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Abstract

A Statistical Investigation of Species Distribution Models and Communication of Statistics
Across Disciplines

by

Sara A. Stoudt

Doctor of Philosophy in Statistics

University of California, Berkeley

Assistant Professor William Fithian, Co-chair

Professor Perry de Valpine, Co-chair

Ecologists commonly make strong parametric assumptions when formulating statistical mod-
els. Such assumptions have sparked repeated debates in the literature about statistical
identifiability of species distribution and abundance models, among others. Part I of this
dissertation draws upon the econometrics literature to introduce a broader view of the identi-
fiability problem than has been taken in ecological debates. In particular we use a simulation
approach to illustrate the concepts of non-parametric and parametric identifiability and their
implications for ecologists. The fact that all models are approximations has very different
implications for these two cases of identifiability. When non-parametric identifiability holds,
even a mis-specified parametric model provides a useful approximation to the truth, and
the fit of alternative models can be compared. When non-parametric identifiability does not
hold, parametric assumptions create artificial identifiability, and alternative models cannot
be distinguished empirically.

Joint species distribution models (JSDMs) have become a popular tool for helping ecologists
understand properties of a community while accounting for relationships between species.
Part II of this dissertation stress tests a foundational JSDM to understand how well proper-
ties of the community are estimated in the presence of model mis-specification. Community
diversity metrics summarize community characteristics that ecologists have historically been
interested in, so it is of interest to ask whether estimation of these more complicated metrics
is robust to inevitable model mis-specification.

Being a statistician is a “hands-on” job that requires communicating with stakeholders and
researchers in a variety of fields. Part III of this dissertation leverages the communication
skills I have built while working at the intersection of ecology and statistics to teach statistics
students how to write about statistical analyses in an accessible way that is still faithful to the
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data. A pedagogical approach is described that builds upon that of traditional writing and
science communication. This approach adds to the solid foundation with concrete examples
in the context of statistics, particular focus on the nuances of statistical language, and a
focus on narrative that carries throughout the data analysis process itself.
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To my dad who encouraged me to “never change, never stop”



ii

Contents

Contents ii

1 Introduction 1
1.1 Clarifying Identifiability Controversies in Species Distribution and Abundance

Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Stress Testing Latent Factor Approaches to Joint Species Distribution Models 3
1.3 Communicating with Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

I Identifiability in Species Distribution and Abundance Mod-
eling 5

2 Clarifying Identifiability Controversies 6
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

II Stress Testing Latent Factor Approaches to Joint Species
Distribution Models 24

3 Stress Testing a Latent Factor JSDM 25
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



iii

IIICommunicating with Data: The Art of Writing for Data
Science 65

4 Teaching the Art of Writing for Data Science 66
4.1 Pedagogical Context for “Communicating with Data” . . . . . . . . . . . . . 66
4.2 Book Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3 Part I: Reading to Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.4 Part II: Preparing to Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.5 Part III: Composing the Story . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.6 Part IV: Editing and Revising . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.7 Part V: Science Writing and You . . . . . . . . . . . . . . . . . . . . . . . . 110

A Appendix 119
A.1 Identifiability Controversy Supporting Material . . . . . . . . . . . . . . . . 119
A.2 JSDM Supporting Material . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Bibliography 129



iv

Acknowledgments

This dissertation was made possible through the support (and funding) of many. I would
like to thank my advisors Perry de Valpine and Will Fithian for their patience, guidance, and
help navigating the balance between statistical scholarship and applied impact. I would also
like to thank my committee members Steve Beissinger and Peng Ding for providing helpful
suggestions and food for thought throughout the process.

I appreciate funding from the National Physical Sciences Consortium fellowship, the
Gordon and Betty Moore Foundation (through Grant GBMF3834), the Alfred P. Sloan
Foundation (through Grant 2013-10-27), and the Art of Writing program for allowing me to
pursue my studies.

To Deb Nolan, thank you for your mentorship, support, and advocacy. I would never
have started identifying as a writer, or even a teacher, without our work together, and I’m
grateful that I get to learn from you.

I am grateful to the interdisciplinary communities I was lucky to be a part of at BIDS
and through the Environment and Society: Data Science for the 21st Century program. You
all helped cultivate my curiosity and kept my eyes open to data problems in a broader range
of topics.

I am also grateful that my mentors who helped me get to Berkeley continued to support
me throughout my time here. Thank you to Ben Baumer, Nick Horton, and Antonio Possolo
for your constant encouragement and for helping me remember my strengths when I was
caught up in my weaknesses.

To Rebecca Barter, Kellie Ottoboni, and Ciera Martinez, thank you for being such strong
and kind role models. I really would have been lost without your support.

To the staff of the statistics department and BIDS, thank you for making sure everything
runs smoothly and for helping me navigate Berkeley as an institution and its resources.

To the statistics graduate students and the colleagues turned friends, I am glad that we
are able to support one another in pursuing our dreams (and avoiding our nightmares), and
I hope this continues beyond our time at Berkeley.

Finally, to my family and friends, thank you for always being there, enthusiastically
celebrating my wins and tirelessly listening to recounts of my losses.



1

Chapter 1

Introduction

Ecology has traditionally been a “small-data” field in comparison to other disciplines, and
relatedly as Borgman et al. put it, a “little science” [18]. Collecting data on plants, animals,
and the broader environment often requires expensive and labor intensive field work, and it
can be hard to gather data across a wide enough spatial, temporal, and taxonomic range
to make conclusions beyond a specific study site or species. Large-scale historical data-
collection efforts did exist though. Examples include expeditions by Joseph Grinnell and
natural history museum collections [63, 101]; they provide specimen data dating back to the
nineteenth and twentieth centuries. However, there was a historical barrier to specifying and
fitting complicated models that account for the intricacies of this ecological data.

New data collection protocols and technologies have increased the speed and decreased
the cost of data collection, helping ecology to transition towards a “medium-data” field and
even a “big-data” field in some cases [51]. Examples of these technologies include camera
traps [92], remote sensing [5], marine and terrestrial microphones [15, 84], genetic data [36],
and phone applications that allow anyone to collect and contribute data [178, 123]. More
data requires even more computational sophistication.

As the field transitions between regimes of data size and model complexity, researchers
have to navigate a new set of problems including modeling data that spans multiple scales,
contains interactions between species, and has spatio-temporal patterns [138, 62]. Therefore,
methods that are computationally feasible and able to incorporate data from many sources
and even of different types, like data fusion approaches [137, 132, 54], are needed.

Along with the methodological challenges that more data brings, ecologists have had to
face data sharing, formatting, and management challenges as well [152, 115, 67]. Ecological
data has been compiled in central databases such as the Global Biodiversity Information
Facility (GBIF) [57], the Neotoma Paleoecology Database [121], the Paeleobiology Database
[133], and the Forest Inventory and Analysis Database [55] and across large scale monitoring
networks such as the Long Term Ecological Research (LTER) Network [102] and the National
Ecological Observatory Network (NEON) [120].

This is the context in which my dissertation came together. My role became identifying
common problems in the ecology literature, recognizing potential solutions that could be
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borrowed from the statistics literature, and acting as the go-between for the two fields.
The specific goals of this dissertation are to:

1. address identifiability problems that ecologists face when using statistical models for
estimating species distributions and abundances,

2. investigate how statistical models perform under model mis-specification in the context
of community ecology, and

3. teach others how to communicate statistics in an accessible yet accurate way to broader
audiences, including collaborators in other disciplines.

In the rest of this introduction section, I will provide a broad overview of the motivation
and more specific context for each chapter of this dissertation.

1.1 Clarifying Identifiability Controversies in Species

Distribution and Abundance Modeling

Much of the increase in data availability has been due to citizen science efforts such as
iNaturalist and eBird [81, 30] that allow amateurs and professionals alike to contribute
data on wildlife sightings. For a sense of scale, there are over 16 million occurrences in the
iNaturalist data on GBIF and over 550 million occurrences in the eBird data on GBIF. These
occurrences span the globe and have been collected since 2008 and 2002 respectively.

However, this citizen science data comes with its own challenges including inexperienced
observers, sampling bias (e.g. in space), and variation in sampling effort [37, 82]. These new
sources of data, and their challenges, have inspired new methods for estimating ecological
quantities of interest including correcting for opportunistic data [86], correcting for observer
bias [190], and correcting for overall bias using data from multiple species [53].

The differing collection protocols of some citizen science efforts inspired the first part of
this dissertation. For example, iNaturalist participants collect opportunistic (or presence-
only) data while eBird participants collect data in the form of check-lists (yielding presence-
absence data). Since ecologists often want to interpret parameters of a model in context (e.g
estimate prevalence, average occurrence, or average abundance) rather than just make pre-
dictions about where a particular species might be spotted, identifiability of these parameters
is an important property.

Informally, identifiability means that properties of a statistical model can be estimated
from the data that is available, i.e. alternative models can be distinguished empirically. It
is crucial to have identifiability if our goal is statistical inference, while it is possible to have
strong predictive performance without identifiability. We wanted to know what is and is
not identifiable using data collected under different protocols and when common modeling
assumptions do not hold. This question led us to a variety of identifiability controversies
in species distribution and abundance models. Recognizing these disparate back-and-forth
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controversies as different flavors of one problem and providing a unified clarification to them
became the subject of the first chapter of the dissertation. Our work shows that there are
different forms of identifiability (originally discussed by econometricians), some stronger than
others, that can help us reason about a variety of identifiability controversies that have been
debated in the literature.

1.2 Stress Testing Latent Factor Approaches to Joint

Species Distribution Models

When data or appropriate computational approaches were hard to come by, ecologists often
focused on single species distribution models for a species of interest, knowing that ignoring
the distribution of other species will plausibly impact inference. For example, “stacked”
species distribution models that combine information from single species distribution mod-
els without accounting for relationship between species often overestimate species richness
[166]. The creation of joint species distribution models is a consequence of having more data
available for many species within the same spatio-temporal range as well as progress in the
ability to statistically model associations between species.

However, through working on the first chapter I gained an appreciation for the havoc
that model mis-specification can cause for inference in species distribution and abundance
models. The next step was to move to more complicated joint species distribution models,
in the case where data quality was not an issue, to assess when they break down in the
presence of inevitable model mis-specification.

Joint species distribution models are used to both get more realistic estimates of single
species distributions and give ecologists insight into the relationships between species. Hi-
erarchical Bayesian methods have become a popular way to account for the many sources
of uncertainty and variation in ecological models [28, 32], although they have their prac-
tical challenges. These include the need to worry about technical details of the MCMC
algorithms, philosophical differences between Frequentist and Bayesian methods, and a mis-
match in ecologists’ computational training and the tools available for fitting these types of
models [16, 95, 186]. As hierarchies get complicated, these models can become black-box-like
and hard to parse, making the goal of interpretation harder to achieve.

Joint species distribution models are fairly new, first occurring in the literature in the
late 2000s and early 2010s [93, 129, 146, 60]. Performance of these models in service of
some goals have been assessed (e.g. for prediction accuracy and global goodness of fit [201,
126]). We wanted to add to these comparisons to see if any misfit of joint species distribution
models were hidden by a focus on traditional summaries of performance, especially in the
presence of model mis-specification. Crucially, could characteristics of a community, such
as measures of diversity, still be estimated well if the model is mis-specified? Stress testing
joint species distribution models for the purpose of inference became the focus of the second
chapter of the dissertation.
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1.3 Communicating with Data

Learning how to read and write about data is increasingly important for everyone as a new
form of literacy emerges, digital literacy [44]. The American Library Association’s Digital
Literacy Taskforce defines “digital literacy” as “the ability to use information and commu-
nication technologies to find, evaluate, create, and communicate information, requiring both
cognitive and technical skills” [2].

Weighty issues such as climate change, systemic racism and sexism, and public health
crises are often discussed using data and statistics. Being able to both parse that infor-
mation as consumers and produce accessible material as data-intensive researchers are both
important skills. Additionally, becoming critical consumers of numbers used in the media is
especially necessary in an era where the term “fake news” is often used (and abused) [193].

It is clear that the next generation of statisticians and data scientists will increasingly
need communication skills. However, students are rarely formally trained to write effectively
while properly accounting for the subtleties of statistical language. As a way to remedy
this, I became involved in the development of a course to teach undergraduate students how
to write about statistics for their peers and the broader public. This effort expanded into
a book to share that experience with more students and instructors eager to teach similar
courses at their own institutions. Deb Nolan and my approach to teaching students about
statistical writing, and the pedagogical framework behind it, became the focus of the third
chapter of the dissertation.

This focus on communication was also important for my research in quantitative ecology.
I was able to use the communication techniques I was teaching to explain my own work
to a broader audience. Inspired by my work on identifiability in species distribution and
abundance models, I wrote an article for Logic, a magazine about technology and society,
about the benefits and limitations of relying on data collected by citizen scientists [175].
My identifiability project was also featured in the Berkeley Science Review [197], and my
experience with citizen science data was relevant to the work I did at the Los Angeles Times
during a data journalism internship.

Beyond making my own work more accessible, I also got involved in making the statistics
field as a whole more approachable. While working at the interface of ecology and statistics,
I found that there was plenty of interest in having core concepts from statistics demystified
for ecologists. This demand was how I got involved in writing the Stats Corner section of
the Ecology for the Masses blog, whose goal is to “make good ecological science accessible to
people outside of science” [42]. In this work it was important to be able to explain methods
in contexts that were relevant to ecologists’ work. My experience navigating the boundaries
between statistics and ecology made my involvement in this project a natural fit.
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Part I

Identifiability in Species Distribution
and Abundance Modeling
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Chapter 2

Clarifying Identifiability Controversies

Co-authored with Perry de Valpine and Will Fithian

2.1 Introduction

There has been considerable debate in the species distribution and abundance literature
about the inherent information content of data collected under different protocols [198, 66, 7].
Examples include estimating overall prevalence with presence-only v. presence-absence data,
estimating occupancy or abundance with single-visit v. multiple-visit data and heterogeneous
detection probabilities across sites, and estimating abundance with capture-recapture data
and heterogeneous detection probabilities of individuals.

In all of these scenarios, some authors present a model where the quantities of interest
are identifiable while others present a model where they are not. The debate then becomes
about whose model is more realistic: the model that seems to be identifiable despite our
intuition that we are not collecting enough information v. the counter-example that seems
contrived but exhibits a lack of identifiability.

With single-visit occupancy data, Lele et al. proposed a method to estimate occurrence
even with imperfect detection [97]. By modeling detection and occurrence probabilities using
logistic regression and sets of covariates that differ by at least one covariate, parameters for
occurrence and detection probabilities can be estimated separately despite each site being
visited only once. Solymos et al. proposed a similar approach for disentangling abundance
from detection with single-visit data [171]. They modeled detection probabilities with logistic
regression and abundance with Poisson regression, using sets of covariates that again differ
by at least one covariate. However, these approaches were critiqued by Knape and Korner-
Nievergelt because the ability to disentangle detection from occurrence or abundance depends
on the choice of link function [88, 89]. They give a counter-example where the true occurrence
and detection probabilities come from scaled logistic functions of covariates, one scaled by α
and the other by 1/α. The range of observed values of covariates do not produce probabilities
greater than one. Solymos and Lele rebutted, provided a variety of commonly used link
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functions for which identifiability holds, and stated that the modeling choices made in the
counter-examples were unrealistic [170].

A similar controversy occurs in the debate over estimating prevalence using presence-only,
rather than presence-absence, data. Royle et al. proposed a model that appears to estimate
prevalence with presence-only data [161]. Although this violates a natural intuition that the
number of sightings alone, without data on absences, fails to inform the overall proportion of
occupied sites, Ward et al. proved identifiability of prevalence for the model [188]. However,
they showed that identifiability is not guaranteed in a broader model. Hastie and Fithian
provided a counter-example that reveals this lack of broader identifiability [69].

Competing models are also present in the capture-recapture literature. When there is
individual heterogeneity in detection probabilities beyond what is generated by covariates,
identifiability of the overall abundance is controversial. Link refined the conclusions of Hug-
gins and showed that abundance cannot be identified without restrictions on the detection
probability distribution [99, 75]. Holzmann et al. showed that if we assume a distribution
family for the detection probabilities, we can identify its parameters and hence abundance
[73]. However, Link pointed out that choosing between families with similar model fit can
lead to different abundance estimates [100].

In this paper we change the focus of the conversation from a debate about the realism of
particular parametric models to one about the consequences of parametric assumptions. To
do this we present a unifying framework, rooted in ideas from the econometrics literature,
in which these individual controversies are special cases. The econometrics literature dif-
ferentiates between identifiability in parametric and non-parametric models [91, 160, 156].
We introduce the concept of non-parametric identifiability, a strong form of identifiability
that exists when a model could be well approximated without parametric assumptions – the
data are informative on their own. Note that a non-parametric data-generating process, e.g.
any continuous function, cannot technically be perfectly estimated by a finite sample from
the data-generating process, but as Koopmans and Reiersol state: “identification problems
are not problems of statistical inference in a strict sense, since the study of identifiabil-
ity proceeds from a hypothetical exact knowledge of the probability distribution of observed
variables rather than from a finite sample of observations. However, it is clear that the study
of identifiability is undertaken in order to explore the limitations of statistical inference” [91].

We include discussion of an intermediate form of identifiability, partial identifiability,
where at least a range of plausible results can be determined even in the absence of non-
parametric identifiability [109]. Finally, we give a procedure to explore non-parametric iden-
tifiability by approximating a non-parametric model as a flexible unpenalized spline to which
simulated data can be fit. This procedure complements use of specific counter-examples and
thus offers a new avenue for discovering identifiability problems and their consequences.

As the adage says, “all models are wrong, but some are useful” [19]. In this paper
we illustrate a framework to help determine when models are useful. We argue that one
must establish identifiability within a super-model, a model that is sufficiently general to
encompass any plausible analysis model, even if such a general model will not actually be
estimated from data in practice. For example, if an analysis model (or sub-model) of interest
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uses a logistic curve to relate x and y, as in logistic regression, a relevant super-model would
include all continuous curves of any shape relating x and y.

When identifiability holds in a more general model, then an approximating sub-model—what
is commonly used in practice—enjoys a kind of robustness to model mis-specification. The
approximating sub-model is “wrong but useful,” and its parameters carry reasonable scien-
tific interpretations. When identifiability does not hold in a more general model, then what
appears to be an approximating sub-model can have parameter estimates that are artifacts
of the choice of sub-model and are unrelated to the underlying data-generating process. Ex-
istence of a sub-model that lacks identifiability (i.e. a counter-example) proves that finding
a suitable super-model is impossible.

The rest of this chapter is laid out as follows: the “Materials and Methods” section
provides our working definitions of different forms of identifiability and outlines our simula-
tion method and the ecological examples for which we assess identifiability. The “Results”
section describes the implications of model mis-specification in different regimes of identi-
fiability that are revealed by the simulation study. The “Discussion” section connects the
ideas in this paper to other identifiability debates more broadly and provides some guidance
for future work.

2.2 Materials and Methods

Identifiability and Its Different Forms

Informally, properties of a statistical model are called identifiable when they can be estimated
from the available data. These properties answer a question of interest and can be any sum-
mary of the data-generating process, a statistical concept for the ecological and measurement
processes that produced the data. Ecologically relevant properties include the average oc-
currence probability of a species and particular model parameters relating occurrence to
covariates describing a landscape.

A model is a set of candidate data-generating processes, each of which defines a joint
distribution of observed data D and unobserved, or latent, data E (following the notation of
Cressie et al. [32]). As an example, with detection/non-detection data, E could denote the
true occurrence or non-occurrence of a species at each site, while D denotes detection/non-
detection data from all visits to all sites. In many ecological applications, the unobserved data
represents an underlying natural process (the “ecology”), so properties of interest typically
concern the distribution of the unobserved data. In contrast, if prediction of the observed
data is our main goal, we may care only about the observable distribution, the distribution
of observed data D.

We call two data-generating processes within a model observationally equivalent if they
result in identical observable distributions, though they may differ in their distributions for
the latent data E. A simple example is single-visit detection/non-detection data, without
covariates, where either 50% of sites are occupied and a species is detected with 100%
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probability or 100% of sites are occupied and a species is detected with 50% probability.
These two data-generating processes lead to the same observable distribution for one visit
per site, no matter how many sites we visit.

A property of a model is formally identifiable if no two data-generating processes within
the model are observationally equivalent but imply different values of the property. For
example, in simple linear regression where the properties of interest are the parameters
(intercept, slopes, and residual variance), there are no sets of different parameters that
define the same distribution of data, so the parameters are identifiable. In a parametric
model like linear regression, the type of identifiability is parametric identifiability.

If we broaden the model to a non-parametric model by relaxing assumptions, then the
type of identifiability is non-parametric identifiability. A non-parametric extension of linear
regression would allow the relationship between a response y and covariate x to be any
continuous function. The properties of interest would be the shape of the function and the
residual variance. A property is partially identifiable if some, but not all, observationally-
equivalent data-generating processes can be eliminated from consideration.

We will refer to a non-parametric model as a super-model and a parametric model as
a sub-model. For example, linear regression is a sub-model of non-parametric regression.
Imposing parametric assumptions corresponds to choosing a sub-model from within a super-
model. Identifiability in a super-model implies identifiability in sub-models that it contains.
The converse is not true; sub-model identifiability does not imply super-model identifiability.
Therefore, non-parametric identifiability is stronger than parametric identifiability. These
identifiability concepts are illustrated next.

Illustration of Parametric and Non-parametric Identifiability The top row of Fig.
2.1 illustrates super-models with (Fig. 2.1a) and without identifiability (Fig. 2.1b). The
second row depicts the corresponding sub-models along the black curves. The θ1 and θ2
axes represent parameters, or more generally, properties of the model. The z axis shows the
log-likelihood of parameters given a very large data set. Data generating-processes make up
the points on the surface.
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Super-model
Has
“Non-parametric”
Identifiability

Super-model
Lacks
“Non-parametric”
Identifiability

Super-model

(a) (b)

Sub-model
θ2 = 5

(c) (d)

(e) (f)

Figure 2.1: Illustration of Identifiability Scenarios: Each sub-plot shows a hypothetical log-
likelihood surface for a very large sample size as a function of parameters θ1 and θ2. For
illustration, estimating parameters in two-dimensions (top row) is analogous to estimating
a “non-parametric” super-model. The red points are the true data-generating processes for
each scenario. The black points in the middle row are the estimates made by each sub-model
(black curves) given very large sample sizes. The bottom row shows the contour plots of the
middle row with the horizontal lines representing the sub-models.

Our choice of model defines how many parameter dimensions (axes) can be estimated. In
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real problems, a super-model might be infinite-dimensional, such as the space of all contin-
uous curves of covariates, while a sub-model might be finite-dimensional, such as the space
of all logistic curves from linear predictors. More generally, a super-model is sufficiently
general to encompass any plausible data-generating process and is free of restrictive assump-
tions. For simple visualization purposes, estimating parameters in two-dimensions (top row)
is analogous to estimating a super-model. Estimating one parameter in a single dimension
is analogous to estimating a sub-model (bottom row).

In Fig. 2.1a there is a single maximum, corresponding to the super-model maximum
likelihood estimate. Therefore the super-model parameters are identifiable and there is an
unambiguous “best” data-generating process for explaining the observable distribution. In
Fig. 2.1b there is a ridge in the log-likelihood surface, so the super-model parameters are
not identifiable. Different combinations of the parameters are observationally equivalent,
yielding the same likelihood of the data no matter how large a sample we collect.

Within the chosen sub-models, the black dots in Figs 2.1c and 2.1d show the best approx-
imation to the true data-generating processes (the red dots). Since the super-model in Fig.
2.1a is identifiable, the sub-model in Fig. 2.1c is also identifiable, and the best sub-model pa-
rameters are as close as possible to the best super-model parameters. Since the super-model
is not identifiable in Fig. 2.1b, the identifiability of the sub-model in Fig. 2.1d is artificial.
The notion of “best” approximation is not what we expect in this case. The “distance”
between the estimate and the truth depends arbitrarily on the choice of sub-model. Here
the model is wrong and not useful.

In the Results section we further illustrate, within ecological scenarios, the concepts
of super-models and sub-models in cases with and without non-parametric identifiability.
Typical identifiability debates involve mathematical insight to show a ridge in a likelihood
surface such as in Fig. 2.1b. Below, we instead approximate the whole non-parametric
surface using flexible models and large simulated data sets.

Simulation Method for Diagnosing Lack of Non-parametric
Identifiability

The concept of non-parametric identifiability helps resolve identifiability debates that have
arisen among ecologists. To see this we need to illustrate parametric v. non-parametric iden-
tifiability in real ecological scenarios and discover the consequences of estimating a property
of interest in each, especially when models are mis-specified. Next we give a method for doing
so with simulation studies, covering examples from the presence-only v. presence-absence
and single-visit v. double-visit controversies. Similar discussion of single-visit v. double-visit
abundance and capture-recapture examples are provided in the Appendix. Our simulation
method’s key step is to create super-models as very flexible models that can be interpreted
as “almost nonparametric.”
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Crafting Sub- and Super-Models

For each example, we use simulations to compare scenarios (model and sampling protocol)
with and without non-parametric identifiability (bottom and top rows of each result, re-
spectively). For each scenario we craft a sub-model and super-model, fitting them to many
simulated data sets.

