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Abstract

My dissertation leverages electricity data for an economic investigation of three disparate topics:

the effects of the COVID-19 pandemic; the implications of government ownership on the exercise

of market power in the Australian National Electricity Market (NEM); and, the unintended conse-

quences of US Clean Air Act regulation on coal boilers.

First, we use high-frequency data on electricity consumption to demonstrate the effect of COVID

restrictions on business activity and the mitigating effects of federal support programs—including,

Economic Injury Disaster Loans and the Paycheck Protection Program. We find that COVID-

mandated business closures led to a 48 to 71 kwh reduction in daily consumption, corresponding to

13% to 20% drop compared to pre-pandemic use. While all firms reduced electricity consumption

on average, these reductions are significantly less pronounced for firms that received a federal loan

or grant.

Next, we study the intertwined effects of government ownership and market power in the context

of the Australian NEM. In particular, we focus on the 2017 direction to place downward pressure on

wholesale prices given by the Queensland Government to one of its government-owned generators,

Stanwell Corp. We base our analysis on a benchmark model, which estimates counterfactual prices

under the assumption of perfect competition. The comparison of actual market outcomes with

simulations suggests that the exercise of market power by Queensland generators during high-

demand periods decreased after the issuing of the direction. However, we find no evidence of

government intervention affecting markups at lower levels of demand.

Finally, we study vintage differentiation in the context of New Source Review—a set of regula-

tions passed within the US Clean Air Act imposing costly sulfur dioxide abatement requirements

on new units but not existing ones. We analyze how this differential treatment affected the utiliza-

tion and retirement of coal boilers. We find that the regulatory differentiation within NSR had a

strong effect on both of the internal and external operational margins. Exempted coal boilers were
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associated with a 1.5 percentage point increase in probability of surviving an additional year and

an increase of around 700 hours to their annual operations.
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Introduction

Electricity markets are fertile ground for economic study. They feature prominently in the

industrial organization and resource economics literatures. In part, this reflects the industry’s

specific advantages, including: product homogeneity, which eliminates the challenges of product

differentiation; perfectly inelastic and observed demand, obviating the need for its estimation;

known production functions and the availability of cost data; and, a known market mechanism

common to all participants. Combined, these features allow economists to peer far deeper into the

market’s underlying processes and drivers than is typically in most contexts. Moreover, electricity

is fundamental within modern, developed economies. Electricity market outcomes are not only a

convenient subject of inquiry for economists, but also have considerable welfare implications and,

thus, high relevance for policymakers.

My dissertation leverages electricity data as the basis for an investigation of three disparate

topics. The first chapter uses electricity consumption data to measure the economic impacts experi-

enced by businesses in Southern California during the early stages of the COVID-19 pandemic. The

second chapter studies the relationship between government ownership and market power within

the Australian National Electricity Market (NEM). Finally, the third chapter investigates the un-

intended consequences of US Clean Air Act regulations on coal boilers. Despite the papers’ focus

on electricity markets, each chapter has economic and policy implications beyond their specific

context. These are highlighted in the text. The remainder of this section introduces the work in

greater detail.

The first chapter leverages high-frequency data on electricity consumption to demonstrate the

effect of COVID restrictions on business activity and the mitigating effects of federal support

programs. Using hourly data from the population of commercial customers in a utility and a panel

event study framework, we evaluate how COVID restrictions alter total electricity consumption,

the time profile of when electricity is consumed, and the probability that an account shuts down.
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We interpret these outcomes to be indicative of the business activity levels of individual firms. We

find that COVID-mandated business closures led to a 48 to 71 kwh reduction in daily consumption,

corresponding to 13% to 20% drop compared to pre-pandemic use. COVID also led to firm exit,

with the probability of account closures increasing over the duration of the pandemic. While all

firms reduced electricity consumption on average, these reductions are significantly less pronounced

for firms that received a federal loan or grant through Economic Injury Disaster Loans and the

Paycheck Protection Program. This suggests that federal support programs meaningfully dampened

the detrimental effects of COVID restrictions on small businesses.

In the second chapter, we study the intertwined effects of government ownership and market

power in the context of the Australian NEM. In particular, we focus on the “Stanwell Direction”

made by the Queensland Government in June 2017. The Direction was a formal instruction by

the state government to Stanwell Corporation, a government-owned generator, to alter its bidding

strategies in order to put downward pressure on wholesale electricity prices. Our analysis first

reviews the history of government ownership within the Queensland electricity sector. We focus

on the Government’s original reasoning for maintaining public ownership, how government deci-

sions affected market structure and concentration, and how high levels of concentration could have

precipitated specific market power strategies employed by government-owned generators. We then

turn to an investigation of the effects of the Direction on the exercise of market power. We base our

analysis on a benchmark model of the NEM, which estimates counterfactual prices under the as-

sumption of perfect competition. The comparison of actual market outcomes with our simulations

suggests that the exercise of market power by Queensland generators during high-demand periods

decreased after the issuing of the Direction. However, we find no evidence of government interven-

tion affecting markups at lower levels of demand. With respect to customer impacts, we find that

the Direction’s effects were symmetric for both Queensland and New South Wales customers.

Finally, in the third chapter, we study vintage differentiation in the context of New Source

Review—a set of regulations passed within the US Clean Air Act imposing costly sulfur dioxide

abatement requirements on new units but not existing ones. We analyze how this differential

treatment affected the utilization, retirement and emissions of coal boilers. For the analysis, we

develop a new approach to identify whether a boiler was subject to New Source Review. We also
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collect a novel dataset covering state-level sulfur dioxide regulations. We find that the regulatory

differentiation within NSR had a strong effect on the operations of the exempted coal boilers,

raising their probability of surviving an additional year by 1.5 percentage points and increasing

their operations by around 700 hours annually. It also allowed the exempted units to keep very

high emission levels.
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CHAPTER 1

COVID restrictions, federal assistance and small businesses:

What can we learn from electricity data?

Co-Authors:

Katrina Jessoe and Gabriel E. Lade
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1.1. Introduction

Since the beginning of 2020, the COVID-19 pandemic precipitated simultaneous public health

and economic crises. To address the former, governments temporarily suspended large sections

of their economies. As California was one of the first states in the US to experience commu-

nity transmission, Governor Newsom issued a state of emergency in early March 2020. This was

rapidly followed by a state-wide shelter-in-place (SIP) order and non-essential business closures.

While these measures saved lives across the state, they also contributed to the staggering economic

dislocation and hardship instigated by the pandemic.1,2

The adverse economic effects of the pandemic and public health orders were particularly felt by

businesses. A number of early surveys document widespread closures, mass layoffs, and deleterious

effects on businesses across the US (Alekseev et al., 2020; Buffington et al., 2020; Fairlie, 2020).

Moreover, many business owners anticipated that a longer crisis would lower their ability to reopen

afterwards (Bartik et al., 2020b). To mitigate these adverse economic effects, Congress passed a

series of appropriations bills in early 2020. The most well-known— the Coronavirus Aid, Relief, and

Economic Security Act, or CARES Act—included enormous financial relief for small businesses.

Specifically, it created the Paycheck Protection Program (PPP) and funded Economic Injury Dis-

aster Loans (EIDL) for pandemic-related damages. Both programs were administered by the Small

Business Administration (SBA). Many businesses applied for federal assistance (Buffington et al.,

2020), and those that received aid reported fewer layoffs, higher employment, and improved expec-

tations about the future (Humphries, Neilson and Ulyssea, 2020).

Our study aims to further assess how the pandemic has impacted businesses, as well as how

public policy may have mitigated the pandemic’s harmful economic consequences. Using high-

resolution electricity data from Burbank, California, we attempt to answer the following. First, how

public health orders impacted business activity and business exits, as measured through commercial

electricity use and account closures. These two effects correspond to the intensive and extensive

1 An analysis by Friedson et al. (2021) suggests that the early SIP in California saved up to 1,600 lives one month
after the order. For context, Los Angeles County suffered nearly 300,000 cases and over 7,000 deaths by the middle of
Oct 2020 (see CA Open Data). Analyses by Fowler et al. (2020) and Lyu and Wehby (2020) find similar conclusions
across the US.

2 Many studies investigate the economic impacts of the pandemic, see for example Friedson et al. (2021) and
Wright et al. (2020).
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margins, respectively. Considering both in unison is essential to forming a full picture of the

economic harm to businesses resulting from the pandemic. And second, has federal assistance

through the PPP and EIDL loan programs helped mitigate the economic fallout. Essentially, we

evaluate the effect of COVID-induced openings and closings on business activity and the mitigating

effects of federal assistance for small businesses. As we detail below, we started and made substantial

progress towards these aims. Further analyses remain to be competed, and as such, we highlight

where our work can be extended in the text.

Our primary data source is proprietary advanced metering infrastructure (AMI) electricity data

from Burbank Water and Power (BWP). The dataset contains the population of commercial cus-

tomers from January 2018 to October 2020, including both electricity and billing data. The data are

high-resolution in that electricity is measured hourly at the meter level. Such data can be leveraged

to recover heterogeneous effects across both hours and businesses. They also offer greater flexibil-

ity in modeling the relationships between variables of interest and outcomes (Ghanem and Smith,

2021). For example, through different fixed effects specifications, we can account for potential

omitted variables.

We also utilize PPP and EIDL administrative data from the Small Business Administration

(SBA). The dataset contains the population of COVID-related federal loans and grants, including

their recipient, date of approval, and amount. Given that these data are provided at the business

level, we pair it with our high-resolution electricity data over names and addresses. While our

analysis is not yet complete, this synthesis is crucial to identify the effect of loans on business

activity across days and the heterogeneous effects across hours. The length of our dataset also

allows us to assess whether the effect of a loan persisted in the medium-term.

Our setting reflects a situation in which all units receive “treatment” simultaneously, where

treatment is synonymous with the ratcheting in and out of COVID restrictions. Thus, throughout

our paper, we adopt a flexible panel event study framework where we regress restriction period

dummies on a variety of outcome variables, including: business activity, exit and survival.3 This

3 Recent developments in quasi-experimental methods have brought increasing attention to panel event
study models. These methods are extensions of classic difference-in-differences and two-way fixed effect mod-
els. They typically examine the impact of natural experiments, where events are non-randomly assigned to
certain units. The following studies form part of a burgeoning literature on panel event studies including
Abraham and Sun (2020), Athley and Imbens (2018), Borusyak and Jaravel (2017), Clarke and Schythe (2020),
Freyaldenhoven, Hansen and Shapiro (2019), and Schmidheiny and Siegloch (2019).
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implicitly assumes that the effects of different closure and opening periods are heterogeneous.

We control for possible confounders including weather and COVID case numbers. Our identifying

assumption requires that there are no systematic changes over time except for treatment, conditional

on covariates. This assumption holds for our analysis of COVID restrictions on business activity

and exits. And the corresponding results can be interpreted as causal. However, our analysis

of the effects of federal loan receipt suffers from selection bias and should only be interpreted as

correlations.

Our “treatment” events correspond to changes in non-essential business closure orders within

Los Angeles (LA) County. The County Department of Public Health (DPH) released frequent

updates on the scope and intensity of permitted business activity during the COVID-19 pandemic.

We rely on their orders to define periods of increasing and decreasing business restrictions, where

our dataset distinguishes four major periods:

• The initial closure order commenced on 16 March 2020, which coincided with the State

SIP order enacted three days later on 19 March 2020.

• The initial reopening began on 8 May 2020, where the County allowed certain types of

non-essential businesses to reopen with modifications. This corresponded with California

moving to Stage 2 of the Resilience Roadmap.

• The second closure period commenced on 28 June 2020 and was precipitated by a surge in

cases over the summer. Instead of state-wide restrictions, the second closure period was

targeted at the county level.

• The second reopening began on 31 August 2020 in conjunction with the development of

California’s Blueprint for a Safer Economy. All local health jurisdictions in the state were

permitted to reopen specified sectors according to their respective COVID metrics.

Our empirical strategy compares business electricity use and account status during these four events

with similar periods in previous years, conditional on covariates. Our results are robust to a series

of increasingly stringent business and time fixed effects.

Our first major finding is that COVID restrictions had significant and persistent negative effects

on business activity. In effect, the restrictions led to large reductions in commercial electricity use.

On average, business closure orders in Burbank led to a 64 to 71 kWh reduction in daily business-

level electricity use. Partial re-openings experienced in the late spring and early autumn led to

a 49 to 62 kWh reduction in daily consumption, relative to the same business over the same
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time period in pre-pandemic years. Within-day effects were also quite stark with electricity use

decreasing significantly across all hours. The largest hourly reductions were observed between the

main business hours of 10AM and 5PM. On average these were between 3.5 and 5 kWh, though by

the second re-opening period they had reduced to between 2.5 and 3 kWh.

Our second major finding is that COVID restrictions had increasingly adverse effects on business

status. The pandemic increased the net-termination of electricity accounts. Moreover, even as

restrictions eased, terminations continue to increase. This is despite periods with less onerous

restrictions during some months of the sample period. We also perform a complementary survival

analysis, which confirms that the probability of exit increases during the pandemic.

We then repeat the analysis and separate out business response based upon the receipt of either

a PPP or an EIDL loan. Our hypothesis is that if these loans reduce the detrimental effects of

COVID restrictions on business activity, then reductions in electricity use should be less pronounced

for businesses who received a loan. This leads to our third major finding that, while all firms reduced

electricity use in response to COVID restrictions, reductions are significantly less severe for firms

that received federal assistance. That is, federal assistance programs dampen the reductions in

business activity for businesses who receive them. For this finding, note that our current empirical

methods only permit us to establish correlation and not causation.

The remainder of the paper proceeds as follows. Section 1.2 reviews the literature and summa-

rizes our contribution. Section 1.3 provides background information on the relationship between

electricity and economic activity, public health orders within Burbank, and COVID-induced federal

assistance programs. Section 1.4 summarizes the data for our analyses. Sections 1.5 and 1.6 present

our empirical strategy and results for business activity and exits. Finally, Section 1.7 concludes.

1.2. Literature review

The COVID pandemic and resultant public health directives have precipitated a vast literature.

A small sampling include studies investigating its effects on consumers (Alexander and Karger,

2020), labor (Bartik et al., 2020c), health (Cicala et al., 2020), and the environment Gillingham et al.

(2020). The effects on small businesses have also garnered significant interest in large part due to
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the harmful impacts of local restrictions juxtaposed by mitigating federal aid. Below we review the

literature on these two topics: the effects of COVID and federal assistance on small businesses. We

then recap by discussing our contribution to the literature.

1.2.1. COVID and public health impact

Given the lack of data in the early stages of the pandemic, many papers relied on direct responses

from small businesses. Some studies present results from bespoke surveys investigating the pan-

demic. For example, Alekseev et al. (2020) reports results from an online survey garnering over

66,000 responses, while Bartik et al. (2020b) conducted a survey of around 6,000 small businesses

that were members of the Alignable business network. Other papers rely on surveys administered

by federal agencies using nationally representative data. These include Buffington et al. (2020)

who use the Small Business Pulse Survey run by the Census Bureau, while Fairlie (2020) study the

Current Population Survey published by the Bureau of Labor Statistics. All survey studies find

that the impacts from the pandemic on small businesses were deleterious and persistent across all

sectors of the economy.

Instead, our paper primarily relates the literature using indirect, high-frequency indicators to

provide real-time assessment of the economic effects of the pandemic (see e.g., Bartik et al., 2020a;

Chen et al., 2020; Chetty et al., 2020). Electricity as a publicly-available, hourly indicator has at-

tracted wide attention in this regard (Agdas and Barooah, 2020; Bahmanyar, Estebsari and Ernst,

2020; Benatia, 2020; Benatia and Gingras, 2021; Buechler et al., 2020; Chen et al., 2020; Cicala,

2020a; Fezzi and Fanghella, 2020; Ghiani et al., 2020; IAEE, 2020; Janzen and Radulescu, 2020;

Leach, Rivers and Shaffer, 2020; López-Prol and O, 2020; Ruan et al., 2020). These studies all use

real-time changes in electricity data to proxy for economic activity in various countries around the

globe. However, they all assess aggregate consumption without considering potential heterogeneous

effects by sector, e.g. residential and commercial.

We are aware of only three papers addressing the impacts of the pandemic on electricity at the

sectoral level. Bover et al. (2020) analyze the impact of the pandemic on electricity use patterns in

Spain. They assess changes in both daily and monthly consumption based on a timeseries approach
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conditioning on weather, seasonality and holidays. Essentially, they remove confounding variation

and compare residuals before and after the start of the pandemic. In particular, they leverage

information on electricity tariffs and market access in order to infer sector classification. At both

the daily and monthly scales, they find that while commercial electricity demand fell substantially,

it was replaced in part by a parallel increase in residential demand.

A closely related paper, Cicala (2020b) estimates how electricity consumption changed in the

US during the initial stages of the pandemic. The paper performs two distinct analyses. First, using

hourly data from Texas aggregated by customer class and a timeseries approach, the author explores

how daily residential routines changed during the pandemic. Second, using monthly data from the

Energy Information Administration (EIA) and a two-way fixed effects model over utilities, the

author identifies the impacts of the pandemic on commercial and residential customers, separately.

The paper reports a reduction in commercial paralleled by an increase in residential demand.

Finally, Cheshmehzangi (2020) conducts a longitudinal energy-use survey among 352 Chinese

households. The survey was undertaken at monthly intervals during the pandemic and investigated

diversified energy use, beyond simply electricity. Their results suggest strong positive impacts on

cooking, entertainment, heating and cooling, and lighting, which translated into increased overall

household electricity demand.

1.2.2. Federal stimulus response

A number of papers assess the effectiveness of federal COVID assistance for small businesses. To

our knowledge, these papers focus exclusively on the PPP. Essentially, they endeavor to deter-

mine how successful the program was at meeting its stated goal of maintaining employment after

the implementation of widespread public health measures. Some studies analyze unemployment

directly, while others assess the program through indirect measures of hours worked or business

survival. They also vary based on their designs, namely: surveys, instrumental variables (IV), and

difference-in-differences (DD).

Some studies use bespoke surveys to query businesses directly. They both find that the PPP had

a positive effect. For example, Humphries, Neilson and Ulyssea (2020) show that small businesses
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that received PPP loans were less likely to have fewer employees than in January 2020, while

Bartlett and Morse (2020) find that PPP receipt increases business survival probabilities.

The IV-design papers utilize aggregated cross-sectional PPP data to regress an outcome of

interest on a measure of PPP loans. However, the PPP measure is potentially endogenous as firms

in high unemployment regions may be more likely to access the program. Identification rests on

performing a two-stage least squared regression using an instrument for PPP receipt. Each paper

proposes a different instrument based on heterogeneity in loan access. Barraza, Rossi and Yeager

(2020) exploit the density of banking offices that were members of the SBA and find statistically

significant effects on unemployment. Bartik et al. (2020a) use variation in exposure to large banks

which were found to process applications slower compared to small banks and credit unions. They

find that the program increased business survival by between 14 to 30 percentage points, though

it had no effect on employment. Granja et al. (2020) leverage PPP loan processing relative to pre-

pandemic small business loan volumes.4 They find modest effects on hours worked and business

revenues and no effects on unemployment insurance claims and business shutdowns. Given the

similarity in methods, the inconsistency in results for similar outcome variables above is likely

driven by different data sources.

Lastly, two studies use the PPP’s size-eligibility threshold of 500 employees to study the em-

ployment effects of the program. Through a DD design, they exploit local variation around larger

firms in order to compare employment before and after PPP availability and above and below the

size threshold. The identifying assumption requires that businesses below the threshold would have

experienced comparable employment changes to firms above it, conditional on covariates. Given the

threshold represents the cutoff for a large business as defined by the Census Bureau, the validity of

the assumption may be questionable. Even by restricting the window around the threshold, smaller

businesses may be systematically different due to a lack of liquidity, smaller reserves, less exten-

sive banking relationships, and/or fewer staff to apply for government assistance. Nevertheless,

Autor et al. (2020) use a DD event study design which finds that the PPP increased employment

4 In addition to the regional analyses, Granja et al. (2020) also perform a unit-level regression based on matching
PPP loan and proprietary payroll data. They assess PPP loan timing and whether differences affected short-term
employment outcomes. They instrument using heterogeneity in regional PPP lending principals.
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at eligible firms. Chetty et al. (2020), on the other hand, use a classic DD design and conclude

that the PPP had an insignificant effect on employment.

1.2.3. Contribution

Our paper makes a number of novel contributions. First, we extend the understanding of how the

pandemic affected commercial electricity demand. While some papers have provided commercial

analyses, most focus on residential or aggregate impacts. Moreover, given that our dataset is both

high-resolution and represents the population of businesses in Burbank, we are not necessarily con-

strained to aggregate sectoral analyses. While we have not presented it here, we plan to investigate

heterogeneity at the industry level.

Second, we believe we are the first to assess the combined effect of both the PPP and EIDL

programs. This is important as all extant papers have focused exclusively on the PPP. However,

the EIDL and EIDL Advance are functionally similar to and operate simultaneously with the PPP,

such that, their omission could serve to confound loan receipt results.

Third, to our knowledge, we are the first to study the effects of federal loan receipt using

electricity data. This confers a number of advantages. Instead of assessing the effect of loan receipt

on standard economic measures, such as employment or revenue, we can assess business activity at

the hourly level. Thus, it is possible to retrieve heterogeneous effects across the hours of the day.

Also, the majority of studies reviewed identify regional effects of loan receipt. In contrast, the high

spatial resolution of our data means we can recover matches at the business level.

This latter point deserves further elaboration as it leads to a number of intriguing extensions.

Our empirical methods in this version of our paper are similar to Bover et al. (2020) and Cicala

(2020b). However, our dataset contains additional cross-sectional variation which will eventually

allow us to apply more sophisticated econometric techniques. As mentioned, these could include

efforts to identify COVID-related effects at the industry and even the unit level. Further, we are

limited to a correlations analysis with respect to federal loans. Improved matches may allow us to

overcome the inherent loan receipt selection bias. If so, it will serve as an additional data point

from which to evaluate the success of federal COVID relief programs for small businesses.
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1.3. Background

Our paper exploits the introduction, tightening and loosening of COVID closure orders on

business activity and exit as measured using electricity data. Below we detail the underlying

relationship between electricity and business activity, the timberline of relevant public health orders,

and the federal support programs deployed to lessen the harm of pandemic-induced restrictions.

1.3.1. Electricity and business activity

Underpinning our analysis are the twin assumptions that: (1) electricity use is a proxy for business

activity; and, (2) electricity account terminations are a proxy for business exits. The persuasive-

ness of our results rests on the correlation between electricity and activity. Recent evidence from

Bover et al. (2020) suggests that commercial and industrial electricity use remains unambiguously

correlated with economic activity. This remains the case despite a weakening of the relationship

due to improvements in energy efficiency (Hirsh and Koomey, 2015; Metcalf, 2008), the increased

weight of the service sector (Buera and Kabosk, 2012), and changing patterns of electricity con-

sumption due to the pandemic (Dingel and Neiman, 2020).

Electricity has long been noted to have a strong correlation with economic growth (e.g.,

Henderson, Storeygard and Weil, 2012; Kraft and Kraft, 1978; Stern, 2018). Despite concerns over

the robustness of the relationship, it remains a particularly appealing proxy for business activity.

The benefits in our context are reinforced due to its lack of substitutes and high-resolution (Cicala,

2020b). For the former, electricity is an essential input for daily life in developed economies. While

business functions are incredibly varied and diverse, most now rely on electricity as their primary

fuel source, particularly within urban areas. Moreover, as digitization has increased, so too has the

reliance on electrical energy to power essential business tools, in particular information and com-

munication technologies. Affordable alternatives either do not exist, are impractical or damage the

environment. Consequently, most businesses cannot operate without a reliable and secure source

of electricity rendering it highly correlated with business activity.

For the latter, the transition to smart metering infrastructure makes available high-resolution

electricity data across both space and time. It is now possible to assess high-frequency changes in
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economic activity by tracking electricity demand. Thus, effects that may be obscured or lost in the

aggregate, can instead be identified at the business-hour level. This is particularly important when

studying commercial compared to residential electricity consumption as the former is significantly

more idiosyncratic.

1.3.2. Public health orders

Our empirical setting is the City of Burbank which hosts a population of around 100,000 people

and is located in LA County, California. BWP is the municipal utility owned and operated by the

city. Figure 1.1 contrasts its service territory with that of the LA Department of Water and Power

(LADWP), its neighbor and the largest municipal utility in the US.

The city falls under the purview of the public health guidelines set by both LA County and

the State of California. The county and state responded to the COVID pandemic through the

implementation of an evolving list of restrictions. Through the Governor’s Office and the State

Department of Public Health Department (DPH), California mandated both shelter-in-place (SIP)

and non-essential business closures. The former require all residents to remain located in place for

all but essential activities, such as grocery shopping, retrieving prescriptions, care giving, exercise,

etc. The latter require businesses to cease operations, or alternatively, delineate industries that can

remain open.

LA County operationalized the state-level orders for areas under their jurisdiction, including

Burbank, through equivalent directives from their DPH. In order to comply with requirements

established by the state, LA County updated its public health orders as frequently as necessary

– sometimes even on a day-to-day basis. The top half of Figure 1.2 provides an overview of the

major public health orders affecting the Burbank through to the end of October 2020.

The first confirmed COVID-19 case in LA County arrived on 22 January 2020.5 Shortly there-

after, community transmission began to rise precipitating the declaration of a State of Emergency

5 Ryan, H, St. John, P, and Liang, X. 2020 ”The surprising story of the salesman who became L.A.’s first known
COVID-19 patient.” LA Times, 21 Aug.
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Figure 1.1. BWP’s service territory within California

Notes: The map illustrates the geographical location of Burbank Water and Power (BWP). It also
contains a portion of the service territory for its neighboring utility, the Los Angeles Department
of Water and Power (LADWP).

for California as a whole on 4 March 2020.6 The declaration was primarily to raise public aware-

ness and to release state funds and resource to help fight the pandemic. It did not mandate social

distancing or other behavioral restrictions, such as mask mandates.

As one of the earliest areas experiencing wide community transmission within California, LA

County acted in advance of the state by mandating the closure of some non-essential businesses

on 16 March 2020. The order prohibited gatherings of 50 or more and required the closure of bars

and nightclubs without food service, fitness centers, theaters, bowling alleys and arcades. These

closures along with similar ones in the Bay Area catalyzed state action three days later.

6 https://covid19.ca.gov/safer-economy
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Figure 1.2. COVID-19 pandemic and assistance timeline

Notes: The figure presents a timeline of events starting in late 2019 through to the end of October 2020. The top
half of the timeline summarizes COVID-related events, including important national and international dates as
well as restrictions mandated by both the State of California and LA County. The bottom half of the timeline
summarizes federal assistance events, including major Acts of Congress and specific dates related to the PPP
and EIDL programs. Red and green shaded areas represent closing and opening restriction periods within LA
County.

On 19 March 2020, California was the first in the country to mandate a state-wide SIP order.

Known as Executive Order N-33-20, its aim was to establish consistency across the state in order

to slow the spread of COVID-19. It restricted residents to stay at their place of residence and

included a non-essential business closure order. For the closure directive, all businesses except

those necessary to maintain operational continuity of the federal critical infrastructure sectors

were required to close.7 While the order has changed form – namely, the “Resilience Roadmap”

and “Blueprint for a Safer Economy” – it remained in effect through mid-2021 under the original

Executive Order.

7 There are 16 federal critical infrastructure sectors defined by the Cybersecurity and Infrastructure Secu-
rity Agency (CISA) under the Department of Homeland Security. See https://www.cisa.gov/identifying-critical-
infrastructure-during-covid-19 for further information.
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The Resilience Roadmap was announced by Governor Newsom on 14 April 2020. The fist stage

of the Roadmap defined six indicators which would inform the modification of the state-wide SIP

order. These included community monitoring, prevention, health care capacity, the development of

therapeutics, and the ability to socially distance. The Governor did not confirm a precise timeline

for modifying the order and instead noted that the indicators would serve as the underlying criteria

for making any such decision.

The initial reopening began on 8 May 2020, when California moved to the second stage of the

Resilience Roadmap, which reintroduced activities in a phased manner by county and sector. LA

County issued a sister order which allowed certain types of non-essential businesses to reopen with

modifications, such as curbside pickup, delivery only, and capacity limits. At first, this was limited

to retail stores where social distancing was possible: bookstores, florists, clothing and shoe stores,

sporting goods stores, toy stores, music stores, and car dealerships. Subsequent orders through

May and June permitted the reopening with modifications of additional non-essential businesses,

including but not limited to: bars and restaurants, entertainment and gambling venues, gyms,

religious services, offices, and personal care services.

The second closure period commenced on 28 June 2020 and was precipitated by a surge in

cases during the summer months. Instead of state-wide restrictions, the second closure period was

targeted at the county level. To begin, the California DPH released guidance on the closure of

bars within counties experiencing high case numbers. This included LA County which promptly

issued an updated order to align with the state directive and immediately closed bars, breweries

and wineries. Subsequent county orders through July and August either reduced operations or fully

re-closed other non-essential businesses.

The second reopening began on 31 August 2020 in conjunction with the development of Cali-

fornia’s Blueprint for a Safer Economy. The Blueprint for a Safer Economy replaced the Resilience

Roadmap with a localized SIP order tailored to COVID conditions within each county. Thus, all

local health jurisdictions were permitted to reopen specified sectors according to their respective

COVID metrics. Essentially, it imposed risk-based criteria on tightening and loosening allowable

activities – that is, instead of open vs. closed, sectors could be partially opened based on county
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case and positivity rates. LA County subsequently engaged in a phased reopening of non-essential

businesses from September through November.

Table 1.A.1 in Appendix 1.A provides further details on the state and county government

actions described above.

1.3.3. Federal loan programs

To mitigate the harm to businesses from both the pandemic and the subsequent closure orders,

Congress established two major small-business assistance programs: the PPP and EIDL. These

programs were created by a series of appropriations bills passed in early 2020 and were administered

by the SBA (Bartik et al., 2020d; Dilger, Lindsay and Lowry, 2020). The bottom half of Figure 1.2

provides a timeline for the implementation of the two major federal assistance programs.

The scale of these assistance packages were enormous. On 6 March 2020, Congress specified the

coronavirus as a disaster under the EIDL program. Thus, economic injury from the coronavirus

became an eligible EIDL expense and loans for such purposes were made available immediately

through the SBA from existing appropriations.8 These funds were eventually supplemented by

an additional $50 billion for EIDL loans and $20 billion in EIDL Advance grants. On 27 March

2020, Congress created the PPP through the CARES Act. To expedite delivery of the funds, PPP

loans were guaranteed by the SBA but administered through private banks. The program was

appropriated $659 billion in two rounds which were exhausted by 8 August 2020. Table 1.B.1 in

Appendix 1.B provides a detailed legislative history.

Both the PPP and EIDL programs primarily function as loan programs. Eligible businesses are

defined as those with primary residence in the US, operating before 16 February 2020, and with

500 or fewer employees.9 Small businesses were eligible to apply for both; however, the loans could

not be used for the same purpose.

The CARES Act stipulated that the PPP must be used for payroll costs and certain eligible

non-payroll costs only. As such, its primary purpose was to encourage labor retention and reduce

8 Prior to its COVID-induced expansion, the EIDL program offered businesses affected by a declared disaster
financial support for uninsured losses and operating expenses that could have been met had the disaster not occurred.
Declared disasters include civil unrest and natural disasters such as hurricanes, flooding, and wildfires.

9 Those with greater than 500 employees may still be eligible based on industry-specific size standards.
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Table 1.1. Comparison of PPP versus EIDL programs

PPP EIDL

Description Low-interest, medium-term loan program where
applications are processed through a network of
private lenders across the US.

Competitive-interest, long-term loan program
where applications are processed by the SBA; in-
cludes the EIDL Advance where up to $10,000
may be requested separately or in conjunction
with a full EIDL loan.

Purpose To meet operating expenses, primarily payroll. To meet various financial obligations and operat-
ing expenses.

Max $10 million Six months of working capital

Terms Interest of 1% repaid over 2 to 5 years and deferred
for 1 year with no collateral and no personal guar-
antee required.

Interest of 3.75% repaid over up to 30 years where
collateral is required for loans over $25,000 and
personal guarantees for loans exceeding $200,000.

Forgivable Yes, if all employee retention criteria are met and
funds used for eligible expenses.

No, loan may be repaid at any time with no pre-
payment penalties.

employment insurance claims through low-interest, medium-term loans. The federal government

offered terms of 1% interest repaid over two to five years with neither collateral, nor personal

guarantee required. Crucially, a loan could be converted into a grant, if the borrower met all

employee retention criteria and funds were used for eligible expenses. This is equivalent to the loan

being forgivable.

EIDL funds, on the other hand, could be used to cover a broader array of capital and operating

expenses, such as health care benefits, rent, utilities, and fixed debt payments. Its purpose was

to provide short-run cash flow support to keep businesses open and operating. The EIDL for

COVID-related damages mirrored the existing program in that it offered competitive-interest, long-

term loans with applications processed by the SBA. Terms included an interest rate of 3.75% with

repayment of up to 30 years. Collateral was required for loans over $25,000 and personal guarantees

for loans exceeding $200,000. Unlike the PPP, the EIDL was not forgivable. In addition to the

main EIDL loan, the program also consisted of the EIDL Advance grant which was not repayable.10

10 Originally, businesses that received an EIDL Advance in addition to the PPP necessarily had the amount of
the EIDL Advance grant subtracted from the forgiven amount of their PPP loan. However, this stipulation was later
eliminated under the American Rescue Plan Act in 2021.
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The grant provided $1,000 per employee up to $10,000 total and could be requested separately or

in conjunction with an EIDL loan. Additional details on both programs are provided in Table 1.1.

Despite the differences between the programs, they both functioned as rapid cash injections

to help small businesses mitigate the effects of a once-in-a-century pandemic. Broadly, we would

expect each to increase business activity and reduce the number of exits. This should correspond

to increased electricity use and reduced electricity account closures, respectively. The programs, in

this respect, can be considered to be equivalent.11

1.4. Data

We assemble an business-level primary data set comprised of hourly interval data on electricity

use, monthly billing data, industry classification, and participation in federal small business loan

programs. These data cover the universe of commercial customers in BWP’s service territory and

are supplemented with information on COVID-19 case numbers and government public health

orders.

1.4.1. Electricity use and billing data

We obtained proprietary electricity use and billing data from BWP.12 The dataset contains sub-

hourly electricity data for the population of commercial customers within their service territory

from 1 Jan 2018 up to and including 15 Oct 2020. This was supplemented with the corresponding

set of monthly billing data. The high-frequency metering data were aggregated up to the business-

hour or business-day level, where a business is defined as a unique name-account-address tuple.

Thus, meters at the same address under the same account were aggregated. Using this definition,

there were 7,722 businesses in the sample.13 Figure 1.3 displays average daily usage across all

11 Nevertheless, this does not preclude heterogeneous outcomes. It is conceivable that size, term and purpose of
the received loans could influence the strength and timing of business activity. For example, the response to the
long-term commitment of an EIDL loan is likely to be different to a small short-term injection of cash through the
EIDL Advance grant. Moreover, any effects may be attenuated for those businesses receiving multiple loans.

12 The data are obtained under nondisclosure agreement with the utility.
13 Through our analysis, we found that some businesses were associated with multiple accounts and/or units at

the same address. Hence, we test the robustness of our results against an alternative business definition: name-street
pairs. Using the alternative definition, the number of businesses in the sample reduces to 5,852. See Appendix 1.D.2
for the alternative analysis.
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Figure 1.3. Daily average electricity use per business

Notes: The plot presents average daily electricity usage per business between 1 January 2018 and
15 October 2020. Businesses are defined as name-account-address tuples and restricted to the 14
industries identified in Section 1.4.2. Shaded areas represent closing and opening periods within LA
County.

businesses. The shaded areas signify the tightening and relaxing of LA County public health orders

related to the pandemic, where red and green represent closing and opening, respectively.

The first red shaded area corresponds to the LA County shutdown order on 16 Mar 2020 –

mandating the closure of bars, gyms, theaters, and entertainment venues – and followed shortly

after by the state shelter-in-place order on 19 March 2020. Average daily electricity use drops

precipitously after these public health interventions. After the initial closure period ends, usage

begins to increase surpassing pre-pandemic levels during the summer months. The raw averages

shown in Figure 1.3 illustrate a correlation between COVID restrictions and daily commercial

electricity use.14

14 Prior to the beginning of the pandemic, we observe weekly and seasonal patterns that are characteristic of
electricity use in Southern California. Weekly variation cycles through weekday highs and weekend lows, while
seasonal variation cycles through summer peaks and winter troughs. The latter is correlated with increased air
conditioning in Burbank during the summer months in contrast to its relatively mild winters.
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Figure 1.4. Exit ratio by loan receipt

Notes: The plot presents exit ratio by week from 9 March to 15 October 2020. The exit ratio
is calculated as the net account change over number of accounts on 1 January 2020. Businesses
are defined as name-account-address tuples and restricted to the 14 industries identified in Section
1.4.2. Shaded areas represent closing and opening periods within LA County.

Figure 1.4 depicts the exit ratio by week since the first shelter-in-place order was issued. The

numerator denotes the number of exits and the denominator measures the number of accounts on

1 January 2020. The purple line plots this ratio for businesses which did not receive a loan while

the green line plots it for those which did. From the plot it is clear that, during the first closure

period, firms that did not receive federal support had a higher probability of exit. This is confirmed

through a two-sample t-test, where the resulting t-statistic is around 2.51 indicating that we reject

the null hypothesis of equal means at the 95% confidence level.15 In other words for the first closure

period, the mean exit ratio for those who received loans is significantly higher than those who did

15 A two-sample t-test compares the means of two groups under the assumption that both samples are independent
and normally distributed with unknown but equal variances.
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not. In later periods, however, we fail to detect systematic differences in the exit ratio based on

the receipt of a loan.16

1.4.2. Industry classifications

Industry classifications allow us to explore heterogeneity in the response to restrictions and the

receipt of federal support across business type. To determine the industry type for each account

in our data, we combined four different data sources to develop a NAICS-account mapping. First,

BWP provided an internal matching of NAICS-account pairs. Due to a lack of match accuracy

and specificity, we supplemented the original dataset with a number of other sources. Next, we

scraped the the California Employment Development Department (EDD) “Find Employers” online

search for all businesses within Burbank.17 This registry provides business names, addresses, em-

ployment number categories, and NAICS codes up to the sixth level of specificity. We also obtained

NAICS codes from the PPP dataset on federal loans. Lastly, we verified NAICS codes manually

by researching businesses and addresses through online search and mapping tools. To synthesize

the data sets, we standardized addresses with the Census Bureau Geocoder and then proceeded to

match on business names and addresses.18

Our analysis restricts its attention to the industries listed in Figure 1.5. These industries were

selected since they are either well represented in BWP’s service territory and/or likely to be affected

by non-essential business closures. Using the classifications identified in Figure 1.5, we reduce our

original sample of 7,722 to 4,813 businesses.19

16 The t-statistics for the mean exit ratio during the first opening, second closing and second opening periods were
-0.79, -0.92 and -0.50, respectively. Across the entire post-pandemic period, the mean exit ratio was not significantly
different based on receipt of a federal loans. The t-statistic was -0.67 indicating that we fail to reject the null
hypothesis at the 95% confidence level.

17 See www.labormarketinfo.edd.ca.gov/aspdotnet/databrowsing/empMain.aspx.
18 See https://geocoding.geo.census.gov.
19 Using the name-street pairs as the definition of a business, there are 5,852 businesses in the sample, which

reduces to 4,270 given the selected industries. See Appendix 1.D.2 for the alternative analysis.
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Figure 1.5. Count of businesses by NAICS-2 industry classifications

Notes: The plot displays the count of businesses by NAICS-2 industry classifications within our
electricity dataset from BWP. Businesses are defined as name-account-address tuples.

1.4.3. COVID cases and public health orders

COVID-driven changes in business activity may also be a function of demand. As community

transmission and case counts increase, demand for business services may decrease irrespective of

the stringency and/or presence of COVID restrictions. County-level daily case data are available

from the California DPH.20 Daily COVID cases in the City of Burbank are available through media

releases from the LA DPH, and were scraped from its webpage.21 Figure 1.6 presents case numbers

for both Burbank and LA County through the middle of October 2020.

Within California, businesses were subject to state, county, and city orders. We manually

compiled restriction scope and effective dates from government sources starting on 1 March 2020

20 CA Open Data, see data.chhs.ca.gov/dataset/covid-19-time-series-metrics-by-county-and-state.
21 LA County DPH, see publichealth.lacounty.gov.
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Figure 1.6. Count of COVID-19 cases in Burbank and Los Angeles County

Notes: The plot reports COVID case numbers within Burbank and LA County. Shaded areas
represent closing and opening periods within LA County. Sources are described in the text.

and continuing through to mid-Oct 2020.22 Statewide and regional health orders were obtained

from California state government and DPH websites. County-imposed policies were obtained from

the LA County DPH website. We also verified if the City of Burbank issued additional restrictions

by searching the City of Burbank website and local news outlets.

The dataset identifies both community-at-large SIP orders and non-essential business closures.

Dates reflect the day the policy went into effect, instead of issuance or announcement. Moreover,

we consider only written and mandatory directives. We define mandatory SIP orders as directives

where all residents are to remain in their place of residence unless performing essential activities,

such as those related to healthcare, grocery stores, working at essential jobs, or outdoor exercise.

We define non-essential business closure orders as those requiring businesses in multiple industries to

22 The public health orders dataset collected for this paper, while narrower in geographical in scope, mirrors
others developed in the wake of the COVID-19 pandemic. Alexander and Karger (2020) and Goolsbee et al. (2020)
manually collect state and local government shelter-in-place orders, while Brzezinski et al. (2020) and Gupta et al.
(2020) use county level information from the National Association of Counties.
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Figure 1.7. Count of federal loans awarded to Burbank businesses

Notes: The plot presents counts of federal COVID-related loans awarded to Burbank-registered
businesses between 16 March and 15 October 2020. It includes timeseries for the EIDL, EIDL
Advance and PPP programs. Shaded areas represent closing and opening periods within LA County.
Sources are described in the text.

cease operations. LA County both instructed some sectors to close as well as delineated those that

could remain open based on the Essential Critical Infrastructure guidance from the US Department

of Homeland Security. As far as practicable, non-essential business closures were disaggregated by

industry.

