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Figure 8.7: Raman spectra (in Å4/amu per MoS2 unit) of t-intercalated
and Mo-substituted Re-doped MoS2 as computed by DFPT
with substitution of the Raman tensor by those in a pristine
computation (Mo and Ni replace the Re atom’s contribution in
the Mo-substituted and t-intercalated respectively). The direc-
tion of the peak shifts is generally preserved among the super-
cell sizes used: redshifts in both peaks when t-intercalated and
blue- and redshifts in the E1

2g and A1g peaks respectively while
Mo-substituted. Gaussian broadening of 2 cm−1 was used. . . . 125

Figure 8.8: The anomalous 3×3×1 supercell t-intercalated structure with
non-standard stacking. The cell has angles of 82.60◦, 97.40◦, and
119.99◦ and a stacking pattern typically seen as a metastable
stacking configuration of pristine MoS2. . . . . . . . . . . . . . 128

Figure 8.9: Electronic density of states (DOS) are computed for Mo-substituted
and t-intercalated structures using the LDA configuration. The
plots are aligned to the lowest lying Mo states. Vertical lines in-
dicate the computed Fermi energies. All doped structures have
nonzero DOS at the Fermi level. . . . . . . . . . . . . . . . . . 129

Figure 8.10: IR spectra, full Raman spectra, and VDOS at q=Γ of t-intercalated
and Mo-substituted structures as computed by DFPT and Ra-
man tensor substitution. . . . . . . . . . . . . . . . . . . . . . . 130

Figure 9.1: Example structure for AFM sliding: model H-passivated Si tip
apex [46] above 2-layer Mo-substituted MoS2. . . . . . . . . . . 137

xvii



Figure 9.2: Energy dependence of the distance between the AFM probe
and the surface of 3-layer t-intercalated MoS2. The distance
is measured between the Mo atom and the tip Si atom of the
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ABSTRACT OF THE DISSERTATION

Connecting Microstructural Defects in Molybdenum Disulfide and
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by
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Professor Michael Scheibner, Chair

Microstructure defects are the source of many interesting physical phenomena

in materials. The influence of microscopic imperfections are visible among a back-

ground of a crystalline material and can noticeably change macroscopic material

properties. Ab initio computations are a wide range of computational methods

used to study materials at such microscopic levels. Classical and quantum-level

computations are often viewed as competing methods, but we instead take a com-

plementary approach. We combine strengths of both methods to study two classes

of materials—silicon and the two-dimensional (2D) transition metal dichalcogenide

(TMD) molybdenum disulfide (MoS2). In MoS2, we interrogate the effects of the

presence of dopants. Conversely in Si, we take amorphization as a disruption to

the base crystalline structure. In both, we are interested in how these changes to

microstructure affect energetic efficiencies. In a-Si, the photovoltaic efficiency is

hampered by the presence of dangling bonds, while in MoS2, mechanical efficiencies

of lubrication are enhanced when doped.

Both systems pose their unique challenges and deviations from standard work-

flows. We will review the overarching strategies used to study them in Ch. 2.

Throughout our studies, we have developed several techniques to overcome spe-

cific challenges which are detailed in their respective sections. With a-Si, a clas-
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sical potential Monte Carlo code is used to generate realistic, non-biased, fully

amorphous coordinates faster than what could be achieved by currently available

quantum-mechanical methods. Then, density functional theory is used to relax

the structures. With MoS2, higher-accuracy DFT energy computations are used

to parametrize a classical force-field for the computation of larger systems which

would otherwise be difficult with DFT alone.

We cover a wide range of analyses between both materials. We have devel-

oped methodologies for analyzing the amorphous and 2D material systems using

classical methods and density functional theory. We have computed a range of

material properties for MoS2 and amorphous Si and hydrogenated a-Si:H. With

Si, we modified the Wooten-Winer-Weaire algorithm to produce amorphous net-

works with included voids by application of initial strain. The size of the voids is

somewhat controlled by the strain value. These voids emerge naturally as a part

of the amorphization process.

We find that the amorphous networks generated by simple Keating springs

when applied in the WWW method is retained when relaxed by DFT. Structure-

scale approximations of the Keating potential yields the result that ∆θ explains a

large portion of the structure’s energy, and this holds even in density functional

theory.

With 2D materials, we outline a specific multi-step method to quantify the slid-

ing of defected materials in Ch. 6. Successive increases in the degrees of freedom

while sliding allow us to access different components of sliding—namely the poten-

tial barrier differences, low-energy sliding pathways, and slip planes. The sliding

potential in MoS2, even while intercalated, is composed of pairwise interactions of

the MoS2 interfaces. This means that computing arbitrarily sized systems can be

theoretically computed by only considering interactions of their interfaces.

We find tetrahedrally intercalated Ni-doped MoS2 to be stable and thus more

important than is considered in the literature. When intercalated, we find Ni

can bind layers together, explaining the material’s increased resistance to wear, or

material loss during sliding.

Re-doped MoS2 has shown an increase in friction with an increasing layer count

xxvi



as measured with atomic force microscopy. This is counter to typical 2D materials.

We find that intercalated Re can explain this relationship as an alteration to out-

of-plane stiffness. For this material, in computing the vibrational spectroscopy we

overcame a difficulty in computing its Raman spectra. It has a metallic character,

thereby limiting our Raman intensity computation due to an infinite dielectric con-

stant. We developed a method to circumvent this computation and approximate

the spectra by substitution of the atomic Raman tensor.
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Chapter 1

Introduction

Since the invention of computers, they have been a staple tool for studying

realistic physical systems [114]. A core negotiation in computational physics is the

balance between accuracy and computing time. As the density of transistors has

increased exponentially over time, accurate computation of high resolution physical

systems have become standard. In classical atomistic simulations of materials, we

can use empirical information to study how large numbers of atoms affect material

properties. With quantum-mechanical level simulations, we are able to take the

wave-like behavior of a system’s electrons into account to more accurately predict

macroscopic behavior.

The classical methods we use are interatomic potentials, where a function based

on the atomic coordinates and material-specific parameter constants (such as in-

teratomic force constants) are used to compute material properties. The constants

are typically decided empirically with good fits to experimental data or higher-level

computations. Notably, we keep track of the atomic coordinates but do have no

explicit treatment of the electrons. Electronic effects on the material properties

are hidden in the constants we use. This is in contrast to quantum mechanical

methods used in our work which are rooted in approximating applications of the

Schrödinger’s equation to the system’s electrons.

The quantum mechanical tool we use is density functional theory (DFT), where

the electronic density is computed explicitly and system properties are computed

from it. In Kohn-Sham (KS-) DFT [87], the density is approximated by treat-
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ing the system’s many-body wavefunction as many one-electron wavefunctions.

This formulation is said to be ab initio, “from first principles”, because results

are not based on ad hoc approximations such as atomic species-dependent force

constants. There are approximations made, notably exchange-correlation poten-

tials Vxc discussed in Ch. 2 [133], but the schemes used to create them are based

in physical principles. This results in transferrable approximations–they apply to

many atomic types under many material conditions, unlike parameters in our clas-

sical potentials. Explicit treatment of the electrons allows computation of complex

phenomena inaccessible by classical methods alone, such as the electronic density

of states or electron-phonon coupling.

The disparity in computational effort can be understood by the quantities the

potentials are acting upon in both classical and quantum methodologies. The

classical potentials we use are functions of static parameters and the atomic co-

ordinates which can lead to O(N2) scaling. KS-DFT acts on the atomic density

which is constructed from KS electronic wavefunctions. To diagonalize the Hamil-

tonian requires O(N3) scaling. In practice, the classical method can be reduced

to O(N) by limiting the spacial extent of interatomic potentials and the disparity

widens.

Rather than treat these methods as competing against one another, we take

an approach that uses the advantages of both to study material properties. In

the work presented, we show that this combined approach aids us in studying

amorphous Si (a-Si) in Chs. 3-4 and molybdenum disulfide (MoS2) in Chs. 7-8.

1.1 Amorphous Silicon Systems

Crystalline silicon (c-Si) is an exemplary model semiconductor in computa-

tion. The stability of its bonds, small unit-cell size, and predictability of its band

structure lead to it being a standard material to test the robustness of new compu-

tational methods. Changing the phase of the structure from crystalline to amor-

phous silicon (a-Si) alters properties and makes it immediately less predictable.

Despite the random nature of the material, we can study it using ensembles of
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Figure 1.1: Graphical summary of Si structures presented in this thesis.

computations. a-Si’s application as one of the earliest photovoltaic technologies

has been thoroughly explored for half a century [163], and its photovoltaic effi-

ciency has stagnated in half that time. However, interest in the material has seen

a resurgence in interest in the last decade as a component of a highly efficient solar

cell [21]. Other interest in the material involve its ultra-reflective properties [164].

Both these properties can be studied using our computations.

As a photovoltaic, a main challenge with amorphous silicon is the Staebler-

Wronski Effect (SWE), light-induced degradation [163]. As light enters the ma-

terial, its solar efficiency drops permanently over longer time scales. Degradation

has thus far been attributed to dangling bonds, or unpaired electrons, and the

presence of microvoids [40] discussed in Ch. 2. This concept and the heterojunc-

tion with intrinsic thin-layer (HIT) solar cell in general [21, 78, 69] have guided

our computations revolving around amorphous Si.

a-Si poses a few challenges when modeling accurately, namely accurate atomic

coordinates and dangling bonds. While atoms are randomly dispersed throughout
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the material, they are not uniformly random because their positions are inter-

correlated. They show strong short-range order (SRO) when averaged, despite

a lack of long-range order (LRO). Our method of generating atomic coordinates

is based on the well-tested [194, 75, 76, 77] Wooten-Winer-Weaire [207] classical

Monte Carlo method as implemented in the code CHASSM, the Computationally

Hydrogenated Amorphous Semiconductor Structure Maker [169]. We can generate

perfect amorphous structures free of defects.

In reality, amorphous Si is difficult to fabricate without the presence of dangling

bonds. In semiconducting applications, the unpaired electron acts as a trap for

holes which encourage premature recombination [76]. To combat this, a-Si is typi-

cally treated under H-rich conditions. This allows H to diffuse into the material and

attach itself to these dangling bonds, thereby passivating them. CHASSM allows

us to simulate hydrogenation, as detailed in Ch. 2. In the literature, typically only

either hydrogenated or non-hydrogenated a-Si is studied—we are well equipped to

study both. Throughout this work, we have developed new methodology to con-

trol the amount of dangling bonds created in a structure in an unbiased manner,

more closely related to realistic material formation. We have accomplished this

by developing a method to generate voids on an amorphous structure by straining

the initial generating structure. This is counter to the typical process of atomic

removal and is described in Ch. 3. The method used here is applicable to any

material that can use the WWW method, i.e. continuous random networks.

CHASSM is a useful tool to generate a-Si, but its accuracy is only as accurate

as the relatively basic Keating potential [82] which we have used. The simplicity

of the potential leaves a desirably small number of empirical variables, but lacks

sophistication to study more complex material properties, especially those involv-

ing dynamic electronic behavior. For this reason, we further process structures

generated by the classical code CHASSM with DFT using Quantum ESPRESSO

[50]. The potentials used in ESPRESSO yield more accurate potential energy sur-

faces. We explore the result of processing CHASSM structures of variable densities

through DFT in Ch. 4. We take a systematic approach to studying strain-energy

relationships and unique amorphous parameters to the system’s energy. These
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Figure 1.2: A sample of the MoS2-type structures presented in this thesis. Among
all computations, doped structures are compared against pristine simulations.

findings may quantitatively express the a configurational energy gap [37] between

amorphous and crystalline MoS2 which has thus far only been qualitatively de-

scribed.

1.2 MoS2 Systems

Like amorphous silicon, MoS2 has a unique structure when compared to typical

solid. It is a two-dimensional (2D) lamellar material where van der Waals (vdW)

forces dominate the interlayer interactions. Unlike graphite or graphene systems,

MoS2 has strong covalent intralayer bonds that extend out of plane in the Mo-S

bonds. This relatively uncommon shape and its status as a semiconductor lead

to a host of applications ranging from electronic [11], catalytic [111, 196], photo-

voltaic [118, 183, 10], and tribological [191] properties. Doping, the intentional

introduction of atomic defects, is a tool used to control the materials’ properties.
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Throughout our studies, we have subjected computational samples of MoS2 to

a host of conditions: Ni-doping [58], Re-doping [57], C-doping, atomic force mi-

croscopy [1], interlayer sliding [56], strain [116], layer count variation, and various

micro-studies to reach our larger conclusions. Our searches are originally moti-

vated by studying the frictional properties of doped MoS2, however we developed

methodology that is generic and applicable in other contexts.

Re and Ni are two transition metal dopants which are important to MoS2,

especially in tribological applications. For Ni, it has been found to reduce the

frictional forces and increase its resistance to wear, or layer dissociation [170]. To

study this process, we collaborated with the Martini group and relied on their

experience with classical potentials to parametrize a reactive force field [127, 186]

using DFT computations. This process is described in Ch. 7. This classical

potential allows them to study larger systems in a dynamic capacity. Our static

computations, however, are useful in learning about the structural stability and

allow us to compute accurately the experimentally comparable vibrational spectra.

We found thermodynamically stable configurations of Ni and Re as they dope

MoS2 for variable concentrations. Since Ni and Re are transition metals like Mo,

the prevailing hypothesis for the dopants’ location is substitution of Mo. In both,

we found that intercalation, where the dopant is between MoS2 layers, is a valid

and overlooked at least meta-stable dopant location. Having the dopant in this

location significantly alters elastic parameters we computed. Vibrational spectra

and electronic densities are also altered by dopant inclusion.

We computed sliding structures of Ni-doped MoS2 and found explicit evidence

that the sliding potential can be expressed as pairwise interactions between inter-

layer interfaces. This intuitive result leads to useful computational and explanatory

physical results. It provides credence in reducing the sliding potential computa-

tion of an N -layered system as N − 1 bilayers, which will always be cheaper. The

fact that the sliding potential does not extend into the MoS2, even when strong

interlayer bonds exist, means that t-intercalated MoS2 is compatible with lower

friction, despite it binding the layers together.

Re is a naturally occurring dopant that has been found to significantly alter
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the sliding behavior of MoS2 as it pertains to layer dependence. In 2D materials,

more layers usually means less friction, but this trend is reversed for Re doping.

This is discussed in chapters 8 and 9.

Like Ni, we found thermodynamically stable structures and the vibrational

spectral fingerprints. In finding the spectra of this material, we developed a method

of approximating the Raman spectra of a previous incalculable structure by stan-

dard DFPT methods. Under the computational scheme, the structure is metallic

and thus its polarizability and Raman intensities were infinite and incalculable. In

practice, however, a Raman intensity is measurable. This points to a disconnect

between physical reality and computational approximations. We overcame this

by inserting a best approximate guess of the polarizability based on the undoped

MoS2. In effect, we are able to capture changes in the vibrational spectra due to

the geometric distortions introduced by the dopant.

We also modeled an atomic force microscope and developed an analysis route

for N -layered doped MoS2, where the dopants location is somewhat obscured. This

model connects to the macroscopic experiments by the Baykara group and are used

to reason that changes in the elastic parameters due to intercalation causes the

inverse layer dependence observed in Re-doped MoS2 [1].



Chapter 2

Methodology

2.1 Strategy to Model Amorphous Si Systems

Given the inherent statistical nature of amorphous systems, an approach to

adequately capture the behavior of a macroscopic sample of a-Si is to compute an

ensemble of amorphous structures [168, 77]. These individual structures behave

as local regions of a macroscopic samples and by taking statistics on the ensemble

we learn about the a-Si at large. To quantify the randomness of samples, ∆θ,

the standard deviation of bond angles, can be taken as a order parameter. Other

statistical parameters of interest are the structures’ energies, mean bond angles,

mean bond lengths, and bond length deviations. Of these, as we will find in Ch.

4, ∆θ is the most energetically important parameter.

To balance accuracy and speed for structure generation, we take a multi-step

approach to modeling a-Si systems. First, we use the classical Monte Carlo WWW

method as implemented in the code CHASSM (Computationally Hydrogenated

Amorphous Semiconductor Structure Maker) [169]. This method is fast and gen-

erates reasonable atomic coordinates which can then be relaxed with DFT. Within

CHASSM, we use the Keating potential described in the following section. We then

include quantum electronic interactions using density functional theory, described

in the further section.

8
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2.1.1 WWW Method as implemented in CHASSM

The WWW method [207], developed by Wooten, Winer, and Weaire in 1985,

is designed to generate ensembles of realistic a-Si atomic coordinates when paired

with the classical Keating potential [82]. The leading alternative method in a-Si

generation is “melt-and-quench”, where Si atoms undergo high temperature (T )

molecular dynamics and is slowly annealed, but this method can be expensive

and can lead to uncontrolled amounts of bonding defects [5]. Older coordinate

generation methods involved using hand-crafted cluster models which tend to suffer

effects of the free surface. The WWW method is specialized to continuous random

networks and accelerates the amorphization process. The boundaries are periodic,

so there are no undue surface effects, and image effects can be avoided by increasing

the cell size to include at least about 60 atoms. The WWW method employs the

following Monte Carlo steps:

0. Start with crystal with known network and calculate the energy.

1. Consider a “move”: a bond switch of nearby bonds that changes the network.

2. Compare the change in energy to the Boltzmann factor and accept if X ≤
e
−E2−E1

kBT .

3. Return to step 1.

X ∈ (0, 1) is a randomly generated real number, E1 and E2 are the energies

of system before and after the move, kB is the Boltzmann constant, and T is an

imposed temperature. The Boltzmann factor, e
−E2−E1

kBT , is always greater than X

when E2 < E1, so moves that lower the energy are always accepted.

In CHASSM, this process is repeated for about 106 moves per atom at varying

temperatures. We use a temperature profile consisting of two main phases: “ran-

domize” and “anneal” phases. The first 103 moves per atom are at a high T to

force the system away from the deep crystal well in phase space and the energy

of the system is dramatically increased. In the annealing phase, we make moves

while slowly lowering T—this assures that our system is in a local minimum of the

potential energy landscape. The last “quench” step is a series of T = 0 K that
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certify the structure is at a local minimum. After quenching, amorphous structures

are always higher in energy than crystalline structures by about 0.07 eV/atom,

i.e. there is a discontinuous increase in energy between amorphous and crystalline

phases, as is discussed in Ch. 4.

The WWW prescription requires a potential energy description that considers

bonded atoms only. CHASSM implements the Keating potential as the Boltzmann

factor energy. The Keating potential, UK , consists of only two- and three-body

terms describing springs along bond lengths and bond angles and was originally

created for c-Si but has since been applied to a-Si. It relies on a predetermined

bond table, not a set of distance-based nearest neighbors, to decide which atoms

interact. It is described as follows:

UK =
3α

16δ2

Nat∑
i

Nb,i∑
j=1

(|r⃗ij|2 − δ2)2 +
3β

8δ2

Nat∑
i

Nb,i∑
j=1

Nb,i∑
k>j

(r⃗ij · r⃗ik − δ2cos(θt))
2 (2.1)

α and β are force constants parametrized to match experimental amorphous

data—we use 2.965 and 0.845 eV/Å2 respectively [5]. δ is the equilibrium bond

length of c-Si and is set to 2.35 Å. Nat is the number of atoms per cell. Nb,i is the

number of atoms bonded to i (typically four in a-Si, though this can be changed

to study a-Si:H). r⃗ij is a displacement vector from atom i to j and θt = 109.5◦ is

the tetrahedral bond angle such that its cosine is −1
3
. Qualitatively, this potential

energy increases as local bonding order less resembles the ideal tetrahedral c-Si

structure. Keating interactions only exist between predetermined bonded atoms.

CHASSM introduces a few critical alterations to the WWW algorithm. As the

name implies, CHASSM computes hydrogenated a-Si:H. The c-Si in step (0.) is

treated as hydrogenated by removing pairs of Si-Si bonds, meaning some atoms

have only 3 bonds, thus simulating an Si-H bond [194]. The system evolves nor-

mally, but H atoms are added to atoms which initially only had 3 bonds. This

method avoids an a priori idea where H atoms should go, as involved in schemes

of identifying and passivating dangling bonds [16]. Structures generated by this

method as implemented in CHASSM have been used to study barriers to bond-

switching in the SWE [194], strain-induced shifts in Raman peaks [168], optical



11

Figure 2.1: Keating energy throughout a calculation. The first 8-10 steps are high
T randomization. If the structure fails to obtain enough energy to escape the c-Si
barrier, it re-crystallizes (blue). If the structure randomizes at too high a T , it
does not relax to a reasonable energy (red) or bonding network. A run producing
a desired realistic amorphous structure has an intermediate behavior (black).

absorption [142], and nanocrystalline sites in a-Si, validated with a variety of prop-

erties [122].

Throughout my explorations, we developed a further critical alteration to step

(0.)—we strain the initial structure, then evolve the system. This simple change

leads to emergent differences in the final structures. As we explore in Ch. 3, we

show that this method of controlling the density leads to changes to porosity and

bond angle deviation ∆θ, an order parameter or measure of randomness.

Finally, it is also possible to generate c-Si regions, as would be done to generate

the a-Si/c-Si interface, by freezing atoms in place and disallowing their participa-

tion in the WWW process.

CHASSM generates 4-bonded networks of a-Si that are able to explore reason-

able regions of the potential energy surface. The only empirical information present

in the potential are spring constants for bond angles and bond lengths. These can

be replaced with fully ab initio methods by further relaxing the structure with

DFT.
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2.2 Density Functional Theory as Implemented

in Quantum ESPRESSO

We use DFT in both the Si systems and the MoS2 systems. For our purposes,

it balances computational complexity with the accuracy required to model the

electronic contributions.

The basics of plane-wave Density functional theory (DFT) are outlined here

based on works by Cohen and Louie [31] and Payne et al. [133]. DFT is an ab

initio quantum mechanical method used to provide an approximate solution to the

full Schrödinger equation:

H|Ψ⟩ = (T + V )|Ψ⟩ = E|Ψ⟩ (2.2)

where Ψ = Ψ({r}, {R}) is the many-body wavefunction which is a function of sets

of electronic {r} and atomic coordinates {R}. T and V are kinetic and potential

terms of H, the Hamiltonian, and solve for E, the energy. Unlike the classical

EQ 2.1, DFT does not require empirical inputs such as α and β. In the Keating

picture, only springs exist and there is no concept of electrons—thus it cannot

accurately model the nature of dangling bonds. DFT can correctly place electrons

and their resultant effects on nearby atomic structure; but to do so we need a way

to solve the Schrödinger equation, which in principle requires a 1023-dimensional

wavefunction to describe all of the atoms in a macroscopic solid.

The first step in approximating EQ 2.2 is the Born-Oppenheimer approxima-

tion. Under this approximation, Ψ({r}, {R}) ≈ ψ({r},R)P ({R}), i.e. the elec-

tronic (ψ) and atomic (P ) contributions to the total wavefunction are separable.

The basis for this approximation is that the large difference in mass between atomic

nuclei and electrons means they react to each other at different time scales. The

electronic wave function responds as if the atoms are frozen in space and the atoms

respond as if electrons have had enough time to settle to their ground state.

DFT is rooted in the Hohenberg-Kohn theorem and we use the Kohn-Sham

(KS) [87] formulation. Hohenberg and Kohn find that Vext, the external potential

on the electrons due to the atoms, has a one-to-one relationship with the electronic

density, ρ(r). This means that rather than directly solve the 3Ne-dimensional
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(where Ne is the number of electrons), many-body wavefunction Ψ, we need only

a way to solve for the 3-dimensional electronic density ρ(r).

Kohn and Sham do just that by creating an auxiliary system of wavefunctions.

Rather than attempting to solve the many-body wavefunction, the KS system

solves for a system of Ne non-interacting electrons which gives the same ρ(r).

Regardless of how we found ρ, if ρ corresponds to Vext then our job is complete.

The Kohn-Sham equations can be expressed as:

(TS + Vion + VH + Vxc)|ψn⟩ = ϵn|ψn⟩ (2.3)

TS is now the non-interacting kinetic energy. {ψn(r)} are the set of auxiliary wave-

functions such that ρ(r) =
∑Ne

i |ψn(r)|2. VH and Vxc are themselves a function of

ρ(r), and since ρ(r) is a function of {ψn(r)}, EQ 2.3 must be solved self-consistently.

The potential terms in EQ 2.3 are split into three terms. Vion is the external

potential from the atomic nuclei. VH , the Hartree potential, describes how the

electrons react to the electrostatic field due to all other electrons. Finally, the Vxc

term contains information about exchange and interaction; this contains the effects

of Pauli exclusion. Vion and VH have exact forms. Vxc does not and is approximated

by sophisticated means [133].

The total energy, E, is a function of the eigenvalues {ϵn} and ρ. We can use

E to construct potential energy surfaces. We can solve for when local minima

of E with respect to {R}. Minimal energy coordinates correspond to a stable

arrangement of atoms.

Quantum ESPRESSO [50] is a DFT package that uses a reciprocal-space plane-

wave basis set such that any periodic wave function can be written as:

ψn(r) =
∑
G

cne
i(k+G)·r (2.4)

where cn,k+G are wavefunction coefficients and G vectors are reciprocal lattice

vectors. k is a point in reciprocal space within the Brillouin zone (BZ). The BZ

is the finite region in reciprocal space that contains all of the unique k-vectors

needed to describe the infinite periodic crystal. Calculations within the plane-

wave DFT architecture often involve integrals of the form
∫
BZ

f(k)dk. To solve
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Figure 2.2: Comparison of energy convergence of number of G vectors between
pseudopotentials A and B. Energies are with respect to the largest calculation
(140 Ry for A, 180 Ry for B). In this case, A converges faster and would calculate
faster for a given accuracy. Energies below 0.1 eV/atom are considered acceptable
amounts of error.

these numerically, we need to sample k-points, but we must do so carefully as

computation time and accuracy is tied to the number of k-points. Since the number

of G vectors is infinite, we must also truncate the number of G vectors used in our

calculations. These values are decided by convergence tests such as in Fig. 2.2. In

this figure, ideal values for the G vector cutoffs should be between 80 and 100 Ry

for the red curve as these values show little energy difference when compared to

the energy at a 140 Ry cutoff.

Usually, only the valence electrons participate in bonding and low-energy op-

tical phenomena. To limit the amount of electrons in our calculations, we can

eliminate the need of calculating core electrons via pseudopotentials. Since the

core electrons screen the Coulomb interaction between valence electrons and the

atom, we can replace the entire atomic core with an approximate potential. These

pseudopotentials are generated externally for each element type. Like k-points and

G vectors, pseudopotentials come with their own set of convergence criteria that

must be satisfied.
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2.2.1 Density functional perturbation theory

The main role of density functional perturbation theory (DFPT) is to solve

for phonon eigenmodes and eigenvalues. The following brief is based on a review

by Baroni et al. [6] These modes are the vibrational states in the crystal and the

eigenvalues are their frequencies. These vibrational modes are related to a range

of phenomena from heat transfer to IR and Raman spectroscopy. To calculate

vibrations, DFPT applies perturbation theory where E or ρ can be treated as

sums of responses to a perturbing parameter λ:

E(λ) = E(0) + λE(1) + λ2E(2) + ... (2.5)

E(n) =
1

n!

dnE

dλn
|λ=0. (2.6)

We can apply the harmonic approximation on the total energy with perturbing

displacements of atom α in direction µ, uαµ:

E = E(0) +
1

2

∑
α,β,µ,ν

∂2E

∂uαµ∂uβν

uαµuβν (2.7)

The linear term E(1) = 0 because we calculate phonons at equilibrium coordinates.

Terms higher than E(2) are ignored under this approximation.

In principle, to solve this equation we would need to calculate (3N)2 derivatives,

at least that many DFT self-consistent calculations of the total energy. In practice,

it is more efficient to expand E in the second term of EQ 2.7 into its components.

This is due to the fact that second-order derivatives of the total Hamiltonian

eigenenergy can be found using only first-order derivatives of the eigenfunctions.

