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Abstract 

Structural equation modeling (SEM) is an extremely flexible linear-in-parameters 
multivariate statistical modeling technique.  It has been used in modeling travel behavior 
and values since about 1980, and its use is rapidly accelerating, partially due to the 
availability of improved software.  The number of published studies, now known to be 
more than fifty, has approximately doubled in the past three years.  This review of SEM 
is intended to provide an introduction to the field for those who have not used the 
method, and a compendium of applications for those who wish to compare experiences 
and avoid the pitfall of reinventing previous research. 
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1. INTRODUCTION 

Structural equation modeling (SEM) is a modeling technique that can handle a large 
number of endogenous and exogenous variables, as well as latent (unobserved) 
variables specified as linear combinations (weighted averages) of the observed 
variables.  Regression, simultaneous equations (with and without error-term 
correlations), path analysis, and variations of factor analysis and canonical correlation 
analysis are all special cases of SEM.  It is a confirmatory, rather than exploratory 
method, because the modeler is required to construct a model in terms of a system of 
unidirectional effects of one variable on another.  Each direct effect corresponds to an 
arrow in a path (flow) diagram.  In SEM one can also separate errors in measurement 
from errors in equations, and one can correlate error terms within all types of errors.   
   
Estimation of SEM is performed using the covariance analysis method (method of 
moments).  There are covariance analysis methods that can provide accurate estimates 
for limited endogenous variables, such as dichotomous, ordinal, censored and truncated 
variables.  Goodness-of-fit tests are used to determine if a model specified by the 
researcher is consistent with the pattern of variance-covariances in the data.  Alternative 
SEM specifications are typically tested against one another, and several criteria are 
available that allow the modeler to determine an optimal model out of a set of competing 
models.   
 
SEM is a relatively new method, having its roots in the 1970s.  Most applications have 
been in psychology, sociology, the biological sciences, educational research, political 
science, and market research.  Applications in travel behavior research date from 1980.  
Use of SEM is now rapidly expanding as user-friendly software becomes available, and 
researchers become comfortable with SEM and regard it as another tool in their 
arsenal. 
 
The remainder of this paper is divided into two main parts: an introduction to SEM, and 
a review of applications of SEM in travel behavior research.  Citations in the 
applications section are limited to models of travel behavior and values.  Applications 
involving transportation from the perspectives of urban modeling, land use, regional 
science, geography, or urban economics are not included, unless such applications 
specifically include models of travel behavior or values.  
 

2. METHODOLOGY 

2.1. SEM Resources 

SEM is firmly established as an analytical tool, leading to hundreds of published 
applications per year.  Textbooks on SEM include Bollen (1989), Byrne (2001), Hayduk 
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(1987), Hoyle (1995), Kaplan (2000), Kline (1998), Loehlin (1998), Maruyama (1998), 
Mueller (1996), Schoenberg (1989), and Shipley (2000).  Overviews of the state of the 
method can be found in and Cudeck, du Toit and Sörbom (2001), Jöreskog (1990), 
Mueller (1997), and Yuan and Bentler (1997).  The multidisciplinary journal, Structural 
Equation Modeling, has been published quarterly since 1994.  Available SEM software 
is listed in the Appendix.  
 

2.2. The Defining Features of SEM  

An SEM with latent variables is composed of up to three sets of simultaneous 
equations, estimated concurrently: (1) a measurement model (or submodel) for the 
endogenous (dependent) variables, (2) a measurement (sub)model for the exogenous 
(independent) variables, and (3) a structural (sub)model, all of which are estimated 
simultaneously.  This full model is seldom applied in practice.  Generally, one or both of 
the measurement models are dropped.  SEM with a measurement model and a 
structural model is known as SEM with latent variables.  Alternatively, one can have 
structural model without any measurement models (SEM with observed variables), or a 
measurement model alone (confirmatory factor analysis).  In general, an SEM can have 
any number of endogenous and exogenous variables.  
 
An SEM structural model is used to capture the causal influences (regression effects) of 
the exogenous variables on the endogenous variables and the causal influences of 
endogenous variables upon one another.  The structural model also allows specification 
of error-term covariances.  If the SEM also has a measurement model for the 
endogenous variables, the structural model involves latent endogenous variables rather 
than observed endogenous variables.  Similarly, the SEM can have a measurement 
model and latent variables for exogenous variables.  Simultaneous equations (typically 
estimated using instrumental variables methods) and path analysis are special cases of 
SEM with observed variables, while ordinary linear regression is the special case of 
SEM with one observed endogenous variable and multiple observed exogenous 
variables.   
 
An SEM measurement model is used to specify latent (unobserved) variables as linear 
functions (weighted averages) of other variables in the system.  When these other 
variables are observed, they take on the role of “indicators” of the latent constructs.1  In 
this way, SEM measurement models are similar to factor analysis, but there is a basic 
difference.  In exploratory factor analysis, such as principal components analysis, all 
elements of the matrix defining the latent variables (factors) in terms of linear 
combinations of the observed variables take on non-zero values.  These values (factor 

                                                 
1 In advanced applications, models can be specified in which latent variables are functions only of other 
latent variables.  Such “phantom” latent variables allow the modeler to constrain parameters to be within 
certain ranges (e.g., greater than zero) and to construct other types of special effects, such as random 
effects and period-specific effects in dynamic data.   



SEM for travel behavior Research Tom Golob November 6, 2001 Page 4  

 

loadings) generally measure the correlations between the factors and the observed 
variables, and rotations are routinely performed to aid in interpreting the factors by 
maximizing the number of loadings with high and low absolute values.  In SEM, the 
modeler decides in advance which of the parameters defining the factors are restricted 
to be zero, and which are freely estimated or constrained to be equal to each other or to 
some non-zero constant.  Also, in SEM one can also specify non-zero covariances 
among the unexplained portions of both the observed and latent variables.  
Specification of each parameter allows the modeler to conduct a rigorous series of 
hypothesis tests regarding the factor structure.  Since there can be a large number of 
possible combinations in a measurement model with more than just a few variables, 
exploratory factor analysis is sometimes used to guide construction of an SEM 
measurement model.  
 
