control we included 

759 SAGE II and 190 SAGE I asthma cases, for a total of 949 individuals with both genome-wide 

SNP data and measurements of bronchodilator drug response in the current study (Table 2.1).  
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Table 2.1. Descriptive statistics of SAGE I, SAGE II, & GALA II asthma cases. Values 
shown are the means, with the standard deviation in parentheses. 
 

  SAGE I SAGE II GALA II  

Total (N) 190 759 1830 

Age (year) 18 (9.3) 14 (3.6) 13 (3.2) 

  <18 years (%) 64% 86% 93% 

Sex (%Male) 41% 52% 55% 

Race/Ethnicity African American African American Latino 

Global African Ancestry 0.81 (0.13) 0.72 (0.12) 0.15 (0.13) 

Global Native American Ancestry - - 0.30 (0.25) 

BMI       

  <20 years 25 (7.3) (N=132) 25 (7.2) (N=722) 23 (6.5) (N=1782) 

  >20 years 31 (7.8) (N=58) 29 (7.0) (N=37) 30 (6.6) (N=48) 

Pulmonary Function       

  Pre-FEV1 % Predicted 92 (16) 99 (14) 91 (16) 

  Pre-FVC % Predicted 100 (17) 104 (13) 95 (16) 

BDR (%) 9 (9.1) 9.5 (6.9) 11 (8.2) 

 

Phasing of genotyped SNPs was performed using SHAPE-IT [33], and genotype imputation was 

performed using IMPUTE2 [34, 35] using all populations from 1000 Genomes Project Phase III 

[36] as a reference. Following imputation, a total of 9,573,507 genotyped and imputed (info score 

>0.3) SNPs with a MAF>0.05 were analyzed for SAGE II and 9,605,653 were analyzed for SAGE 

I.  
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Study subjects from the Genes-environments & Admixture in Latino Americans study  

A total of 1,830 Latino children with asthma genotyped with the Axiom LAT1 array (World Array 

4, Affymetrix) for the Genes-environments and Admixture in Latino Americans (GALA II) study 

were included in our analysis (Table 2.1). Asthma cases were defined as participants with a 

history of physician diagnosed asthma and the presence of two or more symptoms of coughing, 

wheezing, or shortness of breath in the 2 years preceding enrollment. Detailed clinical 

measurements were recorded for each individual whom DNA was collected from and each 

individual underwent spirometry. BDR was calculated as the percentage change in FEV1 after 2 

doses of albuterol (post-FEV1) compared with base line values before administration of albuterol 

(pre-FEV1). Specifically, post-bronchodilator FEV1 values were measured after providing the 

participants 2 doses of albuterol, with a 15-minute waiting period after each dose. A total of 6 (if 

<16 years of age) to 8 (if ≥16 years of age) puffs of albuterol were administered. A total of 408 

patients from the Centro de Neumologia Pediatrica in Puerto Rico were recruited based on having 

a BDR of at least 8%; of these, 121 patients were recruited based on having a BDR of at least 

12%.  Further details about GALA II are described the Appendix A and in depth elsewhere [6]. 

Imputation procedures identical to those described above for SAGE I and SAGE II were 

implemented, resulting in a total of 7,498,942 genotyped and imputed (info score >0.3) SNPs with 

a MAF>0.05.  

 

Study subjects from the Genetics of Asthma in Latino Americans study 

For our replication phase, 247 Mexican and 169 Puerto Rican asthma cases genotyped 

with the Genome-Wide Human SNP Array 6.0 (Affymetrix) for the Genetics of Asthma in Latino 

Americans (GALA I) study were included. Children were included in the study if they were between 

the ages of 8-40 with physician diagnosed mild to moderate-severe asthma and had experienced 

two or more symptoms in the previous two years at time of recruitment (including wheezing, 

coughing and/or shortness of breath.) BDR was measured in a similar way to GALA II, but with a 
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lower dosage of albuterol. Specifically, post-FEV1 values were measured after only a single dose 

of albuterol (compared with 2 doses in GALA II). Two (if <16 years of age) to 4 (if ≥16 years of 

age) total puffs of albuterol were administered (compared with 4 [if <16 years of age] and 6 [if ≥16 

years of age] in GALA II). Further details of the study are described in the Appendices A and 

elsewhere [8, 28].   

 

Study subjects from the Study of Asthma Phenotypes and Pharmacogenomic Interactions 

by Race-Ethnicity  

For additional replication, we included 1,325 Africans Americans with asthma from the 

Study of Asthma Phenotypes and Pharmacogenomic Interactions by Race-Ethnicity (SAPPHIRE) 

[29] genotyped with the Genome-Wide Human SNP Array 6.0 (Affymetrix). Subjects met the 

following criteria: age 12-56 years, had a diagnosis of asthma (based on both patient report and 

documentation in the medical record), and did not have a prior diagnosis of chronic obstructive 

pulmonary disease or congestive heart failure (CHF), a baseline FEV1 between 40-90% 

predicted, >12% baseline bronchodilator reversibility, no smoking in the preceding year or <10 

pack-year smoking history total, no oral or inhaled corticosteroid use in the 4 weeks preceding 

screening, and not pregnant at the time of enrollment and not intending to get pregnant during 

the study period. Lung function testing was performed using a Fleisch-type pneumotachometer 

(KoKo PFT Spirometer®, nSpire Health Inc., Louisville, CO) and following 2005 ATS/ERS 

spirometry recommendations.(27;28) Patients using inhaled bronchodilators were asked to 

withhold these medications for the 12 hours prior to lung function tests. To assess bronchodilator 

response a 360 microgram (mcg) dose (i.e., 4 puffs) of inhaled albuterol sulfate hydrofluoroalkane 

(HFA) (GlaxoSmithKline, Research Triangle Park, NC) from a standard metered dose inhaler 

(MDI) using an AeroChamber Plus Flow-Vu® spacer (Monahan Medical Corp., Plattsburgh, NY) 

was administered to participants. Pulmonary function was reassessed 15 minutes after 

administering albuterol. Bronchodilator response was measured as the change in forced 
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expiratory volume at one second (FEV1) between the baseline (pre-bronchodilator) measure and 

post-bronchodilator FEV1. Estimates of local ancestry were obtained using RFMix [37]. 

 

Study subjects from the Severe Asthma Research Program 

 We included 290 African Americans with mild to severe asthma from the Severe Asthma 

Program (SARP) genotyped with the Illumina 1Mv1 platform [23]. Subjects met the American 

Thoracic Society (ATS) definition of severe persistent asthma [38] and were characterized 

according to asthma severity (see [30, 31]).  

 

Assessment of genetic ancestry  

Genotypes from two populations were used to represent the ancestral haplotypes of 

African Americans for estimating local ancestry: HapMap European (CEU) and HapMap Africans 

(YRI). For Latinos, genotypes from 71 Native Americans were used as an additional ancestral 

population [39]. These 71 individuals included: 14 Zapotec, 2 Mixe, and 11 Mixtec from the 

southern State of Oaxaca [40] and 44 Nahua individuals from Central Mexico [3]. Global ancestry 

was estimated using ADMIXTURE [41] in a supervised analysis assuming two ancestral 

populations for African Americans and three ancestral populations for Latinos.  A union set of 

SNPs was obtained by merging genotyped SNPs in SAGE and the ancestral populations 

(CEU/YRI). Local ancestry was estimated using the program LAMP-LD [40] in the GALA and 

SAGE studies and with RFMix [37] in SAPPHIRE.  

 

Genotype association testing 

All statistical analyses were conducted using R (version 2.15.3).  For SAGE individuals, 

we used standard linear regression to test for an association between BDR and allele dosage at 

each individual SNP, adjusting for age, sex, BMI category, and both global and local African 

ancestry. A GWAS of BDR in GALA II has been previously published [6], however, this previous 
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work did not include adjustment for BMI; in this study we re-ran the GWAS using a new reference 

imputation panel and further adjusted by BMI [42]. For GALA II individuals, we adjusted for age, 

sex, BMI category, ethnicity, global Native American and African ancestry, and local ancestry. All 

analyses were performed using imputed genotypes from 1000 Genomes phase III. Using the 

fixed-effects model implemented in METAL [43], we performed a meta-analysis of common 

variants (MAF ≥ 5%) across  African Americans (SAGE I and SAGE II) and Latinos (GALA II). We 

selected variants that were common (MAF ≥ 5%) within each individual study and then took the 

intersection of SNPs for the meta-analysis.  

 

Admixture mapping 

We used local ancestry estimates generated across the genome to perform admixture 

mapping in African Americans. Linear regression models adjusted for age, sex, BMI category, 

and global African ancestry were used to identify significant associations between local ancestry 

estimates and BDR. The threshold for genome-wide significance was calculated using the 

empirical autoregression framework with the package coda in R to estimate the total number of 

ancestral blocks [44, 45]. The Bonferroni threshold was calculated as α=2.4x10-4 based on 245 

ancestral blocks. For African Americans, admixture mapping was performed separately in SAGE 

I and SAGE II and combined in a meta-analysis using METAL [43]. An admixture mapping study 

of BDR in GALA II has been previously published [6], however, this previous work did not include 

adjustment for BMI; in this study we re-ran the admixture mapping study further adjusting by BMI 

[42] to be consistent with the SAGE I and SAGE II analyses. For GALA II Latinos, linear regression 

models adjusted for age, sex, ethnicity, BMI category, global Native American and African 

ancestry were used to identify significant associations between local ancestry estimates and BDR. 