Terms of the dynamical matrix (Dαµβν), which can be thought of as a mass-

reduced spring constant, are proportional to ∂2E
∂uαµ∂uβν

. Diagonalizing this matrix

yields the eigenmodes and eigenvalues which represent phonon modes and frequen-

cies in the structure. Raman and IR intensities are calculated in the same way,

but introducing Eσ, a small electric field in the σ direction, as a perturbation. IR

intensity computations are proportional to ∂2E
∂uαµ∂Eσ and require little extra work to

the phonon calculation. Raman mode intensities require one higher perturbation

step, where elements of the Raman tensor are proportional to ∂3E
∂uαµ∂Eν∂Eσ .



Chapter 3

a-Si and a-Si:H: Generation of

Voids by Cavitation at Low

Density

This chapter has been reprinted with permission from Physical Review Materi-

als 4, 025601 (2020). Copyright 2020 American Physical Society [55]. The publica-

tion, titled “Computational generation of voids in a-Si and a-Si:H by cavitation at

low density,” pursues our goal is to model realistic amorphous silicon (a-Si) with a

focus on generating samples with voids. This was accomplished by modifying the

previously established Wooten-Winer-Weaire (WWW) [207] method slightly—we

lower the initializing crystal’s density and allow the Monte Carlo process to ad-

vance. The result is an ensemble of structures with the emergent appearance of

voids at low densities.

3.1 Abstract

We study the microstructure of computationally generated amorphous silicon

(a-Si) and hydrogenated amorphous silicon (a-Si:H) as a function of density. The

details of the atomic structure in these materials underlie the causes of opto-

electronic losses—specifically light-induced degradation and suppressed hole mo-

bilities. Accurately modeling the microstructure is critical to quantifying these

16
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effects; we focus on generating populations of a-Si and a-Si:H structures with

and without voids. We use a modified WWW Monte Carlo method with the

Keating potential, using a range of fixed densities rather than the usual atomic

removal. We find a smooth evolution in bond lengths, bond angles, and bond

angle deviations ∆θ as the density is changed around the equilibrium value of

4.9 × 1022 atoms/cm3 to higher and lower values. A significant change occurs at

densities below 4.3 × 1022 atoms/cm3 with an onset of void formation, which is

associated with a drop in negative pressure, akin to a cavitation process in liquids.

We find both small voids (radius ∼ 3 Å) and larger ones (up to 7 Å), as in previous

computational studies, which compare well with available experimental data. The

voids have an influence on atomic structure up to 4 Å beyond the void surface,

and are associated with decreasing structural order, measured by ∆θ. We also

observe an increasing medium-range dihedral order with increasing density. The

method used to generate structures with voids does not rely on expensive density

functional theory molecular dynamics, and allows voids to form naturally by a

physical process, without needing any scheme for adding or removing atoms or

an a priori idea of void structure. This work provides a set of void structures for

further studies of properties such as the Staebler-Wronski effect.

3.2 Introduction

Amorphous silicon (a-Si) is a cheap and flexible semiconductor used as ultra-

reflective mirror coatings [164], thin-film transistors [125], and solar cells. A resur-

gence in interest in the material comes from the designs of heterojunction with

intrinsic thin-layer (HIT) cells, a c-Si/a-Si tandem solar cell with high efficiency

comparable to traditional crystalline silicon (c-Si) solar cells [21]. Unfortunately,

fielded HIT cells suffer from twice the degradation rate of single-crystal Si cells

[78, 69]. This increased rate has been attributed to the light-induced Staebler-

Wronski degradation [163] of a-Si:H which has been attributed to changing Si-H

bonds at small voids [40].

It is known that deposition conditions affect resultant density, intrinsic stress,
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and void content [75, 190]. The existence of microvoids has been observed using

small-angle electron spectroscopy [121] and small-angle x-ray spectroscopy [109].

These methods find density-deficient regions in a-Si:H and attribute them to voids.

Nuclear magnetic resonance [7] and infrared absorption [128, 161] techniques sug-

gest that H like to cluster, perhaps even in the form of molecular H2 [51]. Increasing

H concentrations can increase the amount of H clustering [161] and decrease the

Young’s modulus [74]. H effusion has been used to indirectly measure voids, but

may not distinguish between microvoids or interconnected low-density regions; in-

stead He implantation and temperature-mediated effusion can study voids with

divacancy-level resolution [12]. Experimental void research in non-hydrogenated

a-Si is sparse, a-Si may in fact contain fewer voids than a-Si:H [202, 147]. Recent

experiments involving density variation and void response in a-Si using electron

spin resonance have undergone with the intent of shedding light on the origins of

two-level systems [71, 117]. This zoo of experimental measurements yields void

sizes to be anywhere from the size of divacancies, about 3 Å [12], to 40 nm [51].

Void number density ranges from 1018 − 1020 cm−3 [12, 110]. Experimental results

can be contradictory: infrared measurements suggest that divacancies dominate

the void content [161] while He effusion shows larger voids are more prevalent [12].

Due to the omnipresence of voids in amorphous systems, their study is crucial to

understanding the macroscopic properties of a-Si and a-Si:H.

The common method for void generation in computational a-Si:H is atomic

removal [24, 135, 124, 83, 14, 132]; a-Si coordinates are generated, a choice of Si

atoms are removed, and dangling bonds may be passivated by H-insertion. This

method has been used to model void-related specific heat dependencies [124], effects

on small-angle x-ray spectroscopy [132], hydrogen evolution [24], and to compare

to paracrystalline structures [14]. Si removal can generate voids of controllable

shape and size, but it may leave an inherent bias: there will be 4 dangling bonds

left behind by a monovacancy, 6 for a divacancy, etc. Small voids are intrinsic

to a-Si, Pedersen et al. [135] have used this idea to generate realistic, low-energy

a-Si structures by a grand-canonical Monte Carlo method in which atoms can

be removed to find lowest-energy densities and bond topology. Biswas et al. in
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2017 [16] used a metadynamics approach [15] as an alternative to atomic removal.

This method finds voids as a product of biasing structures to fit bonding defect

constraints. This method has been used to study microvoids of about 5 Å in large

cells (7000 Si atoms), carefully constructing a description of the complex-shaped

void network [13].

We take a complementary approach to these studies. We explore voids up to

7 Å at low generation density instead. Our approach of annealing at constant

volume and number of atoms potentially is more closely connected to the physical

processes of chemical vapor deposition growth [77], in which initially deposited Si

(and H) atoms on a surface at elevated temperature undergo an annealing process

to form the final structure [161]. The melt-quench approach [86] could potentially

be used to prepare voids, but voids may be controlled more by bubble formation

in the liquid than the properties of the solid network.

Many works choose either a-Si or a-Si:H as the material of interest, we have

studied voids present in both materials due to the transferrability in our methods.

Our aim is to generate structures with voids for use in studying the effects on light-

induced degradation [231] and other optoelectronic properties of a-Si:H. We use

the Wooten-Winer-Weaire [207] method to generate ensembles of a-Si and a-Si:H

at 10% hydrogen content, as is commonly used for electronic devices [167]. We

modify the WWW algorithm and observe the formation of voids in the equilibrium

structures at a given density, rather than explicitly removing atoms. Typical a-Si

simulations only consider experimental densities; we instead systematically vary

our density and find that the stochastic evolution of our structures favors void

formation at low densities. Densities as low as 3.4× 1022 at/cm3 are studied, we

take these structures to model the behavior of low-density regions of a-Si while 4.8-

5.0× 1022 at/cm3 model typical density regions. Our method is computationally

simple and efficient, and it does include expensive density functional theory (DFT)

or melt-quench molecular dynamics during structure generation.

In this chapter, we describe modifications to the WWW algorithm used to

generate structures as well as overcoming difficulties produced by varying density.

We cover the details of DFT calculations using Quantum Espresso. We also discuss
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how to characterize voids using Zeo++ [201] and how we correlate those voids to

structural effects. We finally comment on overall structural changes and then the

localized changes near to voids and conclude.

3.3 Methodology

3.3.1 CHASSM

We allow the structure to evolve using a step-dependent temperature (T ) profile

to ensure escape of the crystal phase and local minimization in the amorphous

regime of the energy landscape. Introducing tensile strain alters the landscape,

thus requiring higher initial T to amorphize. The temperature profile consists of

three phases. An initial ‘randomization’ phase of 800 swap attempts/atom at high

T (about 0.8 eV) is used to escape the crystal barrier while highly distorting the

bonding network. The next ‘anneal’ phase consists of 100 swap attempts/atom at

decreasing T (0.8 to 0.4 eV in 0.002−0.05 sized intervals); this slow cooling allows

improvement of the bonding network while the system traverses small barriers in

the rough landscape [25, 165] to reach local minima. Finally, we ‘quench’ (100 swap

attempts/atom at T = 0) to relax and ensure the system is at a local minimum.

Note that given the significant energetic and entropic barriers between differ-

ent amorphous structures, straining structures to a different density and simply

relaxing (as for studying effects of small strain [168]) would not produce as much

structural variation as we find here, and would not correspond to the experimental

growth to different densities which we are targeting.

If the randomization T is too low, the network will not be sufficiently perturbed

from a perfect lattice and reverts to a crystal [207] and drop to a low energy as

shown in Fig. 2.1. We encountered an opposing problem: if the randomization

T is too high, the bonding network distorts too far from a physical one to be

annealed. Since the Keating potential does not rely on nearest neighbors, atoms

may be within coordination shells but have no interaction if they are not “bonded”

according to the bond table [193]. Structures with too large a randomization

temperature may be artificially over-coordinated: they may have 9+ atoms within
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the first coordination shell but only four Keating bonds. Structures of this kind

will have very high energies shown in Fig. 2.1. To remedy this, we find ideal

randomization T empirically: we randomize structures at variable temperatures

for 1000 steps for each density, the smallest temperatures that escape the crystal

phase are chosen. Ideal temperatures minimize the number of failed structures

due re-crystallization or artificial coordination. We find the ideal temperature to

be T = 0.82 eV−(ρ − ρ0) 0.18 eV/1022 at/cm3, where ρ − ρ0 is the difference

between the density ρ and the relaxed crystal density, ρ0 = 5.0×1022 at/cm3. At

densities below 3.4×1022 at/cm3, T required to overcome the initial barrier will

always over-distort the bonding network. Densities above 5.8 × 1022 at/cm3 will

always be over-coordinated; we discard structures with any atoms with 5+ atoms

within the first coordination shell, since the Keating potential does not describe

them well. Our densities are thus limited by those two values. Hydrogenated

structures have a larger range of usable T than pure a-Si structures but follow the

same ideal T trend, which we attribute to the more flexible bonding network when

Si-Si bonds are replaced with Si-H bonds.

The algorithm can be disrupted by identical bonding: two atoms may be

bonded to the same set of four atoms but not to each other. Atoms will inevitably

rest on top of each other after relaxation yet feel no mutual interaction. The like-

lihood of this event increases with the system size and is particularly important

to address for structures of 1000+ atoms. We solved this by rejecting swap at-

tempts that would cause two atoms to have the same set of bonds. It could also be

remedied by including distance-based repulsive terms to the potential [193, 166].

We use CHASSM to generate ensembles of structures at variable densities of

both a-Si (Si216) and a-Si:H (Si216H20) from 3.4 to 5.6×1022 at/cm3 in intervals of

0.16×1022. 10 structures per density are sampled to be further relaxed using plane-

wave DFT. Stresses of ±1 GPa are common in a-Si:H [77], and in this work we

reach 5 GPa. Cells are fixed as simple cubic, with lattice constant ranging from 15.6

Å to 18.5 Å at the highest and lowest densities respectively. Structural parameters

of DFT-relaxed structures are calculated and error bars displayed are the standard

errors of the population of 10 structures. The structural parameters of the original
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CHASSM structures in the full data set (bond lengths, bond angles, bond angle

deviations) are found to be very similar to the results of DFT relaxation, and are

not shown. Pressure results are from a stress calculation in CHASSM implemented

in the approach for classical potentials in periodic systems detailed in an article

by Thompson et al. [178], using their equations (28) and (29).

3.3.2 DFT

We use Quantum Espresso [50] to perform fixed-cell relaxations at the Γ point

using the PBE exchange-correlation potential [139] and ultrasoft pseudopotentials

(USPP) [189]. We set the wavefunction kinetic energy cutoff to 38 Ry and 46 Ry

for a-Si and a-Si:H respectively. Charge density cutoffs (requiring special care for

USPP) were set to 151 Ry and 221 Ry for a-Si and a-Si:H. WWW structures were

relaxed until forces and energies were converged to 10−4 Ry/Bohr2 and 10−4 Ry

respectively. These values were chosen because lowering thresholds only affected

the atomic positions by less than 10−6 Å. Structures at very low and high densities,

required smearing to converge the self-consistent cycle, possibly due to unpaired

electrons at floating or dangling bonds. For relaxed-density calculations, we per-

form variable-cell relaxations until the stress tensor elements are below ±0.01 kbar.

a-Si structures below 3.6×1022 at/cm3 did not reliably converge self-consistent field

cycles. After DFT relaxation, we consider atoms within 2.8 Å of each other bonded;

bond lengths, angles, and dihedrals are computed from this bonding network.

3.3.3 Void characterization

We delegate our void characterization to Zeo++ [201], an open-source code

developed to study the structure of void channels in zeolites. The code’s pore-size

distribution [140] function samples “test points” in the material and records the

radii of the largest sphere encapsulating each point without touching any atoms.

Note that this method interprets what could be considered a complex-shaped void

(as in Biswas et al. [16]) as several spherical voids. We find our characterization to

be appropriate if we are not concerned with details of the voids’ surface structure.
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Figure 3.1: (top) An example low-density (4.3×1022 at/cm3) a-Si structure with a
large void. The green void points fill in the largest voids. (bottom) The pore size
histogram of a low-density (4.05× 1022 at/cm3) post-DFT structure. Large voids
(4.9 Å) and voids of a common size (2.5 Å) appear as strong signals in this his-
togram. Interstitial voids (dashed) are ignored in void analysis. Area underneath
the solid region constitutes the void volume. Only void points belonging to the
largest voids (green) are considered for the void proximity (rv) analysis.

We have set the atomic radii and probe size to zero, and we have only con-

sidered Si atoms for void analysis to be able to directly compare a-Si to a-Si:H.

All structures show a strong peak of interstitial-like voids (Fig. 3.1), a broadened

version of the single crystal peak which appears at 2.4 Å. Low-density voids will

appear as one or more peaks beyond the interstitial peak. To quantify the total

void volume, we ignore the interstitial peak from the distribution. Void concen-

tration in our low-density calculations is 2 orders of magnitude larger than that

found by Biswas et al. around the equilibrium density [16], a sign that our small

supercell may not be suitable to obtain this measure. Void sizes are also limited by

our supercell. To find the atomic densities of the non-void parts of the structure,

we set the radii of Si atoms to 2.21 Å, the Si Van der Waals radius. Renormalized

densities are calculated ρnorm = ρ/Natomic, where Natomic is the proportion of test

points that fall within 2.21 Å of any Si atoms. Mono- and divacancies, which are

important to many experiments and computations [161, 12, 83], have signals at

2.5 and 3.0 Å; since we are not generating vacancies through atomic removal, we

do not see any such signals.

We locate large voids by considering test points corresponding to the largest
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10% of spheres in a given structure to be that structure’s “void points” (pictured

in Fig. 3.1). We assign a void proximity measure to every atom, rv, the shortest

distance from that atom’s center to a void point. We associate this distance with

structural parameters to study how far voids’ influence extends into the material.

3.4 Results and Discussion

3.4.1 Dependence of structure and bonding on strain ini-

tialization

We can probe the differences between pre- and post-DFT bond topologies to

assess the validity of CHASSM structures. Any atoms whose local bonding has

been readjusted (whether by a broken or new bond) is counted as a bond correction.

Away from relaxed densities, these events are more common, at worst 3% compared

to the 0% near relaxed densities. Atomic positions are corrected by DFT on average

by 0.04 Å. We take these as evidence that DFT preserves the topology created by

the Keating potential reasonably well, except at the most extreme densities we

have studied.

Network ring analysis (calculated using King’s method [85] with the open-

source code R.I.N.G.S. [98]) are consistent with previous works [34]. There is

little density-dependence in the ring statistics of a-Si:H. An increase in a-Si six-

membered rings at the lowest densities is present—consistent with the observed

hexagonal sheets.

Our calculated pair distributions g(r) are shown in Fig. 3.2. We find they

have little dependence on density, and are very similar for a-Si and a-Si:H. A 2.2 Å

peak in the H-H pair distribution function is consistent with SiH2 bonding networks

found in divacancies created with molecular dynamics [24] and experiment [9]. This

peak is a sign that H atoms preferentially cluster near the interior of voids.

We benchmark the density, elastic properties, and structural parameters at the

relaxed density in Table 3.1. The densities of both c-Si and a-Si are underestimated

by PBE by 0.1×1022 at/cm3. The relaxed c-Si CHASSM density (by choice of the
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Figure 3.2: Averaged partial pair distribution functions, g(r), for a-Si:H at all
densities. g(r) for a-Si is identical to the Si-Si distribution in a-Si:H. Decreasing
density increases the height of the H-H 2.2 Å peak, but has little effect on the
other curves.

Keating parameters α, β, and δ) matches experiment, but a-Si is incorrectly denser

than c-Si, as noted in the original WWW work [207]. This does not affect results

for a fixed density though. Elastic constants are described well by CHASSM only

for c-Si near relaxed densities (Fig. 3.3), due to the lack of any dependence beyond

harmonic in the Keating potential, but the DFT elastic constants agree well with

experiment. Structural parameters agree well with experiment, and we find similar

levels of agreement for a-Si and a-Si:H.

Pressures (trace of the stress tensor) calculated using the Keating potential

are significantly lower than those obtained from DFT, but they have a similar

trend with a constant offset in Fig. 3.3. Pressures vary linearly with density

above 4.5× 1022 at/cm3. A sudden drop in absolute pressure occurs at the critical

density between 4.3 and 4.5×1022 at/cm3. These densities are consistent with the

onset of voids in Fig. 3.4. This behavior shows the same physical mechanism as

cavitation and bubble formation at low pressures in liquids [17]. A sharp drop

in pressure at low densities is similarly observed in classical molecular dynamics

simulations of water [199]. At low densities, small voids are non-existent, they

have instead coalesced into one large void or even channel. Once voids approach

the size of our supercell, they are likely to meet their periodic neighbors and form
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Table 3.1: Relaxed density parameters of CHASSM, CHASSM+DFT, and exper-
iment of c-Si, a-Si, and a-Si:H

ρ0 (1022 at
cm3 ) Y (GPa) B (GPa) ⟨r0⟩ (Å) ⟨θ⟩ (◦) ∆θ (◦)

CHASSM

c-Si 5.01 162 97 2.35 109.5 0

a-Si 5.12 180 77 2.33 109.3 9.6

a-Si:H 5.07 166 64 2.34 109.3 9.9

CHASSM

+DFT

c-Si 4.87 153 82 2.37 109.5 0

a-Si 4.78 138 59 2.36 109.2 10.3

a-Si:H 4.67 129 60 2.38 109.1 11.0

Exp’t

c-Si 5.01 165 98 2.35 109.5 0

a-Si 4.9 140 140 2.38 108.5 8-11

a-Si:H 4.9 126 59 2.36 108.4 8-11

Relaxed density parameters of CHASSM, CHASSM+DFT, and experimental c-Si [64], a-Si

[205, 141, 45, 157, 150], and a-Si:H [93, 174, 154, 45, 150, 149]. Density values are in

1022 at/cm3, Young’s moduli (Y ) and bulk moduli (B) are in GPa, mean bond lengths (⟨r⟩) are
in Å, and mean bond angles (⟨θ⟩) and angle deviations (∆θ) are in degrees.

connected channels. This could be related to the observation in water that at low

enough densities, spherical cavitation evolves to cylindrical cavitation [199]. We

conclude that voids have been created to relieve the global pressure caused by a

highly strained bonding network. The pressure stabilizes to a constant value at

the lowest densities for all data sets.

This picture of cavitation is reinforced by examination of bond lengths and an-

gles (Fig. 3.5), which have a transition around the critical density 4.3×1022 at/cm3.

Bond lengths in a-Si increase as density is decreased, but then decrease again back

to the relaxed value after stress relief with void formation. The small magnitude

of bond length changes seem consistent with the results of Jacks and Molina-Ruiz

et al. [71], from electron-energy loss spectroscopy (EELS). Overall, a-Si:H struc-

tures react more smoothly to strain because of the degrees of freedom discussed

in section 3.3.1. The increase in ∆θ at low density, the typical measurement of

amorphous order as inferred from the TO peak width in a Raman spectrum [8],

is also consistent with Jacks and Molina-Ruiz et al. [71], although we see a larger
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Figure 3.3: CHASSM (solid) and CHASSM + DFT (dashed) calculated pressures
vs. densities. As density is decreased in a-Si and a-Si:H, negative pressure is
induced, but then relieved near the void onset density of 4.3–4.5×1022 at/cm3, like
the cavitation process of bubble formation. CHASSM pressures are systematically
too low compared to DFT, but have the correct trend. a-Si has a more abrupt
transition than a-Si:H.

Figure 3.4: Renormalized atomic densities (top) indicate the density of the non-
void regions, showing that void formation allows the rest of the sample to retain
a constant density. (bottom) The encapsulating sphere method directly confirms
that voids start forming at 4.3–4.5×1022 at/cm3. Above the critical density, largest
void radii are of about the size of the interstitial and total void volume is nearly
0% of the total volume.
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Figure 3.5: Response of structural parameters to density variation. Bond lengths
and angles change trends around 4.3×1022 at/cm3, the density of void onset shown
in Fig. 3.4. Relaxed c-Si has a CHASSM energy of 0 eV and ∆θ = 0. a-Si DFT
energies are relative to c-Si, a-Si:H energies are relative to the lowest a-Si:H energy
in our data set.
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increase, perhaps due to finite-size effects of our supercell or limitations in the ex-

perimental extraction of ∆θ and density in the films. We find that ∆θ increases at

high densities also. The average bond angle decreases away from the relaxed den-

sity too, more dramatically for a-Si, which we will interpret in terms of effects near

voids. The energies in CHASSM and DFT show increases away from the relaxed

density, of course, but also a clear bump at the critical density for a-Si; no obvious

feature occurs for a-Si:H. A constant trend of ⟨r⟩ at low densities is consistent with

the stabilized renormalized density in Fig. 3.4. These plots combined imply that

Si-Si bonds have stopped stretching and begin to relax as a result of cavitation.

Flattening of this atomic network density at low global densities is consistent with

Rutherford backscattering spectroscopy and atomic force microscopy data [71].

Dihedral distributions show an unexpected density-induced variation. It is

often considered that there is a uniform distribution of dihedrals in a-Si, inferred

from the third nearest-neighbor peak in g(r) as measured by X-ray diffraction [154].

However, our results show instead sinusoidal variation, with distinct peaks at 60◦

and 180◦ similar to what has been found in other computational studies [135, 130].

For comparison, c-Si has 2/3 of the dihedrals as 60◦ and 1/3 as 180◦. To describe

the density dependence, we restrict ourselves to Si atoms only and fit the dihedral

distributions to the form A cos(2π/120◦)+D. D is density-invariant, but A, which

we term the dihedral amplitude, is a measure of the strength of dihedral order.

Increasing the density increases the magnitude of A (Fig. 3.6), indicating a stronger

medium range order at high densities. Lowest density structures seem to show a

complete flattening such that A → 0. Below 4.3 × 1022 at/cm3, the relationship

reverses and angles at 0◦ and 120◦ are more likely to be found than 60◦ or 180◦.

Curiously, the lowest density a-Si structures with strong 0◦ peaks are found to

contain hexagonal bilayer sheets (like a graphene bilayer with AA stacking). We

presume that these structures are unphysical artifacts of the Keating potential, and

indeed the change of structure with DFT relaxation is increasingly large around

these densities. Hexagonal bilayer sheets are compatible with large free surfaces

while tetrahedrally coordinated structures necessarily suffer large deformations to

their bond angles near a void. In a-Si:H, A does not go above 0 and we have not
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Figure 3.6: (top) The relationship between density and the dihedral amplitude,
A, in low and high density a-Si structures. A is a direct measure of the dihedral
order, it increases as the density increases. (bottom) Dihedral distributions for a
low (4.1×1022 at/cm3) and relaxed (4.9×1022 at/cm3). Dihedral order vanishes at
the lowest densities.

found evidence of hexagonal sheet structures.

3.4.2 Structural differences near voids

In low-density structures with large voids, structural deformations are asso-

ciated with void proximity, rv. To isolate local structural parameters from, we

group atoms based on their rv and collect bond lengths and angles associated with

those atoms. ∆θ, ⟨θ⟩, ⟨r⟩, and ⟨C⟩ are now computed on those sub-populations.

Accurate description is limited by half the cell size minus the void diameter, to a

distance of about 7 Å away from a void surface. In a given low-density structure,

the increased bond angle deviation resides entirely around the surface of voids as

shown in Fig. 3.7. Bond lengths and angles near the void surface do not resemble

the c-Si (100) reconstruction considered by Carlson in a light-induced degradation

model [23] and invoked in the literature [40]. Results of 1-2% increase in bond

lengths and increasing local ∆θ are consistent with atomic removal methods [83].

We have pictured the motif for increase in local bond angles in Fig. 3.7. Away

from voids, the deviation returns to relaxed-like values of 10◦. These results show

conclusively that the structural changes below the 4.3×1022 at/cm3 critical density

are driven voids.

Our low-density a-Si ensembles include structures that contain voids while
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Figure 3.7: Locally resolved structural response of low density structures as a func-
tion of void proximity. a-Si and a-Si:H lines are structures below 4.3×1022 at/cm3.
High density structures (green) are plotted to contrast, since the largest voids in
these structures are not distinguishable from interstitials there is little correlation
between structural deformation and void proximity. ⟨r⟩ are calculated with respect
to average bond lengths for each given density. ⟨C⟩ is the average Si-Si coordina-
tion number. The results are consistent with a local rearrangement of bonds to
accommodate a void as shown in the bottom-right sketch.
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maintaining perfect 4-coordination without H insertion, albeit at a cost of high lo-

cal strains. This feature is not obtained by Si removal methods, since 3-coordinated

atoms are generated by design and void surfaces must reconstruct [132]. This may

have implications in experiments, such as H effusion, which rely on the presence of

H to measure voids, or electron spin resonance, which rely on coordination defects

at the void surface. It may be possible that macroscopic structures with both

H-filled or entirely empty voids exist.

Fig. 3.2 and the ⟨C⟩ plot in Fig. 3.7 provide evidence that H clustering in

a-Si:H. H atoms are highly concentrated within voids, especially at low densities.

This is significant since we did not explicitly place H atoms at the void surfaces,

as in some previous work, but the H atoms naturally ended up there from the

Monte Carlo process and annealing. This result is consistent with previous studies

[24, 208, 128].

3.5 Conclusion

Using a pure WWW method with different fixed densities, we are able to gen-

erate realistic a-Si and a-Si:H structures with voids that can be used to study

degradation, two-level system phenomena, or H-mediated changes to elastic pa-

rameters. The method is simple and scales well with system size [5], and requires

no atomic addition or removal, or any a priori idea of the targeted structures. a-Si

coordinates obtained from this method are unique for their near-perfect coordi-

nation in the presence of voids without H passivation. Since 4-coordinated void

structures are obtainable, it may be possible that experimental a-Si:H contains a-

Si voids with no H involved that have thus far been ignored by some experimental

measurements.