An important distinction in SEM is that between direct effects and total effects.  Direct 
effects are the links between a productive variable and the variable that is the target of 
the effect.  Each direct effect corresponds to an arrow in a path (flow) diagram.  An SEM 
is specified by defining which direct effects are present and which are absent.  With 
most modern SEM software this can be done graphically by manipulating path 
diagrams.  These direct effects embody the causal modeling aspect of SEM.2  Total 
effects are defined to be the sum of direct effects and indirect effects, where the indirect 
effects represent the sum of all of the effects along the paths between the two variables 
that involve intervening variables.  The total effects of the exogenous variables on the 
endogenous variables are sometimes known as the coefficients of the reduced-form 
equations.     
 
The general SEM system is estimated using covariance (structure) analysis, whereby 
model parameters are determined such that the variances and covariances of the 
variables implied by model system are as close as possible to the observed variances 
and covariances of the sample.  In other words, the estimated parameters are those that 
make the variance-covariance matrix predicted by the model as similar as possible to 
the observed variance-covariance matrix, while respecting the constraints of the model.  
Covariance analysis appears at first to be quite different from least square regression 
methods, but it can be viewed as an extension of least squares into the realm of latent 
variables, error-term covariances, and non-recursive models (i.e., models with feedback 
loops).  In some simple cases, covariance analysis is identical to least squares.  
Estimation methodology is discussed in Section 2.5.   
 
Advantages of SEM compared to most other linear-in-parameter statistical methods 
include the following capabilities: (1) treatment of both endogenous and exogenous 
variables as random variables with errors of measurement, (2) latent variables with 
multiple indicators, (3) separation of measurement errors from specification errors, (4) 
test of a model overall rather than coefficients individually, (5) modeling of mediating 

                                                 
2 For discussions of SEM in the context of causal modeling see Berkane (1997), Pearl (2000), Shipley 
(2000), and Sprites, Glymour and Scheines (2001). 
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variables, (6) modeling of error-term relationships, (7) testing of coefficients across 
multiple groups in a sample, (8) modeling of dynamic phenomena such as habit and 
inertia, (9) accounting for missing data, and (10) handling of non-normal data.  These 
capabilities are demonstrated in many of the applications reviewed in Section 3.  
 

2.3. A Brief History of Structural Equation Models 

It is generally agreed that no one “invented” SEM.  One simple view is that SEM is the 
union of latent variable (factor analytic) approaches, developed primarily in psychology 
and sociology, and simultaneous equation methods of econometrics.  Upon closer 
inspection, we see that modern SEM evolved out of the combined efforts of many 
scholars pursuing several analytical lines of research.  Bollen (1989) proposed that SEM 
is founded on three primary analytical developments: (1) path analysis, (2) latent variable 
modeling, and (3) general covariance estimation methods.  Here we will highlight the 
contributions of each of these three areas.3     
 
Path analysis, developed almost exclusively by geneticist Sewall Wright (1921)(1934), 
introduced three concepts: (1) the first covariance structure equations, (2) the path 
diagram or causal graph, and (3) decomposition of total effects between any two 
variables into total, direct and indirect effects.  Shipley (2000) describes how and why 
path analysis was largely ignored in biology, psychology and sociology until the 1960s.  
Prior to the 1960s, econometricians also pursued the testing of alternative causal 
relationships through the use of overidentifying constraints on partial correlations (e.g., 
Haavelmo, 1943), but for many years economics was also uninformed about the 
solutions inherent in path analysis (Epstein, 1987; Shipley, 2000).  During the 1960s and 
early 1970s, sociologists in particular (led by Blalock, 1961; Boudon, 1965; and 
Duncan, 1966) discovered the potential of path analysis and related partial correlation 
methods.  Path analysis was then superseded by SEM, in which general covariance 
structure equations specify how alternative chains of effects between variables generate 
correlation patterns.  Modern SEM still relies on path diagrams to express what the 
modeler postulates about the causal relationships that generate the correlations among 
variables.   
 
The development of models in which inferences about latent variables could be derived 
from covariances among observed variables (indicators) was pursued in sociology 
during the 1960s.  These latent variable models contributed significantly to the 
development of SEM by demonstrating how measurement errors (errors-in-variables) 
can be separated from specification errors (errors-in-equations).  A seminal contribution 
was that of Blalock (1963).  These models led directly to the first general SEM, 
developed by Jöreskog (1970)(1973), Keesling (1972) and Wiley (1973).  

                                                 
3  For more detailed perspectives on the genesis of SEM, see Aigner, et al. (1984), Duncan (1975), 
Goldberger (1972), Bielby and Hauser (1977) and Bentler (1980).  Historical background is also 
discussed in many of the SEM texts listed in Section 2.1.  
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Wright’s path analysis lacked the ability to test specific hypotheses regarding a 
postulated causal structure.  Work by Lawley (1940), Anderson and Rubin (1956), and 
Jöreskog (1967)(1969) led to the development of maximum likelihood (ML) estimation 
methods for confirmatory factor analysis, which in tern led to the estimation of models in 
which confirmatory factor analysis was combined with path analysis (Jöreskog, 1970, 
1973; Keesling 1972).  ML estimation allowed testing of individual direct effects and 
error-term correlations, and it is still the most widely used estimation method for SEM 
(Section 2.5).    
 
Modern SEM was originally known as the JKW (Jöreskog-Keesling-Wiley) model.  SEM 
was initially popularized by the wide distribution of the LISREL (Linear Structural 
RELationships) program developed by Jöreskog (1970), Jöreskog, Gruvaeus and van 
Thillo (1970), and Jöreskog and Sörbom (1979).  For some time, SEM was 
synonymous with LISREL, but there are now many SEM programs available (see 
Appendix). 
 

2.4. Model Specification and Identification 

An SEM is constructed in terms of postulated direct effects between variables and 
optional error-term covariances of several types.  Each postulated effect usually 
corresponds to a free parameter.4  If the SEM is has no measurement model(s) (no 
latent variables), there are four types of potential free parameters: (1) the (regression) 
effect of any exogenous variable on any endogenous variable, (2) the effect of any 
endogenous variable on any other endogenous variable (except itself),  (3) variances of 
the unique portion (error term) of each endogenous variable, and (4) covariances 
between the error terms of any two endogenous variables.  If the SEM contains latent 
endogenous variables, the above error-term variances and covariances pertain to error 
terms of latent endogenous variables, and the potential list of free parameters is 
increased to include: (5) the effect of a latent variable on its postulated observed-
variable indicators (similar to factor loadings), and (6) variances of the unique portion 
(measurement error term) of each observed latent variable, and (7) covariances 
between the error terms of any two observed latent variables.  If the SEM contains latent 
exogenous variables, there will be a similar opportunity for error-term variances and 
covariances pertaining to exogenous variables.  Modern SEM software allows 
specification of a model using one or more of three tools: matrix notation, symbolic 
equations, or graphically, by specifying arrows in a flow diagram. 
  