We further combined the African ancestry results of SAGEI, SAGE II and GALA II in a meta-

analysis using METAL [43]. 
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Replication in GALA I, SAPPHIRE, and SARP 

 We attempted replication of significant population-specific (SAGE I and SAGE II) and 

cosmopolitan (SAGE I, SAGE II, GALA II) associations with BDR in the GALA I, SAPPHIRE, and 

SARP studies. Replication in GALA I was performed using genotype imputation (i.e. in silico 

replication), followed by an examination at a locus-wide level for SNPs within +/- 50 kb. We 

imputed 100 kb regions around each SNP using the program IMPUTE2 for Mexican and Puerto 

Rican participants run separately using 1000 Genomes phase 3 haplotypes as a reference. Linear 

regression was used to test for an association between allele dosage and BDR separately in 

Mexicans and Puerto Ricans, adjusting for age, sex, BMI category, global and local ancestry.  

Replication in SAPPHIRE was performed using linear regression to test for an association 

between allele dosage and BDR in African Americans while adjusting for age, sex, BMI category, 

and global and local African ancestry. Replication in SARP was performed using linear regression 

to test for an association between allele dosage and BDR in African Americans while adjusting 

for age, sex, BMI, and global African ancestry. For GALA I and SAPPHIRE replication, statistical 

significance at the SNP level was evaluated at p<0.05, and at the locus-wide level was established 

using a conservative Bonferroni correction adjusting by the number of SNPs within +/- 50 kb of 

the original candidate SNP. For SARP replication, statistical significance was evaluated at p<0.05 

at the SNP level only. 
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RESULTS  

GWAS results 

After filtering variants with a MAF ≥ 5% and with imputation quality score (info score) ≥ 0.3, we 

tested for an association of BDR at a total of 9,190,349 SNPs in 949 African Americans with 

asthma (λ = 1.006). We identified a single genome-wide significantly associated SNP within an 

intergenic region on chromosome 9 (rs73650726, imputation quality score=0.86) (Figures 2.1, 

2.2, Figure A.1, Table 2.2). At this variant, additional copies of the A1 allele (A), was associated 

with decreased drug response (β=-3.8, p=7.69x10-9) (Table 2.2 & Table A.2).  

 

Figure 2.1. Meta-analysis of genome-wide association studies with BDR in African 
Americans. Association testing for BDR was performed using linear regression including age, 
sex, BMI category, local and global ancestry as covariates separately in SAGE I and II and 
combined in a meta-analysis. Dotted line indicates the genome-wide significance threshold of 5 
× 10-8. 
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Figure 2.2. LocusZoom plot of chr9:84653000–85653000. Region includes genotyped and 
imputed variants from 1000 Genomes phase 3. Blue = variants common in SAGE I and II. Dotted 
line indicates the genome-wide significance threshold of 5 × 10-8. 

Table 2.2: Genome-wide significant associations identified through a meta-analysis within 
African Americans (SAGE I and II), and within African Americans and Latinos (SAGE I, 
SAGE II, and GALA II). Under ‘Direction’ the first symbol refers to SAGE I, second to SAGE II, 
and third to GALA II. 0 = absent/rare in study. 
 

African Americans (SAGE I and II): 

Chr  SNP Position (hg19) A1 A2 Effect (A1) StdErr Pvalue Direction 

9q21 rs73650726 85152666 A G -3.8 0.66 7.69x10-9 --0 

African Americans + Latinos (SAGE I, SAGE II, GALA II): 

Chr  SNP Position (hg19) A1 A2 Effect (A1) StdErr Pvalue Direction 

10q21  rs7903366 53689774 T C 1.23 0.22 3.94x10-8 +++ 

10q21 rs7070958 53691116 A G -1.24 0.23 4.09x10-8 --- 

10q21 rs7081864 53690331 A G 1.23 0.22 4.94x10-8 +++ 
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The SNP rs73650726 is common in African Americans but rare in Latinos, with a minor allele 

frequency of 8% in both SAGE studies, but at a frequency of 1% in GALA II. This is consistent 

with allele frequencies observed in the 1000 Genomes Project, where the variant is common in 

African populations (8%), rare in Latino populations (1-2%), and absent in European and Asian 

populations (Figure 2.3) [46].  

 

 

Figure 2.3. Geographic distribution of allele frequencies of rs73650726. Each pie chart 
refers to a population from the 1000 Genomes Project phase 3. Yellow= Major allele (A), blue = 
minor allele (G). rs73650726 is common only in populations with African ancestry. 

 

In order to increase power and identify associations shared between populations we 

performed a trans-ethnic meta-analysis across African American, and Latino participants from 

SAGE I, SAGE II, and GALA II, respectively. Following quality control and filtering on variants 

common in each study (MAF ≥ 5%), we took the overlap between the three studies and we 

performed a meta-analysis on 6,570,864 SNPs. We identified genome-wide significant 
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associations at three SNPs located on chromosome 10 within the intron of PRKG1: rs7903366 

(β=1.23, p=3.94x10-8), rs7070958 (β=-1.24, p=4.09x10-8), and rs7081864 (β=1.23, p=4.94x10-8) 

(imputation quality scores > 0.98, Figures 2.4 & 2.5, Table 2.2, Table A.2). All three SNPs are 

eQTLs for PRKG1 in lung tissue from the GTEx database (Table 2.3) [47], with the minor allele 

associated with decreased expression.  

 

Figure 2.4. Meta-analysis of genome-wide association studies with BDR in African 
Americans and Latinos. Association testing for BDR was performed using linear regression 
including age, sex, BMI category, local and global ancestry as covariates; including ethnicity for 
GALA II. Dotted line indicates the genome-wide significance threshold of 5 × 10-8. 
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Figure 2.5. LocusZoom plot of chr10:53200000–54200000. Region includes genotyped and 
imputed variants from 1000 Genomes phase 3. Green = variants common in SAGE I, SAGE II 
and GALA II. Dotted line indicates the genome-wide significance threshold of 5 × 10-8. 

 

Replication of African American population-specific (rs73650726) and shared (rs7903366, 

rs7070958, rs7081864) was attempted in two independent Latino (GALA I) and African American 

(SAPPHIRE) studies. Although none of the identified associations replicated in either study 

population, the African American population-specific association between rs73650726 and BDR, 

identified in the SAGE studies, displayed a similar trend in direction of effect in Puerto Ricans 

(GALA I; β = -6.2) and in African Americans (SAPPHIRE, β = -0.65) (Table A.3). In addition, none 

of the SNPs within 50 kb of the four original SNPs were significantly associated with BDR following 

Bonferroni correction (Table A.4). Lastly, we evaluated previously identified candidate SNPs from 

prior candidate gene and GWAS with BDR in patients with asthma. After accounting for fifteen 

comparisons, no SNPs met the statistical significance threshold (p<3.33x10-3) (Table A.5); only 

rs9551086 in SPATA13 had a p-value below 0.05 (p=0.02). 
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Admixture mapping results 

We tested for an association of BDR with local genetic ancestry inferred at 478,441 SNPs in 949 

African Americans with asthma (190 from SAGE I and 759 from SAGE II) (Figures A.2 & A.3). A 

meta-analysis across both studies yielded no significant associations with ancestry (p< 2.4x10-4) 

(Figure A.4). The most significant peak was located on chromosome 8p11 where African ancestry 

was associated with higher BDR (β=1.49, p=6.34x10-4) (Table A.6). A meta-analysis across 

SAGE I, SAGE II and GALA II yielded results consistent with previous findings in the original 

admixture mapping study of GALA II (see [6]) (Figure A.5).  

 

DISCUSSION 

We performed a genome-wide association study for bronchodilator drug response in 

African Americans, and identified a population-specific association between rs73650726, located 

on chromosome 9, and BDR. Specifically, we discovered that the G allele of rs73650726 was 

associated with increased BDR and is more common in African Americans compared to European 

populations (Figure 2.3). The variant rs73650726, located on chromosome 9, does not map to 

any gene, but SNPs in high linkage disequilibrium (r2≥0.8) with this marker are located in enhancer 

histone marks in lung tissues [47]. 

Table 2.3: Correlation between the expression of PRKG1 in the lung and minor alleles at 
three intronic SNPs associated with BDR (cis-eQTLs). Data is from the GTEx database. 

SNP Ref Allele Pvalue Effect (Ref Allele) T-Statistic StdErr Tissue Gene 

rs7903366 C 0.00051 -0.12 -3.5 0.034 Lung PRKG1 

rs7070958 A 0.00046 -0.12 -3.6 0.034 Lung PRKG1 

rs7081864 G 0.00052 -0.12 -3.5 0.034 Lung PRKG1 
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 Our results demonstrate that population-specific genetic variation contributes to variation 

in BDR in African American children with asthma.  We further combined our results in a meta-

analysis for BDR in African Americans and Latinos and identified multiple intronic variants in 

PRKG1 that were associated with BDR in both populations. Overall our results demonstrate that 

population-specific and shared genetic factors contribute to variation in BDR among African 

American children with asthma.  