1.4.4. Federal small-business loans

Business-level publicly available data for the PPP and EIDL programs allow us to match BWP

accounts using loan recipient names and addresses. The SBA data contain the universe of federal

loans for the PPP, EIDL and EIDL Advance, including their approval date and loan amount.23

23 PPP data can be found at www.sba.gov/funding-programs/loans/coronavirus-relief-options/paycheck-
protection-program, while EIDL data can be found at www.sba.gov/funding-programs/loans/coronavirus-relief-
options/economic-injury-disaster-loans.
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Since the loan data are available at the business level, we matched BWP businesses with their

federal loans through a two-step process. First, the loan programs were merged into a single dataset.

This entailed standardizing addresses using the US Census Bureau Geocoder and subsequently

matching on names and addresses. Second, this process was repeated for the merge between BWP

businesses and the federal loans. The resulting dataset provided the loan types, number, amounts,

and approval dates for each BWP business.

Figure 1.7 displays the progression of the number of approved loans within Burbank for each

program. As the PPP and EIDL Advance programs were established to disperse emergency funds

as rapidly as possible, their counts climb quickly within the first closure period. As a more long-

term financing option, the EIDL starts to pick up only after the first closure period. Though, it

did eventually overtakes the PPP in the second closure period.

Table 1.2. Federal loan programs summary statistics

Characteristic No loan Loan

Number of businesses 3,587 1,226

Daily electricity use pre-pandemic (kWh) 444.5 119.4

Daily electricity use post-pandemic (kWh) 419.4 110.8

Number of business exits post-pandemic 181 61

Share of business exits post-pandemic (%) 5.7 5.2

Mean loans per business 2.0

Mean date of first loan 2020-05-06

Mean date of all loans 2020-05-17

Mean amount of first loan 121,172

Mean amount of total loan 197,504

Notes: The number of businesses are measured across the entire sample. The
pre-pandemic period is assumed to be all dates before 16 March 2020, while
the post-pandemic period is all dates after and including 16 March 2020. The
share of business exits is standardized based on the number of businesses on
1 January 2020.

Table 1.2 provides a set of summary statistics for the combined federal loans dataset. There

are approximately three times more businesses that did not receive federal assistance compared

to those that did. The businesses which did not receive loans use more electricity both before

and after the pandemic. It also appears as if they may suffer a larger drop in electricity use after

restrictions commence. More businesses exit from the no loan group; however, the exit shares are
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approximately equal. Business tend to receive two loans on average, where the mean first loan is

received by 6 May 2020 and amounts to around $120,000.

1.4.5. Temperature

We collect hourly temperature data from the Hollywood Burbank Airport reported through Na-

tional Oceanic and Atmospheric Administration (NOAA) Local Climatology Data (LCD).24 We

then calculate hourly heating degrees representing the downward distance from 65◦F. For daily

analyses, temperature is meaned across a day, which is then used to calculated heating degree days

(HDDs).

1.5. Business activity

In this section, we first introduce our empirical strategy and show how our approach uncovers

the impact of COVID restrictions on commercial electricity use. We then move on to a presentation

of our results. We begin by estimating the average change in daily electricity consumption over

the four post-pandemic restriction periods. We then augment the basic model to allow temporal

heterogeneity in the impacts across restriction periods, exploring how impacts vary across hours of

the day. Finally, we return to the basic model but split our sample based on federal loan receipt.

We estimate how federal loans may have mitigated the impacts of COVID restrictions on daily

electricity consumption.

1.5.1. Empirical strategy

Our setting involves a series of events, where a population of businesses experience them simul-

taneously. Thus, to isolate the effect of COVID restrictions on electricity use, we adopt a two-

way fixed effects model extended to a semi-dynamic panel events study (PES) framework as in

Borusyak and Jaravel (2017) and Schmidheiny and Siegloch (2019). We estimate the following

24 NOAA National Climatic Data Center, see www.ncdc.noaa.gov/cdo-web/datatools/lcd.
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OLS model:

yi,t =
∑
j

βj1[r = j] + Xi,tγ + δzi,m + αi,d,m + εi,t (1.1)

where yi,t measures electricity use in kWh for business i on date t.

Our regressors of interest are a vector of indicator variables, 1[r], that take a value of one during

the specific COVID restriction period j and zero otherwise. We define four different restriction

periods, where j ∈ {1, 3} denote strict lockdowns and j ∈ {2, 4} indicate periods when restrictions

were relaxed. Note that the length of each period varies with the specific closing and opening orders

and that periods are not industry-specific. The coefficients of interest, βj , can be interpreted as

average changes in kWh per day for Burbank businesses during the particular restriction period as

compared to pre-pandemic electricity use.

The controls, Xi,t, encompass local weather and Burbank COVID case numbers. Electricity use

in Southern California is highly correlated with temperature, as such we have included both daily

mean temperatures and HDDs. Regarding case numbers, even though individuals were mandated

to shelter-in-place from mid-March 2020, it is likely many may have voluntarily avoided human

interaction to reduce the risk of becoming ill. Such behavior is likely to have increased with

worsening local COVID conditions. The business-specific control, zi,m, represents month-of-year

baseline electricity use and is calculated using BWP data from January 2018 to December 2019

inclusive.25

The term αi,d,m represents unit and time fixed effects combinations, which nonparametrically

control for observable and unobservable characteristics that vary across businesses and time periods.

Thereby, the indices d and m denote day of week and month of year, respectively. The fixed effects

used differ between specifications. In our base specification, we apply business, day-of-week, and

month-of-year fixed effects, where the former controls for time-invariant characteristics of individual

businesses, and the latter two control for weekly and seasonal patterns in use. In other specifications,

we use businesses-day-of-week and business-month-of-year interaction dummies to more flexibly

control for electricity usage patterns of individual businesses. Finally, we add business-weather

interactions, including: business-temperature and business-HDD fixed effects. Specifications with

25 The inclusion of baseline electricity use as well as weather and related interactions follow the empirical ap-
proaches used in Allcott and Rogers (2014), Gilbert and Graff Zivin (2014) and Novan and Smith (2018).
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the full set of the fixed effects add thousands of parameters to be estimated. However, we are able

to do so given the size of our sample and its high-resolution.26

Our approach shares important characteristics with a PES: a panel dataset of multiple

units across multiple time intervals along with a set of events (Borusyak and Jaravel, 2017;

Schmidheiny and Siegloch, 2019). However, in our setting all units are exposed to treatment—

i.e., COVID restrictions—simultaneously. Hence, we lack variation in treatment status and event

timing. These features imply, respectively, that a control group does not exist and event and calen-

dar time are coincident. In this sense, our empirical setting also shares similarities with regression

discontinuity in time (RDiT) as in Hausman and Rapson (2018). Our identifying assumptions,

therefore, straddle elements from both econometric techniques.

Since our setup lacks cross-sectional variation in treatment, we rely on identification based on

asymptotics in the time dimension. Assuming there are no systematic changes over time except for

treatment, the difference in outcome at each event can be interpreted causally.27

We have identified four main threats to identification, namely: confounding factors, selection

near events, time-varying treatment effects, and autocorrelation. Confounding factors are correlated

with the outcome variable, while their omission threatens causal interpretation. The common

prescription is to simply include them in the specification. Consequently, our main identifying

assumption requires the absence of time-dependent systematic factors over the period of interest

conditional on all confounding parameters.

Selection near events – also known as sorting, anticipation, adaptation or avoidance effects – is

a known pitfall in regression discontinuity designs. Typically, density tests can rule out selection.

However, with time as the running variable, its density is uniform rendering such tests uninforma-

tive. Similar to COVID cases, this is likely to become a larger issue the further we move from the

original SIP order. Prior to LA County and a handful of others issuing closure orders on 16 March

2020, there was little warning that California would issue the SIP order three days later. Since our

first restriction period begins on 16 March 2020, it likely captures all relevant anticipation effects.

Later restriction periods become functions of COVID conditions. Thus, they can more easily be

26 Additional discussion of fixed effects for estimations in the context of commercial electricity can be found in
Burlig et al. (2020).

27 This is equivalent to the absence of pre-trends and confounding simultaneous events (Hausman and Rapson,
2018; Roth, 2020).
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anticipated, residents and businesses owners can more easily adapt or even avoid the restrictions.

As a result, estimates further from the original SIP are of a compound effect: the causal treatment

effect of interest and any unobserved selection effects.

Time-varying treatment effects violate the assumption that the treatment variable is correctly

specified. One approach would be to narrow the event window; however, this would negate the

ability to address seasonal confounders using a long pre-period. Neither PES, nor RDiT necessarily

permit direct tests of time-varying treatment, meaning that how a treatment effect evolves over

the sample window must be correctly assumed.28 In our setting, we expect the treatment effect

to vary during the analyzed periods. The nature of COVID restrictions within Burbank, however,

guide our empirical specification. That is, we assume the effect on daily electricity use is constant

within each restriction period.

Finally, autocorrelation can affect inference. It is typically addressed through clustered standard

errors. As such, we cluster errors at the business level to account for potential arbitrary within-

business correlations.

1.5.2. COVID restrictions

Figure 1.8 plots the residuals from the estimation of Equation (1.1) averaged at the weekly level

along with the 95% confidence intervals. The plotted regression includes all variables except the

restriction indicators, meaning that the remaining variation is a function of these same indicators

and any idiosyncratic errors.

The upper panel displays the residuals from a regression with weather and baseline use controls

as well as business, day-of-week and month-of-year fixed effects. The decrease in electricity use due

to COVID restrictions is large and persistent. On average, a business’ daily consumption falls by

around 61 kWh after the initial SIP order. Mean daily consumption pre-pandemic was around 360

kWh, so this estimate represents approximately a 17% reduction in consumption.

This is quite large as illustrated by comparison to available estimates for reductions due to

energy efficiency and conservation programs. For residential interventions, our estimate compares

28 Alternatively, a difference-in-differences methodology could recover a time-varying treatment. However, in our
case, we lack the control units to execute such an approach.
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with the maximum effects found (Gillingham, Keyes and Palmer, 2018). To our knowledge, few

studies on commercial interventions exist. Nonetheless, our estimate far exceeds the 3 to 5%

reduction estimated by Burlig et al. (2020) proceeding energy efficiency upgrades in Californian

schools.

The lower panel displays the residuals from a regression which also controls for Burbank COVID

case numbers. Over time, restrictions grow dependent on COVID conditions, and thus, our vari-

able of interest becomes increasingly correlated with cases. Assuming our specification is correct,

collinearity does not bias results, though it does produce large standard errors and inefficient esti-

mates in the relevant independent variables. As such, the results may suffer from a failure to reject

a false null hypothesis or, equivalently, a type II error. This is visible in the plot as after the initial

SIP order the line gradually returns to zero.

Table 1.3 reports regression estimates for Equation (1.1) and formalizes the visual results from

Figure 1.8. The dependent variable in all regressions is daily electricity use measured at the business

level, where industries have been limited to those identified in Section 1.4.2. The main variables

of interest are event-study period indicators, i.e., Close-1, Open-1, etc., signifying intervals with

either tightening or relaxing COVID restrictions, respectively. The regressions confirm statistically

significant decreases in daily average commercial electricity use resulting from COVID restrictions.

In columns 7 through 9, the implied daily reduction per business is between 48 and 72 kWh/day

depending on the restriction period. This corresponds to between a 13 to 20% reduction on average

from pre-pandemic levels. From column 3 onward, where we first include time fixed effects, these

results are significant and stable across controls.

As for differences in reductions between periods, tightening and relaxing restrictions lead to

economically and statistically significant changes in business activity, as measured through elec-

tricity use. As shown in Columns (7) through (9), daily commercial electricity use decreased by

approximately 72, 62, 64, and 48 kWh/day on average in the Close-1, Open-1, Close-2, and Open-2

periods. These are equivalent to 20%, 17%, 18%, and 13% reductions compared to pre-pandemic

levels, respectively. Periods of tightening(relaxing) restrictions correspond to higher(lower) reduc-

tions. We show this by testing the equality of the estimated restriction period coefficients.
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Figure 1.8. Residuals for daily electricity use per business

(a)

(b)

Notes: The plots display residuals for daily electricity use per business averaged at the weekly level
along with their 95% confidence intervals. Panel (a) is generated from a regression including weather
and baseline use controls as well as business, day-of-week and month-of-year fixed effects. Panel
(b) is generated from the same regression but with the addition of Burbank COVID case numbers.
We use robust standard errors and cluster at the business level. The regression is estimated using
data from January 2018 to October 2020 for all businesses within the 14 industries highlighted in
the text. Red and green shaded areas represent closing and opening restriction periods within LA
County.
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Table 1.3. Panel event study regressions for daily electricity use

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Close-1 (2020-03-16) −78.44∗∗∗ −81.39∗∗∗ −64.70∗∗∗ −65.97∗∗∗ −66.05∗∗∗ −66.94∗∗∗ −71.40∗∗∗ −71.49∗∗∗ −71.52∗∗∗

(−5.98) (−5.93) (−5.12) (−5.07) (−5.07) (−5.11) (−5.33) (−5.33) (−5.32)

Open-1 (2020-05-08) −45.20∗∗∗ −49.45∗∗∗ −51.14∗∗∗ −52.16∗∗∗ −52.17∗∗∗ −61.89∗∗∗ −61.87∗∗∗ −61.87∗∗∗ −62.08∗∗∗

(−3.70) (−3.83) (−3.99) (−3.96) (−3.96) (−4.48) (−4.48) (−4.48) (−4.48)

Close-2 (2020-06-28) 8.40 1.69 −63.50∗∗∗ −66.09∗∗∗ −65.96∗∗∗ −64.68∗∗∗ −64.00∗∗∗ −63.87∗∗∗ −63.86∗∗∗

(0.38) (0.15) (−4.48) (−4.46) (−4.46) (−4.39) (−4.36) (−4.36) (−4.35)

Open-2 (2020-08-31) 30.90 11.65 −26.04∗ −28.40∗ −28.53∗ −43.26∗∗∗ −48.37∗∗∗ −48.50∗∗∗ −49.16∗∗∗

(0.96) (1.04) (−2.27) (−2.41) (−2.42) (−3.55) (−3.88) (−3.88) (−3.92)

Temperature 2.97∗∗∗ 1.55∗∗∗ 1.55∗∗∗

(9.13) (5.68) (5.67)

HDD 2.57∗∗∗ 2.57∗∗∗

(8.46) (8.46)

ID FE X X X X X X X X
Day-of-Week FE X X X X
Month-of-Year FE X X X X
ID-Month Baseline X X X X X X
ID:Day-of-Week FE X X X
ID:Month-of-Year FE X X X
ID:Temp Int X
ID:HDD Int X

Businesses 4,813 4,813 4,813 4,546 4,544 4,546 4,546 4,544 4,544
Observations 4,402,221 4,402,221 4,402,221 4,327,915 4,327,896 4,327,915 4,327,915 4,327,896 4,327,896
R2 0.000 0.957 0.957 0.966 0.977 0.966 0.966 0.977 0.979
Adjusted R2 0.000 0.957 0.957 0.965 0.976 0.965 0.965 0.976 0.978

Notes: This table reports results from nine separate regressions. The dependent variable in all regressions is daily electricity use measured
at the business level, where businesses are defined as name-account-address tuples. The main variables of interest are event-study period
indicators signifying intervals with either tightening or relaxing COVID restrictions, respectively. We use robust standard errors and cluster
at the business level. The regression is estimated using data from Jan 2018 to Oct 2020 for all businesses within the 14 industries highlighted
in the text. Significance is represented as *** for p<0.001, ** for p<0.01, and * for p<0.05; while, t-statistics are in parentheses.
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To assess changes between restriction periods, we first plot the restriction coefficients for daily

electricity use per business along with their 95% confidence intervals in Figure 1.9. Focusing on

Columns (7) through (9), the Close-to-Open transitions illustrate a slight increase in electricity

use. The Open-1 and Close-2 periods, on the other hand, do not differ significantly. These visual

results are confirmed through a series of Wald coefficient-equality tests as presented in Table 1.C.1

in Appendix 1.C. We reject the the null hypothesis of equality for the Close-1-to-Open-1 and the

Close-2-to-Open-2 transitions at the 95% level. For the Open-1-to-Close-2 transition, we fail to

reject it as soon as temperature variables are included. Thus, the two instances where COVID

restrictions were relaxed led to statistically significant increases in business activity, while the

single instance of tightening restrictions essentially maintained the status quo.

We find that our results for daily electricity use are robust to an alternative definition of

businesses. Details can be found in Appendix 1.D.2.

We now turn to a brief investigation of hourly electricity use outcomes. A key advantage of such

high-frequency data is that it allows us to estimate not only the extent of the reduction but also

when during the day it occurred. To examine how the impact of COVID restrictions vary across

hours of the day, we estimate the model in Equation (1.1) separately for each hour. Our dependent

variable is now yhi,t symbolizing the electricity consumed by business i during hour h on date t. We,

therefore, obtain 24 point estimates for each restriction period coefficient βhj ∀ j ∈ [1, 4].

Figure 1.10 displays the hourly distribution of electricity use estimators and their 99% confi-

dence intervals by restriction period. It reveals the mirror image of the typical commercial electricity

distribution.29 That is, the greatest decreases are in the mid-day hours, corresponding to the typical

working day. Smaller, but statistically significant, decreases occur across all other hours.

On average, businesses suffered substantial decreases in hourly electricity use during typical

business hours. For the Close-1 through to the Close-2 restriction period, hourly electricity use

decreased by more than 3 kWh each hour between 9 AM and 8 PM.30 These decreases persisted

until the Close-2 period when there was a small uptick in midday electricity use. The increase

29 A typical commercial hourly distribution of electricity consumption exhibits low overnight, morning and evening
use. These low periods surround a global maximum which builds through the morning and lunchtime hours and peaks
in the mid-afternoon.

30 These results are difficult to compare to the effects of energy efficiency and conservation programs. Re-
lated papers typically do not report hourly effects, and those that do lack results in terms of a pre-intervention
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Figure 1.9. Restriction coefficients for daily electricity use per business

Notes: The plot displays restriction coefficients for daily electricity use per business along with
their 95% confidence intervals from Table 1.3. It is generated from a regression including weather
and baseline use controls as well as business, day-of-week and month-of-year fixed effects. We use
robust standard errors and cluster at the business level. The regression is estimated using data from
January 2018 to October 2020 for all businesses within the 14 industries highlighted in the text.

broadly corresponds to the implementation of the Blueprint for a Safer Economy, where non-

essential businesses were permitted to reopen with modifications. This perhaps provides support

for the change in hourly patterns of electricity use across restriction periods.

1.5.3. Federal loans

We now turn to the question of how the receipt of federal loans relate to business response to

COVID restrictions. To answer it, we estimate Equation (1.1) separately for firms that did and did

not receive a federal loan.

baseline. Nevertheless, two papers reviewing separate residential AC programs in California produce hourly esti-
mates in levels. Novan and Smith (2018) find a maximum reduction of -0.14 kWh between April to October, and
Boomhower and Davis (2019) find a maximum reduction of -0.31 kWh between July and August.
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Figure 1.10. Restriction coefficients for hourly electricity use per business

Notes: The plots display coefficients of the four restriction periods for hourly electricity use per
business along with their 99% confidence intervals. The coefficients are generated from a regression
including weather and baseline use controls as well as business, day-of-week and month-of-year fixed
effects. We use robust standard errors and cluster at the business level. The regression is estimated
using data from Jan 2018 to Oct 2020 for all businesses within the 14 industries highlighted in the
text.

One drawback with this approach is that the application for for a federal loan is a decision

made by individual businesses, and this choice may be systematically correlated with determinants

of electricity use. As shown in Table 1.4, we find measurable differences in baseline observables

differentiated by federal loan receipt. Those receiving loans are systematically smaller and more

labor intensive. This emphasizes the interpretation of our results as correlational and makes clear

that differences in the response to COVID restrictions may be due to other characteristics that are

systematically correlated with the receipt of federal loans. As such, we view this exercise as a first

step in providing suggestive empirical evidence on the mitigating effects of federal loans.31

31 The analysis in this section eventually requires that we address selection into treatment in order to produce
estimates with underlying causal interpretations. One possibility is to match businesses on electricity use profiles and
other characteristics (Cicala, 2015; Ferraro and Miranda, 2017). Alternatively, we could attempt a synthetic control
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Table 1.4. Average characteristics of businesses by loan receipt

Characteristic No loan Loan Difference

Daily Electricity Use (kWh) 448.0 120.6 327.4∗∗∗

(3, 312.3) (277.7) [149.21]

Accommodation and Food Services (%) 9.5 10.5 −1.1
(29.3) (30.7) [−1.06]

Administrative and Support and Waste Management 1.2 2.1 −0.9
and Remediation Services (%) (11.1) (14.4) [−1.87]

Arts, Entertainment, and Recreation (%) 2.3 2.9 −0.5
(15.1) (16.7) [−1.00]

Construction (%) 3.0 3.6 −0.6
(17.1) (18.7) [−1.01]

Educational Services (%) 2.4 2.5 −0.1
(15.4) (15.7) [−0.17]

Finance and Insurance (%) 4.4 2.8 1.6∗∗

(20.6) (16.5) [2.77]

Health Care and Social Assistance (%) 8.3 14.2 −5.8∗∗∗

(27.6) (34.9) [−5.22]

Information (%) 19.9 10.1 9.7∗∗∗

(39.9) (30.2) [8.75]

Manufacturing (%) 7.8 7.9 −0.1
(26.9) (27.0) [−0.12]

Other Services (except Public Administration) (%) 13.8 15.6 −1.8
(34.5) (36.3) [−1.49]

Professional, Scientific, and Technical Services (%) 5.4 6.6 −1.2
(22.5) (24.8) [−1.50]

Retail Trade (%) 15.7 15.8 −0.1
(36.4) (36.5) [−0.08]

Transportation and Warehousing (%) 2.9 1.4 1.5∗∗∗

(16.7) (11.5) [3.47]

Wholesale Trade (%) 3.3 4.0 −0.6
(18.0) (19.5) [−0.98]

Number of Observations 2,322,551 845,643
Number of Businesses 3,361 1,185

Notes: This table displays average characteristics by loan receipt prior to 1 January 2020.
Standard deviations are in parentheses, with t-statistics of the difference between ‘no loan’ and
‘loan’ businesses in brackets where *** p<0.001; ** p<0.01; * p<0.05. Each row is a separate
calculation, and is not conditional on the other variables reported here.

Figure 1.11 is the companion plot to Figure 1.8. It illustrates the residuals from the estimation

of Equation (1.1) averaged at the weekly level along with the 95% confidence intervals. The sample

with “essential” businesses comprising the control group (Abadie, Diamond and Hainmueller, 2010). Or finally, we
could use machine learning to produce business-specific counterfactuals (Burlig et al., 2020).
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Figure 1.11. Residuals for daily electricity use per business by loan receipt

Notes: The plot displays residuals for daily electricity use per business averaged at the weekly level
along with their 95% confidence intervals. The residuals are from two separate regressions with the
first based on the sample of businesses receiving a federal loan, and the second not. The regressions
include weather and baseline use controls as well as business, day-of-week and month-of-year fixed
effects. We use robust standard errors and cluster at the business level. The regression is estimated
using data from January 2018 to October 2020 for all businesses within the 14 industries highlighted
in the text. Red and green shaded areas represent closing and opening restriction periods within
LA County.

is split based on loan receipt. After the initial SIP order, electricity use for both groups dramatically

decrease and their confidence intervals are no longer overlapping. Notably, those businesses that

received a loan decrease in levels far less than those that did not. This is true for the entire post-

pandemic period available. On average, daily consumption for businesses receiving loans falls by

around 22 kWh/day, while for those without loans it decreases by around 75 kWh/day. Given the

systematic differences between groups, it is challenging to compare these effects.

Table 1.5 formalizes the visual results in Figure 1.11. It shows how the estimates for Equa-

tion (1.1) change with loan receipt status. The regressions confirm statistically significant decreases

in daily average commercial electricity use in both groups. The response is correlated with federal
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Table 1.5. Panel event study regressions for daily electricity use by loan receipt

All Data No loan Loan

(1) (2) (3) (4) (5) (6)

Close-1 (2020-03-16) −64.76∗∗∗ −70.05∗∗∗ −80.38∗∗∗ −86.54∗∗∗ −24.12∗∗∗ −27.05∗∗∗

(−5.13) (−5.38) (−4.61) (−4.82) (−9.69) (−10.69)

Open-1 (2020-05-08) −51.29∗∗∗ −60.78∗∗∗ −64.99∗∗∗ −76.47∗∗∗ −15.49∗∗∗ −19.59∗∗∗

(−4.01) (−4.53) (−3.68) (−4.13) (−6.63) (−8.04)

Close-2 (2020-06-28) −67.84∗∗∗ −65.79∗∗∗ −84.03∗∗∗ −81.60∗∗∗ −24.03∗∗∗ −23.03∗∗∗

(−4.58) (−4.48) (−4.13) (−4.04) (−9.10) (−8.80)

Open-2 (2020-08-31) −26.16∗ −45.60∗∗∗ −32.26∗ −55.48∗∗∗ −9.86∗∗∗ −19.02∗∗∗

(−2.28) (−3.75) (−2.04) (−3.32) (−4.25) (−7.71)

Temperature 1.52∗∗∗ 1.91∗∗∗ 0.46∗∗∗

(5.69) (5.24) (7.23)

HDD 2.51∗∗∗ 2.90∗∗∗ 1.45∗∗∗

(8.49) (7.20) (17.30)

ID FE X X X X X X
Day-of-Week FE X X X X X X
Month-of-Year FE X X X X X X

Businesses 4,813 4,813 3,587 3,587 1,226 1,226
Observations 4,402,226 4,402,226 3,221,133 3,221,133 1,181,093 1,181,093
R2 0.92 0.92 0.92 0.92 0.90 0.90
Adjusted R2 0.92 0.92 0.92 0.92 0.90 0.90

Notes: This table reports results from six separate regressions. The dependent variable in all regressions is
daily electricity use measured at the business level, where businesses are defined as name-account-address
tuples. The main variables of interest are event-study period indicators signifying intervals with either
tightening or relaxing COVID restrictions, respectively. The sample for Columns (1) and (2) contains all
businesses and replicate Columns (4) and (7) from Table 1.3. The sample for Columns (3) and (4) is limited
to only those businesses not receiving a federal loan, while that for Columns (5) and (6) is limited to those
that do. We use robust standard errors and cluster at the business level. The regression is estimated
using data from Jan 2018 to Oct 2020 for all businesses within the 14 industries highlighted in the text.
Significance is represented as *** for p<0.001, ** for p<0.01, and * for p<0.05; while, t-statistics are in
parentheses.

loans, as those receiving them experience smaller decreases in levels. Those receiving loans expe-

rience decreases between 19 and 27 kWh/day, while those without loans see decreases of between
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55 and 86 kWh/day.32 However, these results are confounded with other factors and cannot be

interpreted causally.

1.6. Business exits

In this section, we investigate how the closure orders impacted business exits, where we proxy

exits using electricity account terminations. We also assess the extent to which federal loans are

systematically correlated with the probability of exit. We first introduce our empirical strategy

and then presentation our results.

1.6.1. Empirical strategy

We propose two empirical approaches to estimate the effect of closure orders on industry exit:

an event study framework and a survival analysis. In the event study approach, we replicate the

approach discussed in Section 1.5.1, except we replace the dependent variable with net account

terminations. This allows us to evaluate how different restriction periods impact exit relative to

similar pre-pandemic time periods. Second, we perform a survival analysis, which investigates the

probability of exit conditional on remaining in the sample.

To operationalize the event study framework, we estimate the following regression:

yi,z,t =
∑
j

βj1[r = j] + Xi,z,tγ + αi,z,m + εi,z,t, (1.2)

where yi,z,t represents the number of open electricity accounts for a given industry i and zip code

z on week t. Industries are defined by NAICS-2 classification and there are five standard zip

codes within the City of Burbank. The indicator functions, 1[r], represent restriction periods

j ∈ {1, . . . , 4}, while the coefficients of interest, βj , can be interpreted as the average net account

closings per industry-zip during the particular restriction period. The controls, Xi,z,t, represent

weekly mean temperature and count of HDDs.

32 The results are more nuanced when considering the effects compared to baseline. Percent reductions for those
receiving loans are lower compared to those that did not only during the Open-2 period. This suggests that the loans
provided only short-term relief and were ineffective in the long-run. However, such results should be treated with
caution as the supports for the two groups clearly do not overlap.
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The term αi,z,m represents unit and time fixed effects combinations, where m denotes month

of year. The fixed effects used differ between specifications. In our base specification, we apply

industry-zip, month-of-year fixed effects, where the former controls for time-invariant characteristics

of individual industry-zip groups and the latter for seasonal patterns in exit. In other specifications,

we use industry-zip-month-of-year interaction dummies to more flexibly control for exit patterns of

specific regional industries. Finally, we add industry-zip-weather interactions, including: industry-

zip-temperature, and industry-zip-HDD fixed effects.

Our approach to the survival analysis is closely linked to binary response models for grouped du-

ration data (see e.g., Singer and Willet, 1993; Sueyoshi, 1995). A similar approach has recently been

used to study water shocks on the Nile (Chaney, 2013) and gas wells in the Bakken (Lade and Rudik,

2020). In our set-up we define the dependent variable as an indicator set equal to zero if business

i on date t does not exit and one if it does. Businesses are then dropped from the panel after their

exit date. We estimate the following regression:

yi,t =
∑
j

βj1[r = j] + αi + εi,t (1.3)

where yi,t is the exit indicator variable for business i on day t. Given our setup, the coefficients of

interest, βr, can be interpreted as the change in probability that a business exits during the specific

restriction period compared to pre-pandemic, conditional on remaining in the sample on a given

day. The αi term represents business fixed effects. We restrict our sample to dates in 2020 only.

The identifying assumptions for both approaches mirror those outlined in Section 1.5.1 above.

1.6.2. Results

Table 1.7 presents results from the estimation of Equation (1.2). The dependent variable in all

regressions is electricity account numbers measured at the industry-zip level, where industries have

been limited to those identified in Section 1.4.2. The main variables of interest are event-study

period indicators, i.e., Close-1, Open-1, etc., signifying intervals with either tightening or relaxing

COVID restrictions, respectively. Their coefficients should be interpreted as cumulative business

exits. A central result is that COVID restrictions induced industry exit. Relative to pre-pandemic
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years, we find that by the end of mid-October 2020 around 2 more businesses than normal closed

their operations. These results are stable to the inclusion of more flexible time and weather fixed

effects.

Table 1.6 presents results from our survival analysis estimations based on Equation (1.3). Coeffi-

cients are reported as percentage points. In order to compare results across periods, we standardize

them by multiplying each coefficient by its period length. The results are the percentages reported

in square brackets. They represent the probability of exit during the respective period, conditional

on having not already exited.

Column (1) performs the survival analysis regression for all businesses in our sample. Its results

highlights that COVID restrictions increased the probability of exit. Moreover, the probability

increases over sequential periods from Close-1 through to Close-2. It peaks during the Close-2

period, where businesses experience around a 3.5% probability of exit compared to the period

immediately preceding the initial SIP orders. While still quite high, the Open-2 period sees the

probability decreases to 2.3%, suggesting that relaxed restrictions attenuated the rate of exit.

Columns (2) and (3) report separate regressions based on loan receipt. The former contains

only those businesses that did not receive a loan, while the latter includes those that did. The two

regressions return almost identical results for each restriction period. However, we find that the

receipt of a loan is correlated with a substantial reduction in the probability of exit during the first

restriction period. Thus, federal loans appear to reduce the likelihood of exit initially, though this

effect attenuates quite rapidly.33

1.7. Conclusion

In this paper, we study how the pandemic and its public policy responses have impacted busi-

nesses. Using high-resolution electricity data from Burbank, California, we estimate how business

activity, exit and survival change based on the ratcheting into and out of COVID restrictions. We

33 Notably, for our framework to identify the effect of federal loans on the probability of exit, the error terms
must be uncorrelated with loan receipt conditional on covariates. However, loan receipt is not randomly assigned.
Therefore, we cannot interpret the differences between estimated parameters in columns 2 and 3 as causal effects as
there may be unobserved factors driving federal loan applications confounding the comparison. Due to this selection
bias, our results associated with these columns should be interpreted as correlations.

43



Table 1.6. Survival analysis regressions for the probability of exit by loan receipt

All Data No loan Loan

(1) (2) (3)

Close-1 (2020-03-16) 0.00013∗∗∗ 0.00016∗∗∗ 0.00002
52 days (4.59) (4.44) (1.18)

[0.68%] [0.83%] [0.10%]

Open-1 (2020-05-08) 0.00032∗∗∗ 0.00032∗∗∗ 0.00031∗∗∗

50 days (7.80) (6.74) (3.94)
[1.60%] [1.60%] [1.55%]

Close-2 (2020-06-28) 0.00055∗∗∗ 0.00055∗∗∗ 0.00055∗∗∗

63 days (12.05) (10.35) (6.16)
[3.47%] [3.47%] [3.47%]

Open-2 (2020-08-31) 0.00052∗∗∗ 0.00052∗∗∗ 0.00051∗∗∗

45 days (11.85) (10.24) (5.98)
[2.34%] [2.34%] [2.30%]

ID FE X X X

Businesses 4,602 3,387 1,215
Observations 1,234,032 898,582 335,450
R2 0.02849 0.03278 0.01278
Adjusted R2 0.02485 0.02912 0.00918

Notes: This table reports results from three separate regressions. The dependent variable in
all regressions is a dummy variable set to zero if business i does not exit on date t and one
if it does, where businesses are defined as name-account-address tuples. The main variables
of interest are event-study period indicators signifying intervals with either tightening or
relaxing COVID restrictions, respectively. The sample for column 1 contains all businesses,
while the samples for columns 2 and 3 are limited to businesses not receiving a federal loan
and those receiving one, respectively. We use robust standard errors and cluster at the
business level. The regression is estimated using data from January to October 2020 for all
businesses within the 14 industries highlighted in the text. Significance is represented as
*** for p<0.001, ** for p<0.01, and * for p<0.05; while, t-statistics are in parentheses and
period probabilities are in square brackets.
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Table 1.7. Panel event study regressions for electricity account numbers

(1) (2) (3) (4) (5) (6) (7)

Close-1 (2020-03-16) −0.62∗∗∗ −0.47∗∗∗ −0.47 −0.45∗∗∗ −0.47∗∗∗ −0.46 −0.46
(0.09) (0.10) (0.33) (0.10) (0.10) (0.33) (0.33)

Open-1 (2020-05-08) −1.00∗∗∗ −1.05∗∗∗ −1.05∗∗ −0.96∗∗∗ −1.00∗∗∗ −1.00∗∗ −1.00∗∗

(0.09) (0.11) (0.36) (0.11) (0.11) (0.37) (0.37)

Close-2 (2020-06-28) −1.54∗∗∗ −1.83∗∗∗ −1.84∗∗∗ −1.82∗∗∗ −1.83∗∗∗ −1.83∗∗∗ −1.83∗∗∗

(0.08) (0.09) (0.36) (0.09) (0.09) (0.36) (0.36)

Open-2 (2020-08-31) −2.18∗∗∗ −2.43∗∗∗ −2.45∗∗∗ −2.28∗∗∗ −2.26∗∗∗ −2.28∗∗∗ −2.28∗∗∗

(0.09) (0.10) (0.38) (0.11) (0.11) (0.36) (0.36)

Temp −0.03∗∗∗ −0.04∗∗∗ −0.04∗∗∗

(0.01) (0.01) (0.01)

HDD 0.03 0.03∗∗∗

(0.02) (0.01)

Industry-Zip FE X X X X X X X
Month-of-Year FE X X X
IZ:Month-of-Year FE X X X
IZ:Temp Int X
IZ:HDD Int X

Industry-Zips 68 68 68 68 68 68 68
Observations 9,820 9,820 9,820 9,820 9,820 9,820 9,820
R2 0.09 0.10 1.00 0.10 0.10 1.00 1.00
Adjusted R2 0.08 0.09 1.00 0.09 0.09 1.00 1.00

Notes: This table reports results from seven separate regressions. The dependent variable in all regressions is electricity
account numbers measured at the industry-zip level, where the 14 industries and 5 standard zip codes are defined in the
text. The main variables of interest are event-study period indicators signifying intervals with either tightening or relaxing
COVID restrictions, respectively. We use robust standard errors and cluster at the industry-zip level. The regression is
estimated using data from January 2018 to October 2020. Significance is represented as *** for p<0.001, ** for p<0.01,
and * for p<0.05; while, standard errors are in parentheses.

45



also estimate correlations between business activity and federal loan programs, specifically the PPP

and EIDL.

We find statistically significant decreases in daily and hourly average commercial electricity use

resulting from COVID restrictions. Business closure orders in Burbank led to, on average, 64 to

71 kWh reduction in daily business-level electricity use, which amounts to between 18% to 20% of

pre-pandemic electricity usage. Partial re-openings experienced in the late spring and early autumn

also exhibited decreases but of smaller magnitude, 49 to 62 kWh or 13% to 17%, on average, relative

to the same business over the same time period in pre-pandemic years. While electricity reductions

were present across all hours of the day, the largest drops occurred during extended business hours

between 9 AM and 8 PM.

COVID-19 restrictions had increasingly adverse effects on business status. Relative to pre-

pandemic years, we find that by the end of mid-October 2020 around 2 more businesses per industry-

zip exited than normal. Moreover, the probability of exit increased between 1.6% and 3.5% between

May and October 2020, relative to pre-pandemic levels. This suggests that that the pandemic in

conjunction with public health orders caused significant and harmful effects across both the intensive

and extensive margins of business operations.

We also note that federal loan receipt correlates with smaller decreases in electricity use. This is

true for the entire set of restriction periods available. Federal loan receipt also relates to a smaller

decrease in survival probability during the initial closure period. However, the effect of federal

loans on survival appears to attenuate quite rapidly.

Given the unique nature of the pandemic and the scale and scope of the resultant federal

assistance, it is important to understand the welfare impacts of these events, including their impact

on the business community. This applies both in retrospect, as a method of assessing the impacts

of the pandemic and the effectiveness of the responses, as well as serving as a guide to future federal

loan and grant programs. On the evidence presented here to date, non-essential business closures

lead to businesses reducing activity and exiting the market. These effects persist even in periods

when restrictions are relaxed. Federal loan programs were unable to prevent these adverse effects;

however, they do seem to mitigate them.
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Going forward, we intend to extend our analysis in a number of ways. First, we plan to

study heterogeneity across industries to establish whether the pandemic and the responses affected

industries differently. This requires better business-industry mappings. Second, our analyses of

federal loans, at present, suffers from selection bias. This is clear from the divergent balance

statistics reported in Table 1.4. Identification requires that we compare loan and no loan groups with

overlapping support. This suggests performing a matching exercise in conjunction with a DD design

(Cicala, 2015; Ferraro and Miranda, 2017). Alternatively, we could develop a synthetic control

composed of essential businesses (Abadie, Diamond and Hainmueller, 2010) and/or use machine

learning to generate business-specific counterfactuals of post-SIP consumption (Burlig et al., 2020).
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Appendix

1.A. Public health orders
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Table 1.A.1. Major state and county government actions related to COVID-19 health and public safety

Action Govt Date Direction Description

State of
Emergency
Proclamation

CA 2020-03-04 N/A Governor Newsom declared a State of Emergency to make additional resources available,
formalize emergency actions underway across multiple state agencies and departments,
and help the state prepare for broader spread of COVID-19.

County Public
Health Order
(Close-1)

LA 2020-03-16 Closing County Health Officer Davis issued an Order prohibiting events and gatherings of 50 or
more and requiring the closure of certain non-essential businesses, including: bars and
nightclubs that do not serve food, gyms, fitness centers, movie and performance theaters,
bowling alleys and arcades.

County Public
Health Order

LA 2020-03-19 Closing County Health Officer Davis issued an updated Order prohibiting all public and private
gatherings of 10 or more and requiring the closure of additional non-essential businesses,
including: retailers and indoor shopping centers, regardless of whether they contain
essential businesses.

Executive Order
N-33-20

CA 2020-03-19 Closing Governor Newsom and State Public Health Officer Dr. Angell issued a shelter-in-place
order to establish consistency across the state in order to slow the spread of COVID-19.

County Public
Health Order

LA 2020-03-21 Closing County Health Officer Davis issued an updated Order to comply with Executive Order N-
33-20, wherein the State Public Health Officer ordered all individuals living in the State
of California to stay home or at their place of residence, except as needed to maintain
continuity of operations of the federal critical infrastructure sectors. The Order prohibits
all indoor and outdoor public and private gatherings and events and requires the closure
of all businesses unless defined as essential.

Resilience
Roadmap

CA 2020-04-14 N/A Governor Newsom unveiled six key indicators guiding how and when to modify the state-
wide stay-at-home order (i.e. Executive Order N-33-20): (1) the ability to monitor and
protect communities through testing, contact tracing, isolating, and supporting those
who are positive or exposed; (2) the ability to prevent infection in people who are at risk
for more severe COVID-19; (3) the ability of the hospital and health systems to handle
surges; (4) the ability to develop therapeutics to meet the demand; (5) the ability for
businesses, schools, and child care facilities to support physical distancing; and, (6) the
ability to determine when to re-institute certain measures, if necessary. The Governor
did not confirm a precise timeline for modifying the stay-at-home order, but rather, that
these six indicators will serve as the framework for making that decision.

Executive Order
N-60-20

CA 2020-05-04 N/A Governor Newsom issued an executive order directing the State Public Health Officer
to establish criteria to determine whether and how local health officers may implement
public health measures less restrictive than the statewide public health directives.
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Action Govt Date Direction Description

State Public
Health Order

CA 2020-05-08 Opening State Public Health Officer Dr. Angell issued an order for the gradual movement of
the entire state from Stage 1 to Stage 2 of California’s Pandemic Resilience Roadmap.
Gradual movement into Stage 2 is intended to reintroduce activities and sectors in a
phased manner and with necessary modifications. However, a local health jurisdiction
may implement or continue more restrictive public health measures if the jurisdiction’s
Local Health Officer believes conditions in that jurisdiction warrant it.