We are usually in search of a parsimonious description of travel behavior.  In SEM, the 
primary measure of parsimony is the degrees of freedom of the model, which equal to 
the difference between the number of free parameters in the model and the number of 

                                                 
4 Direct effects can also be set to fixed non-zero values, and free parameters can also be constrained to 
be equal to one another.  
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known quantities.  The number of known quantities in covariance analysis is equal to the 
number of free elements in the variance-covariance matrix of the variables.  The art of 
constructing an SEM is to specify an over-identified model in which only some of the 
possible parameters are free and many are restricted to zero, such that the model is 
nevertheless a reasonable representation of the phenomena under study (criteria for 
assessing model fit are the subject of Section 2.6).  Theory and good sense must guide 
model specification.  A saturated, or just-identified SEM, has zero degrees of freedom 
and fits perfectly, but it is only of interest as a baseline for certain goodness-of-fit criteria 
and as a means of exploring candidate parameters for restriction to zero.  The most 
common ways of reducing model complexity are to eliminate weak regression effects, to 
reduce the number of indicators of each latent variable, and to minimize weak 
covariances between error terms.  For SEM with latent variables, it is recommended 
that the measurement model(s) be developed first, followed by the structural model 
(Anderson and Gerbing, 1988). 
 
Estimation of a model is not possible if more than one combination of parameter values 
will reproduce the same data (covariances).  Such an indeterminate model is termed to 
be unidentified, or under-identified.  In models of travel behavior with a single 
endogenous variable, identification is not generally a problem, except when caused by 
special patterns in the data (empirical under-identification).  In SEM, empirical under-
identification can also be a problem, but the cause of an indeterminate solution is 
usually the design of the model (structural under-identification).  The flexibility of SEM 
makes it fairly easy to specify a model that is not identified.  
 
Heuristics are available to guide the modeler.  There are separate rules of thumb for the 
measurement model and structural model, but an entire system may be identified even if 
a rule of thumb indicates a problem with one of its submodels, because restrictions in 
one submodel can aid in identifying the other submodel.  Rules of thumb for 
identification of measurement models are reviewed in Bollen (1989: 238-254), Reilly 
(1995) and Shipley (2000: 164-171).  These rules involve the number of observed 
variables to which each latent variable is linked and whether or not the error terms of the 
latent variables are specified as being correlated.5  
 
Rules of thumb for identification of structural models (and the only concern for SEM with 
observed variables) are reviewed in Bollen (1989: 88-104), Rigdon (1995) and Shipley 
(2000: 171-173).  Basically, all recursive models, in which there are no feedback loops 
in the chains of direct effects, will be identified as long as there are no error-term 
correlations.  Non-recursive models can be broken into blocks in which all feedbacks 
are contained within a block, so that the relationship between the blocks is recursive.  If 
each block satisfies identification conditions, then the entire model is also identified 
                                                 
5 The “three measure rule” asserts that a measurement model will be identified if every latent variable is 
associated with at least three observed variables; and the “two measure rule” asserts that a 
measurement model will be identified if every latent variable is associated with at least two observed 
variables and the error term of every latent variable is correlated with at least one other latent variable 
error term.   
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(Fox, 1984; Rigdon, 1995).  The modeler can also check the rank order of a composite 
matrix involving the exogenous variable effects and the effects among the endogenous 
variables to verify that a structural model will be identified even if there are unlimited 
error-term correlations (Bollen, 1989).    
  
Confronted with an under-identified model, an SEM estimation program might diagnose 
the identification problem.  However, detection is not guaranteed, and the program 
might either produce peculiar estimates or fail to converge to a solution.  Detection is 
generally based on interrogating the rank of the information matrix of second-order 
derivatives of the fitting function.  Unfortunately, rank is almost always evaluated 
sequentially and pertains only to a local solution.  Thus, when a deficiency is detected, 
only the first parameter involved in the problem is identified and there is no information 
about other parameters that are also involved in the indeterminancy (McDonald, 1982).  
Identification problems can also be uncovered by testing whether the same solution is 
obtained when re-estimating the model with an alternative initial solution, or by 
substituting the model-reproduced variance-covariance matrix for the sample matrix.  
Also, by using methods of modern computer algebra, the rank of an augmented version 
of the Jacobian matrix of first derivatives of the fitting function can establish whether a 
model is structurally identified (Bekker, Merckens and Wansbeek (1994).  Abnormally 
large standard errors and coefficient covariances are evidence of undetected 
identification problems.  
 

2.5. Estimation Methods and Sample Size Requirements 

The fundamental principle of covariance analysis is that every linear statistical model 
implies a variance-covariance matrix of its variables.  The functional form of every 
element in the combined variance-covariance matrix of the endogenous and exogenous 
variables can be derived from the SEM equations using simple matrix algebra.  
Covariance analysis works by finding model parameters such that the variances and 
covariances implied by model system are as close as possible to the observed 
variances and covariances of the sample.  In simple multiple regression, this exercise 
leads to the normal equations of ordinary least squares.  For SEM with multiple 
endogenous variables, especially SEM with latent variables, estimation becomes more 
challenging, and quite a few different methods have been developed.  Selection of an 
appropriate SEM estimation method depends on the assumptions one is willing to 
make about the probability distribution, the scale properties of the variables, the 
complexity of the SEM, and the sample size.  
 
The mostly commonly used SEM estimation methods today are: normal-theory 
maximum likelihood (ML), generalized least squares (GLS), weighted least squares 
(WLS), in forms such as asymptotically distribution free weighted least squares (ADF or  
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ADF-WLS), and elliptical reweighted least squares (EGLS or ELS).6  These methods all 
involve a scalar fitting function that is minimized using numerical methods.  Parameter 
standard errors and correlations are computed from the matrices of first and second 
derivatives of the fitting function.  The product of the optimized fitting function and the 
sample size is asymptotically chi-square distributed with degrees of freedom equal to 
the difference between the number of free elements in the observed variance-
covariance and the number of free parameters in the model.7  In SEM group models, the 
variance-covariance data are stacked and hypotheses tests can be conducted to 
determine the extent to which each group differs from every other group. 
 