Three of our significantly associated variants fell within the intronic region of an annotated 

gene, Protein Kinase, CGMP-Dependent, Type I (PRKG1). PRKG1 encodes for a cyclic GMP-

dependent protein kinase, which phosphorylates proteins involved in regulating platelet activation 

and adhesion [48], gene expression [49, 50], vascular smooth muscle cell contraction [51], and 

feedback of the nitric-oxide (NO) signaling pathway [52]. Notably, the NO pathway is a key 

pathway in modulating vasodilation in response to beta-agonists such as albuterol via beta 2-

adrenergic receptors [53], making PRKG1 a highly plausible BDR candidate gene. The three 

SNPs are in high linkage disequilibrium (r2≥0.8) with variants known to be functional [54], and are 

all associated with the expression of PRKG1 in the lung – a tissue highly relevant to BDR. From 

the Genotype-Tissue Expression (GTEx) project database, the reference allele for all three SNPs 

was associated with decreased expression of the gene in lung tissue [47].  Thus, additional 

studies are required to identify the causal underlying variation at this locus, such as direct 

sequencing of this locus, and how the expression of PRKG1 may be related to differences in BDR.  

We attempted to replicate our study findings and candidate SNPs previously found to be 

associated with BDR, however we found no significant associations following multiple testing 

corrections. This could be due to differences in study design (Figure A.6), the presence of 

population specific differences in genetic contributions to BDR, lack of power due to small 

populations sizes, and/or varying patterns of linkage disequilibrium between populations.  

Furthermore, we were limited in sample size in GALA I [7, 28] to evaluate associations at low 
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frequency variants, and note that SAPPHIRE is comprised of mainly adults [29] in comparison to 

SAGE and GALA II that are comprised of mainly children.  

In conclusion, we identified two novel loci with biological plausibility whereby genetic 

variation is associated with differential response to albuterol, the most commonly prescribed 

asthma medication. One of these loci contains variation associated with BDR that is common to 

African Americans, a population that has historically been understudied in genetic studies [55-

57]. Further genetic studies in African Americans are essential for identifying a more 

comprehensive set of genetic variants that contribute to differences in BDR, which in turn will lead 

to a better understanding of the pharmacogenetic response to asthma therapies. This will provide 

the foundation for genetic risk profiling and precision medicine, identifying novel genes and 

pathways associated with BDR, and the development of novel asthma therapies. 
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Chapter 3: Characterization of the recent demographic history and population structure 

of Mexican Americans in the United States 
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Introduction 

Hispanics/Latinos living in the United States are culturally, phenotypically and genetically 

diverse populations. Individuals who identify as Hispanic/Latino have varying proportions of 

Native American, African, and European genetic ancestry, each with its own unique continental 

demographic history. Demographic forces such as population bottlenecks and expansions, 

migration and adaptation to novel environments resulted in observable differences in continental 

patterns of genetic variation [1-3]. These differing patterns were shaped by many historical events 

of migration which included the founding of the Americas by Native American populations, the 

colonization by Europeans, and the subsequent African slave trade [4-8]. These large scale 

migrations and additional demographic events shaped the genetic diversity of individuals living 

today within the United States [9-11].  

Demographic history has shaped the genetic architecture of modern human phenotypic 

variation [12-17], and is critical to consider in the search for the genetic basis of complex diseases. 

The demography of the United States has changed drastically over the 20th century, and by 2044 

is predicted to become a ‘minority-majority’ country whereby no one racial/ethnic group comprises 

more than 50% of the population [18]. By 2060 Hispanics/Latinos are projected to make up the 

largest of that share at 29% or 119 million individuals [18]. However, to date, population-based 

medical genomics research [and its subsequent benefits, including polygenic risk score (PRS) 

profiling] have been disproportionately focused on individuals of European descent, with the 

findings primarily benefiting these populations [19, 20]. Despite the increases in sample sizes, 

rates of discovery, and traits studied, Hispanic or Latin American participation in genome-wide 

association studies (GWAS) has continued to hover around 1% [21, 22]. This shows a continuing 

trend of leaving this population particularly vulnerable to falling behind in receiving the benefits of 

the precision medicine revolution [20, 21].  

In this study we utilize the largest genetic study of Hispanics/Latinos in the U.S. to date -- 

the Hispanic Community Health Study/Study of Latinos (HCHS/SOL) [10] -- to understand how 
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patterns of genetic variation in Hispanic/Latino populations in the United States have changed 

over the last century. 

 

Methods 

Study dataset and initial quality control  

The HCHS/SOL study is a community-based cohort study of self-identified Hispanic/Latino 

individuals from four US metropolitan areas with the general goal of identifying risk and protective 

factors for various medical conditions including cardiovascular disease, diabetes, pulmonary 

disease, and sleep disorders [23]. 12,434 participants with birth year estimates between 1934-

1993 who self-identified as being of Cuban, Dominican, Puerto Rican, Mexican, Central American, 

or South American background consented to genetics studies and posting of their genetic and 

phenotype data on the publicly available Database of Genotypes and Phenotypes (dbGaP) 

through Study Accession phs000810.v1.p1. Samples were genotyped on an Illumina custom 

array, SoL HCHS Custom 15041502 array (annotation B3, genome build 37), consisting of the 

Illumina Omni 2.5M array and 148,353 custom single nucleotide polymorphisms (SNPs) [10]. Data 

posted to dbGaP had passed initial sample quality control filters, including removing samples with 

differences in reported vs. genetic sex, call rates > 95%, and evidence for sample contamination 

(e.g. heterozygosity and sample call rates). For initial SNP quality control, we filtered out SNPs 

that were monomorphic, positional duplicates, or Illumina technical failures, as well as SNPs that 

had cluster separation <= 0.3, call rate <=2%, >2 disconcordant calls in 291 duplicate samples, 

>3 Mendelian errors in parent-offspring pairs/trios, Hardy-Weinberg Equilibrium combined P-

value <10-5, and sex differences in allele frequency ≥0.2. Our filtering resulted in 1,763,935 

genotyped SNPs with minor allele frequency (MAF) >0.01. 

Additional sample quality control performed in the HCHS/SOL dataset included filtering 

out samples with 1) large chromosomal anomalies, 2) substantial Asian ancestry as previously 

identified in HCHS/SOL (12) and 3) individuals with up to third degree genetic relatedness in the 



 
38 

dataset as inferred by REAP [24]. For genetic relatedness filtering, individuals from pairs were 

kept to maximize representation of the birth year distribution, which resulted in 10,268 unrelated 

remaining samples. 

From the original HCHS/SOL analysis, individuals were classified into genetic-analysis 

groups, similar to self-identified background groups in that they share cultural and environmental 

characteristics, but are also more genetically homogenous [10]. Individuals that had been 

classified as “other” were excluded from any further analyses.  

Birth year for all individuals was estimated by subtracting the difference between date of 

first clinic visit for the baseline examination [23] and age. 

 

Global, local and parental ancestry inference  

All ancestry analyses were restricted to the 211,152 autosomal SNP markers that overlapped 

between the study and reference panel genotyping array. For the HCHS/SOL dataset, global 

African, European, and Native American ancestries were inferred with ADMIXTURE, in an 

unsupervised manner, with K=3. HCHS/SOL samples with greater than 95% of either African, 

European, or Native American ancestry were filtered out resulting in 9,913 samples: 1,099 

Central American, 1,536 Cuban, 954 Dominican, 3,622 Mexican, 1,783 Puerto Rican, 652 South 

American and 267 “Other” individuals. Ancestral tracts, known as ‘local’ ancestry, along the 

genome for all HCHS/SOL samples were inferred using RFMix [25] and a three population 

reference panel, comprised of 315 individuals: 104 HapMap phase 3 CEU (European) and 107 

YRI (African) samples [26] and 112 Native American samples from throughout Latin America 

[8]. The reference panel was limited to samples with 99% continental ancestry as inferred by 

unsupervised ADMIXTURE [27]. Prior to local ancestry inference, HCHS/SOL samples were 

merged with the reference panels and then phased using SHAPEIT2 [28]. For all HCHS/SOL 

Mexican American samples, parental genomic ancestry was inferred with ANCESTOR [29] 

using the local ancestry estimates generated by RFMix.  
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Uniform Manifold Approximation and Projection (UMAP) 

Principal components for HCHS/SOL and the reference panel were computed using smartPCA 

[30]. UMAP was run using the Python script freely available at https://github.com/diazale/gt-

dimred with parameter specification set at 15 nearest neighbours and a minimum distance 

between points of 0.5. 