County Public
Health Order
(Open-1)

LA 2020-05-08 Opening County Health Officer Davis issued an updated Order to allow certain types of non-
essential businesses to reopen. Subsequent Orders permitting a phased reopening of
additional non-essential businesses continued throughout May and June.

State Public
Health Order
(Close-2)

CA 2020-06-28 Closing Governor Newsom and the California Department of Public Health released guidance on
the closure of bars for counties on the County Monitoring List. Counties which have
been on the List for 14 days or more are required to immediately close bars, including
Los Angeles County. This was followed by a series Resilience Roadmap guidelines at the
State level for the closure of non-essential businesses and subsequent orders at the LA
County level over July and August.

Blueprint for a
Safer Economy

CA 2020-08-28 N/A Governor Newsom unveiled the Blueprint for a Safer Economy, a statewide, stringent
and slow plan for living with COVID-19 for the long haul. The plan imposes risk-
based criteria on tightening and loosening COVID-19 allowable activities and expands
the length of time between changes to assess how any movement affects the trajectory of
the disease. This new framework modifies the state-wide stay-at-home order (N-33-20)
to apply at the county-level based on risk-based criteria. Moreover, it makes a number of
changes to the state’s previous resilience roadmap. Notably, the plan commences a more
nuanced way of allowing activity: instead of open vs. closed, sectors can be partially
opened and progressively add to their operations as disease transmission decreases.

State Public
Health Order
(Open-2)

CA 2020-08-31 Opening Acting State Public Health Officer Dr. Pan issued a state-wide order updating the frame-
work for reopening under the Blueprint for a Safer Economy. Pursuant to this framework,
all local health jurisdictions in the state may reopen specified sectors according to their
respective county’s Tier. This was followed by a series of phased reopenings with modi-
fications at the State and County level over September to November.
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1.B. Federal loans
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Table 1.B.1. Major federal government actions related to COVID-19 economic assistance

Event Actor Date Description

EIDL availability Congress 2020-03-06 The Coronavirus Preparedness and Response Supplemental Appropriations Act specified
the coronavirus as a disaster under the EIDL program; thus, economic injury from the
coronavirus became an eligible EIDL expense and loans for such purposes were made
available immediately from existing appropriations.

CARES Act Congress 2020-03-27 The Coronavirus Aid, Relief, and Economic Security (CARES) Act created the PPP,
under the SBA’s Section 7(a) lending program. The Act appropriated $349 billion for
PPP loan guarantees, $10 billion for Emergency EIDL Advance Payment grants, and
$562 million for EIDL loans.

EIDL Advance
availability

SBA 2020-03-30 The SBA updated its website to allow COVID-19-related EIDL applicants an option to
request an Emergency EIDL Advance Payment grant.

PPP availability SBA 2020-04-03 The SBA began accepting PPP loan applications.

PPP, EIDL and EIDL
Advance closure

SBA 2020-04-15 Within 12 days, the SBA neared its $349 billion authorization limit for Section 7(a)
lending which included the PPP. It was also approaching its disaster loan assistance
credit subsidy limit. Thus, the SBA stopped accepting new PPP, as well as COVID-19-
related EIDL and EIDL Advance loan applications.

Enhancement Act Congress 2020-04-24 The Paycheck Protection Program and Health Care Enhancement (Enhancement) Act
increased the SBA’s Section 7(a) loan authorization limit from $349 billion to $659 billion,
and appropriated $321 billion to support that level of lending. The Enhancement Act
also appropriated an additional $10 billion for Emergency EIDL Advance grants and $50
billion for EIDL loans.

PPP, EIDL and EIDL
Advance availability

SBA 2020-04-27 The SBA resumed the acceptance of new PPP, EIDL and EIDL Advance loan
applications.

EIDL Advance closure SBA 2020-07-11 The SBA announced it had stopped accepting EIDL Advance grant applications as the
program had reached its authorization limit of $20 billion.

Additional
appropriations fail

Congress 2020-07-27 The Continuing Small Business Recovery and Paycheck Protection Program Act was
introduced in the Senate and, if passed, would have increased the PPP authorization
amount from $659 billion to $749 billion. To accomplish this it would have rescinded $100
billion from the SBA’s business loan program account and appropriated an additional
$190 billion for the cost of PPP and PPP second draw loans resulting in $90 billion of
new appropriations.
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Event Actor Date Description

PPP closure SBA 2020-08-08 The PPP closed to new applications as stipulated by Congress through the Enhancement
Act.
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1.C. Wald coefficient-equality tests

The Wald coefficient-equality test is used to determine if two coefficients within the same

regression are equal. Essentially, it answers the question of whether two different coefficients have

the same statistical effect on our independent variable.

It is calculated as the ratio of the difference over the standard error of that difference:

W =
βr − βs√

σ2
r + σ2

s − 2σrs

where βi ∀ i ∈ {r, s} are the restriction coefficients, and σ2
i and σi,−i are the coefficient variances

and covariance, respectively. The Wald statistic, W , can be treated as a t-statistic from a normal

distribution. Therefore, W -statistics with a value greater than the absolute value 1.96 are significant

at the 95% level.

The results of the tests confirm align with our prior expectations. From Table 1.C.1, we fail to

reject the null hypothesis that the Close-1 and Close-2 restriction periods are statistically different

across most Columns. This, however, is not the case when comparing Close-1 to either of the

two Open periods. We reject the null hypothesis and find that Close-1 is statistically different

from both Open-1 and Open-2 across all Columns. We find Open-1 and Close-2 are statistically

similar, but only for the most parsimonious Columns. Otherwise, the remains restriction periods

are statistically different from one another.
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Table 1.C.1. Wald coefficient-equality tests for restriction coefficients from Table 1.3

Column Close-1 = Open-1 Close-1 = Close-2 Close-1 = Open-2 Open-1 = Close-2 Open-1 = Open-2 Close-2 = Open-2

(1) 90.89∗∗∗ 15.23∗∗∗ 10.48∗∗ 6.18∗ 5.29∗ 2.93
(2.34e− 21) (9.66e− 05) (1.21e− 03) (1.29e− 02) (2.14e− 02) (8.73e− 02)

(2) 90.99∗∗∗ 74.27∗∗∗ 46.64∗∗∗ 52.23∗∗∗ 29.04∗∗∗ 4.14∗

(2.22e− 21) (9.13e− 18) (9.58e− 12) (5.70e− 13) (7.43e− 08) (4.19e− 02)

(3) 24.87∗∗∗ 0.08 22.53∗∗∗ 18.63∗∗∗ 15.02∗∗∗ 32.45∗∗∗

(6.34e− 07) (7.75e− 01) (2.13e− 06) (1.62e− 05) (1.08e− 04) (1.30e− 08)

(4) 23.22∗∗∗ 0.00 19.90∗∗∗ 20.34∗∗∗ 12.63∗∗∗ 28.75∗∗∗

(1.49e− 06) (9.78e− 01) (8.38e− 06) (6.64e− 06) (3.84e− 04) (8.65e− 08)

(5) 23.37∗∗∗ 0.00 19.89∗∗∗ 20.06∗∗∗ 12.59∗∗∗ 28.70∗∗∗

(1.38e− 06) (9.83e− 01) (8.39e− 06) (7.70e− 06) (3.91e− 04) (8.89e− 08)

(6) 4.13∗ 0.26 10.78∗∗ 0.90 8.92∗∗ 15.41∗∗∗

(4.23e− 02) (6.10e− 01) (1.03e− 03) (3.44e− 01) (2.83e− 03) (8.76e− 05)

(7) 15.51∗∗∗ 2.96 10.25∗∗ 0.53 5.04∗ 9.49∗∗

(8.32e− 05) (8.52e− 02) (1.38e− 03) (4.68e− 01) (2.48e− 02) (2.08e− 03)

(8) 15.74∗∗∗ 3.14 10.24∗∗ 0.46 4.99∗ 9.33∗∗

(7.36e− 05) (7.64e− 02) (1.38e− 03) (4.95e− 01) (2.55e− 02) (2.27e− 03)

(9) 15.41∗∗∗ 3.18 9.92∗∗ 0.37 4.75∗ 8.90∗∗

(8.78e− 05) (7.45e− 02) (1.64e− 03) (5.42e− 01) (2.93e− 02) (2.87e− 03)

Notes: This table reports Wald coefficient-equality tests based on results from nine separate regressions originally reported in Table 1.3.
The dependent variable in all regressions is daily electricity use measured at the business level, where businesses are defined as name-account-
address tuples. The main variables of interest, and those used in the Wald tests, are event-study period indicators signifying intervals with either
tightening or relaxing COVID restrictions, respectively. Standard errors are robust to heteroskedasticity and clustering at the business level.
The regressions are estimated using data from January 2018 to October 2020 inclusive for all businesses within the 14 industries highlighted
in the text. Significance is represented as *** for p<0.001, ** for p<0.01, and * for p<0.05; while, F -statistics are without parentheses and
p-values Pr(> F ) are within them.
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1.D. Robustness checks

In this appendix, we perform two sets of robustness checks. First, we perform an outliers

analysis, and second, we test an alternative business definition.

1.D.1. Outliers analysis

The following repeats the major elements of our business activity analysis, based on our original

sample of 14 industries. However, the sample here is modified based on an outliers analysis where:

(1) we identify businesses with electricity use in any hour in the top 1% across all business-hours;

(2) for each of these businesses, we drop them entirely from the panel; and, (3) we rerun analyses

based on the updated sample.

Given the plots and tables below, the results from the outliers analysis reduce magnitudes

and variability. However, our main conclusions are stable to the procedure. Note that the activity

results by loan do not show as much differentiation as in the text. This is likely a consequence of the

original ‘loan’ and ‘no loan’ groups having limited overlap across their supports, and this difference

subsequently narrowing through the outliers procedure. Yet, the line for those who receive a loan is

still above the one for those who do not in Figure 1.D.4. A planned matching exercise will address

many of the limitations of our analysis described in this paragraph.
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Figure 1.D.1. Business daily average electricity use

Notes: The full sample companion is Figure 1.3. The plot presents average daily electricity usage
per business between 1 January 2018 and 15 October 2020. Businesses are defined as name-account-
address tuples and restricted to the 14 industries identified in Section 1.4.2. Shaded areas represent
closing and opening periods within LA County.
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Figure 1.D.2. Residuals for daily electricity use per business

(a)

(b)

Notes: The full sample companion is Figure 1.8. The plots display residuals for daily electricity
use per business averaged at the weekly level along with their 95% confidence intervals. Panel (a)
is generated from a regression including weather and baseline use controls as well as business, day-
of-week and month-of-year fixed effects. Panel (b) is generated from the same regression but with
the addition of Burbank COVID case numbers. We use robust standard errors and cluster at the
business level. The regression is estimated using data from Jan 2018 to Oct 2020 for all businesses
within the 14 industries highlighted in the text. Red and green shaded areas represent closing and
opening restriction periods within LA County.
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Table 1.D.1. Panel event study regressions for daily electricity use

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Close-1 (2020-03-16) −43.37∗∗∗ −43.36∗∗∗ −34.56∗∗∗ −34.90∗∗∗ −34.93∗∗∗ −35.46∗∗∗ −38.38∗∗∗ −38.41∗∗∗ −38.41∗∗∗

(−19.39) (−20.56) (−17.11) (−16.91) (−16.91) (−17.08) (−18.26) (−18.27) (−18.25)

Open-1 (2020-05-08) −23.00∗∗∗ −23.36∗∗∗ −25.48∗∗∗ −25.61∗∗∗ −25.61∗∗∗ −31.21∗∗∗ −31.20∗∗∗ −31.20∗∗∗ −31.21∗∗∗

(−11.71) (−13.22) (−13.19) (−12.97) (−12.97) (−15.04) (−15.04) (−15.04) (−14.98)

Close-2 (2020-06-28) 3.96 4.11∗ −32.77∗∗∗ −33.65∗∗∗ −33.62∗∗∗ −32.84∗∗∗ −32.39∗∗∗ −32.36∗∗∗ −32.37∗∗∗

(1.95) (2.49) (−15.56) (−15.52) (−15.51) (−15.24) (−15.07) (−15.06) (−15.06)

Open-2 (2020-08-31) 5.83∗∗ 5.36∗∗ −14.42∗∗∗ −15.25∗∗∗ −15.31∗∗∗ −23.80∗∗∗ −27.16∗∗∗ −27.22∗∗∗ −27.41∗∗∗

(2.72) (3.19) (−7.74) (−8.24) (−8.27) (−12.09) (−13.62) (−13.64) (−13.64)

Temperature 1.71∗∗∗ 0.78∗∗∗ 0.78∗∗∗

(29.71) (15.59) (15.57)

HDD 1.68∗∗∗ 1.69∗∗∗

(26.08) (26.09)

ID FE X X X X X X X X
Day-of-Week FE X X X X
Month-of-Year FE X X X X
ID-Month Baseline X X X X X X
ID:Day-of-Week FE X X X
ID:Month-of-Year FE X X X
ID:Temp Int X
ID:HDD Int X

Businesses 4,738 4,738 4,738 4,473 4,471 4,473 4,473 4,471 4,471
Observations 4,329,435 4,329,435 4,329,435 4,255,560 4,255,541 4,255,560 4,255,560 4,255,541 4,255,541
R2 0.001 0.904 0.908 0.926 0.952 0.926 0.927 0.953 0.956
Adjusted R2 0.001 0.904 0.908 0.925 0.951 0.925 0.926 0.951 0.954

Notes: The full sample companion is Table 1.3. This table reports results from nine separate regressions. The dependent variable in all
regressions is daily electricity use measured at the business level, where businesses are defined as name-account-address tuples. The main
variables of interest are event-study period indicators signifying intervals with either tightening or relaxing COVID restrictions, respectively.
We use robust standard errors and cluster at the business level. The regression is estimated using data from January 2018 to October 2020
for all businesses within the 14 industries highlighted in the text. Significance is represented as *** for p<0.001, ** for p<0.01, and * for
p<0.05; while, t-statistics are in parentheses.
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Figure 1.D.3. Restriction coefficients for daily electricity use per business

Notes: The full sample companion is Figure 1.9. The plot displays restriction coefficients for
daily electricity use per business along with their 95% confidence intervals from Table 1.D.1. It is
generated from a regression including weather and baseline use controls as well as business, day-
of-week and month-of-year fixed effects. We use robust standard errors and cluster at the business
level. The regression is estimated using data from January 2018 to October 2020 for all businesses
within the 14 industries highlighted in the text.
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Figure 1.D.4. Residuals for daily electricity use per business by loan receipt

Notes: The full sample companion is Figure 1.11. The plot displays residuals for daily electricity use
per business averaged at the weekly level along with their 95% confidence intervals. The residuals
are from two separate regressions with the first based on the sample of businesses receiving a federal
loan, and the second not. The regressions include weather and baseline use controls as well as
business, day-of-week and month-of-year fixed effects. We use robust standard errors and cluster at
the business level. The regression is estimated using data from January 2018 to October 2020 for all
businesses within the 14 industries highlighted in the text. Red and green shaded areas represent
closing and opening restriction periods within LA County.
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Table 1.D.2. Panel event study regressions for daily electricity use by loan receipt

All Data No loan Loan

(1) (2) (3) (4) (5) (6)

Close-1 (2020-03-16) −34.56∗∗∗ −37.98∗∗∗ −38.66∗∗∗ −42.25∗∗∗ −24.07∗∗∗ −27.04∗∗∗

(−17.11) (−18.48) (−14.69) (−15.78) (−9.67) (−10.67)

Open-1 (2020-05-08) −25.48∗∗∗ −30.97∗∗∗ −29.25∗∗∗ −35.26∗∗∗ −15.83∗∗∗ −19.90∗∗∗

(−13.19) (−15.28) (−11.58) (−13.31) (−6.84) (−8.23)

Close-2 (2020-06-28) −32.77∗∗∗ −31.53∗∗∗ −35.90∗∗∗ −34.57∗∗∗ −24.56∗∗∗ −23.56∗∗∗

(−15.56) (−15.10) (−13.10) (−12.73) (−9.49) (−9.18)

Open-2 (2020-08-31) −14.42∗∗∗ −26.07∗∗∗ −16.18∗∗∗ −28.78∗∗∗ −9.82∗∗∗ −18.99∗∗∗

(−7.74) (−13.09) (−6.69) (−11.13) (−4.23) (−7.69)

Temperature 0.76∗∗∗ 0.88∗∗∗ 0.44∗∗∗

(15.48) (13.87) (7.29)

HDD 1.66∗∗∗ 1.73∗∗∗ 1.47∗∗∗

(26.45) (21.40) (18.26)

ID FE X X X X X X
Day-of-Week FE X X X X X X
Month-of-Year FE X X X X X X

Businesses 4,738 4,738 3,513 3,513 1,225 1,225
Observations 4,329,435 4,329,435 3,149,361 3,149,361 1,180,074 1,180,074
R2 0.91 0.91 0.91 0.91 0.90 0.90
Adjusted R2 0.91 0.91 0.91 0.91 0.90 0.90

Notes: The full sample companion is Table 1.5. This table reports results from nine separate regressions.
This table reports results from six separate regressions. The dependent variable in all regressions is daily
electricity use measured at the business level, where businesses are defined as name-account-address tuples.
The main variables of interest are event-study period indicators signifying intervals with either tightening
or relaxing COVID restrictions, respectively. The sample for Columns (1) and (2) contains all businesses
and replicate Columns (4) and (7) from Table 1.D.1. The sample for Columns (3) and (4) is limited to only
those businesses not receiving a federal loan, while that for Columns (5) and (6) is limited to those that
do. We use robust standard errors and cluster at the business level. The regression is estimated using data
from Jan 2018 to Oct 2020 for all businesses within the 14 industries highlighted in the text. Significance
is represented as *** for p<0.001, ** for p<0.01, and * for p<0.05; while, t-statistics are in parentheses.
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1.D.2. Alternate business definition

We perform tests on an alternate business definition, namely: name-street pairs. We repeat the

activity regressions for the alternative definition using names and streets as the basis of aggregation.

The original results are presented in Section 1.5.2 and are similar to those presented here. They

differ in that they are slightly less significant and of a larger negative magnitude due to additional

aggregation inherent in the alternative definition. Nevertheless, the take-away message is that

COVID restrictions led to a reduction in business activity, and the relaxation of these restrictions

led to increased activity.
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Table 1.D.3. Panel event study regressions for daily electricity use

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Close-1 (2020-03-16) −85.87∗∗∗ −89.79∗∗∗ −71.27∗∗∗ −72.39∗∗∗ −72.47∗∗∗ −73.46∗∗∗ −78.37∗∗∗ −78.45∗∗∗ −78.49∗∗∗

(−6.20) (−6.19) (−5.40) (−5.34) (−5.34) (−5.38) (−5.60) (−5.60) (−5.59)

Open-1 (2020-05-08) −49.27∗∗∗ −54.38∗∗∗ −56.12∗∗∗ −57.17∗∗∗ −57.18∗∗∗ −67.89∗∗∗ −67.86∗∗∗ −67.87∗∗∗ −68.08∗∗∗

(−3.89) (−4.07) (−4.33) (−4.29) (−4.29) (−4.85) (−4.85) (−4.85) (−4.85)

Close-2 (2020-06-28) 11.20 2.25 −69.59∗∗∗ −72.37∗∗∗ −72.23∗∗∗ −70.81∗∗∗ −70.06∗∗∗ −69.92∗∗∗ −69.93∗∗∗

(0.45) (0.19) (−4.86) (−4.84) (−4.84) (−4.77) (−4.73) (−4.73) (−4.73)

Open-2 (2020-08-31) 36.04 13.32 −28.16∗ −30.85∗ −30.98∗ −47.21∗∗∗ −52.83∗∗∗ −52.96∗∗∗ −53.70∗∗∗

(1.00) (1.07) (−2.34) (−2.50) (−2.51) (−3.80) (−4.15) (−4.15) (−4.20)

Temperature 3.27∗∗∗ 1.71∗∗∗ 1.71∗∗∗

(8.40) (5.18) (5.18)

HDD 2.83∗∗∗ 2.83∗∗∗

(8.40) (8.40)

ID FE X X X X X X X X
Day-of-Week FE X X X X
Month-of-Year FE X X X X
ID-Month Baseline X X X X X X
ID:Day-of-Week FE X X X
ID:Month-of-Year FE X X X
ID:Temp Int X
ID:HDD Int X

Businesses 4,270 4,270 4,270 4,083 4,082 4,083 4,083 4,082 4,082
Observations 3,980,550 3,980,550 3,980,550 3,922,870 3,922,854 3,922,870 3,922,870 3,922,854 3,922,854
R2 0.000 0.962 0.962 0.971 0.981 0.971 0.971 0.981 0.983
Adjusted R2 0.000 0.962 0.962 0.971 0.981 0.971 0.971 0.981 0.983

Notes: The full sample companion is Table 1.3. This table reports results from nine separate regressions. The dependent variable in all
regressions is daily electricity use measured at the business level, where businesses are defined as name-street pairs. The main variables of
interest are event-study period indicators signifying intervals with either tightening or relaxing COVID restrictions, respectively. We use
robust standard errors and cluster at the business level. The regression is estimated using data from January 2018 to October 2020 for all
businesses within the 14 industries highlighted in the text. Significance is represented as *** for p<0.001, ** for p<0.01, and * for p<0.05;
while, t-statistics are in parentheses.
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2.1. Introduction

The Great Recession has left a lasting impact on the world economy (e.g., Jenkins et al.,

2012; Margerison-Zilko et al., 2016; Yagan, 2019), affecting, among others, the market structure

in many industries. Since then, high market concentrations and record markups have been ob-

served globally (De Loecker and Eeckhout, 2018; Garćıa-Perea, Lacuesta and Roldan-Blanco, 2021;

Grullon, Larkin and Michaely, 2019; Linnemann, 2016). Associated economic ills include a decline

in the labor share (Barkai, 2020), falling labor productivity (Autor et al., 2017, 2020), and a slow-

down in aggregate output (De Loecker, Eeckhout and Unger, 2020).

Concurrently, the Great Recession rekindled interest in public firms. Government-owned com-

panies constitute an important policy tool, though views on their merit have changed significantly

over time. While much of the 20th century saw government dominate the commanding heights,

through the 1980s, 1990s and well into the new millennium, the prevailing trend in Western coun-

tries saw governments divest from economic functions and expose previously public industries to

the discipline of the market (Williamson, 2009). Known as the “Washington Consensus,” its un-

derlying principle was that private firms, through a singular focus on profit maximization, were

more efficient than public ones (Megginson and Netter, 2001). The Great Recession forced many

governments re-evaluate public ownership as a useful policy tool Bernier (2014); Florio (2013);

Florio and Fecher (2011), none more spectacularly or successfully than the US and the bailouts

under the TARP program (Megginson, 2017).

One reason why public ownership may be seen as particularly appealing is that through

government-owned companies policymakers are capable of exerting direct political influence (Dinç,

2005). As highlighted by Sappington and Stiglitz (1987), government-ownership reduces interven-

tion costs. Significant government-ownership in a given industry allows policymakers to exert direct

influence over both market structure and conduct, among other elements. With concerns over mar-

ket power and equity becoming more prominent, access to such a channel of influence could be

more valuable than the ability to tighten regulatory controls or increasing antitrust oversight.

To better understand the intertwined effects of government ownership and market power, we

study the Australian National Electricity Market (NEM), where significant generating assets remain

government-owned. We do so primarily in the context of the “Stanwell Direction” made by the
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Queensland (QLD) Government in June 2017. The Direction was a formal instruction by the state

government to Stanwell Corporation, a government-owned generator, to alter its bidding strategies

in order to put downward pressure on wholesale electricity prices (QLD Government, 2017a,b). In

the months leading up to the Direction, the NEM had experienced a persistent rise in prices across

the market (ACCC, 2018; AER, 2018b). The increases were attributed to various market trends

and events, including: a tightening supply-demand balance, partly due to the recent closure of

Hazelwood Power Station (HPS), a major coal-fired plant in Victoria (VIC); increasing black coal

prices in QLD and New South Wales (NSW) and gas prices across the NEM; and, high levels of

market concentration.

The Direction was an extraordinary step. In particular, since the formation of the NEM, the

Commonwealth and state governments had not directly intervened in the day-to-day operations of

electricity market participants. In addition to the Direction, the QLD Government also announced

a set of other policies intended to ease wholesale prices, none of which were anticipated to have

any effect in the short term.1 Only the Direction was capable of affecting the market in the near

term, and, in fact, it was credited with lowering prices almost immediately.2 However, its effects

on price-cost margins and market power within the NEM have never been empirically assessed.

We first review the history of government ownership within the QLD electricity sector. We

focus on the Government’s original reasoning for maintaining public ownership, how government

decisions affected market structure and concentration, and how high levels of concentration could

have precipitated specific market power strategies employed by government-owned generators. We

then turn to an investigation of the effects of the Direction on the prevalence of market power.

We base our analysis on a competitive benchmark model of the NEM that we build following

Borenstein, Bushnell and Wolak (2002). Our model relies on various data, including high-resolution

electricity market data from the Australian Energy Market Operator (AEMO), as well as fuel

1 Other measures within the “Powering Queensland Plan” QLD Government (2017b) targeted towards reducing
wholesale prices included: returning a mothballed gas-fired station to service; promising to reorganize government
generation through the establishment of a government-owned renewable energy generator; and, facilitating additional
renewable energy investment in the state. While likely to have substantial market impacts in the future, none of
these policies were likely to influence prices the immediate aftermath of the Plan’s announcement.

2 As stated by the Premier (Palaszczuk, 2017): “In the 24 hours following our announcement last week, forward
wholesale power prices fell by 10 per cent in Queensland and by four per cent in New South Wales. I never thought
I would say it, but we are actually helping New South Wales.”
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prices and generator characteristics from other sources. Unlike many other industries, the study

of electricity markets benefits from a known and simple cost structure and wide availability of

cost data. As such, our model estimates counterfactual prices under the assumption of perfect

competition.3 Thus, when compared to actual market prices, it allows us to estimate price-cost

margins and the Lerner index—two common measures of market power—for the generation sector.

The comparison of actual market outcomes with our competitive simulations suggests that

abuses of market power by QLD generators during high-demand periods decreased after the release

of the Direction. This likely accounts for the reduction in high price events and, subsequently, the

average market price in QLD post-Direction. However, we find no evidence of the Direction affecting

markups at lower levels of demand. In fact, our analysis indicates that generators continued to

exercise market power and earn profits in excess of competitive rents in QLD during the post-

Direction period. With respect to customer impacts, we find that the Direction’s effects were

symmetric for both QLD and NSW customers.

The remainder of the chapter is organized as follows. Section 2.2 provides an overview of

the literature related to ownership and market power. Section 2.3 describes the NEM and its

key institutional features, including its operation, structure and susceptibility to market power.

Section 2.4 reviews the QLD Government’s involvement in the generation sector as well as the

history leading up to the Direction and its aftereffects. Section 2.5 introduces our competitive

benchmark model, while Section 2.6 discusses the data and how various source materials were

merged into a unified set. Section 2.7 presents our results and Section 2.8 concludes.

2.2. Literature Review

This chapter contributes to two strands of the existing literature: (1) the effects of ownership;

and, (2) the measurement of market power. Within the former, our work most closely aligns with

empirical studies investigating how ownership influences market prices and margins in compet-

itive industries (e.g., Asaftei and Parmeter, 2010; Konings, Van Cayseele and Warzynski, 2005).

Our work differs by analyzing margins at the market level, whereas, previously, studies focused

3 Since the NEM is a zonal market, we simulate each settlement interval between 2015 and 2019 to produce
counterfactual competitive timeseries for each region.
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on firm-level effects. For the latter, we contribute to the long tradition of competitive bench-

mark models, which assess market power and strategic behavior in wholesale electricity markets

(Borenstein, Bushnell and Wolak, 2002; Wolfram, 1999). We are the first to develop such a model

for the Australian NEM.

2.2.1. Ownership

Ownership, which refers to rights over residual revenues (Vickers and Yarrow, 1991), can affect

the optimization problems that facilities face and may thus be important for market outcomes in

the electricity sector. The following discussion focuses on the choice between public and private

ownership.4 However, it should be noted that these represent the extremes of the continuum

of governance structures reflecting the level of regulation over public- and privately-owned firms

(Laffont and Tirole, 1993; Sappington and Stiglitz, 1987).

Private ownership typically leads managers to emphasize the pursuit of profits; whereas, the

goals pursued under public ownership may be much broader. To illustrate how these differences

translate into welfare outcomes, consider the simplified model developed by Shapiro and Willig

(1990) and adapted in Vickers and Yarrow (1991). Suppose a firm is under public ownership. It is

run by a public servant who maximizes social welfare and their own personal agenda. The latter

could consist of a variety of elements, including: high wage and employment levels, redistribution

to favored interest groups and regions, etc. More formally, let us assume that the public servant’s

objective U is a weighted average of social welfare W and their personal agenda P :

U(x) = W (x) + µP (x)

where x is a vector of decision variables and µ reflects the weight of the private agenda relative to

social welfare. Under private ownership, suppose the firm is run to maximize profit. Profit π is a

component of social welfare along with the byproduct effects caused by the firms’ activities. These

could include deadweight loss from the exercise of market power, positive or negative externalities,

4 ‘Public’ ownership is synonymous with ‘government’ ownership herein.
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etc. If welfare is again denoted by W and net externalities by E, we have:

π(x) = W (x)− E(x).

In each case, social welfare and the objectives of the decision makers diverge, such that all forms

of ownership are potentially inefficient (Vickers and Yarrow, 1991). For private firms, “market fail-

ures” drive a wedge between private profit and social welfare objectives. Whereas, for public firms,

“government failures” lead to a divergence between private political and social welfare objectives.

Thus, the effects of ownership on welfare depend upon the relative magnitudes of these inefficien-

cies. Privatization can be viewed as a means of reducing the impact of government failure, albeit

at the risk of potential market failures.

If the personal agenda, P , and net externalities, E, depend on other variables, such as market

characteristics or political environment, the welfare superior ownership regime may vary across

settings. Consequently, comparison between ownership regimes may need to be conducted sepa-

rately for each case. To understand how such comparisons can be made, the first subsection of

this paper surveys the theoretical literature contrasting market and government inefficiencies. The

next subsection provides an overview of the empirical literature which attempts to establish the

contexts where public versus private ownership is preferred in practice.

Theory

The theoretic literature on ownership utilizes first-best outcomes as its benchmark, where social

welfare maximization requires both the production of the optimal mix of goods as well as the pro-

duction of each good with the minimum amount of resources (Putniņš, 2015). The first requirement

is referred to as allocative efficiency and is met by allocating goods to their most valuable uses. The

second is referred to as technical efficiency and is met by producing goods at the lowest possible

cost.

Note that Lawson (1994) and Cavaliere and Scabrosetti (2008) provide surveys on the theoret-

ical underpinnings of public versus private companies
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Market failure. If competitive markets left to their own devices allocate resources efficiently and

utilize the lowest cost means of production, the role for a government guided by welfare maximiza-

tion is negligible (Putniņš, 2015). Thus, the theoretical argument for private ownership of the means

of production rests on the first fundamental theorem of welfare economics. When markets are com-

plete, any competitive equilibrium is necessarily Pareto optimal (Mas-Colell, Whinston and Green,

1995, pp. 150-151). The corollary suggests that a breakdown of the ideal conditions argue for

government intervention. And indeed, governments regularly act to correct market failures, such

as owning or regulating natural monopolies, providing public goods, and intervening when exter-

nalities arise (Megginson and Netter, 2001).

For natural monopolies—such as, electricity and water supply—high fixed costs and/or pow-

erful economies of scale make it uneconomic for more than one producer to operate, creating the

potential for significant market power abuse. In these circumstances, government ownership is one

potential solution to avoid overpricing and undersupply (Yarrow, 1986).5 Public goods—such as,

defense and air quality—are non-excludable and non-rivalrous. Profit-oriented, private actors are

not incentivized to produce public goods, such that these goods are typically undersupplied or

lack a market entirely.6 Finally, despite typically being addressed through regulation or incentives,

externalities can also be internalized through government ownership. Here, the assumption is that

citizens suffering from negative externalities could punish their political representatives through

elections.7

In each case above, the rationale for government intervention rests on an argument that markets

have failed and government can step in to resolve the failure (Megginson and Netter, 2001; Yarrow,

1986). That is, government intervention may be desirable when markets alone are unable to realize

Pareto-efficient outcomes (Radić, Ravasi and Munir, 2021). Government ownership constitutes one

possible intervention, and therefore, the presence of these failures indicate markets where there may

exist an economic rationale for operating government-owned companies (Putniņš, 2015).

5 An alternative solution is the creation of a regulatory regime, which avoids direct government participation
in service delivery. Though, it increases informational asymmetries between management and those responsible for
monitoring their performance.

6 When markets fail to form, they are called ‘missing markets,’ where public goods are considered a special case
in that demand exists, but supply is absent.

7 Alternatively, citizens benefiting from positive externalities could instead reward their political representatives.
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Government failure. Similar to the way various imperfections prevent markets from realizing

Pareto efficiency, government interventions can also fail to maximize social welfare. Collectively,

the reasons for inferior welfare outcomes under government intervention are known as government

failures (Le Grand, 1991).

The overarching argument against government ownership is based on the technical inefficiency

of government production,8 which is underpinned by the microeconomic theories of property rights

(Hart and Moore, 1990) and agency (Jensen and Meckling, 1976).9 This can be summarized as a

misalignment of incentives between the government, its firms and the public at large. The important

implication of technical inefficiency in government-owned companies is that: given resource inputs,

less than the full potential output is produced; or alternatively, given outputs, more than the

minimum amount of input resources are used (Putniņš, 2015). Drivers of technical inefficiencies

include diffuse property rights, multiple objectives, soft budget constraints and the crowding-out

of investment. While each of theses issues are not necessarily exclusive to public firms, theory

suggests that they are more likely to suffer from them as compared to private firms.

Property rights theory is related to the effects of ownership on resource usage. One of its funda-

mental principles is that owners are incentivized to efficiently manage their assets (Hart and Moore,

1990). Public ownership, however, ‘dilutes’ property rights and reduces the incentive to manage

assets efficiently. Political representation can be highly imperfect, weakening the incentives for effi-

cient monitoring of both public enterprises and government stewardship. Most voters lack specialist

knowledge about actual and potential performance of nationalized industries. When coupled with

an inability to vote separately on this issue, the performance of government-owned companies tends

to have only a minor effect on electoral outcomes (Yarrow, 1986). In addition, it is difficult to write

complete contracts that link management incentives to a profit maximization objective (Shleifer,

1998). In contrast, private ownership curtails many of these weaknesses. Private owners have the

‘undiluted’ property rights. As such, they are more likely to have specialist knowledge of the par-

ticular industry, and they can monitor and contract performance more easily when management

objectives are reduced to profit maximization.

8 In addition to technical inefficiency, the welfare implications of government-owned companies should also con-
sider opportunity costs—i.e. the alternative uses of the capital committed to government production.

9 Note that ‘technical inefficiency’ incorporates the ‘political agenda’ from the model introduced at the beginning
of this section.
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Agency theory complements the above in that it relates to the potential for divergent ob-

jectives between ownership and management (Jensen and Meckling, 1976). It highlights the

mechanisms through which principals incentivize agents to act according to shareholder interests

(Fama and Jensen, 1983). The application of agency theory to the analysis of government own-

ership foreshadows certain principal-agent problems (Megginson and Netter, 2001). First, govern-

ment ownership can complicate firm objectives. Since governments have multiple goals—including

social welfare, political interests, profitability, etc.—a public shareholder is unlikely to solely prior-

itize operational efficiency. Instead, managers can be expected to split their attention between a

broader set of goals (Vickers and Yarrow, 1991).10 Further complicating matters, these objectives

frequently change from one administration to the next. The inability of government to credibly

commit to a fixed policy can, thus, adversely impact technical efficiency. Private ownership, on the

other hand, encourages managers to focus on a single, well-defined corporate goal: long-term profit

maximization (Megginson and Netter, 2001).

Second, governments are thought to have weak incentives to properly monitor economic per-

formance (Vickers and Yarrow, 1991). Government-owned companies are assumed to have ‘soft’

budget constraints diminishing the drive for efficiency. The discipline of capital markets is less

important for publicly-owned firms, as losses may be systematically covered by the government

(Megginson and Netter, 2001). If government-owned companies can survive without recourse to

costs, such mechanisms may no longer guide behavior and encourage waste. Private ownership

places managers under stricter control, since private investors have a stronger incentive to closely

monitor decisions that directly affect their wealth.

In competitive markets, the absence of such cost stringency could have wider industry impli-

cations. Soft budget constraints—caused by implicitly subsidized capital such as debt guarantees

or equity injections at below market rates—provide an unfair advantage to government-owned

companies (Putniņš, 2015). Governments may also bestow subsidies and grants, favorable regula-

tion, and preferential access to government contracts (Bortolotti, Cambini and Rondi, 2013). Even

10 Note that the market failure rationale implies government-owned companies will necessarily respond to non-
financial objectives (Putniņš, 2015). If a government firm is restricted to only a profit-maximizing objective, it is
reasonable to expect that a transfer to private ownership and operation will maximize social welfare. Therefore, the
performance of government-owned companies cannot be evaluated using only financial indicators as is common in the
private-sector.
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when government-owned companies operate at a lower level of technical efficiency, such support

can crowd-out desirable private-sector investment and entry (Atukeren, 2005). This could have

harmful allocative efficiency effects, if the lack of investment results in higher market concentration

and increased potential for market power in the long-run.

Arguments beyond efficiency considerations. Sociopolitical arguments for government own-

ership are based on companies pursuing non-commercial objectives beyond traditional economic

efficiency (Christiansen, 2013; Shapiro and Willig, 1990). The use of government-owned compa-

nies is sometimes advocated as a means to deliver socially-desirable outcomes—including but not

limited to regional development, job creation, and redistribution of income—that purely profit-

oriented, private firms would not make in the absence of regulation or incentives (Shirley, 1999;

Shirley and Walsh, 2000).

Many of the catalogued reasons for government intervention, even if not framed as market

failures, are in fact underpinned by some form of market inefficiency (Putniņš, 2015). That is,

where the motivation for a government-owned company is not explicitly a response to market

failures, its rationale can be frequently framed as one. For example, employment can be viewed as

a public good as it promotes social cohesion and general well-being, neither of which are excludable

nor rivalrous. Unemployment, on the other hand, is correlated with negative externalities such as

increased crime, poverty and unhappiness (e.g. Dooley, Fielding and Levi, 1996; Öster and Agell,

2007; Saunders, 2002). As these socially-desirable effects can be framed as market failures, even

though at first sight they may seem detached from efficiency considerations, makes clear that

government-owned companies are one possible policy prescription for addressing unemployment

(Cavaliere and Scabrosetti, 2008).

Summary. Theoretical results are ambivalent regarding the impact of ownership on technical

efficiency (Cavaliere and Scabrosetti, 2008). Government intervention is not a panacea for market

failure, since government-owned companies are likely to involve some degree of technical and al-

locative inefficiency (Putniņš, 2015). However, this should not lead to them being automatically

dismissed as a policy prescription. Rather, any evaluation of ownership must include a comprehen-

sive welfare evaluation. Operating a government-owned company is only justified when the welfare
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loss of the market failure exceeds the costs of government failure (Sappington and Stiglitz, 1987).

In such circumstances, government-owned companies are best suited when: there already exists

a competitive market (Yarrow, 1986); and, intervention goals are well defined with an emphasis

on profit maximization (Putniņš, 2015). For the former criterion, the efficiency of public versus

private ownership depends heavily upon both the degree of competition in the market as well as

the regulatory environment (Shirley and Walsh, 2000).

Empirics

Dovetailing with the theory outlined above, there exists an extensive literature on ownership effects.

In what follows, we limit our review to the effect of ownership on efficiency and prices. Nevertheless,

the broader literature covers many other effects. 11 The literatures also investigates a wide diversity

of industries 12 and ownership structures. 13

Efficiency. The effect of public versus private ownership on technical efficiency has been exten-

sively studied.14 There are many surveys providing a comprehensive overview of the field, see

for example: Frydman et al. (1999), Megginson and Netter (2001), Goldeng, Grünfeld and Benito

(2008), Megginson (2017), Estrin and Pelletier (2018), and Radić, Ravasi and Munir (2021).

Abbott and Cohen (2014) survey the literature with respect to Australian competition policy which

11 Other ownership effects include but are not limited to: corporate social responsibility (Dam and Scholtens,
2012), employment (Dewenter and Malatesta, 2001; La Porta and López-de Silanes, 1999), environmental policies
(Teodoro, Zhang and Switzer, 2020), factor prices (Ohlsson, 1996), internationalization (Radić, Ravasi and Munir,
2021), investment (Biggar and Söderberg, 2020; Di Pillo, Levialdi and Marchegiani, 2020), productivity
(Brown, Earle and Telegdy, 2006, 2016), research and development (Kim, Kim and Flacher, 2012; Wang and Mogi,
2017), risk (Mohsni and Otchere, 2014), and quality (Petersen, Hjelmar and Vrangbæk, 2017).

12 The sampling of the industries explored include: banks (Cornett et al., 2010; Megginson, 2005), electricity
(Newbery and Pollitt, 1997), exploration (Karpoff, 2001), health care (Tynkkynen and Vrangbæk, 2018), heating
(Egüez, 2021), manufacturing (Ramaswamy, 2001), oil (Wolf, 2009), parks (Lindholst, 2017), transport (Ehrlich et al.,
1994; Oum, Adler and Yu, 2006; Pollitt and Smith, 2002; Scheffler, Hartwig and Malina, 2013), water (Walter et al.,
2009), and waste (Bel, Fageda and Warner, 2010).