Since “all models are wrong” the sub-models are designed to exclude the true data-
generating process, i.e. the simulation model. To fit the sub-models to the simulated data,
we use established analysis methods for each kind of data, described below in more detail.
In all cases, the sub-models are mis-specified yet parametrically identifiable.

For super-models, we use unregularized cubic splines with seven knots per function of
a covariate. Although splines are really parametric models, this choice represents a flexible
parametric model (with eleven parameters per function of a covariate) and hence approxi-
mates a fully non-parametric model. In principle, one could use an arbitrarily flexible spline
model to more closely approximate a fully non-parametric model containing any continuous
function of the covariate. However, in our examples, even a seven knot spline is sufficient
to illustrate lack of non-parametric identifiability. We include the correct covariate for each
response distribution so that issues of identifiability focus on the continuous relationships
between variables instead of the variables themselves.

The simulation results in each example address several specific questions. First, is the
sub-model a useful approximation to the truth? Second, is the super-model identifiable?
Identifiability of the super-model is approximately the same as non-parametric identifiability.
Third, how is lack of super-model identifiability reflected in the sub-model results?

Column 1 of each results figure shows whether the mis-specified sub-model is a useful
approximation to the truth and how the lack of super-model identifiability impacts the
sub-model results. To determine super-model identifiability, we increase sample size from
moderate (n=100) to large (n=1,000) to enormous (n=100,000) (columns 2-4 in each results
figure). If an enormous (approximately infinite) amount of data does not uniquely identify
a single set of best-fit parameters, the super-model is not identifiable, and the scenario lacks
non-parametric identifiability. In such a case, the data fundamentally lack information about
the question(s) of interest. Even when one will not have very large sample sizes, and even
when only a parametric sub-model will be estimated, this exercise illustrates when the data
can inform the question(s) of interest.

Ecological Scenarios

Next we illustrate the presence-only v. presence-absence and single-visit v. double-visit
occurrence controversies. Corresponding results on the single-visit v. double-visit abundance
and capture-recapture controversies are in the Appendix.

Presence-Only v. Presence-Absence Data In this example, yi indicates presence (1)
or absence (0) of the species of interest at site i, and xi is a covariate from site i. We assume
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S sites were visited and the species was present at S1 of them. We also assume that we have
perfect detection, that we know the distribution π(x) of the covariate (e.g., we have access to
the values of explanatory variables across all sites), and we do not have geographic sampling
bias. In the presence-only scenario, data are the S1 pairs (xi, yi = 1) representing the sites
where we observe a species. In the presence-absence scenario, data are all S pairs (xi, yi).
The property of interest is the overall prevalence, P (yi = 1), which is intuitively difficult to
estimate in the presence-only scenario.

In the analysis models for both scenarios, we assume probability of occurrence is a func-
tion of the covariate xi and some parameters β: P (yi = 1|xi; β) = ψ(xi, β). In the sub-
model, this takes a logistic form with two parameters: logit(ψ(xi, β)) = β0 + β1xi. In the
super-model, logit(ψ(xi, β)) is the flexible unpenalized spline. In both scenarios, we assume
yi ∼ Bernoulli(ψ(xi, β)), independently.

In the presence-absence scenario, the sub-model and super-model represent logistic re-
gression with few or many parameters, respectively. In the presence-only scenario, we apply
the method of Royle et al. [161]. The probability that xi appears in the data is given by Bayes

Law as P (xi|yi = 1; β) = P (yi=1|xi;β)π(xi)∑S
i=1 P (Y=1|xi;β)π(xi)

. The likelihood is then
∏S1

i=1 P (xi|yi = 1; β) and

we estimate β by maximum likelihood. One can think of xi as “pixel identity,” as in Royle
et al., or as the covariate value(s) at pixel (site) i, which is the perspective taken here [161].

Intuitively, presence-only data does not yield information about the sampling effort, so
we do not know if the number of sites with detections is small or large with respect to
the total effort [140]. Thus there is a debate about whether identifiability of prevalence
in Royle et al.’s method is an arbitrary outcome of parametric assumptions. Our example
places this debate in the more general context of non-parametric identifiability, illustrating
that any counter-example – any case where parametric identifiability fails – reveals lack of
non-parametric identifiability and therefore lack of information in the data.

The simulation model used for this example is as follows. The number of sites visited
is random, S ∼ Pois(n) where n is the sample size level, varying across columns 2-4 in the
results figures. The presence-absence scenario naturally has more data than the presence-
only case. Therefore we double the sample size for the latter case to ensure that conclusions
are made about the quality of the data rather than the quantity. Covariate values are
independent and uniformly distributed, xi ∼ Unif(−2.5, 8). Observations are drawn from
Hastie and Fithian’s scaled logistic, logit(ψ(xi, β)/α) = β0 + β1xi, with α = 0.5, β0 = −1,
and β1 = 1 [69]. The scaled logistic has the familiar sigmoidal shape of a logistic curve but
asymptotes at a maximum for ψ(xi, β) equal to α. This means that the sub-model for both
the presence-only and presence-absence scenarios is mis-specified. The super-model is also
formally mis-specified, but it is so flexible that it should be able to closely approximate the
scaled logistic.

Single-visit v. Double-visit Occupancy Data In this example, yij is detection (1) or
non-detection (0) of the study species on visit j to site i. There are S sites and either one
(single-visit) or two (double-visit) visits to each site. Again we give the single-visit case twice
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as many sites to make the quantity of data equal between the two protocols. Each site has a
covariate xi related to occurrence and zi related to detection. Ei is the unobserved indicator
for true occurrence (1) or non-occurrence (0) at site i. The properties of interest are the
relationships between occurrence probability and x and between detection probability and
z.

In the analysis models for both scenarios, we assume the occurrence probabilities are
a function of xi and some parameters β, P (Ei = 1|xi; β) = ψ(xi, β) and the detection
probabilities are a function of zi and some parameters θ, P (yi = 1|Ei = 1, zi; θ) = p(zi, θ).
In the sub-model, each takes a logistic form with two parameters: logit(ψ(xi, β)) = β0 +β1xi
and logit(p(zi, θ)) = θ0 + θ1xi. In the super-model, each of logit(ψ(xi, β)) and logit(p(zi, θ))
is a flexible unpenalized spline. In both examples, we assume Ei ∼ Bernoulli(ψ(xi, β)) and
yij ∼ Bernoulli(Eip(zi, β)), with all outcomes independent.

In the double-visit scenario, the sub-model and super-model represent standard occu-
pancy models. In the single-visit scenario, we use the un-penalized version of Lele et al.’s
method, which relies on the assumption that there is at least one distinct covariate for each
of occurrence and detection and a logistic form for the sub-model [97]. The identifiabil-
ity of this approach has been debated. Knape and Korner-Nievergelt’s counterexample to
the scenario’s identifiability involves a scaling parameter α such that different values of α
yield the same distribution of all yij values (the observable distribution in this case, with
j = 1) but different occurrence and detection probabilities [88]. Our example uses a differ-
ent counter-example to illustrate that the scaled logistic is not just a uniquely troublesome
“corner case.”

The simulation model used for this example assumes linear relationships for both occur-
rence and detection probabilities, with parameters and data ranges such that probabilities
fall between zero and one. Values for each of xi and zi are independent and uniformly dis-
tributed as above, xi ∼ Unif(−2.5, 8) and zi ∼ Unif(−2.5, 8). Occurrence and detection
probabilities are ψ(xi, β) = 0.071xi + 0.18 and p(zi, β) = 0.048zi + 0.12, respectively. These
values of β and θ imply that the occurrence and detection probabilities do not reach one
within the range of the observed covariates. As intended, this means that the sub-model
for both the single-visit and double-visit data is mis-specified. Again, the super-model is
also formally mis-specified but is so flexible that it should be able to approximate the truth
closely.

Single-visit cases were estimated with the R package detect [172]. Double-visit cases were
estimated with the R package unmarked [52].

2.3 Results

Presence-Only v. Presence-Absence Data

In the first column of Fig. 2.2, we see that the (mis-specified) sub-model provides a useful
approximation to the truth when estimated from presence-absence data (Fig. 2.2e) but not
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from presence-only data (Fig. 2.2a). In each sub-figure, the true relationship between x and
ψ(x) is in black and the estimated relationships from many simulated data sets are in red.
The use of multiple data sets can be thought of like a bootstrap procedure where the width
of the region spanned by the red curves is analogous to a confidence interval for any red
curve. With presence-absence data, even though the approximation is rough because the red
curves do not match the black curve, the salient point is that they do approximate the black
curve as well as possible. The implied estimated prevalence (driven by the height of the
estimated curve) is in a reasonable range. With presence-only data, the model is identifiable
but the red curves do not even approximate the black curve. The implied prevalence is much
larger than the true prevalence. Typical debates about identifiability have focused on this
type of comparison between special cases, resulting in debate about whether the black curve
is a reasonable special case to worry about.

The remaining columns (2-4) illustrate that the presence-absence scenario enjoys non-
parametric identifiability, while the presence-only scenario does not. For the small sample
size, neither scenario does well; there are too many parameters to fit. However, in the
presence-absence scenario, the data are fundamentally informative because, as sample size
increases (Figs 2.2f-2.2h), estimates of the flexible super-model converge to the true model.
Because the estimates using different simulated data sets converge narrowly around the truth,
we can feel confident that estimates are precise as well as accurate. In the presence-only
scenario (Figs 2.2b-2.2d), we see the opposite: as sample size increases, the shape of the
curve is similar to the truth but the height of the curve remains undetermined by the data.
Even with enormous sample size, the estimated super-model implies a prevalence often twice
as large as the true prevalence. There is an appearance that increasing sample size does
improve estimates albeit very slowly; this is likely in part due to identifiability of the shape
and in part because the flexible spline model is not fully non-parametric. An inability for a
flexible model to approximate the truth, even when given more and more data, reflects lack
of nonparametric identifiability.
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Figure 2.2: The x-axis displays the value of the covariate that predicts occurrence. The
y-axis displays the occurrence probability. Black curves show the truth while red curves
show estimates from various simulations. The first column shows the fit using a parametric
sub-model while the remaining columns show the fit using a more flexible super-model. The
first row illustrates the implications of model mis-specification when prevalence is parametri-
cally identifiable but not non-parametrically identifiable. The bottom row shows that when
prevalence is also non-parametrically identifiable, the mis-specified parametric sub-model
now gives a useful approximation; the flexible super-model reveals that the data can inform
the parameter of interest.

Insufficiency of Approximating the Observable Distribution Even though they
can’t identify prevalence, presence-only data can nevertheless approximate P (x|yi = 1), the
observable distribution in this case, well. Fig. 2.3 shows estimates of P (x|yi = 1) for the
simulations with n = 1, 000, i.e. from the third column of Fig. 2.2. The estimates fit well
for both presence-only (Fig. 2.3a) and presence-absence (Fig. 2.3b) scenarios, indicating
that the identifiability problems occur in this example only when the property of interest is
prevalence. There is some mis-behavior in the presence-only case on the left boundary, but
this could be mis-attributed to spline edge effects rather than an identifiability problem.
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(a) (b)

Figure 2.3: The x-axis displays the value of the covariate that predicts occurrence. The y-axis
displays the distribution of the covariate given that the species occurs. Black curves show
the truth while red curves show estimates from various simulations. These plots compare the
observable distribution using presence-only v. presence-abasence data in the non-parametric
super-model case where n = 1, 000. With either presence-only or presence-absence data, the
observable distribution of the covariate given a presence is identifiable.

Single-Visit v. Double-Visit Occupancy Data

The first columns of Figs 2.4 and 2.5 show that the sub-model provides a more useful approx-
imation to the truth when estimated from double-visit data (Figs 2.4e and 2.5e) than from
single-visit data (Figs 2.4a and 2.5a). With double-visit data, estimated curves cluster more
around and typically cross the true linear relationships. With single-visit data, estimated
curves are more variable and often nearly completely miss the truth.

Results from the super-model with increasing sample sizes show that non-parametric
identifiability holds for double-visit data but not for single-visit data (columns 2-4 of Figs 2.4
and 2.5). With moderate sample sizes (column 2) neither scenario provides good estimates
for the super-model. However, for large and enormous sample sizes, double-visit data closely
approximate the truth while single-visit data approximate only the shape but not the height
of truth. Using double-visit data, estimates for different simulated data sets converge more
and more narrowly around the truth as sample sizes increase. In contrast, even with large
sample sizes single-visit data give estimates of occurrence probabilities reaching 100% even
though the truth only reaches about 80%, and estimates of detection probabilities reach
100% even though the true maximum true detection probability is about 50%. Just as
we saw in Section 2.3, the observable distribution of the product of the occurrence and
detection probabilities can be matched well without identifying the individual distributions
of occurrence and detection.
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Figure 2.4: The x-axis displays the value of the covariate that predicts occurrence. The
y-axis displays the probability of occurrence. Black curves show the truth while red curves
show estimates from various simulations. The top row illustrates the implications of model
mis-specification when average occurrence is only parametrically identifiable by single-visit
data. The bottom row shows that in the non-parametrically identified double-visit case more
data improves the estimates of occurrence.
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Figure 2.5: The x-axis displays the value of the covariate that predicts detection. The y-axis
displays the probability of detection. Black curves show the truth while red curves show
estimates from various simulations. The first row illustrates the implications of model mis-
specification when average detection is only parametrically identifiable by single-visit data.
The bottom row shows that detection probabilities are non-parametrically identified using
double-visit data, and estimation is robust to model mis-specification.

2.4 Discussion

In this chapter we aim to clarify controversies about identifiability in the species distribution
and abundance literature. We do this by broadening the discussion to be about multiple
senses of identifiability and the consequences of parametric assumptions rather than the real-
ism of individual model choices. By clarifying that existing identifiability counter-examples
serve to diagnose a lack of non-parametric identifiability, we change the focus of debates over
controversial data-collection protocols.

We have shown that parametric identifiability alone does not suffice for reliable inference
about properties of an unobserved distribution. Ecologists should be most confident in their
results when a model satisfies identifiability in a sufficiently general super-model, even when
they have no intention of estimating this model. Non-parametric identifiability ensures that
the choice of parametric model does not create artificial identifiability and provides some
robustness to model mis-specification.

In this section we connect our reasoning to other conversations in the literature about
identifiability, discuss some practicalities, and provide ideas about how to further leverage
our spline simulation approach.
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Identifiability by Fiat in Other Contexts

When using species distribution and abundance models, the goal is often to do inference on
properties of the unobserved distribution, such as prevalence, the average occurrence proba-
bility, or total abundance. We have shown that some assumptions that allow us to technically
estimate these quantities lack robustness to model mis-specification. Because our properties
of interest (e.g. prevalence) are often functions of the unobserved distribution, standard
diagnostics fail to reveal model mis-specification when a property lacks non-parametric iden-
tifiability. What we need to check is that we chose the correct data-generating process from
all of the ones that explain the observed data equally well. This is inherently uncheckable
because we do not observe the components that we need to check.

For example, without non-parametric identifiability in a super-model, two data-generating
processes will have the same likelihood of the observed data even though they differ in the
joint likelihood of the observable and unobservable parameters. Since we cannot calculate
the full likelihood, model selection metrics such as the Akaike information criterion (AIC)
will not be able to distinguish between the two data-generating processes. Similarly, the
unobserved data are unknown, so we cannot look for patterns in the residuals as an indica-
tor of poor fit. Although there is a diagnostic proposed by Lele, Nadeem, and Schmuland
and recommended by Lele et al. to warn of identifiability problems, the approach assumes
that the true data-generating process lies within the proposed sub-model [98, 97]. There-
fore this method will also not be able to diagnose the lack of identifiability under model
mis-specification

Our examples show why having a narrow sense of parametric identifiability can be dan-
gerous. Using an identifiable sub-model that restricts the possible space of data-generating
process too stringently gives us identifiability by fiat, choosing from a wide range of feasible
data-generating processes in a way that is completely determined by the model’s parametric
form. Cautions based on similar intuition are expressed in the literature beyond species dis-
tribution and abundance models. For example, Lele et al. warns those working on resource
selection against making the jump from estimating use distributions with relative methods
to estimating occupancy distributions with absolute methods [96]. The use distribution (the
distribution of covariates among used sites) is identifiable using presence-only data, but the
use distribution alone cannot help us estimate the probability of selection (the probability
that an individual will select a resource given that it is encountered) and occupancy (the
probability that a specific resource unit will be used during a specified period at least once).
Assumptions used to get the needed available distribution (analogous to using background
data to supplement presence-only data) are inherently uncheckable and may impact infer-
ence.

What identifiability means in the context of Bayesian analysis is debated [164]. Con-
cerns about weak parametric identifiability and wariness towards model mis-specification
arise when hierarchical Bayesian models are used to compensate for sparse data. Poirier
explains that technically, parameters are always identifiable if an appropriate prior is chosen
[144]. However, there may be parameters that the data do not inform. Eberly and Carlin
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warn against fitting complicated models without enough data since the posterior can de-
pend heavily on the prior distributions [41]. In the case of sparse data, Lele advocated for
performing sensitivity analysis on the parameters of interest [94]. We agree that sensitivity
analysis is an important check. This paper shows that we not only need to be wary of the
impact of prior choices, but we also need to carefully consider the impact of our likelihood
choices. Relying on parametric identifiability without non-parametric identifiability can lead
to undetectable sensitivity of inference under model mis-specification.

Paths Forward

Presence-only and single-visit methods have become popular due to more readily available
opportunistically collected data and constraints on researchers that make multiple visits
too resource-intensive. Although it can be tempting to do more with less, a lack of non-
parametric identifiability makes inference perilous under inevitable model mis-specification.
However, ecologists can focus on answering different questions, rely on survey design, and
combine data from different sources to still make progress towards understanding species
distributions and abundances.

Some ecological questions can be answered by only relying on prediction or relative infer-
ence. Presence-only data can be, in principle, used for these purposes. For conservation and
management scenarios, the occurrences at the particular sites in a study area are of interest.
Therefore, prediction as a metric of success makes sense. Methods that yield relative suitabil-
ity of sites often suffice and are used to assess habitat suitability [135]. Critically, there are
diagnostics for assessing the performance of relative probability of presence predictions [20,
128, 72, 141].

Some management decisions can still be made with a range of estimates for prevalence
and occurrence probabilities. Although the single-visit occurrence scenario lacks the stronger
form of non-parametric identifiability, we can partially identify the average occurrence and
average detection. Some of the observationally equivalent data-generating processes revealed
by our counter-example may not be plausible. For example, if we identify the product of
average occurrence and average detection as 0.75, we know that the case where ψ̄ = 0.625
and p̄ = 1.20 is not plausible because detection probabilities cannot be above one. With
partial identifiability we can bound ψ̄ and p̄ to both be in the interval [0.75, 1] (where either,
but not both could be equal to one), and depending on the scenario, this might be enough
to make a management decision. Results on partial-identifiability with presence-only data
can be found in the Appendix.

MacKenzie and Royle and Guillera-Arroita et al. make recommendations for designing
a study such that the parameter estimates are the most precise for a given budget [105,
65]. Further work could recommend study designs that minimize sensitivity to model mis-
specification. For example, within a single-visit, multiple surveys could be conducted, multi-
ple observers could conduct independent surveys, or multiple subplot surveys per site could
be conducted [105]. Alternatively, if using a multiple-visit protocol, the closure assumption
is testable in certain scenarios where richer data is collected. Rota et al. proposed a test of
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whether the closure assumption is violated that works in conjunction with Pollock’s robust
design where an observer surveys the site multiple times per visit [157, 145]. We then assume
closure between the multiple surveys within a visit but allow for changes between visits.

Data fusion and integrated population models provide another way forward. In the
case of presence-only data, Phillips and Elith showed that we need additional information
to anchor the observed data to the unobserved data [140]. If there is an independently
and systematically collected presence-absence data set in the same region and for the same
species, it can be used to evaluate our inference [43]. Having a site and species specific
match may be unlikely, but multiple researchers provide a way to leverage a mixture of
presence-only and presence-absence data [39, 53, 153].

Similarly, in the case of single-visit data, methods could be adapted to leverage a mixture
of single-visit and multiple-visit data, i.e. a subset of sites could be visited more than once
within a season [106, 104]. Certain aspects of the model could then be checked. For example,
with some multiple-visit data the models for detection and occurrence probabilities could be
checked at the cost of accepting the uncheckable assumption that the sites visited multiple
times have the same detection and occurrence probabilities as (or can be modeled like) the
ones visited once.

By supplementing lower quality data with higher quality data, some unobserved data
becomes observed data. This makes some model checking feasible. Peel et al. show these
mixture approaches fairing well under correct specification, but it would be interesting for
future study to assess the accuracy and precision of estimates under model mis-specification
as the proportion of presence-absence data or sites visited multiple times increases in these
mixture approaches [136]. Another open question is how to diagnose a lack of generalizability
when combining data from different sources.

Further Leveraging the Spline Simulation Method

As computational tools become more readily available, ecologists can fit more complex mod-
els of species distributions and abundance, attempting to account for more and more aspects
of the underlying data-generating process. It would be prudent to probe identifiability to
make sure the data is not pushed beyond the limitations of their information content.

Remembering that identifiability in one sub-model does not imply identifiability in a more
flexible super-model and that a lack of non-parametric identifiability impacts our sense of
having a useful approximation to the truth under model mis-specification, we must consider
the potential impact of each parametric assumption. Approximating a non-parametric super-
model with an unpenalized, flexible spline, as we did in our simulation studies, can be done
in a variety of ecological scenarios beyond the ones discussed in this paper. Any time
we make a distributional choice such as using the logit v. the probit link or a Poisson
distribution v. a Negative Binomial distribution, fits of increasing spline complexity may
reveal instabilities that hint at identifiability concerns. If we see stable behavior of estimates
under one parametric model but not in an alternative one, we may have less confidence in
our results, as they depend heavily on our model choice. When using unpenalized splines to
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allow for increased flexibility in this diagnostic scenario, we should not be confused with the
more typically used spline formulation that regularizes to avoid too much “wiggliness” and
overfitting.

We hope that by bringing these multiple forms of identifiability to the attention of the
ecology literature, explaining their nuances, and designing an approach to reveal which iden-
tifiability regime a scenario is in, proper data-collection protocols will be adopted. We sug-
gest researchers avoid estimating prevalence with presence-only data, estimating occurrence
probabilities or abundance in the presence of imperfect detection with single-visit data, and
estimating abundance in the presence of heterogeneous detection probabilities with capture-
recapture data as we have illustrated the dangers. Richer data, rather than more data,
will ensure robust inference as we continue to try to understand species distributions and
abundance.

The first chapter of this dissertation clears up the identifiability controversy in the species
distribution and abundance literature by explaining different levels of identifiability that
relate to assumptions made about the data-generating process. As part of this effort we see
the consequences for inference of the weaker form of parametric identifiability in the presence
of model mis-specification. If our estimation model is wrong when using presence-only or
single-visit data, our estimates of important properties such as species prevalence, species
occurrence and detection probabilities, and species abundance can be very different from the
true values. The second chapter of this dissertation continues with a focus on inference in the
presence of model mis-specification, but this time the focus is on the case where we have the
stronger form of non-parametric identifiability. Next is an investigation of identifiable joint
species distribution models that account for multiple species at once to see how estimation
of properties of the community fares under model mis-specification.
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Distribution Models
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Chapter 3

Stress Testing a Latent Factor JSDM

Co-authored with Perry de Valpine and Will Fithian

3.1 Introduction

Ecologists intuitively know that the occurrence and abundance of one species is likely related
to that of another. As more data has become available on multiple species in overlapping
regions and as more sophisticated species distribution and abundance models have been
developed, it has become possible to explicitly account for known or suspected relationships
between species in community ecology analyses.

A variety of approaches exist for incorporating community structure into ecological anal-
yses including using another species as a covariate [87], using joint species distribution mod-
els [93, 129, 146, 60], applying multi-response approaches [124], analyzing networks [68, 147,
143], and using copulae [3]. However, the dimension of the problem quickly escalates when
accounting for all possible covariances between pairs of species.

A latent factor approach to joint species distribution models (JSDMs) has been popular
as it reduces the complexity to estimation of a number of latent factors that is often much
smaller than the number of species [192]. These latent factors induce correlations between
species and can be thought of as representing unobserved covariates that impact species
occurrence. Many approaches to estimating these latent factor models have appeared in the
literature [130, 76, 131, 177].

There have been a variety of comparisons of these multiple approaches to JSDMs. Zhang
et al. investigate how characteristics of the sampling data, such as number of sampling sites
and species, affect the predictive capability of JSDMs [201]. Wilkinson et al. compare the
computational performance and the parameter estimates of a variety of JSDMs [195]. Nor-
berg et al. evaluate the predictive performance of species distribution models (together with
some JSDMs), including prediction of held out data to assess both interpolation and extrap-
olation capabilities [126]. Zurell et al. and Thurman et al. test how JSDMs detect species
interactions (the former using point-processes to simulate interactions, the latter using real



CHAPTER 3. STRESS TESTING A LATENT FACTOR JSDM 26

data with known species interactions) [203, 179]. However, interpreting co-occurrence as
evidence of an interaction remains controversial [13].