 

Admixture mapping  

Local ancestry estimates for 211,151 SNPs across the genome were used to perform admixture 

mapping in HCHS/SOL Mexican Americans to determine if younger individuals harbored excess 

Native American ancestry in certain regions of the genome. Admixture mapping was performed 

applying two different models: 1) a linear regression model with age as the dependent variable 

adjusting for global Native American ancestry, sampling weight and center and 2) a logistic 

regression model dividing the HCHS/SOL Mexican cohort in to an older vs younger generation 

with 1965 set as the dividing point while also adjusting for global Native American ancestry, 

sampling weight and center. The threshold for genome-wide significance, 1.38x10-4 was 

calculated using the empirical autoregression framework with the package coda in R to estimate 

the total number of ancestral blocks [31, 32].  

 

Multiple Regression Model for Tract Lengths 

The model: log(𝑓) =𝛽0 +𝛽1 T +𝛽2 A +𝛽3 TA +𝜀, where 𝑓 is a matrix containing the proportion 

of lengths of all ancestral tracts across the genome for all 3622 Mexican American individuals, 𝑇 

the tract length bin and 𝐴 decade of birth year bin, was used to test for an effect of birth decade 

on the proportion of Native American ancestral tract lengths. 
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Diversity Calculations 

Subcontinental ancestry was assessed using the diversity measurements π and FST. π was 

calculated as the average number of pairwise genetic differences among all pairs of overlapping 

Native American ancestry tracts across individuals. FST was calculated as:  

FST = (HT- HS) / HT 

where HT was equal to the average heterozygosity among total populations and HS was equal to 

the average heterozygosity within subpopulations.  

 

Inference of Runs of Homozygosity 

Runs of homozygosity (ROH) were called using the program GARLIC v1.1.4 [33] on 211,152 sites 

for the Mexican American individuals. An analysis window size of 50 SNPs and an overlap fraction 

of 0.25 were both chosen using GARLIC’s rule of thumb parameter estimation. GARLIC chose a 

LOD score cutoff of 0. Using a three-component Gaussian mixture, GARLIC determined class 

A/B (short/medium) and class B/C (medium/long) size boundaries as 845,097 bp and 2,501,750 

bp, respectively. 

 

Health and Retirement Study (HRS) 

For replication, we used genotype data from 705 self-identified Mexican-Americans from the 

Health and Retirement Study (HRS) [34], genotyped on the Illumina Human Omni 2.5M platform. 

HRS data was made available under IRB Study No. A11-E91-13B - The apportionment of genetic 

diversity within the United States. Estimated global ancestry proportions for the Mexican American 

population in the HRS were calculated as in Baharian et al. [35], which used an alternative 

reference panel and alternative ancestry inference approach. Briefly, RFMix was used to infer 

local ancestry estimates across the genome utilizing CHS, YRI, and CEU individuals from the 

1000 Genomes Project as reference populations for Native American/Asian, African, and 
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European ancestries, respectively.  Global ancestry estimates were calculated using the summed 

RFMix calls.  

 

Statistical Analyses and Plots 

Statistical analyses and plot generation were performed within Rstudio using Version 1.1.463 and 

R version 3.5.3. ternary and ggridges/ggplot2 packages were used to create the simplex and 

ridgeline plots.  

 

Results 

Global ancestry proportions among HCHS/SOL Hispanic/Latino Populations 

Using the subset of sites that overlapped with our African, European, and Native American 

reference panels, we called 3-way global ancestry estimates for 10,268 unrelated HCHS/SOL 

individuals (see methods). Figure 3.1A summarizes the global ancestry proportions shaded by 

admixture estimates in a ternary plot, recapitulating the original HCHS/SOL analysis of continental 

ancestry [10]. However, while several population groups appear to have overlapping ancestry 

proportions, this analysis masks more subtle structure in subcontinental ancestry. To investigate 

subtle population structure across these self-identified population groups, we performed UMAP 

on the top 3 principal components (see methods), and find substantial structure across self-

identified groups (Figure 3.1B and Figure B.1B). We find that Dominicans, who have the highest 

average proportions of African ancestry, are in the middle, with Puerto Ricans and Cubans, 

diverging in opposite directions (Figure B.1B) with clines of increasing European ancestry 

proportions (Figure 3.1B). Further, while self-identified Mexican, Central, and South American 

groups appear to have overlapping ancestry proportions in Figure 3.1A, UMAP reveals that 

Mexican Americans and Central/South American groups form large, separate wings that diverge 

from self-identified Cubans and Dominicans, with both clusters diverging with clines of increasing 

ancestry toward different Native American populations (Figure 3.1B and Figure B.1B).  
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Dynamic Global Ancestry Proportions in Mexican Americans 

For each of the HCHS/SOL Latino populations, we evaluated differences in global 

ancestry estimates over time while accounting for the sampling method (referred to as “sampling 

weight”, see methods) used for the design of the HCHS/SOL study [23]. We found that in all 

populations, the effect size for Native American ancestry on birth year is positive, though only 

statistically significant after multiple testing in the Mexican American (𝛽 =0.0023; P=3.58x10-22; 

Figure 3.1C) and Central American (𝛽 =0.0013; P=0.0013) cohorts (Table B.1).  Due to the larger 

sample size, magnitude of the effect, and statistical significance, we shift our focus to Mexican 

Americans. In Mexican Americans, the increase in Native American global ancestry over time was 

consistent across multiple data stratifications including recruitment region, US born or not US 

born, educational attainment, and sex (Table 3.1), and was robust to alternative methods for 

estimating global ancestry proportions (e.g. based on the summation of RFMix local ancestry 

estimates; Figures B.2 and B.3).  
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Figure 3.1. Recent dynamics continually shape the continuum of continental ancestry 
Hispanic/Latino populations. A. Ternary plot of HCHS/SOL (n=10,268) colored by admixture 
proportions. B. Uniform Manifold Approximation and Projection (UMAP) plot depicting the genetic 
diversity of HCHS/SOL and the reference panel (n=10,591) using 3 principal components, colored 
by admixture proportions (see Supplemental Fig 1 for population labels). C. Global Native 
American ancestry proportions plotted by birth year for Mexican Americans (n=3,622). Fitted line 
is multiple regression of Native American ~ birth year + sampling weight. Bars represents 95% 
confidence intervals for individuals grouped by decade. D. Bootstrap resampling (n=1000 
iterations) of Native American global ancestry for the Mexican American individuals with a fitted 
loess regression line for each iteration. Dashed lines represent the 95% confidence interval and 
the blue line represents the fitted regression line from Figure 1C. 
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Table 3.1. Relationship of Native American global ancestry and birth year for Mexican 
Americans stratified by recruitment region, US born vs migrant status, sex and educational 
attainment. For recruitment region, data stratification was limited to Chicago and San Diego as 
sample size for the Bronx and Miami was limited: 124 and 25 individuals, respectively. Education 
attainment was categorized as either less than a high school diploma or equivalent degree (<HS), 
equal to a high school diploma or equivalent degree (=HS), or post secondary education (>HS). 
 
Category N Mean Median R2 Effect Std.Err P 
All 3622 0.489 0.468 0.027 0.0023 0.0002 3.58x10-22 

Chicago 1310 0.562 0.550 0.017 0.0016 0.0005 0.0006 
San Diego 2163 0.428 0.422 0.012 0.0012 0.0002 4.29x10-7 

US born 634 0.427 0.418 0.063 0.0027 0.0004 1.77x10-10 

Not US born 2987 0.502 0.481 0.050 0.0032 0.0003 1.38x10-30 

Male 1500 0.494 0.475 0.038 0.0028 0.0004 3.83x10-14 

Female 2122 0.485 0.462 0.022 0.0019 0.0003 3.07x10-10 

<HS 1518 0.520 0.500 0.045 0.0026 0.0004 1.39x10-12 

=HS 960 0.501 0.479 0.022 0.0018 0.0005 0.0003 
>HS 1140 0.436 0.422 0.045 0.0027 0.0004 6.53x10-13 

 

We performed bootstrap resampling (n=1000) of global Native American ancestry for the Mexican 

Americans and observed a consistent increase in Native American ancestry with fitted loess 

smoothing (Figure 3.1D) and when individuals were binned by birth year decades (Figure B.4). 

On average, global Native American ancestry has increased ~20% over the last 50 years in 

Mexican Americans.  

We replicated our original findings of the increase in global Native American ancestry over 

time in a smaller, separate cohort of self-identified Mexican Americans (n=705) from the Health 

and Retirement Study (HRS) [34]. The HRS Mexican Americans in this study are older compared 

to the HCHS/SOL Mexican Americans (birth year distribution: 1915-1981; mean=1943, 

median:1942) and have lower levels of global Native American ancestry on average (mean=0.29), 

but we still observed an increase in global Native American ancestry over time ((𝛽 =0.00082; 

P=0.02;SE=0.0003673) (Figure B.5A). We performed 1000 bootstrap resampling iterations of the 
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linear regression model (global Native American ancestry ~ birth year) fitted to the data. From 

these resampling iterations, the average 𝛽=0.00083 and 61.5% of the regression p-values were 

less than 0.05 as illustrated in (Figures B.5B-B.5D).  