13 Megginson (2017) provides a survey of the empirical literature for the effects of ownership across a variety of
privatization structures, including: corporatization, contracting and outsourcing, initial public offerings, and sales or
divestitures.

14 The measurement of allocative efficiency is challenging due to data requirements and an emphasis on structural
models. As a result, we are unaware of any existing studies investigating the effect of ownership on allocative efficiency.
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commenced in the early 1990s.15 The prevailing view is that government-owned companies are as-

sociated with lower technical efficiency.

Many papers, however, also emphasize that market structure and, in particular, competition are

essential determinants of efficiency (Boardman and Vining, 1989). The argument here highlights

that changes in government ownership—including privatization and corporatization—do not typi-

cally occur in a vacuum. Frequently, ownership changes are accompanied by broader market and

regulatory reforms. This was the case during the Thatcher era in the UK, where the privatization

of British Telecom was mirrored by the establishment of the telecommunications regulator Oftel

(Yarrow, 1986). In Australia, the creation of the NEM coincided with both the establishment of

oversight agencies—including the AER and AEMC—and the privatization of much of the electricity

supply chain (Parer, 2002). Once the market structure is accounted for, studies frequently find that

it is the dominant determinant of efficiency (e.g. Allen and Gale, 2000; Vickers and Yarrow, 1991).

Nevertheless, Vining and Boardman (1992) note that ownership remains an important factor inde-

pendent of the market structure. And still others suggest that private ownership is necessary for

significant efficiency improvements (e.g. Boycko, Shleifer and Vishny, 1996; Shleifer, 1998).

Yarrow (1986) splits the difference by asserting that any evaluation of public versus private

ownership must also consider the concurrent market structure and regulatory policies. Private

ownership is known to be efficient in competitive conditions, but not necessarily so in the presence of

market power. Vickers and Yarrow (1991) suggest that even under competitive market conditions,

government ownership is not inherently less efficient than private ownership. If government-owned

companies are not unfairly supported, public versus private ownership is likely to be similarly

efficient under competitive conditions. Kole and Mulherin (1997) support these points through

their investigation of how nationalization affects efficiency, all else equal. The authors sample a

number of US firms with significant German or Japanese ownership prior to WWII. After the Attack

on Pearl Harbor and America’s entry into the War, the US government seized the common stock

of these firms. Effectively, the government nationalized these firms up until their eventual sale long

after the end of the War. The authors find no significant difference between the performance of

15 With respect to Australia, Abbott (2006), Aghdam (2011), and Topp and Kulys (2012) evaluate the effect of
deregulation on the efficiency of electricity supply. They find that competition likely increased efficiency, but are
unable to find a causal link between privatization and increased efficiency. Nepal and Foster (2015) compare the
efficiency of public versus private Australian electricity distribution companies.
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their sample with private firms in the same industry. As these firms were operating in competitive

industries prior to the forced takeovers, it forced the government to operate them efficiently. The

results suggest that in a competitive environment, where the government represents a passive,

profit-maximizing investor, factors other than ownership determine firm efficiency.

Generally, research supporting the conclusion that private firms are more efficient is linked

to industries with pre-existing competitive markets (Megginson and Netter, 2001). This is true

for banking (e.g. Bonin, Hasan and Wachtel, 2005), manufacturing (e.g. Xia and Walker, 2015),

airlines (e.g. Al-Jazzaf, 1999), and pharmaceutical companies (e.g. Xu, Tihanyi and Hitt, 2017).

In markets with monopoly elements, Vickers and Yarrow (1991) argue that the critical factor is

regulatory policy. In such industries, the effect of ownership on efficiency is ambiguous: some em-

pirical studies give the advantage to public ownership, others to private ownership, and yet others

find no significant difference between the two. These include research into electricity (e.g. Abbott,

2006), water (e.g. Walter et al., 2009), and telecommunications (e.g. Gasmi et al., 2013). Inconsis-

tent results are most likely a consequence of the variations in regulatory regime and, consequently,

the ability of the regulated monopoly to extract rents from the market.

These observations suggest that competitive markets encourage technical efficiency indepen-

dent of public versus private ownership. Conversely, in noncompetitive markets—including both

oligopoly and monopoly—market discipline is lacking. In the absence of regulatory conditions as

a substitute for competition, private ownership is unlikely to foster efficiency gains and may even

lead to a market failure.

Prices. The effect of government versus private ownership on output prices is less prominent in

the literature. Nevertheless, this research question has been of interest since at least the early

1970s, see for example Peltzman (1971) and Meyer (1975).

Evidence from sectors prone to natural monopoly—such as electric-

ity (Fiorio and Florio, 2013; Steiner, 2000), water (Chong et al., 2006;

Mart́ınez-Espiñeira, Garćıa-Valiñas and González-Gómez, 2009), telecommunications

(Martin and Vansteenkiste, 2001), and district heating (Åberga, Fälting and Forssell, 2016;

Egüez, 2021)—mostly support the hypothesis that private suppliers set higher prices than public

ones. This is plausible given the nature of these industries, specifically their lack of competitive
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pressure and regulatory enforcement as a poor substitute. Some studies, however, do find that

private monopoly suppliers set lower prices (Hattori and Tsutsui, 2004) or that ownership does

not effect prices at all (Gassner, Popov and Pushak, 2009; Romano, Masserini and Guerrini, 2015;

Zhang, Parker and Kirkpatrick, 2008). Such results are typically ascribed to unique country and/or

industry features—including both institutions and norms. For example, Nikogosian and Veith

(2012) interpret their null result as retailers prioritizing market share through lower prices, such

that the threat of entry restricts the use of market power.

Early papers lacked robust samples and, so, relied on descriptive statistics techniques, such as

difference-in-means, to compare price outcomes across ownership structure (Percebois and Wright,

2001; Saal and Parker, 2001). Later papers adopted either OLS or GMM regressions of prices

on ownership and controls. Samples would consist of either cross-sectional (Nikogosian and Veith,

2012) or panel (Linden and Peltola-Ojala, 2010) data. More recently, given the potential endogene-

ity of ownership structure, papers moved to IV (Ruester and Zschille, 2010) or Heckman selection

models (Garćıa-Valiñas, González-Gómez and Picazo-Tadeo, 2013; Porcher, 2017). In this sense,

ownership choice is not orthogonal to the controls, but dependent on them. This accounts for the

possible presence of sample selection bias.

For competitive industries, there have only been a handful of papers. Eckel, Eckel and Singal

(1997) and La Porta and López-de Silanes (1999) both use descriptive statistics to estimate the

effects of ownership on output prices. Eckel, Eckel and Singal analyze how the privatization of

British Airways impacted airfares along contested routes. The authors compute a difference-in-

means across periods controlling for industry price trends.16 Average airfares in markets served

by British Airways fell significantly upon privatization. The results suggest that a change from

government to private ownership improved economic efficiency. La Porta and López-de Silanes

compare how ownership affects output prices using a panel of firms from Mexico. They compute a

difference-in-means across industries and periods. Price increases are found to be smaller in more

competitive industries. Interestingly, the authors estimate that only a fraction of the increase in

income-to-sales ratio is explained by higher prices and conclude that market power is not driving

price increases.

16 The control is defined as a passenger weighted average of price changes along routes of similar length where
British Airways did not operate.
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The next two papers, Konings, Van Cayseele and Warzynski (2005) and Asaftei and Parmeter

(2010), formalize the estimation of the effect of ownership on price-cost margins. Following the

technique developed by Hall (1988) and Roeger (1995), the authors utilize a semi-structural model

derived from a Cobb-Douglas production function to estimate average markups. Both papers

perform OLS regressions using a panel of manufacturing firms from Eastern Europe during its

transition period shortly after the fall of the Soviet Union. They find smaller price-cost margins in

competitive markets, while privatization is associated with higher markups. That is, private firms

charge significantly higher markups on average than government-owned ones.17

Unfortunately, their approach is unable to separately estimate the effects of ownership on prices

and costs. So it is not immediately clear whether higher price–cost margins are driven by lower

costs—i.e. increased technical efficiency—or higher prices—i.e. the exercise of market power. That

said, Asaftei and Parmeter note that the effect is stronger in competitive sectors, suggesting that

firms reduce costs rather than increase prices since pricetaking behavior is synonymous with com-

petitive markets. Furthermore, it suggests privatization without a competitive market environment

may increase the potential for market power.

Literature investigating ownership effects on prices and price-cost margins are less prevalent

than studies on efficiency effects for a number of reasons. First and foremost, the relationship

between prices and ownership structure suffer from selection bias. As such, any identification strat-

egy must address this endogeneity through an appropriate empirical methodology and the often

commercial-in-confidence data necessary to implement it. For the latter, cost data are typically

unobservable—either directly or indirectly through estimation procedures. These create high bar-

riers for an empirical study and make it challenging, if not impossible, to interpret results causally

with respect to the underlying drivers of price changes. Additionally, many industries, especially

those with characteristics of a natural monopoly, have regulated prices. In such cases, the eval-

uation of price effects is not informative, so an analysis of technical efficiency is the preferred

approach. Even if these hurdles are surmounted and an estimate is produced, it may still suffer

17 Increased price-cost margins are not universally bad. For example, in cases where private firms charge higher
prices, if abnormal profits are used to develop new technologies, welfare may improve if innovation leads to positive
spillover effects. In other cases, price above cost may be desired in order for firms to cover their fixed expenditures,
as is necessary in high-capital, increasing returns to scale industries, like electricity and water.

84



from bias resulting from systematic differences in output diversity and/or quality between publicly-

and privately-owned firms.

The papers reviewed above strive to overcome these challenges, or at the very least persuade

the reader that they are immaterial to their conclusions. Nevertheless, some concerns remain as

each paper relies on accounting data, which can be susceptible to manipulation and measurement

error. The papers using differences-in-means are potentially subject to omitted variables bias.

Additionally, the markup results from papers like La Porta and López-de Silanes are indirect and

only provide an illustrative estimate of the potential for market power. Finally, the papers utilizing

the model developed by Hall and Roeger rely on a number of additional assumptions, which are not

necessarily compatible with the study contexts. Due to insufficient degrees of freedom, the model

restricts markups to be homogeneous. Moreover, the model requires that production technologies

are constant returns to scale and that producers maximize profits. These are debatable given that

the sample period includes transitioning from a command and control economy. In particular,

the application of the return-to-scale constraint may result in an upward or downward bias in the

markups.

2.2.2. Market Power

Electricity markets feature prominently in the literature on market power. In part, this reflects the

industry’s specific advantages as a subject for economic study.18 Moreover, restructured electricity

markets are particularly susceptible to the exercise of market power. This is attributable to inelastic

supply and demand as well as a lack of large-scale, cost-competitive storage options (Borenstein,

2000). For the former, electricity demand is inelastic in the short run, because customers have

limited or no incentive to modify behavior in accordance with hourly spot prices. Supply, on

the other hand, becomes very inelastic as production approaches system capacity. For the latter,

electrical energy must be consumed when it is generated due to the laws of physics. Current

storage options are limited by a lack of available capacity, e.g. pumped hydro, or are still relatively

18 As noted by Borenstein (2016) and Woerman (2021), these include: product homogeneity, which eliminates the
challenges of product differentiation; perfectly inelastic and observed demand, obviating the need for its estimation;
known production functions and the availability of cost data; and, a known market mechanism common to all
participants.
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expensive compared with the main generation technologies, e.g. batteries. Thus, even participants

with a small market share can, at times of generation scarcity, raise wholesale electricity prices.19

A number of influential studies measure the exercise of market power in wholesale elec-

tricity markets (e.g., Borenstein, Bushnell and Wolak, 2002; Puller, 2007; Wolfram, 1999).20

Moreover, the degree of market power has been found to depend on vertical integration

(Bushnell, Mansur and Saravia, 2008), market organization (Mansur and White, 2012), the form

of bidding (Reguant, 2014), arbitrage across market segments (Ito and Reguant, 2016), trans-

mission infrastructure (Ryan, 2021), generation portfolio (Butner, 2020), and market structure

(McDermott, 2020; Woerman, 2021). While these studies differ in methods, they can be broadly

categorized according to whether they perform their measurement at the market or the unit level

(Bushnell, Mansur and Novan, 2017).

Many of the studies belonging to this strand of literature are “market-level” studies, examin-

ing whether the market as a whole sets competitive prices given the production capabilities of all

participants. They frequently rely on benchmarking models, where actual market outcomes are

compared to various structural conduct paradigms. In the case of perfect competition, the bench-

mark is usually the marginal cost curve, equivalent to the merit order stack. It is built as a step

function where units are ordered from lowest to highest marginal cost and combined with their

expected capacities. This can thus easily serve as the basis for calculating the Lerner index.

Wolfram (1999) first applied these techniques to examining competition in restructured elec-

tricity markets. She finds statistically significant but modest market power within the England

and Wales electricity market. Borenstein, Bushnell and Wolak (2002) apply these techniques to

the California electricity crisis. They extend the competitive benchmark model to account for im-

ports and hydro generation. Moreover, instead of derating capacity based on an expectation of

19 In electricity markets, the most common forms of market power are economic and physical withholding—that
is, respectively, by offering marginal generation at high prices or simply withholding capacity.

20 This encompasses a small literature focusing on market power within the Australian NEM. Studies typically
investigate a specific event. Dungey, Ghahremanlou and Long (2018) and Clements, Hurn and Li (2016) review re-
bidding behavior in QLD through a theoretic model and a descriptive analysis, respectively. Mountain and Percy
(2019) performs a descriptive analysis of firm behavior before and after the closure of Hazelwood Power Station
in VIC. Hu, Grozev and Batten (2005) perform a descriptive analysis of bidding behavior more broadly, while
Marshall, Bruce and MacGill (2021) analyzes market power using concentration metrics.
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forced outages, the authors use a Monte Carlo analysis of unit outages to estimate the distribu-

tion of available capacity. While their decomposition of wholesale electricity revenues assigns some

responsibility to rising production costs and competitive rents, they find that the majority of the

crisis could be attributed to the exercise of market power and generators bidding above marginal

cost. Joskow and Kahn (2002) also investigate the California electricity crises. They use different

data sources to recreate market-wide impact estimates, yet largely confirm the conclusions from

Borenstein, Bushnell and Wolak (2002).

The above papers adopt a number of simplifying assumptions for the complexities of dispatch,

as they are designed to be conservative by estimating the lower bound on the magnitude of market

power. However, they have been criticized for adopting unrealistic system-wide production costs.

Harvey and Hogan (2001) argue that competitive benchmark models should account for techno-

logical constraints; otherwise, market power estimates will be biased upwards. These constraints

are defined as “dynamic” operation costs, such as minimum operating and minimum down times,

ramping constraints, and unit startup costs. Mansur (2008) explores this issue in an analysis of

markups in PJM, a regional transmission organization that operates in the Eastern US. He uses

production and cost data from the year prior to PJM restructuring, when firms operated as reg-

ulated utilities, to estimate a reduced form model of generation costs. These estimates implicitly

account for technological constraints that are ignored by “static” competitive benchmark models.

He demonstrates that estimates of welfare can be significantly affected. Recently, Reynolds (2018)

and Jha and Leslie (2021) have developed “dynamic” competitive benchmark models for the Texas

and Western Australian electricity markets, respectively. They both find that “static” markup

calculations overstate market power.

“Unit level” papers, on the other hand, investigate firm or generator supply decisions in order

to assess individual behavior inconsistent with perfect competition. While the approach generally

cannot provide market-wide estimates, it can instead identify the specific causes of market outcomes.

Unit-level market power measurement techniques are heavily dependent on data availability, and

include: capacity comparisons, bid benchmarking, residual demand analysis, and reduced-form

regressions.
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Papers testing individual-level behavior include Joskow and Kahn (2002) who study unit-level

availability during the California electricity crisis. They compare unit generation to rated capacity

during dispatch intervals when prices were significantly above estimated marginal costs. For a

group of non-utility generators, they find a persistent disparity between their output and capacity

during high-price periods.

Alternative tests of firm-level behavior examine offer bids and assess how they vary with market

conditions. Wolfram (1998) implements a test of firm-level bidding in the England and Wales

market. She finds that markups depend on the location within a firm’s marginal supply curve,

where the discrepancy between offer price and marginal cost increases at higher levels of dispatched

generation. Hortaçsu and Puller (2008) use detailed firm-level data on bids and marginal costs from

Texas to compare actual bidding behavior to static benchmarks. Large firms performed close to the

theoretical benchmark of profit maximization. Smaller firms, however, utilized bid schedules which

significantly deviated from this benchmark, which the authors suggest indicates a less sophisticated

bidding strategy. Mercadal (2021) extends Hortaçsu and Puller’s model to the case of sequential

markets. Reguant (2014) combines bid-level data along with unit startups to estimate firm-level

dynamic cost functions and market power in the Spanish electricity market. These are then used

for counterfactual simulations of an individual firm’s cost minimization problem. When comparing

dynamic versus static competitive benchmarks, she also finds that the latter overestimates markups

during peak periods.

A single firm’s ability to raise prices will be a function of the aggregate market demand less the

supply offers of these other firms. Thus, residual demand analysis can be used to assess the degree

of market power possessed by a market participant. Wolak (2003), using bid data from California

during the electricity crisis, estimates the residual demand faced by individual firms near the market

clearing price. He finds that large firms possessed market power and their behavior was consistent

with strategic profit maximization. Puller (2007) also studies the California crisis and formally tests

the behavior of firms by examining alternative hypotheses of imperfect competition. He constructs

an estimate of the residual demand elasticity faced by likely oligopolists. Using this estimate, he

rejects tacit collusion and does not reject strategic profit maximization.
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More recently, firm-level studies have attempted to measure market power using reduced-form

techniques in lieu of the structural ones that predominated earlier. Davis and Hausman (2016)

use plant-level data from California to document noncompetitive behavior following the shutdown

of a major nuclear facility. They use “unit-level generation regressions” to tease out how plants

respond to system-wide generation, which they then use to evaluate economic withholding at some

units. McDermott (2020) and Woerman (2021) study the Norwegian and Texas electricity markets,

respectively. Both papers exploit exogenous variation in market size and structure—arising from

transmission constraints—to identify its causal impact on noncompetitive behavior. They find

that the formation of localized electricity markets significantly increases markups. Finally, Butner

(2020) uses reduced-form methods to investigate the behavior of integrated participants within

MISO, a regional transmission organization that operates in the mid-Western US. He finds that

market participants with greater wind capacity withhold their fossil-fired capacity more in response

to increased wind generation.

2.3. National Electricity Market Background

The NEM is a self-contained electricity market on the eastern seaboard of Australia. It has

been in existence since December 1998 and is operated by the Australian Energy Market Operator

(AEMO). It is self-contained in that all load must be satisfied by generation from within the

network. Figure 2.1 displays the topology of the NEM, including all fossil-fired generation and

transmission infrastructure. The network consists of five regions, namely: New South Wales (NSW),

Queensland (QLD), South Australia (SA), Tasmania (TAS) and Victoria (VIC). These regions are

linked radially with VIC as the hub through six interconnectors: QNI and Terranora between

NSW and QLD; the eponymous VIC-NSW; Heywood and MurrayLink between SA and VIC; and,

BassLink between VIC and TAS.

The remainder of this section describes key elements of the NEM in further detail. In particular,

it highlights its operation, structure and potential for market power.
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Figure 2.1. NEM fossil-fired generation and transmission network
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Notes: The map illustrates the geographic location all fossil-fired generation and transmission infrastructure within
the NEM. The generation type is coded by color, while size is proportional to plant capacity. Regional interconnectors
are identified by purple lines. Only infrastructure operating between 2015 and 2019 are displayed, along with all
state capitals.
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2.3.1. Market operation

The NEM is an energy-only, zonal, real-time electricity market. The ‘energy-only’ framework means

generators are only paid for the electricity they produce. This is in contrast to markets which include

some form of capacity payments – i.e., payments for simply being available to produce.

The NEM is a zonal market meaning that supply and demand are balanced within each region.

Zonal pricing, and its counterpart nodal pricing, relate to congestion management. The former

aggregates nodes into contiguous areas where uniform prices apply. A zone typically has low intra-

grid congestion; hence, price differentials between zones reflect inter-grid congestion. With nodal

pricing, transmission constraints are explicitly observed within the optimal system-wide dispatch

permitting the calculation of locational marginal prices. Each generator is, thus, paid according to

the local price at the node where it is connected to the transmission network.

Liberalized electricity networks contain a ‘real-time’ market, commonly called a spot market.

Usually, it serves as the final precision balancing mechanism, where generation commitments are

procured or relieved based on realized conditions in the market. This is typically proceeded by a

series of advance bidding opportunities, where generation commitments are made in advance of the

real-time market. These are commonly known as ‘day-ahead’ or ‘hour-ahead’ markets. Where the

NEM differs is that it does not contain sequential markets leading up to dispatch: it is real-time

only. Thus, all trading and scheduling is finalized within its spot market.

As the market operator, AEMO performs a number of important functions within the NEM.

First, as the institution responsible for the NEM’s real-time operation, AEMO ensures aggregate

supply is continuously matched with aggregate demand across all regions and all dispatch inter-

vals. Second, it is responsible for coordinating transmission and ensuring dispatch schedules and

unforeseen events do not constitute a reliability risk.

For the former, all generators within the NEM must be classified as either scheduled, non-

scheduled or semi-scheduled depending on their relationship to the dispatch process. For each

five-minute dispatch interval, AEMO balances electricity supply and demand. To balance the mar-

ket, AEMO receives generation offers from scheduled participants and forecasts generation for all

remaining participants. As such, scheduled generators are generally non-intermittent units above
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30 MW. They are required to submit price-quantity offers and must comply with dispatch instruc-

tions. Semi-scheduled generators are intermittent generators above 30 MW. They are required to

submit price offers, while AEMO predicts their generation via specific wind and solar forecasting

models. Non-scheduled generators may be either intermittent or non-intermittent and have a name-

plate capacity of 5 to 30 MW. These generators are not required to provide energy offers. AEMO

predicts their generation, which is assumed as must-take and reimbursed at the appropriate market

price.

AEMO uses a double-auction format within the spot market. After scheduled participants

submit their offers, AEMO sets the market-clearing price and quantity at the intersection of the

resulting aggregate supply curve and realized demand within each region. Generator bids consist

of ten price-quantity pairs. The price bands must be increasing and are fixed the day before

dispatch. Quantity bands can be submitted right up until dispatch. Essentially, generators have

the flexibility to modify their bids until dispatch provided they can justify any changes under the

good faith provision.21

For the latter, AEMO also operates markets for the acquisition of ancillary services (AS) or

reserve capacity. AS are used to meet unexpected changes in the supply-demand balance and to

adjust production in order to minimize congestion. Most reserve capacity is available within both

the energy and AS markets. Given this overlap, AS markets likely impact the energy spot price

and, therefore, should be considered in any market-wide modeling.

2.3.2. Market structure

The origins of the current electricity market structure stem in large part from the Hilmer Re-

view (1993). Commencing in the late 1990’s, the Review encouraged the privatization of many

government-owned enterprises (GOEs) and the opening of generation and retail markets to compe-

tition. These changes occurred along with the formation of the NEM. However, since its inception,

the NEM has been a concentrated market. This was noted early on by the Parer Review (2002),

which emphasized how NEM outcomes could be adversely impacted by increased concentration

21 The good faith provision obligates participants not to make false or misleading offers. This can otherwise be
interpreted as any offer or rebid can and must not be changed unless there is also a change in the underlying material
conditions upon which the offer or rebid is based.
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Table 2.1. Capacity by fuel in 2019

Firm Coal Gas Hydro VRE Other Total

AGL Energy 7,295 1,727 678 1,718 80 11,498

Snowy Hydro 0 2,164 6,000 95 186 8,445

Origin Energy 3,000 2,606 240 970 499 7,315

EnergyAustralia 3,000 1,730 0 869 55 5,654

CS Energy 3,681 0 570 0 0 4,251

Stanwell Corporation 3,560 496 161 0 34 4,251

Hydro Tasmania 0 507 822 408 0 1,737

Engie 0 805 0 242 147 1,194

Other 3,955 2,121 140 5,282 662 12,160

Total 24,491 12,156 8,611 9,585 1,664 56,506

Note: All values in MW.

and limited competition. It highlighted the decisions by the NSW and QLD governments to cre-

ate generation portfolios instead of independent generation plants as in VIC and SA. Since then,

generation within the NEM has experienced significant horizontal re-aggregation. These concerns

were revisited in many recent electricity market reviews, including: the Finkel Review (2017), the

Retail Electricity Pricing Inquiry (ACCC, 2018), and the Electricity Market Monitoring Inquiry

(ACCC, 2019a,b).

Table 2.2. Capacity by region in 2019

Firm NSW1 QLD1 VIC1 SA1 TAS1 Total

AGL Energy 5,403 677 3,626 1,792 0 11,498

Snowy Hydro 5,149 0 3,015 281 0 8,445

Origin Energy 4,093 1,578 629 1,016 0 7,315

EnergyAustralia 2,435 93 2,775 351 0 5,654

CS Energy 0 4,251 0 0 0 4,251

Stanwell Corporation 96 4,155 0 0 0 4,251

Hydro Tasmania 0 0 94 100 1,543 1,737

Engie 78 0 0 1,117 0 1,194

Other 3,180 4,678 3,206 1,097 0 12,160

Total 20,433 15,431 13,344 5,754 1,543 56,506

Note: All values in MW.

Tables 2.1 and 2.2 display generation capacities within the NEM by major firm and, respec-

tively, fuel and region. While the tables present results for 2019, they are indicative of the market
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structure across our period of interest starting in 2015. Also note that capacities are associated with

traders and not necessarily owners. However, for the majority of plants, these are equivalent. The

concentration ratio of the top three firms (CR3) by capacity for the NEM is ranges between 48%

and 50%. Thus, at the NEM-level, the market appears only moderately concentrated. Nonetheless,

within individual regions, concentration is significantly higher: it ranges between 72% and 77%

within NSW; 64% to 72% within QLD; 70% to 71% within VIC; 68% to 70% within SA; and, 100%

within TAS.

Higher concentration at the regional level is a product increasing horizontal re-aggregation.

Though, it is also an artifact of how the NEM was constituted; whereby, five independent electricity

markets were connected by a small number of interconnectors. While all regions of the NEM are

highly concentrated, there are differences between regions. In QLD and TAS, concentration is a

result of government-owned companies controlling significant generation assets, including Stanwell

Corporation, CS Energy, and Hydro Tasmania. In the other regions, private generation businesses

together with Snowy Hydro control the majority of generation capacity.

2.3.3. Market power

Given the energy-only design of the NEM, it relies heavily on effective competition to deliver lower

price outcomes. This is especially true given the limited set of rules governing how generators can

bid into the market. Essentially, generators are only constrained by the price cap and the good

faith rebidding provision. Neither of which prevent participants from exercising market power, that

is their ability to raise prices above marginal costs (ACCC, 2018).

The benefit of a loosely-regulated, energy-only electricity market is the provision of clear price

signals for the value of generation. Energy-only electricity markets are designed to arrive at the

‘efficient’ price for electricity supply, with the accepted drawback that occasional high price events

are necessary for signalling when new capacity is needed (ACCC, 2019b). While generators rely on

high price events to recover their fixed costs, in a competitive energy-only market, bidding their

marginal cost is an optimal strategy as it maximizes dispatch. These features of the market design

require competition among rival generators to drive efficient prices. Thus, while the energy-only
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design of the NEM means the market should deliver clear and efficient prices both for the short-

and long-term, it is a design that is vulnerable to the exercise of market power.

Beyond the market design, there are a number of common factors which exacerbate the NEM’s

potential exposure to market power, including: a high price cap, inelastic demand and supply,

transmission constraints, and repeated interactions. Unlike most US markets outside of Texas, the

NEM’s price cap is very high. Between 2015 and 2019, the cap grew from $13,500 AUD/MWh

to $14,700 AUD/MWh.22 For comparison, ERCOT – the market operator in Texas and the sole

energy-only market in the US – stipulates a price cap of around $12,000 AUD/MWh. All other US

electricity markets include some form of capacity payment and have much lower offer caps. The

next highest one belongs to MISO at around $5,000 AUD/MWh. The higher cap in the NEM

provides incentives for investment but also means that the short-term exercise of market power can

be very profitable. Thus, combined with a high price cap, even short periods of market power can

significantly increase average market costs.

Both electricity demand and supply are largely insensitive to price in the short run. For the

former, load serving entities have limited control over customer demand since rates are typically

invariant to wholesale prices. Their ability to reduce end-use demand is, therefore, limited in any

given settlement interval. Moreover, the capacity to mitigate use through efficiency improvements

is fixed in the short run. Similarly, the capacity to generate electricity is also fixed in the short

run. Generators typically have limited scope to increase output when the wholesale price is high.

As a result, when demand approaches the maximum capacity of the system, both the demand and

supply curves become very steep. Thus, with little scope to reduce demand or to expand supply in

the short-run, small changes in either can result in an increased potential for market power.

Transmission, particularly between regions, is critical for mitigating market power. Without

binding constraints, out-of-region generators can offer supply to take advantage of higher prices

in neighboring regions. For example, if prices in NSW consistently exceeded those in QLD, then

cheaper QLD generators could be dispatched to meet demand in NSW. Thus, costs are minimized

through the lowest cost generation meeting demand. Conversely, binding transmission constraints

22 The NEM’s market price cap is adjusted each 1 July for inflation. Over our period of interest, it was set
to: $13,500 AUD/MWh for 2014-15; $13,800 AUD/MWh for 2015-16; $14,000 AUD/MWh for 2016-17; $14,200
AUD/MWh for 2017-18; $14,500 AUD/MWh for 2018-19; and, $14,700 AUD/MWh for 2019-20. The market price
floor is set at -$1,000 AUD/MWh and is adjusted only when deemed necessary.
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can limit the area over which generators compete, increasing the scope of local market power. This

issue can be particularly acute in the NEM as it is a long and linear grid with limited network

meshing. Thus, it is relatively easy for regions, particularly those at the ends of the NEM, to

become islanded (Finkel et al., 2017). As such, constrained transmission both within and between

regions can result in opportunities for the exercise of market power.

Finally, repeated interactions are well known to have the potential for establishing tacit coop-

eration or collusive arrangements. Within the NEM, generators interact with each other repeatedly

in the dispatch process. Moreover, such interactions can be easily exploited in the NEM due to the

fact that generators can adjust their bids right up until dispatch. While this potential does exist,

no incidents of collusive behavior have yet been recorded in the NEM.

2.4. Queensland Government Involvement in the Generation Sector

Over the past 30 years, the Australian electricity sector has been substantially reformed, moving

from public service delivery to a private contestable market. QLD was a founding member of the

NEM, where its Government’s choices at the inception of the market—particularly with respect

to ownership and horizontal disaggregation—have had a lasting impact on the market itself, but

also on the wider economic and political trends within the state. In this section, we review QLD’s

relationship with the NEM, including the debate over government ownership, the resulting market

concentration, and finally, the consequences for strategic behavior within the generation sector.

2.4.1. Government ownership

Australian governments began to reform the electricity industry in the 1990s. In the early part

of the decade, the Independent Committee of Inquiry into a National Competition Policy for

Australia recommended the introduction of competitive market arrangements within the industry

(Hilmer, Rayner and Taperell, 1993). These findings led to the reforms under the National Com-

petition Policy Reform Act 1995 and the related Competition Principles Agreement, precipitating

the development of the NEM. Historically, the electricity industry operated as vertically-integrated,

public utilities with limited physical interconnection between state grids (Parer, 2002). Individual
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state agencies were responsible for planning, developing, commissioning and operating the electrical

grid, while governments owned and operated the electricity supply chain from generation through to

retailing.23 Before the reforms, economic considerations were secondary to technical requirements.

The NEM placed economic and market considerations on an equal footing with supply availability

and reliability—the traditional drivers for the government-owned electricity sector.

In 1996, the Eastern mainland states and territories—including the ACT, NSW, QLD, SA and

VIC—agreed to pass the National Electricity Law, which provided the legal basis to create the

NEM (AER, 2009). This involved the introduction of a compulsory, competitive wholesale market

for the trading and dispatch of electricity. It necessitated the separation of the vertically-integrated

electricity supply chain and the horizontally-integrated generation sector.24 Structural reform of

public electricity utilities was undertaken prior to the market commencement in December 1998.

All participating states mandated the horizontal disaggregation of generation into separate and

competing business units within their jurisdiction.

Within QLD, the Electricity Industry Structure Task Force reported to the state Government

on structural, institutional and regulatory changes to the electricity supply industry in late 1996

(Roarty, 1998). Shortly thereafter, the QLD Government announced its electricity reform strategy:

“Powering the Future” (QLD Government, 1996). At the time, the state industry was character-

ized by a dominant government-owned generator—known as AUSTA Electric—and a monopoly

government-owned transmission, distribution and retail corporation. Under the reform strategy,

the industry was restructured from July 1997 in preparation for the introduction of the NEM (Rann,

1998).25 The QLD Government split AUSTA Electric, which was responsible for around 80 percent

of the state’s electricity,26 into three independent government-owned generating companies: CS

Energy, Stanwell Corporation and Tarong Energy.27 Unlike the SA and VIC Governments, which

23 Vertically-integrated electric utilities include generation, transmission, distribution and retail businesses.
24 In addition, the creation of the NEM involved the staggered introduction of retail competition. It also brought

monopoly transmission and distribution networks under both access and economic regulation.
25 While QLD was part of the NEM from its inception, it was not physically connected with the market until two

interconnectors—Directlink in April 2000 and QNI in February 2001—linked the QLD and NSW regional networks
(AER, 2009)

26 The remaining 20 percent was provided by independent power producers.
27 Prior to the restructure, other alternatives for introducing competition to the generation sector were considered,

including: encouraging new private generators; relying on intra-region generators; and, a robust regulatory approach
(QLD Government, 1996).
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both disaggregated and privatized their generation businesses, the QLD Government enacted only

the former. As wholesale electricity prices would no longer be set by the Government, the AUSTA

restructuring was justified as a means to limit market power, to engender cost efficiency discipline,

and to encourage private entry (QLD Government, 1996).28 Moreover, it was argued, these changes

would ensure consumers benefited from the enactment of national competition reform through lower

costs and prices.29

While the three new generation companies were deregulated and granted corporate autonomy,

they remained government-owned with the Treasurer and the Minister for Energy as shareholders.

The reasons for maintaining government control were fourfold. First, the creation of the NEM

was intended to spur deregulation and not necessarily privatization. Within broad parameters,

it was left to each jurisdictional government for how best to restructure their electricity assets.30

Second, the QLD Government wished to maintain options in the face of uncertainty. At this

early stage, the long-term success of the NEM was not assured, nor were asset sales necessarily

beneficial for taxpayers. As such, the Government hedged their bets and left open the possibility

of unwinding deregulation or pursuing privatization in the future.31 Third, the QLD Government

wished to maintain the dividends received from the various segments of the electricity supply chain.

Within the Government at the time, ownership and dividends were viewed as the preferred option

over a sale and a one-time windfall.32 Finally, the QLD Government sought to establish strong

competitors within the NEM.33 Implicit in this argument was, to the extent possible, the desire

28 As argued by Gilmore (1997a): “[the] major elements of the reform agenda establishing effective competition
in generation by splitting AUSTA Electric into three independent and competing Government-owned generators ...
will prevent the incumbent monopoly generator from using its market power to manipulate the market and will also
provide maximum opportunity for privately owned generators to enter the industry.”

29 As stated by Gilmore (1997a): “as the owner of these significant [electricity] assets, the Government must ...
restructure the industry to ensure that Queensland is able to deliver low cost electricity.”

30 Gilmore (1997b): “[t]he objectives ... relate to the deregulation of the electricity industry and the efficiency of
the electricity industry in respect of our joining the national grid in early 2001.”

31 Gilmore (1997b): “[t]his Government’s policy in respect to privatisation of the electricity industry is that
privatisation is not an issue at present ... [This] Government cannot entrench changes to the electricity industry
so that future Governments do not have options available to them in terms of privatisation, corporatisation or
unwinding.”

32 Gilmore (1997a): “I emphasise that these reforms do not involve the privatisation of any of the Government’s
existing electricity industry assets. Rather, as the owner ... the Government must ... deliver ... a commercial rate
of return to [the public] on these assets ... The accountability of the electricity corporations to Government and the
Parliament will in no way be diminished.”

33 Gilmore (1997b): “we now have to set in train various processes which will ensure that, when we join the
national grid, we do so as real competitors.”
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to leverage ownership and maximize dividends. This is consistent with the establishment of a few

generating companies each with a portfolio of assets, in lieu of power plants competing as individual

companies. While not explicitly stated, there may have been an incentive for the Government to

restructure the electricity industry as a set of government-owned oligopolists capable of delivering

sufficient rates of return.

Almost as soon as the decision to limit restructuring at deregulation was taken, it came under

scrutiny. The CoAG Independent Energy Review Panel released a report titled “Towards a Truly

National and Efficient Energy Market,” otherwise known as the Parer Review (2002). The Review

criticized the structure of the generation sector in QLD and concluded that it did not support

competitive outcomes. At the time, the three largest generating companies—all publicly owned—

comprised around 70 percent of total QLD capacity. When considering all government-owned

corporations, public control of generation represented over 85 percent of capacity. The Panel

noted that QLD could rectify undue regional concentration of ownership by further disaggregating

their portfolio generation businesses.34 This would create more competitive regional markets and

minimize the risk of any generator being able to exercise market power. This was followed in

2006 by the “Queensland Energy Structure Review” which provided recommendations to the QLD

Treasury (BCG, 2006). The Review proposed that the Government divest its generator assets to

avoid commercial and market risks. The former related to declining wholesale electricity prices,

while the latter were associated with the risk of crowding out private sector investment.

Despite the intense political pressure, the QLD Government resolved to keep its generating

assets in public hands. In fact, the Government twice further consolidated its generation hold-

ings. In 2007, it transferred the remaining fossil-fired assets from the government-owned net-

work business—Enertrade—to both CS Energy and Stanwell (QLD Government, 2007a).35 In

2010, the Government restated its commitment to public ownership of electricity generation assets

through the “Shareholder Review of Queensland Government Owned Corporation Generators”

34 The Panel also singled out NSW as another region suffering from high concentration due primarily to large
government-owned portfolio generators.

35 Collinsville Power Station was transferred to CS Energy, while Gladstone Power Station was transferred to
Stanwell. The increased public consolidation was somewhat offset by private sales: Enertrade’s Oakey Power Sta-
tion to AGL (AGL, 2007); and, wind assets from Stanwell and Tarong to Transfield Services Infrastructure Ltd.
QLD Government (2007b).
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(QLD Government, 2010).36 Furthermore, despite the concerns of the ACCC (2018), it consoli-

dated its three generation companies into two. Tarong Energy became a subsidiary of Stanwell

from July 2011. This left CS Energy and Stanwell as the sole government-owned generating com-

panies and the dominant market participants within QLD. The Government argued that an unfa-

vorable supply-demand balance and market developments—including, the emergence of vertically-

integrated gentailers and imminent carbon pricing legislation at the national level—necessitated a

restructuring to ensure its assets could adequately compete in the NEM (QLD Government, 2010).

Moreover, public participation in the market did not appear to prevent private sector investment,

as QLD had experienced the largest capacity expansion of any NEM region (AER, 2011b).

In 2012, the Liberal National Party won power in QLD for the first time since the inception

of the NEM, replacing the Labor Party. The following year, the new Government examined the

potential costs, risks and benefits of divesting Stanwell and CS Energy, as recommended by a

Commission of Audit (Costello, Harding and McTaggart, 2013). The Commission argued that the

government-owned generators suffer a competitive disadvantage through conflicting non-commercial

policy and regulatory requirements. They went on to state that delivery of government policy

objectives through ownership in the electricity industry is inefficient and lacks transparency. They

also attacked the notion that the disposal of assets denies the Government the benefit of future

dividends. By association, the Commission noted that holding assets subjects the Government to

the risk of commercial or political factors eroding the value of those same dividends. Finally, they

mentioned the opportunity cost of locking up scarce capital to the detriment of higher priority uses

to meet core government priorities.

Leaning on the Commission’s recommendations, the Government released its electricity industry

strategy titled “PowerQ” (QLD Government, 2014). The policy proposal included plans to lease

CS Energy and Stanwell for 50 years, with options to extend for a further 49 years (AER, 2015e).

At the same time, the Government reiterated that no sale would proceed without a mandate from

the QLD electorate.

36 As elaborated by Fraser (2010): “[t]he government resolved in 2006 to maintain public ownership of the gen-
erators, and this review has not altered that position. The continued ownership of the baseload fleet is a matter
of settled policy for this government. The outcomes of the review will keep the generators in public ownership but
restructure them to meet the challenging markets they now face.”
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Figure 2.1. Government vs private capacity ownership within QLD by financial
year.
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Notes: This plot presents government versus private generation capacity ownership in QLD between
the 2011-12 and 2018-19 financial years. The capacities for each bar are based on a snapshot taken
on the first day of the new financial year, 1 July. Ownership is based on trading rights defined
by the AER. Within QLD, ownership and trading rights are effectively the same, since the vast
majority of government companies schedule the units that they own. Since the PowerQ restructure,
government-owned generators have maintained at least 60% of the total capacity within QLD.

In early 2015, the Labor Party returned to power, partly under a promise to keep electricity

industry assets in public hands.37 Following the change of government, PowerQ and the generator

privatizations were scrapped.38

Thus, the 2011 restructure policy, consolidating generator assets into two government-owned

portfolios, persisted. Originally, this policy aimed to refocus the corporate strategies of the

government-owned generating companies from business development and growth to one of op-

erational efficiency across the existing asset base (QLD Government, 2010). At the time, it was

anticipated this strategy would result in a reduced market share, as additional capacity requirements

37 As summarized by Bailey (2015): “The state election delivered a verdict from Queenslanders on the future of
our electricity industry. The No. 1 message was no asset sales. The [Liberal National Party] went to the election
urging Queenslanders to sell every part of our electricity industry to the private sector. They [said the Labor Party
treats] it like a cash cow, yet their policy was to take the energy companies to the abattoir. Every generator, every
transmission line, every pole, every wire, every regional depot and every meter in every home was to be sold off to
the highest bidder.”