Studies by Nakhmanson and Drabold [124] suggest strong locality of some

low-energy phonon modes near void surfaces. These may be a product of low

coordination near voids produced by atomic removal and may be worth revisiting

with fully 4-coordinated pure a-Si void structures. These phonon modes may have

strong implications on two-level systems [117].
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Structural analysis of a-Si and a-Si:H at low density indicate less tetrahedral

bond angle distributions and nonlinear bond lengths stretching. a-Si:H responds

more smoothly to strain than a-Si due to a less constrained network. The in-

crease in negative pressure and then reduction below the critical density indicates

the bonding network undergoes a bubble-like cavitation process—the formation

of large voids to relieve internal stresses. By resolving structures at an atomic

level, we conclude that the structural changes at low density reside near void sur-

faces. The locality of this structural disorder may be related to two-level systems

[117]–structures generated here can be used to study such phenomena. We find in

a-Si:H that H atoms tend to be concentrated near voids. We verified the validity

of the WWW and Keating potential description across a range of densities near

the relaxed one, except for the most extreme densities studied.



Chapter 4

a-Si Potential Energy Surface:

Analysis of the Amorphous

Configurational Energy Gap

This chapter is based on unpublished work and is assembled based on work

that was generated for the previous chapter, but did not fit that chapter’s theme.

Instead, the works here are related to the high-dimensional, fractal [25] potential

energy surface of a-Si systems with respect to changing atomic coordinates and

bonding network. Motivations originally stemmed from the observation that the

energy and bond angle deviations, ∆θ, of all 700 structures were statistically asso-

ciated. This chapter begins to lay the foundation for expressing the complicated

energy in an amorphous system in terms of mostly just one parameter—∆θ.

The potential energy landscape of amorphous Si shows a striking feature with

no direct explanation—an energy gap between the crystalline and amorphous

phases [37]. Amorphous silicon (a-Si) is not found between 0 and about 0.07

eV/atom above crystalline Si (c-Si). This configurational energy gap is surprising

when the potential energy surface’s local minima are considered, i.e. a large num-

ber of atoms lead to an exponential number of unique configurations [165], and

yet there is not a gradient of configurations that reaches between the crystalline

and amorphous phases. The fractal nature [25] of the energy landscape means

that relaxation schemes must consider overcoming barriers of arbitrary size while

34
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Figure 4.1: The Keating energy as a function of the average bond angle deviation
and mean bond length for the 700 structures generated by CHASSM. The upper
tail in the bond length plot is due to the phase changes discussed in Ch. 3.

relaxing.

The Wooten-Winer-Weaire (WWW) [207] and Keating potential [82] combina-

tion described in Chs. 2 and 3 has a built-in feature: a bond-switch move followed

by structural optimization that constitutes a change in configuration that amounts

to moving from one minimum in the energy landscape to a nearby one. Each of the

initial successful moves as applied to c-Si forces the system up the steep crystalline

well as in Fig. 2.1. Once sufficiently randomized, barriers to changing between

two amorphous states are significantly smaller and the system has changed phases.

As noted in Ch.3, the bonding network is preserved relatively well when sending

Keating-relaxed structures through DFT. We will use those structures generated

and further interrogate them to gain insight as to the configurational energy gap.

Absent from Drabold’s description of the configurational energy gap [37] is men-

tion of the bond angle deviation, ∆θ. This order parameter also shows a gap. The

∆θ = 0◦ for a crystal, but the smallest ∆θ for the 700 CHASSM [169]-generated

structures was 9.38◦. Smaller values were only observed in structures that were

mostly crystalline, but these were tossed out as failed attempts at amorphization.

We find near linear relationships between small changes in structure bond angle

deviations and quadratic relationships to bond length averages in Fig. 4.1.

A strong relationship between E and ∆θ is not surprising if we rewrite the

Keating potential as a statistical average over a large number of structures. The



36

form of the raw potential is as follows [82]:

U =
3α

16δ2

Natoms∑
i=1

NBL,i∑
j=1

(|r⃗ij|2 − δ2)2 +
3β

8δ2

NBL,i−1∑
i=1

NBL,i∑
k>j

(r⃗ij · r⃗ik +
1

3
δ2)2 (4.1)

where α and β are bond length and angle force constants, δ is the rest Si-Si bond

length, NBL,i is the number of atom i’s bond lengths (set to 4 for non-hydrogenated

a-Si), rij is the bond length vector from atom i to it’s jth bonded atom. We have

set α, β, and δ as 2.965 eV/(Å2), 0.845 eV/(Å2) , 2.35 Å respectively, to match

previous, successful values for c-Si [5].

We have compared the Keating energy of structures at varying densities against

their geometries. We can rewrite the Keating potential, which was built for crys-

tals, to tell us about ensemble averages of amorphous structures through the av-

erage bond lengths and bond angle deviations. Here, we rewrite U as being a

function of ⟨r⟩ and ∆θ, properties of an entire structure:

⟨U⟩ = 3α

8δ2
⟨Nbonds⟩(⟨r⟩2 − δ2)2 +

3β

8δ2
⟨Nangles⟩⟨(r⃗i · r⃗j +

1

3
δ2)2⟩

⟨U
N
⟩ = 3α

8δ2
× 2(⟨r⟩2 − δ2)2⟩+ 3β

8δ2
× 6(⟨r⟩4⟨cos2 θ⟩+ 2

3
δ2⟨r⟩2⟨cos θ⟩+ 1

9
δ4)

⟨U
N
⟩ = 3α

4δ2
(⟨r⟩2 − δ2)2 +

β

4δ2
(⟨r⟩4(1 + 7(∆θ)2)− 2δ2⟨r⟩2(1 + 1

2
(∆θ)2) + δ4).

(4.2)

We force Nbonds = 2N and Nangles = 6N for a-Si. We have assumed ∆r = θ

and thus ⟨r2⟩ = ⟨r⟩2, where ⟨r⟩ is a given structure’s average bond length. ⟨r2⟩ is
roughly .06% larger than ⟨r⟩2. We assume ⟨θ⟩ = θt ≈ 109.5◦, this value does show

a density-dependent drop of about 2◦ [55], but we have taken this as insignificant.

If we recall that (∆θ)2 = ⟨θ2⟩− ⟨θ⟩2, then ⟨cos θ⟩ = −1
3
(1+ 1

2
(∆θ)2) and ⟨cos2 θ⟩ =

1
9
(1 + 7(∆θ)2) through Taylor expansion about θt. The weakest assumption made

is that bond lengths r and angle projections cos θ are uncorrelated: ⟨r2 cos θ⟩ =

⟨r2⟩⟨cos θ⟩.
These assumptions allow us to write the Keating potential as a function of only

⟨r⟩ and ∆θ. We can plot these equations of state against the actual ⟨r⟩ and U/N
in a structure while fixing ∆θ and vice-versa as in Fig. 4.2. By setting ⟨r⟩ = δ in
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Figure 4.2: Keating energy/atom of CHASSM structures (Black) versus those
structures’ average geometry parameters r and ∆θ. Total DFT Energy/atom (red)
show similar structure when varied by density. Theoretical (blue) lines for constant
values of ∆θ (from bottom to top: 10, 12, 14 ◦) and r (from bottom to top: 2.35,
2.37, 2.39, 2.41 Å).

Eq. 4.2 we reach Eq. 4.3:

⟨U
N
⟩ = 3βδ2

2
(∆θ)2. (4.3)

According to Eq. 4.3, the energy U does not show a continuous evolution from

crystal to amorphous because ∆θ does not. ∆θ does not fall below 9◦ in a given

structure, so the Keating energy will not fall below 0.18 eV/atom above c-Si. We

find the DFT-relaxed energies are lower than their classical Keating counterpart

and the spreads have also been reduced. In both cases, however, the shapes are

distinguishable. There is a quadratic relationship in the ⟨r⟩-dependent form until

there is large tensile strain. This tensile strain leads to void formation causing

non-linearities at qualities related to low-densities, as discussed in the previous

chapter. Fits to the ∆θ-dependent form shows a slightly reversed parabola when

compared to the data in Fig. 4.2. There is an overall underestimation of the

CHASSM energy, but an overestimation of the DFT-energy.

Ch. 3 shows that there is predictability in the structural parameters as a

function of generation density. These give variable r and ∆θ suitable to test

equations 4.2 and 4.3. Focusing on the Keating energy, we can combine the models

and compare the full Keating energy to the structure-average models in Eqs. 4.2

and 4.3. We see the inverted-parabola shape disappear, as it is explained as bond
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Figure 4.3: The Keating energy in two forms—as Eq. 4.2 (blue) and Eq. 4.3
(red). The bond length correction is significant away from equilibrium. Even with
the correction, fully computed energies are about 0.05 eV/atom above the average
models.

length strains. Still, there remains a small gap between the averaged model and the

computed energy. We thus far hypothesize that the gap is related to the ⟨r2 cos θ⟩
correlation terms.

Further processing of the structure may definitively reveal the source of the

average-model gap. In turn, the formulation with structure-averaged dependencies

may simplify the crystalline/amorphous energy gap. The strong linearity of the

form based on 4.2 in Fig. 4.3 leads to a model that can predict the DFT energy

when ensembles of structures are considered.

4.1 Supplementary Material

The following derivation applies a Taylor expansion about the tetrahedral angle.

This is used in finding Eqs. 4.2 and 4.3.
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Assumptions:

⟨θ⟩ = θt

⟨r2⟩ = r2

⟨f(r)g(θ)⟩ = ⟨f(r)⟩⟨g(θ)⟩

(θ − θt) is small cos θt = −1

3
, sin θt =

2
√
2

3

Expectation value of Taylor expansion of cos θ and cos2 θ about θt

cos θ = cos θt − sin θt(θ − θt)−
1

2
cos θt(θ − θt)

2 +O(θ − θt)
3

⟨cosθ⟩ ≈ cos θt − sin θt(⟨θ⟩ − θt)−
1

2
cos θt(⟨θ2⟩ − 2θt⟨θ⟩+ θ2t )

= cos θt − 0− 1

2
cos θt(⟨θ2⟩ − θ2t )

= −1

3
+

1

6
(∆θ)2

cos2 θ = cos2 θt − 2 cos θt sin θt(θ − θt)− cos2 θt(θ − θt)
2+

sin2 θt(θ − θt)
2 +O(θ − θt)

3

⟨cos2⟩ ≈ cos2 θt − 2 sin θt cos θt(⟨θ⟩ − θt)− (cos2 θt − sin2 θt)(∆θ)
2

=
1

9
+

7

9
(∆θ)2 (4.4)



Chapter 5

Ni-doped MoS2: Structure,

Vibrational spectroscopy

This chapter has been reprinted with permission from the Journal Physical

Chemistry C 2021, 125, 13401-13412. Copyright 2021 American Chemical Society

[58]. Here, we cover our analytical methods to study the thermodynamic stability,

electronic structure, and vibrational spectroscopy of Ni-doped MoS2 using density

functional theory and density functional perturbation theory. Generation of these

structures was inspired by the parametrization of a force field discussed in Ch. 7 for

use in studying friction between layers. This chapter lays the foundation for that

work and interrogates the doped structure and its properties at the microscale.

5.1 Abstract

Ni-doped MoS2 is a layered material with useful tribological, optoelectronic,

and catalytic properties. Experiment and theory on doped MoS2 has focused

mostly on monolayers or finite particles, theoretical studies of bulk Ni-doped MoS2

are lacking and the mechanisms by which Ni alters bulk properties are largely un-

settled. We use density functional theory calculations to determine the structure,

mechanical properties, electronic properties, and formation energies of bulk Ni-

doped 2H-MoS2 as a function of doping concentration. We find four meta-stable

structures of Ni-doped MoS2: Mo or S substitution, and tetrahedral (t-) or oc-

40
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tahedral (o-) intercalation. We compute phase diagrams as a function of chemi-

cal potential to guide experimental synthesis. A convex hull analysis shows that

t-intercalation (favored over o-intercalation) is quite stable against phase segre-

gation and in comparison with other compounds containing Ni, Mo, and S; the

doping formation energy is around 0.1 meV/atom. Intercalation forms strong in-

terlayer covalent bonds and does not increase the c-parameter. Ni doping creates

new states in the electronic density of states in MoS2 and shifts the Fermi level,

which are of interest for tuning the electronic and optical properties. We calculate

the infrared and Raman spectra and find new peaks and shifts in existing peaks

that are unique to each dopant site, and therefore may be used to identify the site

experimentally, which has been a challenge to do conclusively.

5.2 Introduction

Transition metal dichalcogenides (TMDs) are lamellar materials with strong

covalent intralayer bonds and weak Van der Waals interlayer bonds. MoS2 is a

semiconducting TMD with interesting optical [11, 119], electronic [11], spintronic

[151, 95], lubrication [191], and catalysis [111, 196, 120] properties which are often

controlled using dopants. Doping MoS2, especially with Ni, can increase catalytic

activity and reduce friction [170, 192]. However, the mechanisms for these doping

effects, and even the basic question of the sites occupied by Ni atoms, remain

unclear. This work focuses on exploring Ni doping in bulk 2H-MoS2 and the

effects on materials properties as computed by density functional theory (DFT).

Much previous work about doped MoS2 has been motivated by catalysis. MoS2

has properties that are desirable in photo-, electro-, and thermocatalysis [111].

Though MoS2 has poor intrinsic catalytic activity, it can be enhanced by dopants

[176] to create defects (especially at edge sites [172, 143, 96, 195]) as active sites.

Co- and Ni-doping have been studied theoretically [172, 60] and experimentally [90,

120, 96] showing enhancement of the hydrogen evolution reaction. Intercalation by

Na, Co, Ni, and Ca has also been shown to increase catalytic activity in 1T-MoS2

[4].
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More recently, monolayer MoS2 has shown promise for optoelectronic applica-

tions such as photovoltaics [183] or light-emitting-diodes [102]. Large exciton bind-

ing energies and long lifetimes of excitons in MoS2 mean that the high absorption

rate can be used to generate useful excitons at room temperature [183, 10, 229, 152].

Dopants can alter the Fermi energy by donating or accepting electrons and can

tune these optoelectronic properties [11]. Monolayer and bulk 3R MoS2 lack inver-

sion symmetry, unlike the bulk 2H phase, giving rise to spin-orbit effects which can

further be exploited for spintronic and valleytronic applications [151, 152]. Tran-

sition metal doping by Mn, Fe, Co, and Zn has been used to induce magnetism

which could be used for spintronics [29, 176].

Bulk MoS2 also has useful properties for the older application of lubrication:

superior resistance to wear (the gradual loss of material caused by sliding [192])

and a low coefficient of friction (high lubricity) due to the ease of shearing along

the basal plane [113]. As a solid lubricant, MoS2 holds some advantage over liquid

lubricants—notably it lubricates at temperatures and pressures low enough even

for space applications [191]. Tribological properties can be enhanced via doping

[176]. Re (in MoS2 fullerene-like nanoparticles [144]) and Ta [170] have been ob-

served to increase lubricity, and Cr and Ti have been found to strengthen the

resistance to humidity while retaining MoS2’s high lubricity [35]. Ni is an excep-

tional dopant for increased wear protection, decreased coefficient of friction, and

long-term stability [170]. Despite how long studied these materials are, correla-

tion of macroscopic tribological properties and microscopic atomic structure has

remained elusive, especially for 2D materials [65, 43, 191].

Previous studies suggest that Ni substitutes Mo at edge sites in small flakes

[172, 143, 96, 195], but there has been little investigation of Ni doping in bulk.

Some possibilities are suggested by studies of other dopants. Co [131] (chemically

similar to Ni) and Ta [230] are thought to increase catalytic activity by insertion

into S vacancies near the usually inert basal plane. In bulk, other ions [79, 232,

224, 223, 158] can intercalate between the layers (typically in the octahedral site)

and increase interlayer spacing or even form ordered alloys [26]. A phase change

from 2H to 1T with Li intercalation has been found via Raman spectra indicating
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a symmetry change from D6h to D3d [79]. Ni doping, presumably through surface

energies, can control MoS2 crystal size and growth rates [90, 120]. A study of

Ni-doped MoS2 nanostructures found signs of Ni substitution for Mo and a change

to the 3R phase; shifts in diffraction peaks indicated contraction of the MoS2 cell

[120].

Vibrational spectroscopy has been a main tool for the characterization of 2D

materials and their defects. n-type doping of MoS2 is correlated with redshifts

of the A1g Raman-active peak and p-type with blueshifts while the E1
2g Raman

frequency remains unchanged. This behavior is found in field-effect doping as well

[24]. With other transition metals, Nb-doping was found to cause an A1g redshift

[171] while Au caused a blueshift [159]. An A1g redshift around 1 cm−1 for Ni-

doped MoS2 nanostructures was attributed to changes in number of layers [120]. A

new 280 cm−1 peak was found in Ni-doped MoS2 that was not related to either pure

MoS2 or nickel sulfides [90], but its origins have not been further characterized.

Vibrational properties are also important for tribology as energy dissipation via

vibrational states [175, 67] and electron-phonon coupling [43] (EPC) are thought

to play a crucial role in increasing friction in 2D materials. Sheremetyeva et al.

have studied Ag-doped MoS2 using experiment and DFT and find shifts in low-

frequency modes, demonstrating that peaks aside from the prominent A1g and E
1
2g

can be effective identification markers [158]. We have found few computational

studies of doped bulk 2H-MoS2 and experimental reports have rarely had suffi-

cient resolution to identify dopant-related peaks. There is a clear need for more

detailed Raman and IR studies since vibrational spectroscopy can be a powerful

tool for characterizing defects. In this paper, we use first principles DFT cal-

culations to systematically survey different structures and concentrations of bulk

Ni-doped MoS2 to definitively resolve the structure of this material. We determine

phase stability to guide synthesis and show unusual stability of intercalated struc-

tures. We compute Raman and IR spectra to aid in experimental identification of

defect structures (which may not be lowest energetically due to non-equilibrium

growth), and study elastic and vibrational properties to understand how Ni im-

proves performance in lubrication. By studying elasticity, bonding, and vibrations,
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we elucidate how Ni decreases friction and increases resistance to wear.

5.3 Methods

5.3.1 DFT Calculations

We use plane-wave density functional theory (DFT) and density functional per-

turbation theory (DFPT) [6] implemented in Quantum ESPRESSO [50] v6.4. Cal-

culations were performed using the Perdew-Burke-Ernzerhof [139] (PBE) general-

ized gradient approximation and Perdew-Wang [138] local density approximation

(LDA) exchange-correlation functionals with Optimized Norm-Conserving Vander-

bilt pseudopotentials [62] parametrized by Schlipf and Gygi [153] (for PBE) and

by PseudoDojo [187] (for LDA) obtained from their respective websites [187, 153].

Raman calculations were done only for LDA since PBE is not compatible with

Raman intensity calculations in this code [97].

Relaxations and electronic structure of the primitive, 6-atom MoS2 cells used a

k-point grid of 6× 6× 4 with a half-shifted k-grid. Increasing the supercell size to

reach lower Ni concentrations allows decreasing k-points per axis in the in-plane

a- and b-directions inversely proportional to the supercell size: 4× 4× 4, 3× 3× 4,

and 2 × 2 × 4 k-points per axis were used for 2 × 2 × 1, 3 × 3 × 1, and 4 × 4 × 1

supercells, respectively. Atomic coordinates were relaxed using force thresholds of

10−4 Ry/Bohr and the stresses were relaxed to 0.1 kbar. Calculations were spin-

unpolarized, except for ferromagnetic bulk Ni. Spin-polarization for other cases

was found to affect the total energy by less than 0.001 meV per atom, thus having

no significance for the properties considered here. The change is only non-negligible

in bulk Ni, where the energy difference is 0.2 eV/atom.

A wavefunction cutoff of 60 Ry was used for PBE and 80 Ry for LDA. The

self-consistency thresholds were set to 10−18 for the ground state and 10−15 for

phonons. Strict thresholds were required for accurate calculations of modes with

low frequencies. Low frequencies of vibrational calculations of 3×3 t-intercalation

and Mo substitution were initially calculated to be imaginary and required special

care to properly converge: k-points were increased to 4 × 4 × 4 and the phonon
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self-consistent threshold was lowered to 10−16. DOS calculations were carried out

on fine k-grid meshes of 12 × 12 × 12, 10 × 10 × 10, 6 × 6 × 6, and 6 × 6 × 6 for

1× 1× 1, 2× 2× 1, 3× 3× 1, and 4× 4× 1 supercell sizes respectively.

5.3.2 Elasticity

Elastic parameters were calculated using the stress-strain relationship (using

Voigt notation) σi = Cijϵj. We applied uniaxial strains in the 1- and 3-directions

and 5-direction shear strains to calculate C11, C33, and C55. Strains were applied

from -0.01 to 0.01 in intervals of 0.002, with each structure’s atoms relaxed while

holding the lattice vectors constant. Cij was determined by linear regression on

the stress vs. strain. Elastic parameters for pristine structures using different

functionals are listed in Table 5.1, demonstrating good agreement for LDA and

PBE+GD2 with experiment.

Strain directions 3 and 5 were chosen for their relevance to sliding and wear.

Shearing strains in the 4- and 5-directions are the motions involved in basal plane

sliding. Uniaxial 3-strain is involved in layer separation, leading to wear. By

symmetry, C11 = C22 and C44 = C55 in pristine MoS2, and these relations still

approximately hold in our doped structures.

5.3.3 Formation Energy

Formation energies, Eform, can be used to gauge the relative stability of a

structure versus a reference [83, 70], and are defined as:

Eform = Emixed −
∑
i

Niµi (5.1)

Emixed is the energy of the material of interest, µi is the chemical potential of the

bulk element i, and Ni is the number of atoms of element i in the mixed system.

µi must be less than the bulk element’s energy per atom for the formation of

the material of interest to be thermodynamically favored compared to its bulk

elements, Ei. For this reason, it is useful to write Eqn. 5.1 instead using ∆µ ≡
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µi − Ei, so

Eform = Emixed −
∑
i

Ni(∆µi + Ei). (5.2)

Formation energies were all referenced against the most stable bulk elemental

compounds: Fm3̄m (fcc) Ni, Im3̄m (bcc) Mo, and P21 S. S is a particularly difficult

element to handle, given its natural state is 8-membered rings. This S structure

was chosen as it has been used in other literature [145, 36] and had the lowest

calculated energy per atom among an isolated S atom, S2 molecule, an isolated 8-

membered ring, and an arrangement of 4 8-membered rings per cell. The reference

elemental structures are metals in the case of Ni and Mo while the structures of

interest are mostly semiconducting. This leads to the required use of smearing

on the electronic states of some of the structures. Furthermore, some structures

have significant Van der Waals interactions while others do not. These differences

motivate LDA for direct comparison of formation energies rather than PBE or

PBE + GD2. Formation energies are shown in Table 5.8.

Using Eqn. 5.2, we can compare the formation energies of doped structures to

construct zones of chemical potentials that favor the formation of one structure

over another at a given supercell size as in Fig. 5.3. To find these regions, we

need to solve for when Eform(∆µNi,∆µMo,∆µS) of one structure is smaller than

another. Since each computation only contains one Ni atom per supercell, we can

remove the dependence of ∆µNi, leaving us with zones as a function of only ∆µMo

and ∆µS.

We represent phase stability using the concept of the convex hull [126] which

we compute using Mathematica [206]. Considering the closed system (∆µ = 0)

at zero temperature and pressure, we can use the formation energies to construct

the convex hull as the smallest convex set containing the points (xNi, xMo, xS,

Eform/Natoms), where xi = Ni/(Natoms) [126]. Since Σixi = 1, we can represent

the three xi dimensions as three legs of the two-dimensional triangle, as in Fig.

5.4. The Eform/Natoms axis is out of the page, but we can further simplify this

representation by owing only the lines connecting points on the convex hull. Stable

structures will be on the convex hull’s boundary. Any structure whose computed
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Figure 5.1: Possible sites for Ni dopants in 2H-MoS2: Mo or S substitution, or
intercalation at tetrahedral (t) and octahedral (o) interlayer sites. Other highly
symmetric sites (bridge and intralayer interstitials) were found to be unstable.

energy is above the convex hull is favored to phase-segregate to the structures at

the nearest nodes. The energies above hull are listed in Table 5.2 for LDA and

PBE+GD2 in Table 5.7. One-dimensional convex hull diagrams with reference

structures that are not bulk elemental phases are shown in Fig. 5.9.

5.4 Results and Discussion

5.4.1 Dopant sites

We consider a set of possible dopant sites shown in Fig. 5.1: Mo substitution,

S substitution, octahedral (o-) intercalation, and tetrahedral (t-) intercalation, as

studied for Nb-doped MoS2 [70]. Other possible sites included the bridge site

above an Mo-S bond and in between two layers, and the hollow-site interstitial

directly between three S atoms on the S plane. These were ruled out as possibilities

because they were found to be unstable under relaxations—they both relaxed to

o-intercalation.

We consider doping of the most common MoS2 structure: 2H, belonging to the
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Table 5.1: Comparison of lattice parameters, vibrational frequencies at q = 0, and
elastic parameters of pristine MoS2.

This Work Literature

LDA PBE
PBE

+ GD2
Exp’t LDA

PBE

+ vdW†

a (Å) 3.12 3.18 3.19 3.16 [203] 3.13 [118] 3.16 [215]

c/a 3.87 4.64 3.89 3.89 [203] 3.89 [118] 3.89 [215]

E1
2g (cm−1) 389 373 371 383 [108] 388 [118] 372 [32]

A1g (cm−1) 413 402 403 409 [108] 412 [118] 397 [32]

E1u (cm−1) 390 373 372 384 [108] 391 [118] 372 [32]

A2u (cm−1) 471 458 457 470 [108] 469 [118] 454 [32]

C11 (GPa) 242 181 212 238 [42] 240 [182] 223 [215]

C33 (GPa) 53 1.70* 51 52 [42] 53 [182] 49 [215]

C55 (GPa) 20 0.76* 15 19 [42] 32 [182] 15 [215]

a is in Å, mode frequencies are in cm−1. *PBE without Van der Waals underestimates the

elasticity in the z-direction. †Ref. [32] seems to use Tkatchenko-Scheffler [181] dispersion

corrections while Ref. [215] uses Grimme-D3 [54].

D6h point group with 6 atoms per unit cell, which is very close in energy to the 3R

bulk phase [28]. Introducing Ni lowers symmetry: Mo substitution, S substitution,

o-, and t-intercalation structures belong to the D3h, C3v, D3d, and C3v point groups

respectively. We considered doped structures of increasing MoS2 supercell size in-

plane from 1×1 to 4×4, each with 1 Ni atom per cell, with Ni concentrations of

16.7 at%, 4.2 at%, 1.9 at%, and 1.0 at%. Decreasing Ni concentration allows us

to extrapolate quantities to the low-doping limit.

Van der Waals interactions are important between MoS2 layers, but they are

a challenge for DFT calculations. Since such interactions are almost absent in

PBE, we considered PBE with and without Grimme-D2 (GD2) [53] Van der Waals

corrections. We found Grimme-D3 [54] to give very similar structures to GD2.

However, GD2 and related approaches are particularly poor for metals [3]. This

is not an issue for MoS2, but it is problematic for computing formation energies
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with reference to pure Ni and Mo. By contrast, LDA is quite accurate for metals,

and also successful for Van der Waals-bonded quasi-2D systems: empirically, it

is seen that LDA’s overestimation of interatomic interactions balances the lack of

explicit non-local Van der Waals interactions [217]. Therefore we focus on LDA

for formation energies such as in Table 5.2.

We also find that LDA provides better agreement with experimental vibrational

frequencies than PBE or PBE+GD2. (Table 5.1)

With these considerations, we have chosen to use LDA calculations for energies

in the phase diagrams, convex hull, and vibrational calculations. As shown by

Peelaers and Van de Walle, adding dispersion corrections to PBE can give rea-

sonable structures and elastic properties; [136, 137] we confirm this in Table 5.1.

PBE+GD2 was thus used for structural parameters, elastic parameters, and elec-

tronic densities. PBE with no correction was found to be quantitatively worse

than LDA and is not used except as a point of comparison: the energy landscape

is very flat with respect to changes in layer separation, leading to large errors in

the lattice parameter c and the C33 and C55 parameters.