 

Highlighting the diversity within ancestry tracts  

Native American ancestry lengths  

We next sought to test whether differences at the local ancestry level could explain the 

shift in global Native American ancestry over time in the Mexican Americans. We calculated the 

length of each RFMix inferred local ancestry tract in each Mexican American individual, and tested 

for differences in the distribution of tract lengths across birth-decade using a multiple linear 

regression model (see methods). We found no significant associations between the decade bin 

and the proportion of Native American ancestral tracts at various lengths (Figure 3.2A), even 

when testing for violations of model assumptions (e.g. normalizing the tracts per bin by the number 

of individuals, or excluding the 1930s and/or 1990s individuals due to the small sample size in 

each bin).  
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Figure 3.2. Diversity of and within Native American ancestral tracts. A) Proportion of total 
Native American ancestral tracts in the HCHS/SOL Mexican American population by decade. B) 
FST estimates calculated between each decade group. Bars represent the 95% CI. C) Loess 
regression of the log of the sum of total ROH and ROH overlapping Native American ancestral 
tracts separated by ROH class. Total long ROH is not represented as an individual group due to 
the high number of individuals missing long ROH (1694 for long ROH across ancestries and 1987 
for long NAM ROH) but was included in the sum of “All ROH” and “All NAM ROH”. D) Correlation 
of parent’s inferred global Native American ancestries using ANCESTOR.  

 

Grouping tracts by decade did not reveal any significant effects of birth year on Native 

American ancestral tract distribution, so we next investigated the individual level. We tested for a 

relationship between birth year and the proportion of long tracts per individuals and we found the 
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two to be correlated (𝛕=0.092, P=2.91x10-8, Kendall’s rank correlation). This correlation was 

consistent when we tested different starting cutoffs of “long” tracts beginning with 50cM and 

ranging to 90 cM. These cutoffs were chosen based on tract separation between the birth year 

decades in Figure 3.2A.  

 

Subcontinental ancestry 

It is possible that the increase in global Native American ancestry over time could be 

biased by changes in the specific subcontinental Native American ancestries over time (though 

such an effect is not visible in our UMAP analysis, Figure 3.1B). If it were the case, then we would 

expect subtle signals of genetic divergence in Native American ancestry tracts over time. To 

investigate this, we calculated FST between all pairs of birth-decades (see methods). Figure 3.2B 

shows all pairwise comparisons among birth-decades, and demonstrates that while the estimates 

of FST are negligible (with many estimates below 0), there is a subtle trend of increasing FST as 

birth-decade differences increase (though individuals born in the 80s and 90s show a conflicting 

pattern). We further investigated this pattern using genetic diversity, π, in Native American 

ancestry tracts for each birth-decade (see methods). We hypothesized that if there were 

increased migration from multiple Native American source populations (coupled with rapid 

population growth in Mexican American communities), then genetic diversity should be increasing 

over time. We found the opposite: Figure B.6 shows a subtle decrease in genetic diversity (π) 

over time from the 1930s to the 1980s in non-US born Mexican Americans, and a subtle decrease 

in US born Mexican Americans from the 70s to the 90s (while remaining roughly constant from 

the 30s to the 70s).  

 

Runs of homozygosity  

Since genetic diversity has decreased over time in the Native American ancestry tracts of 

Mexican Americans (despite rapid population growth), it is possible that this population has also 
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experienced increased haplotype homozygosity over time. We investigated this possibility by 

exploring runs of homozygosity (ROH) in Native American ancestry tracts in each of the 3622 

Mexican Americans. We classified ROH into three categories: short, medium, and long, based on 

the length distribution in the population. Generally, short ROH are tens of kilobases in length and 

likely reflect the homozygosity of old haplotypes; medium ROH are hundreds of kilobases in 

length and likely reflect background relatedness in the population; and long ROH are hundreds of 

kilobases to several megabases in length and are likely the result of recent parental relatedness. 

Figure 3.2C shows a fitted loess curve to the log of the total length of ROH summed across each 

Mexican American’s genome as a function of their birth year, broken down by ROH size class (as 

well as the total of each size class that overlaps Native American ancestry tracts; see also Figure 

B.7A). We identified a significant positive correlation between birth year and the total summed 

ROH across size classes (P=6.115x10-5, 𝛕=0.0449, Kendall’s rank correlation). When stratified 

by size class, the associations (all Kendall’s rank correlation) in ROH was primarily driven by the 

short (P=9.449x10-14,𝛕=0.0833), and medium (P=1.46x10-10,𝛕=0.0718) size classes. The long 

ROH had a negative correlation with birth year, but was insignificant after multiple testing 

(P=0.01499, 𝛕=-0.0291; not that 1694 individuals did not have any long ROH calls in their 

genome). These correlations are much stronger and more significant when we restricted ROH 

calls to regions that overlapped with Native American ancestral tracts - total summed Native 

American ROH of all size classes: p=9.457x10-15, 𝛕=0.0873, total summed short ROH (P<2.2x10-

16, 𝛕=0.107), total summed medium ROH (P<2.2x10-16, 𝛕=0.1003), and again there was no 

significant association between long Native American ROH calls and birth year.  

 

Strong ancestry-related assortative mating in HCHS/SOL Mexicans  

Given that short and medium length ROH have increased over time, it appears that background 

relatedness within Native American ancestry in Mexican Americans has increased over time. One 

way for this to occur is if individuals with similar ancestry patterns tend to mate with one another 
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more often than expected under a model of random mating (i.e. assortative mating). To measure 

assortative mating, we estimated the ancestral proportions of the mother and father of each 

HCHS/SOL Mexican American  (see methods). With individuals from all decades pooled together, 

we found the inferred parental Native American ancestries to be significantly correlated (Figure 

3.2D, r=0.708, 95% CI:0.69-0.72, P<2.2x10-16 Pearson correlation). Stratified by decade, the 

correlation in inferred parental Native American global ancestry ranged from 0.65 to 0.74 (Figure 

B.8). This shows that there was strong spousal ancestry correlation in the Mexican Americans 

over different generations. However, since there is no trend in long ROH with birth year (and an 

overall low rate of long ROH among Mexican Americans), this signature of assortative mating is 

not due to recent parental relatedness. 

 

Admixture mapping  

We used local ancestry estimates generated across the genome to perform admixture mapping 

in HCHS/SOL Mexican Americans to determine if younger individuals harbored excess Native 

American ancestry in certain regions of the genome.  Although we tried two different models (see 

methods), we did not find any loci to be significantly associated with birth year across the genome 

(Figure B.9).  

 

Discussion  

The United States is a dynamic, rapidly changing population, and this will continue to occur 

as the population size grows [18]. Hispanics/Latinos are the largest and fastest growing minority 

group, and are projected to comprise over 25% of the US population by 2060. They are a 

genetically and phenotypically diverse population as a result of extensive admixture between 

Native Americans and immigrants from multiple geographic locations around the world. In this 

study, we identified additional population substructure complexities that may contribute to 

phenotypic variation within Hispanics/Latinos.  
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Specifically, we demonstrated how the admixture dynamics of Mexican Americans have 

changed over time, resulting in an increase of ~20% Native American ancestry on average over 

the 50 year period studied. This change in ancestry is equivalent to a mean increase in Native 

American ancestry of ~0.4% per year. While the effect sizes vary to some extent, we replicate the 

underlying pattern across multiple data stratifications (two metropolitan cities, US born and non-

US born) and also replicate this feature in an independent cohort of Mexican Americans. Further, 

we find that a similar trend holds across multiple self-identified Hispanic/Latino populations in the 

US (and is statistically significant in Central Americans). This effect does not appear to have a 

simple explanation: we do not see any statistically significant increases at individual loci, we do 

not see a strong signature of increased migration, and we do not see more than a negligible 

degree of population differentiation over time. We do, however, find that as Native American 

ancestry has increased, genetic diversity within Native American ancestry tracts across Mexican 

Americans has decreased over time, and is associated with increased short and medium length 

ROH over time. This suggested that there could be increased relatedness within Native American 

ancestries within Mexican Americans, and we confirmed that there is a very high degree ancestry-

based assortative mating within the Mexican American population.  

What could be driving the increased Native American ancestry in Mexican Americans? 

Population genetic theory suggests that while assortative mating could result in increased ROH 

and decreased genetic diversity, ancestry-based assortative mating alone should not result in 

mean changes in global ancestry proportions. Conceptually, in the absence of fecundity 

differences, reproduction among individuals with high Native American ancestry should be 

balanced by reproduction among individuals with low Native American ancestry.  

While we have shown a dramatic shift in ancestry proportions in US Hispanic/Latinos, one 

of the caveats of this study is that the HCHS/SOL cohort is not representative of all US 

Hispanics/Latinos. HCHS/SOL participants were recruited at four primary centers: Bronx, 

Chicago, Miami, and San Diego. There may be additional genetic diversity that has not been 
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captured by this dataset and trends exhibited in this dataset may not translate to Hispanic/Latino 

populations living in other regions of the US. With better population genetic modeling we will be 

able to improve our understanding of the genetic diversity within Hispanic/Latino populations, its 

effects on human phenotypic diversity, and subsequently our ability to understand genetic 

contributions to complex traits and disease. These insights will lead to optimization of population 

sampling for the design of future medical genetic studies, the identification of disease risk variants, 

and ultimately, precision medicine for all. 
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Chapter 4: Leveraging the genetic ancestry of Mexican Americans to understand the 

genetic architecture of complex traits 
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Introduction	

Genome-wide association studies (GWAS) have been the primary analyses performed to 

identify risk variants across a wide range of disease phenotypes [1]. Despite the thousands of 

GWAS studies and millions of individuals that have participated in these studies, representation 

of Hispanics/Latinos has continued to hover around 1% [2] . Within studies performed in Latinos, 

associations with Native American ancestry, with baseline lung function [3], asthma [4] and 

gallbladder cancer [5] have been identified, solidifying the importance of inferring population 

structure to understand disease etiology. 