38 The Labor Party’s election platform was to merge the remaining state owned generators—CS Energy and
Stanwell—into a single government-owned company. Structural reform was considered as a mechanism for improving
business practices and realizing cost savings. This, however, never came to pass due to pressure from the ACCC
(Ludlow, 2015) and the state’s own Productivity Commission (2016).
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associated with rising demand would be met by the private sector (Commission, 2016). The QLD

Government considered that the approach would establish clear conditions for future investment

in the sector, providing the private sector with confidence to invest in timely new capacity. Since

the restructure, however, there has been no private sector investment in new NEM-connected gen-

eration capacity in QLD. As can be seen in Figure 2.1, the market share of the government-owned

generating companies has not fallen as was predicted.

2.4.2. Market concentration

Market concentration in the NEM has always been high (ACCC, 2018).39 The resultant impacts

on market outcomes were noted as far back as the Parer Review (2002). The Review lamented

persistent concentration throughout the market and admonished the QLD Government, in par-

ticular, for its decision to create three government-owned generation portfolios in lieu of further

disaggregation.40 Since that time, significant horizontal re-aggregation of the capacity in QLD

has occurred, where publicly-owned generation was primarily responsible.41 The state’s wholesale

electricity market has been persistently concentrated and isolated (AER, 2015e). It has less inter-

connector capacity than either NSW or VIC and this, in conjunction with the high concentration of

generation ownership, means that producers have a greater opportunity to exercise market power

(Wood and Blowers, 2018). This increases generator revenue above what would occur in a com-

petitive market. It allows generators to collect market power rents, thus, reallocating surplus from

consumers to producers and causing deadweight loss.

Since the 2011 restructure in QLD, the state’s spot market has been subject to increasing prices

and occasional periods of increased volatility. The drivers of these outcomes are myriad; however,

many stakeholders—including legislators, regulators and participants—acknowledge that highly

concentrated markets have exacerbated the situation (AEMC, 2015a,b; Commission, 2016). The

39 In electricity-only markets—like the NEM—some degree of concentration and market power is necessary due
to the “missing money” problem. See Joskow (2013) and Newbery (2016).

40 The Parer Review (2002) also cautioned that the nature of generating units controlled by portfolio generators
may strengthen the potential for them to exercise market power Parer (2002).

41 While all regions of the NEM are highly concentrated, there are differences between them (ACCC, 2018). In
QLD and TAS, concentration is a result of government ownership of significant generation assets. In the other
NEM regions, it is commercial gentailers together with government-owned Snowy Hydro which have the majority of
generation capacity.
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AER stated that CS Energy and Stanwell—the two government-owned participants—can exercise

market power due to their dominant market positions (AER, 2018c).

Along with high concentration, the adverse market outcomes in QLD have been attributed to

a tightening of the supply-demand balance and changes in the cost of generation (ACCC, 2018;

Commission, 2016). For the former, reduced supply and increased demand caused an increase in

competitive rents. Within QLD, the government-owned generators mothballed capacity at Tarong

Power station in 2012 and Swanbank E in 2014. The wider NEM experienced the exit of low-cost

brown coal generation, including Northern Power Station in 2016 and Hazelwood Power Station

in 2017. The rising demand for electricity in QLD was largely driven by the start-up of the

LNG projects near Gladstone. For the latter, the underlying factors of production became more

expensive, in particular due to increases in fuel costs. With respect to black coal, international prices

began to rise, while NSW generators suffered from supply disruptions. The increase in gas prices

was largely due to competing demands from LNG exports, exposing domestic gas to international

prices, and declining sources of domestic supply (ACCC, 2018). Thus, increased concentration

alone is unlikely to have instigated the adverse market outcomes in QLD. It is, nonetheless, a

contributing factor to both their frequency and magnitude.

2.4.3. Strategic behavior

Since the 2011 restructure, regulators have identified three market behaviors of the QLD government-

owned generators which have exacerbated deleterious market outcomes, namely: strategic conges-

tion, strategic rebidding and shadow pricing.

Strategic congestion refers to an interplay of opportunistic bidding and transmission network

congestion which led to spot market volatility in QLD between August and October 2012 and

again in January 2013 (AER, 2013b). In the 2011 restructure, CS Energy acquired control of the

generation at both ends of a strategic transmission line in central QLD.42 Thereafter, its bidding

behavior periodically resulted in power flows that contributed to network congestion. CS Energy

could cause a constraint to bind by increasing northerly flow along the bounded line. This was

42 CS Energy operated the Callide and Gladstone Power Stations located at southern and northern ends, respec-
tively, of the Calvale-Wurdong transmission line.
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possible by increasing output at the southern end, reducing output at northern end, or both (AER,

2012). Given the flexible rebidding rules within the NEM, CS Energy could manipulate its dis-

patched capacity between the two plants at short notice.43 With the constraint binding, AEMO

was obliged to manage the issue by ‘constraining off’ low cost generation in southern QLD and

‘constraining on’ high cost generation north of the congested line. 44 As a consequence of the

zonal nature of the NEM, the exchange of low- for high-priced QLD generation lead to increased

within-region prices and volatility.45 By late 2013, the construction of a nearby transmission line

eliminated the possibility of strategic congestion (AER, 2015e).46

The QLD government-owned generators adopted another bidding strategy: strategic rebidding.

The behavior was exploited by both by CS Energy and Stanwell and caused high prices and volatility

during the summers of 2013 to 2017 (AEMC, 2015a; AER, 2014b, 2015e, 2017d, 2018b).47

Rebidding provisions trade off dispatch efficiency and competitive outcomes (AER, 2018c). In

the short term, rebidding promotes efficient dispatch as it allows the market to respond dynamically

to changing conditions and/or information. Over the long term, rebidding indirectly supports

efficient investment decisions. Efficient wholesale prices provide the best signal for investment,

both in terms of the quantity and type of generation capacity needed over time. However, some

forms of rebidding can be detrimental to competition and efficiency. Rebidding unrelated to genuine

market conditions can limit or deter other participants from providing a competitive response. In

QLD, these behaviors compromised the efficiency of dispatch, causing prices to spike independently

of underlying market conditions (AER, 2014b). Spot price volatility increases market uncertainty.

In the short term, this puts upward pressure on forward contract prices and, ultimately, flows

43 In essence, CS Energy could increase flow on the Calvale-Wurdong line by rebidding capacity at Callide into
lower price bands or capacity at Gladstone into higher ones. Moreover, if the change in offer price was accompanied
with a high ramp rate then the change in dispatch level could be rapid (AER, 2012).

44 AEMO was also forced to send power flows out of QLD into NSW, often contrary to price signals—that is,
electricity flowed from the higher priced QLD region to the lower priced NSW region (AER, 2012).

45 The price volatility was largely driven by participant bidding behavior in response to the unexpected congestion.
This problem was known as disorderly bidding—that is, bidding contrary to underlying generation cost structures
and/or technical characteristics (AER, 2013b). In particular, generators tried to maintain output levels and receive
high spot prices by rebidding capacity from high to low—or even negative—prices. They also rebid down their ramp
rates so they could be constrained off only slowly.

46 Despite resolving the congestion, planners resorted to a costly technical solution. Other options, including
shareholder intervention, rule changes, restructuring, etc., may have been less expensive.

47 The rebidding provisions within the National Electricity Rules have been contentious since the NEM’s inception.
During the Parer Review (2002), stakeholders were critical and claimed that rebidding strategies had allowed the
exercise of market power by generators.
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through to consumers’ electricity bills (AER, 2015e). Over the long term, such market conditions

can deter new private investment in capacity.

Strategic rebidding was typically used in QLD on days of high temperatures and high energy

demand, and often when import capability on transmission interconnectors was limited—that is,

periods where there was a tight supply-demand balance (AER, 2015e). Nevertheless, leading into

the events, demand and generation plant availability were usually within pre-dispatch forecasts,

and price spikes were not predicted (AER, 2014b). Given these conditions, generators would peri-

odically rebid capacity from low to high price bands late in a settlement interval. The bids were

typically short-lived, lasting for only one or two dispatch intervals. In tight market conditions,

though, even such bids are able to cause prices spikes if other generators lack sufficient time to

respond to the rapid unexpected shift in supply. The probability that a late rebidding strategy

is commercially successful increases in an environment where the supply and demand balance is

tight and/or ownership is concentrated (AEMC, 2015a). The asymmetric dispatch and settlement

interval lengths further enhanced the profitability of such opportunistic bidding: a price spike in

one 5-minute dispatch interval that instigate a high 30-minute settlement price allows generators

to rebid capacity late and capture high prices for their generation across the associated settlement

interval.48

To recap, three main factors contributed to strategic rebidding in the NEM (Wood and Blowers,

2018). First, market rules which permitted late rebids, when few, if any, generators could respond.

Second, the inability, or unwillingness, of participants to respond rapidly to unexpected market

conditions. Third, highly concentrated generation ownership which allows for the exercise of market

power.49

The first two factors were addressed through a series of market rule changes. In July 2016,

the AEMC adopted reforms related to the integrity of bidding behavior in the NEM: bidding in

48 Further discussion of strategic late rebidding as well as specific events in QLD can be found in reports titled
“Electricity spot prices above $5,000 per MWh” prepared by the AER (2013a, 2014a, 2015a,b,c,d, 2017a,b). For
instances when prices are below $5,000 per MWh, see Wood and Blowers (2018), who develop a methodology for
systematically estimating settlement intervals containing late rebidding. The AEMC (2018) provides a critique of
their methodology and analysis.

49 The AER (2018c, p. 36) noted: “Participants ... have exercised market power at times in the past five years,
but it has not been sustained. Opportunistic rebidding by some QLD generators caused periods of spot price volatility
between 2013 and 2016.”
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good faith (AEMC, 2015a) and generator ramp rates (AEMC, 2015b).50 Similar to the original,

the revised bidding in good faith provision aimed to mitigate the number of false or misleading

bids made by market participants.51 It then went further by requiring rebids to be made as soon

as practicable after a material change in conditions and to record the circumstances surrounding

any late rebids.52 The revised ramp rate provision aimed to promote efficient dispatch by allowing

the market to respond efficiently to a change in merit order. The specific reforms applied the then

existing ramp rate limits to individual physical units within aggregated generation facilities. In

doing so, they effectively raised the minimum aggregate ramp rate capability across the NEM by

around 30 per cent (AER, 2017d).

Late rebidding declined after the AEMC initiated the rule change processes in 2014 (AER,

2018c). This suggests that regulators were able to have decrease attempts by QLD government-

owned generators to exercise market power through regulatory aversion. Moreover, after the rules

were implemented in July 2016, the government-owned generators changed rebidding strategies.

Instead of shifting capacity to high price bands and causing high prices, they reverted to shifting

capacity to low price bands during settlement intervals with high RRPs (AER, 2018c). While

the rule changes clearly influenced behavior, they did not result in lower QLD wholesale prices,

especially during the summer of 2016-17.

The increased prices in 2016-17 were a result of a sustained increase in offers, rather than

temporary price spikes as is typical with strategic rebidding (AER, 2018b). During this time,

the QLD government-owned generators along with other coal-fired producers adopted a shadow

pricing strategy. This resulted in less price volatility but higher average prices AER (2018c).

In a competitive market, generators have an incentive to bid at their marginal cost—the cost of

50 Additionally, the AEMC (2017) addressed dispatch and settlement asymmetry by adopting 5-minute settlement
intervals. The associated rule was implemented in July 2021 and, as such, is outside the scope of our paper.

51 The bidding in good faith reform was precipitated by a Federal Court decision handed down in August 2011 in
relation to proceedings the AER took against Stanwell Corporation. The AER alleged that Stanwell had breached
the good faith provision through a series of rebids in February 2008 (AER, 2008). The Federal Court dismissed the
case (AER, 2011a), and the event became a harbinger for similar strategic rebidding by the QLD government-owned
generators between 2013 and 2017. The revised rules came about as there existed concern that the Federal Court
decision had introduced uncertainty over the provision’s original policy intent and highlighted issues in relation to its
implementation (AER, 2018c).

52 The rule change defined a ‘late rebidding period’ as 15 minutes before a trading interval starts and the period
of the trading interval itself AER (2018c). If a rebid is made within this late rebidding period, then the participant
must keep contemporaneous records, which the AER can request to ensure the rebid was not false or misleading.
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producing an extra unit of electricity. If they bid a higher price, they risk not being dispatched and,

therefore, not receiving any revenue. If they bid a lower price, they can potentially lose money on

the electricity they produce (Wood and Blowers, 2018). When a generator with high marginal costs

sets the price, all other generators benefit from additional revenue. Coal-fired units, representing

baseload, are typically lower in the merit order, such that they are dispatched more often than not.

If marginal costs for higher merit order plants increase, then coal units can increase their offers

without fear losing dispatch. This “shadowing” of the next highest unit is where the name for the

strategy originates.53 So while generator behavior changed as a consequence of the AEMC reforms,

the adoption of shadow pricing meant that the new rules did not lower market prices (AER, 2018c).

A number of factors contributed to the use of shadow pricing by QLD government-owned

generators. Gas prices increased significantly in the preceding years, increasing in turn the cost of

gas-fired generation which is typically above coal in the merit order and acts as an upper bound to

their offers.54 Moreover, changes in NEM-wide supply conditions contributed significantly to the

sustained uplift in prices. A large amount of low cost capacity exited the market. This included

the abrupt exits of Hazelwood and Northern Power Stations—sizable brown coal plants in VIC

and SA, respectively. Moreover, NSW black coal generators experienced coal supply issues and

responded by offering their capacity at higher prices. A weaker competitive environment allowed

QLD black coal—a lower-cost generation source—to offer capacity at higher prices (ACCC, 2018;

AER, 2018c).55 Given the lack of competitive constraint in the NEM at-large, the divergence

between QLD government-owned generators’ offer prices and their fuel costs along with the resulting

high prices were likely exacerbated by the highly concentrated market structure in QLD (ACCC,

2018).

The QLD Government, in June 2017, “directed Stanwell to alter its bidding strategies to help

put as much downward pressure on wholesale electricity prices as possible” (QLD Government,

53 Shadowing behavior is not illegal; in fact, it is commercially rational. If generators are able to earn higher profits
through shadowing behavior, it can create market signals for investment in new generation (Wood and Blowers, 2018).

54 Increases in gas offers were adjudged by the ACCC (2018) to be in line with increases in gas fuel costs.
55 An alternative possibility is that fuel prices for QLD black coal generators also increased. However, the ACCC

(2018) found that the weighted average fuel cost for QLD black coal generators declined between 2015 and 2018. It
could also be the case that they were exposed to international coal prices at the margins, and thus, their opportunity
cost of coal for electricity generation was also exposed AER (2018c). This could have affected their offers, though
such increases in fuel costs are unlikely to explain the entire increase in RRPs.
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Figure 2.2. Normalized offer curves by government-owned company and financial
year.
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Notes: This plot presents average relative offer curves for CS Energy and Stanwell during the
2016-17 and 2017-18 financial years. The 2016-17 financial year curve occurred prior to the QLD
Government’s “Stanwell Direction.” The curves are local polynomial regressions using a normal
kernel with a 0.04 bandwidth. Some curves do not extend back to zero on the quantity axis since
there are no no points in those areas. It should be assumed that all curves extend back horizontally
until (0, -1,000).

2017b).56 Stanwell indicated it subsequently adjusted its bidding behavior in line with the direction.

Despite record demand, wholesale prices in QLD were significantly lower and price volatility was

56 As stated by the Premier (Palaszczuk, 2017): “We can intervene to reinvest the dividends of our power companies
because we own the assets. Now, under the Powering Queensland Plan, we can go further—because we own the
generators. We are directing Stanwell Corporation to take action during extreme weather events that puts downward
pressure on power prices.”
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down during the summer of 2017-18 following the direction (AER, 2018b).57 Market intervention

by the QLD Government played a key role in this outcome, while Stanwell Corporation’s bidding

was also a key driver.58 In the summer periods of 2015-16 and 2016-17, Stanwell offered significant

quantities at high price levels, which coincided with very high wholesale prices during those summer

periods. The significant change in their bidding strategy can be observed in the bottom panel of

Figure 2.2. During 2016-17, the top fifth of their available capacity was offered on average at prices

above $1,000 AUD per MW. During 2017-18, none of their available capacity was offered above

that price on average. CS Energy was not subject to the direction, though it also adjusted its

bidding behaviour (ACCC, 2018). It offered significant capacity at its Gladstone Power Station at

high prices prior to the direction to Stanwell. Similar to Stanwell, after the direction was issued the

amount of capacity it offered at high prices reduced. This can be seen in the top panel of Figure 2.2.

The changes in bidding strategy for Stanwell and CS Energy contrast with those in other regions,

where there is not much difference between the average curves during financial years 2015-16 and

2016-17. See Figure 2.C.1 in Appendix 2.C which shows offer curves at the region level.

The ACCC (2018) concluded that, in the absence of the direction by the QLD Government to

place downward pressure on wholesale prices, there was very limited constraint on the bidding be-

havior of QLD government-owned generators. The AER (2018c) noted that their strategic behavior

was reduced by the AEMC rule changes and effectively ended in mid-2017 through intervention by

the QLD Government. The government direction remained in place until June 2019.

2.5. Competitive Benchmark Model

Within electricity markets, the difference between price and marginal cost of the most expen-

sive unit required to meet demand is the fundamental measure of market power.59 Assuming no

market power, the absence of non-convexities, and a lack of other distortions, all units with a

57 In fact, QLD went from having some of the highest average prices in the NEM to generally having the lowest
average price. As stated by Bailey (2017): “Actions under the Powering Queensland Plan include ... [directing]
Stanwell to adjust its bidding to maximize outcomes in the energy market ... What impact did that announcement
have? A 10 percent drop in the future wholesale price within 24 hours.”

58 Other contributing factors to lower QLD RRPs included the government directed return to service of the
mothballed Swanbank E generator—a gas-fired unit operated by Stanwell (QLD Government, 2017b).

59 In markets with scarcity pricing, the proper measure of market power would be constructed based on bids and
not prices.
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marginal cost below the market price produce. Nonetheless, a naive comparison of the market

price to the marginal cost of the marginal unit may not be an accurate measure of market power.

Economic withholding – a firm strategically reducing output or raising its offer price – necessitates

the replacement of its production by other, more expensive generation that may be produced by

nonstrategic units. Therefore, to generate a reliable measure of market power, we must estimate

the system marginal cost of serving a given demand if all firms were behaving as price-takers. In the

following subsections, we describe the assumptions and data used for our competitive benchmark

model and for generating estimates of the system marginal cost of supplying electricity in the NEM.

We provide a synthesized description of our model in Appendix 2.A.

To construct a model of the NEM under perfect competition, we assume wholesale electricity

is a homogeneous commodity and all units act in a manner consistent with perfect competition.60

Finding the equilibrium solution based on a perfectly competitive market is identical to maximizing

total welfare. Thus, for each time period t ∈ {0, . . . , S}, a perfectly competitive market outcome is

obtained by solving the following welfare maximizing problem:

max
qi,r,t

Wt =
∑
r

∑
i

[
Pr,t(Qr,t)− ci,r,t

]
· qi,r,t (2.1)

where the output of unit i from region r at time t is represented by qi,r,t and is limited by its

capacity: qi,r,t ≤ qi. Simulated regional prices for region r and period t are given by Pr,t(Qr,t),

and simulated regional market demand by Qr,t. Marginal costs are defined as ci,r,t and are unit-

and time-specific. Figure 2.1 summarizes the maximization problem visually, while the following

subsections address its various components.

2.5.1. Market demand and prices

We use the generation of fossil-fired units qi,r,t to construct the residual demand for electricity

within each region. Thus, our estimate of the demand does not represent full end-use demand,

but instead the portion of demand satisfied by price-following generators. In effect, we assume the

60 This assumption can be relaxed such that our simulation approach uses a different benchmark, e.g. Cournot
competition. Thus, our approach is capable of representing imperfect competition in the product market, see e.g.
Bushnell, Mansur and Saravia (2008).
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Figure 2.1. Welfare maximization problem for region r.

Notes: The diagram presents a visual representation of the welfare maximization problem for our
simulated competitive benchmark model solved for each region r and settlement interval t. The
price-cost margin, PCMr, is equal to the difference in the actual and simulated market prices. The
areas as drawn are defined in relation to the actual market equilibrium, point A. At the simulated
equilibrium, point B, consumer surplus includes both the market power rents and deadweight loss
(DWL) areas. Welfare Wr in the simulated model is, therefore, equal to the sum of the areas for
consumer surplus, market power rents, competitive rents, and DWL. Both the offer curve and the
inverse demand curve are sourced from actual market outcomes, while the supply curve is from the
simulated model. We drop the t subscript for brevity. All remaining variables are as defined in the
text.

operations of non-modeled units—e.g., hydro and renewables—is exogenous. The validity of this

assumption is further discussed below.

111



Demand, as defined above, is represented by the function Qr,t = αr,t − βrPr,t for each region r

and time period t. It yields an inverse demand curve defined as:

Pr,t(Qr,t) =
αr,t −

∑
i qi,r,t − x̃r,t + yr,t

βr
(2.2)

where x̃r,t represents must-take generation and yr,t is net injections into region r.61 The inter-

cept, αr,t, and slope, βr,t, of the demand function is time-dependent since it is based upon actual

demand in each region. That is, we model a linear demand curve passing through the observed

price–quantity pairs across each region and period: αr,t = Q̃r,t+βr,t ·P̃r,t, where tildes signify actual

market outcomes.62 In the short-run, electricity is an extremely inelastic product, resulting from

consumers lack of exposure to wholesale prices and an inability to shift demand to other energy

sources or times. Thus, we set the price elasticity of demand to a low value: ε = −0.1.63 The slope

of the demand curve is, thus, estimated as: βr,t = ε
(

Q̃r,t

|P̃r,t|

)
The components of demand deserve some additional discussion. Essentially, we define demand

as equivalent to the sum of fossil-fired generation, must-take generation, and imports: Qr,t =∑
i qi,r,t + x̃r,t + yr,t. Note that must-take generation includes hydro, variable renewables (i.e. solar

& wind), batteries, non-scheduled generation, and AS. Each of these elements and their components

will be further elaborated below.

2.5.2. Fossil-fired generation

We explicitly model the individual fossil-fired units in each region. Through AEMO’s Integrated

System Plan (ISP) and its predecessor the National Transmission Network Development Plan (NT-

NDP), data on the production costs of thermal generation units are available.

Generation marginal costs are defined as the sum of fuel and variable operating and maintenance

costs for each fossil-fired unit. Fuel costs are calculated as the product of the regional fuel price

61 For simplicity, we drop price dependencies from Equation (2.2) and all subsequent notation.
62 For actual demand, we utilize net demand or, equivalently, the difference of demand and dispatched load.

Dispatched load tends to occur in NSW and QLD only, and even in these regions it typically represents a small
fraction of demand in any given settlement interval. The assumption to ignore dispatched load—or, to consider
it as non-price following—is similar to that adopted for must-take generation in Section 2.5.3. Nevertheless, this
assumption is conservative as it will tend to understate market power.

63 When the market is modeled as perfectly competitive, results are relatively insensitive to the elasticity assump-
tion, as price is set at the marginal cost of system production and the range of prices is relatively modest.
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and a unit-specific “heat rate,” which is a measure of fuel-efficiency. The marginal cost of unit i in

region r at time t is, therefore, an affine function:

ci,r,t =
V OMi + FPr,t ·HRi

LFi,y
(2.3)

where V OMi is the variable operating and maintenance cost per MWh and HRi is the heat rate

for unit i. The regional fuel price for coal, gas, or petroleum, FPr,t, is described in greater detail in

Section 2.6. Throughout our analysis, we assume that fuel prices are competitively determined. If,

however, this is not the case or reported prices exceeded actual prices, then we have underestimated

the full impact of market power within the NEM.

The Loss Factor, LFi,y, varies by unit i and financial year y and is calculated as the product

of the Marginal Loss Factor (MLF) and the Distribution Loss Factor (DLF). As the NEM is a

zonal market, these factors represent intra-regional losses. The MLF is an annual projection of the

fraction of energy lost when electricity is transmitted between a transmission connection point and

the regional reference node (RRN). The RRN is the transmission node where settlement occurs

and, by implication, the regional reference price (RRP) is set. If a generator is connected to a

distribution network, the DLF represents average projected losses between the generator and the

transmission node of the distribution network. Essentially, LF represents the marginal losses for a

generator to deliver electricity to the RRN and, thus, allow all generation to be treated uniformly.

They are conditional on year since AEMO fixes their values over the Australian financial year

starting in July through forward-looking market simulations.

When building regional marginal cost curves, one typically needs to constrain qi,r,t by an ex-

pectation of capacity. To do that, electricity benchmark models tend to rely on either Monte

Carlo simulation methods (Borenstein, Bushnell and Wolak, 2002) or the expected capacity di-

rectly (Bushnell, Mansur and Saravia, 2008; Wolfram, 1999).64 Here, however, we rely on the

self-reported availability of the unit, z̃i,r,t, bid into the market. As such, we adopt the constraint

that qi,r,t ≤ z̃i,r,t. This inequality recreates the market outcome as accurately as possible and will

understate the amount of market power if strategic withholding is being exercised.

64 Regarding the expectation approach, the capacity of a generating unit is reduced to reflect the probability of a
forced outage. The available capacity of generation unit i, is taken to be (1−fofi) · capi, where capi is the maximum
capacity of the unit and fofi is the forced outage factor reflecting the probability of an unexpected shutdown.

113



It is important to note that electricity generation creates additional costs to those considered

here. We focus on short-run marginal costs related to fuel and operating expenses. Clearly, sunk

costs, including capital and periodic maintenance, should be excluded from any estimate of short-

run marginal cost. Various dynamic unit-commitment constraints, such as startup, ramping and

run-time costs, are not sunk. And indeed, they are included in observed prices. These constraints

create nonconvexities in unit supply functions which present a modeling challenge. Therefore, to

assess their impact on observed prices, we construct regional supply curves from actual energy bids.

We then find their intersection with a vertical demand curve based on actual regional demand for

the specific settlement interval. The resulting simulated prices did not differ significantly from

observed ones. As such, we assume dynamic constraints are negligible and our analyses instead

rely on observed prices.65

2.5.3. Must-take generation

We model hydro, variable renewable energy (VRE), battery storage and non-scheduled generation

as must-take. That is, we model this output as non-strategic. We assume the observed out-

put of these units is what would be produced by a price-taking firm in a perfectly competitive

market. This implies that the operations of these must-take units does not change. Following

Borenstein, Bushnell and Wolak (2002), this assumption biases against finding market power. We

discuss the validity of the assumption for the different generation technologies below.

A significant portion of hydro resources within the NEM are owned by hydro-dominant firms,

which typically offer cap contracts on futures markets. Such financial products function as insurance

for load serving entities against supply scarcity and high spot prices. When spot prices exceed

$300 AUD/MWh, hydro units holding cap contracts must pay the difference to their counterparty.

Clearly, they are incentivized to operate when the price is high, so as to avoid absorbing the high

prices themselves. This represents a fairly strong incentive to lower wholesale electricity prices and,

thus, supports our assumption of price-taking behavior by hydro units.

VRE, including solar and wind, operates as semi-scheduled generation. This implies that, unless

directed otherwise, VRE will always produce when it physically can. Non-scheduled generation is

65 For papers estimating dynamic benchmark models, see e.g. Reynolds (2018) and Jha and Leslie (2021).
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similar in that when it is producing, it is automatically accepted during dispatch. Essentially, both

VRE and non-scheduled units are must-take generation since they are considered inframarginal to

the market.

Batteries operate as scheduled generation. However, given their size, their primary function is

shifting current intermittent generation to a future time. As such, they typically bid into the AS

instead of the energy market and represent only a small fraction of annual generation in the NEM.

In fact, this latter point is applicable across all forms of must-take generation.

2.5.4. Ancillary services

Along with the forms of generation discussed in the previous subsection, we also model some AS

as must-take generation. AEMO is obligated to operate the NEM in a secure and reliable manner.

This obligation is fulfilled, in part, through Frequency Control Ancillary Services (FCAS), which,

as the name suggests, maintain the electrical frequency of the grid.

There are eight markets in the NEM for procuring FCAS, defined by two major categories:

regulation and contingency. Regulation frequency control refers to the modification of the supply-

demand balance in response to minor deviations in generation or load. Contingency frequency

control is the rectification of the supply-demand balance following major contingency events, such

as the loss of a generating unit, large industrial load, or transmission element. Regulation services

are constantly used to correct for minor changes in the supply-demand balance, while contingency

services are only occasionally used but are always enabled to cover unplanned events. The FCAS

markets also operate in two directions: raise and lower. The former(latter) is used to correct

a minor drop(rise) in frequency, which requires either an increase(a decrease) in generation or a

decrease(an increase) in load.

Many generators competing in the energy spot market are also eligible to earn payments for AS,

assuming they bid successfully into one of the AS markets. Regulation and contingency, therefore,

represent an alternative use for much of the generation capacity throughout the NEM. In the case

of the NEM, the provision of energy and AS is not necessarily mutually exclusive. Thus, the set

of generators available to ancillary services markets is very similar to that available to the energy
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market. Since AEMO is procuring extra capacity for the provision of raise AS, these services should

be considered as part of market-clearing demand. It is effectively withheld from the spot market

and its capacity is otherwise unavailable. For this reason, we add cleared raise AS to demand

within each NEM region.66 We limit the expansion of demand to raise AS, since those generators

offering lower AS must already be producing. As such, lower AS cannot be withheld from the spot

market. For context, the cleared quantity of raise AS peaked as high as 14% percent of total NEM

demand, while its mean percentage was around 7% percent over our time horizon.

2.5.5. Interconnectors

We assume that inter-regional trade is managed to efficiently arbitrage price differences across

regions, subject to interconnector limitations. Mathematically, we adopt an approach similar to

Metzler, Hobbs and Pang (2005) and Bushnell and Chen (2012) to represent the arbitrage condi-

tions as a set of constraints within the market equilibrium. Essentially, the transmission ‘flow’

induced by a marginal net injection of electricity in region r can be represented by a power transfer

distribution factor (PTDF), φr,l, which maps injections to flows over interconnectors l. Given that

the NEM is a radial model with VIC1 as the hub, a net injection, yr,t ≥ 0, in region r is assumed to

be withdrawn at the hub. In fact, we assume that all net injections balance with their withdrawal

in every time period t:
∑

r∈R yr,t = 0. This condition is subject to the export and import flow

limits—T̃ ex
l,t and T̃ im

l,t , respectively—across interconnectors l and time periods t. Figure 2.2 displays

the aggregate directional flow limits within the NEM.

2.5.6. Price cost margins

Utilizing the assumptions outlined in the previous subsections, we solve the welfare maximization

problem for the perfectly competitive market price for each region and settlement interval within the

NEM from 2015 to 2019. Our assumptions regarding must-take generation mean that we directly

apply the observed production of hydro, VRE, and AS resources for each settlement period.

66 Adding raise AS to demand is equivalent to shortening the supply curve by the same quantity.
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Figure 2.2. NEM maximum aggregated interconnector capacity by direction.
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Notes: The map illustrates the maximum inter-regional transmission between NEM regions. The black values next
to the arrows represent the maximum flows in MW, which are sourced from AEMO (2017). While these numbers
represent upper limits across all time S, our model uses the settlement-specific import and export limits for each
region r and settlement interval t. The interconnectors linking each region are: Terranora and QNI traversing NSW
and QLD; the eponymous VIC-NSW interconnector; Basslink traversing TAS and VIC; and Heywood and Murraylink
traversing VIC and SA.
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Once we account for must-take generation and net injections, our competitive benchmark model

finds the intersection of the residual demand curve and the marginal cost curve. It estimates

the marginal cost for satisfying the residual demand with fossil-fired resources in each settlement

interval. This yields an estimated regional marginal cost cr,t, which is equivalent to the perfectly

competitive regional spot price: Pr,t.

We rely on RRPs P̃r,t for the actual market clearing prices. Price-cost margins are then calcu-

lated as the difference between the market-realized prices and the perfectly competitive benchmark:

PCMr,t = P̃r,t − Pr,t.

Our procedure produces a some cases in which the price-cost margin is negative.67 This, of

course, does not seem plausible. Absent operational error or predatory pricing, units will not offer

power at prices below their true economic short-run marginal costs. That is, actual prices should

not be below the simulated perfectly-competitive price. However, the cases of negative margins do

not necessarily render our whole approach invalid but rather point to two assumptions influencing

the precision of our estimates. First, the non-convexity assumption means that our model ignores

dynamic constraints which can lead to cost estimates exceeding observed prices. This happens as

startup costs, minimum load constraints, etc., can generate opportunity costs that lower the true

marginal costs of operating. Thus, a costly unit may run if it is better off doing so across multiple

settlement intervals. Second, the generator cost and fuel data we use is not a perfect representation

of actual costs. Given available time and resources, we apply values submitted to and extrapolated

from Australian federal regulatory agencies and authoritative public sources. Since the values may

not be exact or applicable across our entire sample, our marginal cost estimates may be accurate

to a range instead of a point.

2.6. Data

This section provides details regarding the data and its preparation. We utilize detailed hourly

market and generation data. These hourly output data are aggregated by region to develop the

‘residual demand’ in the simulation model. They are also combined with unit-specific cost data to

produce regional supply functions for simulations of competitive outcomes.

67 For QLD, the share of negative price-cost margins is around 7%. For NSW and VIC, it is just above 30%.
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Figure 2.1. Volume-weighted prices by region and financial year.
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Notes: This plot presents the trends in volume-weighted average prices by region and financial year.
Notably, QLD transitions from one of the more expensive regions pre-Direction in 2016-17 to the
least expensive in 2017-18 after the QLD Government intervened.

Our primary source for market data is the Market Management System Data Model (MMSDM)

published by AEMO. The MMSDM is a centralized, high-frequency and non-annonymized synthesis

of publicly available NEM data. It includes a rich set of variables capable of reproducing the various

aspects of the NEM at the dispatch-level. For our purposes, we extract the following variables

for the period between 2015 and 2019: region-level prices, loads and AS; unit-level availabilities,

generation and characteristics; and, interconnector flows.

RRPs serve as a crucial input to our price-cost margin calculations, while actual demand and

interconnector flows are exogenous inputs to the welfare maximization problem. Figure 2.1 presents

the trends in RRPs across regions and financial years during our sample. Unit-level generation and

characteristics allow us to identify and aggregate the various must-take generation sources. As

described in Section 2.5, these include hydro, solar, wind, batteries, non-scheduled generation and

raise AS. Figure 2.2 provides an overview of generation capacity by region and technology, while

Figure 2.C.2 in Appendix 2.C provides the equivalent for total generation.

The data flowing into calculations of our unit-specific, time-dependent marginal costs are

sourced more broadly. To begin, we extract fossil-fired unit availabilities and marginal loss factors

from the MMSDM. To classify units, we gather fuel types and descriptions from the “Registration
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Figure 2.2. Capacity by region, technology and financial year.
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Notes: This plot presents generation capacity by region and technology between the 2015-16 and
2018-19 financial years. The capacities for each bar are based on a snapshot taken on the first
day of the new financial year, 1 July. Variable renewable energy (VRE) includes large-scale solar
and on-shore wind. Other includes liquid fuels and biomass. We do not account for the regional
interconnector capacities, nor for roof-top solar installations which are significant in Australia. An
equivalent plot presenting total generation by region, technology and financial year is presented in
Figure 2.C.2 in Appendix 2.C.

and Exemptions List” published by AEMO. The List represents a cross-section of all registered par-

ticipants in the NEM at a given time. It is updated upon changes in status and includes information

about generator characteristics, capacities, and ancillary services.

We take heat rates and VO&M expenditures per unit of electrical energy from the ISP and

NTNDP reports and synthesized within the “Fuel & Technology Cost Review.” The NTNDP and

ISP are simulation exercises developed by AEMO to provide guidance on the efficient development
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of the NEM. The parameters used for their simulations are gathered from a industry survey and

serve as essential inputs for our model.

Finally, we collect fuel prices from a diverse set of sources dependent on the specific fuel. For

natural gas, we rely on spot markets managed by AEMO, namely: the Declared Wholesale Gas

Market (DWGM) in VIC and the Short Term Trading Market (STTM) in NSW, QLD and SA.

The latter trades daily, while the former trades intra-day. TAS does not currently host a spot

market; however, it is connected to the DWGM in VIC through the Tasmanian Gas pipeline.

Thus, we apply a markup for transmission under the Bass Strait to all TAS natural gas units. We

also apply a haulage change to all mainland units. These are unit-specific based on the relevant

pipeline connections. The dataset was developed for the sole purpose of our model by associating all

natural gas units with nearby gas transmission infrastructure. The applicable tariffs were manually

collected from the various pipeline owners based on online information.

For coal, the model requires price timeseries for the type of coal regionally available. NSW and

QLD rely predominantly on black coal, while brown coal dominates in VIC and SA. TAS does not

have any coal units. For black coal, we use on daily spot prices of Newcastle thermal coal published

by Bloomberg.68 For brown coal, there is a dearth of public pricing data. This is a consequence of

most brown coal generators being located at the mine mouth and engineered for the specific coal

quality and composition. Typically, the mine and power plant are vertically integrated or they

strike confidential, bilateral supply contract. Either option obviates the need to procure fuel from

the open market. Thus, we extrapolate brown coal prices from the Newcastle spot data and the

ratio of brown-to-black prices in the ISP from the “Coal and Biomass price”.

For petroleum products, we require price timeseries for diesel and kerosene. The Australian

Institute of Petroleum (AIP) provides daily diesel terminal gate prices (TGP) within each Aus-

tralian capital city. Unfortunately, to our knowledge, kerosene price data are not publicly available

for Australia. Since its kerosene is mostly sourced through Singaporean markets, we determine the

spread between kerosene and diesel spot prices in Asia and add it to the state-based diesel prices

from the AIP.69 Justification for this methodology relies on the fact that the cost components for

68 Specifically, we procure “Australia Newcastle Port Thermal Coal 6000 kcal/kg FOB Spot Price” data under
the ticker “COASNE60.”

69 The data are sourced from Bloomberg: “Asia Gasoil 10ppm FOB Singapore Cargo Spot” for diesel under the
ticker “GASL500P” and “Singapore Jet Kerosene Spot Price” for kerosene under the ticker “JETKSPOT.”
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Figure 2.3. Daily fuel prices averaged by month.
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Notes: This plot presents the trends in coal and gas prices ($AUD/GJ) across Australia by month
between 2015 and 2019. Coal is sourced from the daily Newcastle Port Thermal Coal 6000 series
from Bloomberg. Gas is an average of daily spot prices from the DWGM and STTM provided
by AEMO. At the start of 2016, both input fuels increase in price, though gas climbs higher and
remains above coal for the remainder of our sample.

kerosene and diesel are equivalent except for their Singaporean spot prices. That is, the Australian

excise rates for both fuels are equivalent, implying that the difference in spread is solely due to the

difference between their respective spot prices.70

As heat rates are provided in GJ/MWh, we convert all prices to GJ using regional energy

content values from the “Guide to the Australian Energy Statistics” published by the Department

of the Environment and Energy (DEE). Since natural gas is already priced per GJ, this only applies

to the coal and petroleum products. Figure 2.3 provides the timeseries for the cleaned daily fuel

prices in $AUD/GJ.

It should be noted that all unit-specific datasets are merged on unit ids and, in some cases,

names. Unfortunately, the merge is incomplete and some units lack necessary variables. Thus, using

data available from generators with similar technology and geographic proximity, we extrapolate

any missing values. While this process introduces some uncertainty, it ensures we have complete

supply curves and cost information is consistent across all units. Additional information regarding

70 The methodology of transforming regional Australian diesel prices to kerosene prices was developed by combin-
ing resources from the AIP, Australian Tax Office (ATO) and the Australian Competition & Consumer Commission
(ACCC). Additional information is available on request.
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assumptions and extrapolations is available upon request. Table 2.B.1 in Appendix 2.B summarizes

the data sources by providing a mapping to the model variables.

2.7. Results

Using the model described above, we simulate the perfectly competitive market outcome for

each settlement interval from 2015 to 2019 inclusive. Below, we present a comparison of actual

versus simulated market results germane to the “Stanwell Direction” which occurred on 6 June

2017. We primarily discuss its effects on price-cost margins and exports within QLD.

2.7.1. Price-cost margins

During the 2016-17 financial year, average spot prices increased dramatically across the NEM. Most

regions experienced record annual average prices, nearly double levels from only two years prior

(AER, 2018b). While prices eased in most regions during the subsequent years, they stubbornly

remained above pre-2016-17 annual averages (AER, 2020).

Market policymakers and regulators identified several drivers of the NEM-wide price surge.

In VIC, price pressure increased after the closure of Hazelwood Power Station (HPS) in March

2017 (AER, 2018a). Hazelwood was a large brown coal generator representing around five percent

of the NEM’s capacity. Its decommissioning followed years of similar closures and stagnant in-

vestment in dispatchable generation across the NEM. These conditions resulted in a much tighter

supply-demand balance, where low-cost coal was initially replaced by more expensive gas and hydro

generation. The regulators also observed that black coal generators in NSW and QLD simultane-

ously increased their offer prices. In part, this was understood to be a consequence of increasing

coal costs and supply interruptions. However, the regulators also believed that surging gas prices

across the Eastern seaboard decreased competitive pressure on baseload plants. As a result of that

decrease, some black coal generators periodically engaged in shadow bidding up to the marginal

costs of the next highest generator in the merit order, typically gas plants. In fact, the AER found

average offers from NSW and QLD black coal generators increased more than underlying costs

(ACCC, 2018; AER, 2017c).
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Prices relented in QLD and NSW starting in 2017-18, though they remained above pre-HPS-

closure averages. Market intervention by the QLD Government—including the Stanwell Direction

in June 2017—was cited as a major contributor towards decreased price pressures. Figure 2.1

supports this narrative through the results of our price-cost analysis. It displays non-parametric

means of actual versus simulated prices by region and financial year. Actual prices are based on

RRPs from AEMO, while simulated prices are generated using our model of perfect competition

and represent the market’s marginal cost. The shaded area between the two prices curves represents

the average price-cost margin for the particular level of regional demand. Panel (a) presents the

results for QLD, where the two years following the Direction clearly break from the pattern of

the two years prior to it. During the preceding years, 2015-16 and 2016-17, actual prices exceed

simulated ones only modestly at low and intermediate levels of demand; however, at high levels,

the average price-cost margin explodes. At low levels, the price gap is anywhere between $10 to $30

AUD, while at high levels, it can increase by hundreds and even thousands of AUD. Post-Direction,

the large price-cost margins at high levels of demand evaporate and, instead, mirror those at lower

levels of demand. Thus, there is strong indication that the Direction played a role in reducing

excessive margins at high levels of demand within QLD.