We calculated formation energy for pristine and doped MoS2, as well as other

crystals containing Mo, S, and/or Ni. We used the Materials Project [73] to find

materials with relatively stable computed energies (less than 0.1 eV/atom above

hull): Ni2Mo, Ni3Mo, Ni4Mo, NiS2, Ni3S4, NiS, Ni9S8, Ni3S2, MoS2, and Mo3S4,

and the Chevrel phase NiMo3S4. NiMo3S4 [59] appears to be the only known

stochiometric crystal that contains all three species. It could be a competing

material during the synthesis of Ni-doped MoS2, and has been studied for catalysis

of the hydrogen evolution reaction [196].

5.4.2 Bonding

The electron density can be a useful tool to study bonding. The pristine unit

cell and doped 2×2 supercell electron densities are shown in Fig. 5.2. The maxi-

mum electron density in the Ni-S or Ni-Mo bonding regions is similar to that of the

pristine Mo-S bonds, signifying the Ni bonds are strong and covalent in all cases.

The maxima are slightly less than for Mo-S bonds in each case, except they are



50

Figure 5.2: Cross sections of the electron densities of a) pristine MoS2, b) Ni sub-
stituting Mo, c) Ni substituting S, d) Ni o-intercalation, e) Ni t-intercalation, and
f) Li t-intercalation within 2×2 supercells. The data is displayed in a logarithmic
color scale in the xz-plane which includes Mo-S and Ni bonds. In intercalated
structures, the electron density has strongly increased in the interatomic region
between layers. This suggests formation of covalent bonds for intercalated Ni, un-
like in the well-known case of Li [38]. Densities were plotted using XCrysDen [88].
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higher for the Ni-S interlayer bonds of t-intercalation. The surprising result that

Ni can readily substitute S with the bonding network intact indicates that Ni, like

Co [131], could potentially be used to fill S vacancies in a stable structure. Results

from formation energies with respect to vacancies, however, show that filling an S

vacancy with Ni requires energy while filling a Mo vacancy with Ni releases energy

(Table 5.10).

The o- and t-intercalated structures show clear layer-to-layer bonds with the

Ni atom as a bridge. Li is a known MoS2 intercalant that widens the separation

between layers [38] and is stripped of its outer electron, leaving a closed-shell ion

that does not form covalent bonds, as shown in Fig. 5.2f. Comparing the Li case to

Ni shows a stark contrast in the electron density, indicating that Ni forms strong

covalent interlayer bonds as opposed to Van der Waals or ionic interactions for Li.

The interlayer density is unchanged from the pristine in the Mo-substituted case

but has increased significantly in the case of S substitution, indicating increased

interlayer interactions.

We find a small reduction in the c-parameter for Mo substitution, as well as

for S substitution and o-intercalation, especially at high concentration, which is

consistent with Mosconi et al.’s report that Ni doping results in reduction of the

c-parameter and is attributed to Mo substitution and Ni’s smaller covalent ra-

dius [120]. The basal lattice parameter a/b is essentially unchanged, however,

regardless of concentration. 3×3 and 4×4 supercells of Mo-substituted and o-

intercalation structures show a pseudo-Jahn-Teller symmetry-breaking in their Ni-

S bond lengths. When Ni substitutes Mo, four Ni-S bonds are 2.2 Å long (2 bonds

to each of the S planes), an additional bond is slightly longer by 0.2 Å and the

final S atom has been pushed away significantly to a distance of 3.3 Å. A similar

symmetry-breaking has been calculated for Mo substitution on the basal plane [60].

A fully symmetric o-intercalation structure is possible, unlike the t-intercalation

which automatically breaks symmetry between layers. Despite this, o-intercalation

breaks symmetry: Ni-S bonding distances in the closer layer are 0.2 Å shorter than

those in the further layer. A full concentration dependent set of atomic distances

and cell parameters can be found in Table 5.6.
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Figure 5.3: Thermodynamically favored doped structures at different chemical
potentials relative to bulk phases, as calculated by LDA. The equilibrium lines
change depending on the concentration, but do not change much between LDA,
PBE, and PBE+GD2. The dashed line indicates the boundary above which MoS2

is stable. Phase diagrams for PBE and PBE+GD2 can be found in Fig. 5.8.

5.4.3 Phase Stability

Since the different doped structures have different stoichiometries, we compare

their thermodynamic favorability using not only formation energies but also the

chemical potentials of the elements with respect to their bulk phases. The favored

structures as a function of chemical potentials are shown in Fig. 5.3. We focus

on the region with ∆µSle0 and ∆µMole0, where the bulk Mo and S would not be

formed, as in stability triangle analysis [225]. With different supercell sizes, and

thus concentrations, the favorable chemical potential regions shift slightly. Except

for the very highly-doped 1×1 structure, the triple point rests around ∆µMo =

−4.0 eV and ∆µS = −3.7 eV. These values can be used to select the relative

concentrations of reactants used in the synthesis process to achieve a particular

target structure. The proximity of the 3×3 and 4×4 lines show that the 3×3

supercell is converged to the low-doping limit. O-intercalation structures do not
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Figure 5.4: Phase diagram for materials containing Ni, Mo, and S, based on LDA
energies. Materials’ position along the plane edges indicate their stoichiometry.
Materials on the convex hull are shown in red. Structures with energies above hull
are represented as open circles; all the doped structures fall within this category
and are mostly clustered around the MoS2 point. The t-intercalation is above but
very close to the convex hull.
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Table 5.2: Energies per atom above hull in eV, according to LDA, for computed
solids containing Mo, S, and/or Ni.

Mo 0 Ni3Mo 0.024 NiS 0.018 MoS2 0

Ni 0 Ni4Mo 0 Ni3S4 0 Mo3S4 0.065

S 0 NiS2 0 Ni9S8 0

Ni2Mo 0 NiMo3S4 0.050 Ni3S2 0

Mo subst. S subst. t-intercal. o-intercal.

1×1 0.149 0.173 0.025 0.116

2×2 0.107 0.090 0.002 0.044

3×3 0.054 0.039 0.001 0.021

4×4 0.031 0.022 0.001 0.012

appear on this plot because they have the same stoichiometry as t-intercalation,

but always have a larger formation energy by about 0.07 eV per Ni atom. For

comparison, calculations indicate o-intercalation is preferred over t-intercalation

for Nb [70], Li [38], Ag [158], and Mo [227]. The stability line [225] for pristine MoS2

is also shown in Fig. 5.3, below which any kind of MoS2 structure is not expected.

Since only the t-intercalation region (for supercells greater than 1×1) exists above

this line, we conclude that equilibrium growth will yield t-intercalation, and the

substituted sites can only be reached out of equilibrium. Phase diagrams for PBE

and PBE+GD2 are shown in Fig. 5.8 and show a similar trend to LDA with

respect to increasing supercell sizes. Formation energies vs. bulk Mo and S (Table

5.8) are -0.6 to -1.0 eV, but to judge favorability of doping, we must compare

to MoS2. Previous studies [36] have focused on the end-points of this pristine

stability line: where ∆µS = 0 (“S-rich”) or ∆µMo = 0 (“Mo-rich”). We consider

in both cases that ∆µNi = 0, i.e. “Ni-rich” as well. We find that t-intercalation

is the favored structure for both ends at all supercell sizes, except for 1× 1 where

S-rich conditions favor Mo-substitution. The positive formation energies vs. MoS2

(0.01-0.4 eV) in Table 5.9 show that doping is unfavorable generally, though t-

intercalation is essentially stable with an extremely small formation energy of 0.1

meV/atom.

The convex hull is used to identify structures that are stable against phase
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segregation [72, 94]. Our calculation (Fig. 5.4) shows that neither the Chevrel

nor the doped compounds are the most stable structures at their concentrations.

Therefore, these structures will phase-segregate into nickel sulfides, Ni-Mo alloys,

and pure elements given enough time and temperature. Table 5.2, however, shows

that the low-concentration doped structures have small energies above hull. The

t-intercalation energies above hull, in fact, are below kBT at room temperature

for all concentrations, and have magnitude within the margin of error for DFT

energies. Therefore we may regard these structures as stable: synthesizable and

unlikely to phase-segregate. Despite being observed at the edges of small flakes

[96], Mo substitution has high energies above hull which are generally higher than

for S substitution. The Chevrel phase (NiMo3S4) has an energy above hull on the

order of the 3×3 Mo- and S-substituted phases—since this phase is known to be

experimentally synthesizable [59], the results suggest the doped phases will also

be accessible. Consideration of 1D convex hull plots along the colored lines of Fig.

5.4 shows very small energy differences above hull for t-intercalation vs. MoS2 and

bulk Ni, but much larger differences for Mo substitution vs. MoS2 and NiS2, or S

substitution vs. MoS2 and MoNi2 (Fig. 5.10). Several NixSy phases are seen to be

stable, consistent with observation of their forming during synthesis by Kondekar

et al. [90] Phase diagrams for PBE and PBE+GD2 and energies above hull are

given in Fig. 5.9 and Table 5.7.

5.4.4 Elasticity

We found the elastic parameters, important for tribology as the material is

under stress, are altered by Ni doping as shown in Table 5.3. The in-plane C11

parameter is notably weakened in the case of Mo substitution. This may be related

to the lower charge density between Ni and S as seen in Fig. 5.2b. At lower Ni con-

centrations, the reduced number of bonds leads to a lower C11. S substitution also

weakened C11 slightly, but the intercalated cases saw little change at any supercell

sizes beyond 1×1. Out-of-plane C33 stiffness increased in the case of intercalated

and S-substituted structures due to interlayer bonding with intercalated Ni, and

increased interlayer interactions for S substitution. The increased out-of-plane
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Table 5.3: Elastic parameters for Ni-doped structures at different supercell sizes.

(GPa) undoped Mo subst. S subst. t-intercal. o-intercal.

C11

1×1 211.8 159.2 168.9 201.4 208.2

2×2 '' 177.2 204.8 211.5 210.6

3×3 '' 196.5 207.7 211.1 208.7

4×4 '' 190.8 210.0 212.0 210.2

C33

1×1 51.3 50.0 91.7 99.4 94.1

2×2 '' 51.3 57.7 76.1 72.9

3×3 '' 49.0 55.8 63.4 63.3

4×4 '' 50.0 54.3 57.9 58.7

C55

1×1 15.1 7.5 24.3 24.0 25.3

2×2 '' 13.1 10.9 19.1 20.6

3×3 '' 13.8 14.0 16.7 12.4

4×4 '' 14.2 14.6 15.9 13.2

1×1 through 4×4 supercells correspond to Ni concentrations of 17 at%, 4 at%, 2 at%, and 1

at% respectively. Most structures did not change appreciably in C11 besides the 20-30 GPa

drop for Mo substitution. C33 values were appreciably raised by 20 GPa in intercalated cases.

C55 did not show large changes, giving evidence against the idea that Ni doping lowers the

frictional coefficient by lowering the shear stiffness.

stiffness will contribute to the increased resistance to wear (layers flaking off), as

seen in experiments [170, 192].

Since Ni-doping is known to reduce the coefficient of friction of MoS2, we might

expect C55 would be lowered, reducing the shear stiffness. However, there is not

much difference between doped and undoped C55 values at low concentrations.

Further, at high concentrations (5-15 at%) C55 of intercalated structures is sig-

nificantly higher than the pristine case (except for Mo substitution, where it is

halved). This indicates that a reduction in shear stiffness is not the explanation

for the observed reduction in frictional coefficient due to Ni doping.
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Figure 5.5: Raman and IR spectra, in A4/amu per MoS2 unit and (D/A)2/amu
per MoS2 unit respectively, for 3×3 doped structures. A Gaussian broadening of 4
cm−1 is used. Mo-substituted Raman intensities are large, so they are scaled by a
factor of 0.01. Low frequency modes (< 100 cm−1) correspond to layer breathing
and shearing modes. Insets more closely show the pristine Raman-active A1g and
E1

2g modes and IR active E1u and A2u modes. The strong IR and Raman peaks of
the pristine MoS2 remain with doping but new peaks appear at different frequencies
which can be used for experimental identification of the doping site.

5.4.5 Vibrational Spectroscopy

To aid in experimentally identifying Ni-doped MoS2, we have computed the

Raman and IR intensities for MoS2 with the different doped sites. Previous exper-

imental work [115, 171, 120, 155] of doped MoS2 has focused on shifts in the A1g

and E1
2g Raman peaks relative to the pristine positions [68], but have not investi-

gated the formation of new peaks due to symmetry breaking and the presence of

a new atom of a different mass, or symmetry breaking due to the dopant, as seen

in other doped 2D materials [220, 222]. Raman and IR spectra are compared in

Fig. 5.5 and key distinguishing features are listed in Table 5.4. Mode characters

are detailed in Tables 5.11-5.4. We have computed the spectra for 1×1, 2×2, and

3×3 supercells to see the concentration-dependence of the strong Raman and IR

active peaks and find that 3×3 is converging to a low-doping limit (Figs. 5.13 and

5.12), though significant Raman intensity variations with concentration remain for

Mo substitution and o-intercalation.

As in previous studies [90, 171, 188], the doped spectra show peaks correspond-

ing to the pristine ones, with changes in frequency. Shifts in the pristine Raman/IR

peaks can be caused by a number of factors: the mass difference of Ni compared
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Table 5.4: Changes to the pristine vibrational spectra for doped 3×3 structures.

Frequency (cm−1) Mo subst. S subst. t-intercal. o-intercal.

Raman

New peak

61, 131,

132, 162,

266, 301,

364

327, 333,

337

366, 372,

435, 452,

503

212, 235,

330, 361,

427

Activation

209, 457 473 336, 465,

468

67, 135,

287, 287,

470

E1
2g shift -3.2 -3.2 -3.1 -5.4

A1g shift -7.1 +2.0 -0.2 -0.5

IR

New peak

61, 131,

132, 162,

301, 345,

356, 370

- 262, 435,

503

330

Activation 209, 224,

388, 389,

470

473 465, 468 54, 59, 282,

282

E1u shift -0.6 -0.8 -1.9 -6.1

A2u shift -14.5 -3.0 -6.2 -7.5

to substituted Mo or S, an alteration of bond strengths by n- or p-type doping, or

induced strain [84]. Ni has two more electrons than Mo and results in n-type dop-

ing (as discussed below), which would generally be expected to result in a redshift

of the A1g peak [68]. In Li-intercalated MoS2, Sekine et al. [155] experimentally

found redshifts of the E1
2g and A1g Raman frequencies due to changes in the c-axis

interactions. Table 5.4 shows that in Ni-doped MoS2 A1g has small redshifts for

intercalation, like Li-intercalated MoS2, but A1g has a blueshift for S substitution.

Dopants have generally been found to shift mostly the A1g frequency [68], includ-

ing the measurement of a shift around -1 cm−1 for E1
2g and +3 cm−1 for A1g in

Ni-doped MoS2; [90] however, in our calculation we find Ni induces also strong
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Table 5.5: Calculated q = 0 low-frequency vibrational modes in pristine and doped
MoS2.

(cm−1) undoped Mo subst. S subst. t-intercal. o-intercal.

Shearing-like mode frequency (pristine E2
2g)

1×1 35 38, 43 88, 89 57, 57 48, 49

2×2 '' 26, 30 24, 27 42, 43 41, 41

3×3 '' 32, 34 22, 25 30, 30 17, 22

Layer breathing-like mode frequency (pristine B2
2g)

1×1 56 88 132 127 108

2×2 '' 63 58 78 71

3×3 '' 59 55 66 67

shifts in the E1
2g peak and the IR-active peaks. The different behavior observed

in the experiment may be due to different (and unclear) Ni concentration and the

effects of a limited number of layers, in-plane crystallite size, and/or strain [90].

Peaks unique to the doped spectra were classified as either “new” or “activa-

tions.” New peaks are those that do not have counterparts in the pristine 3×3

q-grid vibrational density of states (VDOS) (Fig. 5.6) and have mode characters

that cannot be easily described by pristine mode eigenvectors: they are mostly

related to motions of the Ni atom and its neighbors. Activations are modes that

have a counterpart in the pristine case whose IR and/or Raman activity is for-

bidden by symmetry. Ni doping breaks symmetries and mixes modes, which can

induce IR and/or Raman activity. Raman intensities were particularly large in

the case of Mo substitution owing to its metallic character, and so they are scaled

down in Fig. 5.5; we expect this intensity enhancement compared to pristine can

serve as a feature to identify this kind of doping. There is Raman and IR activity

present in all doped structures at low frequencies (below 350 cm−1), but it is most

prominent in Mo-substituted and o-intercalation structures.

The modes of the doped systems show several interesting patterns in compari-

son to the pristine modes (Fig. 5.6). Many new modes are breathing modes of Mo

and S around Ni (Fig. 5.6a), or involve Ni-S stretches (Fig. 5.6b), or feature new

combinations of S motions, as in S substitution or Mo substitution. The activation
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Figure 5.6: Example vibrational modes of Ni-doped MoS2, showing four typical
patterns: a) a new peak for t-intercalation consisting of an in-plane breathing
mode around Ni, in only one layer; b) t-intercalation breaks symmetry between
the layers, mixing the A2u and B1

2g modes with Ni-S stretches; c) Mo substitution
breaks symmetry between layers, and mixes E1

2g and E1u modes, but does not
involve Ni; d) o-intercalation only slightly breaks symmetry, and leaves E2u modes
almost unaffected.

peaks are strongly influenced by symmetry breaking between the two layers. In

Mo and S substitution, only one layer has a dopant, strongly breaking symmetry;

pristine modes are mixed to give modes localized on only layer (Fig. 5.6c). In

t-intercalation, the layer symmetry is broken because Ni has 3 bonds to one layer

and 1 to the other, and so the activations involve Mo/S motion in only one layer.

For o-intercalation, a perfectly symmetrical structure is possible, but in fact Ni

moves slightly closer to one layer, making only a small symmetry breaking: most

activated modes (Fig. 5.6d) are still on both layers, look identical to pristine, and

are shifted typically less than 10 cm−1 from the pristine frequencies. Most of the

new peaks also show these same layer localization patterns.

Kondekar et al. [90] find a Raman peak related to Ni-doping at 290 cm−1.

This peak seems a sign of Mo-substitution, corresponding to our calculated new

peak at 300 cm−1, which is related to S vibration in the doped layer, out-of-phase

between the two S planes. This peak appears for both 2×2 and 3×3 supercells

and should be detectable given the high Raman intensity. A less likely possibility

(due to lower intensity, and unfavorable energetics) is the o-intercalation, which

has a peak at 287 cm−1 related to the pristine E1g (low Raman activity) and E2u

(Raman-inactive) modes. With higher-resolution Raman spectroscopy, we expect
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that additional peaks could be discerned and solidify the identification.

A few low frequency modes are particularly relevant to tribology: the shearing

mode (E2
2g in pristine), relating to frictional sliding, and the layer breathing mode

(B2
2g in pristine), relating to layer dissociation and wear. Our calculated values for

the doped structures are listed in Table 5.5. The increase in the layer breathing

frequency in intercalated structures correlates with the stiffening of C33 in those

structures. This increase is contrary to the decreased frequencies observed in Ag-

doped MoS2 [158]. Substituted breathing mode frequencies are largely unaffected.

The doubly degenerate shearing mode was split in the doped structures, and re-

duced in frequency for low doping concentration similar to Ag-doped MoS2 [158],

particularly in S substitution and o-intercalation. At high doping concentrations,

both shearing and breathing frequencies are increased.

Raman intensities are related to EPC and have been suggested as a probe of

EPC in 2D materials [106]. In our systems, only Mo substitution shows substantial

changes in intensities, whereas other sites stay within 10% of the pristine peak

intensity. If the argument by Lin et al. [106] applies, Mo substitution’s large

Raman intensity would mean increased EPC and thus increased friction. This

means that the observed reduction in friction [170, 192] of Ni-doped MoS2 is either

not attributable to changes in EPC or samples were not dominated by substitution

of the Mo site.

5.4.6 Electronic density of states

To assess n-type or p-type doping and other changes in electronic structure, we

calculate the electronic density of states (DOS), shown in Fig. 5.7. Low concen-

trations of S-substituted structures show defect states near the conduction band

maximum (CBM) while o-intercalation creates defect states above the valence band

maximum (VBM). All doped structures show some degree of bandgap closing. Mo-

substituted structures have metallic character, with the Fermi level situated in the

new in-gap states meaning it is slightly p-type. S substitution shows new states

near both band edges, while o-intercalation has new states near the valence band

and an extended conduction band tail. The t-intercalation shows the least modifi-
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Figure 5.7: Electronic density of states (DOS) for doped structures (color) and
pristine DOS (black). The CBM and VBM of pristine MoS2 are shown as vertical
dashed lines. Doped DOS were aligned with the low-lying Mo 4s state (36 eV
below VBM) of the pristine plot. Calculated Fermi energies or VBM are shown as
solid-black vertical lines.



63

cation from the pristine DOS, with only a slight narrowing of the gap due to new

states in the valence band.

The Fermi level for low doping concentration is near the pristine VBM. Alter-

ations are more dramatic at high concentrations where the Fermi level is pushed

well within the pristine conduction band in all cases except Mo substitution. This

can be understood as n-type doping at high concentration. Naturally occurring

MoS2 is typically n-type due to Re impurities [89]. Provided nickel sulfides do not

form [90], high Mo-substitution doping concentrations could create p-doped MoS2,

which has been challenging to achieve [188].

In general, our calculations indicate an increased conductivity of Ni-doped

MoS2, either through in-gap states, a narrowed bandgap, or n- or p-type elec-

tronic doping, depending on the doping site. These results are consistent with

enhanced catalytic activity of Ni-doped MoS2, and early calculations attributing

enhancement in Mo-substituted MoS2 to electron donation from Ni to Mo [52].

5.5 Conclusion

Through ab initio methods, we have computed the structure, stability, and

vibrational spectra of bulk Ni-doped 2H-MoS2, which has not been previously ex-

plored. We found four metastable dopant sites: Mo substitution, S substitution,

octahedral intercalation, and tetrahedral intercalation (always favored energeti-

cally over octahedral). Ni in the Mo-substituted structure has only five bonds

just as in a basal plane surface [60], and thus is elastically weaker in-plane. The

C55 shear-stiffness parameter is strengthened by doping, suggesting this is not the

explanation for the reduced friction observed [170] in Ni-doped MoS2. Ni-S bond-

ing is comparable to pristine Mo-S bonding, and the fact that Ni-Mo bonds are

comparable to Mo-S bonds in S substitution are particularly surprising—this sug-

gests that Ni, like Co [131], can fill existing S vacancies as a way to synthesize

S-substituted MoS2.

We find that all doped structures are above the convex hull, but t-intercalation

is very close to it. It therefore can be considered thermodynamically stable, with
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essentially zero formation energy from Ni and MoS2, and is not likely to phase-

segregate, unlike the other doped structures. The other sites’ energies above hull

are lower than that of the known Chevrel phase NiMo3S4, suggesting these are

synthesizable as well. Phase diagrams show how the chemical potentials of Mo

and S can be tuned in synthesis to favor Mo substitution, S substitution, or

t-intercalation, though only t-intercalation can co-exist with pristine MoS2. In-

tercalated Ni forms strong covalent bonds between layers, unlike intercalated Li.

This increases elastic parameters out of plane, and results in little change to the

c-parameter, contrary to what is sometimes assumed. Strong interlayer bonding

poses a possible explanation for the observed resistance to wear [170, 192].

n-type doping is prominent at high Ni concentration. Mo-substituted struc-

tures become metallic due to in-gap states, which leads to a large enhancement of

Raman intensities. New peaks in the Raman spectra appear due to vibrations of

Ni and its neighbors, while activations and shifts in existing modes are caused by

breaking symmetry and altering bond strengths. While generally doping has been

found primarily to affect the A1g mode, we find shifts of all four IR- and Raman-

active peaks. The distinctive effects on the Raman and IR spectra can be used

experimentally to identify the doping sites in Ni-doped samples. We propose a new

paradigm for identification of MoS2 dopant locations by vibrational spectroscopy,

as these structures have remained unclear experimentally.

The structures found in this work are being used to probe macroscopic tribo-

logical properties related to wear and friction through parametrization of ReaxFF

reactive force fields in Ch. 7 for classical molecular dynamics and calculations of

sliding potentials [105]. We are additionally extending this work to study Ni-doping

in 3R bulk and 1H and 1T monolayer polytypes of MoS2 [81, 80] to determine the

impact of the phase on doping effects.

5.6 Supplementary Material

Convex hull plots used the function ConvexHullMesh in Mathematica v12.1

[206]. In some cases, the computed convex hull was incorrectly computed by
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Mathematica to not encompass points that are very close to the convex hull faces.

We found that including extra arbitrary points far above the hull in energy resolved

this issue.

Figure 5.8: Phase diagrams for LDA, PBE, and PBE + GD2 are computed. The
difference between functionals is similar across sizes, with LDA triple points re-
siding at further negative ∆µS and ∆µMo than PBE. There is little difference
between the 3×3 and 4×4 diagrams, indicating the plot is converged with respect
to Ni concentration.
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Figure 5.9: Convex hull diagrams for LDA, PBE, and PBE + GD2. Although the
relative energy differences between these three comparisons are small, qualitative
changes to the convex hull are substantial. Red filled-in circles represent structures
which are on the convex hull line and are thus the most stable structures at T = 0
K. The line between MoS2 and NiS2 (which contains the Mo-substituted structures)
is on the convex hull when using LDA and PBE+GD2, but not for PBE alone.
The line between MoS2 and Ni is not on the convex hull in LDA. Intercalated
structures are above the convex hull edge in energy.
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Figure 5.10: 1D convex hull diagrams from MoS2 to: NiS2 (Mo substitution, A),
pure Ni (intercalation, B), and MoNi2 (S substitution, C). The x-axis (energy =
0) is always below the calculated structures, so it always constitutes the convex
hull. These 1D convex hull diagrams (with energy in eV per atom) are comparable
to previous literature on V, Te, and Mo ternary 2D alloys [94]. PBE behaves
differently along the Mo substitution line, but overall the results are similar for
the different functionals. T-intercalated energies are close to the convex hull line.
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Figure 5.11: Vibrational density of states (VDOS) for doped structures using Gaus-
sian broadening of 4 cm−1. Doped structures are 3×3 supercells computed at q = Γ.
The pristine case is a primitive cell calculated on a corresponding 3×3×1 q-grid.
This data can be used to identify the origin of Raman/IR peaks in doped MoS2.
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Figure 5.12: Raman spectra, in A4/amu per MoS2 unit, for types of doping as a
function of supercell size. Gaussian broadening of 4 cm−1 was used. Some spectra
were too intense to fit in the plot, so they were scaled by the factor in the legend.
1 × 1 Mo substitution was metallic and so the dielectric calculation could not be
done by DFPT.
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Figure 5.13: IR spectra in (D/A)2/amu per MoS2 unit for types of doping as a
function of supercell size. Gaussian broadening of 4 cm−1 was used.
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Table 5.6: Structural parameters of computed Ni-Doped MoS2 as computed by
PBE + GD2.

(Å) w/o Ni Ni@Mo Ni@S Ni@t Ni@o

a

1× 1 3.19 3.30 3.19 3.22 3.18

2× 2 '' 3.20 3.18 3.20 3.19

3× 3 '' 3.19 3.18 3.19 3.19

4× 4 '' 3.20 3.19 3.19 3.19

c

1× 1 12.4 11.3 10.8 12.6 12.5

2× 2 '' 12.3 12.3 12.5 12.4

3× 3 '' 12.4 12.3 12.5 12.4

4× 4 '' 12.4 12.4 12.5 12.4

Ni-S distances (Å) below 3.1 Å

1× 1 2.23× 6 2.16× 3 2.15× 1,

2.18× 3

2.38× 2,

2.39× 4

2× 2 2.37× 4,

2.38× 2

2.12× 1,

2.17× 3

2.36× 4,

2.37× 2

3× 3 2.23× 2,

2.25× 2,

2.39× 1

2.12× 1,

2.17× 3

2.28× 2,

2.29× 1,

2.45× 1,

2.48× 2

4× 4 2.22× 2,

2.24× 2,

2.42× 1

2.11× 1,

2.17× 3

2.26× 1,

2.27× 2,

2.50× 3

Ni-Mo distances (Å) below 3.1 Å

1× 1 2.68× 3,

2.78× 1

2.76× 1

2× 2 2.55× 3 2.61× 1

3× 3 2.80× 1,

2.82× 1

2.56× 3 2.59× 1

4× 4 2.80× 2 2.56× 3 2.59× 1

a parameters (Å) are the average over the primitive cells in the supercell. Ni-S and Ni-Mo

distances below 3.1 Å are shown multiplied by how many equal distances there are in a given

structure, i.e. 2.23× 6 means six bonds with a length of 2.23 Å.
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Table 5.7: Energies above hull (eV/atom) for computed structures with PBE +
GD2.