Results for many GWAS have been made readily available on public databases as 

summary association statistics that can be leveraged to build predictions of genetic risk through 

polygenic risk scores (PRS) [6]. Combined with other risk factors, researchers and clinicians have 

been able to demonstrate their use through PRS informed therapeutic intervention, disease 

screening and life planning [6].  

One of the classic polygenic traits, height, has provided insights into what the genetic 

architecture of common human traits and diseases might look like, as well as given us insights 

into the prospects and challenges of different methods used to identify genetic risk factors [7, 8]. 

However, as mentioned, the vast majority of these studies have been performed in individuals 

with European ancestry and a previous study identified that human demographic history impacts 

genetic risk prediction across diverse populations [9] justifying the need to determine how well 

GWAS findings are going to translate to Hispanic/Latino populations. 

In this study we assess the relationship between global Native American genetic ancestry 

and various complex traits for 3622 Mexican Americans from the Hispanic Community Health 

Study/Study of Latinos (HCHS/SOL) [10] -- to understand the role of Native American ancestry in 

the genetic architecture of complex traits. We further investigate the predictive power of polygenic 

risk scores for height in this cohort.  
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Methods 

Imputation 	

Imputation for 3622 HCHS/SOL Mexican Americans was performed using IMPUTE2 [11] with the 

1000 Genomes Project Phase 3 haplotypes used as a reference panel [12]. After filtering on an 

info score cutoff of 0.3, this resulted in 33,041,084 SNPs. 	

	
Polygenic Risk Score Calculations 	

Polygenic risk scores for height were calculated using the publicly available UK Biobank 

(UKBB) GWAS Round 2 Summary Statistics retrieved from http://www.nealelab.is/uk-biobank. 

Briefly, for sample quality control, sample inclusion was limited to unrelated samples who passed 

the sex chromosome aneulploidy filter. British ancestry was determined using the 1st 6 PCs; 

individuals more than 7 standard deviations away from the 1st 6 PCs were excluded. Further 

filtering included limiting to self -reported 'white-British' / 'Irish' / 'White' resulting in a QCed sample 

count of 361,194 samples https://github.com/Nealelab/UK_Biobank_GWAS#imputed-v3-sample-

qc. An imputation panel of ~90 million SNPs from HRC, UK10K and 1KG were used to impute 

genotypes. 13.7 million autosomal and X-chromosome SNPs passed quality control thresholds 

including Info score>0.8, MAF>0.0001> HWE p-value>1e-10. For the phenotype, a linear 

regression model in Hail (linreg) was run for all individuals (both sexes) adjusting by the first 20 

PCs + sex + age + age2 + (sex*age) + (sex*age)2. For height, there was complete phenotype 

information for 360,388 samples.	

Risk scores were calculated by extracting the overlapping genome-wide significant hits 

initially discovered in the UKBB GWASs of height and selecting SNPs with the lowest p-value in 

each 1Mb window across the genome. For height this resulted in a dataset of 1,103 overlapping 

SNPs that were present in our dataset of genotyped and imputed SNPs.  	
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Results	

Genetic correlation of global Native American traits with biomedical traits 	

To further our understanding of the genetic architecture of complex traits in Mexican Americans, 

we investigated the relationship between Native American ancestry and various complex traits. 

Specifically, we tested for a correlation (Kendall’s) between 66 complex traits from the HCHS/SOL 

phenotypic dataset and global Native American ancestry. As illustrated in Figure 4.1, we identified 

many of these traits to be significantly correlated (P<0.00076) after Bonferroni correction to 

account for multiple tests. We further investigated these traits using multiple regression to account 

for age, sex, center, and the sampling weight, and the effect of global Native American ancestry 

on many of these phenotypes persisted (Table C.1), highlighting the need for increased 

investigation into the role of Native American genetic ancestry in admixed populations such as 

Mexican Americans.  
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Figure 4.1. Correlation of 66 quantitative traits with global Native American ancestry. 
Significance level was determined using Bonferroni correction adjusting by the number of 
quantitative traits tested (0.05/66=0.00075).  
 
	
Assessing the genetic contribution of Native American ancestry to height 	

Of the traits we tested for a correlation with global Native American ancestry, height had 

the strongest negative correlation, and our regression model indicated that height also had a 

strong positive relationship with birth year (reference plot and table again). Globally, populations 

have grown taller over time due to a variety of non-genetic, environmental factors [13]. We find a 

similar trend in the HCHS/SOL Mexican Americans (Figure 4.2A). Indeed, when we stratified 

individuals by quartiles of global Native American ancestry, we see that all quartiles have 
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increased in height by a similar amount over the period investigated (though individuals with lower 

Native American ancestry were taller on average) (Table C.2). 	

Height is one of the most highly studied complex traits, with GWAS sample sizes 

numbering in the hundreds of thousands [14]. Results for many of these studies have been made 

readily available on public databases as summary association statistics that can be leveraged to 

build genetic predictions through polygenic risk scores (PRS) [6]. In Europeans, PRS have been 

shown to have great predictive power for several traits, including breast cancer, prostate cancer 

and type 1 diabetes [15-18]. PRS are most effective in populations of European descent as GWAS 

studies have been primarily performed in these populations [2, 15, 19] and are expected to be 

biased when applied to other populations due to differences in the genetic architecture of traits 

across diverse populations [9]. Since Mexican Americans have some fraction of European 

ancestry, we sought to determine whether PRS calculated utilizing GWAS summary statistics 

from European populations could still provide useful insight.	

To evaluate the effectiveness of PRS for height (see methods), we first tested whether 

there was an association between the observed height and the predicted height estimates while 

controlling for sampling weight, sex, and recruitment center (see methods). We identified a 

significant association between observed height and predicted height for the population as a 

whole (b=0.0044881, P=2.19x10-12; Figure 4.2B, Table C.3). However, when we stratified by 

quartiles of Native American global ancestry, the association only remained for the individuals in 

the lower two quartiles of global Native American ancestry (NAM<0.37: b=0.004, P=0.0008 and 

0.36<NAM<0.46: b=0.004, P=0.003, Table C.3). The association between predicted height and 

observed height was no longer significant for individuals in the highest two quartiles of global 

Native American ancestry proportions (0.46<NAM<0.58 or 0.58<NAM, Table C.3).  
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Figure 4.2: Height and global Native American ancestry in HCHS/SOL Mexican 
Americans. Each plot illustrates the relationship between A) Birth year and height B) Height 
and polygenic height score. The black line indicates the fitted linear model for all individuals. 
Each of the colors represents a different quartile of Native American global ancestry. Polygenic 
height scores were assessed utilizing UKBB summary statistics for 1,128 SNPs. 
 

	
Discussion 	

We identified several biomedical traits that are correlated with Native American ancestry, 

and show that in the case of height, there are both ancestry and temporal effects. Further study 

is necessary to understand whether other biomedical traits are also changing over time as the 

genomic ancestry proportions change in this population.	

In our study, we bring specific attention to the biases that continue to exist with using 

European GWAS summary statistics to calculate polygenic risk scores in admixed populations 

such as Mexican Americans that are comprised of European, Native American, and African 

genetic ancestries. In particular, in the case of height, we found that the PRS correlated with 

observed height only in the subset of individuals with the lowest levels of Native American 

ancestry (i.e. the subset of individuals with highest European ancestry). As the population 
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dynamics of the US continue to change, it is imperative that we study diverse populations, or we 

risk exacerbating the health disparities that currently exist. To date, population-based medical 

genomics research (and its subsequent benefits) have been disproportionately focused on 

populations of European ancestry. In order to improve the design and implementation of medical 

genetics studies for the ethnically diverse U.S. population, we need detailed insights into the 

population history of diverse U.S. populations. This includes characterizing the admixture 

dynamics of Hispanic/Latino populations, as well as the evolutionary forces that shaped patterns 

of genetic variation of the ancestral populations that contributed to modern day Hispanic/Latino 

populations.	
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APPENDIX A: Supplementary Material to Chapter 2  

Additional information on medication use and medication withholding prior to spirometry 

testing: 

Most of the participants in the three studies used for discovery were taking medications for their 

asthma symptoms (100%, 87%, and 91% in SAGE I, SAGE II, and GALA II, respectively). 

Regarding the use of ICS, 68%, 53%, and 66% were taking ICS alone or as part of a combo 

medication containing it in SAGE I, SAGE II, and GALA II, respectively. These patients were the 

ones that had persistent asthma. 