ML is the method used most often.  The ML solution maximizes the probability that the 
observed covariances are drawn from a population that has its variance-covariances 
generated by the process implied by the model, assuming a multivariate normal 
distribution.  The properties of ML estimators have been thoroughly investigated with 
respect to the effect of violations from normality and sample size on biases of 
estimators, nonconvergence, and improper solutions (e.g., Boomsma, 1982; Bollen, 
1989; Finch, et al., 1997; Hoogland and Boomsma, 1998; and Kline, 1998).  The bottom 
line is that ML estimation is fairly robust against violations of multivariate normality for 
sample sizes commonly encountered in transportation research.  Simulation studies 
have shown that excess kurtosis is the main cause of biases in standard errors and 
goodness-of-fit of ML estimates, and some software packages provide measures of 
multivariate kurtosis (Mardia, 1970) as an aid in assessing the accuracy of ML 
estimates and goodness of fit; skewness is less of a problem.  Corrections have also 
been developed to adjust ML estimators to account for non-normality.  These include a 
robust ML standard error estimator (RML) (Browne, 1984; Bentler, 1995) and a scaled 
ML test statistic (SML) (Satorra and Bentler, 1988).  In addition, Bayesian full-
information ML estimators based on the EM algorithm are now becoming available for 
use with missing and non-normal data (Lee and Tsang, 1999; Lee and Shi, 2000). 
 
The robustness of ML estimation and the correction factors that have been developed 
for non-normal data mean that SEM with ML estimation can be used in many situations 
with discrete choice variables, with ordinal scales used to collect data on feelings and 
perceptions (e.g., Likert scales), and with truncated and censored variables.8  However, 
in order to further minimize biases, ADF-WLS and related elliptical estimators for SEM 
                                                 
6 Lesser used methods include unweighted least squares (ULS), diagonally weighted least squares 
(DWLS), and instrumental variable (IV) methods, such as three-stage least squares.  IV methods are 
sometimes used to establish initial values for ML, GLS and WLS. 
7 Depending on the estimation method and whether the correlation or variance-covariance matrix is being 
analyzed, either the sample size or the sample size minus one is used in the chi-square calculation.  
Also, under certain assumptions, the chi-square distribution can be considered to be non-central, and 
some goodness-of-fit criteria (Section 2.6) correspond to how well a model reduces the noncentrality 
parameter of the distribution. 
8 A current limitation is that SEM estimation methods will only support dichotomous and ordered 
polychotomous categorical variables.  This means that a multinomial discrete choice variable must be 
represented in terms of a multivariate choice model by breaking it down into component dichotomous 
variables linked by free error covariances (Muthén, 1979). 
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have been specifically designed for limited endogenous variables.  These estimators 
have been shown to be consistent and asymptotically efficient, with asymptotically 
correct measures of model goodness-of-fit, under a broad range of conditions (Bentler, 
1983; Browne, 1982, 1984; Muthén, 1983, 1984; Bock and Gibbons, 1996).  
Comparisons of the performance of ADF-WLS versus alternative methods are provided 
by Sugawara and McCallum (1993), Fan, et al., (1999) and Boomsma and Hoogland 
(2001).  The major disadvantage of ADF-WLS and related estimators is that they 
require a larger sample size compared to ML, due to their heavy reliance on asymptotic 
assumptions and required computation and inversion of a matrix of fourth-order 
moments.9   
 
Sample size issues have received considerable attention (e.g., Anderson and Gerbing, 
1988; Bentler, 1990; Bentler and Yuan, 1999; Bollen, 1990; Hoogland and Boomsma, 
1998).  The consensus is that the minimum sample sizes for ADF-WLS estimation 
should be at least 1,000 (Hoogland and Boomsma, 1998), some say as high as 2,000 
(Hoyle, 1995; Ullman, 1996; Boomsma and Hoogland, 2001).  ML estimation also 
requires a sufficient sample size, particularly when non-normal data are involved.  Based 
on Monte Carlo studies of the performance of various estimation methods, several 
heuristics for have been proposed: (1) A minimum sample size of 200 is needed to 
reduce biases to an acceptable level for any type of SEM estimation (Kline, 1998; 
Loehlin, 1998; Boomsma and Hoogland, 2001).  (2) Sample size for ML estimation 
should be at least fifteen times the number of observed variables (Stevens, 1996).  (3) 
Sample size for ML estimation should be at least five times the number of free 
parameters in the model, including error terms (Bentler and Chou, 1987; Bentler, 1995); 
and (4) with strongly kurtotic data, the minimum sample size should be ten times the 
number of free parameters (Hoogland and Boomsma, 1998).  Bootstrapping is an 
alternative for ML estimation with small samples (Shipley, 2000).  
 

2.6. Assessing Goodness of Fit and Finding the Best Model 

Many criteria have been developed for assessing overall goodness of fit of an SEM and 
measuring how well one model does versus another model.10  Most of these evaluation 
criteria are based on the chi-square statistic given by the product of the optimized fitting 
function and the sample size.  The objective is to attain a nonsignificant model chi-
square, since the statistic measures the difference between the observed variance-
covariance matrix and the one reproduced by the model.  The level of statistical 
significance indicates the probability that the differences between the two matrices are 
due to sampling variation.  While it is generally important to attain a nonsignificant chi-
square, most experts suggest that chi-square should be used as a measure of fit, not as 

                                                 
9 A previous disadvantage of WLS and related methods, computational intensity, has been eliminated 
with the capabilities of modern personal computers. 
10 For overviews of SEM goodness-of-fit, see Bentler (1990), Bollen and Long (1992), Gerbing and 
Anderson (1992), Hu and Bentler (1999), and Mulaik, et al. (1989). 
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a test statistic (Jöreskog and Sörbom, 1993).  One rule of thumb for good fit is that the 
chi-square should be less than two times its degrees of freedom (Ullman, 1996).  
 
There are problems associated with the use of fitting-function chi-square, mostly due to 
the influences of sample size and deviations from multinormality.  For large samples it 
may be very difficult to find a model that cannot be rejected due to the direct influence of 
sample size.  For such large samples, Critical N (Hoetler, 1983) gives the sample size 
for which the chi-square value would correspond to p=.05; a rule of thumb is that critical 
N should be greater than 200 for an acceptable model (Tanaka, 1987).  For small 
sample sizes, asymptotic assumptions become tenuous, and the chi-square value 
derived from the ML fitting function is particularly sensitive to violations from 
multinormality.  Many of the following goodness-of-fit indices use normalizations to 
cancel out sample size in the chi-square functions, but the mean of the sampling 
distribution of these indices is still generally a function of sample size (Bollen, 1990, 
Bentler and Yuan, 1999). 
 