Formula LDA PBE PBE + GD2

Mo 0 0 0

Ni 0 0 0

S 0 0 0

MoS2 0 0 0

Mo3S4 0.065 0.074 0.124

Ni2Mo 0 0 0

Ni3Mo 0.024 0.016 0.013

Ni4Mo 0 0 0

NiS2 0 0.021 0

Ni3S4 0 0 0

NiS 0.018 0.022 0.014

Ni9S8 0 0 0

Ni3S2 0 0 0

NiMo3S4 0.050 0.097 0.117

Dopant Site Supercell Size LDA PBE PBE + GD2

Mo subs.

1× 1 0.149 0.136 0.173

2× 2 0.107 0.102 0.107

3× 3 0.054 0.049 0.052

4× 4 0.031 0.281 0.030

S subs.

1× 1 0.173 0.221 0.200

2× 2 0.090 0.084 0.086

3× 3 0.039 0.036 0.037

4× 4 0.022 0.021 0.021

t-intercal.

1× 1 0.025 0.089 0.049

2× 2 0.002 0.024 0.015

3× 3 0.001 0.012 0.007

4× 4 0.001 0.007 0.004

o-intercal.

1× 1 0.116 0.219 0.167

2× 2 0.044 0.062 0.049

3× 3 0.021 0.012 0.023

4× 4 0.012 0.018 0.013
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Table 5.8: Formation energies (eV/atom) with respect to bulk elemental phases
for ∆µS = 0, ∆µMo = 0, ∆µNi = 0.

Formula LDA PBE PBE + GD2

Mo 0 0 0

Ni 0 0 0

S 0 0 0

MoS2 -1.023 -0.890 -0.872

Mo3S4 -0.812 -0.689 -0.623

Ni2Mo -0.203 -0.112 -0.109

Ni3Mo -0.160 -0.078 -0.079

Ni4Mo -0.174 -0.082 -0.082

NiS2 -0.461 -0.249 -0.292

Ni3S4 -0.549 -0.347 -0.367

NiS -0.538 -0.342 -0.360

Ni9S8 -0.559 -0.370 -0.376

Ni3S2 -0.520 -0.332 -0.335

NiMo3S4 -0.755 -0.591 -0.557

Dopant Site Supercell Size LDA PBE PBE + GD2

Mo subs.

1× 1 -0.593 -0.444 -0.409

2× 2 -0.846 -0.710 -0.693

3× 3 -0.938 -0.807 -0.788

4× 4 -0.975 -0.843 -0.824

S subs.

1× 1 -0.645 -0.475 -0.481

2× 2 -0.883 -0.757 -0.738

3× 3 -0.962 -0.832 -0.814

4× 4 -0.989 -0.858 -0.839

t-intercal.

1× 1 -0.861 -0.677 -0.694

2× 2 -0.982 -0.831 -0.820

3× 3 -1.005 -0.862 -0.849

4× 4 -1.013 -0.874 -0.859

o-intercal.

1× 1 -0.769 -0.547 -0.575

2× 2 -0.940 -0.793 -0.787

3× 3 -0.985 -0.862 -0.832

4× 4 -1.002 -0.864 -0.849
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Table 5.9: Formation energies (eV/atom) with respect to bulk elemental phases
for ∆µNi = 0 and S-rich (Mo-rich) conditions.

Formula LDA PBE PBE + GD2

Mo 3.070 (0) 2.670 (0) 2.615 (0)

Ni 0 (0) 0 (0) 0 (0)

S 0 (1.535) 0 (1.335) 0 (1.308)

MoS2 0 (0) 0 (0) 0 (0)

Mo3S4 0.504 (0.065) 0.455 (0.074) 0.498 (0.124)

Ni2Mo 0.821 (-0.203) 0.778 (-0.112) 0.762 (-0.109)

Ni3Mo 0.607 (-0.160) 0.590 (-0.078) 0.575 (-0.079)

Ni4Mo 0.440 (-0.174) 0.452 (-0.082) 0.441 (-0.082)

NiS2 -0.461 (0.563) -0.249 (0.641) -0.292 (0.580)

Ni3S4 -0.549 (0.329) -0.347 (0.416) -0.367 (0.380)

NiS -0.538 (0.229) -0.342 (0.326) -0.360 (0.294)

Ni9S8 -0.559 (0.163) -0.370 (0.258) -0.376 (0.239)

Ni3S2 -0.520 (0.094) -0.332 (0.202) -0.335 (0.188)

NiMo3S4 0.396 (0.012) -0.410 (0.076) 0.423 (0.096)

Dopant Site Supercell Size LDA PBE PBE + GD2

Mo subs.

1× 1 -0.081 (0.430) 0.001 (0.446) 0.027 (0.463)

2× 2 0.050 (0.178) 0.068 (0.180) 0.070 (0.179)

3× 3 0.028 (0.085) 0.034 (0.083) 0.035 (0.084)

4× 4 0.017 (0.049) 0.020 (0.048) 0.021 (0.048)

S subs.

1× 1 0.378 (0.122) 0.416 (0.193) 0.391 (0.173)

2× 2 0.141 (0.077) 0.133 (0.077) 0.133 (0.079)

3× 3 0.061 (0.033) 0.058 (0.033) 0.058 (0.034)

4× 4 0.035 (0.019) 0.033 (0.019) 0.032 (0.019)

t-intercal.

1× 1 0.017 (0.017) 0.086 (0.086) 0.053 (0.053)

2× 2 0.0001 (0.0001) 0.024 (0.024) 0.016 (0.016)

3× 3 0.0001 (0.0001) 0.012 (0.012) 0.007 (0.007)

4× 4 0.0002 (0.0002) 0.007 (0.007) 0.004 (0.004)

o-intercal.

1× 1 0.108 (0.108) 0.216 (0.216) 0.172 (0.172)

2× 2 0.042 (0.042) 0.062 (0.062) 0.050 (0.050)

3× 3 0.020 (0.020) 0.012 (0.012) 0.024 (0.024)

4× 4 0.011 (0.011) 0.017 (0.017) 0.014 (0.014)
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Table 5.10: Formation energies with vacancy structures as the reference.

eV Mo subst. S subst.

2×2 -2.544 0.092

3×3 -2.609 0.159

4×4 -2.584 0.162

Formation energies are calculated for substitutional doping by filling a vacancy. Energies were

calculated using: Eform = Edoped − Evacancy − ENi. Mo substituted structures are calculated

from Mo vacancies that are filled with a Ni atom. S vacancies are calculated from S vacancies

filled with Ni.
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Table 5.11: Newly active modes in Raman/IR spectra for 3×3 Mo substitution.

Classif. Freq. (cm−1) Activity Description

New peak

60.92 R/I In doped layer: in-plane, Mo, S, and

Ni; S in-phase

131.46 R/I In doped layer: in-plane Mo, S, Ni

132.40 R/I S out-of-phase some z-direction and

some in-plane

161.97 R/I Around dopant: Ni-Mo in-plane and S

z-direction

266.09 R Around dopant: Ni in-plane and Ni-S

symmetric stretching

301.00 R/I In doped layer: S out-of-phase

345.17 I In doped layer: S out-of-phase, in-plane

356.06 I S out-of-phase, in-plane

363.88 R In doped layer: in-plane 1st and 2nd S

and Mo neighbors of Ni

370.37 I In doped layer: S in-phase, in-plane

Activation

208.86 R/I In doped layer: Mixed E1u, A1g, B1u,

and E1
2g

223.87 I In doped layer: Mixed E1u and E1
2g

387.74 I In undoped layer: Mixed E1
2g and E1u

(x)

389.33 I In undoped layer: Mixed E1
2g and E1u

(y)

456.80 R In doped layer: Mixed A2u and B1
2g-like

mode

470.18 I In doped layer: Mixed A2u and B1
2g-like

mode

“In-” and “out-of-phase” refer to two S planes within a layer.
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Table 5.12: Newly active modes in Raman/IR spectra for 3×3 S substitution.

Classif. Freq. (cm−1) Activity Description

New peak

327.17 R S out-of-phase between adjacent S

planes, in- and out-of-plane, in-phase

between layers

333.45 R In doped layer: S in-plane on doped S

plane, out-of-plane in adjacent S plane

336.69 R In undoped layer: S in-phase between

planes

Activation 473.49 R/I B1
2g-like only on undoped layer

Table 5.13: Newly active modes in Raman/IR spectra for 3×3 t-intercalation.

Classif. Freq. (cm−1) Activity Description

New peak

261.85 I S in-plane breathing mode near Ni

366.42 R In 1-bond layer: in-plane breathing

mode around Ni

372.07 R In 3-bond layer: in-plane breathing

mode S near Ni

434.90 R/I In 3-bond layer: Ni-S asymmetric

stretching

452.44 R In 3-bond layer: Ni-S symmetric

stretching and S out-of-plane

503.26 R/I In 1-bond layer: Ni-S bond stretching

Activation

335.80 R In 1-bond layer: E1g-like out-of-phase

in x/y

465.14 R/I In 1-bond layer: Mixed A2u and

B1
2g-like + Ni-S stretch in 3-bond layer

468.12 R/I In 3-bond layer: Mixed A2u and

B1
2g-like + Ni-S stretch in both layers
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Table 5.14: Newly active modes in Raman/IR spectra for 3×3 o-intercalation.

Classif. Freq. (cm−1) Activity Description

New peak

212.48 R Mostly in far layer: breathing mode

around Ni, Mo and S in-phase,

in-plane and S mostly out-of-plane

(away from Mo plane)

235.11 R In far layer: in-plane breathing mode,

Mo and S out-of-phase

329.64 R/I Mostly out-of-plane breathing by S

around Ni

360.58 R In close layer: in-plane breathing by S

atoms in one layer

426.60 R Symmetric Ni-S stretch

Activation

53.91 I In close layer: E2
2g-like shearing mode

and Ni plane-direction vibration (x)

59.14 I In close layer: E2
2g-like shearing mode

and Ni plane-direction vibration (y)

66.75 R B2
2g-like layer breathing mode

134.82 R Mixed B2
2g near Ni and Ni z-direction

281.80 I E2u-like mode (x)

281.83 I E2u-like mode (y)

286.80 R E1g-like mode (x)

286.83 R E1g-like mode (x)

469.73 R B1
2g-like mode

“Close” and “far” layer refers to proximity to the Ni atom, which is 0.3 Å closer to one layer

than the other.



Chapter 6

Ni-doped MoS2: Atomistic

Mechanisms of Sliding in

Few-Layer and Shearing in Bulk

Doped MoS2

This chapter is based on our publication in progress, “Atomistic Mechanisms

of Sliding in Few-layer and Bulk Doped MoS2” [56]. It is a followup applications to

the structures found in Ch. 5. We use the different doped structures and subject

them to shearing and interlayer sliding. We can compute the sliding potential, the

change in energy throughout sliding, and explain it with atomic motion and bond

changes. Unique challenges related to dopant are overcome by sliding while using

steps of relaxation with analyses of the structures and energies at each step. We

compared doped bulk and bilayer structures and quantified an important finding

that explains results of previous works—the sliding potential can be described as

pairwise interactions between layers. Furthermore, the outer S-layer decides the

majority of the interaction. In effect, this means that the potential of an N -layer

system can be computed as N − 1 sliding interactions.

79



80

6.1 Abstract

Sliding of two-dimensional materials is critical for their application as solid

lubricants for space, and also relevant for strain engineering and device fabrica-

tion. Dopants such as Ni improve lubrication in MoS2, surprisingly given that

Ni intercalates and forms interlayer bonds. While atomistic mechanisms of slid-

ing have been theoretically investigated in pristine 2D materials, there has been

little work on doped forms, especially for the complicated case of intercalation.

We use density functional theory to study sliding of Ni-doped MoS2, considering

Mo/S substitution and octahedral/tetrahedral intercalation. We find that bulk

and trilayers are well described by pairwise bilayer interactions. There is a dra-

matic increase in the sliding barrier for tetrahedral intercalation, but the dopant

minimally affects sliding between undoped interfaces, allowing Ni-doped MoS2 to

remain an effective lubricant. We provide an atomistic view of how sliding occurs

in doped transition-metal dichalcogenides, and a general methodology to analyze

doped sliding.

6.2 Introduction

MoS2 is a semiconducting transition metal dichalcogenide with low-friction lu-

bricative properties due to the ease of shearing of its lamellar structure. Doping

of MoS2 is a method to alter the electronic properties [11], increase the catalytic

activity [123, 111], increase lubrication [191, 192], or layer dependence of fric-

tion [1]. Computations of friction in two-dimensional (2D) materials like MoS2

[101, 213, 65, 198, 105], graphene [173, 198], and boron-nitride [112, 30] has been

computed using models of varying complexity, but studies of the doped material

are rare—especially intercalated doped materials. Some studies of C and Li in

graphite have found tunability with those dopants, but we have not found stud-

ies of bulk or transition-metal-doped 2D material sliding potential analysis [129].

Mechanics of sliding in 2D materials is typically explored through computations

of the sliding potential energy surface: [185] energies at different sliding amounts

are computed with altering variables such as load or layer orientation. Sliding
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can also be important for strain engineering [134], nanoelectromechanical systems

[100], oscillators [214], sliding ferroelectrics [209], and assembly of twisted bilayer

structures [104]. For all these applications, it is important to understand how the

atomistic mechanisms of slip which are understood in bulk materials are modified

on the nanoscale for sliding in novel 2D materials, and especially how dopants

influence sliding. In these van der Waals (vdW) mediated systems, a consensus

has formed that the interfacial geometries and resulting charge density fluctuations

are primarily responsible for the sliding potential’s shape [101, 197, 198, 30] and

has been used as the basis for a classical approximation of the potential [18, 112].

The sliding potential has been shown to be altered by S corrugation from layer

rotation [101] or vacancy introduction [197] which can also happen by formation of

distorted 1T phases [80]. In graphene/MoS2 heterostructures, the sliding potential

between structures is controlled by fluctuations in interfacial charge densities and

not bonding [198]. This could be different when there are defects between layers

[212], such as in the Ni-intercalated cases [58], where atoms between layers [28]

can form covalent interlayer bonds [58]. Dopants, especially intercalated dopants,

introduce local bond strain and atomic mobility which must be carefully consid-

ered during computation and analysis when compared to the standard approach.

Ni increases the degrees of freedom, meaning we have to balance relaxing the lo-

cal structure and preserving a quantifiable sliding amount. Previous simplifying

methods like the registry index [18] are not easily applicable with intercalation

where significant structural changes (e.g. bond changes) can occur. Direct energy

comparisons become cumbersome when considering structures of different geome-

tries, particularly when some layers are sliding and others are not, energy scales

as with the number of active layers. Finally, choice in the initialization of struc-

tures in independent computations can affect the final result and lead to pathway

discontinuities.

Previous sliding studies have extended to bilayers with vacancies [197, 219].

Like dopants, vacancies could introduce local bond reorganization which must be

considered. Vacancy complexes as large as seven atoms were found to univer-

sally reduce the sliding barrier while leaving the potential’s shape unaffected [197].
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Dissociated H2O’s between layers has been found to severely diminish frictional

capabilities, behaving similar in that capacity to the intercalated Ni computed in

this work [212]. Conversely, Cheng et al. consider carbon doping in hexagonal

boron-nitride bilayers with DFT. C’s presence was shown to decrease the friction

for substitution of either B or N [30]—the interlayer interaction is weakened by the

dopant and thus lubricity is improved. By contrast, calculations showed that Li

intercalation in graphite greatly increased barriers to sliding, due to electrostatic

interactions after charge transfer from Li to semimetallic graphene layers [129]. We

have previously computed that Ni-doped MoS2 does not reduce the binding energy

between adjacent layers as Li might do [38] but rather increases it substantially

in t-intercalated doping [81], opposite to what was found for C-doped BN. While

intercalated Li can be thought of like ball bearings that decouple MoS2 layers and

would reduce friction (though surprisingly it is not clear this effect has been mea-

sured), intercalated Ni instead increases the coupling between MoS2 by bonding. Ni

has been found to not significantly alter MoS2’s friction and enhance its resistance

to wear, or layer flaking [170, 192], and may have promise for increasing the capa-

bilities of lubrication in space [92]. This is consistent with the idea that Ni-doping

improves MoS2’s resistance to wear (material loss through flaking) but appears

counter to the idea that Ni doping improves lubrication [170, 192]. Calculations

of Graphene/Fe2O3 interfaces with B, P, Si, and S dopants have found a frictional

reduction. These defective cases do not consider the possibility of geometrical re-

organization during sliding beyond the out-of-plane direction [101]. While that

direction is likely the most energetically important, local bond distortions could

occur at the defect sites during sliding and alter the sliding potential.

Ni has been found to improve MoS2’s lubrication performance [170], enhance

MoS2’s catalytic activity, and alter the electronic properties [58]. We have previ-

ously computed four potential Ni dopant sites to MoS2 [58, 81]: Mo substitution,

S substitution, tetrahedral (t-) intercalation and octahedral (o-) intercalation and

consider all of them in this work. In this article, we use density functional theory

to explore how the presence of Ni modifies energy pathways and structures during

sliding under different atomic constraints. We consider the Ni dopant locations
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in Fig. 6.1 and find the relation between bilayer sliding and bulk shearing. We

provide insight and methods for analysis generally applicable to sliding of doped

2D materials.

6.3 Methods

6.3.1 DFT

We use the plane-wave DFT code Quantum ESPRESSO [50] to compute the

properties of bilayer and bulk Ni-doped MoS2, like our previous work on the ma-

terial [58, 81]. We use the Perdew-Burke-Ernzerhof [139] generalized-gradient-

approximation functional the Grimme-D2 [53] (GD2) vdW correction term. This

correction is necessary in MoS2 to capture the weak vdW interactions which me-

diate the sliding potential in pristine MoS2. We use the Norm-Conserving pseu-

dopotentials [153] as parameterized by PseudoDojo [187].

2 × 2 × 1 supercell of the 6-atom unit cell were used with one Ni atom per

cell. Bulk (finite layers) were computed using a half-shifted Monkhorst-Pack grid

of 6× 6× 2 (6× 6× 1) for the pristine cell and 4× 4× 2 (4× 4× 1) for doped cells.

Kinetic energy cutoffs of 60 Ry were used. Self-consistent field (SCF) energies were

computed to thresholds of 10−8 Ry. Total energies and forces were relaxed to 10−6

Ry and 10−4 Ry/Bohr. Stress relaxations used thresholds of 0.05 kbar.

6.3.2 Few-layer computations

Bilayer cells’ component cz was set to 25 Å and were not relaxed and cx was

not altered, unlike their bulk counterparts. Trilayers of pristine, Mo-substituted,

and t-intercalated structures were computed by adding a third, pristine layer to the

bilayer structure and adding the layer thickness to cz and used identical approxima-

tions as the bilayer. 4-layer out-of-plane supercell bulk structures are extensions

of the pristine, Mo-substituted, and t-intercalated bulk structure cells with the

dopant kept in only one layer.



84

Figure 6.1: a) The four considered dopant sites previously found to be stable or
metastable [58]. Bilayer and bulk structures with similar atomic coordinates are
computed. b) A sheared S-substituted cell showing two distinct interfaces in each
bulk cell.

6.3.3 Sliding and shearing under four sets of constraints

The energies of doped and pristine 2H-MoS2 were computed after relative slid-

ing using different stages of constraints. Initial structures are generated by fully

relaxing doped bulk structures, then forcing hexagonal symmetry onto the cell

(relaxed cell angles differ from the pristine 120◦ by at most 0.025◦, and energies

differ by 10−4 eV/atom). Our coordinate system has the x-axis in the zigzag di-

rection and y-axis in the armchair direction. The top layer is then displaced in

the x-direction by ∆x in steps of 1/12th of the cells’ respective lattice constant

a. a was set to 3.19018 Å, 6.39945 Å, 6.38666 Å, 6.35100 Å, and 6.39413 Å for

pristine, Mo-substituted, o-intercalated, S-substituted, and t-intercalated in both

bulk and bilayers. In bulk, the x-component of the out-of-plane vector a3 was

set to 2∆x, such that every pair of layers experienced relative sliding of ∆x. In

intercalation, Ni was moved along with the mobile top layer, since it was closer to

the intercalant. Substitutional Ni was moved along with the layer it is in. Energies

are computed by SCF and then the structure is relaxed by three successive levels

of constraints as summarized in Fig. 6.2. (1) Atoms are allowed to relax in the
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Figure 6.2: Sliding was analyzed using four kinds of calculations, with relaxation
of an increasing number of degrees of freedom of the Mo and S atoms. a) No
relaxation, b) z-relax, c) yz-relax and d) xyz-relax (only used for bulk). Dark
atoms indicate the lower layer. Ni atom’s coordinates are fully relaxed in b)-d).
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x-direction and the cz lattice parameter is relaxed (z-relax). (2) Atoms are further

relaxed in their y coordinates (yz-relax). (3) Atoms are further still relaxed in

x (xyz-relax). Throughout stages (1)-(3), the Ni atom is allowed to relax in all

coordinates so as to capture its preferred movement throughout sliding.

Each constraint gives us different information about the structure throughout

sliding. z-relax yields the 1D-sliding potential as it relates to interlayer distances.

yz-relax allows us to access the 2D-sliding potential and find deviations from the

low-barrier sliding pathway. xyz-relax allows us to test whether shearing occurs

like a deck of cards or with the presence of slip planes. Furthermore, the initial

structure after sliding but before relaxation can be thought of as stage (0) no

relaxation. Here, we gather information about the symmetries.

It is important to relax the Ni during intercalated sliding because the local

geometry is expected to change when it experiences different local environments.

Ni bonding remains at 6 and 3 bonds for Mo-substituted and S-substituted sites

throughout sliding respectively, but bonds form and break for intercalated sliding.

Given full relaxation freedom in xyz-relax, both structures follow paths with four

Ni-bonds, indicating the high stability of that bond configuration.

6.4 Results and Discussion

6.4.1 No-relax and symmetry

The sliding potential in both bulk and bilayer shows a mirror symmetry in the

x-direction. This is due to the AA′ configurations of pristine, Mo-substituted, S-

substituted, o-intercalated, and t-intercalated belonging to symmetry point groups

D6h, D3h, C3v, C3v, C3v respectively. Each of those point group contains an xz-

function in an irreducible representation—guaranteeing a critical point in the slid-

ing potential. In pristine, this information can be used to reduce the computational

workload, but once the doped structure is relaxed, there is slight symmetry break-

ing in all doped cases, quantified in Fig. 6.14. Since every interface involves at

least one pristine layer, the symmetry of the full sliding potential shows hexagonal

symmetry.
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Figure 6.3: Energies and interlayer distances for x-sliding after z-relax conditions
were applied as in e). Energies for a) bulk and c) bilayer shown are divided by
the areas of the actively sliding interfaces (i.e. 2× cell’s area in bulk, once in bi-
layer). Interlayer distances in b) are compared between doped (solid) and undoped
(dashed) interfaces. S-substitution and t-intercalation show the largest difference
between the two, where they have a strong preference to keep the interlayer dis-
tance the same. d) Bilayer distances are similar in shape to bulk.

6.4.2 z-relax: 1D sliding potential

Results of z-relax in Fig. 6.3 show that the sliding barrier is massively increased

in t-intercalation, unlike previous results with vacancies [197]. This, along with

Fig. 6.4, point to the high stability of the 4-bonded Ni-configuration. The dif-

ference between t- and o-intercalations’ energetic response to 1D-sliding can best

be explained by Fig. 6.4. Given that the 4-bonding Ni-configuration is low in

energy, t-intercalation is forced to move away from that value while o-intercalation

is allowed to move closer. Fig. 6.3b separates cz into the two interlayer distances

present in a cell. These distances are the same for pristine and Mo-substitution,

where every other interface is equivalent, but are not for the other structures. This

leads to the surprising result that t-intercalated and S-substituted structures at-

tempt to keep their interlayer distance where the Ni is between two layers. This

propensity for the interface in these sites to remain similar throughout sliding

suggests that the slip planes occur away from the dopant site.

Bonds to Ni were counted in Fig. 6.4 using the Tersoff bond order function

[177] fC(r), where r is the interatomic distance for a given pair of atoms and is
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Figure 6.4: Bond count as a function of ∆x for o-intercalated (green) and t-
intercalated (red) structures at the four constraint levels as computed by the Tersoff
bond order function for a) bulk and b) bilayers. Given the most freedom, xyz-
relax, structures reorganize to form four bonds, despite less favorable stacking.
The large spike at ∆x = 1.6 Å for t-intercalated yz-relax is the result of the
structure reorganizing to an equivalent stacking to the ∆x = 0 Å configuration
(see Fig. 6.5). a) and b) are nearly identical.

defined as:

Nbonds
i =

atoms∑
j ̸=i

fC (∥r⃗i − r⃗j∥) =


1 r ≤ R−D

1
2
− 1

2
sin(π

2
r−R
D

) R−D < r < R +D

0 r ≤ R +D

(6.1)

where the bond cutoff R = 3.2 Å and the smoothing parameter D = 0.3 Å were

chosen such that: (1) equilibrium o- and t-intercalated structures were computed to

have 6 and 4 bonds respectively, (2) equilibrium Mo-substituted and S-substituted

structures have 6 Ni-S and 3 Ni-Mo bonds respectively, and (3) variation in num-

bers of bonds with sliding is reasonably smooth. At equilibrium, the Ni-S bond

lengths are 2.38 Å, 2.12-2.17 Å, and 2.36 Å for Mo-substituted, t-intercalated and

o-intercalated respectively, while the Ni-Mo bonds lengths in S-substitution are

2.68-2.78Å [58]. As layers slide, the identifiers “tetrahedral” and “octahedral” are

used to describe the initial structure, despite the fact that bonds change as in Fig.