 

Prior to spirometry testing, subjects were instructed to withhold the use of the following 

medications for the indicated time period:  

− Withhold for >8 hours all short-acting bronchodilators, including short-acting β2-agonists 

(such as Albuterol, Alupent, Berotec, Brethaire, Bronkometer, Maxair, Proventil, Tornolate, 

Ventolin, Xopenex), non-prescription adrenaline inhaler (e.g. Primatime Mist), anticholinergics 

(e.g. Atrovent), and cromolyn (e.g. Intal). 

− Withhold for 12 hours: caffeine (coffee), short acting theophylline, and aminophylline.  

− Withhold for 24 hours: intermediate acting theophylline and aminophylline and oral β2-

agonists. 

− Withhold for 48 hours all long-acting bronchodilators, including long-acting theophylline, 

nedocromil, salmeterol, formoterol, tiotropium or combinations with these medications.  

 

Asthma severity:  

In addition, to show the distribution of severity of disease, treatment step was used as a proxy to 

classify the patients in categories of severity of disease, based on the medications the patients 

were taking in the last 12 months [1].  Step 1 includes those subjects taking short-acting β2-

agonist as required (equivalent to intermittent asthma); step 2 comprises those taking inhaled 
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corticosteroid plus short-acting β2-agonist as needed (equivalent to mild asthma); step 3 includes 

the patients taking the same medications as step 2 plus long-acting β2-agonist (equivalent to 

moderate asthma); and step 4 comprises the patients taking the mediations described in step 3 

plus leukotriene antagonist (equivalent to severe asthma). This information has been included as 

Table A.1.  

 

 

 

 

Figure A.1: Quantile-quantile plots for genome-wide allelic associations with BDR in a 
meta-analysis of A) SAGE I and II (inflation factor: λ = 1.006 for ~10 M common SNPs) B) SAGE 
I, SAGE II, and GALA II (inflation factor: λ = 1.004 for all common SNPs) 
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Figure A.2: Genotype-phenotype correlation: The box plot displays BDR with the three 
different genotypes at the: Top) rs73650726 in SAGE I and II Middle) rs7903366 in SAGE I and 
SAGE II Bottom) rs7903366 in GALA II.  
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Figure A.3: Admixture mapping in SAGE II (n= 759) for African ancestry and BDR. Ancestry 
association testing was performed at 478,441 markers using linear regression including age, sex, 
BMI category, and global African ancestry covariates.  

 
 
Figure A.4: Admixture mapping in SAGE I (n= 190) for African ancestry and BDR. Ancestry 
association testing was performed at 478,441 markers using linear regression including age, sex, 
BMI category, and global African ancestry covariates.  
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Figure A.5: Meta-analysis of admixture mapping in SAGE I and II (n=949) for African 
ancestry and BDR. Ancestry association testing was performed at 478,441 markers using linear 
regression including age, sex, BMI category, and global African ancestry covariates.  
 

 
Figure A.6: Meta-analysis of admixture mapping in SAGE I, SAGE II, and GALA II (n=2,779) 
for African ancestry and BDR. For SAGE I and SAGE II, ancestry association testing was 
performed at 478,441 markers using linear regression including age, sex, BMI category, and 
global African ancestry covariates. For GALA II, ancestry association testing was performed using 
linear regression including age, sex, ethnicity, BMI category, global Native American ancestry and 
global African ancestry covariates. A meta-analysis was performed combining 362,528 markers. 
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Figure A.7: Distribution of bronchodilator drug response measures for discovery and 
replication cohorts. Discovery cohorts = SAGE I (n=190), SAGE II (n=759) and GALA II (n 
=1,830); Replication cohorts = GALA I MX (n=247), GALA 1 PR (n=169), SAPPHIRE (n=1,325) 
and SARP (n=290).  
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Table A.1: Distribution of severity of disease in SAGE I, SAGE II, and GALA II.  
 

Asthma 
medication (%) SAGE I SAGE II GALA II 

None 0% 13.10% 9.00% 
Step 1 31.70% 30.60% 25.00% 
Step 2 20.40% 29.60% 45.70% 
Step 3 35.50% 19.80% 16.40% 
Step 4 12.40% 6.90% 3.90% 
Step 1: Short-acting β2-agonist as required; Step 2: inhaled corticosteroid 
plus short-acting β2-agonist as needed; Step 3: step 2 plus long-acting β2-
agonist; Step 4: step 3 plus leukotriene antagonist. 
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Table A.2: Individual genome-wide association study results from SAGE I, SAGE II, and 
GALA II. 
 

SAGE I                  

Chr SNP 
   Position  

A1 A2 Freq 
(A1) 

Effect 
(A1) StdErr Pvalue 

    (hg19) 

9q21 rs73650726 85152666 A G 0.92 -2.99 1.92 0.12 

10q21 rs7903366 53689774 C T 0.4 -0.54 1.02 0.6 
10q21 rs7070958 53691116 A G 0.39 -0.5 1.03 0.63 
10q21 rs7081864 53690331 G A 0.39 -0.46 1.03 0.65 
         
SAGE II                 

Chr SNP 
  Position  

A1 A2 Freq 
(A1) 

Effect 
(A1) StdErr Pvalue     (hg19) 

9q21 rs73650726 85152666 A G 0.92 -3.9 0.7 3.36x10-8 
10q21 rs7903366 53689774 C T 0.41 -1.66 0.39 2.83x10-5 
10q21 rs7070958 53691116 A G 0.41 -1.66 0.4 3.22x10-5 
10q21 rs7081864 53690331 G A 0.41 -1.65 0.4 3.26x10-5 
         
GALA II                 

Chr SNP 
Position  

A1 A2 Freq 
(A1) 

Effect 
(A1) StdErr Pvalue 

(hg19) 
9q21 rs73650726 85152666 A G 0.99 0.29 1.25 0.81 
10q21 rs7903366 53689774 C T 0.6 -1.06 0.28 1.74x10-4 
10q21 rs7070958 53691116 A G 0.6 -1.08 0.28 1.57x10-4 
10q21 rs7081864 53690331 G A 0.6 -1.06 0.28 1.79x10-4 
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Table A.3: Replication results of candidate SNPs in GALA I, SAPPHIRE and SARP. 
Statistical significance was evaluated at Pvalue<0.05. 
 

GALA I  

Population Chr SNP Position 
(hg19) A1 A2 Effect 

(A1) StdErr Pvalue 

Mexicans 9q21 rs73650726 85152666 A G 1.71 10.24 0.87 
Mexicans 10q21 rs7903366 53689774 C T 1.02 0.99 0.3 
Mexicans 10q21 rs7070958 53691116 A G 1.04 0.99 0.29 
Mexicans 10q21 rs7081864 53690331 G A 1.03 0.99 0.3 
Puerto 
Ricans 9q21 rs73650726 85152666 A G -6.22 3.87 0.11 

Puerto 
Ricans 10q21 rs7903366 53689774 C T -0.51 1.01 0.61 

Puerto 
Ricans 10q21 rs7070958 53691116 A G -0.53 1 0.6 

Puerto 
Ricans 10q21 rs7081864 53690331 G A -0.53 1 0.6 

 
SAPPHIRE             

Chr SNP Position (hg19) A1  A2 
Effect 
(A1) StdErr Pvalue 

9q21 rs73650726 85152666 A  G -0.65 0.94 0.49 
10q21 rs7903366 53689774 C T 0.91 0.55 0.10 
10q21 rs7070958 53691116 A G 0.87 0.55 0.11 
10q21 rs7081864 53690331 G A 0.84 0.55 0.13 

 
SARP 

Chr SNP Position (hg19) A1 A2 Effect 
(A1) StdErr Pvalue 

9q21 rs73650726 85152666 G A -6.12 2.981 0.04 
10q21 rs7903366 53689774 C T -0.27 1.262 0.83 
10q21 rs7070958 53691116 G A -0.4 1.275 0.76 
10q21 rs7081864 53690331 A G -0.36 1.27 0.78 
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Table A.4: Top replication results (MAF >0.05) +/-50 kb of candidate SNPs in GALA I and 
SAPPHIRE.  
 