Goodness-of-fit measures for a single model based on chi-square values include: (1) 
root mean square error of approximation (RMSEA) which measures the discrepancy 
per degree of freedom (Steiger and Lind, 1980), (2) Z-test (McArdle, 1988), and (3) 
expected cross validation index ECVI (Browne and Cudeck, 1992).  Most SEM 
programs provide these measures together with their confidence intervals.  It is 
generally accepted that the value of RMSEA for a good model should be less than 0.05 
(Browne and Cudeck, 1992), but there are strong arguments that the entire 90% 
confidence interval for RMSEA should be less than 0.05 (MacCallum et al., 1996).    
 
Several goodness-of-fit indices compare a proposed model to an independence model 
by measuring the proportional reduction in some criterion related to chi-square; the 
indices.11  Most programs calculate several of these indices using the definition of an 
independence (null) model with no restrictions whatsoever.  Using such a baseline, a 
rule of thumb for most of the indices is that a good model should exhibit a value greater 
than 0.90 (Mulaik, et al., 1989; Bentler, 1990; McDonald and Marsh, 1990).  
Unfortunately, in many applications these indices will be very close to unity because of 
the very large chi-square values associated with such independence models.  This 
renders them of little use when distinguishing between two well-fitting models.  However, 
there is more than one interpretation of an independence model, so these indices 
should be recalculated using a baseline model that is appropriate for each specific 
application (Sobel and Bohrnstedt, 1985). 
  

                                                 
11 These indices, which mainly differ in terms of the normalization used to account for sample size and 
model parsimony, include: (1) normed fit index, which is variously designated in SEM software output as 
NFI, BBI, or ∆1 (Bentler and Bonett, 1980); (2) non-normed fit index (NNFI, TLI or RNI) (Tucker and Lewis, 
1973, Bentler and Bonett, 1980); (3) comparative fit index (CFI) (Bentler, 1989, Steiger,1989); (4) 
parsimonious normed fit index (PNFI) (James, Mulaik, and Brett, 1982); (5) relative normed index 
(designated as RFI or ρ) (Bollen, 1986); and (6) incremental fit index (IFI or ∆2) (Bollen, 1989 and Mulaik, 
1989). 
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The performance of models with substantially different numbers of parameters can be 
compared using criteria based on Bayesian Theory.  The Akaike Bayesian Information 
Criterion (variously abbreviated as ABIC, BIC or AIC) compares ML estimation 
goodness of fit and the dimensionality (parsimony) of each model (Akaike, 1974, 
1987).12  Modifications of the ABIC, the Consistent Akaike Information Criterion, or 
CAIC (Bozdogen, 1987) and the Schwarz Bayesian criterion, or SBC (Schwarz, 1978), 
take into account the sample size as well as the model chi-square and number of free 
parameters.  These criteria can be used not only to compare two alternative models of 
similar dimensionality, but also to compare how the models to the independence model 
at one extreme and the saturated model (perfect fit) at the other extreme.  The model 
that yields the smallest value of each criterion is considered best. 
 
Finally, goodness of fit measures based on the direct comparison of the sample and 
model-implied variance-covariance matrices include: (1) The root mean square residual 
(RMR, or average residual value), (2) the standardized RMR (SRMR), which ranges 
from zero to one, with values less than 0.05 being considered a good fit (Byrne, 2001; 
Steiger, 1990), (3) the goodness-of-fit index (GFI), (4) the adjusted goodness-of-fit index 
(AGFI, which adjusts GFI for the degrees of freedom in the model), and (5) the 
parsimony-adjusted goodness-of-fit index (PGFI) (Mulaik, et al., 1989).  R2 values are 
also available by comparing estimated error-term variances to observed variances.  It is 
important to distinguish between R2 values for reduced form equations and those for the 
structural equations. 
 
Based on these goodness-of-fit tests for a model, a travel demand modeler can take 
one of three different courses of action:  (1) Confirm or reject the model being tested 
based on the results.  If a model is accepted, it should be recognized that other 
unexamined models might fit the data as well or better.  Confirmation only means that a 
model is not rejected.  (2) Two or more competing models can be tested against each 
other to determine which has the best fit. The candidate models would presumably be 
based on different theories or behavioral assumptions.  (3) The modeler can also 
develop alternative models based on changes suggested by test results and 
diagnostics, such as first-order derivatives of the fitting function.  Models confirmed in 
this manner are post-hoc.  They may not fit new data, having been created based on the 
uniqueness of an initial dataset.  The availability of published results from previous 
studies affects the balance between a confirmatory or exploratory approach for a given 
application.  Such results from structural equation modeling in travel behavior research 
are reviewed in the remainder of this paper.   
 

                                                 
12 Discussions of the role of parsimony in model evaluation and the effects of sample size and model 
complexity on criteria such as the three used here are provided by Bentler (1990), Bentler and Bonett 
(1980), McDonald and Marsh (1990), and Mulaik, et al. (1989). 
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3. TRAVEL BEHAVIOR APPLICATIONS 

The earliest known applications of SEM to travel behavior are a joint model of vehicle 
ownership and usage (Den Boon, 1980, reviewed in Section 3.1) and a dynamic model 
of mode choice and attitudes (Lyon, 1981a and 1981b, Section 3.2).  Tardiff (1976) and 
Dobson, et al. (1978) (Section 3.4) developed simultaneous equation models of travel 
behavior and attitudes that are precursors to full-blown SEM applications, and insightful 
early discussions of SEM as a potential tool in modeling travel demand are to be found 
in CRA (1978) and Allaman, et al. (1982).  The following bibliography is organized by 
topic, and the citations within each section are generally in chronological order.   
 

3.1. Travel Demand Modeling Using Cross-sectional Data 

Models of vehicle ownership and usage are a natural application for SEM, through which 
it is possible to capture the mutual causal effects between vehicle ownership and 
distance traveled in a simultaneously estimated system, rather than through sequential 
estimation with selectivity corrections.  Den Boon (1980) shows how this can be 
accomplished.  Later, Golob (1998) modeled travel time, vehicle miles of travel and car 
ownership together, using data for Portland, Oregon.  A model of household vehicle 
usage and driver allocation was developed by Golob, Kim and Ren (1996).  WLS 
estimation is used with U.S. data for urban regions within California.  Vehicle usage is 
expressed in reduced-form equations as a function of household and vehicle 
characteristics. 
 