These comparisons tend to either focus on the case where the model is correctly specified
or assess performance by predictive metrics or global measures of goodness-of-fit. Since ecol-
ogists often use joint species distribution models to understand relationships between species
[48, 148], assess the species composition across regions of interest [8, 202], and understand
species’ responses to environmental variables [29, 113, 155], there is still room for further
investigation into model performance in terms of community properties.

Our work here adds insight into the performance of JSDMs in two ways. First, we stress
test the latent factor approach under mis-specification of the species covariance structure. As
we have no a priori reason to believe that a joint species distribution model correctly reflects
the underlying data-generating process, it is important to test that the approach is fit for
its purpose and sufficiently robust to realistic levels of model mis-specification. Second, we
evaluate performance based on estimation of community metrics, like Shannon’s Entropy,
species richness, Pielou’s evenness, and Jaccard similarity, rather than on global prediction
metrics. Although there have been critiques of reliance on community diversity metrics that
fail to fully capture the ecology (e.g. [80]), defenders have argued that each metric gives
insight into a certain aspect of the ecology (e.g. [150]), and practical guides help ecologists
navigate the many metrics available for analysis [4, 119]. Community diversity metrics
have a long history in community ecology and represent the community characteristics that
researchers have been interested in over time, so it is of interest to ask whether JSDMs
estimate these characteristics well.

3.2 Materials and Methods

Wilkinson et al. show that many of the different approaches to latent factor modeling for joint
species distributions are variations on Hui’s Bayesian Ordination and Regression Analysis
(BORAL) model by standardizing notation across a variety of JSDM methods [195, 76]. In
this Bayesian model (described in Table 3.1) the observed data for J species come from I
sites and are the true occurrences Yij (where Yij = 1 denotes a presence and Yij = 0 denotes
an absence) for species j at site i. To simplify the investigation we make the perfect detection
assumption. In practice this is a tenuous assumption [9, 191, 199], but imperfect detection
has been tackled in multispecies N-mixture models [40], in a joint species distribution model
for two species [159, 158], and in a joint species distribution model for more species [180].

The probability that Yij = 1 is assumed to be drawn from a Bernoulli distribution
with the probability of the event being Φ(uij + vij) (where Φ is the cumulative distribution
function of the standard normal). The uij are fixed effects related to covariates Xij that
account for variation in the observed occurrences. In this simulation study we keep the fixed
effect simple by only estimating species-specific intercepts βj (using a zero-mean normal
distribution with variance 10 as a prior distribution). The vij contain information about
the correlations between species. We assume the vij are determined by the inner product
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of K << J random effects ηi. (a 1 ×K vector) and parameters λ.j (a K × 1 vector). The
random effects are assumed to come from independent standard normal distributions and
the λkj are parameters to be estimated (using a zero-mean normal distribution with variance
10 as a prior distribution).

Latent factors have been used in a variety of other contexts to reduce the dimension of
the estimation problem, from an approach similar to Hui et al. that is more focused on
ecological prediction [78, 187] and ecological structural equation models [108, 49] to many
approaches in psychology and the social sciences [17]. In this context, the λkj parameters
can be thought of as species-specific coefficients for the unobserved covariates ηi. at the site
level. The K × J matrix Λ where each row k is the vector λk. becomes part of the J × J
species covariance matrix Λ′Λ. This species covariance matrix represents the associations
between species that are accounted for by the latent factors.

Throughout the simulation study we use the R package, boral to do the model fitting
[77]. This implementation uses MCMC to fit the model described in Table 3.1. We use the
default values of number of iterations (40000), burn-in (1000) and thinning (30).
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Description Notation Distribution / Property
Site Index i
Total Number of Sites I
Species Index j
Total Number of Species J
Latent Factor Index k
Total Number of Latent Factors K K << J
Total Number of Covariates M
Probability of Occurrence P (Yij = 1) ∼ Bern(Φ(µij + vij))
Fixed Effects µij = Xi.β.j
Matrix of Covariates X I ×M

Species-specific Coefficients
(parameters to be estimated)

βmj

prior
∼ N(0, 10)
m = 1, ...,M
j = 1, ..., J

Linear Predictor of Unmeasured Covariates vij = ηi.λ.j

Site-specific Random Effects ηik
prior
∼ N(0, 1)

Species-specific Factor Loadings
(parameters to be estimated)

λkj
prior
∼ N(0, 10)

Factor Loadings Matrix Λ
K × J
each row k is vector λk.

Species Covariance Matrix Λ′Λ J × J

Table 3.1: For a choice of K, denoted Kest, this is the BORAL estimation model that is
fitted to the observed Yij [76]. The R package, boral, is used to implement and fit this model
via MCMC [77].

In this simulation study the primary mis-specification focus is on the relationship between
species, ignoring differing species prevalences. We assume the species-specific intercepts are
all zero, yielding occurrence probabilities of 0.5 for every species.

We also investigate a subset of the simulation scenarios using more realistic species preva-
lences. To do this we get a distribution of realistic species prevalences from the bryophyte
data used in Ovaskainen et al. and use it to define species-specific intercepts in the simula-
tion model [131]. Due to the computational cost of each simulation in the R implementation
we use, we investigate only one site-to-species case. The distribution of 25 species preva-
lences used is shown in Figure 3.1. There are many species with small prevalences, and a
few species with prevalences greater than 0.5.
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Distribution of Species Prevalences
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Figure 3.1: Distribution of 25 species’ prevalences subsampled from bryophyte data in
Ovaskainen et al. [131]. Contrasting the scenario with equal prevalences of 0.5, there are
many species with small prevalences, and a few species with larger prevalences.

Approaches to Mis-Specification Simulation

With the BORAL estimation model in mind, there are several ways that a simulation
model can be chosen such that the species covariance matrix Λ′Λ is mis-specified. These
choices include breaking modeling assumptions typical of latent factor models [45, 46].

Three types of mis-specification are considered. The structure of the data-generating
process could be correct but we choose the wrong number of latent factors to include in the
model (conceptually similar to omitting an important covariate or including a superfluous
covariate in the fixed effect). We’ll refer to this scenario in the results as the “wrong-K”
scenario (in contrast to the “correct-K” scenario where the number of latent factors in both
the estimation and simulation model are the same).

The assumption that a small number of latent factors captures the associations between
species may not be appropriate (the true relationship is not well approximated by a low-
rank matrix). We’ll refer to this scenario as the “block-covariance” scenario in the results
(an explanation of the name follows).

We could choose the wrong distribution for the underlying latent factors (typically as-
sumed to be normally distributed). We’ll refer to this scenario as the “heavy-tail” scenario
in the results. The heavy-tail scenario can be partitioned into cases where the model is fitted
with the correct or wrong number of latent factors. We will refer to these sub-scenarios as
“correct-K, heavy-tail” and “wrong-K, heavy-tail” scenarios in the results.

In this simulation study we generate occurrence data from a variety of scenarios that
approximate these different types of mis-specifications to assess whether the latent factor
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model approach is robust to each in turn.

Correct-K: Ksim = Kest

To get a baseline for performance we generate occurrence data from a simulation model
chosen to match the estimation model (see Table 3.1). We also choose the number of latent
factors to fit to the data, Kest, to be equivalent to the number of simulated latent factors,
Ksim, making this the “correct-K” special case. Since Zhang et al. show that the ratio of
sites to species can be influential in prediction performance, we generate scenarios using J =
10, 25, and 45 species across I = 50 sites [201]. We can also think of the site-to-species ratio
as a site-per-parameter ratio as the number of parameters scales linearly with the number of
species. Having data collected at more sites provides additional information to help estimate
the species-specific intercepts and factor loadings.

Wrong-K: Ksim 6= Kest

In practice, we do not know what the appropriate number of latent factors is, so we rely
on model selection strategies such as cross-validation and information criteria [78] or, in a
Bayesian framework, using shrinkage to choose the number of latent factors [11].

If we think about latent factors as substitutes for covariates we were unable to measure,
the case when Ksim < Kest means that we have included covariates in the model that do not
explain the covariances between species. If Ksim > Kest, we may have omitted covariates
that would help explain covariances between species.

For each of the datasets simulated from the “correct-K” scenario described above, we fit
“wrong-K” models with Kest ∈ {{1, 2, 3, 4, 5}|Kest 6= Ksim}.

Block-Covariance: Ksim >> Kest

A special case of using the wrong number of latent factors in a model is when the underlying
relationship between species is based on a large number of latent factors. More formally,
this means that the covariance matrix between species has a large rank. It seems feasible
that the relationships between a large number of species may be described by many latent
factors. For example, in an ecological context, a full rank block diagonal covariance would
represent a scenario where species would cluster, i.e. a species would be closely related to
a small number of other species but unrelated to a majority of others. We want to know if
a small number of latent factors can approximate a full rank covariance matrix, i.e. will a
low-rank approximation suffice.

To assess robustness to the assumption that a small number of latent factors can capture
the covariances between species, we generate occurrence data using a full rank block diagonal
covariance matrix. We define a block to be a B ×B portion of the J × J species covariance
matrix (where J = 30 and I = 100 in these simulations) with ones on the diagonal and 0.9
on the off-diagonals. As we increase the block size B from 3 to 5 to 10, the total number of
blocks in the covariance matrix decreases from 10 to 6 to 3.
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Despite data being generated from a distribution governed by a full rank block diagonal
covariance matrix, the covariance matrix could in principle be described well by a low rank
approximation of an appropriate size. For example consider the species covariance matrix
below that is made up of two blocks of three species. Within a group, species have covariance
a with one another, but they are unrelated to species outside of the group.

Σ =


1 a a 0 0 0
a 1 a 0 0 0
a a 1 0 0 0
0 0 0 1 a a
0 0 0 a 1 a
0 0 0 a a 1


This covariance matrix Σ would be well approximated in a latent factor model by Λ′Λ

formed by two latent factors where Λ =

[√
a
√
a
√
a 0 0 0

0 0 0
√
a
√
a
√
a

]
, especially if

√
a is

close to one.
However, when using a latent factor model in practice, it is rare to fit beyond a handful of

latent factors. For example, for ordination, a popular approach for visualizing multivariate
data that inspired the BORAL model, only one or two dimensions are used, and the boral
implementation warns users against fitting more than five latent factors [78, 77]. In the
case where the number of blocks is large, the number of latent factors needed for a good
approximation might be too large to be considered in the fitting process. In the block-
covariance scenario we expect the three block case to be well approximated by a model with
three latent factors, but we do not expect the six and ten block cases to be well approximated
by five or fewer latent factors.

Heavy-Tail: ηsimik ∼ t, ηestik ∼ N(0, 1)

In the estimated latent factor model we assume that the latent factors ηestik come from in-
dependent normal distributions, but what if the simulation model has latent factors that
come from a heavier-tailed distribution? Others have studied model mis-specification of this
type in linear and generalized linear models to assess impact on prediction of both fixed
and random effects (see [114] and citations within). We further investigate its impact on
prediction of functions of model parameters, i.e. community metrics.

In these simulation models we generate latent factors ηsimik from independent t distribu-
tions (with 3, 5, and 20 degrees of freedom) to assess robustness to mis-specification of the
random effects themselves. Note we standardize the simulated vij = ηi.λ.j to make a fair
comparison to other results.
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Metrics of Performance

In this simulation study we evaluate the estimation of Shannon’s Entropy H, species richness
S, Pielou’s evenness E, and Jaccard similarity J [107]. The chosen metrics are calculated
at the site-level or at the site-pair level (e.g. Jaccard similarity), so we need to further
aggregate, typically by taking an average across sites or pairs. See Table 3.2 for definitions
of these metrics and the aggregations used. However, there are some dissimilarity metrics
that do not require an additional aggregation that could also be used [38, 154].

Name Notation Description

Shannon’s Entropy
(site level)

Hi
= −

∑J
j=1

Yij
J

log
Yij
J

= Si log J
Shannon’s Entropy
(average)

H 1
I

∑I
i=1Hi

Species Richness
(site level)

Si =
∑J

j=1 Yij

Species Richness
(average)

S = 1
I

∑I
i=1 Si

Pielou’s Evenness
(site level)

Ei
= Hi/ log(Si)

= Si log J
logSi

Pielou’s Evenness
(average)

E = 1
I

∑I
i=1Ei

Jaccard Similarity
(between two sites)

Jii′ = a/(b+ c− a)

Number of Species in Both Site i and i′ a
Number of Species in Site i′ b
Number of Species in Site i c
Jaccard Similarity
(average)

J = 1

(I2)

∑I
i=1

∑
i′ 6=i Jii′

Table 3.2: Community Metric Definitions for Occupancy Data: Note that Hi, Si, and Ei are
closely related to one another in the special case where we use occupancy data as opposed
to abundance data. We display results for all three as researchers may be used to working
with one over another.

Determining the “true” value of community metrics corresponding to model assumptions
is not straightforward as they are not simple functions of the model parameters. Consider
observed data Y that come from a data-generating process D (the simulation model). Also
consider a parametric Bayesian estimation model P = {pθ : θ ∈ Θ} with a prior on θ, denoted
π(θ). In this simulation study, the model parameters θ are the species-specific intercepts,
denoted together as a vector β, and the species-specific factor loadings λk. that make up
the rows of Λ. We can simplify notation by referring to these parameters as θ = {β,Λ}.
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The true data-generating process D may or may not be included in the estimation model P
(defined for these scenarios in Table 3.1).

For any set of observations Y , there is an observed value of a community metric T (Y ).
This value will vary between replicates within a simulation model. We are interested in
estimating the expected value of T (Y ) over the distribution of communities Y generated by
D, denoted by the following.

γ(D) = EY∼D[T (Y )] (3.1)

The parameter of interest γ(D) exits for any data-generating process D. In the BORAL
estimation model, data-generating processes take the form of a parametric model pθ, so it can
be helpful to denote g(θ) = γ(pθ). We can approximate γ(D) via Monte Carlo simulation.
For b = 1, ..., B we draw a new dataset Y (b) from the data-generating process D. Then we
approximate γ(D) by the following expression.

γ̃(D) =
1

B

B∑
b=1

T (Y (b)) (3.2)

The values of γ̃(D) for each of the simulation scenarios (using B = 1000) can be found
in the Appendix.

To assess model fit, we need to compare γ̃(D) with corresponding predictions from esti-
mated models. This simulation study uses Bayesian estimation to fit a parametric model, so
the mean posterior value of g(θ) is of interest. By Bayes Rule, the posterior distribution of θ,
denoted πpost(θ|Y ), is proportional to the product of the prior on θ, π(θ), and the likelihood
of the data given θ, pθ(Y ).

πpost(θ|Y ) =
π(θ)pθ(Y )∫
π(θ)pθ(Y )dθ

(3.3)

Remember that the choice of estimation model P may or may not include the true data-
generating process D. We choose to estimate the predicted value of γ(D) using the posterior
mean of g(θ) under the Bayesian model as follows.

γ̂Bayes(Y ) = Eθ∼πpost(θ|Y )[g(θ)] (3.4)

This mean is actually a double expectation: an expectation over the posterior distribution
of model parameters and an expectation over the distribution of communities predicted by
given values of the model parameters. The predicted value of γ(D) can be approximated
by first using posterior samples θ(a) ∼ πpost(θ|Y ) for each a = 1, ..., A to generate new
observations Y (a,b) for b = 1, ..., B and then computing each γ̃(pθ(a)) as described above. We
use A = 250 and B = 500. Then we approximate γ̂Bayes(Y ) by the following.

γ̃Bayes(Y ) =
1

A

A∑
a=1

γ̃(pθ(a)) (3.5)



CHAPTER 3. STRESS TESTING A LATENT FACTOR JSDM 34

In the next section we compute and compare γ̃(D) and γ̃Bayes(Y ) for each set of simula-
tion models and estimated parameters. We focus on the relative bias, the expected relative
difference between the true expected value of a community metric and the posterior expec-
tation of the community metric (over communities Y generated by D), as follows.

EY∼D
[
γBayes(Y )− γ(D)

γ(D)

]
≈ EY∼D

[
γ̃Bayes(Y )− γ̃(D)

γ̃(D)

]
(3.6)

To approximate the sampling distribution of relative error (over possible communities Y
generated by a fixed D), we replicate the generation of observed data and model fitting for
every simulation model. In the R implementation that we use, the combination of model fit
and computation of the predicted expected community metric for each scenario can take on
the order of minutes to complete. Some combinations even take more than ten minutes to
run for each replicate. Since we aim to explore a variety of scenarios, computation time was
a limiting factor. Therefore, in the results we limit the number of simulation replicates for
each scenario to 50.

Simulation Evaluation

The results for each simulation scenario answer specific questions about estimation of com-
munity metrics under model mis-specification. The primary question is: is the estimation
unbiased under the particular data-generating process and estimation model? Second, within
a particular scenario, is there robustness to “wrong-K” cases?

When we evaluate estimation of community metrics for the “correct-K” cases of each
scenario, each panel of a results plot shows the outcome for a different community metric.
The x-axis shows the number of latent factors used in the model fit, Kest, the y-axis shows
the relative error, and the color represents the number of species (where the number of sites
is constant at 50). The error bars represent plus-or-minus two standard deviations of the
relative error across 50 replicates within a particular scenario. If these cover zero, estimation
of the particular community metric is unbiased in the scenario.

There are a few exceptions to these plots. The block-covariance scenario does not have
a “true” number of latent factors to display in a plot. The heavy-tail scenario has panels
that correspond to the combination of community metric and the degrees of freedom for the
random effects.

When we evaluate the estimation of community metrics for “wrong-K” cases, each row in
the results plots represents a community metric, each panel in a row denotes the true number
of latent factors, Ksim, and the x-axis shows how many latent factors were used in the fitting
procedure, Kest. If the magnitude of the relative error does not increase between the “correct-
K” and “wrong-K” cases within a scenario, there is some robustness in estimation of the
community metric. Again, the block-covariance and heavy-tail scenarios are the exceptions
as noted above.

In the following results plots we expect the magnitude of the relative bias to be larger
for the mis-specified scenarios than for the correctly specified scenario if the estimation of
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community metrics is not robust to the mis-specification. We also expect the magnitude
of the relative bias to increase if Ksim > Kest and to be fairly unchanged if Ksim < Kest

(although we expect more variability) if the estimation of community metrics is not robust
to the “wrong-K” form of model mis-specification.

3.3 Results

In this section we show the results for the four scenarios described in Section 3.2. For each
specification scenario, we first look at the special “correct-K” case where the true number of
latent factors, Ksim, matches the number of latent factors used in the model fit, Kest, (even
if other aspects of the estimation and simulation models don’t match). Then we investigate
the “wrong-K” version of these scenarios, estimating community metrics when Kest 6= Ksim.
This reflects a more realistic situation; in practice we do not know the true number of latent
factors, Ksim.

Correct-K

In the correct-K scenario Figure 3.2 shows that the relative biases of the Shannon Entropy
H, species richness S, and Pielou’s evenness E are not significantly different from zero across
all of the site-to-species parameter ratios, although estimation variance is higher when the
ratio of sites to the number of species parameters to be estimated is larger. The same is
mostly true for the Jaccard similarity J , but the predicted values are often smaller than the
truth. In practice, this means that the true species community is more similar across sites
than the predicted species community. We provide some insight into this downward bias in
Section 3.4.

When we include more realistic species prevalences, the Jaccard similarity estimation
is unbiased, but the Shannon Entropy and species richness tend to be overestimated. We
provide some insight into this upward bias in Section 3.4. However, it should be noted that
particularly for the species richness, the bias is not large in context. In this example, 25%
of the species are present on each site. A 10% bias for species richness out of a possible 25
species would only decrease the species richness by a fraction of a species. See the Appendix
for true values of the community metrics to get a further sense of scale.
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Figure 3.2: Correct-K (Ksim = Kest): The x-axis represents Kest = Ksim, and the y-axis
represents the relative error. Shannon Entropy, species richness, and evenness are unbiased
across a variety of site-to-species parameter ratios and number of latent factors. The Jaccard
similarity is downward biased for most of the scenarios, implying that the predicted species
community is less similar across sites than the true one.
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Figure 3.3: Correct-K with Realistic Species Prevalences (Ksim = Kest): The x-axis rep-
resents Kest = Ksim, and the y-axis represents the relative error. Only one site-to-species
parameter ratio is pictured (25 species for 50 sites). Evenness and the Jaccard similarity are
unbiased while the Shannon Entropy and species richness are slightly upward biased.

Wrong-K

Estimation of Shannon’s Entropy H and species prevalence S are robust to the “wrong-K”
case that might occur in practice (see Figures 3.4 and 3.5). Estimation variance across
replicates depends on the ratio of sites to number of estimated parameters. Evenness E
appears slightly less robust to the choice of Kest used in the fit, and the Jaccard similarity
maintains its downward bias across all choices of Kest (see Figures 3.6 and 3.7).

When we allow the distribution of species prevalences to be more realistic, estimates
of evenness and the Jaccard similarity tend to be unbiased while Shannon’s Entropy and
species richness tend to be overestimated (see Figures 3.8 and 3.9).

When Ksim = 1, we see worse and worse performance as Kest increases for H, S, and the
Jaccard similarity. For other community metrics and Ksim pairings we do not see a strong
decline in performance when Ksim < Kest or Ksim > Kest.
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Figure 3.4: Wrong-K (Kest 6= Ksim): Shannon’s Entropy has consistently unbiased estimates
across scenarios.
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Figure 3.5: Wrong-K (Kest 6= Ksim): Species richness also has consistently unbiased estimates
across scenarios.
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Figure 3.6: Wrong-K (Kest 6= Ksim): Evenness is also unbiased fairly consistently.
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Figure 3.7: Wrong-K (Kest 6= Ksim): The Jaccard similarity remains downward biased across
most scenarios.
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Figure 3.8: Wrong-K with Realistic Species Prevalences (Kest 6= Ksim): As in the correctly
specified case with realistic prevalences, Shannon’s Entropy and species richness are slightly
upward biased.



CHAPTER 3. STRESS TESTING A LATENT FACTOR JSDM 43

Figure 3.9: Wrong-K with Realistic Species Prevalences (Kest 6= Ksim): Evenness and the
Jaccard similarity appear to be fairly robust to the number of latent factors.
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Block-Covariance

The estimation of H, S, and the Jaccard similarity is fairly robust to the block-covariance
scenario (see Figure 3.10). In the three block scenario, E is not well estimated by more than
three latent factors. This is appropriate as those models are mis-specified in the sense that
they have too many latent factors.

For realistic species prevalences estimation performance breaks down (see Figure 3.11).
The relative bias for estimation of H, S, and the Jaccard similarity get increasingly worse as
Kest increases. The performance of E here is similar to its performance in the case of equal
prevalences.

Figure 3.10: Block-Covariance (Ksim >> Kest): When all of the species prevalences are the
same, community metrics are mostly unbiased except for evenness in some scenarios.
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Figure 3.11: Block-Covariance with Realistic Species Prevalences (Ksim >> Kest): When
there are realistic species prevalences, performance breaks down, especially for Shannon’s
entropy and species richness.

Heavy-Tail

In the “correct-K, heavy-tail” scenario, even with very few degrees of freedom for the t-
distributed random effects, estimates of H and S are robust to this type of model mis-
specification (see Figure 3.12) although estimation variance across replicates depends on the
ratio of sites to number of parameters estimated. Evenness E and the Jaccard similarity
estimates don’t always contain zero relative bias across replicates with larger Ksim. The
negative biases for these metrics indicate that the the truth is more even across sites than
predicted and is more similar across sites than predicted.

In the “correct-K, heavy-tail” scenario with realistic species prevalences results are slightly
more mixed (see Figure 3.13). Evenness and Jaccard similarity often have estimates that
cover zero relative bias across replicates while H and S are sometimes overestimated, espe-
cially for larger Ksim.
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Figure 3.12: Correct-K, Heavy-Tail (Kest = Ksim, ηsimik ∼ t, ηestik ∼ N(0, 1)): Most scenarios
have estimates of community metrics that are robust to heavy tailed random effects. Vari-
ability across replicates notably decreases as the number of species coefficients to fit increases
for a given number of sites.
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Figure 3.13: Correct-K, Heavy-Tail with Realistic Species Prevalences (Kest = Ksim, ηsimik ∼
t, ηestik ∼ N(0, 1)): Evenness and Jaccard similarity are robust to heavy tailed random effects.
Shannon’s Entropy and species richness are sometimes overestimated, especially for larger
Ksim.

In the “wrong-K, heavy-tail” scenario those metrics that were robust in the “correct-K,
heavy-tail” scenario remain robust to differing Kest while metrics that tended to be biased in
the “correct-K, heavy-tail” scenario remain biased for differing number of latent factors (see
Figures 3.14- 3.17). The same is true when realistic prevalences occur. All but the Jaccard
similarity result in biased estimates (see Figures 3.18- 3.21).
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Figure 3.14: Wrong-K, Heavy-Tail (Kest 6= Ksim, ηsimik ∼ t, ηestik ∼ N(0, 1)): Shannon’s
Entropy remains robust to the wrong number of latent factors even in the presence of heavy
tailed random effects.
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Figure 3.15: Wrong-K, Heavy-Tail (Kest 6= Ksim, ηsimik ∼ t, ηestik ∼ N(0, 1)): Species richness
remains robust to the wrong number of latent factors even in the presence of heavy tailed
random effects.
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Figure 3.16: Wrong-K, Heavy-Tail (Kest 6= Ksim, ηsimik ∼ t, ηestik ∼ N(0, 1)): In the presence
of heavy tailed random effects evenness maintains its slight biases irregardless of the number
of latent factors used in the model fit.