GALA I                   

Population Chr SNP 
Position 
(hg19) A1 A2 

Freq 
(A1) 

Effect 
(A1) 

Std
Err Pvalue 

Mexicans 9 rs34293766 85126730 T G 0.94 5.74 2.27 0.01 
Mexicans 10 rs59960792 53690251 C T 0.80 2.97 1.12 0.01 
Puerto 
Ricans 9 rs10780548 85167648 A G 0.63 2.93 0.99 0.003 
Puerto 
Ricans 10 rs6480581 53672743 T C 0.74 -2.67 1.08 0.01 
          
SAPPHIRE                   

Population Chr SNP 
Position 
(hg19) A1 A2 

Freq 
(A1) 

Effect 
(A1) 

Std
Err Pvalue 

African 
Americans 9 rs62576848 85144677 T C 0.94 3.03 1.23 0.01 
African 
Americans 10 rs35969600 53662118 C T 0.72 -1.49 0.59 0.01 
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Table A.5. Candidate SNP replication in meta-analysis of SAGE I and SAGE II. Under 
‘Direction’ column, 1st symbols refer to SAGE I, second refer to SAGE II  
 
 

GENE SNP Chr Position A1 A2 Effect Pvalue Direction 
SOCS-
ASB3 
region 

rs350729  2 52983773 T G 0.22 0.53 -+ 

ADRB2 rs1042713  5 148206440 A G -0.13 0.7 -- 
ADRB2 rs1042714  5 148206473 C G -0.56 0.22 -- 
ADCY9 rs2230739  16 4033436 T C -0.14 0.77 +- 
CRHR2 rs7793837  7 30726777 A T -0.26 0.58 -- 
ARG1 rs2781659  6 131891820 A G 0.39 0.3 -+ 
SPATS2L rs295137  2 201150040 T C 0.4 0.23 -+ 
SPATS2L rs295114  2 201195602 T C 0.41 0.22 -+ 
THRB rs892940  3 24538838 A G 0.52 0.21 ++ 
CRHR2 rs73294475  7 30701596 T C -0.32 0.51 +- 
SPATA13 rs9507294 13 24823347 T C 0.38 0.48 ++ 
SPATA13 rs912142 13 24827500 A G -0.23 0.51 -- 
SPATA13 rs2248119  13 24827094 A G 0.49 0.16 ++ 
SPATA13 rs9551086 13 24830330 T C -1.36 0.02 -- 
SPATA13 rs9553225  13 24823006 A G -1.17 0.10 -- 

 
 
Table A.6: Meta-analysis of admixture mapping results within African Americans (SAGE I 
and II). Under ‘Direction’ the first symbol refers to SAGE I, second to SAGE II 
 
 

Chr SNP 
Position 
(hg19) Effect StdErr Pvalue Direction 

8p11 rs3927941 39805797 1.49 0.44 6.34x10-4 ++ 
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Reference: 

1. National Asthma E, Prevention P. Expert Panel Report 3 (EPR-3): Guidelines for the 

Diagnosis and Management of Asthma-Summary Report 2007. J Allergy Clin Immunol 

2007; 120(5 Suppl): S94-138. 
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APPENDIX B: Supplementary Material to Chapter 3 
 

 
 
Figure B.1. Continental ancestral diversity of HCHS/SOL A) Ternary plot of global ancestry 
proportions colored by population for 10,268 HCHS/SOL samples B) Uniform Manifold 
Approximation and Projection (UMAP) plot of HCHS/SOL and the reference panel (n=10,591) 
using 3 principal components, colored by population. 
 
 
 

 

Figure B.2. Concordance of ADMIXTURE and RFMix global ancestry estimates.  A) Native 
American ancestry B) African ancestry and C) European ancestry. 
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Figure B.3. RFMix inferred Native American global ancestry proportions plotted over time 
for HCHS/SOL Mexican Americans (n=3622). 
 
 

 
 
Figure B.4: Distributions of Native American global ancestry means generated by 1000 
bootstrap resampling iterations within each decade of binned birth years.   
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Figure B.5. Replication in the Health and Retirement Study for 705 self-identified Mexican 
Americans. A) Ancestry over time B) Distribution of regression slopes after 1000 bootstrap 
resampling iterations C) Distribution of bootstrap regression p-values D) ECDF of bootstrap 
regression p-values. 
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Figure B.6. Diversity of and within Native American ancestral tracts.  Diversity (π) of 
subcontinental Native American ancestry stratified by US born/not US born status. π was 
calculated between pairs within each decade of birth years. 95% confidence intervals are 
highlighted by the shaded regions for each group. 
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A 

 
 
B 

 
 
Figure B.7. Runs of homozygosity (ROH) in HCHS/SOL Mexican Americans. A) ROH 
across all ancestries separated by ROH class B) ROH overlapping Native American haplotypes 
separated by ROH clas 
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Figure B.8. Ancestry-related assortative mating in HCHS/SOL Mexican Americans 
separated by decade. Each plot represents the correlation of parent’s inferred Native American 
ancestries using ANCESTOR by decade beginning with the 1930s (A) and ending with the 
1990s (G).  Each point corresponds to one Mexican American couple and the axes correspond 
to the inferred Native American ancestry of each partner. 
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Figure B.9. Admixture mapping in HCHS/SOL Mexicans (n=3622) for Native American 
ancestry and A) birth year and B) Generation. Ancestry association testing was performed at 
211,151 markers using A) linear regression and B) logistic regression, both including global 
Native American ancestry, sampling weight and center as covariates.  
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Table B.1: Association of global ancestries and birth year for all HCHS/SOL samples  
 
 
Population Ancestry N R2 Effect Std.Err Pvalue 
Central American NAM 1099 0.0139 0.0013 0.0004 0.0013 
Central American AFR 1099 0.0136 0.0002 0.0004 0.6561 
Central American EUR 1099 0.0138 -0.0015 0.0004 0.0002 
Cuban NAM 1536 0.0023 0.0002 0.0001 0.0938 
Cuban AFR 1536 0.0014 -0.0005 0.0004 0.1490 
Cuban EUR 1536 0.0005 0.0003 0.0004 0.3879 
Dominican NAM 954 0.0035 0.0002 0.0001 0.0663 
Dominican AFR 954 0.0030 -0.0007 0.0004 0.1287 
Dominican EUR 954 0.0022 0.0005 0.0004 0.2374 
Mexican NAM 3622 0.0268 0.0023 0.0002 0.0000 
Mexican AFR 3622 0.0008 0.0000 0.0000 0.4189 
Mexican EUR 3622 0.0285 -0.0023 0.0002 0.0000 
Puerto Rican NAM 1783 0.0014 0.0001 0.0001 0.1533 
Puerto Rican AFR 1783 0.0014 0.0003 0.0002 0.1743 
Puerto Rican EUR 1783 0.0027 -0.0005 0.0002 0.0355 
South American NAM 652 0.0110 0.0016 0.0007 0.0211 
South American AFR 652 0.0027 -0.0002 0.0004 0.5053 
South American EUR 652 0.0080 -0.0014 0.0006 0.0335 
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APPENDIX C: Supplementary Material to Chapter 4  
 
Table C.1. Multiple regression table with traits that were significantly correlated with global NAM 
ancestry.  
 
 
Trait N R2 Effect Std.Err P 
Height 3615 0.588 -13.637 0.676 1.01x10-85 
Predicted FVC 3522 0.851 -695.376 36.867 1.13x10-75 
EGFR MDRD 3308 0.196 23.398 2.435 1.39x10-21 
EGFR CKD Epi 3308 0.441 14.752 1.581 1.90x10-20 
Waist to hip ratio 3617 0.195 0.043 0.007 6.96x10-10 
Glycosylated hemoglobin 
(HbA1c) 3609 0.081 9.184 1.59 8.30x10-9 

% Glycosylated 
hemoglobin 3609 0.08 0.837 0.146 9.88x10-9 

HDL cholesterol 3621 0.095 -6.74 1.372 9.39x10-7 
Total iron binding capacity 3620 0.066 23.54 5.467 1.71x10-5 
FEV1 FVC Ratio 3505 0.176 2.56 0.639 6.37x10-5 
% Lymphocytes 3442 0.021 3.768 1.023 2.35x10-4 
Hip girth 3617 0.077 -4.452 1.273 4.78x10-4 
% Neutrophils 3442 0.039 -3.649 1.178 1.96x10-3 
Monocyte count 3443 0.024 -0.048 0.019 1.27x10-2 
Neutrophil count 3442 0.043 -0.399 0.165 1.59x10-2 
LDL cholesterol 3529 0.047 -8.269 3.963 3.70x10-2 
Average diastolic blood 
pressure 3616 0.072 -2.067 1.136 6.88x10-2 

Total cholesterol 3622 0.065 -6.248 4.614 1.76x10-1 
White blood cell count 3442 0.032 -0.26 0.208 2.12x10-1 
Average systolic blood 
pressure 3619 0.211 1.59 1.712 3.53x10-1 

% Immature granulocytes 555 0.261 -0.09 0.11 4.14x10-1 
QRS duration 3596 0.168 0.062 1.268 9.61x10-1 
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Table C.2. Height over time in HCHS/SOL Mexican Americans  
 
Group N R2 Effect Std.Err P 
All 3614 0.542 0.120 0.009 3.28x10-39 

NAM>0.58 929 0.575 0.159 0.018 2.73x10-18 

0.46 <=NAM<=0.58 955 0.578 0.154 0.017 3.07x10-19 

0.37<=NAM<0.46 842 0.547 0.101 0.017 9.73x10-9 

NAM<0.37 888 0.537 0.116 0.018 2.55x10-10 

 
 
Table C.3. Observed height vs. predicted height in HCHS/SOL Mexican Americans  
 
Group N R2 Effect Std.Err P 
All 3614 0.0249 0.0045 0.0006 2.19x10-12 

NAM>0.58 929 0.0072 0.0022 0.0012 7.79x10-2 

0.46<=NAM<=0.58 955 0.0058 0.0011 0.0013 3.90x10-1 

0.37<=NAM<0.46 842 0.0144 0.0043 0.0015 3.22x10-3 

NAM<0.37 888 0.0164 0.0043 0.0013 7.91x10-4 
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