Pendyala (1998) investigates the dependence of SEM on the homogeneity of a causal 
travel behavior process across the population of interest.  Results are presented from 
models estimated on simulated data generated from competing causal structures.  
These estimates are shown to perform poorly in the presence of structural 
heterogeneity.  
 
Fujii and Kitamura (2000) and Golob (2000) developed models of trip chain generation.  
As these models encompass activity duration in addition to conventional travel 
measures of trip generation and travel time, they are further discussed in Section 3.3. 
 
Axhausen, et al. (2001) tests causal hypotheses linking car ownership, season ticket 
ownership and modal usage in Switzerland.  The results confirm the dominance of car 
ownership, which drives the other variables.  However, car usage was found to be 
complementary with public transport usage through direct positive links to season ticket 
ownership and public transport usage.  Following up on this work, Simma and Axhausen 
(2001a) compared interrelationships between car ownership, season tickets, and travel 
and found consistent results in models using similar data from three countries (Germany, 
Great Britain, and Switzerland). 
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Simma and Axhausen (2001b) demonstrate an SEM that captures relationships 
between male and female heads of household with regard to travel demands.  The 
endogenous variables were car ownership, distances traveled by males and females, 
and male and female trips by two types of activities.  Exogenous variables included the 
employment status of each head, family characteristics, and measures of residential 
accessibility and local land use.   
 
Finally, Simma (2000) and Simma, et al. (2001) investigated the effects of spatial 
structure on car ownership, trips by mode and travel distance, using trip diary and 
environmental data for Austria.  Household-based accessibility measures were found to 
be more influential than municipal and regional measures developed from gravity 
models and land use characteristics.  
 

3.2. Dynamic Travel Demand Modeling 

Panel data modeling is a natural application for SEM.  Models can be specified with 
variables repeated variables joined by lagged causal effects and possibly 
autocorrelated error structures.  Moreover, time-invariant individual-specific terms can 
be incorporated in error structures, and period effects can be isolated with certain types 
of panel data.   
 
Lyon (1981a)(1981b)(1984) was the first to develop a dynamic SEM incorporating travel 
choices and attitudes.  At the time of this work, the lack of available SEM estimation 
methods for non-normal variables motivated the use of a sequential IV approach to 
parameter estimation.  This work represents an important breakthrough in the 
application of SEM to the modeling of travel behavior and values.  SEM allows the 
exploration of mutual causality between attitudes and behavior (Section 3.4).  
 
Golob and Meurs (1987)(1988) are early examples of SEM applied to (Dutch) panel trip 
diary data.  These models suffer from a lack of exogenous variable effects.  Golob and 
van Wissen (1989) unify explanation of car ownership and travel distances by mode, but 
the SEM is once again short on exogenous household characteristics, with the 
exception of household income.  ML estimation is applied to Dutch data. 
 
In joint dynamic models of car ownership and trip generation (Golob, 1989) and car 
ownership and travel time expenditures (Golob, 1990b) it is demonstrated that an SEM 
applied to (Dutch) panel data is able to capture both panel conditioning biases and 
period effects.  The models also capture lags between car travel needs and vehicle 
transactions and incorporate autocorrelated errors.  In a related discussion that is now 
outdated, Golob (1990a) explores use of SEM with panel data on travel choices.  
 
Kitamura (1989) uses dynamic log-linear models (GLM) applied to Dutch panel survey 
data instead of SEM to test alternative causal postulates concerning travel behavior.  In 
general, SEM and GLM are intimately related (McCullagh and Nelder, 1989), and Van 
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Wissen and Golob (1990) directly compare GLM and SEM on the same data.  The 
authors conclude that SEM is more effective in distinguishing the performance of 
competing hypotheses. 
 
Once again using panel data for the Netherlands, Van Wissen and Golob (1992) 
present a dynamic SEM of car fuel type choice and mobility that captured influences of 
reduced vehicle operating costs on latent demand for car travel.  The model 
incorporates individual-specific, time-invariant effects.  WLS estimation was used. 
 
Using data from a two-wave panel survey of residents of Davis, California,  Mokhtarian 
and Meenakshisundaram (1998)(1999) develop dynamic models of travel and three 
communication activities: personal meetings, object transfer (e.g., mail), and electronic 
transfer (phone, fax, and email).  The authors found very little evidence of the substitution 
of electronic communication for trips.  The relatively small sample size restricts model 
complexity.   ML estimation was used. 
 
Fujii and Kitamura (2000a) use multi-day panel data from drivers in the Osaka-Kobe 
Region of Japan to test hypotheses concerning how drivers collect and process 
information about anticipated travel time.  Anticipated travel time is modeled as a 
function of lagged anticipated time, lagged actual time, and time forecasted by different 
sources (e.g., mass media and word-of-mouth).  The relatively small sample size called 
for ML estimation.   
 
Multi-day travel is also modeled by Simma and Axhausen (2001c).  Using a six-week 
travel diary for areas in Germany and pooling the data by week, the authors present 
SEM results that shed light on the nature of linkages between travel on successive days 
of the week, for individuals and household couples, in terms of both travel distances and 
trip making. 
   

3.3. Activity-Based Travel Demand Modeling 

SEM has considerable potential here.  Activity participation and travel can be modeled 
within a comprehensive framework that captures: (1) the direct relationships between 
activity demand and the need to travel to get to activity sites, (2) interrelationships 
between participation in different activities, and (3) feedbacks from travel time to activity 
time (travel time “budget effects”), all conditional on personal and household 
characteristics.  Kitamura (1997) and Pas (1997a)(1997b) provide comprehensive 
overviews of activity-based travel demand modeling that include discussions of the role 
of SEM.   
 
Kitamura, et al. (1992) and Golob, Kitamura and Lula (1994) were the first to apply SEM 
in modeling joint demand for activity duration and travel.  Results, estimated using ML 
applied to California time-use survey data, confirm a negative feedback of commute 
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time to non-work activities; individuals with longer commutes have less time available for 
discretionary activities. 
  
Lu and Pas (1999) present an SEM of in-home activities, out-of-home activities (by 
type), and travel (measured various ways), conditional on socioeconomic variables.  
Estimation is by ML, and the emphasis is on interpretation of the direct and indirect 
effects.  The activity diary data are for the Greater Portland, Oregon Metropolitan Area. 
 