Panel (b) presents results for NSW, which are similar but less dramatic to those from QLD. The

pre- and post-Direction pattern repeats, as large margins at high levels of demand disappear in the

post-period. Panel (c) presents results for VIC, where the pattern does not repeat. This difference

in outcomes between NSW and VIC can perhaps be best explained by their respective proximity

to QLD. Whereas NSW is a neighbor and directly imports and exports power from QLD, VIC is

two degrees removed and is only indirectly affected by changes in QLD. In essence, any effect from

the Stanwell Direction in VIC is likely overwhelmed by local conditions.71

71 In particular, the Basslink interconnector between VIC and TAS was inoperable for six months during 2015-16.
This outage overlapped with high summer temperatures pushing prices up as more expensive mainland gas resources
were forced to make up the difference (AER, 2017d). The 2016-17 financial year saw the return of the Basslink
interconnector as well as one of the mildest summers in recent times resulting in few price spikes (AER, 2018b).
Extreme temperatures, however, returned during the summers of 2017-18 and 2018-19 and led to high demand
periods. These coincided with generator outages, exacerbating the local supply-demand balance which was already
strained as a consequence of the Hazelwood closure in early 2017 (AER, 2020). As such, the VIC plots in Figure 2.1
better reflect its local market conditions with high prices absent during 2016-17 and featuring prominently during
the other three financial years.
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Figure 2.1. Price-cost margins by region and financial year.
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Notes: See below.
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Figure 2.1. Price-cost margins by region and financial year (cont).
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Notes: This plot presents non-parametric means of actual versus simulated prices by region
and financial year. The shaded area between the two prices curves represents the average
price-cost margin for the particular level of regional demand. Actual prices are based on RRPs
from AEMO, while simulated prices are generated using a multistate model with endogenous
transmission flows. The price curves are local polynomial regressions using a normal kernel
with a 500 MW bandwidth. The black lines along the horizontal axis provide the density of
actual demand. The shown range is limited to between 0 and $1,000 AUD/MW, while the
full range can be viewed in Figure 2.C.3 located in Appendix 2.C.

Figure 2.2 reinforces the evidence for the step change in margins that occurred in QLD post-

Direction. The Figure overlays daily average Lerner index values during the 2017 and 2018 calendar

years for QLD.72 The vertical dashed line identifies the date of the Direction, while the curves

represent the result of local polynomial regressions. The plot serves to highlight that relative

markups decreased after the Direction in 2017, contrasting with their stability during the subsequent

year. Figure 2.C.4 in Appendix 2.C provides the companion plots for NSW and VIC. The former

displays a similar drop in average Lerner index values post-Direction, while the latter does not.

It is possible that the pattern of Lerner index values across these three plots is a consequence of

72 The Lerner index is the ratio of the price-cost margin over actual prices and is a standard measure of market
power.
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Figure 2.2. Daily average Lerner index values for QLD by calendar year.
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Notes: This plot presents daily average Lerner index values for QLD during the 2017 and
2018 calendar years. Lerner index values are based on actual market outcomes from AEMO
and simulated runs from a multistate model with endogenous transmission flows. The vertical
dashed line identifies the date of the QLD Government’s “Stanwell Direction” which occurred
on 6 June 2017. The curves are local polynomial regressions using a normal kernel with a 45
day bandwidth. They serve to highlight that relative markups decreased after the Direction in
2017, which contrasts with their stability during the subsequent year. Similar plots for NSW
and VIC are provided in Appendix 2.C.

measurement error. However, there is no reason to believe that these errors commence concurrently

with the Direction.

In order to better understand the changes in Lerner index across time, we must account for

differences in the relative levels of demand over these periods. As described above, we would expect

estimated market power to decrease post-Direction at high demand levels. Figure 2.3 shows kernel

regressions of the Lerner index on regional demand for the four financial years of interest. The

dashed curves represent the outcomes for the pre-Direction period, while the solid curves shows the

post-period developments. Panels (a) and (b) present the results for QLD and NSW, respectively.

As anticipated, there is a sharp drop in the Lerner index—and thus, in market power—at high levels

of demand in both regions post-Direction. They differ, however, at lower levels of demand. NSW

experienced a decrease post-Direction across almost all levels; whereas, QLD only experienced a

decrease at high levels. This is consequential for the impacts of the Direction, which we will return

to below. Panel (c) presents the results for VIC, which diverge significantly from the other two
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regions. This is particularly true for high-levels of demand where there is no discernible pattern in

relation to the Direction.73

Having generated estimates of price-cost margins for each settlement interval over our five-

year sample period, we can examine in more detail some additional measures to gain insight into

the underlying dynamics of the market. In particular, the difference in profits between actual and

simulated outcomes can be used as a measurement of market power rents and, thus, help understand

the effects of the Direction. We calculate total profits in a given settlement interval by summing

over the set of strategic, fossil-fired units in the model, where profits for each individual unit are

the product of their generation and the difference between the market price and their marginal

cost. In our model notation, this can be represented for unit i in region r during interval t as:

πi,r,t(qi,r,t) = [Pr,t − Ci,r,t(qi,r,t)] · qi,r,t (2.4)

which defines simulated profits. Actual profits, π̃i,r,t, are calculated symmetrically with market

prices replaced by P̃r,t and unit quantities with q̃i,r,t. Unit profits are then summed over all units

within a region r and over a set period of time T . The difference in actual versus simulated

summations results in an estimate of market power rents:

∆πr =
∑
t∈S

∑
i∈ r

πactuali,r,t −
∑
t∈S

∑
i∈ r

πsimulated
i,r,t (2.5)

where the dependent variables have been dropped for convenience.

Table 2.1 reports financial year market power rents along with actual versus simulated mean

generation, prices and profits. The common outcome across NSW, QLD and VIC is that market

power rents surged during the 2016-17 period just prior to the Direction: we estimate they exceed

two billion AUD within NSW and VIC and approach six billion AUD within QLD. These estimates

represent a little under half of the actual profits for these three regions during the 2016–17 financial

year, so they are significant numbers. After the Direction, subsequent financial years experienced

a sizable decrease in rents.

73 At low levels of demand, VIC experienced a large decrease in market power which far exceeded changes in
either NSW or QLD. After Hazelwood shuttered, supply-demand conditions in VIC were quite tight. As a result,
the frequency with which the remaining in-region brown coal generation was marginal decreased significantly (AER,
2018a). As a result, more expensive forms of generation replaced brown coal as the marginal generator, thus narrowing
the Lerner index and reducing market power in VIC.
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Figure 2.3. Lerner index densities by region and financial year.
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Notes: This plot presents non-parametric means of the Lerner index versus actual demand by
region and financial year. Lerner index values are based on actual market outcomes from AEMO
and simulated runs from a multi-state model with endogenous transmission flows. The dashed
curves occurred in years prior to the QLD Government’s “Stanwell Direction,” while the solid
curves occurred afterwards. The curves are local polynomial regressions using a normal kernel with
a 500 MW bandwidth.
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Table 2.1. Actual price, simulated marginal cost and difference in profits by fi-
nancial year

Actual Simulation

FY Generation Price Profit Generation Price Profit ∆Profit

[MW] [$AUD/MW] [$billion AUD] [MW] [$AUD/MW] [$billion AUD] [$billion AUD]

Panel A: NSW

2015-16 6,748 51.6 4.60 7,725 38.3 3.51 1.09

2016-17 6,701 80.6 7.79 7,993 55.6 5.62 2.17

2017-18 6,785 81.9 7.27 7,929 66.4 6.28 0.99

2018-19 6,776 88.1 8.06 7,661 79.5 7.67 0.39

Panel B: QLD

2015-16 6,454 60.0 4.88 6,029 31.1 2.01 2.87

2016-17 6,645 92.7 8.45 6,082 40.3 2.61 5.85

2017-18 6,786 72.4 5.36 6,260 40.8 2.18 3.18

2018-19 6,454 80.0 5.87 6,082 47.0 2.71 3.17

Panel C: VIC

2015-16 5,404 46.2 3.53 5,332 31.7 2.22 1.31

2016-17 5,183 66.6 4.83 4,870 42.6 2.78 2.05

2017-18 4,462 90.8 6.09 4,482 78.8 5.18 0.91

2018-19 4,235 107.9 7.22 4,252 99.9 6.69 0.53

Notes: This table presents the difference between actual and simulated profits. For each generator and settlement interval,

profits are calculated as the product of unit generation and the difference between price and marginal cost. These are then

summed over all units and intervals to arrive at an estimate for the financial year, actual and simulated profits and their
difference. Monthly results are provided in Table 2.C.1 in the Appendix.

Notably, QLD’s rents remained in excess of three billion AUD in both 2017-18 and 2018-19. In

fact, this is above those estimated for the 2015-16 financial year when the Direction did not yet

exist. Given these results and the Lerner index densities in Figure 2.3a, the Direction appears to

have mitigated the most egregious abuses of market power by QLD generators. These represent

the exercise of market power at high levels of demand, when its use would reap the greatest return.

However, Figure 2.3a also shows that the Direction had little effect on markups at lower levels of

demand. Significantly, generators continued to exercise market power and earn profits in excess of

competitive rents in QLD during the post-Direction period.74

74 Appendix 2.C contains a number of companion plots and tables which provide similar conclusions to Table 2.1.
Table 2.C.1 presents identical data but at the monthly level. Figures 2.C.5 and 2.C.10 present daily average Lerner
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2.7.2. Exports

We now turn to the question how the exercise of market power in QLD may have impacted other

regions, in particular NSW. In the previous subsection, we established that the bidding behavior

in QLD at high demand levels changed post-Direction; nevertheless, generator revenues remained

relatively stable.75 As QLD generators derive revenue from both satisfying local load as well as

exporting power to neighboring regions, this leaves open the question of whether the change in

generator bidding behavior in QLD had a symmetric effect on the electricity costs across QLD and

NSW consumers. The following analysis attempts to answer this question, by first assessing the

Direction’s impact on exports and prices, before returning to revenue effects.

Figure 2.4 displays the actual versus simulated average QLD exports between 2015 and 2019.

Pre-Direction, both sets of exports were in the vicinity of 200 to 600 MW on average. Post-

Direction, they diverged strongly: actual exports increased and were typically above 500 MW,

while simulated exports decreased and were typically below 250 MW.76 Broadly, exports increased

after the Direction; whereas, our perfectly competitive benchmark predicted a decrease for that

time period given the market fundamentals.

Across interconnectors, electricity tends to flow from less expensive to more expensive regions.

Generators from exporting regions are compensated at the importing region price.77 Figure 2.5

presents actual versus simulated prices in QLD and NSW by financial year. As can be seen in

index and monthly total revenues by region between 2015 and 2019, respectively. The demonstrate that QLD margins
and revenues decrease post-Direction, but yet remain significant.

75 See, among others, Figure 2.C.6.
76 An interesting feature of Figure 2.4 is that the curves appear to be negatively correlated. Figures 2.C.7 and 2.C.8

in Appendix 2.C attempt to shed some light on this relationship. Figure 2.C.7 plots QLD export densities versus
QLD actual demand. The mean curve for actual outcomes is negatively related—that is, as demand increases, exports
decrease. This is typical, as one would expect increasing local demand to be met by either local supply or relatively
less expensive imports. The simulated curve, on the other hand, displays a “U”-shaped relationship. This implies
that, in a perfectly competitive market, QLD would export more at both low and high levels of demand. The reason
for this can be found in Figure 2.C.8, which plots normalized demand in the other NEM regions against QLD demand.
In contrast with the other three regions, NSW is positively correlated with QLD demand over its entire range. In
essence, QLD and NSW are good predictors for one another: when demand peaks in QLD, it is likely high in NSW
too. Since the supply-demand balance is tighter in NSW compared to QLD, NSW moves up its merit order more
rapidly. Thus, in our simulation of perfect competition, QLD tends to export power to NSW at high levels of demand.
This explains why the curves in Figure 2.4 tend to move in opposite directions.

77 In fact, this is a simplification of how revenues from inter-regional trade are allocated within the NEM. Strictly
speaking, all generators are compensated for their output at their RRP. Only those who have purchased capacity
rights along an interconnector have a claim on the respective transmission revenues, which are equal to the product
of the inter-regional price difference and interconnector flows. Our simplification is equivalent when considering the
aggregate revenue across all generators in an exporting region.
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Figure 2.4. Average exports from QLD by dispatch interval between 2015 and
2019.
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Notes: This plot presents actual versus simulated exports from QLD by dispatch interval be-
tween 2015 and 2019. Actual exports are based on market outcomes from AEMO, while simu-
lated exports are generated using a multistate model with endogenous transmission flows. The
vertical dashed lines identify major events in the leadup to the QLD Government’s “Stanwell
Direction” which occurred on 6 June 2017. The curves represent local polynomial regressions
using a normal kernel with a 45 day bandwidth.

Panel (a) which illustrates the actual market outcomes, QLD had a positive price differential with

NSW pre-Direction. Thus, prices in QLD were on average greater than those in NSW, leading to

lower exports out of QLD. Post-Direction, this relationship flips for the majority of of QLD demand

levels. This leads to higher exports and corresponds to the trends observed in Figure 2.4.

In Panel (b) which shows simulated outcomes for our perfectly competitive benchmark, QLD

has a negative price differential across most demand levels and all financial years. As such, they

would be expected to export to NSW the majority of the time. For our analysis, the important

observation is that a significant price gap emerges post-Direction. This contrasts with the actual

outcomes, where QLD prices decrease below those in NSW, but the gap between them remains

relatively small. This means that, though simulated exports from QLD decreased, the marginal

revenue earned on each additional MW is greater than in the actual market.
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Figure 2.5. Actual vs simulated price densities by region and financial year.
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Notes: This plot presents non-parametric means of actual versus simulated prices in QLD and
NSW by financial year. Actual prices are based on RRPs from AEMO, while simulated prices
are generated using a multistate model with endogenous transmission flows. The price curves
are local polynomial regressions using a normal kernel with a 500 MW bandwidth. The black
lines along the horizontal axis provide the density of actual QLD demand. The shown range
is limited to between 0 and $300 AUD/MW.133



Figure 2.6. Monthly revenue differences in QLD from local and export demand
between 2015 and 2019.
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Notes: This plot presents the monthly difference between actual and simulated revenues in
QLD from local versus export demand between 2015 and 2019. Actual revenues are based
on market prices and quantities from AEMO, while simulated revenues are generated using
a multi-state model with endogenous transmission flows. The dashed vertical line represents
the QLD Government’s “Stanwell Direction” which occurred on 6 June 2017.

Therefore, in the actual market, prices decrease and exports increase, while the opposite occurs

in our perfectly competitive benchmark. The result is that these effects essentially cancel each other

out. Figure 2.6 displays monthly revenue differences for QLD from both local and export sources.

We define ‘revenue difference’ as the difference between actual and simulated revenues in any given

month. As can be seen, export revenues remain relatively stable throughout our sample. Moreover,

they mirror local revenue differences in the post-Direction period. As such, we can conclude that

the Direction affects QLD and NSW customers symmetrically.

2.8. Concluding remarks

In this paper, we study the intertwined effects of public ownership and market power in the

context of the 2017 “Stanwell Direction”—a formal instruction made by the QLD Government to a

government-owned generator demanding it put downward pressure on wholesale electricity prices.

134



The Direction was credited with lowering prices almost immediately; however, its effects on market

power and margins within the state were less obvious.

To investigate these effects, we first review the history of government ownership within the

QLD electricity sector and, in particular, its relationship to generation market structure and con-

centration. We then build a competitive benchmark model, and, relying on various data, including

high-resolution electricity market data from AEMO, we produce a counterfactual competitive time-

series. Comparison of actual market outcomes with our benchmark simulations suggests that abuses

of market power by QLD generators during periods of high demand decreased after the release of

the Direction. However, we find no evidence for the Direction affecting markups at lower levels of

demand. In fact, the analysis indicates that generators continued to exercise market power and

earn profits in excess of competitive rents in QLD during the post-Direction period. This represents

a continuation of the pattern of market power exploitation that existed prior to the Direction. We

also find that the Direction’s effects were symmetric for both QLD and NSW customers.

These findings open broader questions on the efficiency of government ownership in the QLD

generation sector. In their seminal work on privatization, Sappington and Stiglitz (1987) argue that

operating a government-owned company is only justified when the welfare loss of the market failure

exceeds the costs of government failure. In such circumstances, government-owned companies are

best suited when: (1) there already exists a competitive market; and, (2) intervention goals are

well defined with an emphasis on profit maximization. The QLD government-owned generators

meet the second criterion. They are legislated to have independent boards and management,

which are tasked predominantly with profit maximization. For the first criterion, the efficiency of

government versus private ownership depends heavily upon the degree of competition in the market.

In particular, the purpose of government-owned companies in deregulated markets is obviated if

there are no market failures. However, as we have shown, the QLD generation sector is not perfectly

competitive. Ironically, it is the government-owned generators and their combined market share

which both cause and exacerbate this market failure.

In this case, government ownership and market concentration appear to have conspired to

produce an adverse outcome. As discussed in the Section 2.2 literature review, the desirability of

public ownership is generally ambiguous. That said, the drop in wholesale prices at high demand
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levels associated with the Direction would not have been possible without government ownership.

Since the QLD Government was the sole shareholder, the cost of intervention was low. In fact,

the QLD Government notes, through its “Powering Queensland Plan” (2017b), that the Stanwell

Direction was “only possible because electricity assets [were kept] in public hands.” They go

on to state that “[a]s a shareholder of electricity assets, [they] have the ability to take steps to

counter some of the impacts in the broader national electricity market that [resulted] in higher

wholesale prices and volatility during peak demand periods.” Moreover, it could be argued that

the Government’s influence extended beyond its order to Stanwell. Vogelsang (1983) notes that

a single state oligopolist may be able to act as a market leader and so reduce damage across the

industry. Given the market structure, it is indeed highly likely that Stanwell acted as this leader

in a way that made the exercise of market by other participants less profitable.

Government intervention occurring within the framework of government ownership, thus, can

help redress a market failure. However, its wider market impacts are complex. For example, it

can distort market signals, affecting long-term private sector investments (AER, 2018b). Actions

imposed exclusively on government-owned companies could be considered discriminatory and pro-

vide a market advantage to one group of participants (Commission, 2016). As noted by the ACCC

(2018), while the Direction to put downward pressure on wholesale prices improved short- and

medium-term outcomes for consumers, interventions of this kind are not a substitute for struc-

tural reform. This point is underscored by the fact that despite the Direction, significant margins

persisted at lower levels of demand.

In the context of QLD generation, the most direct and effective policy would be to restructure

the industry through the disaggregation of government-owned generators. However, the QLD

Government is incentivized to structure its generating assets as large portfolio generators, as it

increases the probability of large and consistent dividends. The resultant decrease in competition

is likely to harm efficiency and social welfare. Structural reforms promote efficiency but reduce

dividends. For the Government, efficiency and fiscal objectives are clearly in conflict.

It should be noted that dividends from government-owned companies are returned to taxpayers

as government services. As such, the associated harm is partly reduced, though non-competitive

markets and market power still adversely impact allocative and technical efficiency. There are also
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potential equity implications, though the ex ante direction of the effects are ambiguous and would

require further study. Thus, there is a potential misalignment between government and societal

incentives. The government may be interested in improving its re-election prospects by using

large dividends to fund social programs or enact tax cuts. The social planner would be concerned

with maximizing welfare, which would necessitate correcting the market failure in the generation

industry. When framed in this way, it is possible to view government ownership as a barrier to a

less concentrated, more competitive generation market.
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Appendix

2.A. Model summary

This appendix describes the setup for the competitive benchmark model with endogenous in-

terconnector flows. We first outline the optimization before defining all indices, constants and

variables below.

Optimization

• Maximize social welfare Wt for all generation qi,r,t across unit i and region r during

settlement interval t:

max
qi,r,t

Wt =
∑
r

∑
i

[
Pr,t(Qr,t)− ci,r,t

]
· qi,r,t

s.t. z̃i,r,t − qi,r,t ≥ 0 ∀ i ∈ U

qi,r,t ≥ 0 ∀ i ∈ U

T̃ im
l,t −

∑
r∈R− φr,l · yr,t ≥ 0 ∀ l ∈ L∑

r∈R− φr,l · yr,t − T̃ ex
l,t ≥ 0 ∀ l ∈ L∑

r∈R yr,t = 0

where the first and second constraints are for unit capacity and unit generation non-

negativity, respectively. The remainder are flow import and export limits, as well as the

conservation of net injections.

Indices

• Units: i ∈ U

• Settlement intervals: t ∈ S
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• Financial years: y ∈ Y

• Regions: r ∈ R = {VIC1,NSW1,QLD1, SA1,TAS1}

• Outregions: r ∈ R− = {NSW1,QLD1, SA1,TAS1}

• Interconnectors: l ∈ L = {NSWQLD,TASVIC,VICNSW,VICSA}

Exogenous variables

• Assumed values:

– ε = 0.1 = price elasticity of demand

– φr,l = distribution factor from injections to flows (Power Transfer Distribution Fac-

tors, PTFD)78

φ =

NSWQLD TASVIC VICNSW VICSA


0 0 −1 0 NSW1

−1 0 −1 0 QLD1

0 0 0 −1 SA1

0 1 0 0 TAS1

• Market values:79

– P̃r,t = actual market price by region r and settlement interval t

– Q̃r,t = actual market demand by region r and settlement interval t

– x̃r,t = must-take generation by region r and settlement interval t, including semi-

scheduled, non-scheduled, hydro and battery sources

– z̃i,r,t = availability for unit i in region r and settlement interval t

– T̃ im
l,t = import limit across interconnector l and settlement interval t

– T̃ ex
l,t = export limit across interconnector l and settlement interval t

78 Since the NEM is a radial network with VIC as the hub, all flows along lines l are define with respect to
injections into VIC.

79 These are exogenous values taken from actual market data from AEMO. See Appendix 2.B for a mapping of
variable to source.

151



• Non-market values:80

– V OMi = variable operations and maintenance (VO&M) cost per MWh for unit i

– HRi = heat rate for unit i

– FPr,t = fuel price for coal, gas or petroleum in region r and settlement interval t

– LFi,y = MLFi,y ·DLFi,y = loss factor for unit i and financial year y, calculated as the

product of the marginal loss factor (MLF) and the distribution loss factor (DLF).81

Endogenous variables

• Demand curve in region r and settlement interval t

demand curve : Qr,t(Pr,t) = αr,t − βr,t · Pr,t

inverse demand curve : Pr,t(Qr,t) =
αr,t

βr,t
− 1

βr,t
Qr,t

• Demand curve slope defined using the actual market equilibrium in region r and set-

tlement interval t

βr,t = ε

(
Q̃r,t

|P̃r,t|

)
• Demand curve intercept defined using the actual market equilibrium in region r and

settlement interval t

αr,t = Q̃r,t + βr,t · P̃r,t

• Simulated demand in region r and settlement interval t, where qi,r,t is generation for

unit i in region r and yr,t is net injections in region r ∈ R−

Qr,t =
∑
i

qi,r,t + x̃r,t − yr,t

80 These are exogenous values taken from sources other than AEMO market data. See Appendix 2.B for a mapping
of variable to source.

81 The MLF represents average projected losses between the transmission node of the generator and the regional
reference node. If the generator is connected to a distribution network, the DLF represents average projected losses
between the generator and the transmission node of the distribution network.
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• Simulated price from the inverse demand curve in region r and settlement interval t,

where VIC1 is the hub and must be defined as the source of all net injections yr,t ∀ r ∈ R−

Pr,t(Qr,t) =
αr,t

βr,t
− 1

βr,t
Qr,t

=
αr,t −

∑
i qi,r,t − x̃r,t + yr,t
βr,t

PVIC1,t(Qr,t) =
αVIC1,t −

∑
i qi,VIC1,t − x̃VIC1,t −

∑
r∈R− yr,t

βVIC1,t

• Marginal cost for unit i in region r and settlement interval t

ci,r,t =
V OMi + FPr,t ·HRi

LFi,y

• Total cost in region r and settlement interval t

Cr,t =
∑
i

ci,r,t · qi,r,t
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2.B. Data summary

Table 2.B.1. Data source to variable mapping

Variable Description Source

P̃r,t Regional Reference Price which serves as both
an input to the intercept of the demand func-
tion and the price portion of the price-cost
margin.

AEMO MMSDM
(DISPATCHPRICE)

Q̃r,t Actual regional demand or load which serves
as an input to the intercept of the demand
function.

AEMO MMSDM
(DISPATCHREGIONSUM)

q̃i,r,t Actual fossil-fired unit generation which serves
as a comparison against our simulated unit
outputs qi,r,t.

AEMO MMSDM
(DISPATCHLOAD)

z̃i,r,t Fossil-fired unit availabilities which serve as
the constraint on unit generation.

AEMO MMSDM
(DISPATCHLOAD)

x̃r,t Must-take generation—i.e. non-scheduled
generation, hydro, solar, wind, batteries, and
raise regulation—which serves as an exogenous
portion of demand Qr,t.

AEMO MMSDM
(DISPATCHREGIONSUM,
DISPATCHLOAD &
DISPATCHINTERCONNECTORRES)

F̃l,t Actual interconnector flows which serves as
a comparison against our simulated regional
flows Fl,t.

AEMO MMSDM
(DISPATCHINTERCONNECTORRES)

T̃ im
l Actual interconnector import limits which

serves in the optimization problem flow con-
straints.

AEMO MMSDM
(DISPATCHINTERCONNECTORRES)

T̃ ex
l Actual interconnector export limits which

serves in the optimization problem flow con-
straints.

AEMO MMSDM
(DISPATCHINTERCONNECTORRES)

MLFi,y Marginal loss factors which serve as an input
to the marginal cost curve.

AEMO MMSDM
(DUDETATILSUMMARY)

DLFi,y Distribution loss factors which serve as an in-
put to the marginal cost curve.

AEMO MMSDM
(DUDETATILSUMMARY)

V OMi Variable operations and maintenance costs per
MWh which serve as an input to marginal cost.

AEMO ISP & NTNDP (Fuel & Technology
Cost Review)

HRi Heat rates in GJ/MWh which serve as an in-
put to marginal cost.

AEMO ISP & NTNDP (Fuel & Technology
Cost Review)

FP i∈ black coal
r,t Marginal cost of black coal in $AUD/GJ,

which serves as an input to the marginal cost
curve and is calculated as the quotient of price
over energy content.

Bloomberg (COASNE60); DEE (2017)
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Variable Description Source

FP i∈ brown coal
r,t Marginal cost of brown coal in $AUD/GJ,

which serves as an input to the marginal cost
curve and is calculated as the product of price
and brown-to-black coal price ratio over en-
ergy content.

Bloomberg (COASNE60); AEMO ISP (Coal
& Biomass price); DEE (2017)

FP i∈ natural gas
r,t Marginal cost of brown coal in $AUD/GJ,

which serves as an input to the marginal cost
curve and is calculated as the sum of price and
haulage.

AEMO DWGM & STTM; Gas Transmission
Tariffs

FP i∈ diesel
r,t Marginal cost of diesel in $AUD/GJ, which

serves as an input to the marginal cost curve
and is calculated as the quotient of price over
energy content.

AIP (Diesel TGP); DEE (2017)

FP i∈ kerosene
r,t Marginal cost of kerosene in $AUD/GJ, which

serves as an input to the marginal cost curve
and is calculated as the quotient of price over
energy content. Price is inferred from the stan-
dard excise taxes and the spread between Sig-
naporean kerosene and diesel.

Bloomberg (GASL500P & JETKSPOT); DEE
(2017)

i Unit names, ids and characteristics – such as,
fuel type and description, technology, capac-
ity, etc. – which serve to permit identification,
merging and extrapolation across the various
datasets.

AEMO Registration & Exemptions
List; AEMO MMSDM (DUDETAIL &
DUDETATILSUMMARY)

l Interconnector names, ids and characteristics
– such as, capacity limits, etc. – which serve
to permit identification, merging and extrap-
olation across the various datasets.

AEMO MMSDM (DISPATCHINTERCON-
NECTORRES); AEMO (2017)

Notes: The acronyms in the “Source” column are defined as follows: AEMO = Australian Energy Market
Operator; DEE = Department of the Environment and Energy; ISP = Integrated System Plan; MMSDM
= Market Management System Data Model; and, NTNDP = National Transmission Network Development
Plan.

155



2.C. Supplemental figures and tables

2.C.1. Descriptive outputs

Figure 2.C.1. Normalized offer curves by region and financial year.
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Notes: This plot presents average relative offer curves by region during the 2016-17 and 2017-18
financial years. The 2016-17 financial year curve occurred prior to the QLD Government’s “Stanwell
Direction.” The curves are local polynomial regressions using a normal kernel with a 0.04 bandwidth.
Some curves do not extend back to zero on the quantity axis since there are no no points in those
areas. It should be assumed that all curves extend back horizontally until (0, -1,000).
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Figure 2.C.2. Total generation by region, technology and financial year.
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Notes: This plot presents total generation by region and technology between the 2015-16 and
2018-19 financial years. Variable renewable energy (VRE) includes large-scale solar and on-shore
wind. Other includes liquid fuels and biomass. We do not account for the regional interconnector
capacities, nor for roof-top solar installations which are significant in Australia. An equivalent plot
presenting generation capacity by region, technology and financial year is presented in Figure 2.2
in the text.
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2.C.2. Analytic outputs

Figure 2.C.3. Price-cost margins by region and financial year.

2017−18 2018−19

2015−16 2016−17

4 6 8 10 4 6 8 10

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

Demand [GW]

P
ric

e 
[$

'0
00

 A
U

D
/M

W
]

Actual

Simulated

(a) QLD.

2017−18 2018−19

2015−16 2016−17

5.0 7.5 10.0 12.5 5.0 7.5 10.0 12.5

0

1

2

0

1

2

Demand [GW]

P
ric

e 
[$

'0
00

 A
U

D
/M

W
]

Actual

Simulated

(b) NSW.

Notes: See below.
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Figure 2.C.3. Price-cost margins by region and financial year (cont).
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Notes: This plot is the full-range companion to Figure 2.1 in the text. It presents non-parametric
means of actual versus simulated prices by region and financial year. The shaded area between
the two prices curves represents the average price-cost margin for the particular level of regional
demand. Actual prices are based on RRPs from AEMO, while simulated prices are generated using
a multistate model with endogenous transmission flows. The price curves are local polynomial
regressions using a normal kernel with a 500 MW bandwidth. The black lines along the horizontal
axis provide the density of actual demand.
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Figure 2.C.4. Daily average Lerner index values by region and calendar year.
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Notes: This plot is the companion to Figure 2.2 in the text. It presents daily average Lerner
index values for NSW and VIC during the 2017 and 2018 calendar years. Lerner index values
are based on actual market outcomes from AEMO and simulated runs from a multistate
model with endogenous transmission flows. The vertical dashed line identifies the date of
the QLD Government’s “Stanwell Direction” which occurred on 6 June 2017. The curves are
local polynomial regressions using a normal kernel with a 45 day bandwidth. They serve to
highlight that, after the Direction in 2017, relative markups decreased in NSW and remained
level in VIC. This is perhaps to be expected given that QLD and NSW are neighbors and
likely impact each other far more significantly than QLD and VIC.
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Figure 2.C.5. Daily average Lerner index values between 2015 and 2019 by region.
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Notes: This plot presents daily average Lerner index values between 2015 and 2019. Lerner index
values are based on actual market outcomes from AEMO and simulated runs from a multistate
model with endogenous transmission flows. The vertical dashed lines identify major events in the
leadup to the QLD Government’s “Stanwell Direction” which occurred on 6 June 2017. The curves
are local polynomial regressions using a normal kernel with a 45 day bandwidth.
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Figure 2.C.6. Monthly total revenue by region between 2015 and 2019.
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Notes: This plot presents monthly total revenue by region between 2015 and 2019. Actual revenues
are based on market prices and quantities from AEMO, while simulated revenues are generated using
a multistate model with endogenous transmission flows. Grey vertical line signifies the institution
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Table 2.C.1. Actual price, simulated marginal cost and difference in profits by month

Actual Simulation

Month Generation Price Profit Generation Price Profit ∆Profit

[MW] [$AUD/MW] [$million AUD] [MW] [$AUD/MW] [$million AUD] [$million AUD]

Panel A: NSW

2015-07 7,519 39.2 288.72 8,734 32.8 270.64 18.07

2015-08 7,044 36.8 247.04 8,366 29.2 218.73 28.31

2015-09 6,733 58.0 436.23 7,424 36.7 265.66 170.58

2015-10 6,426 36.7 232.61 7,567 20.5 100.98 131.63

2015-11 6,546 46.0 332.55 7,612 30.6 214.59 117.96

2015-12 6,686 44.6 309.78 7,928 29.0 207.93 101.85

2016-01 6,513 45.2 335.56 7,849 27.8 194.99 140.57

2016-02 7,347 38.8 275.42 8,637 27.5 195.95 79.47

2016-03 6,883 44.6 323.80 7,592 35.8 270.83 52.97

2016-04 5,954 66.1 444.28 6,405 51.9 353.42 90.86

2016-05 6,394 67.2 520.74 6,915 52.8 413.06 107.68

2016-06 6,943 97.5 849.21 7,670 86.5 802.62 46.59

2016-07 7,209 65.9 534.45 8,485 64.7 590.46 −56.01

2016-08 7,244 48.2 356.07 8,682 38.0 291.29 64.78

2016-09 6,426 44.8 259.27 7,476 36.6 218.57 40.70

2016-10 4,976 55.4 279.93 6,147 44.5 251.53 28.40

2016-11 5,591 83.1 533.22 6,631 51.1 321.15 212.06

2016-12 6,268 51.7 340.63 7,746 31.6 186.06 154.57

2017-01 7,562 82.6 776.97 8,727 53.5 502.21 274.76

2017-02 7,169 170.6 1, 673.53 8,634 102.3 1, 049.01 624.52

2017-03 6,906 92.9 783.00 8,357 58.4 508.09 274.91

2017-04 6,179 106.5 767.26 7,650 62.2 502.39 264.88

2017-05 7,153 89.6 753.18 8,528 55.4 489.28 263.90

2017-06 7,741 84.8 732.83 8,871 73.6 708.84 23.99

2017-07 7,570 91.2 798.14 9,067 68.6 639.55 158.59

2017-08 6,619 102.2 802.12 8,092 79.0 699.12 103.00

2017-09 5,987 87.0 544.94 7,618 63.7 471.55 73.38

2017-10 6,215 81.6 551.68 7,458 67.5 497.08 54.60

2017-11 6,712 78.7 550.14 7,647 64.2 468.38 81.76

2017-12 7,197 76.4 596.34 8,174 61.1 497.33 99.00

2018-01 7,542 75.8 632.68 8,580 58.2 493.02 139.66

2018-02 7,317 72.4 516.54 8,442 50.4 351.85 164.69

2018-03 6,762 66.2 467.94 7,998 42.7 272.93 195.01

2018-04 6,039 73.5 466.82 6,910 66.3 457.52 9.30

2018-05 6,456 76.8 550.40 7,410 74.4 584.51 −34.11

2018-06 7,011 100.5 796.15 7,745 100.1 850.45 −54.30

2018-07 6,993 74.5 556.27 7,972 75.4 624.12 −67.85

2018-08 6,282 92.3 657.46 7,030 103.9 831.91 −174.45

2018-09 6,299 93.1 650.73 7,006 94.6 712.71 −61.98

2018-10 6,369 88.0 633.73 6,993 75.5 552.61 81.12

2018-11 6,767 85.9 626.07 7,321 75.7 562.74 63.33

2018-12 6,669 82.0 608.07 7,610 71.7 553.42 54.65

2019-01 7,881 117.6 1, 183.03 8,959 90.9 955.46 227.57
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Actual Simulation

Month Generation Price Profit Generation Price Profit ∆Profit

[MW] [$AUD/MW] [$million AUD] [MW] [$AUD/MW] [$million AUD] [$million AUD]

2019-02 7,192 89.2 661.72 8,402 59.1 434.04 227.68

2019-03 6,730 87.6 660.67 7,715 66.6 519.11 141.56

2019-04 6,239 77.5 513.71 7,280 66.0 459.49 54.22

2019-05 6,687 79.1 581.31 7,532 77.1 611.59 −30.29

2019-06 7,228 91.0 729.88 8,155 96.4 851.81 −121.93

Panel B: QLD

2015-07 6,325 46.7 276.38 5,724 24.5 110.20 166.18

2015-08 6,141 40.3 215.96 5,523 23.4 91.69 124.27

2015-09 5,988 44.8 235.00 5,752 27.8 124.23 110.76

2015-10 6,101 36.4 171.89 5,440 21.0 68.99 102.90

2015-11 6,730 45.4 279.25 6,010 26.8 125.52 153.73

2015-12 6,781 43.1 250.19 6,047 25.6 122.27 127.93

2016-01 6,564 51.5 330.52 6,003 27.4 142.39 188.13

2016-02 6,735 121.3 1, 067.06 6,326 29.3 156.84 910.23

2016-03 6,627 70.9 503.57 6,544 30.4 176.82 326.75

2016-04 6,516 66.6 439.29 6,577 41.1 257.83 181.46

2016-05 6,192 69.6 466.98 6,058 44.7 275.12 191.86

2016-06 6,766 87.4 645.50 6,377 52.4 360.57 284.93

2016-07 6,616 60.8 347.53 5,878 44.2 253.45 94.09

2016-08 6,331 48.0 250.68 5,623 32.1 132.61 118.07

2016-09 6,216 46.0 216.96 5,702 30.1 105.07 111.89

2016-10 6,225 53.9 297.44 5,812 33.4 142.61 154.83

2016-11 6,721 69.4 439.27 6,231 44.2 245.27 194.01

2016-12 6,694 67.5 426.48 5,905 34.9 165.25 261.23

2017-01 7,034 199.5 1, 941.36 6,641 50.1 345.74 1, 595.62

2017-02 7,434 232.1 2, 200.35 6,817 65.9 468.37 1, 731.98

2017-03 7,028 89.0 648.35 6,450 43.3 253.24 395.11

2017-04 6,439 94.8 612.60 5,836 38.5 181.55 431.05

2017-05 6,323 86.2 562.89 5,921 34.9 161.24 401.65

2017-06 6,741 76.4 510.62 6,231 33.9 152.73 357.89

2017-07 6,769 77.6 522.74 6,039 39.2 169.19 353.55

2017-08 6,718 81.8 565.20 6,107 41.9 195.09 370.11

2017-09 6,363 80.4 497.95 5,928 45.6 207.14 290.82

2017-10 6,298 77.4 459.67 5,906 49.9 239.71 219.96

2017-11 6,856 65.3 381.31 6,359 36.1 135.79 245.52

2017-12 7,018 71.4 463.87 6,532 38.0 167.51 296.35

2018-01 7,186 72.7 461.40 6,620 47.0 257.22 204.18

2018-02 7,104 71.6 420.72 6,547 40.9 184.11 236.61

2018-03 6,942 62.1 351.14 6,293 37.0 156.89 194.26

2018-04 6,740 62.9 342.43 6,363 37.0 142.21 200.22

2018-05 6,621 64.8 373.29 6,109 35.8 137.51 235.78

2018-06 6,833 80.2 525.21 6,350 41.0 187.99 337.21

2018-07 6,415 68.8 399.73 6,116 40.4 171.59 228.14

2018-08 6,386 81.8 516.55 6,179 48.1 236.79 279.77

2018-09 6,342 80.4 492.74 6,028 41.0 158.98 333.76

2018-10 6,278 78.1 479.25 6,047 47.2 226.26 253.00

164



Actual Simulation

Month Generation Price Profit Generation Price Profit ∆Profit

[MW] [$AUD/MW] [$million AUD] [MW] [$AUD/MW] [$million AUD] [$million AUD]

2018-11 6,227 88.8 543.41 6,004 64.6 368.99 174.42

2018-12 6,623 78.3 509.80 6,088 49.7 267.01 242.79

2019-01 6,998 94.0 662.48 6,480 50.9 289.21 373.27

2019-02 6,792 83.9 482.12 6,385 44.3 194.01 288.11

2019-03 6,884 80.7 501.79 6,440 51.7 282.95 218.84

2019-04 6,212 68.0 368.05 5,678 37.2 128.53 239.52

2019-05 6,103 72.8 411.17 5,809 44.1 192.00 219.16

2019-06 6,193 84.7 506.27 5,730 44.9 189.33 316.94

Panel C: VIC

2015-07 5,943 34.7 225.98 5,719 29.0 180.16 45.82

2015-08 5,450 35.2 208.80 5,422 29.4 167.07 41.73

2015-09 5,243 44.5 259.38 5,162 31.8 167.54 91.84

2015-10 5,230 35.5 204.15 4,938 16.7 59.90 144.25

2015-11 5,286 35.1 195.11 5,000 20.9 89.29 105.82

2015-12 5,325 48.0 308.69 5,246 30.6 175.97 132.72

2016-01 5,426 46.9 339.13 5,525 30.1 199.36 139.78

2016-02 5,440 35.4 198.70 5,398 26.1 130.74 67.97

2016-03 5,495 45.8 300.19 5,365 29.8 167.88 132.32

2016-04 5,460 45.8 293.22 5,372 30.9 177.23 116.00

2016-05 5,096 54.8 355.71 5,176 38.2 235.90 119.82

2016-06 5,444 92.4 641.50 5,659 67.0 465.45 176.05

2016-07 5,046 64.5 392.66 5,141 55.5 343.89 48.77

2016-08 5,382 43.3 271.92 5,399 25.4 138.35 133.57

2016-09 5,276 41.0 237.01 5,008 18.6 73.76 163.25

2016-10 4,965 33.2 178.44 4,788 22.6 103.73 74.71

2016-11 5,258 36.1 207.11 5,049 23.8 113.73 93.38

2016-12 5,417 29.9 169.99 4,757 11.4 20.44 149.55

2017-01 5,578 62.1 428.18 4,908 25.2 132.44 295.74

2017-02 5,460 86.3 552.61 5,022 48.7 295.19 257.42

2017-03 5,392 90.9 607.77 4,906 46.8 260.39 347.38

2017-04 4,873 108.1 610.96 4,437 65.9 352.52 258.44

2017-05 4,527 108.0 597.63 4,245 81.7 433.23 164.41

2017-06 5,037 98.7 580.66 4,788 86.6 513.78 66.87

2017-07 4,369 117.4 627.22 4,231 94.5 489.61 137.61

2017-08 4,804 102.3 615.69 4,801 84.5 505.91 109.78

2017-09 4,399 78.5 412.55 4,414 73.0 388.91 23.64

2017-10 4,123 72.8 365.10 4,283 66.8 334.83 30.27

2017-11 4,169 95.4 471.21 4,275 81.8 398.56 72.65

2017-12 4,332 84.3 450.42 4,455 68.7 362.32 88.10

2018-01 4,681 125.2 855.97 4,638 87.3 548.43 307.54

2018-02 4,628 96.2 544.98 4,669 77.4 411.09 133.89

2018-03 4,140 74.9 379.51 4,146 69.9 353.40 26.11

2018-04 4,459 71.1 380.70 4,446 67.5 362.15 18.55

2018-05 4,597 78.2 443.36 4,517 73.0 414.25 29.10

2018-06 4,855 93.3 547.96 4,933 101.3 611.98 −64.03

2018-07 4,584 69.4 395.80 4,697 81.0 478.37 −82.57
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Actual Simulation

Month Generation Price Profit Generation Price Profit ∆Profit

[MW] [$AUD/MW] [$million AUD] [MW] [$AUD/MW] [$million AUD] [$million AUD]

2018-08 4,492 78.9 443.86 4,642 89.7 524.18 −80.32

2018-09 3,979 91.2 435.25 4,180 98.4 477.31 −42.06

2018-10 3,949 99.4 499.34 3,933 84.2 417.67 81.67

2018-11 3,733 96.5 438.45 3,821 99.4 456.86 −18.41

2018-12 4,114 90.5 475.25 4,212 90.9 472.41 2.84

2019-01 4,508 238.0 1, 668.91 4,471 238.6 1, 738.82 −69.91

2019-02 4,452 110.7 576.19 4,264 68.7 332.50 243.70

2019-03 4,617 130.6 867.03 4,472 74.3 447.69 419.34

2019-04 3,906 95.3 439.30 3,800 80.4 368.84 70.46

2019-05 4,028 91.6 430.84 3,994 93.7 454.89 −24.05

2019-06 4,449 100.9 552.13 4,517 95.2 522.58 29.55

Notes: This table is the companion to Table 2.1 in the text. It presents the difference between actual and simulated profits

at the monthly level. For each generator and settlement interval, profits are calculated as the product of unit generation
and the difference between price and marginal cost. These are then summed over all units and intervals to arrive at an

estimate for the monthly, actual and simulated profits and their difference.
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Figure 2.C.7. Export densities from QLD between 2015 and 2019.
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Notes: This plot presents non-parametric means of QLD export densities versus QLD actual demand
by financial year. Actual export and demand values are based on market outcomes from AEMO,
while simulated exports are from a multistate model with endogenous transmission flows. The
curves are local polynomial regressions using a normal kernel with a 500 MW bandwidth. The
black lines along the horizontal axis provide the density of actual demand.