CHAPTER 3. STRESS TESTING A LATENT FACTOR JSDM 51

Figure 3.17: Wrong-K, Heavy-Tail (Kest 6= Ksim, ηsimik ∼ t, ηestik ∼ N(0, 1)): In the presence
of heavy tailed random effects the Jaccard similarity maintains its slight biases irregardless
of the number of latent factors used in the model fit.
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Figure 3.18: Wrong-K, Heavy-Tail with Realistic Species Prevalences (Kest 6= Ksim, ηsimik ∼ t,
ηestik ∼ N(0, 1)): With realistic species prevalences, Shannon’s Entropy tends to be overesti-
mated, especially when larger number of latent factors are used.
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Figure 3.19: Wrong-K, Heavy-Tail with Realistic Species Prevalences (Kest 6= Ksim, ηsimik ∼ t,
ηestik ∼ N(0, 1)): With realistic species prevalences, species richness tends to be overestimated,
especially when larger number of latent factors are used.
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Figure 3.20: Wrong-K, Heavy-Tail with Realistic Species Prevalences (Kest 6= Ksim, ηsimik ∼ t,
ηestik ∼ N(0, 1)): In the presence of heavy-tailed random effects evenness is downward biased.
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Figure 3.21: Wrong-K, Heavy-Tail with Realistic Species Prevalences (Kest 6= Ksim, ηsimik ∼ t,
ηestik ∼ N(0, 1)): Jaccard similarity appears robust to differing number of latent factors and
heavy-tailed random effects. However, estimates increase as Kest increases.
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3.4 Discussion

Unpacking Trends in the Results

We found that the Jaccard similarity is often downward biased, even in the “correct-K”
case, but this bias does not appear when more realistic species prevalences are involved. To
investigate further, we can examine the distribution of the Jaccard similarity metric across
site pairs in a subset of scenarios instead of relying on the average.

Figure 3.22 shows the empirical cumulative distribution functions of the Jaccard similarity
for a correctly specified scenario (where Ksim = Kest = 1) with and without realistic species
prevalences. The black line shows the observed distribution of the Jaccard similarity in one
replicate. The grey lines show the Jaccard similarity from other replicates within the same
simulated model scenario. The red lines show predicted Jaccard similarity distributions
generated from the model fitted to the data (whose Jaccard similarity distribution was
plotted in black).

The left plot shows a scenario where the Jaccard similarity is underestimated. We can
see that the entire predicted distribution is shifted to the left; the result is not an artifact
of the choice of summarizing the Jaccard similarity distribution by its mean. The right plot
shows a scenario where the estimate of Jaccard similarity is unbiased on average. When
species prevalences are realistic, the entire predicted distribution maps more closely onto the
true one.

Figure 3.22: These plots show the empirical cumulative distribution function of the Jaccard
similarity across pairs of sites. The black line shows the observed distribution of the Jaccard
similarity in one replicate. The grey lines show the Jaccard similarity from other replicates
within the same scenario. The red lines show predicted Jaccard similarity distributions
generated from the model fitted to the data. The left plot shows a scenario where the
Jaccard similarity is underestimated. We can see that the entire predicted distribution is
shifted to the left. The right plot shows a scenario where the estimate of Jaccard similarity
is unbiased on average.
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Understanding why this bias occurs is beyond the scope of this work, but we can offer
some speculation. In the left case, estimated prevalences vary more than the true prevalences
(which are all the same). This creates more dissimilarity, shifting the whole distribution of
the Jaccard to the left. In the right case, since true prevalences themselves vary already,
the extra dissimilarity induced by prediction error is less noticeable. To test this theory and
further diagnose the estimation error, future work could include a calculation of the expected
Jaccard similarity as a function of species prevalences.

We also found that Shannon’s Entropy and species richness were often unbiased across a
variety of mis-specification scenarios, but when realistic species prevalences were included,
estimates of these metrics tended to be too large. Figure 3.23 shows a similar phenomenon
to the Jaccard similarity shown above. We can see that the entire predicted distributions are
shifted to the right; the result is not an artifact of the choice of summarizing the Shannon’s
Entropy and species richness distributions by their means. It is known that species richness
is sensitive to rare species and Shannon’s Entropy is sensitive to rare and abundant species,
so this is not entirely surprising [71, 181]. The ability to estimate evenness well was more
variable across mis-specification scenarios. This could just be due to the nature of the metric.
Since evenness is a ratio of Shannon’s Entropy and species richness, there are a variety of
situations that can lead to its poor estimation. However, it is also possible for biases in
the estimation of the numerator and the denominator to cancel out, leaving the ratio well
estimated.
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Figure 3.23: These plots show the empirical cumulative distribution function of the Shan-
non’s Entropy and species richness across sites. The black line shows the observed distribu-
tion in one replicate. The grey lines show the distribtuions from other replicates within the
same scenario. The red lines show predicted distributions generated from the model fitted
to the data. The left plots show a scenario where H and S are overestimated. We can see
that the entire predicted distribution is shifted to the right. The right plots show a scenario
where the estimates are unbiased on average.

A final investigation we might be interested in is deciding whether these patterns are
driven by systematic bias in estimation of the species prevalences. For example, are estimates
of the prevalences for rare species pulled upward while those of common species are pulled
downward? This would be especially problematic if it was happening in the correctly specified
cases. Figure 3.24 shows the true v. predicted prevalences for the same scenarios as shown
in Figures 3.22 and 3.23. On the left when the true prevalences are all the same (0.5)
we do not see any prominent tendency to over- or under-estimate although we see more
extreme over-estimates than under-estimates for individual species. On the right when the
true prevalences follow a more realistic distribution, we do not see any systematic over- or
under-estimation either.



CHAPTER 3. STRESS TESTING A LATENT FACTOR JSDM 59

Figure 3.24: For the same situations as displayed in Figures 3.22 and 3.23 we compare the
true prevalences with the predicted prevalences to see if systematic over- or under-estimating
is occurring. We do not see an obvious pattern in either case.

Understanding why we do not see a more prominent decline in performance when Ksim >
Kest and diminishing returns in performance when Ksim < Kest is beyond the scope of this
work, but this is an interesting avenue for future work.

Mis-specifications Involving Nonlinearities

More complicated mis-specifications could also occur. For example higher order or indirect
interactions may not be fully captured by estimating pairwise interactions, interactions be-
tween species may be nonlinear, or the interaction of two species could change depending on
a third species [12, 116]. Future work could include more complete stress testing of JSDMs
against higher order interaction mis-specification, but we can start to get insight about the
last case using a toy example here.

Suppose there are three species and three latent factors, η1, η2, and η3 = η1 ∗ η2 (all
are 1 × 3 vectors). Because the third latent factor is an interaction between the other two,
this violates the assumption of the latent factor model that latent factors are unrelated [47].
We craft a scenario (see Table 3.3) where when Species 1 has small prevalence, Species 2
and 3 are positively correlated, but when Species 1 has high prevalence Species 2 and 3 are
negatively correlated.
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Description Notation Value
Number of Sites I 200
Number of Species J 3
First Latent Factor ηi1 ∼ N(0, 1)
Second Latent Factor ηi2 ∼ N(0, 1)
Third Latent Factor ηi3 = ηi1 ∗ ηi2
First Latent Factor Loadings λ1 =

[
0 1 0.5

]
Second Latent Factor Loadings λ2 =

[
1 1 0

]
Third Latent Factor Loadings λ3 =

[
0 0.5 −1

]
Table 3.3: Interaction Simulation Model: Note we use a large number of sites (200) to better
see the signal of this interaction in the observed data.

Figure 3.25 shows the results for this interaction scenario; these results are similar to
those of the other mis-specification scenarios. However, this time the worst case scenarios
from each metric are combined in one scenario. The Shannon’s Entropy and species richness
are overestimated (although a relative of error of zero is mostly covered across replicates),
the Jaccard similarity is underestimated, and the evenness has mixed results depending on
the number of latent factors used in the fit.
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Figure 3.25: Toy Interaction Example: The Shannon’s Entropy and species richness are often
overestimated, the Jaccard similarity is underestimated, and the evenness has mixed results.

Recall that in this scenario, Species 1 drives the relationship between Species 2 and 3. If
Species 1 has small prevalence, Species 2 and 3 are positively correlated, but when Species
1 has high prevalence, Species 2 and 3 are negatively correlated. The left plot of Figure 3.26
shows the number of sites where the occurrence or absence of Species 2 and Species 3 are
the same in the presence of Species 1 (x-axis) and in the absence of Species 1 (y-axis) across
datasets simulated from this interaction scenario. We expect points to lie mostly above
the y = x dashed line. When we make the same plot for predicted occurrences, we see
the opposite. Species 2 and 3 are predicted to be more likely to have the same occurrence
or absence in the presence of Species 1. This inability to predict the appropriate pairwise
relationships between species sheds light on the bias in the community metrics. Future study
of more complicated species interactions could build upon this toy example.
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Figure 3.26: Relationship between Species 2 and 3 Depends on Species 1: In the simu-
lation model Species 2 and 3 are positively correlated when Species 1 has low prevalence
but are negatively correlated when Species 1 has high prevalence (left plot). The opposite
relationship is predicted by the estimated model (right plot).

Although the discussion in this work has focused on occupancy data, future work could
similarly stress test abundance models. For abundance, there is an added potential model
mis-specification, the distribution of the abundances themselves (Poisson, Negative Binomial,
etc.).

Performance of JSDMs and Related Findings

Joint species distribution models have been evaluated in terms of estimation of model param-
eters in general and parameters related to the covariances between species in particular. This
simulation study contributes additional insight into the estimation of community metrics and
into how model mis-specification affects estimation.

Throughout the simulation study we see some fairly large error bars for estimation of
community metrics. These may be narrowed with more replicates within a scenario, but it
should be noted that Wilkinson et al. found that the BORAL approach often had parameter
estimates characterized by more uncertainty than other methods they considered [195]. It
would be interesting to assess whether an alternative JSDM that gives more precise estimates
in general would continue to cover a zero relative bias under model mis-specification.

We also see that cases with a smaller number of species for a given number of sites often
have more uncertainty than cases with a large number. Relatedly, Zhang et al. found that
a decrease in number of species included in the model decreased the prediction performance
although they excluded species based on occurrence probability rather than focusing on the
explicit site-to-species parameter ratio [201]. Both of these results may suggest that the
information borrowed across species may be more valuable than the extra burden incurred
by having to estimate more parameters for an additional species.
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When assessing JSDMs for their ability to find interactions between species, Zurell et al.
found that the residual correlation estimated by the Pollock et al. model depended on the
species prevalences rather than the interaction strength [203, 146]. The Pollock et al. model
is similar to the BORAL model (it estimates the full species covariance matrix rather than
using latent factors), so this may be connected to our finding that whether or not an estimate
of a community metric was unbiased under model mis-specification differed depending on
the distribution of species prevalences considered [146]. The relationship between prevalence
and species covariances is worthy of further study. Two simple cases to augment the results
found in this work and further investigate whether robustness to model mis-specification
depends on species prevalence would be: all species have a prevalence smaller than 0.5 and
all species have a prevalence larger than 0.5.

Under a different data-generating process Thurman et al. found that the Golding et al.
JSDM (just a different implementation of the Pollock et al. model) was better at predicting
positive interactions than negative interactions with data generated from an Erdős-Rényi
random network (where an interaction between any pair of species in equally likely) [179,
60, 146]. This finding may be tied to poor performance in the toy interaction case which has
competing signs of interaction between species. Although the resulting set of covariances
between species from the block-covariance scenario would not be likely under the Erdős-
Rényi network data-generating process used by Thurman et al., it could still be interesting
to try the block-covariance scenario with negative covariances within a block to see if the
signs of species covariances affect robustness [179].

Wilkinson et al. also found that the parameter estimates of the BORAL approach were
strongly correlated with the results from other JSDMs for both fixed effect coefficients and
covariance coefficients [195]. Because of this, the conclusions about estimation of community
metrics that follow may also be relevant to other JSDMs whose parameter estimates are
similar.

3.5 Conclusion

In this paper we stress tested a commonly used joint species distribution model that is the
foundation of a variety of more complicated methods. Our goal was to see how well a latent
factor JSDM was able to estimate community metrics in the face of model mis-specification
of the assumed covariance relationship between species. These mis-specifications include
choosing the wrong number of latent factors to include in the model, wrongly assuming that
a small number of latent factors captures the covariances between species, wrongly assuming
the latent factor distribution is normal, or wrongly assuming latent factors are unrelated.

When species prevalences are similar to one another, estimates are robust to a variety of
model mis-specifications, although the Jaccard similarity is often slightly downward biased
even in correctly specified cases. When faced with a realistic distribution of species preva-
lences, estimates remain fairly robust to choosing the wrong number of latent factors and
heavy tailed random effects. In these cases, when biases do occur (as in the overestimation



CHAPTER 3. STRESS TESTING A LATENT FACTOR JSDM 64

of Shannon’s Entropy and species richness), they generally are small in magnitude. These
findings may give ecologists more confidence in their estimates if the expected bias would
result in a negligible difference in a community metric in practice.

Ecologists who are using JSDMs to help them understand properties of species com-
munities can use the results in this paper to better understand what biases they may be
facing in their community metric estimates when they suspect a particular form of model
mis-specification. They can also use this information to decide when they feel comfortable
using estimated community metrics to make decisions about community conservation and
management.

A key contribution of the first two chapters of this dissertation has been bridging the gap
between statisticians and ecologists which requires a conscious navigation of the differing
styles and background knowledge of researchers in both fields. In both chapters we reveal
insight into challenging problems in ecology through the use of statistical concepts and
tools. This effort requires clear communication with ecologists. My dissertation culminates
in a discussion of how to train statisticians to talk about their work amongst peers, with
interdisciplinary collaborators, and to a wider public.



65

Part III

Communicating with Data: The Art
of Writing for Data Science
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Chapter 4

Teaching the Art of Writing for Data
Science

Book excerpts co-authored with Deb Nolan

4.1 Pedagogical Context for “Communicating with

Data”

The American Statistical Association updated their curriculum guidelines for undergraduate
statistics classes in 2014 [26]. One of the key points referenced in the executive summary is
the “ability to communicate” to facilitate “thinking with data.” This recommendation in-
cludes the goal of teaching students to be able to “communicate complex statistical methods
in basic terms to managers and other audiences and to visualize results in an accessible man-
ner” and a mandate that “programs should provide multiple opportunities to practice and
refine these statistical practice skills.” The guidelines go on to define communication goals
to include “effective technical writing, presentation skills, visualizations” and an “ability
to interact with and communicate with a variety of clients and collaborators.” Pedagogical
advice includes offering regular opportunities to practice communication skills that are tied
to the more technical aspects of statistics instruction.

Similarly, in 2016 the American Statistical Association released the updated Guide-
lines for Assessment and Instruction in Statistics Education (GAISE) [25]. In these guide-
lines, communication is particularly emphasized as a core competency for presentations and
projects including visual presentations and verbal communication of findings in addition to
traditional written communication.

Typical undergraduate statistics courses involve a final project that is accompanied by
a written report and/or an oral presentation. Increasingly, courses dedicated specifically to
communication of statistics, interpreted broadly, are appearing in undergraduate curricula.
The inspiration for this dissertation chapter indeed occurred through my involvement in
co-developing and co-teaching such a course in the Statistics Department of UC Berkeley
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with Professor Deborah Nolan through the Art of Writing Program. This course was an
undergraduate seminar capped at 15 students with only one introductory statistics class
required as a prerequisite. Through our experience developing and teaching the course,
we recognized the gap in resources for instructors who want to teach such a statistical
communication course.

There are books that focus on science writing such as “The Craft of Scientific Writing”
by Alley [1], “A Field Guide for Science Writers” by Blum, Knudson, and Marantz Henig
[14], “Writing Science: How to write papers that get cited and proposals that get funded”
by Schimel [167] and “The Scientist’s Guide to Writing: How to write more easily and
effectively throughout your scientific career” by Heard [70] that we referenced as we prepared
the course. However, the communication of statistics differs from the communication of more
general science (e.g. words like “significance” carry more weight), and many of these science
writing resources are focused at a more advanced level for graduate students learning how to
write formal research articles which can be inaccessible for an undergraduate audience. Our
manuscript aims to be practical and accessible with its variety of examples and exercises and
useful to those presenting results from data with its in-depth treatment of graphs, coding,
data descriptions, and statistical terminology.

In framing our approach to teaching communication of statistics and research involving
data, we took inspiration from both the science communication literature and the general
teaching pedagogy literature.

Burns et al. give an overview of the different levels of science communication [22]. The
public can respond to science by being aware of science, enjoying science, being interested in
science, having an opinion about science, and finally understanding science. They mention
Jesse Shore’s approach to designing exhibits in science museums. Shore aims to both “attract
and involve visitors who are uninformed or disinterested in the overall subject” and “maintain
interest of those who are informed (interested public) or even specialists (attentive public).”
Relatedly, as part of our Communicating with Data class we visited the Phoebe A. Hearst
Museum of Anthropology to learn about how museum curators write the museum placards.
We connected the writing of placards that describe each part of the exhibit to writing captions
that describe each visualization in a statistical report.

Bubela et al. distinguish the more passive deficit model of communicating with the public
from the more interactive public engagement model [21]. In the former, miscommunication of
science is blamed on the public’s lack of knowledge while the latter puts the onus on scientists
to create a dialogue with the public. They advocate for teaching graduate students how to
communicate with the media and a variety of audiences since they are the future of science.
We agree and expand this focus to undergraduate students. We incorporate instruction
and activities for writing press releases throughout the book to introduce students to how
journalists often consume science. We also emphasize the need to make our writing accessible
and stress narrative as a way to engage readers (Chapter 6).

In a review of the writing literature, Raimes notes a variety of instructional activities
that we leveraged in our own classroom and advocate for in our textbook [151]. These
include using journals to brainstorm ideas (Activity 10.8.3), making connections between
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writing and other language skills such as reading (Chapters 1 and 2) and speaking (Sections
11.1.1-11.1.3), writing collaboratively (classroom activities accompanying Chapters 6 and 7),
responding to peer and instructor writing (Activity 10.8.2), using revision strategies (Section
10.2), and separating high-level revision from low-level editing (Chapters 8 and 9).

Beyond writing formally, informal styles of writing are also important for students to
learn. In an overview of new tools for teaching writing, Warschauer highlights blogs and
Wikis as ways to help students ease into writing and developing a voice beyond a stilted
academic style [189]. Ben-Zvi also highlights Wikis as a tool for teaching collaborative
writing [10]. We incorporate instruction and activities for writing blogs throughout the
book, and Wikipedia activities appear in Chapters 8, 9, and 11.

The following section includes the Preface of our book which further outlines our objec-
tives, intended audience, and structure of the book. Then, to introduce each part of the
book, I add more specific pedagogical context, referencing relevant chapters, sections, and
activities in the full version of our book.

4.2 Book Preface

Communication is a critical yet often overlooked stage in the data science pipeline. Nolan
and my book aims to help students and researchers write about their data insights in a
way that is both compelling and faithful to the data. We address writing challenges specific
to scientific investigations of data, such as how to describe data succinctly, create effective
visualizations, write clean code, and accurately summarize statistical findings. We also
provide more general advice on science writing, including how to distill findings into a story,
how to organize and revise the story, and how to write clearly, concisely, and precisely.

Our Objective
In our experience, university training in writing rarely addresses the challenges associated
with technical writing. Our students lack opportunities to practice writing about their
data-analytic processes and to learn from examples of good, domain-specific writing. To
compound this problem, instructors of science courses typically have little experience in
teaching technical writing. Many of us find it difficult to give students advice when we have
only our personal experience with writing to draw from. In this book we attempt to address
both the teaching and learning challenges relevant to communicating the story behind a data
analysis.

Intended Audience
We aim for this book to be a resource for students who want to learn how to write about
scientific findings where the focus is on presenting the results of a data analysis. Instructors
teaching a course in science communication can use it as a textbook, and others teaching a
science course that has a writing component can use the book as a supplement. In addition,
a researcher who is looking for help writing can use this book to self-train. Practicing
statisticians, data scientists, or scientists who need assistance with writing about their data
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analysis findings will hopefully find guidance they can use to practice their communication
skills in the context of their own work.

The only prerequisite is a knowledge of statistics at the introductory level. While we
expect the reader to have at least a rudimentary understanding of statistics, the principles
of communication found on these pages carry over to writing about more complex data
analyses.

Examples and Activities
Each chapter includes many examples and concludes with a collection of activities for prac-
tice writing. These examples and activities come from several scientific fields and a broad
variety of publications. The main sources are scientific journals, but the advice is equally
relevant to writing a report for a supervisor, a paper for an instructor, or an article for a
popular magazine. To this point, we use the terms article, paper, and report interchangeably
throughout. Additionally, many of the activities at the end of chapters give practice for those
who want to write for a broader audience, such as a blog post or press release. We have
honed the examples and activities in this book to focus on the essentials of writing about
data and, at the same time, we have attempted to create scenarios that allow for individual
creativity. Also, we use samples from our own writing and anonymized student work for
examples of what not to do.

Book Organization
Our book consists of five parts. Part I aims to help the novice learn how to write by
reading the work of others. We identify the main components of a data analysis, examine
the argument, and point out how components of an analysis are organized into a story
and written for a technical article. In addition, we read and examine material written for
broader audiences, e.g., press releases and blog posts. Part II delves into the specifics of
how to describe data at a level appropriate for publication, create informative and effective
visualizations that support the main findings, and communicate an analysis pipeline through
well-written, reproducible code. Part III demonstrates how to distill a data analysis into a
compelling story and organize and write the first draft of a technical paper. Part IV addresses
revision; this includes advice on writing about statistical findings in a clear and accurate way,
general writing advice, and strategies for proof reading and revising. Part V gives advice
about communication strategies beyond the page, which includes giving talks, building a
professional network, and participating in online communities. This part also contains over
twenty portfolio assignments that are aimed at building upon the guidance and examples in
the earlier parts of the book and providing continued writing practice.

In addition to the book, we plan to provide additional materials online to use in a course.
These will include a detailed week-by-week syllabus that describes the topics covered, in-
class activities, assignments, and additional reading used in the course that inspired this
book. Along with the syllabus, we will provide pointers to avoid potential problems with
some classroom activities and ideas for grading written work. We also will give ideas for how
to use this book as a supplemental text in a science course or as the main text for a large
course in technical writing where the student work is more limited in scope.

In this dissertation chapter I provide excerpts from each part of the book that illustrate
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the pedagogical novelty while providing some narration to fill in the context of each.
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4.3 Part I: Reading to Write

Pedagogical Context for Reading to Write

We start our book by teaching students how to “read as writers” so they can learn from
other writers. Examples of how others structure their writing and choose content in both
formal (Chapter 1) and informal (Chapter 2) contexts can act as concrete models of writing
to aspire to.

This “reading to write” approach is often used at the graduate level. For example,
Matarese outlines a graduate level course where students write a research paper along with
reading and discussing papers in their discipline [112]. This process helped students “develop
a framework of knowledge that helps them assess the effectiveness of their own writing.”
Matarese also makes the point that researchers read the literature to understand what is at
the cutting edge of their field, so it seems natural that they should read the literature to see
what is at the cutting edge of communication in their field.

Similarly, Parke describes a statistics communication course for graduate students in a
different discipline (education) who are learning statistics [134]. In the course, students read
journal articles to see how results are reported in text, tables, and plots. Since the students
are relatively new to the statistical content, reading articles where statistics methods and
terms are used helps them recognize conventions and common usage of statistical concepts.

A “reading to write” approach can work at the undergraduate level, but it can be harder
to find examples that are accessible yet still representative of what kind of writing they are
aiming for. The strength of our book is that we have curated a series of examples that
can be digested by undergraduate students, even if they do not have a lot of experience
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with statistics. Beyond the content, we also echo Matarese about teaching students that
researchers rarely read (or write) linearly. This can be surprising to students used to reading
and writing from the beginning to the end.

Reading Science Articles

In this chapter we walk through a variety of scientific articles and provide guidance for how
to read from the perspective of a science writer.

We use the following articles from a variety of scientific fields and written at a variety of
levels of formality as re-occurring examples to identify the components of a scientific article.

• Do the Golden State Warriors Have Hot Hands? by Daks, Desai, and Goldberg [34],
published in Mathematical Intelligencer which publishes articles for a general audience,
written in an informal style

• Evaluation of the accuracy, consistency, and stability of measurements of the Planck
constant used in the redefinition of the international system of units by Possolo et al.
[149], published in Metrologia which publishes papers on measurement problems in
physics

• The longest period transiting planet candidate from K2 by Giles et al. [59], published in
Astronomy & Astrophysics which is an open access journal that publishes on a variety
of topics in astronomy and astrophysics

Excerpt: Main Components of a Scientific Article
Effectively learning how to write about data involves a strategy for reading an article and
examining how the author organizes and writes about their findings. When we read to
write, we identify the main components of an analysis and notice how the author brings
these components together to form a logical and compelling story. During this process, we
discover examples and templates that we can use to organize our own work and write about
our findings. To get started, the following three steps can be helpful.