Golob and McNally (1997) model the interactions of household heads in activity and 
travel demand.  Activities are divided into three types, and SEM results are compared 
using ML and WLS estimation methods.  The authors conclude that, where possible, 
WLS methods should be used to estimate SEM applied to activity participation data. 
 
Gould and Golob (1997) and Gould, et al. (1998) use SEM to explore how travel time 
saved by working at home or shopping close to home might be converted to other 
activities and other travel.  Certain population segments were found to exhibit latent 
demand for activities.  ML estimation is applied to Portland data.    
 
Golob (1998) develops a joint SEM of vehicle ownership, activity participation (by 
activity type), travel time expenditure (by trip purpose), and household aggregate vehicle 
miles of travel.  The major distinction of this work is that an ordered discrete-choice 
household car ownership variable is included together with time-use and distance 
generation variables in a single SEM.  WLS is used with data for Portland. 
  
Two independent joint trip-chain and time use models were also published in 2000.  
Fujii and Kitamura (2000b) studied the latent demand effects of the opening of new 
freeways.  The authors used an SEM to determine the effects of commute duration and 
scheduling variables on after-work discretionary activities and their trips.  They used 
sequential instrumental variables estimation, which they refer to as a measurement 
model.  Data are for the Osaka-Kobe Region of Japan.  Similarly, Golob (2000) 
estimated a joint model of work and non-work activity duration, four types of trip chains, 
and three measures of travel time expenditure.  ML estimation was applied to Portland 
data, and the effects of in-home work and residential accessibility were explored using 
the model.  
 
Finally, Kuppam and Pendyala (2001) present three separate models estimated using 
WLS applied to data for Washington, DC.  The models focussed relationships between: 
(1) activity duration and trip generation, (2) durations of in-home and out-of-home 
activities, and (3) activity frequency and trip chain generation. 
 

3.4. Attitudes, Perceptions and Hypothetical Choices   

Applied to data on attitudes, perceptions, stated behavioral intentions, and actual 
behavior, SEM can be used to specify and test alternative causal hypotheses.  It has 
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been found that, as might be expected, causality is often mutual.  The assumption that 
behavior is influenced by attitudes, perceptions, and behavioral intentions without 
feedbacks does not hold up when tested using SEM.  These results challenge the 
assumption, held by some, that stated preference (SP) choices or ratings can be 
directly scaled into revealed-preference (RP) choice models.  SEM results show that, in 
most applications, SP data are a direct function of RP choice. 
 
Tardiff (1976) uses path analysis to demonstrate empirical evidence that the causal link 
from choice behavior to attitudes is stronger than the link from attitudes to choice 
behavior.  Subsequent studies using different forms of simultaneous equation modeling 
showed consistently that attitudes, especially perceptions, are conditioned by choices, 
while at the same time, attitudes affect choices (e.g., Dobson, et al., 1978).  
 
Golob, Kitamura and Supernak (1997) develop models in which changes in travel times, 
attitudes toward carpooling, mode choice, and use of an exclusive freeway lane for 
carpools are modeling over time using panel survey data for San Diego, California.  The 
SEM, which assumes ordinal scales and discrete choice variables, has individual-
specific terms that take advantage of repeated measurements to account for population 
heterogeneity.  
 
Golob and Hensher (1998) employ SEM to address the dichotomy between an 
individual’s behavior and his or her support for policies that are promoted as benefiting 
the environment.  Through the use of latent variables, attitudes are related to behavioral 
variables representing mode choice and choice of compressed work schedules, all of 
which are conditioned by a set of exogenous variables.  The attitude scales are treated 
as ordinal, choices are treated as discrete, and the SEM is estimated using WLS 
applied to data for major Australian urban areas. 
 
An SEM that combines SP and RP data from same households in California to explain 
vehicle usage as a function of vehicle type, vintage, fuel type to predict use of limited 
range electric vehicles is developed by Golob, Bunch and Brownstone (1997).  Joint SP 
and RP estimation using SEM allows SP and RP error terms to be correlated while 
simultaneously testing for causal effects of RP (experiences) on SP (preferences). 
 
Morikawa and Sasaki (1998) employ an SEM in concert with a discrete choice model to 
capture the influence of latent subjective indicators of the attributes of choice alternatives 
on choice.  Using a Dutch survey of inter-city travel and joint ML estimation, the authors 
conclude that models with causality only from attitudes to behavior perform less well than 
those that incorporate a causal feedback to attitudes from behavior.  The preferred 
model involves estimation of the SEM and discrete choice equations simultaneously.     
 
Levine, et al. (1999) present two latent variable models that explain financial support for 
public transport and support for an institutional reform in public transit planning.  The 
models, estimated using ML applied data collected in Southeast Michigan, contain as 
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many as six latent endogenous variables with observed ordinal and discrete indicators, 
and several sociodemographic variables. 
 
An SEM with five latent variables is used by Jakobsson et al. (2000) to investigate 
causality among acceptance of road pricing, behavioral intention concerning reductions 
in car usage, and feelings related to fairness and infringement on personal freedom.  ML 
is applied using data from a Swedish survey.   
 
Stuart, et al. (2000) used SEM to determine how a series of ratings of attributes of the 
New York Subway (e.g., crowding, personal security, cleanliness, predictability of 
service) are related to customers’ ratings of value and overall satisfaction with the 
system.  ML estimation is applied using sample of over 1,000 transit panel participants.   
 
In a combination of attitudinal and activity-based modeling, Fujii, Kitamura and 
Kishizawa (2000) used SP (budget allocation) and RP data collected in the Osaka-
Kobe Region to estimate an SEM in a study joint activity engagement.  Satisfaction with 
the activity pattern, discretionary trip frequency, and discretionary travel time are 
modeled as a function of in-home and out-of-home activity duration broken down by 
household activity participation.  Sequential IV estimation is used.      
 
Sakano and Benjamin (2000) developed an SEM that modeled SP responses 
concerning a new mode, together with attitudes and perceptions about the travel 
environment, and exogenous personal and modal characteristics.  The data are for 
Winston-Salem and Greensboro, NC, and ML estimation is used.  An important 
contribution is that model forecasts are computed and interpreted. 
 