Figure 2.C.8. Export densities from QLD by financial year.
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Notes: This plot presents non-parametric means of QLD demand versus the ratio of maximum
demand in the other NEM regions between 2015 and 2019. Demand values are based on market
outcomes from AEMO. The curves are GAM regressions.
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Figure 2.C.9. Monthly revenues in QLD from local and export demand between
2015 and 2019.
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Notes: This plot presents monthly revenues in QLD from local versus export demand between 2015
and 2019. Actual revenues are based on market prices and quantities from AEMO, while simulated
revenues are generated using a multi-state model with endogenous transmission flows. The dashed
vertical line represents the QLD Government’s “Stanwell Direction” which occurred on 6 June 2017.

Figure 2.C.10. Share of monthly revenues in QLD from exports between 2015 and
2019.
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Notes: This plot presents the share of monthly revenues in QLD from exports compared to total
revenues between 2015 and 2019. Actual revenues are based on market prices and quantities from
AEMO, while simulated revenues are generated using a multi-state model with endogenous trans-
mission flows. The dashed vertical line represents the QLD Government’s “Stanwell Direction”
which occurred on 6 June 2017.
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CHAPTER 3

Still your grandfather’s boiler:

Estimating the effects of the Clean Air Act’s grandfathering

provisions

Co-Authors:

Sylwia Bialek and Richard L. Revesz
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3.1. Introduction

Policymakers can condition regulatory stringency on the vintage of regulated units, with later

entrants typically being subject to more stringent standards. Such vintage differentiated regu-

lation (VDR) is common practice, especially within environmental regulations. Grandfathering

constitutes a special form of VDR, where incumbents are exempted from new regulation.

Differentiating regulation by unit age mitigates the impacts of new regulations for pre-existing

units, which may reduce investment uncertainty among future investors (Kaplow, 1986). It can, in

some cases, be justified on the grounds of efficiency or fairness (Nash, 2009). However, differenti-

ation may also lead to distortions, described as “new source bias” (Levinson, 1999). For instance,

as differentiation tends to increase the relative cost of new units, it can lead to their decreased

operation and profitability. All else being equal, this can reduce the number of new entrants

and lengthen the lifespan of existing units (Fraas, Graham and Holmstead, 2017; Heutel, 2011;

Revesz and Westfahl Kong, 2011).1 Thus, in researching differentiated regulations, the interesting

question is not whether unintended consequences occur, but what is the economic significance of

these consequences.

Despite its high prevalence2 and the potential for perverse effects,3 VDR remains understudied

in economics (Damon et al., 2019). This is true even in the context of the Clean Air Act, a seminal

US environmental statute that has been touted as “one of the most significant federal interventions

into markets in the postwar period” (Currie and Walker, 2019). While the statute consists of

many elements, New Source Review (NSR) is a key component that affects virtually every major

manufacturing facility and power plant in the US, both those existing and constructed in the future.

This stringent and complex permitting process, introduced in 1977 (Fraas, Graham and Holmstead,

1 These effects can be partially mitigated through the greater regulatory uncertainty—and thus, greater oper-
ational risk—that grandfathered incumbents may face. For these units, future, more stringent regulations passed
without grandfathering provisions may be very hard to meet an thus can can affect the profits particularly negatively.

2 As Stavins (2006) notes, in the US, VDR appears “within the Clean Air Act in its standards for emissions
from new versus existing stationary sources, motor vehicle and motor vehicle engines, non-road engines and vehicles,
and commercial vehicles; within the Clean Water Act in a wide variety of aspects, including in effluent limits for
public treatment plants; within the Safe Drinking Water Act; and within laws affecting the generation and disposal
of hazardous and solid waste ... in a variety of occupational health and safety laws, automotive safety regulations,
consumer product safety laws, and building codes.” Vintage-differentiation is present also in drug approvals, un-
derground storage tanks regulations, the Consumption Tax Act, the Affordable Care Act, Federal Communications
Commission’s multiple ownership rules, financial regulations like SHO Rule 201, etc.

3 In the environmental context, new source bias combined with lower efficiency and higher emission rates from
incumbents, suggest that certain types of VDR could even increase aggregate emissions (Gruenspecht, 1982).
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2017), only applies to new units and to existing units having undergone substantial modifications.

Despite the high compliance costs of NSR provisions, they have largely escaped comprehensive and

rigorous retrospective analyses (Aldy et al., 2020).

In this paper, we are interested in the consequences of NSR grandfathering provisions. We

study them empirically in the context of coal power plants, examining how grandfathering affected

the survival of boilers, their utilization, and their emissions rates. We narrow our analysis to coal

boilers for two reasons. First, the effects of NSR grandfathering on the power plant fleet has been

particularly controversial in the US (Revesz and Lienke, 2016). Second, NSR was drafted with the

aim of limiting the highly damaging sulfur dioxide (SO2), for which coal power plants were the

main emitter.4

As the NSR design differs somewhat between non-attainment counties—those counties who

have not met federal air quality standards—and attainment counties, which are in compliance with

such standards, we investigate whether the grandfathering effects change depending on county

attainment status. This is particularly relevant as sulfur pollution is non-uniformly mixed, mean-

ing associate health and environmental damages depend on the location of the emissions source

(Fowlie and Muller, 2019).5 In non-attainment counties, emissions are already more concentrated,

so a stronger new source bias in these areas would constitute an important design flaw in NSR.

In this paper, we thus explore how coal boiler owners responded to NSR grandfathering provi-

sions and to related regulatory regime by adjusting boiler utilization, survival and sulfur emissions.

We compare the outcomes for grandfathered boilers and boilers subject to NSR, while controlling

for their characteristics, various sulfur dioxide regulations, characteristics of their locations and

time trends. The analysis is aided by variation in NSR rules across boiler facility type and size,

for instance through the fact that they did not apply to small boilers. We find that initial assign-

ment to NSR grandfathering increases boiler utilization, survival and emission rates. On average,

grandfathering is associated with around 787 additional hours under load annually, 2.05 pounds of

additional sulfur dioxide emissions per MW of capacity per hour operated, and with a 1.5 percent

4 New Source Review also regulated nitrogen oxides and particulate matter emissions from power plants. However,
the compliance with these requirements was much cheaper than for sulfur—see, for instance (Linn, 2008) for the costs
of nitrogen oxide abatement equipment—and so we can expect limited impacts from units being shielded from these
requirements through grandfathering provisions.

5 Compare, for example to greenhouse gases which have a global environmental impact through climate change.
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increase in the probability of survival. We also show that in areas with stringent state sulfur dioxide

regulations and in the so-called “non-attainment” areas, new source bias is reduced.

Our study is relevant for policy debates around the design of the Clean Air Act. When Congress

enacted the modern version of the Clean Air Act in 1970 and when it amended it in 1977, adding

the NSR provisions, the expectation was that most major stationary sources would quickly become

subject to federal control despite the grandfathering provision. Lawmakers assumed units would be

phased out over the course of their ordinary economic lives or upgraded, thereby, becoming subject

to NSR.6 However, the data suggests that over 40 percent of the coal boilers active in 1977 were

still operational in 2018.7

Consequently, the possibility of new source bias in the context of NSR has garnered substantial

attention over the last decades. The survival effects of grandfathering provisions have been of par-

ticular interest as some economists, legal scholars, and environmental groups have argued that NSR

increased the lifespan of incumbent boilers (Ackerman et al., 1999; Hsu, 2006; Nash and Revesz,

2007; Revesz and Westfahl Kong, 2011; Schneider, 2001; Stavins and Gruenspecht, 2002). Clean

Air Act court cases have also indicated that boiler lifespans have been prolonged beyond their

normal economic life.8

Figure 3.1 plots boiler age at the observed time of retirement showing the much lower retirement

age of boilers that have been subject to NSR throughout their entire in-service time—boilers that

we refer to as “non-grandfathered.” We think of boilers as “grandfathered” if for at least some part

of their operations after the introduction of the 1977 CAA Amendments, they were not subject

to NSR.9 As for plants that are still in operation, a marked difference is also visible. In 2011, the

6 Revesz and Lienke (2016) provide legislative records illustrating that expectation. For instance, during a hearing
on NSR, Senator Howard Baker of Tennessee expressed the opinion that most of the 200 coal-fired power plants
that were over twenty years of age at that time would be “phased out of operation in the next 5 to 20 years”
(Revesz and Lienke, 2016, p. 48).

7 The percent of coal boilers active across both 1977 and 2018 was estimated by combining information from
Form EIA-767 with records from the PSC (2014).

8 For instance, according to the documents from a court case filed against Duke Energy Corp., a company
representative admitted that by the late 1980s, some of Duke’s grandfathered plants had deteriorated to the point
of being often or always out of service. Although normally the plants would have been scrapped, these plants were
not retired. Instead, between 1988 and 2000, Duke replaced or redesigned boiler elements, even though the cost of
replacing them was several times the original cost of the entire generating unit (Rabinowitsh, 2008).

9 For the discussion of the chosen definition of grandfathering, see Section 3.3.6.
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Figure 3.1. Boiler age distribution at retirement by NSR grandfathering status
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Notes: Age distribution of boilers that retired between 1985 and 2017 for those that have been
subject to NSR throughout their entire in-service time (i.e. “not grandfathered”) and those which
were not exposed to NSR for at least some of their in-service time (i.e. “grandfathered”). There
are 508 and 29 observations in the grandfathered and not grandfathered groups, respectively.

average age of a boiler subject to NSR was 31 years, while for those grandfathered, boilers were

around 50 years.

The role of grandfathering in delaying boiler retirements could explain the slower than expected

turnover in the boiler fleet. That said, alternative explanations are also possible. For example, it

is conceivable that regulators were mistaken about the average lifespan of power plants or that

their durability has improved over time.10 Additionally, the interpretation of data like presented

in Figure 3.1 is complicated by the fact that grandfathered boilers are necessarily older than non-

grandfathered boilers.

Nevertheless, a naive analysis of the propensity to survive across boiler vintages is suggestive of

a grandfathering effect. Figure 3.2 shows that the probability to survive up to year 2014 is mono-

tonically increasing for boilers with vintages up to 1982, i.e., boilers largely under grandfathered

10 Rode, Fischbeck and Páez (2017) point out that the lifespan of power plants has generally been increasing over
time.
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Figure 3.2. Propensity to survive until 2014 for boilers from different vintages
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status. However, for the 1983-1992 cohort for which the majority of boilers have been exposed to

NSR since their inception, i.e., boilers that were not grandfathered, the probability to survive up

to 2014 drops. For the 1993-2002 cohort where all boilers were subject to NSR, the likelihood of

survival is only slightly higher than for boilers from the 1973-1982 period. Such non-monotonicity

in the propensity to survive is counter-intuitive: one would expect the share of surviving boilers

be higher for younger boilers, especially if the technology improves over time. It indicates that

NSR grandfathering could have affected boiler retirements substantially. Establishing whether this

pattern in survival rates is indeed driven by NSR grandfathering provisions requires a full-fledged

empirical investigation. To the best of our knowledge, the implications of NSR grandfathering for

boiler survival have not been studied empirically.

There exist studies, however, on closely related issues. Levinson (1999) looks at the effects of

NSR grandfathering on the age of facilities in the commercial printing and paint manufacturing

industries and finds no significant relationship. Heutel (2011) develops a structural model of boilers’

scrapping, emissions and investment decisions. He uses the model to investigate how grandfathering
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provisions in New Source Performance Standards (NSPS)—a precursor to NSR, which could be

met through low-sulfur coal without the need for pollution control equipment—affected boilers.

Maloney and Brady (1988) and Nelson, Tietenberg and Donihue (1993) find a positive correlation

between more stringent regulation—measured as expenditures of the state air quality management

agency—and age of power plant capital. Both studies are frequently cited as support for the

proposition that grandfathering delayed retirements.

Differences in emissions rates between new and grandfathered units have also garnered public

scrutiny (Ackerman et al., 1999; Cohan and Douglass, 2011; GAO, 2012a), though only a few have

attempted an empirical analysis. Apart from Heutel (2011), who focuses on emission effects of

NSPS, the relevant studies include Nelson, Tietenberg and Donihue (1993) who find no correlation

between emission rates and age of capital and Raff and Walter (2020) who find that non-attainment

status can cause regulatory avoidance in grandfathered boilers through voluntary decreases in

emissions. The impact of grandfathering on utilization, on the other hand, has largely escaped

public attention with the exception of Stanton (1993), who finds a positive relationship between

utilization and power plant NSR and NSPS status.

A response channel that has also attracted empirical investigation, but is beyond our scope,

relates to potential adjustments in capital investments associated with the “modification rule”—an

NSR sunsetting rule where significant modification of an existing unit exposes it to regulation.

Bushnell and Wolfram (2012) documents distortions in capital investments by power plants driven

by enforcement of the modification rule, while List, Millimet and McHone (2004) show how NSR

distorted modification decisions in manufacturing plants.11

We contribute to the economic literature on the Clean Air Act by providing easily interpretable

estimates of the utilization, survival and emissions rate associated with NSR grandfathering. Our

results suggest substantial environmental harms due to NSR-exempt units. However, we also

show that in regions with stringent local sulfur dioxide regulations, new source bias is reduced,

emphasizing the complementarity between state and federal regulations. To our knowledge, our

11 Other studies used changes in the modification rule’s enforcement to estimate the value of grandfathering
provisions for existing power plants (Lange and Linn, 2008) and to show how regulation on local emissions affects
power plant carbon dioxide emissions (Chan and Zhou, 2021). Also, Keohane, Mansur and Voynov (2009) show that
power plants decreased their emissions when it became likely they would be targeted by the Environmental Protection
Agency in relation to the modification rule.
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study represents the first empirical analysis that includes state-level sulfur dioxide regulations. This

was made possible, in part, through the development a state regulation dataset with coverage from

1970 to the present. This novel contribution allows us to exploit variation in state regulations to

more cleanly identify the effects of NSR grandfathering.

Finally, we contribute to the literature on the merits of vintage differentiation. Ex-

isting studies are mostly confined to theoretical analyses within the legal literature (e.g.,

Huber, 2011; Kaplow, 1986; Nash, 2009; Nash and Revesz, 2007; Revesz and Westfahl Kong, 2011;

Serkin and Vandenbergh, 2018; Stavins, 2006). In economics, studies have noted how grandfather-

ing can help solve commons problems (e.g., Anderson, Arnason and Libecap, 2011; Damon et al.,

2019), and how grandfathering can be optimally used in the context of emissions trading (e.g.,

Böhringer and Lange, 2005; Hepburn, Quah and Ritz, 2007). Empirically, Coysh et al. (2020) find

in a cross-country panel that greater vintage differentiation is associated with significantly higher

retirement age, while Bialek and Weichenrieder (2021) report patterns in German foreign direct

investment consistent with existence of substantial grandfathering effects.

The rest of the paper is structured as follows. Section 3.2 provides background information

on sulfur emissions occurring as a byproduct of coal combustion, available emission reduction

strategies, and various sulfur dioxide regulations in the US. Section 3.3 delineates the conceptual

framework for our empirical investigation, while Section 3.4 provides an overview of the data. We

present the estimation results in Section 3.5, while Section 3.6 concludes.

3.2. Background on sulfur abatement and regulations

3.2.1. Sulfur Abatement.

Burning coal is responsible for the majority of sulfur dioxide emissions.12 The quantity of emis-

sions produced through burning depends on abatement effort and coal sulfur content. The latter

usually ranges between 0.5 and 5.0 percent, with the most sulfur-intensive coal sourced from the

Appalachian and Illinois basins.

12 In 1990, for instance, 70 percent of US sulfur dioxide emissions—around 16 million tons—were attributable to
coal-fired generation (EPA, 2018).
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To reduce the emissions intensity of sulfur dioxide, boiler owners rely on two main strategies:

switching to less sulfur-intensive coal and installing sulfur-abatement equipment in the form of

flue-gas desulfurization units. The latter, colloquially referred to as “scrubbers,” remove sulfur

dioxide from exhaust flue gases. Using low-sulfur coal can decrease emissions below 1.2 lbs of SO2

per MMBtu, while scrubbers are capable of removing between 50 to 98 percent of the pollutant

depending on the type of scrubber installed and its operation.

Low-sulfur coal tends to be more expensive than its high-sulfur counterpart as deposits of

the former are less geographically convenient, resulting in higher average transportation costs.

Scrubber installation, on the other hand, requires high investment, maintenance, and operation

costs.13 Moreover, flue-gas desulfurization equipment requires the use of corrosive chemicals and

reagents which necessitate costly equipment maintenance and significantly shorten its lifespan (EIA,

2019).14 Scrubbers also increase the fuel necessary to generate a unit of electricity, raising the heat

rate of a coal-fired unit by around 2 percent (EPA, 2010).

The small, acidic particulates released as a result of burning coal can penetrate human lungs,

such that even short-term exposures to airborne sulfur dioxide has been linked with asthma, bron-

chitis and other adverse health effects. With respect to the environmental effects, sulfur dioxide

contributes to acidic deposition, constitutes a major precursor to particulate matter, and impairs

visibility. These negative impacts drove a regulatory effort to curb sulfur dioxide emissions. Below,

we outline the measures applicable to power plants. In the following Section, we discuss how we

account for these measures in our analyses.

3.2.2. Federal regulations.

The first federal effort to control sulfur dioxide emissions from major power plants was undertaken

within the framework of the Clean Air Act in 1971. It relied on emission intensity limits defined as

13 According to estimates from the EPA, the initial capital cost of installing a wet scrubber was between $25
and $150 million for a 100 MW boiler, with an annual operating cost between $0.8 and $2.0 million (EPA, 2003).
However, costs do not increase proportionally with the size of a boiler. A 650 MW boiler using a wet scrubber had
capital costs between $65 and $162 million and an annual operating costs between $1.3 and $5.2 million (EPA, 2003).

14 For such units, pollution control capital expenditures were estimated to account for around 20 to 27 percent
of total capital costs, while annual pollution control expenditures account for about 23 to 31 percent of total annual
generating costs (EPA, 2001).
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part of the so-called New Source Performance Standards: boilers whose construction commenced

after 1971 or were modified thereafter had to emit less that 1.2 lbs of SO2 per MMBtu of heat

generated by the combustion of coal.

The 1977 Clean Air Act Amendments proposed a stricter set of rules for larger facilities, known

as New Source Review. NSR required that the construction of a new facility or the expansion

of an existing one was subject to a permitting process. The permit application process is very

complex and can involve up to five different stages: permit preparation, determination of applica-

tion “completeness,” public notice and comments, iterative responses to comments, and possible

administrative and judicial appeals (Fraas, Neuner and Vail, 2015). The process can be costly due

to the large investment of time and resources, the associated uncertainties, and possible delays

(Fraas, Neuner and Vail, 2015).15

Under NSR, facilities located in non-attainment areas—counties containing pollutant concen-

trations above threshold levels defined by the National Ambient Air Quality Standards (NAAQS)—

must meet additional requirements. In order to gain a permit to build or modify a plant, facilities

must generally obtain offsets for the resultant increase in emissions (Shapiro and Walker, 2020).

These permits, depending on the region, can be very expensive.16 Importantly, states are also re-

quired to make “reasonable further progress” on improving the air quality in their non-attainment

areas, which leads to additional state-level regulation beyond the federal requirements. Meanwhile,

facilities in attainment areas are instead subject to the “Prevention of Significant Deterioration”

permitting process. It is more lenient as it does not require offsetting, and states are mandated

only to avoid substantial degradation of air quality (Nash and Revesz, 2007).

NSR also imposed very stringent sulfur dioxide emission reductions: most boilers with capacity

above 73 MW that generate electricity for utility sales faced a mandatory 90 percent emissions

abatement, irrespective of the state attainment status.17 In 1984, the same permitting and abate-

ment regulations were introduced for new or modified commercial and industrial boilers above 10

15 Between 2002 and 2014, the permitting process for new coal boilers took, on average, 496 days or over 16
months (Fraas, Neuner and Vail, 2015).

16 EPA (2001) quotes the price range for 2001 sulfur dioxide offsets as between $6,000 to $7,667 per ton per year.
17 If a boiler’s sulfur dioxide emissions are below 0.60 lbs of SO2 per MMBtu, the boiler is only required to reduce

input sulfur dioxide emissions by 70% compared to its potential emissions. Regulated boilers are defined as these
that are constructed for the purpose of supplying more than one-third of their potential electric output capacity to
a utility power distribution system for sale.
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MW. Then in 1989, these were further extended to new and modified commercial and industrial

boilers with capacity above 1 MW. The culmination of these NSR requirements effectively required

the installation of scrubbers.

The 1990 Clean Air Act Amendments, known as the Acid Rain Program, maintained NSR

requirements but added the obligation to participate in a sulfur dioxide cap-and-trade program. In

the first phase, between 1995 and 2000, only the largest boilers were required to participate. After-

wards, compliance was mandatory for all boilers with a capacity above above 25 MW. The permit

prices per ton of emissions fluctuated between $0.01 and $860. In 2009, the Clean Air Interstate

Rule became effective. For boilers located in upwind states, the new obligations introduced by the

Rule were tantamount to doubling compliance costs by requiring two Acid Rain Program permits

for each ton of emitted sulfur dioxide.18

The Cross-State Air Pollution Rule replaced the Clean Air Interstate Rule in January 2015. This

resulted in the introduction of local, sulfur dioxide emission trading programs. In the first phase,

trades occurred separately for the so-called Group 1 and Group 2 states, which roughly correspond

to upwind and downwind states, respectively. In the second phase of the program, starting in

2017, sulfur dioxide budgets were substantially tightened and additional trade restrictions between

states were imposed. However, the emissions budgets under the Cross-State Air Pollution Rule

were lenient. In most of the Group 1 states, for instance, the actual emissions in 2015 were already

lower than the emission budgets for the second phase (Fotouhi, Dunn and Crutcher LLP, 2016).

Consequently, emission allowances were available at relatively low prices between $1 to $5 per

permit.

18 The Acid Rain Program allocated some sulfur dioxide permits for free to incumbent power plants, i.e. some
permits were grandfathered. However, due to the design of the allocation process and the permits’ inherent
opportunity costs, the grandfathering policy likely did not affect boiler operations or retirement decisions. As
Burtraw and Szambelan (2009) note, the law distributed emissions allowances to each affected unit on the basis
of its heat input during a historical base period—from 1985 to 1987—multiplied by an emissions rate and adjusted
to make aggregated emissions equal the target emissions cap. Only plants in existence over the base period received
an allocation, and their owners continued to receive it even after retirement.

179



3.2.3. State regulations.

States in which NAAQS are violated are required to develop a regulatory plan setting out a trajec-

tory to meet air quality standards within each county. These plans create a separate layer of sulfur

regulation, complementing federal standards. States tended to develop regulations for coal boilers

either through a performance standard of sulfur dioxide emissions per MMBtu or through limiting

the sulfur content of combusted coal. In a given state, regulatory stringency may depend not only

on the vintage of the boiler, but also on its size, number of stacks, location, etc., with some states

regulating individual counties separately. Generally, though, state regulations are more lenient

than NSR requirements. Consequently, for boilers already subject to NSR, state regulations rarely

cause additional compliance costs. However, in some states, regulations may cause high compliance

costs for facilities grandfathered from NSR, creating variation in compliance costs across boilers.

3.3. Conceptual framework

In this section, we discuss our empirical approach. We are interested in the effects of NSR

grandfathering provisions on the margins of coal boiler operations: the intensive margin as captured

through utilization and emissions; and, the extensive margin as represented by boiler survival. We

first discuss the theoretical foundations for these relationships and then present the functional form

of our empirical specification. Since it forms such a large part of our identification strategy, we also

outline our approach to each potentially confounding environmental regulation in detail. Finally,

we discuss the possible threats to a causal interpretation of our results.

3.3.1. Utilization effects.

The main channel through which NSR grandfathering affects boiler utilization is the additional

generation costs imposed on regulated units through the de facto scrubber requirement. Scrubbers

have high operations and maintenance costs, entail frequent equipment replacements, and reduce
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boiler efficiency.19 Furthermore, in non-attainment regions, new and modified units must obtain

offsets for any net increase in emissions (Shapiro and Walker, 2020).

Ceteris paribus, NSR grandfathering provisions, thus, provide a substantial variable cost ad-

vantage, which should translate to higher utilization rates. Under cost minimization, boilers with

lower marginal costs should be dispatched more frequently both in wholesale market settings and

in the context of regulated, vertically integrated utilities. The difference in the number of hours

under load between grandfathered and non-grandfathered boilers should be indicative of this cost

advantage.

Marginal costs are, however, only one potential driver of utilization. The number of hours

a boiler operates in a year will also be a function of market conditions—including load duration

curves—market structure, and market conduct. All else being equal, more frequent high demand

occurrences should result in higher boiler utilization. Market structure relates to the costs and

capacities of other units serving load in the given location, as well as their ownership structure.

Market conduct is defined by the level of competition and the exercise of any underlying market

power.

As we do not observe the load shape, competition structure or the costs and capacities of the

rival generation fleet, we rely on the assumption that there are no systematic differences between

the demand and competition faced by grandfathered and non-grandfathered boilers. A potential

issue here is that both market structure and conduct are related to the electricity regime, and

many regions in the US underwent restructuring from vertically-integrated monopolies to liber-

alized markets during the analyzed time horizon (Borenstein and Bushnell, 2015). There exists

evidence suggesting that this problem may not be very pertinent to our study, though some re-

cent work suggests the opposite.20 For our approach, we require that market restructuring affected

grandfathered and non-grandfathered boilers symmetrically.

19 See Section 3.2 for further details.
20 Douglas (2006) shows that the effects of liberalization on coal boilers’ utilization were modest and limited to

a few regions. On the other hand, Knittel, Metaxoglou and Trindade (2019) find that generators behaved differently
in restructured markets in response to changes in gas prices.
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With utilization driven by cost minimization considerations, we define the following function

to explain the number of hours boiler i runs in year t:21

hours it = f
(
GF it, Ωit; XH

it , ZH
jt , αj , µm, ηt

)
(3.1)

where indices m and j represent boiler owner type and its location, respectively. Here, grandfather-

ing status, GF it, is our variable of interest, while Ωit are applicable environmental regulations as

discussed in more detail in Subsection 3.3.5. Boiler-level characteristics, such as age and capacity,

are included in the term XH
it , while ZH

jt defines location-specific characteristics. Depending on the

specification, these may include utility or state demand, state generation capacity, etc. We also

allow the location, owner type and year to directly affect the boiler utilization through terms αj ,

µm and ηt, respectively.

A significant and positive coefficient on grandfathering status would indicate a marginal cost

advantage associated with NSR exemption but would not explain the mechanism through which

that advantage occurs. With our data, though, we can study auxiliary plant loads through the

net-to-gross generation ratio, i.e. net generation measured at the power plant’s connection to the

grid over gross generation measured near the generator. The ratio is relevant for our analysis as the

amount of electrical power required to operate a scrubber represents an auxiliary load. We would

thus expect boilers operating scrubbers to have less electricity available for export to the grid,

which is equivalent to a lower net-to-gross generation ratio, all else being equal. Consequently,

systematic differences in generation ratios between grandfathered and non-grandfathered boilers

could be indicative of the electricity expense associated with scrubber operations driven by NSR.

To explore generation ratios, we perform the following naive regression using weighted least

squares:

GRit = α+ βGF i + Xitγ + εit (3.2)

where GRit is the net-to-gross generation ratio for boiler i during month t. We weight the regression

using monthly hours under load. The set of covariates, Xi, represent various boiler characteristics,

including age and size. Finally, α is the intercept, while the εit term represents robust standard

errors.

21 We define utilization as hours under load, that is the number of hours a unit operates.
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3.3.2. Survival effects.

We now turn to the mechanisms through which NSR grandfathering affects boiler survival. Specif-

ically, we want to understand the relationship between NSR grandfathering and the turnover of

the coal-fired fleet. Where utilization depends primarily on operations, survival depends on both

operations and capital expenditures. As elaborated above, grandfathered plants tend to have an

advantage in short-run variable costs. This advantage also extends to long-term fixed costs.

Coal-fired power plants under an NSR obligation had limited options for compliance. Given

the stringency of the regulation, owners were effectively obliged to install and run a scrubber,

adding substantial investment, maintenance and generation costs. 22 These additional costs were

largely avoided by grandfathered plants, even if they were subject to state regulations. Since local

environmental requirements tend to be less onerous than those under NSR, they usually offer a

wider array of feasible compliance strategies, including switching to low-sulfur coal.

To understand how this cost advantage could affect the survival of grandfathered boilers, we

build a framework that reflects the retirement decision faced by boiler owners. In most cases, a

boiler will be retired if the cost of its continued operation is sufficiently higher than that of its

replacement such that the lower operational costs outweigh the capital costs of demolishing and

replacing the existing boiler. Assuming a replacement boiler is identical in size, location and fuel

source, the retirement decision at time t for boiler i in location j made by owner type m depends

on the comparison of the following values:

πEit = RE
it − CE

(
GF it, Ωit, sizei, XS

it, ZS
jt, µm

)
(3.3)

πRit = RR
it − CR

(
Ωit, sizei, ZS

jt, µm
)
− κt (Ωit, sizei, µm)− Sijmt, (3.4)

where πEit represents profits associated with the continued operation of the existing boiler and

πRit is the profit associated with replacement. The operating costs for an existing boiler, CE(·),

depend on its pollution control equipment, which is driven by: its grandfathering status, GF it;

its generation capacity, sizei; and, the remaining characteristics of the boiler, XS
it, including age.

These costs are also influenced by environmental regulations applicable to the specific boiler, Ωit,

22 These costs are described further in Subsection 3.2.
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where grandfathering status may attenuate some of their effects. Local cost determinants, such

as regional demand and competitive pressure but also location-level fixed effects, are captured by

ZS
jt, while µm captures the costs specific to the owner type. The operating costs for a new unit

are given by CR(·) and its investment cost, κt(·), can differ over time. Changes in operation costs

associated with boiler replacement affect the amount of electricity generated and revenue, R(·),

such that RR
it = RE

it + ψ
(
CR(·)− CE(·)

)
. Finally, Sij(·) = S + eit captures the scrappage costs for

boiler i. If the difference between Equations (3.4) and (3.3) is positive, the boiler gets replaced,

such that the survival of the boiler can be represented by:

surviveit = g
(
GF it, Ωit; sizei, XS

it, ZS
jt, αj , µm, ηt

)
(3.5)

We do not separately model upgrade decisions for existing units, e.g. turbine upgrades or

condenser optimization. Instead, we assume that the profits of an existing plant are based off an

optimal upgrades plan and that the possibility of improvement is not limited by grandfathering

status. In other words, we assume that the NSR modification rule did not affect behavior and

boiler profits. This is motivated by the fact that for much of our sample period, the modification

rule was lightly enforced.23 Finally, similar to utilization, we ignore potential market effects. The

framework presented in Equation (3.5) does not capture the effect that boiler replacement has on

other operating units.

3.3.3. Emission effects.

As boilers regulated by NSR face stricter sulfur regulations, we can expect their emission rates—the

amount of emissions released per unit of generation—to be lower than those for grandfathered units.

This does not imply, however, that grandfathered units went unregulated. Boilers built before 1978

may be exempt from NSR but still subject to an earlier New Source Performance Standard or

state regulation, which could create incentives for using low-sulfur coal and, in some cases, even to

23 The effects of the modification provision could be proxied within our framework, for instance by interacting
the age of boilers with grandfathering status. However, this relationship would need to be time dependent as the
enforcement of the provision changed over time. See Lange and Linn (2008) and EELP Regulatory Tracker New
Source Review.
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install scrubbers. In addition, the 1990 Clean Air Act Amendments launched a sulfur dioxide cap-

and-trade market, which made it economically desirable for coal plants to take available low-cost

steps to reduce their sulfur emissions. And indeed, over time, many grandfathered boilers found it

profitable to use low-sulfur coal or install scrubbers.

To study the difference in emissions associated with NSR grandfathering, we assume the average

emissions rate of boiler i in year t can be represented by the the following function:

emissions it = h
(
GF it, Ωit; XE

it , ZE
jt, αj , µm, ηt

)
, (3.6)

with XE
it and ZE

jt being the relevant boiler- and location-level characteristics. All other variables

are defined equivalently above.

3.3.4. Environmental regulations.

We are interested in the effects of NSR grandfathering provisions on operations, survival, and emis-

sions. Nevertheless, our regressions must also account for other sulfur dioxide regulations described

in Section 3.2 as they could otherwise pollute the inference. In the above subsections, we left un-

specified, how environmental policies, Ωit, are modeled in Equations (3.1), (3.5), and (3.6) and how

they interact with grandfathering status, GF it. Below, we provide the empirical implementation

details for the relevant programs.

New Source Review.

NSR greatly raised the fixed and variable costs faced by boilers through a complex permitting

process and abatement requirements for sulfur dioxide emissions. As there is no indication that the

NSR compliance costs have substantially changed over time, we model the NSR status of the boiler

through an indicator variable, GF it, which equals one for grandfathered boilers and zero otherwise.

As the fixed and variable costs of scrubbers vary with boiler size, we adopt interactions between

grandfathering and boiler capacity, GF it · sizei.
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National Ambient Air Quality Standards.

NSR prescribes additional obligations for units located in non-attainment areas, as classified accord-

ing to NAAQS. Consequently, the competitive advantage from NSR grandfathering may depend on

the attainment status of its county. We model this through an indicator variable for non-attainment

status, NAAQS jt, and an interaction term with grandfathering status, GF it ·NAAQS jt.

New Source Performance Standards and state regulations.

New Source Performance Standards and state regulations effectively limit the amount of sulfur

dioxide that regulated boilers can emit per MMBtu. As a consequence, if a unit is subject to

both NSPS and state regulations only the more stringent is binding. We, thus, capture these two

regulatory regimes through one continuous variable, MMBTU it, which we construct as the inverse

of the more stringent standard.24

Sulfur cap-and-trade programs.

Notwithstanding their NSR status, boilers could face participation obligations for the sulfur dioxide

cap-and-trade programs: the Acid Rain Program, the Clean Air Interstate Rule, and the the

Cross-State Air Pollution Rule. We expect these programs to affect boilers through their price on

emissions. We, thus, control for boiler-specific cap-and-trade emission prices, priceit. The absence

of permit requirements is modeled as priceit = 0.25 However, the effect of permit requirements may

differ across boilers. Those capable of emitting relatively little pollution should be less responsive to

permit prices. The level of emissions is in turn largely driven by the sulfur content of utilized coal.

We, therefore, allow for heterogeneous price effects by interacting permit prices with a variable

capturing coal sulfur content, priceit · SO2cont it.

Unfortunately, sulfur content is endogenous. This is most evident in the context of the survival

analysis. Given an inefficient boiler with a high likelihood of retirement, an owner likely wishes

to avoid the high fixed costs of scrubber installation and, thus, is more likely to reduce the sulfur

24 If the unit is not regulated, we code it as facing a limit of 10 lbs of SO2 per MMBtu—a standard far in excess
of typical boiler operations. In constructing of the variable, our inversion of the limit helps reduce the potential effect
of the choice of the “never binding” limit could have on the results.

25 As the permit prices for the Cross-State Air Pollution Rule have been negligible, while the program participation
rules are highly complex, we assume the permit prices for that program to equal zero.
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content of the combusted coal when facing high emission permit prices. In contrast, an owner of a

highly efficient boiler may find scrubber installation optimal. To deal with the arising endogeneity

problem, we take advantage of the fact that the relative profitability of these two strategies depends

on the geographical location of the plant. As coal transport is expensive where its cost can exceed

those of the commodity itself, we expect the proximity of low-sulfur coal reserves to lead to lower

average sulfur content. Hence, we instrument for the sulfur content variable using the mean sulfur

content of close-proximity coal, SO2contIV i.
26

3.3.5. Empirical specification.

Below, we present the functional form for our empirical specification. Given the relationships

outlined above along with the description of the various sulfur dioxide regulatory programs, we

apply a similar linear model for each outcome variable, yit: utilization, survival and emissions. We

estimate the following regression for boiler i and owner type m located in region j during year t:

yit =β1GF it + β2NAAQS jt + β3NAAQS jt ·GF it

+ β4MMBTU it + β5MMBTU it ·GF it

+ β6priceit + β7
̂SO2cont it + β8priceit · ̂SO2cont it

+ Xy
itΓ

y
x + Zy

jtΓ
y
z + αj + µm + ηt + εit, (3.7)

where ̂SO2cont is the instrumented variable capturing coal sulfur content; Xy
it and Zy

jt are the sets

of boiler-specific and location-specific explanatory variables relevant for outcome variable y; and,

εit is an i.i.d. error term.

Our variable of interest is the NSR grandfathering indicator GF it. Assuming our framework

captures the causal effects of grandfathering, its coefficient β1 is interpreted as the direct effect of

grandfathering status on the particular outcome variable for boilers located in attainment areas

that do not face additional requirements through New Source Performance Standards or state

regulations.27 However, an indirect effect of grandfathering may also exist. As illustrated in

26 For further details on the construction of the close-proximity coal instrument, see Section 3.4.3.
27 For a discussion on the appropriateness of the causal interpretation of coefficients, see Subsection 3.3.6.
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Figure 3.1, grandfathering influences the choice of coal sulfur content,28 which itself affects the

outcome variables and thus acts as a mediator. Hence, sulfur content is a function of grandfathering.

To compute the total effect of grandfathering on boilers located in attainment areas that do not face

additional requirements through NSPS or local regulations, we must sum the direct and indirect

effects by taking the partial derivative with respect to grandfathering:

∂yit
∂GF it

= β1 + (β7 + β8priceit) ·
∂SO2cont it
∂GFit

. (3.8)

For boilers located in non-attainment areas or subject to other sulfur regulations, Equation (3.8)

must also include the terms β3NAAQS and β5MMBTU it, respectively.

Figure 3.1. Direct and indirect effect of grandfathering.

Notes: Graphical representation of the causal relationships between variables and the endogeneity
of the sulfur content of the coal used. Weighted sulfur content of the available coal is used as an
instrument.

The remainder of the covariates with β coefficients are sulfur regulations as described in Subsec-

tion 3.3.4. Boiler-level characteristics—age, capacity and the instrumented sulfur content of utilized

coal—are included in the vector Xit. The vector Zjt represents the characteristics of location j.