6.4.
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6.4.3 yz-relax: Traversing the 2D sliding potential

In yz-relax, the structures are free to follow a curved path indicative of the

familiar zigzag sliding pattern [101, 18] of hexagonal lattices. This curved path is

quantified as ∆yrelaxed, the mean difference in Mo y-coordinates when compared to

the ∆x = 0 Å structure. The white circle in Fig. 6.5 represents the metastable AB′

stacking of the pristine structures. Besides t-intercalation, doped structures follow

a pathway to equivalent sites through the same metastable site. The t-intercalated

structure instead relaxed to a stacking equivalent to the lowest-energy stacking,

causing discontinuities in ∆y at ∆x = 1.6 Å in Figs. 6.5 and 6.4. This is likely

due to the deep well at the equivalent stable stacking to attract our system to that

configuration, and small barriers could be overcome by the BFGS quasi-Newton

algorithm as implemented in ESPRESSO [44]. In Fig. 6.3, we included a structure

computation which follows the trends better, but was obtained by altering the

relaxation scheme. It was initialized by sliding a nearby structure, rather than the

initial 2H structure. Furthermore, both intercalated structures deviate slightly in

their sliding pathway due to forces from the Ni-S bonds. The results of this method

are reminiscent of what may be achieved through the nudged elastic band method

[213, 221]. though we do not require the images to remain close by. This method

accesses the 2D-sliding path by simply allowing the system to ‘fall’ into low-energy

pathways in the potential energy surface. Given the complexity introduced by

local atomic organization, this analysis approach can capture the concerted relative

sliding of layers but also allowing for local symmetry breaking with relaxations of

atoms nearby the Ni atom. Along the stable-metastable sliding path, S-substituted

layers attract the opposite layer during sliding (Fig. 6.5b), as we also found when

applying increasing loads in Fig. 6.13. For y-sliding in Fig. 6.11, we instead use

xz-relax conditions, but we found that the structure did not deviate from a straight

path along the y-axis due to mirror symmetry in the xz-plane which is preserved

for displacement along the y-axis.
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Figure 6.5: Structure and energy of bulk sliding layers by ∆x then relaxing in
y and z coordinates. a) The relative displacement after relaxation. Cyan circles
indicate the starting AA′ structure. White indicates the metastable AB′. Magenta
indicates A′B stacking. Given the opportunity to relax in y, structures traversed
the potential surface between stable and metastable stackings. b) Mo-Mo interlayer
distances are shown for both doped and undoped interfaces. S-substitution, unlike
others, does not increase its doped interface’s interlayer distance, indicating an
attraction between the dopant and its opposite layer. c) Energies along the sliding
path are displayed as well. For b)-C), a red × indicates the t-intercalated structure
as generated by a different scheme than other structures to target the AB′ stacking.
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6.4.4 xyz-relax: Slip-plane detection

We use the final constraint, xyz-relax to detect the preferred locations of slip-

planes. Fig. 6.6a shows ∆xrelaxed, the difference between x-coordinates of Mo

atoms of the two layers in the cell with respect to ∆x. By sliding the layers

uniformly and shearing the cell then relaxing along that same sliding direction,

we can see whether it is favored to have uniform relative displacements between

layers, more displacement between doped interfaces, or less displacement between

doped interfaces. For pristine and Mo substitution, the two interfaces are identical

by symmetry and must have the same displacement, but other structures break

this symmetry and can have different displacements. The t-intercalated interface

shows a strong preference for the 2H AA′ stacking. Conversely, S-substituted and

o-intercalated interfaces prefer the metastable stacking. This suggests that these

structures show a preference to the slip plane shown in 6.6b, but larger supercells

in the z direction are required to break the Mo-substituted symmetry and test its

slip-plane preference directly.

To that end, we compute a few bulk supercells with 4-layers but only one doped

layer in (Fig. 6.6c-d) (note this has half the Ni concentration as our structures

thus far). Both Mo-substitution and t-intercalation relax to alternative stacking

configurations than the input uniform sliding. We compute the ∆xrelaxed of the

four interfaces, or pairs of layers, and contrast the behavior of interfaces involving

vs. not involving the dopant. We find doped Mo-interfaces absorb the sliding,

while the undoped interfaces attempt to remain in 2H-stacking. At around 0.5

and 1.2 Å, instabilities due to small energy differences in layer orientation emerge,

but the undoped interface ultimately remains closer to AA′ stacking. Conversely in

t-intercalation, ∆xrelaxed stays near 0 Å throughout sliding for the doped-interface,

just as in the two-layer per cell structure in Fig. 6.6a. Pristine structures, even

when perturbed, relax to a uniform shearing as in Fig. 6.6b. This study locates

the slip plane at the doped interface for Mo-substitution (as in Fig. 6.6b iii) and

away from the interface at t-intercalation (as in Fig. 6.6b ii). The in-plane lattice

is not relaxed.
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Figure 6.6: Geometry after bulk shearing in x by ∆x then relaxing in x, y and z
coordinates. a) The relaxed sliding distance ∆xrelax as a function the input sliding
distance ∆x. b) A schematic of potential multilayer slip-plane configurations. c)
Mo-substituted and d) t-intercalated interlayer x displacements, ∆x(relaxed) for
doped (blue) or undoped (gray) interfaces for four-layer bulk structures.
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6.4.5 Matching bilayer sliding to bulk shearing

The bulk structure we have shown thus far contains two interfaces within each

cell and have a concentration of one Ni for 8 MoS2 units. To understand the range of

interactions and quantify how well this may match other concentrations of dopants,

we computed an isolated bilayer system with the same starting structures as in

bulk, but with vacuum in the c direction. Relaxing such structures with identical

constraints yields the same stacking configurations found in the bulk. This leads

to the intuitive result that the interlayer interactions in the bulk structure can be

computed as pairwise interactions of bilayers as summarized in Fig. 6.7—effects

are local to the layers, van der Waals and covalent, not modified by farther away

or electrostatic charge transfer. This coincides with comments that the interfacial

geometry [198], and not any deeper structures, are almost entirely responsible for

the shape of the sliding potential. As shown in Fig. 6.7, the practical result is

that we can construct the bulk sliding energies by summing up appropriate sliding

potentials of bilayer computations. Namely, bulk o-intercalation, t-intercalation,

and S-substitution potentials are sums of their bilayer counterparts and the pris-

tine computation while bulk Mo-substituted and pristine are twice their bilayer

counterpart potentials. Fig. 6.7d, for example, has two interface interactions in

our bulk structures, one interface with no Ni atom and one with the Ni atom—

so we approximate it by summing up a pristine bilayer sliding potential and the

Ni@t-intercalation bilayer sliding potential to remarkable accuracy. In effect, this

leads to the conclusion that arbitrary layered structures can be computed as an

appropriate ensemble of bilayer computations that match the interfacial geometry.

Work by Hu et al. [65] studied sliding in 5-layer systems using classical potentials.

Such a study would be expensive using density functional theory due to the large

number of atoms, but could be cheapened dramatically while achieving DFT-level

accuracy by careful combination of four bilayer computations representing the in-

terfaces.

To directly test the localization of the interaction at the interface, we computed

a few trilayer scenarios. The top two layers were pristine in all scenarios. The third

layer is initially attached to the middle layer and is set to either t-intercalated,
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Figure 6.7: The computed (dashed) variation in sliding potential in bulk plot-
ted against sums of bilayer sliding potentials (solid). Bilayer structures whose
interfaces match those in bulk are used: two Mo-substituted-to-undoped bilayer
interactions generate one bulk Mo-substituted sliding potential, others are sums
of one undoped interface (i.e. pristine bilayer sliding) and one doped interface.
The approximation would only be suitable for xyz-relax conditions if a full 2D
sliding potential is computed, since relaxing bilayers in all coordinates yields the
2H stacking.
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Mo-substituted, or pristine. We treat the system up to yz-relax only. We find

that the bottom pair of layers remain in the 2H stacking throughout sliding in

all conditions. The top pair of layers follow an identical trajectory as the pristine

bilayer and the sliding potential per area is indistinguishable in all three scenarios,

corroborating that only the active interface contributes to the sliding potential of

2D materials. As a lubricant, Ni-doped MoS2 shows higher resistance to wear and

lower friction than pristine MoS2. Given the increased sliding potential maximum

of t-intercalated MoS2 when compared to pristine, one may be tempted to assume

the increased lubrication incompatible with t-intercalation. Our result subverts

that expectation. With previous computations of the dissociation energy [81],

t-intercalation may bind the layers therefore decreasing the wear rate. Slip in

t-intercalated MoS2 can occur at the undoped interface, avoiding high-barrier t-

intercalated sliding and relegating all of the sliding to undoped interfaces.

6.5 Conclusion

This work elucidates the atomistic mechanisms of doped 2D materials and

outlines a systematic pathway to study systems with otherwise large degrees of

freedom. The analysis pathway used is applicable to any layered material and

at computational levels other than DFT, though an adequate model of the vdW

interaction is critical for accuracy. Given that the pairwise bilayer interactions

accurately describe the bulk, arbitrarily-layered systems could be discretized and

computed as bilayers that represent each interface. This could reduce compu-

tational cost while keeping accuracy of many-layered studies [65]. The variable

constraint method used here can be used to simplify the complicated structures

with dynamic internal components, such as in S-substituted or intercalations. We

used these to find a low-barrier sliding path, compare the Ni’s site-dependent alter-

ations to the sliding potential, and locate the likely slip planes in those structures.

A potentially perplexing result that t-intercalation has a large sliding potential

and yet can lead experimentally to lower friction can be explained as the presence

of shear planes away from intercalated layers. Our results provide general insight
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into sliding of doped 2D materials, for use in applications and for tuning sliding

interactions in 2D materials, and our work offers a general approach for analysis,

including for mapping out sliding potential energy in 2D.

6.6 Supplementary Materials

Figure 6.8: Sliding in three-layer systems vs. undoped bilayer (black). The top
pair of layers are undoped and are slid next to each other then relaxed in the
z-direction. The sliding energy is divided by the area of the active sliding area, so
as to keep it comparable with the bilayer. The presence of a third layer (doped or
undoped) does not change the sliding potential by more than 1.5%.



97

Figure 6.9: a) Sliding path under yz-relax constraints of bilayers slid in the x-
direction. Deviations from the pristine zig-zag path are slightly more pronounced
in all cases. b) Interlayer distances show identical pattern to bulk shearing, albeit
at a slightly larger value as compared in Fig. 6.10. c) Sliding energies divided by
one cell’s area.

Figure 6.10: a) Ni’s out-of-plane distance with respect to the bottom layer (see
Fig. 6.1 for relative Ni positions in main text) under xz-relax. The red × indicates
the t-intercalated structure that used a different generation scheme to relax it near
the AB′ stacking configuration. b) Mo-Mo interlayer distances comparing bilayer
(dashed) to bulk (solid) for xz-relax.
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Figure 6.11: Relative sliding for y-sliding of bulk and bilayer with xz-relax con-
straints. a) Sliding path with respect to the pristine cell sites. Cyan, white, and
magenta circles indicate AA′, AB1, and A2B respectively. Yellow circles represent
the saddle-point stacking. Unlike in x-sliding, the structure did not deviate much
( 10−4 Å) from the path, despite being given freedom in the x-coordinates. b) The
Mo-Mo interlayer distance shows little difference in the undoped interfaces between
the different sites, but the doped interfaces vary in shape with S-substitution then
intercalations showing greatest variabilities. c) Sliding energies (divided by twice
the cell’s area, once for each active sliding interface) lack the same mirror-symmetry
seen in x-sliding. Ni in the o-intercalation case switches between the same state
as the t-intercalation, between 1.5-2.0Å. Since these are stoichiometrically equiv-
alent, we referenced the octahedral energies against the ∆y = 0Å, t-intercalated
structure.
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Figure 6.12: Energies per sliding active layer are plotted for the different doped
structures. Full bulk DFT (solid) and pairwise combinations of bilayers (dashed)
for doped MoS2. The y-direction sliding potential for a single pristine interface is
not symmetric, but the two interfaces in the bulk structure are sliding in opposite
orientations. This leads to a symmetry in c) pristine from a 180◦ rotation of the
interface, which is broken in the doped structures. Bulk sliding potentials for b) S-
substitution, d) o-intercalation, and e) t-intercalation are computed as sums of the
doped bilayer and the undoped potential. Bulk a) Mo-substitution and c) pristine
potentials are sums of their bilayers potential and its own reverse, to account for
the interlayer sliding orientations.
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Figure 6.13: Computations of load applied to the sliding = 0 Å bilayer of 2 × 2
supercells. The layers are compressed and the z-coordinates of the outer S atoms
are fixed, as shown in d. All other atomic coordinates and the cell parameters
a and b are allowed to relax. The relative energy a) and load b), computed as
the sum of the forces on the upper fixed S-atoms divided by the cross-sectional
area) are plotted against the Mo-Mo z-separation, or interlayer distance. Loads
show a similar ordering in elastic C33 values previously computed [58], except for
S which shows nonlinear behavior in its Ni. Energies and loads of intercalated
MoS2 are more sensitive to compression than pristine MoS2, opposite to the sub-
stituted structures. Load vs. ∆E c) show that doped and pristine are not related
by a simple scaling factor, but nonlinear relationships emerge from the Ni’s dy-
namic behavior. This is most apparent in S-substitution in the zoomed inset in c.,
where, unlike other scenarios, the Ni atom is attracted to the opposite layer during
compression, rather than repelled. d) Ni-coordinates are for the different doped
structures are plotted along with the layers’ coordinates (gray). S is attracted to
the opposite layer with increased compression.
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Figure 6.14: The RMS of the atomic distances between a right-direction bulk slid
structure and its left-direction counterpart. These are computed by taking the
structure slid by ∆x, reflecting across the yz-plane, then comparing to its nearly
symmetric counterpart, at ap−∆x, where ap is the pristine lattice constant. RMS
of the atomic distances between atoms that lay nearly on top of one another are
shown. (i.e.

∑
|SxR(∆x)−R(ap −∆x)|2).



Chapter 7

Ni-Doped MoS2: Paremetrization

of a ReaxFF Reactive Force Field

for Ni-Doped MoS2 using DFT

This chapter is based on our contribution to the publication in progress led

by Karen Mohammadtabar at the Martini group at UC Merced [116]. The goal

is to use DFT to parameterize a classical reactive force field for Ni-doped MoS2

for use in tribological studies. The result is a faster and cheaper classical force

computation but with accuracies only limited by the quality of the parametrization.

This force field is designated to model sliding in larger MoS2 systems (1000+

atoms), but it could be used in other applications, such as catalytic activity. One

of the Martini group’s computational methods involves using ReaxFF [186, 156],

a method that uses a “reactive” force field that can model bond breakage and

formation accurately. The Martini team was tasked with that aspect of the project

while ours was focused on the DFT parametrizations. Applications of interest have

been detailed in Chs. 5 and 6. With the plan of using the ReaxFF potential to

study tribology, this chapter follows Ch. 6 which conducted smaller scale but

in-depth analyses of Ni-doped MoS2 sliding.

102
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7.1 Introduction

Density functional theory (DFT) can provide a great deal of information about

the possible structures involved in sliding, but they can be computationally de-

manding for large structures—especially those that may play a role in macroscopic

sliding. Classical molecular dynamics (MD) is an approach that can be used in

tandem with DFT. Here, the evolution of the structure is tracked through solving

low-cost Newtonian equations, but the potential must first be parametrized and

validated by DFT [148].

ReaxFF reactive force fields [186] are classical force fields designed to generate

accurate models of systems with bond breakage and formation. The potential

requires a choice of empirical parameters that weighs the importance of its energy

components. ReaxFF has previously been parametrized for bilayer 2H-MoS2 which

successfully captured vacancies formation energies, large curved geometries, and

relative stacking configurations [127]. Their work also provided an initialization

for our Ni-doped potential, as it should capture most of the Mo and S behavior

and leaves us to optimize mostly the Ni-related parameters. Force fields have

successfully studied many of MoS2’s mechanical and catalytic properties, however

the surface energy barrier height has been inaccurate. Successes include MoS2

formation [127, 27], the active sites of MoS2 edges [66], defect creation [127, 216],

and multilayer tribology [160].

Previously, DFT works have investigated the tribology of MoS2 under various

conditions as discussed in Ch. 6. Vacancies, a comparable defect to substitution,

have been found to have reduced sliding barriers [197]. Layer orientation and stress

can alter the shape of the sliding potential and can move the maxima and minima

to different stackings [101]. Sliding heterostructures, such as MoS2 on graphene

[198] or MoO3 [105], are extended versions of what we are studying here—where

one layer is doped and another is not. These studies all find that the outer S

layers are the most significant to the sliding potential. We confirmed this in the

previous chapter by direct comparisons of few layers against bulk. The registry

index method has been applied to MoS2 [18, 22] and other layered materials as a

lower computational cost approach than DFT.
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7.2 Methodology

7.2.1 Parametrization

Our parametrization of ReaxFF was trained by straining bulk 2H-MoS2 (uni-

axially, biaxialy, triaxially, and with in-plane shear) and by simulating relative

sliding of the layers along the basal plane. These computations were repeated once

for each of the four dopant sites starring in previous chapters: Mo substitution, S

substitution, octahedral (o-) intercalation, and tetrahedral (t-) intercalation. The

force field was then validated by using the relaxed bond lengths, lattice parameters,

and by computing defect site stability.

In this parametrization process, two sets of data are created using DFT—a

training set to find appropriate energy weights and a testing set to evaluate the

accuracy of the potential. During parametrization, errors are computed between

the energies of DFT and ReaxFF as Error = (E
ReaxFF−EDFT

w
)2 for identical struc-

tures. w is relative weights.

The ReaxFF potential we use is as follows:

Esystem = Ebond + Eo.c. + Eangle + Edih + EvdW + ECoulomb (7.1)

With respect to bonding, Ebond varies with interatomic distance and is related

to bond formation, while Eo.c. penalizes overcoordination. Eangle and Edih are

related to 3- and 4-body angle strains. EvdW is the important van der Waals term

which dominates the MoS2 interlayer interaction and ECoulomb is the electrostatic

contribution.

7.2.2 DFT

As in our previous work on thermodynamics and vibrational properties of Ni-

doped MoS2 [58], the plane-wave density functional theory (DFT) code Quantum

ESPRESSO [50] was used for quantum-level calculations. The Perdew-Burke-

Ernzerhof [139] (PBE) generalized gradient approximation was used with Grimme-

D2 [53] van der Waals correction, and the electron-ion interaction was described

with Optimized Norm-Conserving Vanderbilt pseudopotentials [153] parametrized
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by Schlipf and Gygi [187]. All DFT computations used a kinetic energy cutoff

of 60 Ry. PBE + Grimme-D2 has been shown to accurately compute the lattice

parameters, elastic constants, and phonon frequencies of MoS2 [58].

The training set was composed of pristine 2H-MoS2 supercell sizes of 2× 2× 1,

where the third direction is the one perpendicular to the layers. Pristine 2H-bulk

structures have 6 atoms per unit cell and a half-shifted k-grid of 4 × 4 × 4 was

used. The pristine a- and c- vectors relaxed to 3.19 Å and 12.40 Å, respectively.

The dopant sites were chosen because they are meta-stable; other sites such as

intralayer interstitial or S-S bridge intercalation, would relax to other structures.

The stable doped structures (Mo substitution, S substitution, and intercalation at

the tetrahedral (t-) and octahedral (o-) sites) were computed using a 2 × 2 × 2

supercell of the pristine structure. Bilayer calculations used identical parameters

except for large c-parameters and only one k-point in the z-direction.

7.3 Results

Full discussion of the process and results can be found in the prepint when

available [116]. The sample figures shown here capture two types of data. For the

first in Fig. 7.1, the potential was trained explicitly to capture the strain response.

We included very large strain values to hopefully capture the scenarios which may

be present in sliding under heavy load. Overall, the potential follows the training

set well except for the most extreme strains.

Bond lengths in Table 7.1 are an emergent quantity that we did not explicitly

train. Ni-S bonds show good agreement between both computational methods.

The Ni-Mo distance is substantially different in the S-substituted case. This may

be due to Ni’s tendency to prefer the other sites, as S-substituted has the highest

formation energy.

Sliding potentials have thus far not been captured well. It was originally set

as testing data, but we have thus turned it into training data to assure that the

potential will capture sliding accurately.



106

Figure 7.1: Performance of the ReaxFF potential against its own DFT training set
under a. triaxial, b. biaxial, c. uniaxial strains or d. in-plane shearing of undoped
MoS2. Note a. has a larger energy scale than others. Uniaxial strain-energy is
captured most accurately, but shear-strain is not captured well.
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Table 7.1: Ni-S bond lengths compared between the two computational types.

Structure DFT (Å) ReaxFF (Å)

Mo-sub 2.38 2.32

S-sub* 2.55 2.75

Octahedral 2.34, 2.38 2.30, 2.40

Tetrahedral 2.12, 2.17 2.14, 2.30

They are mostly accurate to within 0.05 Å, except for the Ni-Mo bond length and the

tetrahedral single bond. *S-substitution used Ni-Mo bonds instead of Ni-S.

7.4 Conclusion

We have generated a training set of data for ReaxFF. The structures were

generated based on previous work as the starting structures, but they were then

subjected to heavy strains. Testing has thus far not yielded accurate sliding in

cases except for Mo-substitution and pristine, but it has shown accurate struc-

tural parameters—namely the bond lengths and lattice constants. Refining the

parametrization should yield fast and accurate sliding simulations.



Chapter 8

Re-Doped MoS2: Structure,

Stability, and Vibrational

Spectroscopy

Chs. 8 and 9 were initially inspired by a collaboration with the Baykara group

at UC Merced. Their experiment [1] finds interesting tribological properties of

Re-doped MoS2. This section focuses on establishing the structure of Re-doped

MoS2 and does not yet connect with their work (Ch. 9 connects with that work

directly). A significant finding of this work is a new way to compute the Raman

spectra of a material with metallic qualities. This can work for a material which

is nearly identical to a non-metal, such as how Re-doped MoS2 is almost the same

as pristine MoS2, which is a semiconductor.

8.1 Abstract

Doping MoS2 with Re is known to alter the electronic, structural, and tribolog-

ical properties. Re-doped MoS2 has been mainly studied in monolayer or few-layer

form, but can also be relevant for applications in many-layer or bulk form. In this

work, we use density functional theory to explore the structure, phase stability,

and Raman spectrum of bulk Re-doped MoS2. We consider the possibility of the

Re dopant existing at different locations and provide experimentally distinguish-

108
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able characteristics of the most likely sites: Mo-substitution and tetrahedral (t-)

intercalation. We demonstrate and benchmark an approach to calculate Raman

spectra of doped materials with metallic densities of states by using atomic Raman

tensors from the pristine material. Applying this method to the metallic Re-doped

structures, we find characteristic shifts in the Raman-active peaks depending on

Re dopant position: redshifts in both A1g and E1
2g peaks in the t-intercalated

case versus a redshift for A1g and blueshift (sometimes accompanied by a smaller

redshifted peak) for E1
2g peaks in the Mo-substituted case, which can be used to

identify the dopant sites in experimental samples. We analyze the interactions

giving rise to these shifts.

8.2 Introduction

MoS2 is a versatile semiconductor having an anisotropic, two-dimensional struc-

ture, with interesting electronic [11], optical, tribological [191, 144], catalytic [111],

and spintronic properties [151]. Doping has been used as a strategy to tune these

properties for applications of interest. Re is one of the most studied MoS2 dopants

[36, 2, 218], having one more d-electron than Mo and making MoS2 n-type [61].

It can be incorporated by various synthesis methods [2, 48, 47, 107, 211] and also

occurs as a natural impurity in MoS2 [19]. Most of the recent interest in Re-doped

MoS2 system has been in single-layer structures [226, 179], with few multilayer

or bulk studies [61, 2]. The bulk is also interesting in that it shares some of the

optoelectronic properties and is the limit of trends in increasing layers. It is also

important in macroscale applications such as solid lubrication [191, 1].

MoS2 is an effective solid lubricant owing to the ease of shearing along the basal

planes [191]. Doping MoS2 alters material growth patterns [90] and enhances

tribological properties [170]. Frictional forces on MoS2 have been measured by

AFM, and generally friction decreases with more layers, as for other 2D materials

[99]. Surprising opposite trends in friction have been measured for Re-doped MoS2

however, in a recent AFM study which we interpreted with theoretical calculations

on friction and elastic stiffening by the dopants [1]. This work gives background
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on the basic properties of structures of Re-doped MoS2.

The consensus in the literature is that Re in monolayer MoS2 substitutes for Mo,

which previous works have indicated with annular dark-field imaging [47, 107] and

scanning atomic tomography [179] experiments, as well as calculations of formation

energy [36] and consideration of the general chemical similarity between Mo and

Re. In bulk, neighboring layers allow for the possibility of intercalation also. The

favored site is unclear and has not been established by experiments, which are

not necessarily able to distinguish between the sites in a multi-layer structures.

In particular, there is some experimental evidence of intercalation from Raman

spectroscopy interpreted by our density-functional theory (DFT) calculations [1],

and energy dispersive x-ray analysis on samples from chemical vapor transport

(though for a phase identified as 3R and not 2H) [180]. Moreover, DFT studies

indicate the stability of other transition metals in tetrahedral (t-) intercalation

[58, 70], making this and other possibilities worth investigating.

Raman spectroscopy is a key characterization method for 2D materials, and

can be used to probe differences in microstructure—particularly local bonding

configurations [58]. Doping MoS2 with Re (as with other dopants) can shift the

pristine Raman-active E1
2g and A1g peaks. The experimental literature has found

different magnitudes and directions of these shifts in monolayer Re-doped MoS2:

redshifts in the A1g peaks [2, 179, 48], redshifts of the E2g peak [2, 48, 103, 210], or

blue shifts in the E2g peak [48]. The interpretation in terms of Re sites has been

unclear and not investigated in detail, and has generally been vaguely attributed to

overall strengthening or weakening of bonds by doping [68]. Calculation of Raman

spectra in such systems poses a problem, because of new states at the Fermi level

compared to the pristine system. The resulting metallic density of states cannot

be handled by the typical DFT methods in the static approximation [97], despite

the Raman spectra being physically observable. To overcome this, we develop an

method to approximate the Raman tensor and thus obtain a Raman spectrum.

In this work, we investigate the structure and bonding of bulk Re-doped MoS2,

showing the phase stability that leads us to two structures of interest—the t-

intercalated and Mo-substituted sites. Our Raman calculations find clear differ-
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ences between intercalated and Mo-substituted Re-doped MoS2, with redshifts of

both peaks in the intercalated case and a blue- and red-shift of the E1
2g and A1g

respectively in the Mo-substituted case, which can be experimentally identifiable

features. To accomplish these Raman computations, we propose a method to esti-

mate the Raman tensor for a metallic doped system, and benchmark its accuracy.

8.3 Methods

We use plane-wave DFT and density functional perturbation theory [6] (DFPT)

implemented in Quantum ESPRESSO [50] version 6.6. Calculations were performed

using either the Perdew-Burke-Ernzerhof [139] (PBE) generalized gradient approx-

imation with the Grimme-D2 (GD2) [53] van der Waals correction, or the Perdew-

Wang [138] local density approximation (LDA). We use ONCV pseudopotentials

[153] parametrized by PseudoDojo [187].

PBE+GD2 yields slightly better structural parameters than LDA [58]. Un-

like PBE, LDA is compatible with Quantum ESPRESSO’s implementation of Raman

intensities, so we decided to use LDA for vibrational spectra (including initial

structure optimization) and use PBE+GD2 otherwise. 60 Ry was used as the

kinetic energy cutoff for PBE while 80 Ry was used for LDA—a higher cutoff

was required for more accurate phonon modes in DFPT but not required for rea-

sonable structural optimization. We applied 0.001 Ry Gaussian smearing to the

electronic occupations to be able to handle metallic structures. Electronic energy,

force, and pressure thresholds of 10−6 Ry, 10−4 Ry/Bohr, and 0.005 GPa were used

respectively in variable-cell relaxations.

We model Re-doped MoS2 with charge-neutral periodic supercells, using in-

creasing supercell sizes to test the dependence on Re concentration and approach

the low-doping limit, as summarized in Table 8.1. We tested the effect of out-

of-plane dopant interactions on some properties using the 2 × 2 × 2 supercell.

Electronic density of states calculations used 0.1 eV broadening, and 20% addi-

tional unoccupied states. All k-grids are half-shifted. An exception is the 3×3×1

t-intercalated structure which was numerically troublesome and used 15% unoccu-
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Table 8.1: Supercell parameters.

supercell Re concentration scf k-grid DOS k-grid

2× 2× 1 4.17 at-% 6× 6× 2 8× 8× 4

2× 2× 2 2.08 at-% 6× 6× 1 8× 8× 2

3× 3× 1 1.85 at-% 3× 3× 2 6× 6× 4

4× 4× 1 1.04 at-% 2× 2× 2 -

pied states and a Γ-centered grid to converge successfully.

Spin-polarized calculations were used for relaxations since Re doping intro-

duces an odd number of electrons and so there is the possibility of magnetization.

Magnetization has been observed [210] in 1T Re-doped MoS2 and predicted in

monolayers [226]. However, energy differences between spin-polarized and spin-

unpolarized states are roughly 10−5 eV per atom (Table 8.2) and so we conclude

that magnetism is not significant for the computed values in this system. More-

over, our computational treatment of Re-doped MoS2 as a periodic supercell likely

overestimates the magnetic effects compared to the probable disordered Re dis-

tributions in a real sample. Because of this, we included magnetization when

it was feasible (relaxations and total energy for phase diagrams) but used spin-

unpolarized calculations for vibrational spectra, which are sensitive to small energy

differences.