• Identify the elements of the data analysis. We begin by looking throughout the article
for various building blocks of the data analysis. We often find that some of these
elements are included in the article, while others are not. This investigation helps
us understand the choices that an author makes in writing about their data analysis,
and as a reader, we assess whether particular omissions impact the credibility of the
conclusions or whether any included details are superfluous to the main story.

• Examine the argument. When we read an article, we expect to be convinced of the
importance and validity of the findings. We look for context that explains how the
findings fit with others’ work, and we try to discern whether the new insights support,
counter, or extend current views in the field. We consider the appropriateness of the
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analysis, the generalizability of the conclusions drawn, and whether others’ work have
been adequately and convincingly presented. To help make this assessment, we pay
close attention to the words the writer uses and consider how an alternative, similar
word choice could impact the strength of a claim. We also pay attention to whether
the article’s tone adds credibility and whether the connections between paragraphs and
between sections convey a cohesive story.

• Map the organization of the document. At a basic level, science articles have three main
parts – a beginning, which serves to define and motivate the problem; a middle that
presents the findings and explains what they mean; and an end, which summarizes the
conclusions and their importance. Mapping out these parts of the document helps us
see how the author chooses to organize their analysis, gives a sense of what a reader
might expect when reading an article, and provides templates that we might follow.

�
The chapter concludes with an extended example, going through a template for identify-

ing the elements of the data analysis, examining the argument, and mapping the organization
of How to weigh a donkey in the Kenyan countryside by Milner and Rougier [117], published
in Significance magazine, a venue for accessible data analyses.

Reading Materials for Broader Publics

This chapter extends the reading guidelines presented in the previous chapter to written
work for broader audiences. We focus on press releases and blog posts as examples. We
can still identify the elements, examine the argument, and map the organization for both of
these less formal mediums.

Successful press releases often follow a common template of what information to include,
how to include it, and where to present each piece.

Excerpt: Identify the Elements – The Five Ws and H
News stories in the US tend to follow a template to identify the basic elements of the story;
only some of these story elements match the statistical elements of the data analysis from the
previous chapter. A press release typically begins with answers to five questions, referred
to as the five ‘Ws’: Who? When? Where? What? and Why? However, when we read
a news story about a data finding, it can be confusing to answer these questions because
some pertain to the data and others to the researcher. To help, we have expanded these
five questions in Table 4.1 to specify whether the question refers to the investigator or the
study. There we see that the ‘what’ and ‘why’ questions refer to the findings from the data
analysis, but the other three are about the investigators. When a scientific study is the topic
of the press release, then the ‘who’, ‘when’, and ‘where’ of the data are also relevant. These
are described in Table 4.2. All together we look for the answers to the combined set of eight
Ws.
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The eight Ws for the investigators and the data often appear at the beginning of the
press release in the introductory paragraphs. The answers to these questions can help us
figure out how we might summarize our technical report for a general audience.

W Question

Who Who are the researchers investigating the problem and
conducting the analysis?

When When was the analysis carried out (e.g., “today”, “this
week”, “recently”, etc. are acceptable if the press release
carries a date)?

Where Where was the analysis carried out?
What What were the findings from the analysis?
Why Why are the findings important?

Table 4.1: The Five Ws. The traditional set of questions addressed in early paragraphs of a
press release.

W Question

Who Who are the subjects of study?
When When were the data collected, e.g.,when did the subjects

participate in the study?
Where Where were the data collected, e.g., where were subjects

under study located?

Table 4.2: The Three Ws. The three additional questions about the data that are answered
in press releases about scientific findings.

�

Excerpt: Examine the Argument – The Role of Quotes
A press release usually contains quotes from the investigator and quotes from others who
are knowledgable in the field and understand the potential impact of the findings. Quotes
are typically interspersed with more detailed information about the statistical elements,
and used to expand further on themes and introduce new information. Quotes also offer
human-interest perspectives about the researchers and others involved.

When we read a press release or news story, we examine the quotes and how they help
make the argument. Quotes from experts can convey a broader or different perspective than
the investigator’s, and they can serve to assess the impact of the findings. For example,
others can say things about the importance of the findings that might be awkward for an
investigator to say about their own work. In addition to adding credibility to the story,
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quotes can make the story more personable. When we read news stories, we generally like
to hear directly from investigators through a quote about why they work in their area and
what they find exciting about their discovery.

�

Excerpt: Map the Organization - The Inverted Pyramid
The W-questions are often addressed in the first few paragraphs of a press release. However,
the beginning of a press release also has the job of capturing our interest so that we continue
reading. After we read about the essential elements about the researchers and their findings,
we look for additional details about the research. These details are organized from most to
least important in what is referred to as an inverted pyramid. Additionally, the details are
interspersed with quotes that help make the argument for the findings and add a human
interest component to the story. Finally, the press release finishes with a brief conclusion.
In this section, we provide examples of this organizational structure of a press release.

The Hook A catchy opening is referred to as a hook. The first sentence of a press
release should catch our attention and entice us to read more. While the first sentence
needs to hook us, we are wary of exaggerated findings. Press releases sometimes leave it
to the journalist writing a follow-up story to provide the hook and simply begin with a
straightforward presentation of the Ws.

After the essential facts about the findings have been conveyed (i.e., the W-questions
in Tables 4.1 and 4.2), the press release provides additional details, organized from most
to least important. This inverted pyramid allows us to stop reading before the end of the
article without missing the main point(s), and it allows the journalist to easily cut the press
release and create a shorter story without losing the most important details. It can be a
useful exercise to read a press release with an eye toward this kind of truncation. That is,
we identify places in the story where a reader might stop, and we consider what would be
their understanding of the scientific discovery at that point. In print journalism there are
space constraints, so this cut often ensures that the essential elements are placed “above the
fold” in the physical paper. In digital journalism, the “above the fold” analogy becomes the
scroll (i.e. the essential elements must be readable before the first scroll).

�
The audience for a blog differs from a formal scientific article or a press release because

the author has more control over who they want to reach. The writer defines the audience
that they are aiming for in a blog, so they can take a more varied approach to writing blog
posts. Bloggers may want to make their work more accessible, teach a concept, help others
avoid having to reinvent the wheel when solving a technical challenge, foster discussion,
synthesize an experience, or represent themselves in their field. Each of these motivations
lead to different strategies that an author can use to overcome particular writing challenges
that come from different flavors of blog posts.
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4.4 Part II: Preparing to Write

Pedagogical Context for Preparing to Write

Describing data itself, creating informative data visualizations, and writing readable code
are typically addressed in statistics and computer science curricula already. Our contribution
in this part of the book is to emphasize that these steps are not only part of a broader sense
of communication but are also essentially connected to reading, writing, and narrative.

Visualization has already made its way into the statistics classroom. Nolan and Perrett
provide assignments for data visualization units in undergraduate statistics courses; these are
informed by Friel, Curcio, and Bright’s investigation of what affects graph comprehension
[125, 56]. Friel, Curcio, and Bright identify different levels of comprehension from the most
basic ability to extract information from the data, to the intermediate ability of being able
to find relationships in the data, to the most advanced ability to move beyond the data that
is presented [56]. Building on this hierarchy, we explicitly show how visualization is part of
a statistical argument. We emphasize that crafting a visualization helps reveal a part of our
narrative (Section 4.4) and revising a visualization both aesthetically and in terms of overall
effectiveness in communication helps hone our message (Section 4.5).

Wolfe makes the point that to make a data visualization we make “rhetorical choices that
underlie our decisions on how to summarize, aggregate, and synthesize the data we visualize”
[196]. Although we talk about how to make appropriate visualizations that can stand alone
in Chapter 4, we also consider the integration of our visualizations into our narrative. By
choosing and ordering plots during the storyboard process in Chapter 6, we make rhetorical
choices for our overall data analysis report.

Effective coding strategies are typically taught in a computer science course, but they are
increasingly appearing in statistical courses that contain computing elements. We approach
the topic from a higher level, focusing our approach on showing students that code is also a
form of communication that must adhere to style guidelines (Section 5.3 makes the analogy
to grammar in typical writing) and can be revised for both correctness and elegance (Sections
5.4 and 5.5). The “reading to write” paradigm (Section 5.1) also has precedent in the coding
literature; Simon et al. discuss the relationship between reading code and writing code
[168]. They find that their students’ ability to read code is strongly related to their ability
to write code. Lopez et al. find that the ability for students to perform “code tracing” (i.e.
stepping through the code by hand to assess expected output) is also positively correlated
with their ability to write code [103]. These findings support the importance of viewing code
as something to be read as well as written.

Describing Data

Before jumping into the mechanics of code or design principles for making visualizations,
describing the data itself is an accessible place for students to start writing. Even before we
have solidified our analysis, we can be describing the data that we have access to. Since the
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data is an input to both visualizations and code, it is important to understand it on its own
first. This chapter introduces two re-occurring examples, e-Cigarettes and infant health, to
illustrate how to write about data provenance and preparation.

The tension between being precise and concise is a common theme that arises throughout
the book. When talking about data, it can be challenging to determine what details to
include in the main report v. in the supplementary materials.

For example, we often summarize the data cleaning phase of the analysis in a few sen-
tences or paragraphs. We do not write the description as a chronological sequence of our
discoveries and data modifications. Instead, we explain and justify the actions taken to
prepare the data for analysis.

Excerpt: Excluded E-Cigarette Users
In their article on e-cigarettes [182], the authors justify dropping one of the four groups of

e-cigarette users from their analysis due to small sample size and discuss their treatment of
missing values. The article also explains, without going into detail, that student responses
are weighted according to the survey design and nonresponse. This statement assures the
reader that the analysis was done with careful consideration of the complex design and of
missing values in key variables. A more technical article such as the survey’s associated
Methodology Report might describe the design in greater detail [127].

�
Another theme that occurs throughout is separating discussion of process from results.

When describing data, we need to write specific descriptions of data fields without getting
into implementation details. For example, the reader does not need to know how information
is coded in the source file. All they require is a simple name in plain English for a feature and
information about the measurements, such as the units or category descriptors. However,
tracking our analysis and its implementation is important for reproducibility, so this chapter
also discusses reproducible data wrangling and accessibility of raw data. These concepts are
reiterated in the coding chapter.

This chapter also provides guidance about avoiding potential pitfalls in describing simple
summaries of data including overly-precise reporting of numbers, leaving out information
about sample size, and confusion in units between proportions, rates, and ratios.

Communicating Through Statistical Graphs

Just as we read a statistical report, we also “read” plots. A statistical graph provides sup-
port to a written argument and can provide a more digestible presentation of numerical
summaries. In this chapter, we consider how to create plots that are effective in communi-
cating statistical findings. We address how to select an appropriate type of plot to reveal
underlying structure in the data, facilitate important comparisons, and create context for
interpreting the distributions and relationships observed.

Each plot has a take-away message. Attention to detail in a plot can make a big difference
in making this message stand out. In this chapter, we collect advice on making readable
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visualizations and organize them into five categories that address how to: incorporate the
study design, choose scales, handle large amounts of data with smoothing and aggregation,
facilitate meaningful comparisons, and add contextual information. Excerpts illustrating
how to strengthen a plot’s argument follow.

Excerpt: Incorporating the Data Design: Race Times in the Cherry Blossom 10-mile Run
The boxplots on the left in Figure 4.1 show the race time (minutes) by age for male runners
in the annual Cherry Blossom 10-mile run from 1999 to 2012 (scraped from [31]). It is
tempting to interpret the curvature in the lower quartile, median, and upper quartile of the
boxplots as the trend in how an individual’s performance changes with age. However, this
is a cohort study, not a longitudinal study. The 25-year olds running in, say, 2001, are a
different group of people than the 50-year olds running in the race that year, and these two
groups can be different in ways that would affect the relationship between race time and age.
For example, the 50-year olds in the run are likely to be fitter for their age than the 25-year
olds.

Furthermore, these data have a time component, the year of the run. The plot on the
right conditions on year, where each curve is a local average of race time for runners of
the same age for that year. The plot reveals interesting structure: average race times have
slowed over the years. This is likely due to the increased popularity of the race with greater
participation by novice runners in recent years.

Figure 4.1: Race Time by Age. The boxplots on the left show the race time (minutes) by
age of the male runners in the Cherry Blossom 10-mile run from 1999 to 2012. The plot
on the right contains a curve for each year of the race. Each curve is a local average of the
race time for runners of roughly the same age. One feature apparent from this plot is that
average race times have slowed over the years.

�
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Excerpt: Choosing the Scale to Reveal Structure: San Francisco Housing Price Distribution
The density plot in the lefthand plot of Figure 4.2 contains the sale price of all houses sold
in 2004 in San Francisco (scraped from the San Francisco Chronicle site of weekly sales
that is no longer available). It is difficult to closely examine the distribution because a few
unusually expensive houses force the bulk of the distribution into a small portion at the left
of the plot. In contrast, the density curve in the righthand plot excludes these high priced
houses. The shape of the distribution for the bulk of the houses is much clearer in this plot.
There we can more easily observe the skewness of the main mode. If we do not include all
of the data in the graph, then we must mention this exclusion in the caption or on the plot
itself.

Figure 4.2: Distribution of House Price. Both plots show the distribution of sale price of
houses in 10 cities in the San Francisco Bay Area in 2004. The one difference between them
is that sales over $1.5m are excluded from the plot on the right. This exclusion makes it
easier to see the shape of the bulk of the data. The distribution has a short left tail with
a market entry point of about $250k and a mode around $350k. The distribution is right
skew with a large right shoulder indicating that many houses are in the $500-$750k range.
Even clipping houses that sold for over $1.5m, we see that the distribution has a long right
tail with many houses selling for $1m and more.

�

Excerpt: Smooth to Uncover Trends: Cherry Blossom 10-mile Run, continued
The scatter plot on the left in Figure 4.3 shows the race time (minutes) and age for male
runners in the Cherry Blossom 10-mile run from 1999 to 2012. There are more than 50,000
points in the scatter plot and over plotting makes it impossible to see any relationship. In
contrast, the plot on the right smooths the data by taking local averages of the race times
for runners of the same age in each year. As noted earlier, this plot reveals that average race
times have slowed over the years.
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Figure 4.3: Race Time by Age. The scatter plot on the left shows the race time (minutes)
and age for male runners in the Cherry Blossom 10-mile run from 1999 to 2012. There are
over 50,000 points in the scatter plot. Due to over-plotting we cannot see any patterns in
the data. The plot on the right contains a curve for each year of the run, where one curve
is a running average of the race times by age. One feature apparent from this plot is that
race times have slowed over the years.

�
Making good statistical graphs is hard and usually is an iterative process. As we refine

our written argument, we refine the accompanying visuals to best support our findings.

Excerpt: California Voter Registration Trends.
A typical sequence to create a plot goes as follows:

• Select a plot type according to the kind of data.

• Make the plot taking the software defaults and using cryptic labels.

• Consider transformations to symmetrize and straighten relationships and the choice of
scale (this may involve several iterations).

• Address issues with over-plotting.

• Consider variable(s) to condition on that would inform whether the shape or relation-
ship observed is maintained across subgroups.

• Try different approaches to visualizing this comparison, such as a grid of plots, use of
color and plotting symbols, smoothing, etc.

• Determine whether there is any additional information that would help put the findings
in context, such as reference markers or highlighting particularly interesting observa-
tions or features.
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• Add informative labels, legends, and titles.

• Write the caption.

This process is similar to the writing process. The default statistical graph produced by the
software is like a first draft, and we put a large effort into revising to improve the story we
are telling. On occasion we even decide to discard our current draft and begin again. In the
moment, we might think some of the steps listed above are unnecessary for a particular plot,
but it is usually a good idea to work through each step. As we go from one step to the next,
we might uncover something that we didn’t expect to find. This may signal a need to redo
an earlier step. We provide an example of a cautionary tale about not getting caught up in
the editing process before finding the best plot for telling our story.

We are interested in voter trends in California and visit the online voter registration site
of the California Secretary of State [24]. There we find county summaries of voter registration
for seven presidential election years (1992, 1996, ..., 2016). We scrape these data and make
the plot in Figure 4.4.

Figure 4.4: Bar Chart of Majority Party in California Counties. The side-by-side bars show
the number of counties in California that have a majority of voters registered Republican
(pale gray) or Democrat (dark gray). Each pair of columns adds to 58, the number of
counties in California. This plot was made on swivel.com (no longer a live site) from data
available at the state of California’s voter registration site.

This plot has many problems, as listed below.
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• Tick marks: x-axis tick marks are at 5-year intervals and do not line up with the
locations of the bars so the reader has to work too hard to figure out that the bars
correspond to measurements made at 4-year intervals.

• Color: atypical use of light and dark green for the Democratic and Republican parties,
which are traditionally represented by blue and red.

• Legend: lack of a legend means that we cannot discern which color represents which
party.

• Axis Label: y-axis label does not indicate the units of measurement.

• Title: confusing title that does not illuminate the content of the plot.

It is tempting to quickly try to fix these problems. We can “improve” the plot (see
Figure 4.5), but we should first think some more about the story and whether this plot
makes the best argument. Our aim is to show change in voter registration over the past
seven presidential elections. However, it is people who register to vote, not counties. County
size is a lurking variable–small counties tend to be rural and conservative–so using counties
overstates the Republican presence. Rather than record counties, we should tally voter
registration counts. To do this, we revisit the registration website to obtain new data. There
we find a page of voter registration counts by party, including counts for other parties and for
unaffiliated voters. Since the number of unaffiliated voters is sizable, it could be informative
to include these registration numbers in the plot.
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Figure 4.5: Bar Chart of Majority Party in California Counties – Revised. This bar chart
addresses many of the problems found with the bar chart in Figure 4.4, including the inac-
curate y-axis label, ill-positioned tick marks on the x-axis, poor choice of colors, and lack of
legend.

What kind of plot should we make? We have registration figures over time so a line plot
seems appropriate. Also, given that the California population has grown dramatically in the
past 25 years, rather than compare raw registration numbers, we scale them by each year’s
total registration and compare percentages.
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Figure 4.6: Distribution of California Voters by Party. The line chart addresses the essential
problem with the bar chart in Figure 4.5, i.e., we are interested in the change in voter
registration over the years, not in the number of counties that are majority Republican or
Democratic. Here we see that the percentage of registered Democrats and Republicans have
declined in this period, the percentage of unaffiliated voters has dramatically increased, and
the gap between Democrats and Republicans has grown from about 10% to 15%.

We discard the first plot and make an entirely new one (see Figure 4.6). This new graph
makes a more interesting and accurate depiction of voter registration trends in California.
We see that: the percentages of registered Democrats and Republicans have declined over
this period; the percentage of Democrats was about 10% higher than the Republicans in
the earlier years but the spread has grown to about 15%; and the percentage of unaffiliated
voters has dramatically increased from about 10% to about 25%.

The time that we have spent editing, revising, and entirely remaking our graph was well
spent. We now have a plot that makes a compelling visual presentation of the change in
California voter behavior over the last 25 years. �

Communicating through Code

Code both carries out a data analysis and provides a way to communicate our ideas about
the analysis. It is important to write clear code to help others understand our process, check
our results, or repurpose our approach to their own problem. Clear code helps us remember
our own thought process and helps us avoid logic errors. Just as we explained how to read
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articles to learn how others organize and write about their findings, we can learn how to
write code from reading others’ code.

Coding has a variety of analogues to writing. We have style guidelines and writing
conventions for both traditional writing and code. Refactoring code to make it more clear or
efficient is similar to revision of a typical manuscript. We write comments and documentation
which have to narrate the purpose of the code. Pseudocode provides a skeleton of code to
come and signals our intent for a particular analysis or functionality just as an outline
provides a starting point for writing a draft of a paper.

Excerpt: Pseudocode
Pseudocode provides an overview of a computational task without the precise implementation
details and without adhering to a particular programming language syntax. Pseudocode can
be included in a publication to explain the implementation of an algorithm, an idea behind
a statistical method, or the data processing pipeline for an analysis; it keeps the focus at a
high-level and does not take up too much space. The full code used to produce the results
is often provided online as supplementary material, rather than in the article. Ideally, the
code is provided via a notebook that integrates explanatory text with code.

Pseudocode focuses on logic, not syntax, and can help us organize our thoughts and write
better code. The fundamental elements in pseudocode are inputs, outputs, and key verbs
that describe operations. We want to use concrete, specific, and active verbs to concisely
represent the core actions. Although we do not need to specify the format of our inputs and
outputs (e.g., data frame, list, dictionary, array, etc.), it can be helpful to consider what type
they are (e.g., string, integer, double, factor, etc.). As we describe how to take the inputs
and create the outputs, we need to consider the order of operations, including conditional
and repeated evaluation of expressions, and ensure that a piece of information is presented
ahead of a step that relies on it.

Just as in writing text, there is a balance between being precise and concise when writing
pseudocode. We need to include enough detail so that a reader can understand and possibly
reproduce our approach, but not so much detail that the reader loses sight of the key com-
putational features. If we use pseudocode as an outline before writing the actual code, it
can help us write clearer more focused code. The pseudocode can also act as documentation
for our code. �

This chapter also touches on computational reproducibility and tools used to work to-
wards this goal including version control and computational notebooks. Version control is
just as important for our writing projects, and computational notebooks are often the first
place where the narrative of our research starts to emerge.

4.5 Part III: Composing the Story

Pedagogical Context for Composing the Story

The statistical report has been the most traditional way to practice statistics commu-



CHAPTER 4. TEACHING THE ART OF WRITING FOR DATA SCIENCE 85

nication in undergraduate courses. For example, Spurrier describes a capstone course for
undergraduate statistics majors [173]. This course includes “modules on important nonsta-
tistical skills” such as written and oral reports. Students learn the “role of each major section
of a technical report” and “presentation ground rules.” We cover this material in Chapter 7
and Section 11.1. Our additional contribution is to include many examples of each part of a
technical report in a data context but with content that is accessible to an undergraduate.
These examples give students concrete writing to refer to as they write their own reports.

Technical reports can be stilted and formulaic, especially if written by novices. Pfannkuch
et al. note a lack of opportunity for students to go beyond the description of their analysis
process and tell data stories: “Not one of the (introductory statistics) books clearly demon-
strated reasoning comparatively all of the way from looking at the plots, unlocking the story
and the underlying concepts, and synthesising the whole data story through a transparent
reasoning process” [139].

Our contribution is to focus on crafting a narrative by developing a storyboard (Chapter
6) before writing a first draft. This deviates from the formal outline that is often used before
writing the first draft; an outline assumes you already know what you are going to say. In
contrast, the storyboard process requires students to grapple with their findings, decide what
the interesting and defensible storyline is, and choose which material is crucial to telling that
story. Going through this process before writing a first draft can help avoid a more formulaic
report that details only the statistical analysis process.

Organizing the Story

Rather than providing excerpts, this full chapter is included below. The idea for storyboard-
ing our research was inspired by an activity led by Sara ElShafie in the Data Science for the
21st Century NSF Training Program Science Communication Short Course at UC Berkeley
taken by Sara Stoudt. The activities described in this chapter of the book are also inspired
by exercises in this short course.

Before we start writing a full draft, it can be helpful to organize both the structure and
the story. In this chapter, we discuss how to build a narrative, select relevant details, and
order them in a compelling way.

Creating a Storyboard
In the film industry, a storyboard is a series of sketches that depict the important changes

of scene and action. These are arranged in a sequence to visually layout the progression of the
story. Although storyboards are traditionally used as a means to brainstorm and plan out
movies, TV shows, and other visual arts, the storyboard is fundamentally a tool to organize
one’s thoughts and streamline them into a story that is accessible and compelling. Data
scientists too can benefit by mapping out their results into a storyboard before beginning to
write.

We often start a data analysis with summary statistics and simple plots to understand
the data. We then dig deeper to build and test models. Throughout the exploratory and
formal data analysis, we make more plots and do more analyses than we want or need to
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display in a paper. Choosing what is most relevant to our argument is a valuable skill, and
being economical is key. Determining the order to present our findings can be challenging
because this order is often different from the sequence in which we performed the analysis.
Creating a storyboard helps bridge the gap between our knowledge and the knowledge of
our reader. Remember that you have spent much more time with the material than your
reader so it can be difficult to pare down your findings and insights to those most relevant
to your story. On the other hand, it can be easy to omit details that you are overly familiar
with or think obvious.

We have organized storyboarding into six basic steps.

1. Collect tables and plots. In your work, you have most likely made many preliminary
tables and plots to help you understand your data and models. Gather these tables
and plots all in one place and in a format where you can easily move them around.

2. Group related findings. Group tables and plots that contain similar messages, and
summarize each group by one or two sentences or bullet points. Some groups will
naturally form, but also consider regrouping and rearranging the plots and materials
to uncover groups that are not immediately obvious. You may want to duplicate some
plots and tables to put them into more than one group.

3. Make an argument (find the story). Consider the groups that you constructed from
your findings and ask what they are telling you. Look at connections between groups
and see if a story emerges. Sequence the groups so that they tell your story.