Gärling et al. (2001) explores decision making involving driving choices by using an 
SEM with latent variables to test links among attitude towards driving, frequency of 
choice of driving, and revealed presence of a certain type of decision process known as 
script-based.  ML estimation is applied to Swedish survey data.  The authors followed 
up the SEM results with laboratory experiments.  
 
The effects of negative critical incidents on cumulative satisfaction with public transport 
is determined by Friman et al. (2001) by applying an SEM with a measurement model to 
Swedish data on attitudes and experiences.  Friman and Gärling (2001) extend the 
results of the first study by applying an SEM to stated preference data involving 
satisfaction under a variety of conditions involving treatment by public transport 
employees, service reliability, clarity of service information, and comfort.  
 
Golob (2001) tested a series of joint models of attitude and behavior to explain how both 
mode choice and attitudes regarding a combined HOV and Toll facility (HOT lanes) 
differ across the population.  Applying WLS estimation to a dataset from San Diego 
California, the author demonstrates that choices appear to influence some opinions and 
perceptions, but other opinions and perceptions are independent of behavior and 
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dependent only on exogenous personal and household variables.  None of the models 
tested found any significant effects of attitudes on choice. 
 
Finally, Sakano and Benjamin (2001) estimate an SEM comprising: (1) endogenous RP 
choices, (2) endogenous SP choices, (3) endogenous attitudes, in the form of attribute 
importance ratings, (4) exogenous mode characteristics, and (5) exogenous personal 
characteristics.  ML estimation was applied to data collected in the Puget Sound 
Region.    
 

3.5. Organizational Behavior and Values 

Golob and Regan (2000) applied SEM in the form of confirmatory factor analysis with 
regressor variables (estimated using WLS) to analyze the interrelationships among fleet 
managers’ evaluations of twelve proposed congestion mitigation policies.  The data are 
from a survey of managers of trucking companies operating in California, 
 
Using these same data, Golob and Regan (2001a) used an SEM to determine how 
perceptions concerning five aspects of traffic congestion problem differ across sectors 
of the trucking industry.  The model also simultaneously estimates how these five 
aspects combine to predict the perceived overall magnitude of the problem, and multi-
group estimation is used to determine how results vary across industry sectors. 
 
Finally, Golob and Regan (2001b) use SEM in the form of a multivariate probit model to 
captured the influences of each of twenty operational characteristics on the propensity of 
trucking company managers to adopt each of seven different traveler information 
technologies.  The authors discuss using SEM with WLS estimation as an alternative to 
simulated moments for estimating multivariate probit models.   
 

3.6. Driver Behavior 

Driver behavior (or more generally, user behavior) is a growing subject area for the 
application of SEM.  Traffic safety is one potential focus, while another is the application 
of advanced technologies such as vehicle navigation systems and advanced traveler 
information systems (ATIS).    
 
Donovan, J.E. (1993) studied how driving under the influence of alcohol is related to 
other types of behavior using SEM.  Using survey data collected in Colorado, the author 
concluded that problematic driving behaviors are related to more general lifestyle 
choices involving unconventional psychosocial behavior.    
 
In a study of the behavior of long-distance truck drivers, Golob and Hensher (1996) 
tested alternative hypotheses concerning causal relations between drug taking, 
compliance with shipping schedules and the propensity to speed, using data from an 
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Australian survey and WLS estimation.  The authors concluded that increasing speed is 
positively influenced by the propensity to take stay-awake pills, which is itself influenced 
by the propensity to self-impose schedules.  McCartt, et al. (1999) present results from a 
similar application of SEM using data from a survey of long-distance truck drivers in 
New York State.    
 
In a study of the user-interface of route guidance systems, Fujii, et al. (1998) modeled 
experimental data to determine how comprehension of map displays are related to the 
attributes of the display and sociodemographic characteristics of the driver.    
 
Finally, Ng and Mannering (1999) used SEM to analyze experimental data from a driving 
simulator on drivers’ speed behavior as a function of different types of advisory 
information (in-vehicle and out-of-vehicle).  Speeds and speed variances were modeled 
using instrumental variables. 
 

4. SUMMARY 

Structural equation modeling is becoming widely used in travel behavior research, as 
witnessed by the more than fifty applications cited in this review.  Half of these 
applications have been published within the past three years.  SEM is certainly not 
appropriate for many applications, but it should be another tool in the arsenal of the well-
prepared travel behavior researcher.  A review of the literature cited here will hopefully 
aid researchers in determining appropriate usage.  
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APPENDIX 
 
The following SEM software was generally available in 2001.  A comparative review of 
three of the most popular SEM programs (AMOS, EQS and LISREL) is provided by 
Kline (1998).   

AMOS (Arbuckle, 1994, 1997) is a general-purpose SEM package 
(http://www.smallwaters.com/) also available as a component of SPSS statistical 
analysis software. 

CALIS (Hartmann, 1992) is a procedure available with SAS statistical analysis 
software (http://www.sas.com/).  

EQS (Bentler, 1989, 1995), is a well-known SEM package focussing on estimation 
with non-normal data (http://www.mvsoft.com/).   

EzPath (Steiger, 1989) provides SEM capability for SYSTAT statistical analysis 
software (http://www.spssscience.com/systat/). 

LISCOMP (Muthén, 1988) pioneered estimation for non-normal variables and is a 
predecessor of MPLUS.   

LISREL (Jöreskog and Sörbom, 1993), with coupled modules PRELIS and 
SIMPLIS, is one of the oldest SEM software packages.  It has been frequently 
upgraded to include alternative estimation methods and goodness-of-fit tests, as 
well as graphical interfaces (http://www.ssicentral.com/). 

MPLUS (Muthén and Muthén, 1998) is a program suite for statistical analysis with 
latent variables that includes SEM (http://www.statmodel.com/index2.html).   

Mx (Neale, 1997), a matrix algebra interpreter and numerical optimizer for SEM is 
available as freeware (http://views.vcu.edu/mx/). 

SEPATH for STATISTICA software provides SEM with extensive Monte Carlo 
simulation facilities (http://www.statsoftinc.com/).  

STREAMS (Structural Equation Modeling Made Simple) is a graphical model 
specification interface for AMOS, EQS, and LISREL (http://www.gamma.rug.nl).  

TETRAD software (Scheines, et al. ,1994) also provides tools for developing SEM 
by generating input files for CALIS, EQS or LISREL 
(http://hss.cmu.edu/HTML/departments/philosophy/TETRAD/tetrad.html) 

    