8.4 Results and Discussion

8.4.1 Structure and Bonding

We consider the following possible Re dopant sites: Mo substitution, S substitu-

tion, t-intercalation, octahedral (o-) intercalation, Mo-Re split interstitial (similar

to the Mo-Mo split interstitial from Komsa and Krasheninnikov [89]), bridge-site

intercalation, and hollow-site intercalation. These structures were chosen as they
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Table 8.2: Magnetization for Re-doped MoS2 supercells from PBE+GD2, and
energy differences between the spin-polarized and spin-unpolarized states.

s.c. Mo subst.
S subst./

S vac.+Re
o-intercal. t-intercal.

Re-Mo

interst.

µ ∆E µ ∆E µ ∆E µ ∆E µ ∆E

2× 2× 1 0.00 0 0.67 5.5 0.00 0 0.00 0 0.33 4.4

2× 2× 2 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0

3× 3× 1 0.33 3.1 3.00 84.2 1.00 4.1 0.00 0 1.00 45.9

4× 4× 1 0.00 0 3.00 116.0 0.00 0 1.00 18.0 1.00 18.0

µ in µB and ∆E are in meV, both per Re atom (one per cell); structures as defined in Fig. 8.1.

are commonly considered in computational studies of MoS2 doping [70, 89]. The

bridge and hollow sites are unstable and relaxed to o-intercalation, and are not

considered further. The relaxed structures are pictured in Fig. 8.1. We focused on

three structures: undoped 2H-MoS2, Mo-substituted, and tetrahedral-intercalation

(t-intercalated). All structures retained a 2H structure and we found no evidence

of shifting to, for example, the 1T phase as has been obtained in some experimen-

tal studies [210, 39]. There is one exception – the t-intercalated 3 × 3 × 1 (with

PBE+GD2) relaxed to a structure (see Fig. 8.8) with the Mo atoms aligned above

one another, in which the Re atom now has octahedral bonding to S atoms. This

corresponds to aBa cBc stacking (using the convention in Song et al. [162]), similar

to the “Min 2” structure from sliding in Levita et al. [101]. This structure is lower

in energy by 0.02 eV per atom than if it had the typical stacking.

The pristine structure has a = b = 3.190 Å, c = 12.415 Å, α = β = 90◦ and

γ = 120◦, as shown in Fig. 8.1. For most of the computed structures, the lattice

parameters match the pristine to within 0.5%. There is a 1-2% increase in c in

t-intercalation, consistent with a previous calculation [61] and similar to results

for Ni [81] but considerably less than the increase in layer spacing for Li [38]; the

anomalous 3×3×1 structure shows a lesser increase in c. The split interstitial shows
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Figure 8.1: Re-doped MoS2 structures found to be stable or metastable: Mo in
gray, S in yellow, and Re in purple.

a 0.5-2.5% increase in a and b. The 2×2×1 and 2×2×2 S-substituted structures

show a substantial change in structure when relaxed—they are better described

as a S vacancy with a Mo-atop Re dopant, as in Fig. 8.1. This is visible in the

charge densities in Fig. 8.2. 3×3×1 and 4×4×1 show 2% and 1% reductions in

c, respectively. Angles are within 0.05% of the pristine with few exceptions. The

t-intercalated α and β are 0.4%, 0.2%, and 8.2% larger (smaller) than the pristine

α (β) for 2×2×1, 2×2×2, and 3×3×1 respectively. In the Mo-substituted case,

there is a noticeable local symmetry-breaking around the Re atom, leading to Re-S

bonds in two groups measuring about 2.38 Å and 2.41 Å respectively at a 3×3×1

supercell. O-intercalation’s 6 bonds, due to the symmetry of the site, occur in two

or three groups with differences of around 0.005 Å in bond length. Full structural

information is found in Table 8.4.

Analysis of the electronic density demonstrates that Re is able to form interlayer

covalent bonds, as shown by significant electronic density between Re and S across

layers in Fig. 8.2(c,d): comparable to, or even larger than, the electronic density

in Mo-S bonds. This happens in o- and t-intercalation, as for Ni [58]. While
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Figure 8.2: Electronic densities of MoS2: a) pristine, b) Mo-substituted, c) t-
intercalated, d) o-intercalated, e) S vacancy + Re atop Mo, and f) split-interstitial,
in cross-sections of the 2 × 2 × 1 supercell in an Mo-S plane close to the dopant.
S atoms are shown in yellow, Mo atoms are in gray, and Re atoms are purple.
Intercalated and S-vacancy structures show strong out-of-layer bonding. All struc-
tures besides the highly distorted S vacancy structure show densities in the Re-S
bonding region to be as strong as Mo-S bonds.
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Mo-substitution is nearly indistinguishable from pristine in its electronic density,

there is a slight increase in the density in the S-bonding region in both layers of

the Mo-substituted structure. Re’s presence in other cases reduces the electronic

density in the region between two S atoms in the same layer. Intercalated Re

also reduces electronic density between S atoms it is bonded and their adjacent

Mo atoms, suggesting a weakened bond. The non-intercalated doped structures

however show only van der Waals interactions between layers.

8.4.2 Thermodynamic Stability

With the method we previously used for Ni-doped MoS2 [58], we compute the

phase diagram, marking the most stable structure at a given chemical potential.

The relative stability of structures with different stoichiometries can be analyzed

using the formation energy:

Eformation = Emixed −
∑
i

NiEi,bulk −
∑
i

Niµi (8.1)

where the energies are referenced against stable bulk elemental phases of Mo, S,

and Re.

These computations require the energies and composition of different phases

of Re, Mo, and S compounds. We used the set of stable and metastable struc-

tures we found: Mo substitution, S substitution, t-intercalation, o-intercalation,

and the Mo-Re split interstitial. O-intercalation, t-intercalation, and Mo-Re split

interstitial have the same chemical composition and thus their energies are directly

comparable. Of these, t-intercalated consistently has a lower energy by 0.01–0.02

eV/atom. There is one exception: the 4 × 4 × 1 split-interstitial is very slightly

energetically favorable over either intercalated structure by 0.001 eV/atom. Full

formation energies are given in Table 8.5.

The T=0 K phase diagram (Fig. 8.3) shows that the Mo-substituted structure

is the most stable and the only structure consistent with stability of pristine MoS2.

This result is consistent with experimental observation of Mo-substituted mono-

layers [107], which have a comparable geometry. While Re adatoms on monolayers

are much less stable, bulk intercalation of Re has been inferred in experimental
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samples [1], which can be due to out-of-equilibrium or higher-temperature syn-

thesis processes. The picture is quite different from that for Ni-doping of MoS2,

in which only t-intercalation was compatible with pristine MoS2 stability (except

at the highest doping levels) [58]. Phase stability at higher temperature can be

estimated in the harmonic approximation by calculating the lattice vibrations’

contributions to the free energy [89] F = E − TS, using the entropy

S(T ) = kB
∑
λ

nB(ℏωλ, T ) lnnB(ℏωλ, T ) (8.2)

with Bose-Einstein populations nB and phonon frequencies ωλ. The lowest-

frequency modes contribute most to this term, namely the acoustic modes as well

as shearing E2
2g-like (35.2 cm−1 in pristine) and layer-breathing B2

2g-like (55.7 cm−1

in pristine) modes. Compared to Mo substitution, t-intercalation has a 6–10 cm−1

lower frequency in the E2
2g-like mode but a 5–20 cm−1 higher frequency (i.e. stiffer

atomic vibrations) in the B2
2g-like mode. Throughout most of the Brillouin Zone,

the E2
2g-like modes are the lowest in frequency, below even the acoustic modes, and

will be significantly populated at room temperature (kBT ∼ 200 cm−1). Therefore

this mode can contribute considerably to the free energy. Since this mode is lower

in energy for t-intercalation, it will contribute to a more negative entropy for t-

intercalation vs. Mo substitution, and at high temperatures the free energy could

favor t-intercalation, making it accessible even within the pristine stability triangle

in Fig. 8.3.

8.4.3 Raman spectra

The standard approach to Raman spectra in DFPT [97] calculates atomic Ra-

man tensors via electric-field and atomic-displacement perturbations, and then

combines these with phonon eigenvectors to obtain the Raman intensities of phonon

modes. The formalism is based on the Placzek approximation and a static ap-

proximation for the dielectric constant ϵ∞, which is typically valid for sub-gap
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Figure 8.3: The T = 0 K phase diagram for Re-doped MoS2 in a 4 × 4 supercell.
Only the Mo-substituted Re-doped MoS2 falls within the stability triangle (black)
for MoS2 (as in Guerrero et al. [58]). The labeled dots show the location of the
intersection point for other supercell sizes. The pristine MoS2 line meets the axes
at µS = −1.308 eV and µMo = −2.616 eV. Structures considered include Mo-
substituted, S-substituted, tetrahedral intercalation, octahedral intercalation, and
the Mo-Re split interstitial. Note that for 4×4×1 the Mo-Re split interstitial has
essentially the same energy as t-intercalation.
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(non-resonant) incident light.

Iνi,s ∝ |êi · Aν · ês|2
1

ων

(nB (ℏων , T ) + 1) (8.3)

where Ii,s is the intensity for incident direction i and scattered direction s, ν is a

mode index, Aν is the mode Raman tensor, and ων is the phonon frequency. The

mode Raman tensor is calculated in terms of atomic Raman tensors Akγ
lm:

Aν
lm =

∑
kγ

Akγ
lm

wν
kγ√
Mγ

(8.4)

Akγ
lm =

∂3U el

∂El∂Em∂ukγ
=

Ω

4π

∂ϵ∞lm
∂ukγ

(8.5)

where wν is the displacement pattern of mode ν; k, l, and m are Cartesian di-

rections, γ is an atom index, Mγ is the atomic mass, Ω is the unit cell volume,

U el is the electronic energy, u is an atomic displacement, and E is the electric

field. Clearly this approach is only meaningful when a finite ϵ∞ can be defined.

Metallic systems, i.e. those without a bandgap, cannot be calculated because of

the divergence of the dielectric constant in this case. Practically speaking, any

system treated with smearing in Quantum ESPRESSO falls in this category.

True metals generally do not have observable Raman intensity because light

will be reflected rather than undergoing Raman scattering, due to a large ϵ∞ at

the incident frequency; exceptions are Feldman et al. [41] and a recent work on Cu

surfaces [33]. Doped semiconductors however do typically show Raman intensity,

in particular for low doping concentration and therefore typically a low density

of states at the Fermi level. The metallic nature in a small supercell calculation

may be due to spurious formation of impurity bands. Moreover, n-type doping as

for Re-doped MoS2 in a low-doping limit is expected to leave the bandgap intact

and simply move the Fermi level into the conduction bands, as in Hallam et al.

[61] In this case, the dielectric constant remains finite at the optical frequencies of

incident light for Raman experiments. Indeed this is exactly the situation sought

for transparent conductors [20]. In our calculation, all the t-intercalation and

Mo substitution supercells have metallic density of states (Fig. 8.4). Given the

small supercells we use to make Raman calculations tractable, we do see significant
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modification of the density of states, including in-gap states, rather than simply

electron donation.

We also note that many works have reported Raman scattering measurements

from Re-doped MoS2 [1, 61], so there should be a way to obtain these Raman

tensors theoretically. Rather than use prohibitively large supercells and/or perform

computationally intensive resonant Raman calculations (e.g. using time-dependent

DFT or the Bethe-Salpeter equation [200]), we develop an alternate approach

based on the approximation that the atomic Raman tensors are similar to those of

pristine MoS2 and/or a similar reference system which has a well-defined gap and

can be calculated in the usual way. We use directly calculated phonon displacement

patterns and simply substitute the atomic Raman tensors from the reference system

in Eq. 8.4. In practice, this is done by inserting the reference atomic Raman

tensors from the undoped case into the files Quantum ESPRESSO uses to compute the

Raman intensities. Individual Mo and S atoms are matched to their counterparts

in a pristine structure. There are several plausible options for the dopant atom:

approximation as Mo, approximation as another dopant from a similar system, or

neglect as zero, which we test below. Our method could also be applied to materials

with very large numbers of atoms per unit cell, such as amorphous materials; the

phonon modes may be computed by classical force fields to save computational

effort, while the tensor could use DFT methods. Atomic Raman tensors can be

rotated when atoms appear with a different orientation of bonds, along the lines

of Raman bond-polarizability models [204].

Our scheme is related to a more limited approach taken in recent work [63, 91],

in which the Raman intensities from a reference system are used to calculate

Raman spectra of a doped system, to avoid the need for explicit calculations on

the doped system. It can be derived by projecting the doped mode (ν) eigenvectors

onto the pristine mode (µ) eigenvectors, giving coefficients cµν , and expanding the
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Figure 8.4: Electronic density of states (DOS) for Mo-substituted and t-
intercalated structures (using the LDA relaxed structures, as in the Raman calcu-
lations). Energies are aligned to the lowest-lying Mo states. Vertical lines indicate
the Fermi energies. All doped structures have nonzero DOS at the Fermi level.

Raman tensors accordingly in terms of those Ã of the pristine reference system:

|êi · Aν · ês|2 = |êi ·
∑
µ

cµνÃ
µ · ês|2 (8.6)

=
∑
µ

cµν

(
êi · Ãµ · ês

)∑
σ

c∗σν

(
êi · Ãσ∗ · ês

)
(8.7)

≈
∑
µ

|cµν |2|êi · Ãµ · ês|2 (8.8)

Cross terms (µ ̸= σ) are neglected to reach Eq. 8.8. The intensity I can be written

correspondingly in terms of the intensities Ĩ of the reference system:

Iνi,s =
∑
µ

|cµν |2Ĩµi,s (8.9)

As in our method, only the phonon eigenvectors are needed for the system of in-

terest, which could be computed by any means, including classical force fields.

A key limitation is that working with only the scalar intensities means losing a

significant amount of information about the Raman response; in particular, inter-

ference effects (the cross terms in Eq. 8.8) are neglected, which can be significant,

in particular for the case of symmetry-breaking of a Raman-inactive mode into

Raman-active modes.

We tested our method, and the intensity mapping of Eq. 8.8, on our previously

computed 3× 3× 1 supercell, t-intercalated, Ni-doped MoS2 [58], which does not
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require smearing and can be handled by standard methods. We use Raman tensors

for Mo and S from pristine MoS2, and initially set the Raman tensor of Ni to zero.

The relative peak heights are 15% below the full computation as shown in Fig.

8.5, and the peak height ordering is preserved. Compared to the intensity-based

scheme, we see that our Raman-tensor treatment makes small improvements near

the pristine Raman-active peaks of Ni-doped MoS2 (around 380 cm−1 in Fig. 8.5).

Both methods significantly underestimate the intensity of some modes which are

highly local to the Ni (435 cm−1 and 470 cm−1) due to lack of information about

the distinctive contributions of these atoms, but are better at modes which contain

both local components and pristine-like vibrations (452 cm−1 and 502 cm−1).

We further found that by comparing structures with different choices for re-

placed Raman tensors against the pristine result, we can identify which peaks in

the spectra are due to geometry changes rather than new Ni-bond related activ-

ity. In this case Ni introduces shifts to the active peaks, new peaks related to new

modes local to the Ni, and activations of existing MoS2 modes that were previously

inactive by symmetry [58]. Our Raman tensor approximation method is versatile

when distinguishing changes in the intensities as being caused by lattice distortions

or charge transfer from doping. By setting to zero specific atomic components (e.g.

those of the dopant and its nearest neighbor) we are able to analyze the effect of

different atoms in the Raman scattering intensity. In Fig. 8.6, we test different

approximation schemes for the Ni component of the atomic Raman tensor. Set-

ting Ni and its nearest neighbors’ (NN) contributions to zero is the most reductive

approximation and is thus furthest from accurate—this is clearest in the muted

shoulder of the E1g peak. It is still useful, however, in interpreting the nature of

modes such as the 505 cm−1 peak. The lack of intensity in the NN line means

that activity of this peak is highly localized to the Ni atom. The approximation

works well near the pristine-active peaks, but fails whenever the activity is local-

ized around the Ni atom. The fact that the peak around 150 cm−1 has too large

an intensity when these contributions are set to zero underscores the importance

of interference effects in the Raman intensities, as captured by our approach. We

can see the small effect of Ni-doping on the Raman tensors of Mo and S (neglected
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Figure 8.5: Raman spectra (Å4/amu per MoS2 unit) of t-intercalated Ni-doped
MoS2, comparing intensity approximations to a full tensor computed using the
Lazzeri method [97] which is not possible with Re-doped MoS2. The tensor sub-
stitution is a slight improvement when compared to the intensity mapping [63, 91]
method. The spectra uses Gaussian smearing with a width of 4 cm−1.

in our scheme), in the small difference between the full computation, and the ap-

proximation in which Mo and S tensors are from pristine and the Ni tensor is from

the full computation. We see better agreement with the full computation when

the Ni tensor is approximated as Mo then when it is set to zero; this ability to

control contributions from the dopant atom is an advantage of our scheme over

one using just intensities. Since altering just the Ni dopant’s contribution does not

change the pristine-active region much, we expect that this method can predict the

Re-doped structures’ spectra with little loss in accuracy in this frequency regime.

Now we turn to our main interest, the Re-doped case. As for Ni-doped MoS2,

the doped structure closely resembles the pristine structure, making our approx-

imation reasonable. In Mo substitution, we approximate the Re tensor with Mo,

and in t-intercalation, we approximate Re by the Ni tensor from t-intercalation

in a 3 × 3 × 1 supercell, as this is a transition metal in the correct bonding ge-

ometry. Raman spectra in the pristine-active frequency regime are plotted in Fig.

8.7. Complete IR, Raman, and vibrational density of states spectra are provided in
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Figure 8.6: Comparison of the Ni-doped spectra for different approximations of
the Ni atomic Raman tensor across three ranges in Å4/amu per MoS2 unit (note
the different scale for the three plots). The Mo and S atoms use the same tensor
as the pristine. For the red line, the Ni and its nearest neighbor (NN) S atoms’
contributions to the Raman tensor have been set to 0. For the rest, the Ni atom’s
contribution only has been set to 0 (yellow), the same as Mo in pristine (green),
and the same as the full computation (blue). The pristine-active modes (a) show
the least amount of change, except on the shoulder of the E1

2g peak. For the high-
frequency modes (c), the 435 cm−1 and 470 cm−1 peaks are highly localized to the
Ni and are not described well. At 505 cm−1, the peak is entirely localized near the
Ni and its NN, as evidenced by the lack of intensity when those contributions are
removed.
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Figure 8.7: Raman spectra (in Å4/amu per MoS2 unit) of t-intercalated and Mo-
substituted Re-doped MoS2 as computed by DFPT with substitution of the Raman
tensor by those in a pristine computation (Mo and Ni replace the Re atom’s con-
tribution in the Mo-substituted and t-intercalated respectively). The direction of
the peak shifts is generally preserved among the supercell sizes used: redshifts in
both peaks when t-intercalated and blue- and redshifts in the E1

2g and A1g peaks

respectively while Mo-substituted. Gaussian broadening of 2 cm−1 was used.

Fig. 8.10. We find a consistent trend among the Mo-substituted and t-intercalated

Re-doped Raman spectra for different supercells we computed: there is a redshift

of both peaks in the t-intercalated case and blue- (E1
2g) and red- (A1g) shifts in

the Mo-substituted case. The t-intercalated shifts are consistent with some ex-

perimental reports on multilayers [2, 48, 210] and monolayers [103], though the

Raman spectra were not typically studied in much detail and A1g shifts were not

resolved except in Al-Dulaimi et al. [2]. Al-Dulaimi et al. [2] argued that a red

shift of E2g was a sign of Mo substitution in their sample, and the effect of a

heavier mass of Re than Mo, but our results show that this interpretation is not

correct since Mo substitution in fact blueshifts this peak. The agreement between

intercalation and monolayers perhaps suggests adatoms on those monolayer sam-

ples. Another experiment on monolayer samples believed to be Mo-substituted

[47] showed shifts consistent with our calculations for Mo substitution. The bulk

Raman spectra of Hallam et al. [61] by contrast do not have the resolution to

show any doping-induced shifts. Different synthesis methods and conditions can

cause different doping sites (or distributions of sites) in their samples. It is worth

noting that Z-contrast imaging [107] is often used to locate the Re dopant, but
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Table 8.3: Vibrational frequency shifts for t-intercalated and Mo-substituted struc-
tures with respect to undoped MoS2.

Dopant Site Supercell A1g (cm−1) E1
2g (cm−1)

t-intercal. 2× 2× 1 -7.4 -2.0

t-intercal. 2× 2× 2 -1.3 -1.0

t-intercal. 3× 3× 1 -5.9 -3.2

Mo-subst. 2× 2× 1 -2.8 +6.8

Mo-subst. 2× 2× 2 -1.1 +0.7, +4.5

Mo-subst. 3× 3× 1 -3.1 -5.3, -0.34, +9.1*

* Appears near E1
2g but actually more related to A1g in character.

the basal (in-plane) position of the t-intercalated dopant is the same as the Mo

or S site, depending on which side it is viewed from, and so this method cannot

give a conclusive answer. We can compare our calculated shifts to our previous

Raman calculations for Ni-doped MoS2: in that case, both Mo-substitution and t-

intercalation caused red shifts for both of the main Raman peaks, making it harder

to use for experimental identification. In both cases, t-intercalation induces ex-

tra peaks around 450-500 cm−1, but whereas Re Mo-substitution induces few new

peaks below 400 cm−1, there are many significant new peaks in that range for Ni.

Inspection of the phonon modes that contribute to the Re-doped spectra show

that the Mo-substituted activity near 395 cm−1 is (surprisingly) more related to

A1g rather than E2g. This means that the A1g mode splits and both peaks are red-

shifted. The nature of the 395 cm−1 would have experimental signatures in polar-

ized Raman. Redshifts in the t-intercalated case are supplemented by activations

and mixing with the forbidden B2u which has a slightly lower frequency. High-

frequency vibrations of the Ni-atom exist above the A1g peak (Fig. 8.10), but the

(out-of-plane) A1g-like vibrations are lower in frequency than the pristine—despite

the increase in out-of-plane stiffness found in our calculations [1]. Comparing Mo-S

interatomic force constants, those nearby the Re are lower in magnitude by about

25% than those farther from Re in the z-direction. This is consistent with the

observation that Re-doping lowers the A1g frequency in both cases. Magnitudes of
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force constants in the x- and z-directions are lower for t-intercalation than pristine

by roughly 10%, but are not appreciably changed for Mo-substituted, which is con-

sistent with the different effects on the (in-plane) E2g frequency between the two

dopant sites. The reduction in force constant is also consistent with the reduced

Mo-S electronic density near Re for t-intercalation, indicating a weakening of the

covalent bond (Fig. 5.2). We note the complexity of the interactions here between

the dopant and different modes – quite different from the typical idea that doping

simply increases or decreases bond strength and thus gives small shifts in modes

that essentially retain their pristine character [68], or that shifts are due simply to

the effect of the different mass of dopant atoms.

8.5 Conclusion

We have computed properties of bulk and few-layer Re-doped MoS2 in differ-

ent dopant configurations. We found that when intercalated, Re forms covalent

interlayer bonds, and the tetrahedral geometry is most stable. In some cases,

S-substituted structures rearrange into an S vacancy and Re adatom on the oppo-

site layer. Mo-substitution is the most thermodynamically stable at equilibrium,

though t-intercalation may be favorable at high temperature, and in general other

structures can be formed out of equilibrium. These considerations of structure,

bonding, and thermodynamics provide the basis for investigation of other proper-

ties such as friction and elasticity [1].

We developed a new efficient method to calculate the Raman spectra of metallic

doped systems with an accurate approximation benchmarked on our previously

calculated Ni-doped Raman spectra. The approach is easily performed in Quantum

ESPRESSO by substituting atomic Raman tensors from a reference system. We find

the t-intercalated Raman spectra shifts vs. the pristine in ways that are consistent

with experimental literature on Re-doped MoS2. The doped E1
2g peak is less like

the pristine peak than the A1g peak in frequency and shape. The direction of the

E1
2g peak shift can be used to identify the dopant site in experimental samples—

Mo-substitution shows blueshifts (and sometimes a smaller redshift as well) while



128

t-intercalated shows redshifts. These features we have identified provide an avenue

to distinguish the doping site in bulk phases which have been a challenge to identify

experimentally [176, 191] and may be different from the well-studied monolayer.

Importantly, we have shown that the relationship between doping and peak shifts

is complex, as also elucidated in our work on Ni-doped MoS2 [58]. The effect is

not simply an overall strengthening or weakening of bond strengths by a dopant,

but rather there are local effects around Ni, different effects on different bonds,

interaction between different modes, and emergence of new dopant-related modes.

In particular, a mode with frequency similar to E1
2g turned out to be more related to

A1g. Continued ab initio study is needed to understand all the complexities of how

dopants affect Raman spectra of 2D materials, and enable accurate interpretation

of experimental spectra in terms of the electronic and structural effects of dopants.

8.6 Supplementary Materials

Figure 8.8: The anomalous 3 × 3 × 1 supercell t-intercalated structure with non-
standard stacking. The cell has angles of 82.60◦, 97.40◦, and 119.99◦ and a stacking
pattern typically seen as a metastable stacking configuration of pristine MoS2.
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Figure 8.9: Electronic density of states (DOS) are computed for Mo-substituted
and t-intercalated structures using the LDA configuration. The plots are aligned
to the lowest lying Mo states. Vertical lines indicate the computed Fermi energies.
All doped structures have nonzero DOS at the Fermi level.
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Figure 8.10: IR spectra, full Raman spectra, and VDOS at q=Γ of t-
intercalated and Mo-substituted structures as computed by DFPT and Raman
tensor substitution.
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Table 8.4: Structural parameters (Å) for Re-doped MoS2.