The groups and the tables and figures within them may serve different purposes. A
group of plots might build off of one another. Identify the train of thought: what is
the starting point, what is the end, and what intermediate steps are needed to connect
the two?

Alternatively, plots in a group might supplement one another or supplement another
group of plots. Determine how these plots connect to the main story. Do they branch
off from an initial line of inquiry? Do they support a core argument?

4. Choose the tables and plots needed to tell your story. Be sparing with your plots and
tables; choose the relevant details that explain the story while removing redundancies
and unnecessary lines of inquiry. However, make sure that your core argument can be
seen through your plots and tables.

• If your plots present similar ideas, then decide which single plot or table suffices
to explain or clarify the point. Remove the rest; they are redundant.

• When you have material that builds off of one another, decide which intermediate
steps, if any, are necessary for a reader to understand how to get from the start
to the end of your story.
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• Identify holes in your argument that need a plot to support them, and make and
add them to your storyboard.

• In the case where materials supplement each other, decide if the supplementary
information is necessary for your main storyline or if these details can go in an
appendix or be summarized briefly in writing, and not shown with plots.

5. Sequence the chosen tables and plots. This requires a sense of fluidity between ideas.
Examine all of the groups together and consider how each group relates to the others.
Is there a temporal component between them? Does one group motivate another?
Decide which details you need to see first to understand the details that follow (e.g.,
would A make sense without first seeing B?). Think about how the supplemental
information that survived the parsimony step ties back to the next major detail in the
storyline. Can it be placed after the main storyline as a discussion point or before to
set the stage?

Remember that the order that best expresses your ideas in a story does not necessarily
match the order that best expresses your research process. A fluid order most likely
does not match the chronology of your analysis.

6. Add captions and transitions. Write a brief caption for each plot that conveys the
message you want the reader to glean. An important consideration in this step is
whether, for the material being summarized, there is a mismatch in experience between
you and your eventual audience. It can be easy to forget that the reader only knows
what is being presented, and details were necessarily left out as part of the parsimony
goal above. Is there any information that you could add between plots and tables that
would smooth the transitions between them or provide context to ease interpretation?

Think of storyboarding as a visual outline that informs a formal written outline. We
cannot write this formal outline without having an idea of what we are trying to say. The
main goal of a visual outline is to identify the narrative. What problem exists? What did
we do to solve that problem? Why does it matter that we have solved this problem? After
we have identified the story and experimented with the ordering of details by rearranging
panels of plots and text summaries, we can build a formal outline to tell the story we have
identified. An intermediate step is to take notes on your storyboard.

Taking Notes on the Storyboard
The storyboarding process helps you separate the journey you have made to arrive at

your findings from the findings themselves and prepare to write. Note taking is another step
in this direction. Before jumping into writing a first draft, take the opportunity to look
over your storyboard and make notes. Reflect on the storyboard and jot down information
needed to support your argument. These notes should consider the following topics.

1. Foundations. Make a list of the concepts that are most important to your findings. For
each, determine whether it is: a concept that needs to be explained before presenting
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your findings; an idea that your work extends or that your work fundamentally relies
on; or a motivating or competing notion that needs to be mentioned.

2. Assumptions. Augment your notes with any assumptions you made in your analysis.
Annotate them with a brief indication of why they are reasonable, how they were
confirmed, and what went unchecked.

3. Eliminations. Examine the plots and summaries that were dropped from your story-
board. Why were they dropped? Do they warrant mention in the report? If so, then
add them to your notes. Write down whether the point should be included before, con-
current with, or after the findings. Also, if appropriate, mention where supplementary
material on the topic can be found, e.g., an online resource or an appendix that you
plan to write.

4. References. Undoubtedly, you have read many articles that relate to your work. Look
over your findings and identify a few of those articles that are most relevant to your
story. These can include an article that your work extends, one that justifies the
method you have used, or one that supplements your findings.

Taking notes on your storyboard will help you settle on an outline for your narrative and
solidify your argument. These notes (together with your storyboard) form the basis of the
introduction, background, motivation, and discussion sections of your report. They are not
meant to be exhaustive. Instead, their purpose is to identify the supporting material needed
to tell how you arrived at the findings in your story. With the storyboard fresh in your mind,
the core ideas, terms, and references are readily apparent. Noting them down now will save
time when preparing your first draft.

Iterating
Storyboarding is part of the cycle of discovery. As we annotate plots, write brief transi-

tions between them, and take notes on the storyboard, new ideas often occur to us, and we
find gaps in our argument. With the help of the storyboard, our core arguments surface from
our plots and tables, but as the essential pieces come together, we often discover that the
justification of a point is missing or that a new line of inquiry appears. When this happens,
we find ourselves updating our analysis, adding to our storyboard, and taking more notes.

Neither a storyboard nor its initial summary are fixed, and we don’t always respond in
the same way when we identify something missing. There are three basic approaches that
we take to address newly found holes in our argument.

1. Acknowledgement. A hole does not always need to be filled, but at a minimum it
needs to be acknowledged. In the report, this acknowledgement could be an identified
assumption, a point of discussion, or a topic of future work. We update our notes to
this effect.

2. Patchwork. The hole may have a quick fix, e.g., update a plot, run an additional
simulation, skim articles on a related subject, or run-through a variant of the analysis.
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This new work may be included in the storyboard, or it may simply result in an
additional note that summarizes the new information.

3. Rework. When we think the new issue needs to be more fully investigated, then we
take a more thorough approach in revisiting the analysis. For example, we may need
to carry out a parallel avenue of investigation or check out a special case. If we believe
it will strengthen our argument to flesh out this new idea, then it’s best to tackle it at
this stage.

Iteration happens throughout the writing process. After we have a storyboard and notes,
we prepare a formal outline. Even this part of the process is iterative and can send us back
to the data and our analysis. As we write up the essential pieces of our report, we may again
find a hole and need to iterate. Our continued willingness to iterate will further strengthen
our argument.

It’s common for holes in your argument to crop up and lead you to retrace your steps.
That’s why we storyboard. However, when we are thorough in the early stages, the iterations
in report writing are likely to uncover issues of the acknowledgement and patchwork types
that won’t require major rework and rewriting.

Creating a Storyboard for Drug-Related ED Visits
We demonstrate the storyboarding process with an exploratory analysis of data from

the Drug Abuse and Warning Network (DAWN) [184]. Each observation in this dataset
represents a drug-related visit to the emergency department (ED) of a hospital in the United
States. Other research has investigated the drugs accidentally ingested by children and
those drugs responsible for over-medication among the elderly. We have chosen to focus our
analysis on these two age groups to learn more about their drug-related ED visits.

We walk through the steps of creating a storyboard from a collection of crude tables
and plots that represent the kind of output that we typically work with in the exploratory
phase of an analysis. The collection includes tables of percentages and rates, barplots of
univariate statistics on the general characteristics of the visits, and bivariate plots that
reveal relationships between age and other factors.

Age ≤ 5 6 - 11 12 - 17 18 - 20 21 - 24 25 - 29
Percent 5.8 1.4 5.6 6.6 8.1 9.4

Age 30 - 34 35 - 44 45 - 54 55 - 64 65+
Percent 8.6 14.3 15.3 10.2 14.8

Table 4.3: Age Distribution of Drug-related Admits to an Emergency Department. Age
Distribution of Drug-related Admits to an Emergency Department.

1. Collect tables and plots.
Our brief, simple analysis begins with one table and several plots (Table 4.3 and Fig-

ures 4.7 through 4.12). The captions for these figures and table are brief descriptions of the
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information plotted. The process of ferreting out the message in plots and writing informa-
tive captions is the purpose of storyboarding. Over the next steps, we cull the plots, revise
them, and possibly add more as we piece the story together.

Table 4.3 gives an overview of the distribution of drug-related emergency department
visits by age. Figure 4.7 shows the distribution of the type of drug-related visits across age
groups. The left plot in Figure 4.8 compares the age distribution by sex, and the collection
of four plots on the right side of this figure examine the types of visits by sex for a subset
of ages. Figure 4.9 shows where patients go after their visit, by age. The bar plot in Figure
4.10 examines the time of day of the visit, by age. The set of dot plots in Figure 4.11 show
where patients go when released from their ED visit by time of day across a subset of ages.
The four bar plots in Figure 4.12 explore the types of cases per quarter of the year across
four of the age groups.

Figure 4.7: Type of Case by Age. This line plot shows the proportion of types of cases within
each age group; that is, values across types within an age group sum to one.

2. Group related findings
We group together the set of dotplots in Figure 4.9 on where the patients go after their

visit with those in Figure 4.11 that further break down disposition (where the patients go)
by time-of-day because disposition appears most relevant to the elderly patients. We also
group together Figure 4.10 and Figure 4.12 because they are most relevant to the youngest
patients; that is, the time-of-day and seasonal differences are most striking for the five and
under group.
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Figure 4.8: Barplot of Age by Gender. The plot on the left shows the breakdown of age for
each sex; e.g., the sum of all bars for males is one. Each plot in the group of four on the
right shows the proportion of case type by sex. Values within an age panel sum to one.

We have grouped the plots into four sets. We have kept Figure 4.7 on the type of visits
by age and Figure 4.8 on the age distribution by sex as separate “set”s. Figures 4.9 and 4.11
form a third set that pertains to the disposition of the elderly, and the last set consists of
Figures 4.10 and 4.12 on time patterns in the visits of the youngest patients.

Other arrangements are possible. For example, we may want to duplicate the plots in
Figure 4.11 and put them with Figure 4.10, as well as keep them in their original group. In
this case, we don’t bother to duplicate Figure 4.11 because these plots add little to the story.
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Figure 4.9: Dotplot of Disposition by Age. Each panel of this plot corresponds to an age
group. Within a panel, the proportions for teach type of outcome, i.e., where the patient
goes after the ED visit, sum to one.

Figure 4.10: Barplot of Time of Visit by Age. This plot shows the proportion of each age
group that arrives to the ED during different times of the day. The proportions within an
age group sum to one.
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Figure 4.11: Dotplot of Time of Visit by Disposition and Age. These plots show where the
patient goes after the ED visit by time of day. Each set of four plots represents a different
age group: 5 and under, 6 to 11, 30 to 34, and 65 and older. Points across all four panels
within an age group sum to one.

3. Make the argument (find the story)
We have found some important features of the ED related visits for the youth (5 and

under) and the elderly (65 and over). We chose to further focus on these two groups because
our analysis may offer insights for informational campaigns that aim to reduce the frequency
of ED visits for these two vulnerable groups. Specifically, we have found:

• These two groups make up a large share of the ED visits (over 20%) and they share a
large proportion of visits due to adverse reactions (at least 80% for each age group).

• For those five and under, the second most common reason for a drug-related ED visit
is accidental ingestion.

• For the elderly, the second most prevalent reason is over-medication.

• Males outnumber females in the youth category, while the opposite is true for the
elderly category.
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Figure 4.12: Barplot of Season by Type of Case and Age. This group of four plots show
type of case (x-axis) by the season for four age groups. The heights of all of the bars within
a panel sum to one.

• Youth visits occur most often at night (6 pm to midnight), and we see a larger per-
centage of youth visits during the winter months.

• After the ED visit, a noticeable proportion of elderly go to other inpatient care.

4. Choose the tables and plots needed to tell your story
We can streamline Table 4.3 because it contains more age categories than needed, if our

focus is only on the 5-and-under and the 65+ groups. A problem with this evidence is the lack
of any comparison figures. For example, it could be helpful to compare the age distribution
for ED visits to the age distribution of the US population. (Note that the Census data was
provided for cruder categories so we collapsed categories in the DAWN data in order to make
like comparisons between age groups.) According to the 2010 US Census (Table 4.4) the
proportion of youngest patients nearly matches the prevalence in the population, but the
fraction of 6 to 11 year olds is less than one fifth the Census figure. This comparison may
offer insight.
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Age Group
Source 5 & under 6 to 11 12 to 17 18 to 24 25 to 34 35 to 44 45 to 54 55 to 64 65-plus
DAWN 5.8 1.4 5.6 14.7 18.0 14.3 15.3 10.2 14.8
Census 7.9 8.0 8.3 9.8 13.3 13.3 14.6 11.8 13.0

Table 4.4: Age Distribution. The percentage of drug-related admits to an emergency de-
partment (top row) and US 2010 Census (bottom row) in each age group.

Next we consider the line plot in Figure 4.7 on the type of visit. This plot motivates the
study and displays key features for both age groups of interest.

On the other hand, the plots in Figure 4.8 compare the age distribution (on the left)
and the type of visit (on the right) by sex. Without a more in-depth analysis that compares
our findings with age-sex breakdown of the US population, we can’t determine whether
the differences in sex are noteworthy or simply reflective of general age-sex patterns. The
advantage of comparing the sexes for the purpose of our analysis is not evident. We have
identified an avenue of analysis that we don’t wish to pursue.

We move on to the third group of plots, i.e., those in Figures 4.9 and 4.11. These plots
contain useful information about where elderly patients go after their visit to the ED. For
now, we keep only the bottom three in Figure 4.9 as they contain the relevant information.

The fourth group of plots (Figures 4.10 and 4.12) concern the time of day and season
when people visit the ED. The barplot in Figure 4.10 shows the most striking pattern for
those five and under so we prioritize it and drop the others.

In sum, we have selected Table 4.4, the line plot in Figure 4.7, the three panels of dot
plots along the bottom of Figure 4.9, and the bar plot in Figure 4.10 to tell our story. Later,
we will remake the plots to improve them.

5. Sequence the chosen tables and plots
The following sequence appears to be a natural progression of ideas.

• Start with the numbers from Table 4.4 to give context and a sense of scale.

• Then, describe the reason for the drug-related visits by age to motivate studying the
youngest and oldest patients; use Figure 4.7.

• After we have established the vulnerability of the youngest, discuss when. Support
from Figure 4.10.

• For the elderly, focus on the increase with age in the proportion of patients being
admitted to the hospital. Base this on the bottom three panels in Figure 4.9.

6. Add captions and transitions
Figure 4.13 displays the flow of the tables and plots that we established in step 5. That

is, we put the figures and text together to form our storyboard. The captions and transitions
shown in the figure reflect the thought process from the earlier steps in storyboarding.

Taking Notes on the DAWN Storyboard
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Figure 4.13: Example Storyboard. Here is an example of a storyboard coming together. Plots
with a similar theme are gathered and summaries are added to them. From the original two
tables and seven plots (with 38 panels in total) we winnowed down to one table and three
plots to tell the story.

With the fresh storyboard, we make notes of the supplemental information we expect to
need for our first draft.

Our analysis relies on the the soundness of the DAWN survey. Basic information about
this survey is important for the reader to understand and believe our results. We want to
identify records and how they were selected for the survey. Our analysis consists primarily
of comparing percentages, and we will want to provide a measure of the accuracy of these
percentage.

We eliminated the portions of the analysis that examined sex and season. We note these
deletions and that we do not plan to include them as discussion points. This note serves as
a record of our decision.

For references, we list the source of the data and description of the DAWN survey method-
ology [184], the source for Census figures [74], and references most relevant to the two age
groups under study, such as [163, 23, 118].

Iterate Over the Storyboard
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Age Group
Source 5 & under 6 to 11 12 to 17 18 to 24 25 to 34
DAWN % 5.8 1.4 5.6 14.7 18.0
2010 Census % 7.9 8.0 8.3 9.8 13.3
Visits / 100,000 people 1201 288 1107 2455 2217

35 to 44 45 to 54 55 to 64 65-plus
DAWN % 14.3 15.3 10.2 14.8
2010 Census % 13.3 14.6 11.8 13.0
Visits/ 100,000 people 1762 1718 1416 1864

Table 4.5: Age Distribution Table for Drug-Related Emergency Department Visits. The top
row of the table displays the percentage of drug-related visits to the emergency department
of a hospital by age group, and second row gives US Census figures. The third row provides
rates of the number of visits per 100,000 population. Together the youngest and oldest age
groups account for 20% of all emergency department visits, which roughly matches their
presence in the population (21%). Most noticeable is the rate of visits for the youngest is
four times the rate for 6 to 11 year olds.

We continue to review the storyboard and ask ourselves whether our argument holds to-
gether or needs additional work. For example, when we created the storyboard, we identified
a hole in the lack of comparison figures for the age distribution and so added comparative
statistics from the 2010 US Census (Table 4.4). As we iterate again, we consider whether
the revised table adequately addresses the problem. What is the best way to illustrate the
vulnerability of the youngest and oldest populations? Rates that normalize the number of
visits by the size of the population are likely to offer a more informative comparison. We
have identified a new hole in the hole that we patched earlier. This time, our patch includes
an additional row to the table that contains the number of visits per 100,000 people in each
age group (see Table 4.5).

We revisit our notes and add an item about the definition of the rates. Also when we
computed these rates, we found that the DAWN age categories don’t match exactly the
Census categories. Since we made approximations, we add a note about this.

After further contemplation, we deem the plot of time of day unnecessary because it
doesn’t focus adequately on our age groups. Instead, we decide to include some of the
statistics from that plot rather than the plot itself. We make a note of this decision, but for
the time being, we leave the plot in the storyboard as a placeholder.

In these iterations we continue to push our argument forward. We trim away unnecessary
information, fill holes, and carefully prepare a defensible and convincing argument. Note
taking helps us keep track of the decisions that we make and why.
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Writing the First Draft

This chapter describes the typical structure of a formal article and provides guidance about
what should be included and emphasized in each section of a paper. Throughout, we reference
the They Say/I Say framework of placing our own work in the context of other’s work while
distinguishing what sets our work apart [61].

We give examples of different structures that a formal report could take depending on the
venue. We also discuss differing audiences and introduce the idea of the secondary audience
to have an eye towards broader impact.

Then we go on to talk about the different sections of a typical report and how to tackle
writing the first draft of each. We advocate for starting in the middle and writing about the
data, methods, and results as well as choosing figures and writing accompanying captions. It
can be easiest to gain traction in the middle of the report as we have already organized our
thoughts via a storyboard and taken note of particular details that we need to communicate
to our audience. Then we recommend writing the end of the report, typically made up of a
discussion and conclusion. The beginning of a paper, including the background, introduction,
abstract, title, and keywords, can be the hardest to write, so we recommend saving it for
last after we’ve had a chance to synthesize our own work.

Here we explain key features of the discussion and introduction sections, comparing and
contrasting their function in a formal report.

Excerpt: Discussion Section
The discussion section takes a step back and gives our specific work a more general per-
spective. We want to broaden from the particular details of our findings to the field we are
working in. After reading our discussion, a reader should know:

• What are the key features of our analysis and results?

• Do our results confirm or contradict our initial expectations or earlier work?

• What problems did we run into, and if they still remain unsolved, what are our sug-
gestions for starting to address them?

• Knowing what we know now, after doing our analysis, what recommendations do we
have?

• What should someone work on next to build off of our work?

Be careful of overstating your work. Be honest about the obstacles you faced and the
generalizability of your findings. This does not weaken your report, but rather helps to
ensure that your work is appropriately understood and used by others.

As an example, we write a discussion section based on our DAWN analysis from the
previous chapter. Our discussion begins with the limitations of the study so that the reader
understands any problems with generalizability of the study in other contexts.
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The DAWN data give a complete picture of drug-related ED visits across the
United States by age, sex, race, and drug type that was previously inaccessible
due to the lack of a comprehensive survey. However, there are some limitations
that affect the results in this report. Information on race and ethnicity is often
sparse, and some hospitals do not report this information at all since they consider
this to be private information. Without race being consistently reported, we
are not able to investigate how this factor interacts with ED visits. Another
data limitation pertains to the variety of pharmaceuticals involved in the visits.
Variety may be overstated because it can be challenging to determine whether or
not a patient’s current medications are unrelated to the visit. This potential bias
could be a greater problem for older patients since they are often on multiple
medications.

The next paragraph summarizes the findings for the youngest age groups, and makes
suggestions for how to act on the findings with the goal of decreasing the number of drug
related ED visits..

We found adverse reactions and accidental ingestion to be the major types of
drug-related ED visits for the youngest patients. Additionally, we found that
visits for this group often occur during the evening when they are most likely
home and under their parent’s control. Emphasis on better storage of medica-
tion in households with small children has the potential to reduce drug-related
ED visits by youths. In addition, better education for new parents about the
dangers of medications in the household could possibly help decrease the number
of incidents.

The end of the discussion summarizes the main features of drug-related visits for the
elderly, provides a hypothesis of why they may occur, and offers suggestions for how to act
on the findings to decrease the number of visits in this vulnerable age group.

Our investigation also found that visits from the elderly were commonly due
to adverse reactions, and together with over-medication these cases make up
nearly 95% of drug-related visits to the ED in this age group. The increase in
inpatient services after the ED visit for the elderly may be attributable to the
opportunity for a closer evaluation of the person’s ability to care for themselves
or to deterioration of other health conditions brought on by the drug-related
incident. For the elderly, clearer instructions and more monitoring for prescribed
drugs (including interactions between multiple drugs) could help reduce drug-
related ED visits and keep them out of in-patient care.

�

Excerpt: Introduction Section
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The introduction usually goes in the opposite direction of the discussion section. Rather
than move from the details of our study to the broader field, an introduction first gives an
overview of the broader field and then identifies the specific question we are trying to answer
within that space. When describing a statistical analysis, we must identify both the scientific
and statistical question of interest and explain how our data and results provide answers to
those questions.

After reading the introduction, a reader should know:

• What is the problem?

• What is the motivation?

• Why is it important?

• What was found?

You may think that you want to save your main conclusions for the end of the report, but
you want to state them in the introduction as well. Telling the reader ahead of time what
you found peaks their curiosity in how you obtained the results and may convince them to
continue to read.

Typically, at the end of the introduction, the rest of the paper is outlined. A roadmap
for the paper helps the reader know what to expect and helps them skip over sections to
read what interests them.

The beginning of an introduction for our DAWN analysis identifies the subgroups of
interest and explains why we were previously unable to explore their drug-related emergency
visit behavior.

We often think about the rise in drug use in the United States in terms of illegal
drugs and the teenage to middle-aged populations, but understanding the types
of drug use that impacts vulnerable age groups such as young children and the
elderly is also an important consideration. However, assessing heterogeneity in
drug-related emergencies across sex, race, age, etc. has been challenging due to
a lack of comprehensive data.

The introduction continues by explaining what has changed so that we can now study drug-
related visits more easily and completely.

To address this gap in knowledge, the United States Department of Health and
Human Services consolidated data from the Drug Abuse and Warning Network
(DAWN). These data contain information about drug-related visits to hospital
emergency departments (EDs) in over 250 hospitals across the county.

The introduction ends with a more specific description of the subpopulation of interest and
an overview of the major findings.
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We focus on the youngest (five and under) and oldest (65 and over) age groups
because to some extent, these drug-related ED visits could be prevented by in-
creased parental or medical supervision. Combined, these two groups make up
more than one in five drug-related visits to emergency departments. For the
youngest children, visits are due to an adverse reaction or accidental ingestion,
and visits for children five and under are over-represented when compared to the
6 to 11 year olds. The elderly population’s drug-related ED visits are primar-
ily due to an adverse reaction or over medication, and the proportion of these
patients returning home directly after the ED steadily declines with age.

�

4.6 Part IV: Editing and Revising

Pedagogical Context for Editing and Revising

Many students write reports for their course projects, but because these projects typically
occur at the end of a course, they rarely get the opportunity to revise their work based on
instructor feedback. This part of the book gives students guidance on how to revise their
work both through strategies they can use on their own and through eliciting feedback from
a peer.

Chapter 8 addresses the specific challenges of writing about statistics. These differ from
challenges faced by those writing about science more generally. Words in their statistical
context have different interpretations than their everyday usage which can cause confusion
for non-statistical audiences. This phenomenon is called “lexical ambiguity.” Kaplan et
al. study how undergraduate students defined common statistical terms that also have a
common usage (e.g. “confidence” and “random”) at the start of an introductory statistics
source [85]. They found, for example, that students associate “confidence” to mean “a high
degree of assurance” while the statistical meaning has a specific “level of surety based on
probability.” These double meanings may cause confusion when introductory students write
about their statistical findings or when a non-statistician reads a more statistical report.
Chapter 9 contains more classical writing advice (like in [1]) but provides it in the context
of data and statistics examples.

Chapter 10 covers revision more broadly including the use of peer review to get feedback.
Peer review is not just important for building writing skills; it is also part of the scientific
process. Guilford provides a teaching method for walking undergraduates through the pub-
lishing process [64]. Students had to write a letter of inquiry, write a research paper, submit
a draft for peer review, revise the paper based on feedback, and resubmit as well as provide
feedback to another peer given guidelines for review. Our course implemented this strategy,
replacing the letter of inquiry with storyboarding, and followed the material in Chapters 6,
7, and 10.
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Cho and Schunn give more guidance on the peer review process itself and describe a
“scaffolded writing and rewriting the discipline” approach [27]. Their peer review occurs
online for a large course, but we can easily transfer their approach to smaller, in-person
courses. Peer reviewers evaluate work along three dimensions: flow, logic, and insight. Those
who receive feedback also provide “back-review” about how helpful the feedback was when
they were revising their work. To evaluate “flow” the overall prose is examined for whether
or not the main points and transitions are clear. To evaluate “logic” the structure of the
argument is examined for whether or not it is convincing. To evaluate “insight” the content
itself is evaluated for whether it contributes new knowledge to the reader. Our rubrics for
peer and instructor review resemble these criteria and include overall grammar, structural
organization, and statistical accuracy (Activity 10.8.2).

Taking Care with Statistical Terms

It is challenging to craft clear sentences, choose appropriate words, and convey findings in a
compelling manner that is faithful to the data and avoids overstating implications. One of the
first things we want to check when re-reading a draft of our work is that the statistical content
is accurately portrayed. This chapter provides advice on how to differentiate statistical
terminology from everyday language, represent numbers in text, incorporate mathematical
expressions, and choose the correct nouns and adjectives (e.g., fewer or less, percent or
percentage). Examples follow.

Excerpt: Statistical Terms and Everyday Usage
Many statistical terms give unique and specific meaning to words from everyday language.
Examples of these include confidence, error, sensitivity, and significant. To reduce confusion,
we recommend that you avoid these words in their common usage and exercise care when
writing them in their technical setting. Depending on the audience, it can help to clarify the
statistical meaning of a term.

An error in plain English typically describes a mistake or something wrong. Statistical
error is quite different. It refers to a difference, such as the difference between an individual
measurement and the average of several measurements. The terms margin of error, mea-
surement error, sampling error, and standard error are a few examples of statistical error,
each of which has a precise statistical definition.

Given so many related, but distinct, terms, it is important to clearly distinguish between
them in our writing. For example, The New York Times’ 2006 Polling Standards [122],
states that articles containing polling results should give the margin of error and have an
explanation of what that margin of error means. In a report by the Pew Research Center
on smartphone usage [169], the margin of error is provided for their survey without any
explanation. Alternatively, the report might include an additional sentence that briefly
explains margin of error, e.g. as suggested by the Times Polling Standards [122],

This means that in 95 cases out of 100, overall results based on such samples will
differ by no more than 2.5 percentage points in either direction from what would
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have been obtained by seeking out all American adults.

�

Excerpt: Help the Reader with Statistical Terms
Even though a data analysis is inherently technical, we want our writing to be understand-
able. Using technical terms and acronyms without first defining them alienates the reader.

For example, the acronym “GLM” is a blackbox term in the next sentence.

We use a GLM to predict whether an e-mail is spam or not.

Below, we define the abbreviation and explain the term by juxtaposing something with which
the reader is already familiar.

Since the prediction of whether an e-mail is spam or not is a binary decision, we
use a generalized linear model (GLM) that allows for a different distribution of
errors than the traditional normal distribution.

Notice that we have also justified the use of a GLM. �

Excerpt: Similar Words with Distinct Meanings
When we write about data, we discuss percentages, mean effects, above and below average,
approximate values, etc. Many times we are confronted with a choice between similar words,
such as percent or percentage, affect or effect, above or over, and about or approximate. The
precise definitions for each of these terms matters, and to write well, you will need to select
the correct word.

For instance, a percent refers to a specific number, such as 20 percent, and a percentage
refers to an unspecified portion, such as a large percentage. That is, percentage is used
without numbers. When we take the difference between two percentages, that difference is
measured in percentage points, e.g., 20 percent is 3 percentage points more than 17 percent.

The following examples demonstrate the usage of percent, percentage, and percentage
point.

Twenty percent of the eligible voters did not vote; this is a large percentage.

A greater percentage of eighth-grade students met the state standards than third-
graders.

About 40 percent of mothers smoked when pregnant in the ’60s compared to 8
percent today; that’s a decrease of 32 percentage points, or an 80 percent decrease.

Although incorrect, the following use of percent has become common.

What percent of your time do you spend watching TV?
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The more grammatically correct way uses percentage of your time.
�

This chapter also cautions against absolute statements and slipping into causal statements
when they aren’t warranted. These statements are especially problematic if they arise in
writing for broader audiences. We provide an example of a press release that avoids causal
language and one that is potentially misleading.

Excerpt: Avoiding Causal Exaggerations in Press Releases

The first sentence of the press release about the correctional officer survey [183] makes
a causal claim, using the phrase “make them more likely” to connect exposure to traumatic
events with mental health outcomes.

The study is a survey so it is difficult to assert causality. We intuitively believe this to
be the case and presumably other studies support the link between traumatic events and
depression. However, a more accurate description of the findings would point out the link
without implying causation.

In contrast, the first paragraph of a press release about a study of children with different
religious upbringings and their health in their adolescence [176] begins with a statement
about how spiritual practice may be a protective factor for health in adolescence and early
adulthood. The choice of may be is not a strong statement, but the press release is careful
to not overstate the findings.

�

Crafting Words and Sentences

This chapter focuses on strengthening the details in our writing. We give examples of how
to trim unnecessarily complicated phrases, write straightforwardly, use active verbs and con-
crete nouns, balance specific and general statements, and smoothly transition between ideas.
We also provide some general guidance on commonly made grammar mistakes. Examples
follow.

Excerpt: Eliminate Empty Phrases
Phrases that contain no information, such as it is interesting to note that, the fact that, and
it should be pointed out that, should be eliminated. If something wasn’t interesting then we
would not be writing about it. If something is more interesting than other things, then we
can find a more compelling way to draw attention to it.

Particularly offensive empty phrases are pompous ones, such as as is well known, of
course, clearly demonstrate, and it is obvious. These are unnecessary and annoying to the
reader.

The following sentence explains the reasons for analyzing a subset of the available data.
It takes a cumbersome approach that includes unnecessary phrases, redundant information,
and clunky descriptors.
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In this part of our analysis, we assume that flight delays that last shorter than 15
minutes have minimal effects on passengers, and so we reduce our large dataset
into a smaller subset in which all departure delays are at least fifteen minutes
long.

A more streamlined version is

Since short departure delays have minimal impact on travelers, we analyzed only
those flights where the delay was longer than 15 minutes.

The opening phrase In this part of our analysis does not contain information so we dropped
it. The adjectives large and smaller don’t add information, and the process of reducing
the dataset doesn’t need to be described. The essential information is that a subset of the
data was analyzed. Notice too that we replaced the clunky description last shorter than 15
minutes with longer than 15 minutes and mentioned the criteria for subsetting only once.

Note: The term “fat phrase” from comes from Alley’s The Craft of Scientific Writing [1]
while “empty phrase” is also discussed in Andrew Gelman’s blog post [58]. �

Excerpt: Tell What You Found, Not the Path You Traveled
For beginning scientists, one of the hardest skills to learn about writing is to avoid presenting
findings in the order in which the analysis was carried out. There are a few circumstances
where we do want to write about the process in chronological order, for example, in a blog
post that demonstrates the thought process behind an analysis, but most often we want to
present a summary of our findings not a description of the analysis process. For example, if we
fitted several alternative models to the data, then we typically mention these models in a few
sentences in a discussion section and do not dedicate space to describing these alternatives.
As another example, exploratory data analysis is an important and often lengthy stage of
the analysis that can uncover problems with the data, the need for transformations, and
unexpected relationships to consider when modeling. It is important for replicability that
we describe these findings and make our code available so that the reader knows exactly
what we did to the data and whether there was data snooping, but this description typically
constitutes a brief summary in our written report.

The following paragraph justifies the researcher’s transformation of the data.

During my exploratory data analysis, I found that the distribution of house
prices is heavily right tailed. Hence, I applied a log transform to housing price
and achieved a relatively normal distribution.

The relevant point is that the log transformed data have an approximate normal distribution.

The log transformation of house price follows an approximate normal distribution,
so we analyze the transformed data.

We trimmed the phrase during my exploratory data analysis and the description of the
untransformed data. If the distribution of the log-transformed data looks normal, then the
distribution of the untransformed data must be right skewed. �



CHAPTER 4. TEACHING THE ART OF WRITING FOR DATA SCIENCE 106

In this chapter we also discuss differences in word and sentence level choices between
blogs and formal writing. Because a blog is written informally, this form of communication
gives the writer more flexibility. Blogs “break the rules” in a variety of ways including using
empty phrases, including information about the data analysis process to add insight into the
writer’s thought process, and using conversational language to connect with the reader and
increase accessibility.

Excerpt: Ourselves as a Character in Blogs
The use of conversational language helps us transition away from our more guarded writing.
Although in our formal writing we try to remove ourselves from the content we are discussing,
a blog allows us to blur the line between our professional and personal ties to the content. In a
blog post, the content may be interjected with personal anecdotes or information. Similarly,
unlike in a formal report where the emphasis is placed on telling the reader what you found,
a blog post may be the venue where you want to insert yourself into the story and talk about
the path you traveled. Many blog posts document the process behind work that is more
formally explained elsewhere.

For example, three sentences (adapted from content in [162]) can capture an analysis of
music data grouped by different workouts. These sentences describe the findings without
any process information.

Tracks associated with certain muscle groups have more missing values than
others, so the representativeness of the sample may be a problem. The shoulders
track is associated with less pop or dance, and the cool down track is quieter
with no electronic music. Future work could study beats per minute data.

The blog version is noticeably longer because intermediate steps and conjectures are added
[162]. The reader not only gets to read about the results but also how the author found those
results (e.g. what plots were made). The steps are outlined in a stream of consciousness style,
interjected with mini-brainstorms the author has as they go through the analysis process.

�

Revising: Drafts #2 Through...

Although writing a first draft can be intimidating, the revision process is often the hardest
part of writing. It can be time consuming, and progress can be hard to see. This chap-
ter provides a plan of attack for revising our work so that we can attain a polished draft
efficiently.

Typically, we edit considerably before showing others our writing because we want a
reviewer to focus on our ideas, not our writing weaknesses. However, enlisting a peer to give
feedback before the final draft can give a helpful, new perspective. If we make sure to clean
up the small details such as spelling, grammar, etc. a reviewer can focus on the higher level
aspects of our writing such as content and structure. The reader’s role grows in the revision
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and editing process. Not only are we reading to take inspiration from writers we admire,
now we are reading with a critical eye, looking for deviations from good practices.

Excerpt: Preparing to Rewrite

Once we have our ideas written into a first draft, we typically refine the draft many times
before it becomes a polished product. In this process, we often need to get some distance
from our draft. Distance can be created in both time and format.

Time permitting, it can be helpful to work on something other than our paper for a few
days. After we have spent some time away from our paper, we can revisit our writing with
fresh eyes. Before revisiting the draft, we suggest that you write down what you expect your
reader to think about the topic before and after reading your report. Then, you can reread
the paper and see if your intention matches the reality.

Changing the spacing and printing the draft so that the draft looks physically different
can be helpful to build distance in formatting. It can be easy to overlook mistakes on a
computer screen, especially when reading the same thing over and over again. Reading out
loud can be useful in this situation. When we read in our head, we often subconsciously fix
mistakes without recognizing that they are there. When we read out loud slowly, we notice
small grammatical details as well as higher level problems such as ideas that do not flow or
abrupt transitions. As you read aloud, we recommend that you don’t stop to fix anything.
Instead, mark what you want to fix with a small comment on what you have in mind and
then come back to it later. You will want to examine the draft as a whole without getting
sidetracked with the specifics.

Once we have caught the more obvious flaws in our writing, it can be helpful to revise
with more specific goals in mind. By working with different parts of the paper in different
revision stages, we also ensure that we don’t fatigue of rereading the whole document over
and over again.

Note: Tips about revising your writing can come from a variety of sources including
Alley’s The Craft of Scientific Writing (e.g., needing “distance” from a draft) [1]. �

After a round of general proofreading, it can be helpful to target problem areas in different
rounds of revision. Focused reading can help us catch flaws that we may not notice when
we read with a more global emphasis. In this chapter we explain how thinking about our
writing weaknesses can help focus our revisions.

Excerpt: Targeted Revision: Lack of Focus

If you suspect that your writing lacks focus, read through your article looking for back-
tracking. Note all the places where the subject changes. Do you ever start one idea, jump
to another one, and then come back to the original idea? A lack of focus can easily happen
in early drafts when our main goal is to get all of our ideas written down. In the revision
process we can see the whole and reorganize to avoid this stream of consciousness style.

The following paragraph (adapted from student work [142]) bounces back and forth
between ideas rather than organizing the ideas and presenting them in a logical, compelling
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order.

A mistake I notice is that my students are not good with word problems. It’s
pretty hard to visualize and understand information from word problems. For
example, if a question used the phrase “How much more,” you may not know
that you will compare two things, probably using subtraction. Since some kids
don’t know what the phrase means in context, I would help them draw and
ask guiding questions to take it step by step. There are other phrases in word
problems too, but teaching them how to visualize by drawing out the pictures
helps a lot. Another tricky type of word problem is converting between units,
like 12 inches is equal to 1 foot. Students do not know how to visualize length
and do not understand how units work. It’s good to have examples to show them
the difference between the units, like a ruler or measuring cup.

Here we group ideas and order them in a way that keeps the narrative moving in one direction.

I notice that word problems are tricky for my students. I think this is because
they have a hard time visualizing the problem, interpreting certain phrases in
the problems, and avoiding pitfalls such as changes in units. For example, if a
question used the phrase “How much more,” students may not understand that
this is a comparison problem involving subtraction. Similarly if the problem
involves a conversion between units, like inches to feet, students may not be able
to identify the main objective of the problem. Both problems can be made more
concrete with examples. Drawing a picture of the groups being compared can
help show the difference in size in terms of “how much more.” Physical objects,
such as a ruler or measuring cup, can help show the difference between units.
My strategy to help students is to have them draw the problem, ask guiding
questions, and then go step by step.

This example shows how complex a revision can be. �
Giving Feedback
Before reading a draft and giving feedback to a peer, it is helpful to make a plan of what

to read for. Knowing where they aim to submit their work can help assess whether the
structure is appropriate and if the content is presented at the right level for the intended
audience. Having a sense for what they are most concerned about in the paper can also help
us target the review and focus our energy on the weaker aspects of the draft. If the review
is for a journal instead of a friend, reviewing the journal guidelines will help give structure
to the revision process.

Excerpt: Reviewer’s Template
As you read a peer’s work, consider the following prompts to guide your review.

• First, skim through the paper to get a sense for the organizational structure. Are all
the major components of the report accounted for?
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• Next, read through the paper without making any edits. Summarize the paper in a
few sentences.

• What are you confused about and why? (i.e., what remains unclear?)

• What are you curious about and why? (i.e., what details would you like to see added?)

• Read through the paper again, and now make comments and edits. Underline sections
that are particularly clear/well written, and try to articulate why.

• Try to avoid copyediting. Focus on organization and flow rather than comma usage
and spelling.

• Look through your comments and edits. Organize your feedback into themes. Try to
avoid just giving an unstructured list of comments. What is one thing you would have
done differently and why?

• Don’t be afraid to give serious constructive feedback. You aren’t being mean; you are
being helpful.

• End your feedback by identifying the biggest strength of the paper.

The questions to answer for peer review in this section were partially inspired by a re-
sponse template for peer review shared with the authors by Kathleen Donegan (UC Berkeley
English Department), teaching resources from University of Michigan’s Sweetland Center for
Writing [185], and sample peer review materials (no longer accessible online) from Brandeis
University’s University Writing Program. �

Receiving Feedback
Receiving feedback can be difficult, but feedback is meant to help us strengthen our

writing, not act as a judgement of our writing ability. Since we are naturally invested in our
work, we can be resistant to making the major changes that a reviewer advocates for. It is
reasonable to first read through the comments and take a minute to be defensive. What are
the reasons for ignoring the advice of the reviewer? Then we can take a higher level approach
and consider where the reviewer is coming from, realizing that the feedback is not personal.
Finally we identify the common themes within the feedback. Are the main criticisms about
content, big picture writing aspects such as structure and clarity, or detailed aspects of the
writing such as word choice or sentence flow? Once we’ve synthesized the feedback we can
create a revision to-do list that is specific and contains all of the comments made by our
reviewer to help us stay organized.

Excerpt: Feedback about Narrative
The comments below pertain to the emphasis and narrative of our article. The first concerns
the visualizations.
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Given that a key aspect of the paper is data visualization, one way to improve
the paper would be to suggest a few more graphical displays. More specifically,
images that are more exciting and tell a stronger story about the data would be
useful.

The second comment indicates that the reviewer is not satisfied with the data description.

It seems to me that the main uses of this dataset are to illustrate the many diffi-
culties involved in collecting good data. A few of these difficulties are discussed
briefly, but I would advocate an expansion of these sections.

We could strengthen our argument by focusing on the challenges inherent in the type of
data we are working with and making our graphics more compelling. To do this, we might
revisit the figures in the paper and determine whether the story is clear in the visualization
and whether the captions are as informative as possible. We should also consider whether
a different type of plot might better emphasize the story. After editing the figures, we can
give them to a peer to see if they understand what the graphs are trying to say and if they
find them compelling.
As for the data description, we can start by brainstorming difficulties in the collection process.
We might draft a new section that focuses on these ideas. If we add a new section, then
we need to consider where this section best fits in the paper and adjust the transitions as
needed. �

In the revision process, we should consider whether we have made a convincing and
compelling argument to the reader about our findings. We also want to keep in mind the
venues that we are interested in submitting our work to. While in the revision phase we
should make sure that we have written at the appropriate level for the intended audience
and that the intended audience matches the readership of the prospective venue.

4.7 Part V: Science Writing and You

Pedagogical Context for Science Writing and You

Beyond teaching students the skills they need to join an academic discipline, we as
teachers also need to introduce students to the academic community and help them form
their identity as part of that community. This community includes the science discourse
community discussed in Yore et al. and the community of practice discussed in Hunger et
al. [200, 79].

Yore et al. assess scientists’ writing practices and how they see writing fitting into their
science [200]. Scientists reported that “writing, reviewing, and revising helped improve the
clarity and understanding of the embedded science ideas,” identified their discourse commu-
nities as “social,” and considered “writing as knowledge building instead of just knowledge
telling.” Even though they note that novice scientists typically enter their field’s discourse
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community as part of their graduate research, we aim to make this introduction earlier, at
the undergraduate level. Chapter 11 of our book focuses on community and identity. This
closing chapter emphasizes that being a scientist involves being a writer and that science
has a social component (e.g. conference networks (Section 11.1), social media (Sections 11.2
and 11.4), and online coding communities (Section 11.3)).

To allow students the freedom to form their own identity and shape their own experience
in the class, we used an apprentice-style approach in our Communicating with Data course.
We modeled examples of effective and ineffective writing, wrote together as a class and in
small groups, and used peer review in addition to instructor feedback. Throughout the
course, students created a portfolio of written work (Chapter 12), choosing from a variety of
low stakes prompts (evaluated on check, check-plus, check-minus system) each week. Student
motivation was high, since exercises could be repurposed outside the classroom as evidence of
their writing and data analysis skills. Students chose their favorite portfolio pieces to refine
based on peer and instructor feedback into final “products” (analogous to a final project
report).

Students learned to write by frequently writing while the choose-your-own-adventure style
allowed students to have flexibility and autonomy. Others have advocated for this apprentice
approach. For example, Hunter et al. explain how an apprentice-style of teaching is used
to introduce undergraduates to research [79]. The authors found that students saw their
experience with undergraduate research as helpful in seeing how science works in practice
and helpful for personal growth.

Embracing Your Role as a Scientist

Rather than providing excerpts, this full chapter is included below.
Polished draft in hand, you may ask yourself, now what? It is now time to (finally) share

your work with the world. So far this book has aimed to teach you how to read as a writer,
prepare to write as a writer, write as a writer, and edit as a writer. We hope you now feel
comfortable identifying as a writer (because you definitely are one). Now we want to give
some advice about wielding the identity of a writer as you advocate for your science.

Despite being both a scientist and a person existing beyond our work we often must
separate our personal feelings from the work we do to remain objective. It can be helpful to
have a network (a source of professional support), a research focus (professional interests), a
community (a source of personal support), and an identity (personal interests) to help balance
between the professional and personal. Your community helps support your communication
within your own circle of influence while your network can help you reach across community
boundaries. Your research focus and identity help you navigate the social aspect of research
by signaling what interests you.

This chapter discusses opportunities to embrace the social aspects of communicating your
work and gives advice about venues for sharing your work beyond the page.

Expanding Our Professional Network
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To expand our professional network we often must physically leave our place of work
or study to meet others and showcase our work. These meetings may occur in annual
conferences for professional societies or more informally at “meet up” groups (i.e., in-person
events organized online by people with similar interests).

When we seek others to add to our network we can’t expect someone we have just met
to read our paper while we stand there waiting for them to get caught up on what we are
working on. Instead, to take advantage of the meeting we rely on oral communication to
give them an overview of what we are working on. This type of communication can take the
form of a formal talk, a lightning or speed talk, or a poster. It can also take the form of a
one-on-one conversation.

Up until this point we have talked about written communication, but many of the strate-
gies and advice we gave for preparing written material applies to preparing formal talks and
being ready to chat informally with new people. Each of the formal oral communication
venues mentioned above has an analogous written form. A formal talk is like a formal paper,
a lightning or speed talk is like a press release, and a poster is like a blog post. More informal
networking opportunities happen in unstructured social settings and don’t have an obvious
writing analogue.

Formal Talk
An effective talk is like an effective paper; it has an organized structure, a well-defined

audience, a compelling narrative, and is delivered clearly. A talk has many of the same
elements as a paper. We start with an introduction of ourselves and the background of the
problem we are working on, we give some grounding in the literature (e.g., what has already
been done, what holes are we trying to fill), we launch into the heart of our solution/approach,
and we conclude with some discussion of the impact of our approach and an announcement
of any future work we have planned. Just as we would storyboard before drafting a paper,
we can also storyboard before a talk. In some ways the storyboard is even more natural
in the case of a talk that involves slides. Each note card represents a slide, and we can
physically arrange them to design the flow of the talk.

The level of detail provided in each part of the talk, and the relative length of each part
depends on the venue. If we are at a conference for our particular sub-field or in a section
dedicated to our sub-field, we may assume our audience will have a lot of the background
needed to follow along with our work. We can then focus more of our attention on our
approach. At a conference with a broad theme or in a more interdisciplinary venue, we may
want to heavily emphasize the background and context while only providing the high level
version of our approach.

Just as we follow the journal length requirements for a formal piece of writing, in a formal
talk we conform to the venue time requirements. Having the right talk length is essential.
We do not want to be rushing through slides because we have too much material to cover,
and we don’t want to run out of things to say. A good pacing guideline is to have no more
than one slide per minute of talk time allotted. You may spend an extra minute or two on
a few key slides. Once our slides have solidified in order and content, we recommend that
you practice the talk and time yourself. Make sure you have time left for questions (a good
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rule of thumb is about five or ten minutes of questions in an hour long talk). Also consider
that you might talk a little faster during the actual talk if you are nervous; remember to
talk slowly, even if it feels too slow.

One important distinction between a paper and a talk is that we do not want us or
our audience to be doing a lot of reading during our talk. Keeping our slides uncluttered
with minimal words and one or two figures will ensure the focus is on what we are saying.
Including visualizations, rather than blocks of text, can help guide a listener through our
narrative and keep their attention. Just as we don’t want to give our listener blocks of formal
text, we do not recommend that you write out the talk and read it word for word. Having
an outline and perhaps a few notecards with phrases to jog our memory if we get stuck are
fine, but relying on rigid text in a talk format makes it more obvious if we slip up. We want
to aim for a natural delivery, as if we were just talking with a friend. This ease comes from
practice and preparation, not memorization.

Remember that like our paper, the talk is a showcase for our work. The important thing
is that after the talk, listeners can follow up with us to ask questions and find out more
about our work. We recommend that you make followup easy for the audience. Provide
contact information on your slides, and if possible, remain at the venue location after your
talk to mingle and give people the opportunity to ask questions one-on-one rather than in
front of a crowd.

Lightning/Speed Talk
A formal talk showcases our work in a venue where there is ample time to address at

least some details. In contrast, a lightning or speed talk (often only about five minutes long)
is an abbreviated advertisement for our work. We cannot possibly explain our entire project
in 5 or 10 minutes, so we need to give the audience enough detail to understand the big
picture and be invested in the answer to our question. We recommend that you think of this
style of talk as an elevator pitch for your work; make the listener want to come talk to you
afterward to learn more.

We have a short amount of time to make people interested in talking with us further.
Like a press release, this format of talk requires that we put the important information first,
avoid getting into technical details, and have an enticing ending that will make listeners
want to follow up with us.

Preparation for a short talk is much like preparation for a long talk, although we do not
spend any time on details. We can storyboard and practice the talk with a timer. However
it is important to note that just because the talk is short, this doesn’t mean the talk is easy
to give. It can actually be much harder to give a short talk without preparation than an
unpracticed long talk. In a short presentation, your pace must be precise; there is not a lot
of leeway for stumbling due to nerves. We recommend that you practice, practice, practice.

Poster
A poster is a low-stakes way to advertise our work. Sometimes a lightning talk is paired

with a poster so that listeners who were intrigued by our talk can follow up with us. Other
times posters are there for conference attendees to browse on their own time.
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Think of a poster like a blog post. A viewer stumbles upon it and must decide whether to
commit to engaging or rather move on to one of the many other posts out there. To capture
and hold the attention of a viewer our poster should have a succinct story and a striking
visual. Bullet points and white space are powerful tools. Just as we avoided slides crammed
with text, our poster should also be free of dense blocks of text.