Bond lengths a, b, c (Å) α, β, γ (◦)

Pristine - 3.191, 3.191, 12.415 90.0, 90.0, 120.0

2× 2× 1

Mo-subst. Re-S: 2.375×2, 2.414×2, 2.415×2 6.367, 6.382, 12.351 90.00, 90.00, 119.91

t-intercal. Re-S: 2.224, 2.226×2, 2.245 6.399, 6.399, 12.758 89.95, 90.05, 120.05

S vac.+Ni Re-S: 2.320×3 6.394, 6.394, 11.659 90.02, 89.99, 120.05

o-intercal. Re-S: 2.393×2, 2.395×4 6.372, 6.372, 12.671 90.04, 89.96, 120.08

Split Mo/Re Re-S: 2.222×3, Re-Mo: 2.249 6.541, 6.541, 12.466 90.00, 90.00, 120.00

2× 2× 2

Mo-subst. Re-S: 2.374×2, 2.415×2, 2.416×2 6.374, 6.382, 24.765 90.00, 90.00, 119.96

t-intercal. Re-S: 2.224, 2.226×2, 2.243 6.390, 6.390, 25.176 89.99, 90.01, 120.02

S vac.+Ni Re-S: 2.375, 2.405×2, 2.436×2 6.359, 6.359, 24.364 87.88, 92.12, 119.71

o-intercal. Re-S: 2.391×4, 2.400×2 6.378, 6.378, 25.079 90.07, 89.93, 120.02

Split Mo/Re Re-S: 2.211×3, Re-Mo: 2.252 6.462, 6.462, 24.903 90.00, 90.00, 119.99

3× 3× 1

Mo-subst. Re-S: 2.386×2, 2.394×4 9.584, 9.584, 12.367 90.00, 90.00, 120.04

t-intercal.* Re-S: 2.380×6 9.599, 9.598, 12.394 82.60, 97.40, 119.99

S-subst. Re-Mo: 2.706, 2.708×2 9.564, 9.564, 12.231 90.00, 90.01, 120.00

o-intercal. Re-S: 2.378, 2.379, 2.39×4 9.572, 9.580, 12.560 89.97, 89.82, 120.01

Split Mo/Re Re-S: 2.242, 2.246×2, Re-Mo: 2.261 9.656, 9.656, 12.471 90.00, 90.00, 119.91

4× 4× 1

Mo-subst. Re-S: 2.389×4, 2.392×2 12.775, 12.775, 12.385 90.00, 90.00, 119.94

t-intercal. Re-S: 2.217×3, 2.218 12.775, 12.775, 12.567 90.00, 90.00, 120.00

S-subst. Re-Mo: 2.701×3 12.756, 12.756, 12.313 90.00, 90.00, 120.00

o-intercal. Re-S: 2.383×4, 2.399×2 12.758, 12.758, 12.499 90.19, 89.81, 120.04

Split Mo/Re Re-S: 2.245×3, Re-Mo: 2.260 12.831, 12.830, 12.444 90.00, 90.00, 120.01

Re bonds are shown with a multiplier signifying multiple bonds of equal lengths. *The

anomalous 3× 3× 1 t-intercalated structure relaxed to a 6-bonded structure.
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Table 8.5: Formation energies (eV per MoS2 unit)

2× 2× 1 2× 2× 2 3× 3× 1 4× 4× 1

(µMo = µS = 0)

Pristine -2.62 -2.62 -2.62 -2.62

Mo-subst. -2.27 -2.44 -2.46 -2.53

t-intercal. -2.00 -2.30 -2.39 -2.45

S-subst. / S vac. + Ni -1.79 -2.22 -2.25 -2.41

o-intercal. -1.93 -2.27 -2.30 -2.44

Split Mo/Re -1.91 -2.25 -2.32 -2.45

Mo-rich (µMo = −2.616 eV, µS = 0)

Pristine 0 0 0 0

Mo-subst. 0.015 7.66×10−3 9.23×10−3 4.80×10−3

t-intercal. 0.620 0.311 0.228 0.168

S-subst. / S vac.+Ni 0.823 0.398 0.370 0.208

o-intercal. 0.684 0.342 0.316 0.179

Split Mo/Re 0.705 0.367 0.297 0.168

S-rich (µMo = 0, µS = −1.308 eV)

Pristine 0 0 0 0

Mo-subst 0.342 0.171 0.155 0.0865

t-intercal. 0.620 0.311 0.228 0.168

S-subst. / S vac. + Ni 0.660 0.316 0.297 0.167

o-intercal. 0.684 0.342 0.316 0.179

Split Mo/Re 0.705 0.367 0.297 0.168



Chapter 9

Re-Doped MoS2: Mechanics of

Strain and AFM Sliding

This chapter is based on work with identical motivations to the previous chap-

ter. The section outlines our contribution to a work led by the Baykara group

on explaining an interesting phenomenon with Re-doped MoS2 sliding in a future

publication [1].

9.1 Introduction

Typically, as the number of layer increases between 2D materials, the frictional

force measured via atomic force microscopy (AFM) decreases [43]. Recent mea-

surements revealed an opposite trend with Re-doped MoS2, i.e. friction increases

with increasing layer count [1]. In this work, we provided density functional theory

simulations of Re-doped MoS2 to complement those observations with computa-

tion.

The atomistic mechanism for the typical layer count vs. friction relationship

is related to puckering—out-of-plane deformations caused by the AFM probe [99].

The puckered material provides an increased friction when compared to a flat sheet.

More layers in principle mutes the strength of puckering, and this is related to the

out-of-plane stiffness.

To provide insight on this topic, we subject Mo-substituted and t-intercalated

133
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Re-doped MoS2 to two conditions and compute macroscopic observables using

density functional theory (DFT). First we compute the elastic components of the

material by applying strain in the bulk phase and computing the stresses. Secondly,

we model a Si AFM tip and compute the energies and forces at points along

a sliding paths for variable-layer Re-doped MoS2. This AFM model is not large

enough to compute puckering effects, but it serves to discount significant electronic

rearrangement leading to the increased frictional force.

We will find a significant difference in C33, the out-of-plane elastic component

between t-intercalated and Mo-substituted MoS2 where t-intercalation is stiffer.

With AFM simulations, we find that the friction is larger when doped, but more

importantly the frictional forces do not change when increasing layers.

9.2 Methods

We used the plane-wave density functional theory code Quantum ESPRESSO

v6.6 [50, 49]. Calculations were performed using the Perdew-Burke-Ernzerhof

(PBE) generalized gradient approximation [139] with the Grimme-D2 (GD2) Van

der Waals correction [53]. The pseudopotentials used were obtained from Pseu-

doDojo [187]. PBE+GD2 was used with 60 Ry plane-wave cutoff, as in the pre-

vious chapter, because of its superior performance for elastic parameters [137].

We study Mo-substitution and t-intercalation, which we found to be the most

reasonable doping sites for Re in bulk 2H-MoS2 [57]. Spin-unpolarized calcula-

tions are used for vibrations and forces, because spin polarization caused spurious

irregularities due to switching between different magnetic states. Spin-polarized

calculations are used for elasticity as it does not pose a problem in this case (except

for the anomalous 3 Ö 3 Ö 1 t-intercalated structure [57]). Our calculations are

performed in periodic boundary conditions. For pristine MoS2, it is sufficient to

use the primitive unit cell, but for doped structures, we use supercells to see the

effect of doping concentration on properties.

The elastic parameters in Fig. 9.7 were computed by linear regression and the

stress-strain relationship σi = Cijϵj (in Voigt notation, where i or j can represent
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any pair of Cartesian directions), where σ is the stress, C is the elasticity ten-

sor, and ϵ is strain. We have similarly computed these values for Ni in a prior

publication [58]. Our coordinate system is as in the previous chapters, where z is

out-of-plane. We used 2× 2× 1, 2× 2× 2, 3× 3× 3 and 4× 4× 1 supercells, in

order of decreasing Re concentration, with Monkhorst-Pack k-grids of 3 × 3 × 2,

3 × 3 × 1, 3 × 3 × 2, and 2 × 2 × 2 respectively. For pristine, only the primitive

unit cell is used (yielding the horizontal lines in Fig. 9.7, as the cell size has no

effect due to periodicity. Structures were relaxed for strains of -0.002 to 0.002 in

steps of 0.001, in the 1- (x-uniaxial), 3- (z-uniaxial) and 5-directions (xz-shear).

These strain directions are important to sliding and friction. Shear results in slid-

ing between layers [146]. Out-of-plane uniaxial strain is important in determining

the amplitude of puckering as argued in the main text [1], and the out-of-plane

Poisson’s ratio νzx connects in-plane and out-of-plane deformation that can oc-

cur due to the load from an AFM tip. The various elastic parameters including

the in-plane Poisson’s ratio νxy occur in the formula for bending stiffness (flexural

rigidity) [184]:

D =
Exh

3

12(1− ν2xy)

where in hexagonal symmetry the in-plane Young’s modulus is

Ex =
(C11 − C12)(C11C33 + C12C33 − 2C2

31)

C11C33 − C2
31

and

νxy =
C2

31 − C12C33

C2
31 − C11C33

.

νzx was computed as C31/(C11 + C12). The difference between the value from

experimental elastic parameters (0.125) [42] and our computed value (0.05) for νzx

in pristine MoS2 is due to the highly sensitive nature of out-of-plane van der Waals

interactions in these systems, as seen in the large variability [136] in computed C31

values with different DFT approximations. We nonetheless expect that trends in

νzx could be meaningful. The νxy value by contrast agrees with the value 0.28

calculated from experimental elastic parameters [42].
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We model slabs of t-intercalated, Mo-substituted, or undoped layers beneath an

AFM probe tip. The tip cluster shown in Fig. 9.1 is a geometry used previously

in the literature to simulate an AFM tip. It is generated by cleaving 10 atoms

perpendicular to the (111) corner of the Si unit cell then passivating all dangling

bonds with H except for the tip Si atom [46]. The top Si layer of 6 atoms was

frozen to crystalline positions, but other Si and H atoms were allowed to relax.

This structure was placed 5 Å above the topmost Mo layer of Re-doped MoS2

(about 3.5 Å above the S plane). We studied the variation in energy for different

distances of the tip from the MoS2 surface (Fig. 9.2) and chose a working distance

for force calculations which was close enough to measure friction forces above

numerical noise but far enough that the Si tip and MoS2 are not bonding. We used

the atomic coordinates of a 4 × 4 in-plane bulk supercell with variable numbers

of layers, fixed to the bulk values without relaxation at the beginning or during

sliding. We avoid relaxation for simplicity and as part of the constraints defining

the potential energy surface we are exploring. This lateral size of the structure

provides sufficient vacuum for the AFM probe to be sufficiently separated from its

periodic images in plane. A vacuum of 12.4 Å between the top Si layer and the S

layer was used, as shown in Fig. 9.1. We varied the number of layers from 1 to 5

and varied the dopant site within each of those structures.

The probe was placed atop a Mo atom two rows away from the substitution site,

as far as possible laterally. This is the best option as we do not expect a single-atom

tip to be perfectly aligned with the dopant in experiment. Placing the tip directly

above the Re site leads to larger variations in the forces while sliding as shown in

Fig. 9.3. The probe was displaced in the x-direction in steps of 1/40th the cell’s

width (∆x = 0.319 Å) until the probe had moved by exactly one lattice vector. At

each step, we calculated the DFT total energy. By differentiating with respect to

the displacement, we compute the force along the path, Fx = −∂E
∂x

≈ −∆E
∆x

, which

corresponds to friction forces. It is worth noting that the AFM structure does not

have xz-mirror symmetry although MoS2 does (see Fig. 9.1), and thus the sliding

forces in Fig. 9.3 do not have that symmetry. The Hellmann-Feynman forces are

computed by Quantum ESPRESSO, but we found the forces did not obey periodicity,
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Figure 9.1: Example structure for AFM sliding: model H-passivated Si tip apex
[46] above 2-layer Mo-substituted MoS2.

Figure 9.2: Energy dependence of the distance between the AFM probe and the
surface of 3-layer t-intercalated MoS2. The distance is measured between the Mo
atom and the tip Si atom of the probe. Beyond 7 Å, the sliding dependence of the
energy is lost to noise. Below 4 Å the interactions are strong and the tip bonds to
the surface. Therefore 5 Å was used for our friction simulations.
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Figure 9.3: The sliding force calculated at different in-plane distances from Mo-
substituted Re atoms. A, C, and E are computed for a 3-layer Mo-substituted
structure while B and D are computed for a 2-layer Mo-substituted MoS2, which
allow different spatial relations between the top layer atoms and the dopant. In
A, the tip passes directly above the Re atom, and thus the forces are larger. For
choices besides A, the range of forces is similar. We use E, the furthest starting
point in our supercell, as most representative of an AFM experiment for a sample
with low doping concentration. The positive and negative x sliding directions are
different due to the probe’s asymmetric shape as seen in Fig. 9.1.

i.e.
∫
cell

Fxdx ∼ 5 − 50 eV ̸= 0 incorrectly. This imbalance can be improved

by increasing the plane-wave cutoff, but we found that the effect was simply a

constant shift (Fig. 9.4), and that the high-cutoff Hellman-Feynman forces agreed

with lower-cutoff numerical derivatives forces (which correctly integrated to zero).

Therefore we used the latter approach for lower computational expense.

The forces from each displacement are then collapsed into a distribution as

shown in Fig. 9.6 based on how frequently the AFM experienced a given force

throughout sliding. We use distributions rather than raw sliding forces since our

single-atom tip may be more fine than an experimental tip, and real measurements

would correspond to some convolution over our sliding forces. In theory, we would

have to compute an N -layer (NL) system with the dopant in different layers,
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Figure 9.4: Computed sliding forces using different calculation modes. In blue,
the Hellmann-Feynman x-forces on the AFM tip are computed for a 2-layer Mo-
substituted structure with a 7 Å Si tip-to-Mo distance was computed using pa-
rameters mentioned in the main text. In brown, we have increased the plane-wave
cutoff from 60 Ry to 80 Ry and reduced the SCF threshold to 10−6Ry (this saves
computational time but introduces noise). In black, we used the original 60 Ry
computation’s energies to compute the forces by finite differentiation of the ener-
gies. Note that unlike the blue and brown curves, the black curve correctly obeys
the periodicity such that the forces sum to 0 across the sliding. The dashed curve is
identical to the blue curve with an arbitrary 0.0052 nN downshift. In summation,
this shows that increasing the plane-wave cutoff could yield Hellmann-Feynman
forces that respect the periodicity, but it is unnecessary since the same effect can
be achieved by using finite differentiation of the energies instead.
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Figure 9.5: Energy change throughout sliding of the AFM system with a 3-layer
and 2-layer t-intercalated Re-doped MoS2 where the Re is in the same site in both
systems. The additional layer in the 3-layer system leads to negligible changes to
the sliding energies and thus forces.

rather than just using fewer layers, but we found that in practice adding undoped

layers at the bottom of the slab, opposite the AFM tip, does not alter the energies

(Fig. 9.5). Therefore we use slabs with just enough layers to contain the dopant,

to minimize computational effort. The distribution is computed as the average

of the smaller-layered distributions with each dopant position to generate Fig.

9.8. If ni is the distribution of the forces while sliding an i-layer system, then

the cumulative distribution is ncumul,i =
1
N

∑
j≤i nj. We are assuming the dopant

may be in any layer with equal probability, in the absence of clear evidence of

the true distribution. There may be preferential locations however: placing the

atom in different layers does lead to some changes in the energy, as we estimate

by comparing energies for unrelaxed doped systems (i.e. the structure is that of

pristine, with substitution or intercalation). In a 3-layer system, Mo substitution

in the middle layer vs. surface is favored by 0.31 eV, while in a 4-layer system

t-intercalation favors being bonded to a surface layer vs. the two middle layers by

about 0.15 eV.

The small energy differences throughout sliding mean we need well-converged

computational parameters to resolve them properly. The distance between the
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Figure 9.6: An example path to create a distribution of the t-intercalated 5L struc-
ture, where Re is between the bottom two layers. The energy curve is numerically
differentiated to find forces, then those forces are compressed to a distribution.
Assuming equal probability for the dopant to be between any of the layers in a
real sample, we average the 5L distribution with the 4L, 3L, and 2L distributions,
where in each case the Re is between the bottom two layers.

top of the probe and the bottom of the periodic image of the lowest sulfur atom

was set to be 12.4 Å. Increasing this vacuum by 5 Å led to changes in energy

differences below 10−4 eV—meaning our vacuum distance is sufficient to remove

spurious interactions between periodic images in the z direction. Using a 3×3×1

k-grid yields nearly identical energy curves (like Fig. 9.6) to 2×2×1,

9.3 Results and Discussion

9.3.1 Elasticity

Intercalation alters the elastic parameters from the pristine more than Mo-

substitution. This is due to the formation of interlayer bonds, which cause an

increase in the out-of-plane C33 parameter in Fig. 9.7, similar to Ni-doping [58].

A drop in C55 for t-intercalation may enhance sliding, since reaching plastic de-

formation by shearing can be easier. Each elastic parameter shows linear trends,

though with an outlier for C55 (3×3×1 t-intercalated, which has a different stack-

ing [57]). The changes are quite small for C11 and Ex. νxy has irregular trends

and relatively small changes. The largest systematic changes are in C33, which we

relate to a weakening of the puckering effect and the altered layer-dependence of
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friction. While other elastic parameters vary somewhat with concentration, and

can be involved in the stress patterns of puckering, the lesser effect and/or ir-

regular behavior indicates that they have only a minor contribution to the layer

dependence of puckering.

9.3.2 AFM Simulation

The force distributions are shown in Figs. 9.8 and 9.9—they move to smaller

forces as we go from 2 to 3 layers in doped systems. Beyond 2 layers from the AFM,

however, layer-dependence is small. The range of the forces for doped MoS2 is much

larger than pristine MoS2. The undoped forces decrease between 1 and 2 layers,

but then change negligibly between 2 and 3 layers. The weak layer-dependence

and reduction in force with number of layers, assuming rigid flat sheets, cannot

explain the increase in friction seen in AFM experiments [1], pointing to the role

of changes in puckering.

The force distributions for doped systems with many layers would be expected

to converge to the pristine distribution as the Re atom’s influence wanes with

increasing distance from the AFM tip. However, we find convergence to a different

distribution than pristine (Fig. 9.8). We considered whether this might be due to

localization at the surface of electronic charge donated from Re to MoS2, which

would not vary with number of layers. We tested this with calculations of undoped

slabs with extra charge from −0.25 e to −1.0 e—in all cases, the extra charge is

localized on the AFM. This is presumably not a physical effect and relates to the

crude model of the AFM tip as well as perhaps difficulties with charge transfer

in PBE and LDA [228], but it means that it is not meaningful to calculate AFM

forces for such a charged system. A slab without the AFM tip does not show

localization of charge to the surface. The difference in forces between pristine and

slabs with Re far from the tip instead seems to be due to long-range interaction

of the tip with polarization caused by the distortion of the MoS2 geometry around

Re. We calculate out-of-plane polarization by integrating the charge density, and

find the following values for 3-layer systems: with Mo substitution in the outer

surface, −0.29 e/Å; with intercalation, −0.29 e/Å; pristine but with the geometry
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Figure 9.7: Elastic parameters C11, C33, C55, Ex, νzx, and νxy of Mo-substituted
and t-intercalated Re-doped MoS2 with fit lines excluding outliers, compared to
pristine values. The C33 parameter shows the largest and most consistent rela-
tive difference between t-intercalated and Mo-substituted structures, owing to the
change in out-of-plane bonding.
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Figure 9.8: Cumulative force distributions throughout sliding calculations for dif-
ferent structural configurations. Beyond two layers, the force distributions are
similar.

of Mo substitution, −0.28 e/Å; non-distorted pristine, −0.05 e/Å (nonzero only

due to some numerical symmetry-breaking). Interestingly, the values are consistent

regardless of the site for Re.

9.4 Conclusion and Outlook

We modeled AFM friction on pristine, Mo-substituted and t-intercalated MoS2,

constrained the layers to remain flat, and found that Re doping increases friction,

with an effect that decreases with layers but has little layer-dependence beyond

two layers. These findings point to the importance of puckering changes in the

experimentally observed [1] unusual increase in friction with number of layers.

This effect can be connected to the strong increase in the out-of-plane stiffness C33

with doping concentration for t-intercalation. Other elastic parameters show lesser

or irregular trends.

A few results of methodological interest were found. Experimental ambiguity

of the Re’s location is addressed by comparing cumulative forces, as well as layer-

dependent forces. A remarkable compatibility between the sliding energies between

2- and 3-layer MoS2 with Re in an identical location as in Fig. 9.5 yields similar
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Figure 9.9: Friction force distributions for t-intercalated Re-doped MoS2 with dif-
ferent numbers of layers, compared with pristine MoS2. Each distribution describes
the friction force experienced during sliding of the model AFM tip apex over an
N -layer system, averaging over possible locations of the Re dopant among the
layers. The saturation point is around 4 layers. A smoothing parameter of 1 pN
is used for plotting with Mathematica’s SmoothHistogram function [206]. Inset:
Expanded view to compare pristine MoS2, having much lower forces, with doped
MoS2; two and three layers are almost identical. Smoothing parameter is 0.175
pN.
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result to those seen in Ch. 6—only the sliding interface is relevant when computing

the sliding potential.



Chapter 10

Conclusion: Summaries and

Outlook

Throughout this work, we have developed methodologies for analyzing amor-

phous materials and two-dimensional materials. We have found a range of physical

results in a-Si and doped MoS2 that could be used to further study and concentrate

computational efforts on the materials.

With Si, we created a simple adjustment to the WWW algorithm to be able

to generate structures with voids by initializing the structure with strain. The

bonding topology at the void’s surface is unique in that the existence of voids

without dangling bonds (or capped dangling bonds) has not been previously re-

ported. The relative size of the voids can be somewhat controlled by using larger

strains, but this does not bias the voids’ morphology since strain is applied ev-

erywhere equally. These voids appear as an emergent quality of the initial strain.

A systematic method to study the range of void influence is presented in Ch. 3.

Besides void topology, a-Si:H behaves qualitatively similar to a-Si in response to

strain initialization, except that the DOF allotted by H lead to smoother parameter

responses.

Though the exact atomic coordinates are adjusted by DFT, the simple Keating

potential and WWW do not lose their bonding network when relaxed by DFT.

Statistically averaged formulations of the Keating potential yield the result that

∆θ is the dominant energetic term. With our work, this is confirmed by DFT.

147



148

The configurational energy gap posed by Drabold [37] can be reformulated as

a gap in the order parameter, ∆θ. This removes a layer of abstraction of the

energy gap which can be thought of as a geometric question—what is the minimum

amount of bond distortion required for a structure to be considered amorphous?

A continuation of the foundational work in Ch. 4 should yield more quantitative

relationships between the DFT energy and ∆θ.

With 2D materials, we have outlined a specific methodology to study sliding

of defected materials in Ch. 6. By utilizing successively less constraining restric-

tions on atomic relaxations, we learn more than what one can usually learn in the

grid-based sliding potential search. Our relaxation scheme is able to detect slip

planes and can access low-barrier sliding paths with no previous knowledge of their

existence. We find that the sliding potential in MoS2, even with a highly invasive

intercalant, can be described as pairwise interactions of the MoS2 interfacing sur-

faces. In effect, this gives credence to computing arbitrarily sized systems by only

considering interactions of their interfaces.

This also has an added benefit of resolving an apparent paradox with tetra-

hedrally intercalated Ni-doped MoS2. This structure, we computed, is the most

stable despite it being often ignored in literature in favor of Mo-substitution. We

found t-intercalation leads to strong covalent bonding between neighbors, thereby

closing the van der Waals gap. This means t-intercalation binds layers together,

leading to larger dissociation energies and possibly increased resistance to wear

[81]. T-intercalation also has a high sliding potential (and thus friction) when slid-

ing across the intercalant, suggesting a drop in lubrication. This paradox is solved

if we consider slip planes—the material prefers to slip away from the intercalant

and can do so at no penalty to the sliding barrier.

Atomic force microscopy experiments of Re-doped MoS2 showed a peculiar

relationship—as the number of layers increased, the frictional force also increased.

This is counter to other studied 2D materials [1]. Computations from our work

combined with experimental work from the Baykara group points towards inter-

calated Re potentially altering this relationship. In computing the vibrational

spectroscopy, we found a method to compute the Raman spectra of an apparent



149

metallic doped material. This Raman tensor replacement method is a bridge that

overcomes unphysical restrictions as a consequence of the static approximation.

Tensor replacement can also be used as a tool to classify phonon modes. Replac-

ing the tensor, but keeping the symmetry-broken phonon modes, can locate regions

of the Raman spectrum related to symmetry breaking, and not modes localized to

the dopant.

Numerous future paths exist that can provide further insight as to the ma-

terials’ properties. With a-Si, the void-rich structures can be used to study the

difference in roles of dangling bonds or void presence in the SWE [163] by comput-

ing excited states. It has thus far been shown that dangling bonds are effective hole

traps [76, 122], but it is unknown if voids can enhance the trap. Similarly, excited

state computations of c-Si/a-Si interfaces could reveal hidden electronic structure,

particularly any traps, at the interface of these highly compatible materials. Ex-

cited state forces could be computed on the void-rich hydrogenated structures we

generated, and we can search for light-induced degradation directly.

The often cited Beeman-Tsu-Thorpe [8] relationship connects widths of peaks

in Raman spectra to ∆θ and is used in many experimental works. Experimen-

talists are unable to measure ∆θ directly, but computationalists can. Using the

variable ∆θ structures we generated, we could test this relationship directly at the

DFT level by comparing ∆θ to computed Raman spectra, though this requires

considerable computational effort. Findings in Ch. 8 that the Raman spectra of

a difficult system can be computed with a proxy system immediately remind me

of amorphous Si. Could this atomic Raman Tensor replacement method work for

amorphous Si by replacing its tensor with the tensor of c-Si? If so, it could mean

a DFT-level Raman intensity could be applied to classical phonons—the converse

of what we accomplished in that chapter.

Paths currently being pursued in MoS2 are related to sliding in the Ni-doped

system. Karen Mohammadtabar [116] at the Martini group is using data from this

work to simulate large scale sliding. Studying these events can shed light on the full

atomistic mechanisms for sliding—especially those difficult in DFT such as edge

effects. Elsa Vazquez in our own Strubbe Ab Initio Laboratory is pursuing two-
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dimensional grids analogous to our 1D-sliding potentials in Ch. 6. The simplistic

registry index model has been successfully applied on pristine MoS2 to compute

the sliding full, 2D potential with only three computations [18]. This is, however,

highly dependent on the system’s symmetry which is broken when doped. We

could use this method, paired with the methodologies in Ch. 6 to quantify the

effects of the pristine contributions to the sliding potential as compared to the

dopants’ contribution.

With Re in Chapter 9, the size-limitations of DFT make capturing puckering

effects difficult, as they may involve a large area. Combining DFT with findings

in Ch. 6 could lead to accurate, large, and fast DFT-based computations of AFM

tip, though exploratory studies would need to be pursued.
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Identification of rhenium donors and sulfur vacancy acceptors in layered mos2

bulk samples. J. Appl. Phys., 119(23):235701, 2016. doi: 10.1063/1.4954017.

[20] G. Brunin, F. Ricci, V.-A. Ha, G.-M. Rignanese, and G. Hautier. Transpar-

ent conducting materials discovery using high-throughput computing. npj

Comput. Mater., 5:63, 2019. doi: 10.1038/s41524-019-0200-5.

[21] K. A. Bush, A. F. Palmstrom, Z. J. Yu, M. Boccard, R. Cheacharoen, J. P.

Mailoa, D. P. McMeekin, R. L. Z. Hoye, C. D. Bailie, T. Leijtens, I. M.

Peters, M. C. Minichetti, N. Rolston, R. Prasanna, S. Sofia, D. Harwood,

W. Ma, F. Moghadam, H. J. Snaith, T. Buonassisi, Z. C. Holman, S. F. Bent,

and M. D. McGehee. 23.6%-efficient monolithic perovskite/silicon tandem

solar cells with improved stability. Nat. Energy, 2:17009, 2017. doi: 10.1038/

nenergy.2017.9.



154

[22] W. Cai, O. Hod, and M. Urbakh. Interlayer registry index of layered transi-

tion metal dichalcogenides. J. Phys. Chem. Lett., 13:3353–3359, 2022. doi:

doi.org/10.1021/acs.jpclett.1c04202.

[23] D. E. Carlson. Hydrogenated microvoids and light-induced degradation of

amorphous-silicon solar cells. Appl. Phys. A, 41(305), 1986. doi: 10.1007/

BF00616053.

[24] S. Chakraborty and D. A. Drabold. Static and dynamic properties of hydro-

genated amorphous silicon with voids. Phys. Rev. B, 79:115214, Mar 2009.

doi: 10.1103/PhysRevB.79.115214.

[25] P. Charbonneau, J. Kurchan, G. Parisi, P. Urbani, and F. Zamponi. Fractal

free energy landscapes in structural glasses. Nat. Commun., 5:3725, 2014.

doi: 10.1038/ncomms4725.

[26] M. F. Chen and D. L. Douglass. Effect of some ternary additions on the

sulfidation of Ni-Mo alloys. Oxid. Met., 33:103–133, 1990. doi: 10.1007/

BF00665672.

[27] R. Chen, A. Jusufi, A. Schilowitz, and A. Martini. Formation of MoS2 from

elemental Mo and S using reactive molecular dynamics simulations. J. Vac.

Sci. Technol. A, 38(2):022201, 2020. doi: 10.1116/1.5128377.

[28] X. Chen, Z. Chen, and L. Jun. Critical electronic structures controlling phase

transitions induced by lithium ion intercalation in molybdenum disulphide.

Chin. Sci. Bull., 58:1632–1641, 2013. doi: 10.1007/s11434-013-5834-y.

[29] Y. C. Cheng, Z. Y. Zhu, W. B. Mi, Z. B. Guo, and U. Schwingen-
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