Storyboarding can also be used to prepare our poster. In this scenario each note card
in our storyboard is a “block” of our poster. Using these blocks of content we can explore
potential roadmaps of how a viewer will step through our poster. Left to right? Top to
bottom? A mix, separated by columns? You can decide what visually makes sense.

A poster still requires talking to people. It can be helpful to also have a few minutes of
commentary planned for a viewer who prefers to be guided through the poster. We suggest
walking them through your main points, answering any specific questions they have, and
taking note of any suggestions that they give you.

Networking
When we hear “networking” we often think about social interaction with strangers in

artificial settings. However, networking does not have to have a superficial connotation.
Any time we talk to a person, we are networking. Writing for broader audiences should
strengthen our ability to talk casually about what we do.

Conferences are not just about giving and listening to talks; networking is also a major
part. Take advantage of having many people with similar interests all together in the same
area. Before you go to a conference, do some preparation. Reach out to people whose
work you admire and see if they would like to meet during the conference. Professional
relationships can also be formed serendipitously in between sessions and during meals and
coffee breaks, so push yourself to start conversations with other conference attendees.

As we chat with others, we may want to formalize a connection by referencing a product
of our work. However, our work is not always in a polished state when we find ourselves in
these networking situations. Instead, we can post a draft of our formal paper on the arXiv,
a freely accessed archive for scholarly articles, to document and provide access to our works
in progress [6]. If we are not even at the formal drafting phase of research, we may consider
writing occasional blog posts to keep track of our research process publicly.

Building a Research Focus
We have talked about expanding our professional network in the context of showcasing

our work at different, in-person, venues. Connections can be made by attending conferences,
visiting different campuses or departments, and taking advantage of the connections of those
we already have a connection with within our network. By connecting with others with
similar interests, we can find out about papers to read, job or internship opportunities
to apply for, conferences to attend, and potential collaborators to work with. However,
connections can also be made remotely. Academics have become active on social media
(e.g., Twitter), taking advantage of its networking and information sharing power. Online
connections can be made and leveraged at a faster pace. All it takes is one “influencer” to
promote us to make other people aware of our work.
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In order to fully take advantage of online community connections, we must make others
aware of what we are interested in and what our area of expertise is. This way they can
point us to relevant materials and know who to come to for questions on a particular topic.
We build a professional identity by repeatedly showcasing our work, skills, and strengths. To
help carve out our niche within the broader research community, we consider our expertise.
Is our research focus deep; have we invented a particular method and know it inside and
out? Is our focus more broad; do we solve problems in a wide range of scenarios? Is our
focus domain specific; do we feel comfortable being the go-between for quantitative and
non-quantitative people? Is our focus on tools; do we build software to simplify analyses or
data wrangling? Is our focus on teaching; do we explain concepts well and advocate for our
students?

Whereas at individual speaking events, we focus on exhibiting one piece of work, it is
also important to have a complete body of work in an easily accessed place can help people
explore at their leisure. Building a portfolio of writings and code and having it in an easy to
link to place (e.g., GitHub, your personal website) so that we can provide links to resources
when asked, is a great way to display our professional interests. A full portfolio can also
display how our interests and expertise have changed over time.

We cannot always travel to talk about our work with others. Using social media to alert
others when we have added something to our portfolio, whether it’s a talk, a blog post, or
a new draft, is a less resource-intensive way to get our work noticed. We can also use social
media to solicit feedback on a draft of our work or advice on a question we are pondering.
By crowdsourcing the feedback process, we can get faster feedback more frequently.

Promoting our work may feel like bragging, but exposure is an important part of being a
researcher. We want to be part of scientific discourse and tell others what we have been work-
ing on so that others can learn from it, give feedback, and extend it. Small announcements
via social media maintain a living curriculum vitae and also gives us a sense of milestones
reached. The data analysis and writing processes can be intense, so it is nice to celebrate
the little victories in a less formal venue. However, if we are going to take advantage of the
speed of social media to promote work and get feedback, we need to be sure to return the
favor. We should support others’ work and give our feedback when requested.

Fostering a Personal Community
A professional network can help us build a career, but a personal community is also a

key to our success. We cannot always be in work-mode, so we also need a source of support
that is separate from our job.

Our personal communities can be related to our work (e.g., coding communities, question
and answer communities) or they could be a bookclub, a knitting circle, a basketball team,
or an improv group. We will primarily talk about communities that can be connected to your
work in this section, but alternative communities are also an important source of support.

Coding communities ranging from open source projects to Stack Overflow can both pro-
vide help for work related efforts and support for our more creative endeavors. They can
also be a way for us to give back or pay it forward by providing an opportunity for us to
use our expertise to help others. “Side projects” where we use our work related skills in a
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non-work related setting can be a rewarding way to re-charge after a challenging day of data
analysis or writing. The following examples provide insight into both contributing to and
benefiting from these communities.

Excerpt: Community Standards: Codes of Conduct
Contributions to online communities do not have to be code. We can contribute content
to Wikipedia. However, we must recognize that Wikipedia is an online community that
has community standards and protocols that we must conform to. In this excerpt from
Wikipedia’s guidelines for contributing we are told about how we should conduct ourselves
when we disagree with another editor [194].

While discussing matters, it is very important that you conduct yourself with
civility and assume good faith on the part of others. Edit warring (repeatedly
overriding or reimplementing contributions) is highly discouraged. There is a
bright-line rule called the three-revert rule, the violation of which may lead some-
one to be blocked from editing to prevent further disruption. Disruptive editing
is not always intentional, as new editors may simply not understand the ins and
outs of Wikipedia.

�

Excerpt: Community Standards: Minimal Reproducible Example
On Stack Overflow (and similar sites) there are guidelines for how to ask a question such
that you are most likely to get a useful answer. The idea of a minimal, reproducible example
(reprex) is outlined in this excerpt of the guidelines [174].

Your code examples should be...

• ...Minimal – Use as little code as possible that still produces the same prob-
lem

• ...Complete – Provide all parts someone else needs to reproduce your prob-
lem in the question itself

• ...Reproducible – Test the code you’re about to provide to make sure it
reproduces the problem

�
Other forms of personal community that can relate to our work are writer and account-

ability groups. Writer groups often are formalized peer review sessions. Writers each bring
an excerpt of something they are working on and perhaps a specific aspect of the writing that
they are most concerned about to the meeting and then ask for feedback from the group.
You can start your own writer’s group with people from your professional network. You may
even want to meet virtually rather than in person.

Accountability groups provide a venue to set and report on goals to peers rather than
supervisors, creating a judgment-free accountability mechanism. These goals could be a
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mix of work and personal. In these groups members take turns reporting on what they
accomplished since the previous meeting, reflecting on why they did or did not meet their
goals, and making revised goals for the upcoming time period. Group members can also
provide advice for how to overcome obstacles. It can help if the membership of this group is
not made up of individuals in our inner circle since maximum benefit comes from being able
to be honest about our struggles and to fail without worry of judgement.

Welcoming Who We Are
We carry our identity with us throughout all of our professional endeavors. Sometimes

our identity and our profession specifically intertwine. There are identity based conferences
(e.g., Women in Data Science, Society for Advancement of Chicanos/Hispanics and Native
Americans in Science (SACNAS), Grace Hopper Celebration) and identity based coding
groups (e.g Girls Who Code, Black in AI) that provide an opportunity for sharing work,
advice, and support among people with a shared identity experience. Other times we must
carve out our own place, perhaps by leaning on our personal community.

Having a visible presence, on- or off-line, regardless of the main focus of the content, can
increase the visibility of traditionally underrepresented groups in a particular field. Sharing
our work and experience balancing personal and professional identities can bolster others
who may be interested in a similar field but do not see many like them in it.

Excerpt: Blogging to Bring Perspective
In this blog post excerpt, Daly tells her personal story of her first time at a conference [35].
She does not specifically reference identity, but she is honest about feeling anxious and
overwhelmed, helping to normalize those feelings.

This blog post acknowledges networking nerves. Readers can benefit from this vulnera-
bility and moderate their own feelings of nervousness around new people. �

Excerpt: Blogging to Share Background
In this blog post excerpt, D’az shares his experience as a first generation tech worker with
the explicit goal of helping others facing a similar situation [33]. This blog post teaches us
about the complexities of navigating between past and current identities. �

Curating our professional persona is useful for our career, but it is also necessary to
reflect on our personal values and goals. What drives us to do the work that we do and what
matters to us beyond our work? As we communicate our work, we should take note of what
energizes us and follow that energy as we move forward in our careers.

Although we can give you tools and advice for how to communicate your work effectively
to a variety of audiences, we cannot guide you in what you ultimately say. We hope that by
embracing your dual role as scientist and writer and using the skills you have developed by
working through this book, you will go on to advocate for what you are passionate about in
both your professional and personal spheres.
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Building a Portfolio

This chapter of the book includes over 20 more extensive prompts, meant to supplement each
chapter’s set of activities, to help readers build a portfolio of written work. These prompts
are all forward referenced according to which book chapter’s skills they focus on. We provide
general guidance for what to write and how much to write, but these prompts are meant to
be freely adapted based on the reader/writer’s interest.
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Appendix A

Appendix

A.1 Identifiability Controversy Supporting Material

Partially Identifying Prevalence Using Presence-Only Data (with
perfect detection)

For this discussion it will be useful to denote the occurrence probability ψi at site i as ψ(xi)
to emphasize the dependency on the covariate x.

Each ψ(xi) ∈ (0, 1) so each αψ(xi) ∈ (0, 1). Therefore, α ∈
(

0, 1
supx∈X ψ(x)

)
for the set

X of possible realizations of the feature x. This bound on α translates into a bound for

the overall prevalence ρ∗, ρ∗ ∈
(

0, ρ
supx∈X ψ(x)

)
, where ρ is the prevalence before scaling.

Note that
supx∈X ψ(x)

ρ
= supx∈X

ψ(x)
ρ

= supx∈X
π(x|Y=1)
π(x)

. Then the bound can be estimated:

ρ∗ ∈
(

0, infx∈X
π(x)

π(x|Y=1)

)
. A lower bound exists for supx∈X

π(x|Y=1)
π(x)

, so an upper bound exists

for infx∈X
π(x)

π(x|Y=1)
because π(x) is assumed to be known and π(x|Y = 1) is the observable

distribution of the covariate x given Y = 1. In context, to get a narrower interval a big
differential between π(x|Y = 1) and π(x) would need to exist. This would correspond to
x being a strong predictor of occurrence. In practice, one could search for a region within
the data that had a big difference. There is potential that this partial identifiability would
suffice in practice depending on the research goals.

Single Visit Occurrence Example with Penalization

Figs A.1 and A.2 show that the penalization in the detect implementation does not mitigate
problems due to a lack of nonparametric identifiability [172].
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Figure A.1: The x-axis displays the value of the covariate that helps us predict occurrence.
The y-axis displays the occurrence probabilities. Penalization in the implementation of the
single-visit analysis does not make up for the lack of nonparametric identifiability for the
occurrence probabilities.
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Figure A.2: The x-axis displays the value of the covariate that helps us predict detection.
The y-axis displays the detection probabilities. Penalization in the implementation of the
single-visit analysis does not make up for the lack of nonparametric identifiability for the
detection probabilities.

Single-Visit Abundance Scenario

The single-visit abundance scenario follows analogously to the single-visit occurrence sce-
nario. Parametric identifiability for the site-specific abundance and detection probabilities
comes from particular choices of link functions, but these properties lack the stronger non-
parametric identifiability. In the single-visit abundance scenario there is an underlying data-
generating process that produces an abundance Ni at each site i. A random sample of S
sites are visited and how many individuals seen are recorded. The Ni are assumed to be
independent Poisson random variables with parameters λi. Given the abundance Ni at a
site, and the site-specific detection probability pi, the number yi of individuals observed is
assumed to follow a Binomial distribution with Ni trials and probability pi. Then the yi
are marginally independent Poisson distributions with parameter λipi. The abundances are
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typically of interest, and the average parameter 1
S

∑S
i=1 λi of the abundance distribution may

be of particular interest.
An approach using covariates x to model abundance and z to model detection proba-

bilities is proposed by Solymos et al. that estimates the parameters λi of the site-specific
abundance distribution separately from the site-specific detection probabilities pi [171].

Their approach is able to parametrically identify the site-specific abundance and de-
tection probabilities, but Knape and Korner-Nievergelt proposed a counter-example model
that reveals a lack of nonparametric identifiability for these properties [88]. This counter-

example model is similar to that of the single-visit occurrence example: λi = α eβ0+β
′xi

1+eβ0+β
′xi

;

pi = 1
α

eθ0+θ
′zi

1+eθ0+θ
′zi

. The same observable distribution of the yi can arise from different compo-

nents λi and pi.
A lack of nonparametric identifiability can be shown in even these idealized conditions,

but it should be noted that the assumptions of the Poisson distribution, the independence
between sites, and the Binomial distribution may also be tenuous. Barker et al. and Knape
et al. provide a discussion of identifiability and robustness with respect to the Binomial and
Poisson assumptions in the scenario where abundance data is recorded from multiple visits
[7, 90].

Again the scaling counter-example was a convenient way to show that the average abun-
dance lacks nonparametric identifiability, but the breakdown under model mis-specification
can be shown using yet another data-generating process that differs from the assumptions
of the single-visit model. Figs A.3 and A.4 present the same identifiability scenarios as in
the main manuscript for estimating abundance and detection respectively. The top rows
use counts with imperfect detection from a single-visit, while the bottom rows use counts
with imperfect detection from two visits. The first columns show estimation via Poisson and
logistic regression respectively when the true data-generating processes come from quadratic
functions of covariates.

In the single-visit case, the “best approximation” within the parametric family of the
Poisson underestimates the abundance and overestimates detection probabilities. However,
with two visits, the abundance and detection probabilities are locally approximated within
the Poisson and logistic families respectively. In the second column, the added flexibility
of the spine terms allow both the single-visit and double-visit cases to estimate abundances
and detection probabilities closer to the truth, albeit with fairly high variability across sim-
ulations. With extra data the nonparametrically identified double-visit case has decreased
variability across simulations and is starting to converge to the truth (although even more
data seems to be needed) while the estimates across simulations in the single-visit case still
cover too wide a range of potential abundances and detection probabilities to be useful in
practice.

In the single-visit abundance example, an upper bound for abundance cannot be found
since detection probabilities could be arbitrarily small, but the number of detected individ-
uals (assuming no double-counts) can provide a lower bound.
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Figure A.3: The x-axis displays the value of the covariate that helps us predict abundance.
The y-axis displays the abundance. The first row shows that single-visit data only paramet-
rically identifies the average abundance. With model mis-specification, the abundances are
underestimated. Added flexibility increases the variability in the estimation of the abun-
dance. In the nonparametrically identified double-visit case depicted in the bottom row,
more data improves the estimates.

Capture-Recapture Abundance Scenario

Capture-recapture is a data-collection strategy that requires repeated visits to the same
locations over time and the ability to uniquely identify individuals. This way a repeated
sighting of a particular individual is recorded. Closure is assumed and replication given by
revisiting locations is used to allow for imperfect detection probabilities. The controversy in
this scenario is how to estimate the abundance when nothing is known about the distribution
of the individual detection probabilities.

To estimate an unknown total abundance N across a region of interest, S sites are visited
T times. When an individual is spotted it is marked such that it can be distinguished from
others if it is seen again during another visit. The Xi are the number of times individual i
is observed, and n is the number of individuals that are seen at least once. The Xi given
individual detection probabilities pi are independent Binomial random variables with T trials
and probability pi of success. The detection probabilities pi are identically distributed from
some unknown distribution g(p). The sighting frequencies fx are the number of Xi where
Xi = x. However, sighting frequencies are observed only given that the individual is spotted
at all, f cx. Similarly the only probability observed is that of seeing an individual x times
given that it is seen at least once.

With the language of nonparametric and parametric identifiability, previous results in
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Figure A.4: The x-axis displays the value of the covariate that helps us predict detection.
The y-axis displays the probability of detection. The first row shows that single-visit data
only parametrically identifies the average detection. With model mis-specification, the de-
tection probabilities are overestimated. Even with more data, the single-visit case yields
estimates that cover the majority of the range of plausible values, not providing much in-
sight into the true average detection probability. In contrast, the bottom row shows that
detection probabilities are nonparametrically identified using double-visit data, and estima-
tion is robust to model mis-specification (although even more data would be needed to get
even closer to the truth).

the literature are more easily interpretable. Huggins showed that there are different uncon-
ditional distributions of the total abundance (unobserved) that have the same distributions
when conditioned on the captured individuals (observed) [75]. Link refined the conclusions
of Huggins and showed that if two distributions of detection probabilities conditioned on the
captured individuals are close (in function space), their unconditional distributions of the
total abundance are not necessarily close [99, 75]. This result shows a lack of nonparamet-
ric identifiability; the abundance cannot be identified without restrictions on the detection
probability distribution g(p).

Holzmann et al. showed that if g(p) is assumed to belong to certain probability distribu-
tion families, abundance is identifiable [73]. Abundance is identifiable if it is assumed that
the detection probabilities follow a Uniform distribution (with more than one visit per site),
follow a Beta distribution (with more than two visits per site) or follow a finite mixture
model (with at least twice as many visits as mixture components). These are parametric
identifiability results. Link responded that even if it is assumed that there are no individuals
who are undetectable, there is still no identifiability across different families of assumptions
for g(p) e.g. a Beta distribution can be found that gives an identical observable distribution
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to a two-point mixture but implies a different overall abundance [100]. This illustrates the
gap between a parametrically and nonparametrically identifiable property.

Mao determined a lower bound on the odds of an individual animal not being captured
and used it to lower bound the abundance [110, 111]. However, they also showed that an
upper bound on abundance cannot be found without placing restrictions on g(p). These
results partially identify abundance.

Lack of Nonparametric Identifiability for Capture-Recapture Data (with
heterogeneous detection)

Link gave examples that have the same observable distribution but imply different values
of total abundance, showing lack of nonparametric identifiability when working with the
distribution of the abundance conditional on the sighted individuals [99].

However, Farcomeni and Tardella showed that abundance is technically identifiable when
analyzing the unconditional likelihood rather than the conditional likelihood [50]. The con-
ditional likelihood was focused on by Huggins, Link, and Holzman et al. because Sanathanan
stated that the conditional likelihood of the abundance (conditional on the captured individ-
uals) is asymptotically equivalent to its unconditional likelihood [75, 99, 73, 165]. However,
Farcomeni and Tardella pointed out that the conditions for this statement are not met in
the capture-recapture scenario [50]. Despite technical identifiability, Farcomeni and Tardella
showed that there is no consistent estimator for the total abundance. Here, some intuition
about why the technical identifiability is so tenuous is provided [50].

Recall that if N is considered fixed, n ∼ Binom(N, 1− πg(0)). Technically N and πg(0)
are identifiable because it is not possible to find a N 6= N∗ and πg(0) 6= π∗g(0) such that for
all x: (

N

x

)
πg(0)x(1− πg(0))N−x =

(
N∗

x

)
π∗g(0)x(1− π∗g(0))N

∗−x

However, with a single realization of the data generating process, these parameters are
not practically identifiable. Importantly, more realizations of the data generating function
would be needed, not a larger sample size.

If the model is broadened to allow N to be random this tenuous identifiability goes
away. Suppose N ∼ Poisson(λ). Note that N could be chosen to follow a nonparametric
distribution, but since N and πg(0) can be proved to be not nonparametrically identifiable in
this case, they certainly are not nonparametrically identifiable in a more general case. Then
the number of individuals seen at least once follows a Poisson distribution with parameter
λ(1− πg(0)).

Multiple data generating processes can have the same observable distribution by scaling
up λ and scaling down (1−πg(0)) by equal amounts (or vice versa). Therefore, the abundance
is not nonparametrically identifiable.
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Johndrow et al. proposed estimating a different quantity, the abundance of individuals
who have detection probabilities above a particular threshold [83]. They provide a risk
analysis of their estimator and some guidance on how to choose the required threshold.

A.2 JSDM Supporting Material

number factors number species H S E Jaccard
1 1 10 1.56 5.01 0.97 0.66
2 2 10 1.56 5.00 0.97 0.65
3 3 10 1.53 5.00 0.95 0.67
4 5 10 1.57 5.00 0.98 0.65
5 10 10 1.56 5.00 0.97 0.66
6 1 25 2.51 12.49 0.99 0.65
7 2 25 2.49 12.51 0.98 0.66
8 3 25 2.51 12.50 0.99 0.66
9 5 25 2.51 12.49 0.99 0.66

10 10 25 2.51 12.49 0.99 0.66
11 1 45 3.10 22.50 1.00 0.66
12 2 45 3.10 22.52 1.00 0.66
13 3 45 3.10 22.51 1.00 0.65
14 5 45 3.10 22.51 1.00 0.66
15 10 45 3.10 22.49 1.00 0.66

Table A.1: Correct-K True Values

number factors number species H S E Jaccard
1 1 25 1.78 6.16 0.98 0.63
2 2 25 1.85 6.65 0.97 0.66
3 3 25 1.93 7.21 0.98 0.69

Table A.2: Correct-K with Realistic Species Prevalences True Values

block size number species H S E Jaccard
1 3 30 2.68 15.02 0.99 0.67
2 5 30 2.67 14.99 0.98 0.67
3 10 30 2.63 15.00 0.97 0.68

Table A.3: Block-Correlation True Values
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block size number species H S E Jaccard
1 3 30 1.62 5.55 0.95 0.76
2 5 30 1.60 5.56 0.93 0.76
3 10 30 1.54 5.54 0.90 0.76

Table A.4: Block-Correlation with Realistic Prevalences True Values
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number factors number species degrees of freedom H S E Jaccard
1 1 10 3 1.57 5.00 0.98 0.64
2 2 10 3 1.57 5.00 0.98 0.66
3 3 10 3 1.58 5.01 0.98 0.66
4 5 10 3 1.57 4.98 0.98 0.66
5 10 10 3 1.57 5.00 0.98 0.66
6 1 25 3 2.51 12.47 0.99 0.65
7 2 25 3 2.51 12.50 0.99 0.66
8 3 25 3 2.51 12.50 0.99 0.66
9 5 25 3 2.51 12.50 0.99 0.66

10 10 25 3 2.51 12.49 0.99 0.66
11 1 45 3 3.11 22.48 1.00 0.65
12 2 45 3 3.11 22.51 1.00 0.66
13 3 45 3 3.11 22.50 1.00 0.66
14 5 45 3 3.11 22.50 1.00 0.66
15 10 45 3 3.11 22.49 1.00 0.66
16 1 10 5 1.57 5.01 0.98 0.65
17 2 10 5 1.57 5.00 0.98 0.65
18 3 10 5 1.57 5.01 0.98 0.66
19 5 10 5 1.57 5.00 0.98 0.66
20 10 10 5 1.57 5.00 0.98 0.66
21 1 25 5 2.51 12.51 0.99 0.64
22 2 25 5 2.51 12.49 0.99 0.66
23 3 25 5 2.51 12.47 0.99 0.66
24 5 25 5 2.51 12.51 0.99 0.66
25 10 25 5 2.51 12.48 0.99 0.66
26 1 45 5 3.11 22.50 1.00 0.65
27 2 45 5 3.11 22.48 1.00 0.66
28 3 45 5 3.11 22.50 1.00 0.66
29 5 45 5 3.11 22.48 1.00 0.66
30 10 45 5 3.11 22.52 1.00 0.66
31 1 10 20 1.57 4.99 0.98 0.65
32 2 10 20 1.57 5.00 0.98 0.66
33 3 10 20 1.57 5.00 0.98 0.65
34 5 10 20 1.57 5.00 0.98 0.66
35 10 10 20 1.57 4.98 0.98 0.66
36 1 25 20 2.51 12.50 0.99 0.65
37 2 25 20 2.51 12.51 0.99 0.66
38 3 25 20 2.51 12.50 0.99 0.66
39 5 25 20 2.51 12.49 0.99 0.66
40 10 25 20 2.51 12.52 0.99 0.66
41 1 45 20 3.11 22.50 1.00 0.65
42 2 45 20 3.11 22.49 1.00 0.66
43 3 45 20 3.11 22.50 1.00 0.66
44 5 45 20 3.11 22.51 1.00 0.66
45 10 45 20 3.11 22.48 1.00 0.66

Table A.5: Heavy Tail True Values



APPENDIX A. APPENDIX 128

number factors number species degrees of freedom H S E Jaccard
1 1 25 3 1.84 6.48 0.98 0.64
2 2 25 3 1.86 6.65 0.98 0.64
3 3 25 3 1.82 6.39 0.98 0.65
4 1 25 5 1.85 6.60 0.98 0.63
5 2 25 5 1.78 6.14 0.98 0.67
6 3 25 5 1.80 6.24 0.98 0.65
7 1 25 20 1.85 6.59 0.98 0.64
8 2 25 20 1.86 6.61 0.98 0.65
9 3 25 20 1.83 6.40 0.98 0.64

Table A.6: Heavy Tail with Realistic Prevalences True Values

H S E Jaccard
1 0.41 1.47 1.08 0.69

Table A.7: Toy Interaction True Values
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