28 By imposing a very strict scrubber requirement, NSR partly removes the incentive to use low sulfur coal for
compliance with other sulfur programs.
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The variables included here depend on the specification. For utilization and survival regressions,

we allow state-level load growth to enter the estimations. The intuition is that with increasing

electricity demand more units need to be online at the same time, and in the long-run, participants

may decide to expand generation capacity. An investment in new capacity may not preclude keep-

ing existing boilers operational, even if they are expensive compared to a new unit. We also include

measures of competitive pressure for our survival and utilization regressions, including: generation

capacity growth at the state-level and coal-gas price ratios.

There may also be differences in decision-making between owner types. For instance, state-

regulated investor-owned utilities usually face cost of service regulation under which they are allowed

to recover prudently incurred costs plus a rate of return on capital expenditures. While potential

overspending on capital investments is monitored by regulators, the incentives for boiler replacement

may be somewhat different for investor-owned utilities than for co-ops or industrial owners. For

independent power producers, on the other hand, the retirement decisions may not lead to replacing

the unit but instead with ceasing operations altogether. For the decision about how frequently to

run a boiler, on the other hand, the utilization of industrial boilers can be coupled with working

times of the facilities, while for independent power producers it may depend more on the cost

structure of competitors. To control for potential heterogeneity, we use owner type fixed effects

in the regressions, µm. Thereby, we differentiate between independent power producers, investor-

owned utilities, industrial facilities, etc. In some specifications, we interact the owner-type fixed

effects with grandfathering status.

Time fixed effects, ηt, control for changes in other policies and market-level changes, such as

investment costs of alternative technologies. We account for time-invariant local characteristics

using state-level fixed effects, αj . Finally, by imposing that the term εit is i.i.d., we can estimate

Equation (3.7) using OLS.
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3.3.6. Causal interpretation of the results.

There are two main threats to causal interpretation of the β parameters: potential endogeneity

of grandfathering status and systematic differences between grandfathered and non-grandfathered

units.

First, thresholds in regulations always raise concerns about bunching behavior. In our setting,

this would mean boiler owners manipulating their construction commencement date in order to gain

grandfathering status. However, the grandfathering cutoff date was coincident with the establish-

ment of the regulation, leaving little chance for manipulation post-announcement. There still exists

the possibility of boiler owners anticipating the regulation along with the grandfathering provisions

and manipulating their construction date. While theoretically possible, it is rather unlikely given

the long lead times that coal boilers require. This is due to their substantial capital requirements

and extensive regulatory approvals process, which limits the opportunity to accelerate construc-

tion decisions. Unfortunately, we are unable confirm the absence of construction manipulation

empirically as we lack comprehensive data on commencement dates.

However, grandfathering status could also be endogenous due to the NSR modification rule. The

rule stipulates that boilers lose their grandfathering status if they undergo substantial modifications.

Under such conditions, only boilers that gain the most from upgrades perform them and lose their

grandfathering status. These are likely the most valuable boilers with a long expected lifespan and

for which the upgrade significantly improves its efficiency. Conversely, for a boiler approaching the

end of its useful life given its technical state, performing an upgrade that exposes it to NSR may

not be profitable.

For the majority of our sample period, the modification rule was weakly enforced. This im-

plies that upgrades are unlikely to introduce bias into our regressions. However, in later peri-

ods, boilers performing significant upgrades were exposed to NSR (Bushnell and Wolfram, 2012;

Lange and Linn, 2008). This was especially true during the Clinton and Obama administrations,

such that in later years we expect a correlation between grandfathering status and unobserved

variables determining boiler survival and operations. We address this selection issue by disregard-

ing changes in grandfathering status and, instead, adopt the initial assignment to grandfathering.

190



That is, we define grandfathering as the status the unit had at the inception of NSR or when

the unit commenced operation. Consequently, we estimate the impact of initial assignment to

later survival, utilization, and emissions. This is equivalent to dropping the t subscript on our

grandfathering indicator.

Unfortunately, this modeling choice compounds the second problem we face: the possibility

that grandfathered and non-grandfathered units are systematically different. By design, only the

older boilers received grandfathering status.

footnote Older boilers refers to those whose construction commenced before September 1978 when

serving utilities, before 1986 when serving commercial and industrial owners, and before 1989

for small commercial and industrial boilers. The oldest exempted coal-fired boiler commenced

operations in 1926. This results in the two groups—grandfathered boilers and these subject to

NSR—differing in terms of age and underlying technology. That is, if boilers became more efficient

over time, our estimates will be biased downwards and the finding of a significant effect is at worst

understated.

This problem is partly mitigated by the varying applicability of NSR across boilers of different

size and type. We also attempt to control for the heterogeneity between groups by using various

boiler-level controls. These can capture such differences as age and boiler size but will not reflect

all possible technological change over time. As the efficiency of coal boilers improved over time

(Rode, Fischbeck and Páez, 2017), we can expect our estimates of the effect of grandfathering on

survival to be biased downwards. In one of the robustness checks we limit our sample to boilers

with in-service years between 1975 and 1988, leading to higher overlapping support between the

two groups.29 This technique is appropriate for utilization and emissions regressions, where there is

sufficient variation in the outcome variables. Unfortunately for survival, too few boilers from that

vintage have retired, such that we cannot restrict our sample to these units only.

29 During the eighties, we also observe both grandfathered and non-grandfathered units commencing service
concurrently, further increasing the similarity of grandfathered and non/grandfathered boilers. See Section 3.4.1 for
a detailed explanation of which boilers were exempted from NSR.
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3.4. Data

We synthesize a variety of electricity and regulatory data in order to assess the effect of NSR

grandfathering. Below, we discuss the sourcing and preparation for federal and local regulations,

boiler characteristics and operations, and electricity markets. Table 3.A.1 in Appendix 3.A sum-

marizes our dataset.

3.4.1. Federal regulations.

This section discusses data related to federal sulfur dioxide regulations. We commence with a

description of NSR grandfathering status and then move on to other federal regulations below.

Accurate assignment of grandfathering status to coal-fired boilers is crucial for our analysis.

However, datasets with comprehensive regulatory status information do not exist, making it difficult

to ascertain which units have obtained NSR permits.30 Two sources—the Environmental Protection

Agency (EPA) and the Energy Information Administration (EIA)—provide some information that

is indicative of grandfathering status. However, their records are inconsistent and incomplete, and

it is challenging to establish which units were exempted from NSR at which time.31

To address the problem, we return to the date defined in the regulation as a cutoff for grandfa-

thering: for boilers generating electricity for utility sales, construction must have commenced prior

to September 18, 1978.32 We first identify boilers around the cutoff using in-service data from the

EIA-767. We also assume that all boilers, apart from those classified as commercial or industrial

in the EIA-860, generate electricity for utility sales. While this assumption surely holds for boilers

belonging to investor owned utilities, it may be inconsistent for other boiler types—including those

classified as “state” or “federal”— which we would unintentionally misassign grandfathering status.

30 This is a known problem acknowledged by the Government Accountability Office (GAO, 2012b).
31 The EPA gathers relevant permit information in the “RACT/BACT/LAER Clearinghouse” which had been

used in earlier studies for the identification of grandfathered boilers. However, the Clearinghouse data suffers from
a number of drawbacks. It is a voluntary dataset across many regulatory programs. Thus, it does not incorporate
all NSR permits and includes many which are unrelated to NSR entirely. Furthermore, the dataset lacks unique
identifiers making it challenging to extract relevant permits. The EIA-767, on the other hand, releases data on
applicable regulations and NSR permits that could be used to establish grandfathering status. Unfortunately, the
data is inconsistent and, frequently, implausible.

32 See 33580 Federal Register 44, No. 113 (11 June 1979).
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Given relatively long construction times for larger coal boilers, we assume that all boilers gen-

erating electricity for utility sales whose service began before 1981, had commenced construction

prior to September 1978. Thus, such boilers were not exposed to NSR when the rules were intro-

duced. For boilers whose operations began after 1988, we assume their construction started after

1978 and, thus, were subject to NSR. For all remaining boilers generating electricity for utility

sales, we manually gather information on their construction commencement date. This included

inquiries with state environmental departments and, in some cases, directly contacting individual

power plants. For the 104 commercial and industrial boilers in our dataset, we assume they were

grandfathered if: (1) they began service prior to 1987 and had a capacity above 10 MW; (2) they

began service before 1991 and had a capacity between 1 and 10 MW; or (3) they have a capacity

below 1MW. We believe that through this approach, we can correctly assign the grandfathering

status to the majority of boilers. However, given variations in construction time and the potential

errors in the responses to our individual inquiries, we expect some misassingment of grandfathering

status for boilers taken into service in the years immediately following the passage of NSR.

Figure 3.1 presents the final set of boilers along with their grandfathering status.

Regarding other federal regulations, we mark boilers as grandfathered from New Source Per-

formance Standards if they commenced operations prior to 1973 and self-reported as exempt in

EIA-767. For the Acid Rain Program, we first establish whether a boiler was subject to its first

phase by checking whether it was included in Table 1, Subpart B of the Clean Air Act Amendments

1990 regulations. For the second phase, we assume all boilers with capacity greater than 25 MW

are program participants. We source permit prices from spot auction data published by the EPA.

Finally, information on county attainment status stems from the EPA Green Book and, for years

before 1991, from work by Randy A. Becker as made available by the EPA.

3.4.2. State regulations.

We build a state-level regulatory dataset through a comparison of: EPA summary files from the

1970s on sulfur dioxide regulations for coal-fired power plants; archived state administrative codes
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Figure 3.1. Coal-fired boilers by initial NSR grandfathering status

Notes: Initial grandfathering status refers to the original assignment of NSR grandfathering status.
Bubbles show individual power plants, while their size represents the number of constituent coal-
fired boilers. The color indicates the share of boilers within each power plant which are NSR
grandfathered. Due to data limitations, we exclude California, Maine, Ohio and Pennsylvania.

from the 2000s; and, current state administrative codes.33 If the three sources were consistent, we

assume the same set of standards applied throughout our sample period. If there were differences,

we undertook an investigation to pinpoint when and how many times the standards changed.34

The investigation was highly idiosyncratic and dependent on the particular sources available

for each state. For example, we consulted: two EPA reports compiling all state sulfur perfor-

mance standards, one from 1975 and one from 1976; State Implementation Plan revision histories

available through the Federal Register; old versions of state administrative codes available online;

and, in some cases, EPA documents describing the effective dates of different provisions in the

State Implementation Plans. The stringency of the local regulations frequently depends on plant

33 The EPA summary files reviewing sub-national sulfur dioxide regulations were published in March 1976 and
September 1977.

34 We exclude California and Ohio due to the complexity of their regulations, as well as Maine and Pennsylvania
since the geographic boundaries of their air quality control regions (AQCR) are not county-defined. Both cases
render a clean assignment of regulatory regime to power plant a time-intensive and impractical exercise. In fact,
clean assignment may not be possible in some cases. A handful of other individual observations from other states
were removed for similar reasons.
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characteristics, such as capacity, location, vintage, etc. In some cases, individual boilers or plants

were singled out for regulation. We, thus, account for boiler characteristics when matching them

with the local regulations. These standards were often emissions standards based on pounds of

sulfur dioxide per MMBtu. Other times, they were fuel composition requirements.35 Occasionally,

they were limits on parts of sulfur per million. Sometimes the standards were also tied to stack

height. Consequently, it was not always possible to parse the standards into equivalent values.36

Figure 3.C.1 in Appendix 3.C presents the mean local regulation by state as defined by our research.

3.4.3. Boiler technical data.

We construct a panel of coal-fired boilers between 1985 and 2017 using data from the EIA, specif-

ically annual forms EIA-767, EIA-860 and their predecessors. EIA-767 contains boiler-level data

from 1985 to 2005 for steam-electric plants with nameplate capacity greater than 10 MW. EIA-860

provides data for electric power plants with nameplate capacity greater than 1 MW. It contains

boiler and scrubber data commencing in 2007. Thus, we rely on EIA-767 from 1985 to 2005 and

EIA-860 from 2007 onward. Once combined, the panel consists of 35,297 boiler-year observations

representing 1,238 unique boilers across 429 power plants. The main variables include boiler age,

capacity and scrubber installation.

Moreover, we develop a survival indicator based on the status of the boiler reported in EIA-767.

We code boilers as ‘not surviving’ either when their status changes to ‘retired’ and remains so in the

following years, or when they drop from the form entirely. Retired boilers are then dropped from

our sample. Between 1985 and 2017, we observe 542 boiler retirements. Figure 3.2 displays their

geographic distribution. The majority of the retirements occur in the eastern half of the country,

which is not unexpected given that the age and density of coal-fired boilers is higher in that region.

We also extract information from EIA-923 and its predecessor EIA-423 about the average sulfur

content of purchased coal. Based on the same datasets, we construct an IV capturing the sulfur

content of coal available to individual plants. To that end, we prepare a weighted average of the

median sulfur content of coal from all counties using their inverse distances to the plant as weights.

35 For example, “input coal must not contain more than 3 percent sulfur, by weight.”
36 A full appendix detailing our processes for the sulfur dioxide standards within each state is available on request.
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Figure 3.2. Counties with boiler retirements in years 1985-2017.

Notes: Bubbles show individual counties, while their size represents the number of constituent coal-
fired boiler retirements. The color indicates the in-service year of the oldest retired boiler within
the county. Due to data limitations, we exclude California, Maine, Ohio and Pennsylvania.

The EIA-923 and 423 provide information on power plant coal deliveries, including the source

county and sulfur content by weight, while plant geographic locations are sourced from EIA-860.

For any missing locations, we replace them using coordinates from the facility attributes within

the EPA Air Markets Program Data. Figure 3.3a presents median sulfur content by state based

on EIA-923 data, and Figure 3.3b displays the constructed sulfur IV metric for each plant in our

sample.

3.4.4. Boiler operations data.

We collect boiler operations data from the Continuous Emissions Monitoring System (CEMS)

published by the EPA.37 The data are a unit-by-hour panel commencing in 1995, where coverage

increases over time. It contains hours under load, generation and emissions for fossil-fired plants

greater than 25 MW across the US.

37 Part 75 of the Federal Code of Regulations (FRC), housed within the Clean Air Act Title IV, requires coal, oil
and natural gas units to install and use CEMS. The EPA uses the data to ensure compliance with various stationary
emissions standards and programs, including the Acid Rain Program.
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Figure 3.3. Associating available coal to all coal-fired power plants

(a) Median sulfur content of coal by county.

(b) Weighted average of median sulfur content of available coal by inverse distance for all coal-fired
power plants.

Unfortunately, there are a couple of challenges associated with CEMS data. First, EPA and

EIA data lack a shared identifier. So in order to match across data sources, we rely on the EPA’s
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Power Sector Data Crosswalk, which associates EPA units with EIA boilers.However, the crosswalk

does not allow for a unique match of all boilers in our data to CEMS records.38

Second, CEMS reports gross generation, which includes plant auxiliary loads. For our purposes,

we require net generation, or equivalently, the amount of energy transmitted to the grid. To

determine net generation, we scale the CEMS data by a net-to-gross generation ratio. The EIA-

923 and predecessor forms, EIA-906 and EIA-920, summarize monthly data for units above 10 MW.

Page 1 in the dataset provides a plant-by-fuel-by-month panel of net generation. Data for utility

plants are available from 1970, while non-utility plants are available from 1999.39 We calculate the

ratio by aggregating CEMS gross generation and EIA net generation to the plant-by-month level.

Then, taking the quotient of net-to-gross generation results in a plant-specific ratio which can be

applied across all CEMS generation data.

3.4.5. Electricity market data.

To supplement the boiler and regulatory data mentioned above, we collect annual electricity market

data, including demand, aggregate capacity and fuel prices. Annual electricity demand at the state

level is sourced from the EIA State Energy Data System, while we procure utility-level demand

from EIA-861. For the latter, we use the “Sales to Ultimate Customers” table which is available

from 1990 onward and represents a balanced panel by utility. We use the demand data to compute

year-over-year demand growth rates by state and utility.

For capacity data, we utilize the “Existing Nameplate and Net Summer Capacity by Energy

Source, Producer Type and State” table based on annual data reported in form EIA-860. The

data is a panel of nameplate capacity by state, fuel source and producer type from 1990 onward.

We aggregate over all producer types to generate a panel of state capacity. We use the result to

compute a measure of competitive pressure from other generators.

38 The EPA Power Sector Data Crosswalk is a contemporary mapping. It lacks matches for units which have since
been retired. An improved historical matching could be achieved through a comparison of the EPA facility attributes
dataset and EIA-860. Additionally, some matching difficulties relate to the fact that the purpose of CEMS is to
monitor emissions and determine compliance with various emissions standards. Thus, each unit is associated with a
‘smokestack,’ which does not always directly translate into boilers.

39 Page 4 in the EIA-923 dataset provides a generator-by-month panel of net generation. However, this format
was first released in 2008.
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For input fuel prices, we again turn to EIA-923 and its predecessor EIA-423. These forms

provide monthly fuel receipts and cost data for fossil-fired plants with a nameplate capacity of at

least 50 MW. The data are available from 1972 onward, where the cost data includes the fuel price

and haulage. Using the data, we then perform the following three aggregations: plant-year coal

prices weighted by mass; state-year coals price weighted mass; and, state-year gas prices weighted

by volume. We then calculate another competitive pressure metric: the ratio of procurement and

delivery costs of gas to those of coal. For those plants where we have specific fuel receipts, the ratio

is plant specific; otherwise, we rely on a state based measure. In states where the prices of gas or

coal are not available, we use the country-level average for the given year.

3.5. Results

In this section, we present our results. We begin by comparing grandfathered and non-

grandfathered boilers across a number of characteristics. This is followed by our main regression

results for utilization, survival and emissions. Finally, we discuss heterogeneity in our results across

years and hours.

3.5.1. Grandfathered versus non-grandfathered boilers.

First, we want to understand how boilers that initially enjoyed NSR grandfathering status differ

from ones exposed to NSR regulation. As discussed in Subsection 3.3.6, systematic differences

could pose a threat to causal interpretation. We find measurable differences in baseline observables

between grandfathered and non-grandfathered boilers. See Table 3.B.1 in Appendix 3.B.

Non-grandfathered boilers are younger, larger, and regulated more stringently. They tend to

be located closer to the Northeast and are not as frequently operated by investor-owned utilities.

Naturally, both their in-service and retirement years are later. For outcome variables, our naive

comparison of utilization and retirement share means produces differences counter to expectation,

such that grandfathered plants are used less and are more likely to have retired. Regarding sulfur

dioxide emissions, our naive comparison agrees with expectations and shows that grandfathered
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plants are more emissions intensive. Given that the two groups clearly differ, our empirical approach

incorporates many of the variables in Table 3.B.1 as controls.

3.5.2. Examining the effects of grandfathering.

Table 3.1 presents results from the estimation of Equation (3.7), where outcome variables differ

across panels and controls differ across columns. Columns (1) through (4) include boilers that are

run by investor-owned utilities (IOU) as well as commercial and industrial boilers. These groups

define boilers for which we can clearly identify the applicable NSR regime. Column (5) uses the

whole sample. Column (6) is restricted to IOUs only. Table 3.2 provides the first-stage regression

results for Columns (4) and (6).

A central result is that the direct effect of NSR grandfathering increases boiler utilization,

survival and emission rates in the sample at large. For emissions, the indirect effects of grandfa-

thering drive additional increases. These results are stable to the inclusion of additional controls.

For small utility-owned, commercial, and industrial boilers exempted from NSPS and located in

attainment regions without local sulfur dioxide regulations, NSR grandfathering encourages addi-

tional utilization exceeding 2,500 hours or over 100 days per year. Under similar restrictions, NSR

grandfathering increases survival by around 3.5 percentage points, and is associated with direct

and indirect increases in emissions of around 4.5 lbs of SOx per MW per hour. The effects seem to

be particularly strong for IOUs.

When other types of boilers, such as state, municipal boilers and units owned by independent

power producers, are included, the effects are less pronounced. For utilization, for instance, they

almost halve. This could be due to the objectives governing the utilization of these units or due to

the difficulty of assigning them the proper grandfathering status.

Exposure to either NSPS or state regulations is associated with weaker grandfathering ef-

fects, while leaving boilers subject to NSR mostly unaffected. This is sensible as NSPS and state

programs restrict boiler emissions, albeit less stringently than NSR. Similarly, boilers located in

non-attainment regions exhibit reduced effects of NSR grandfathering. This could be driven by

many effects. First, states could be undertaking additional regulatory or administrative steps to
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Table 3.1. Main regression results

(1) (2) (3) (4) (5) (6) (7)

OLS OLS OLS OLS IV IV IV

IOU+ IOU+ IOU+ IOU+ IOU+ All IOU

Panel A: Utilization

GF 832.50∗∗∗ 2530.81∗∗∗ 2652.22∗∗∗ 2585.72∗∗∗ 2615.17∗∗∗ 1468.64∗∗∗ 2690.52∗∗∗

(13.36) (9.70) (9.87) (9.11) (9.57) (8.89) (7.96)

size 1288.69∗∗∗ 3147.40∗∗∗ 3211.40∗∗∗ 3343.48∗∗∗ 3062.66∗∗∗ 2099.43∗∗∗ 2979.46∗∗∗

(9.74) (8.83) (8.70) (8.40) (7.65) (9.13) (6.09)

GF × size −1992.83∗∗∗ −2129.91∗∗∗ −2331.10∗∗∗ −1992.95∗∗∗ −732.68∗∗ −1971.26∗∗∗

(−5.86) (−6.06) (−6.23) (−5.31) (−3.21) (−4.28)

NAAQS 1077.44∗∗∗ 1098.48∗∗∗ 1189.47∗∗∗ 1090.48∗∗∗ 1017.13∗∗∗ 1150.47∗∗∗

(6.87) (6.26) (6.53) (6.21) (4.88) (5.81)

GF × NAAQS −1822.90∗∗∗ −1890.20∗∗∗ −1548.87∗∗∗ −1912.14∗∗∗ −1816.59∗∗∗ −2066.24∗∗∗

(−9.42) (−8.85) (−7.28) (−8.98) (−7.88) (−8.60)

MMBTU 28.02 28.38 27.44 33.35 130.70∗∗ 34.60

(0.57) (0.57) (0.57) (0.67) (2.81) (0.68)

GF × MMBTU −412.20∗∗∗ −415.90∗∗∗ −308.55∗∗∗ −415.19∗∗∗ −507.28∗∗∗ −426.74∗∗∗

(−7.16) (−7.20) (−6.57) (−7.18) (−10.48) (−7.02)

SO2cont IV −137.74 21.71 −280.39∗

(−1.20) (0.24) (−2.49)

Year FE X X X X X X X

State FE X X X X X X X
Utility FE X X X X X X

Market Controls X X X X X

Sulfur Controls X X X X
Observations 10,782 10,782 10,436 9,762 10,436 16,291 9,927

R2 0.289 0.304 0.301 0.294 0.301 0.296 0.289

Panel B: Survival

GF 0.86∗∗ 3.00∗∗ 3.45∗∗∗ 2.67∗∗ 3.37∗∗∗ 2.26∗∗ 4.25∗∗

(3.02) (3.24) (3.38) (2.74) (3.30) (3.27) (3.03)

size 0.63 2.76∗ 3.29∗∗ 2.73∗ 2.84∗ 1.56 3.88∗

(1.16) (2.36) (2.58) (2.11) (2.02) (1.84) (1.99)

GF × size −2.36∗ −2.47 −1.92 −2.10 −0.00 −3.19
(−2.02) (−1.93) (−1.54) (−1.52) (−0.00) (−1.70)

NAAQS 2.89∗∗ 3.96∗∗∗ 2.97∗∗ 3.98∗∗∗ 3.72∗∗∗ 4.22∗∗∗

(3.00) (3.33) (2.86) (3.34) (3.93) (3.40)

GF × NAAQS −4.05∗∗∗ −4.87∗∗ −5.13∗∗∗ −4.97∗∗∗ −5.01∗∗∗ −5.23∗∗∗

(−3.52) (−3.26) (−3.56) (−3.30) (−4.18) (−3.34)

MMBTU 0.22 0.30 −0.20 0.31 0.11 0.39
(0.89) (1.03) (−1.44) (1.07) (0.64) (1.30)

GF × MMBTU −0.60∗∗ −0.74∗∗ −0.34∗ −0.74∗∗ −0.74∗∗ −0.81∗∗∗

(−3.26) (−3.26) (−2.18) (−3.25) (−2.76) (−3.29)

SO2cont IV −0.38 −0.92 −0.33
(−0.54) (−1.63) (−0.42)

Year FE X X X X X X X

State FE X X X X X X X

Utility FE X X X X X X
Market Controls X X X X X
Sulfur Controls X X X X

Observations 15,257 15,257 12,626 11,738 12,626 19,125 11,694
R2 0.101 0.102 0.107 0.103 0.107 0.099 0.109
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(1) (2) (3) (4) (5) (6) (7)

OLS OLS OLS OLS IV IV IV

IOU+ IOU+ IOU+ IOU+ IOU+ All IOU

Panel C: Emissions

GF 0.55∗∗∗ 4.73∗∗∗ 4.73∗∗∗ 4.80∗∗∗ 4.04∗∗∗ 3.68∗∗∗ 4.26∗∗∗

(4.19) (12.59) (12.59) (12.71) (10.12) (12.75) (10.64)

size −2.00∗∗∗ 2.60∗∗∗ 2.60∗∗∗ 2.83∗∗∗ 0.56 −0.42 0.71
(−9.19) (6.57) (6.57) (7.28) (1.00) (−1.30) (1.22)

GF × size −4.77∗∗∗ −4.77∗∗∗ −4.92∗∗∗ −2.90∗∗∗ −2.83∗∗∗ −3.18∗∗∗

(−10.94) (−10.94) (−11.45) (−5.03) (−7.09) (−5.47)

NAAQS 2.40∗∗∗ 2.40∗∗∗ 1.51∗∗∗ 2.15∗∗∗ 1.74∗∗∗ 2.19∗∗∗

(5.19) (5.19) (4.59) (5.46) (5.46) (5.17)

GF × NAAQS −3.19∗∗∗ −3.19∗∗∗ −1.56∗∗ −2.80∗∗∗ −1.34∗∗ −2.76∗∗∗

(−5.72) (−5.72) (−3.27) (−5.59) (−3.24) (−5.26)

MMBTU −0.18 −0.18 −0.14 −0.07 −0.45∗∗∗ −0.07
(−1.11) (−1.11) (−0.83) (−0.42) (−5.62) (−0.42)

GF × MMBTU −1.00∗∗∗ −1.00∗∗∗ −1.01∗∗∗ −0.98∗∗∗ −0.87∗∗∗ −0.97∗∗∗

(−5.97) (−5.97) (−5.96) (−5.60) (−10.06) (−5.63)

SO2cont IV −2.28∗∗∗ −1.30∗∗∗ −1.78∗∗∗

(−6.03) (−4.83) (−4.83)

Year FE X X X X X X X

State FE X X X X X X X

Utility FE X X X X X X
Market Controls

Sulfur Controls X X X X
Observations 10,227 10,227 10,227 9,706 10,227 16,181 10,049

R2 0.419 0.432 0.432 0.438 0.440 0.407 0.443

Notes: Columns (1) to (4) are estimated using OLS, while Columns (5) to (7) use 2SLS and leverage sulfur content

of the available coal as an instrument for sulfur content of the combusted coal. The unit of observation is boiler-year.

The IOU specification restricts the sample to boilers belonging to IOUs, while the IOU+ specification restricts to
commercial, industrial and IOU boilers. All uses all available boilers. Utilization and emissions estimations are based

on data between 1995 and 2018, survival estimations on 1985 to 2017. We use robust standard errors. Significance is

represented as *** for p<0.001, ** for p<0.01, and * for p<0.05; while, t-statistics are in parentheses.

control their sulfur dioxide emissions beyond the sulfur regulations measured through our NAAQS

variable. These regulations likely target the most polluting boilers, such that grandfathered boilers

would be most impacted. Second, in non-attainment counties there may be more public aware-

ness of pollution problems. Press coverage of the local damages from sulfur emissions, politicians

keeping a close eye on dirty facilities, and other forms of social pressure on polluters could reduce

the advantage of grandfathering. On a related point, in non-attainment counties, facilities could

engage in regulatory avoidance, as the likelihood of their actions and emissions attracting attention

is higher (Raff and Walter, 2020). Through regulatory avoidance, boilers would voluntarily limit

the advantage provided by grandfathering provisions.
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The utilization and emissions effects also decrease with boiler capacity. For utilization this

could be driven by the fact that larger boilers generally run most of the time; hence, the number of

hours that a boiler can run additionally is limited. For emissions, the explanation for the finding

is less straightforward. It could relate to the fact that scrubber installation is generally more cost-

efficient for larger units. This could cause larger units to more frequently adapt pollution abatement

equipment for compliance with cap-and-trade programs even if they were not subject to NSR. It

could also relate to the fact that units with higher gross generation were more likely to be targeted

by EPA for enforcement of the modification rule Chan and Zhou (2021), causing them to engage

in regulatory aversion Keohane, Mansur and Voynov (2009).

Table 3.2. Main regression first-stage results

IOU+ All IOU

sulfur 2.62∗∗∗ 2.35∗∗∗ 2.83∗∗∗

(30.29) (37.36) (31.32)

GF −0.39∗∗∗ −0.21∗∗∗ −0.42∗∗∗

(−7.47) (−4.52) (−7.73)

size −1.18∗∗∗ −0.70∗∗∗ −1.34∗∗∗

(−16.81) (−10.04) (−18.67)

GF × size 1.04∗∗∗ 0.65∗∗∗ 1.09∗∗∗

(13.95) (8.77) (14.30)

NAAQS −0.08 −0.07 −0.00

(−0.71) (−0.64) (−0.04)

GF × NAAQS −0.12 −0.05 −0.14
(−1.05) (−0.46) (−1.16)

MMBTU 0.03∗∗∗ −0.04∗∗∗ 0.02∗∗

(3.77) (−4.01) (2.68)

GF × MMBTU 0.04∗∗∗ 0.03∗∗ 0.04∗∗∗

(4.51) (2.65) (5.16)

Year FE X X X
State FE X X X

Utility FE X X

Market Controls X X X
Observations 13,365 19,750 12,503
R2 0.596 0.481 0.590

Notes: The dependent variable is sulfur dioxide content of the com-
busted coal. All specifications are estimated using OLS. The unit of

observation is boiler-year. The IOU specification uses only boilers

belonging to IOUs, while the IOU+ specification uses commercial,
industrial and IOU boilers. All uses all available boilers. We use ro-

bust standard errors. Significance is represented as *** for p<0.001,

** for p<0.01, and * for p<0.05; while, t-statistics are in parentheses.
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We can also calculate the average total effect of NSR grandfathering while accounting for: in-

teraction effects between grandfathering and state regulations, between grandfathering and boiler

size, and its indirect effects. Relying on the specification from Column (5) in Table 3.1, we calculate

the effect of grandfathering for each observations in our sample. Taking averages of the calculated

effects, we find that grandfathering is associated with approximately 787 additional hours of oper-

ations annually, 2.05 pounds of additional SO2 emissions per MW of capacity per hour run, and

with a 1.5 percent increase in the probability of surviving an additional year. Note that these

effects are high, especially given that we are looking at the pool of all boilers that initially enjoyed

grandfathering status and which many of them lost over time.40

The remaining covariates, including age and size effects are coherent with economic intuition.

We observe substantial heterogeneity in the effects across years and states as captured by fixed

effects.

Given the strong utilization advantage associated with grandfathering, we perform the net-

to-gross generation analysis as presented in Equation (3.2). Table 3.3 presents the results using

data restricted to 2008 to 2017 due to limited availability of generation information.41 Column (1)

lacks covariates and, thus, its intercept represents the pure weighted average generation ratio for

non-grandfathered plants, 92.1 percent. In this case, the coefficient on our grandfathering indicator

is negative implying that grandfathered plants are less efficient in exporting electricity to the grid.

However, grandfathered boilers differ systematically from their non-grandfathered counterparts.

They are inherently older and tend to be smaller on average. When controlling for these two

characteristics, the sign on grandfathering reverses and is statistically significant at the 99.9 percent

level as can be seen in Column (2).

This correlation implies that grandfathered boilers tend to be more efficient in delivering elec-

tricity to the grid. It also supports the assumption that they are less costly to operate. However,

this effect does not seem to be the main driver of the differences in utilization given its small

size: the results suggest that the net-to-gross generation ratio is 0.2 percentage points higher for

grandfathered units, but the absolute level of the ration is usually above 90 percent.

40 Among others, between years 1999 and 2015, 275 boilers became subject of investigation connected to their NSR
status under the modification rule, which resulted in settlements and loss of grandfathering status (Chan and Zhou,
2021).

41 Additional detail on the data used in Table 3.3 can be found in Subsection 3.4.4.

204



Table 3.3. Net-to-gross generation ratio regressions

(1) (2)

Grandfathering −0.006∗∗∗ 0.002∗∗∗

(−13.40) (3.93)

Age X

Size X
Observations 69,309 69,309

R2 0.003 0.050

Adjusted R2 0.003 0.050

Notes: This table reports results from two weighted
least squares regressions based on Equation (3.2). The

dependent variable is net-to-gross generation ratio,
while the weights are based on monthly durations.

Column (1) essentially represents the pure weighted

average, while Column (2) presents one conditional on
age and size. They rely on CEMS and EIA-861 data

from 2008 to 2017. Significance is represented as ***

for p<0.001, ** for p<0.01, and * for p<0.05; while,
t-statistics are in parentheses.

3.5.3. Examining heterogeneous effects.

The above analyses assume constant effects of grandfathering across time. However, it is possible

that over years, with a changing regulatory landscape and market conditions, the advantage of

grandfathering may also change. Such heterogeneous effects are important when assessing whether

the need for corrective policies remains.

For utilization effects, their distribution over the course of a day matters as well. Different

types of resources tend to be marginal in different hours. So, depending on when the additional

utilization happens, grandfathered boilers could push out different resource types. As a conse-

quence, the utilization channel can have different marginal emission impacts and, thus, different

welfare implications depending on the exact time distribution.

We, thus, present results from an investigation of heterogeneous grandfathering effects across

both years and hours. To that end, we first modify Columns (3) and (4) from Table 3.1 by

combining the grandfathering indicator and year fixed effects into a series of interaction terms.

Figure 3.1 presents the results. For utilization and survival, results are similar in that they are

positive, relatively stable and significant up until around 2010 when many new environmental rules

were announced. For utilization prior to 2010, NSR grandfathering tends to add around 1,000
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hours per year. After 2010, the effect is not statistically significant. Grandfathering increases the

chance of survival assuming the boiler is present in the previous year by around 0.17 percentage

points. Though they remain significant, its results are far less stable after 2010. For emissions,

the effects are decreasing over time, reflecting the fact that many of the boilers that were initially

grandfathered decided over time to install scrubbers, for instance to reduce their compliance costs

with Acid Rain Program, or lost their grandfathering status as a result of the modification rule.

To understand the hourly effects of grandfathering, we use CEMS data and run 24 separate

regressions of Equation (3.7) for each hour of the day. Figure 3.2 presents the resulting estimates

for the effects of grandfathering on utilization. From the plot, the effect is stable and significant

across all hours of the day. For every hour, NSR grandfathering is associated with an increase

in utilization of between 0.15 and 0.17 hours, which is equivalent to around 10 minutes per hour.

Evidently, grandfathered plants were operated as baseload plants.

3.5.4. Robustness checks.

In this subsection, we check the robustness of our main results using two methods. First, we restrict

the boiler vintages to those nearest to the implementation of NSR. Second, we adopt a conservative

definition of NSR grandfathering based only on its implementation date and boilers’ in-service

years.

Restricting the boiler vintages.

A potential problem with our approach is that, as it uses boilers built in different decades, un-

observed improvements in boiler technology could be confounding the inference and biasing our

results. Estimations using boilers constructed just before and just after the introduction of NSR

could, thus, provide cleaner results. That is, a more narrow sample implies that the support across

the two groups—grandfathered and non-grandfathered boilers—is better aligned. However, narrow-

ing the sample increases the likelihood of incorrect assignment grandfathering status.42 Thus, we

restrict the sample to boilers with in-service years between 1970 and 1994. We anticipate that this

42 See Section 3.4.1 for further details.
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Figure 3.1. Yearly effects of NSR grandfathering.
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(a) Hourly utilization. Coefficients derived from a regression using CEMS data and performed by
including grandfathering-year interactions in Column (4) from Table 3.1.
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(b) Survival. Coefficients derived from a regression performed by including grandfathering-year
interactions in Column (3) from Table 3.1.
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(c) Sulfur emissions rate. Coefficients derived from a regression based on CEMS data and performed
by including grandfathering-year interactions in Column (4) from Table 3.1.
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Figure 3.2. Hourly effects of NSR grandfathering on utilization.
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Notes: Coefficients derived from a set of regression equivalent to Column (4) from Table 3.1, where
the sample is limited to that for the specific hour.

time range restricts variation in boiler technologies while also limiting the share of boilers with mis-

assigned grandfathering status. This leaves us with 125 grandfathered and 291 non-grandfathered

boilers, out of which 54 and 152 are operated by IOUs, respectively.

The resulting estimates, shown in Tables 3.D.1 and 3.D.2 in Appendix 3.D, are consistent with

our main findings but of smaller magnitude. This may be due to the heightened significance of

noise within our grandfathering status indicator.

Grandfathering status.

We now address the robustness of our main results by adopting a “conservative” assignment of

NSR grandfathering status, i.e. by assuming that all boilers with in-service years after the passage

of the relevant NSR rules were subject to these rules, notwithstanding when their construction

commenced. The cut-off year for grandfathering is thus 1979 for boilers generating electricity

for utility sales with capacity above 73 MW, 1987 for commercial and industrial boilers above

10 MW, and 1990 for commercial and industrial boilers with capacity between 1 and 10 MW.

Such an approach guarantees that all non-grandfathered boilers are correctly classified, though
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it is susceptible to false negatives. That is, some boilers that actually were grandfathered are

unintentionally marked as non-grandfathered.

Table 3.D.3 in the Appendix 3.D shows the results. They are again consistent with our main

specification but of smaller magnitude, likely due to a higher number of boilers incorrectly classified

as non-grandfathered.

3.6. Conclusion

The Clean Air Act is the centerpiece for air pollution control within the US. Nevertheless, some

of its aspects remain relatively little understood. This holds true, among others, for New Source

Review and its associated grandfathering provisions. Despite their importance for the operations

of regulated units and for sulfur emissions, only a small set of papers addresses them empirically.

We offer new insight into the impacts that NSR grandfathering provisions had on the operation

of coal boilers with respect to both their utilization and retirement decisions. We also show how NSR

grandfathering allowed incumbent boilers to maintain high sulfur dioxide emissions, even decades

after the implementation of NSR. We combine various sources of data on boilers, coal, electricity

markets, and federal sulfur dioxide regulations between 1985 and 2018. We also create a dataset of

state-level sulfur dioxide regulations. Our econometric analysis, aided by the differences of NSR’s

applicability across boilers of various size and type, documents how the cost wedge introduced by

grandfathered boilers biased the outcomes in the sector. We find that, on average, grandfathering

status was associated with 787 additional hours under load annually and a 1.5 percentage point

increase in the probability of surviving an additional year. This suggests that NSR provisions

pushed generation towards less efficient incumbent boilers. The effects were particularly pronounced

for small boilers in attainment counties and for the early years of our sample. We also show the

importance of state regulations in limiting the perverse effects of NSR grandfathering.

A motivating factor behind this work was the sustained usage of vintage regulation provisions,

especially in an environmental context. For policymakers, our analysis represents a warning for the

implications of passing grandfathering provisions without well-designed sunset clauses, especially

when the regulated asset is long-lived.
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Appendix

3.A. Data overview

Table 3.A.1. Variables summary

Variable Description Source

hoursit Dependent variable representing the number of hours
boiler i operated in a year t

EPA CEMS

surviveit Dependent binary variable equal to one if boiler i contin-
ued operation in year t+ 1

EIA-767; EIA-860

emissionsit Dependent variable representing sulfur dioxide emissions
per hour for boiler i in year t

EPA CEMS

GF i Indicator variable equal one if boiler i was covered by the
grandfathering provision when NSR was enacted

EIA-767; Own research

NAAQS jt Indicator variable equal to one if county j is a non-
attainment region for sulfur dioxide under NAAQS

EPA Green Book

MMBTU it Variable representing the more stringent of the local sul-
fur regulation and New Source Performance Standard, if
applicable, for boiler i in year t expressed as an inverse

Own research

priceit Effective permit price faced by boiler i in year t for a
short ton of sulfur dioxide emissions

Federal Register; EPA

SO2cont it The average sulfur content of coal used by boiler i during
year t

EIA-923 & EIA-423

sulfur it IV based on the average sulfur content of coal available
to boiler i during year t

EIA-923 & EIA-423; EIA-
860 & EPA

ageit Boiler i age in years EIA-860

sizei Boiler i capacity in GW EIA-767; EIA-860; EPA

growths
jt Percentage growth in state j electricity demand in year t EIA State Energy Data

System

growthu
it Percentage growth in utility electricity demand faced by

boiler i in year t
EIA-861

GasCapjt Competitive pressure from natural gas units measured as
their total capacity in state j during year i

EIA-860
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Variable Description Source(s)

VRECapjt Competitive pressure from variable renewable energy, in-
cluding wind and solar, measured as their total capacity
in state j during year i

EIA-860

GasPressit Competitive pressure from gas units measured as the ra-
tio of procurement and delivery costs of gas to coal for
boiler i in year t

EIA-923 & EIA-423

αj State fixed effects EIA-767; EIA-860

µm Owner type fixed effects, including utility, independent
power producer, state, coop, etc.

EIA-860

ηt Year fixed effects
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3.B. Grandfathered versus non-grandfathered boilers

Table 3.B.1. Average characteristics of boilers by NSR grandfathering status

Variable Grandfathered Non-Grandfathered Difference

Nonattainment 0.07 0.01 0.05∗∗∗

(0.18) (0.07) [7.24]

Acid Rain Program 0.95 1.00 −0.05∗∗∗

(0.22) (0.00) [−7.62]

Applicable Non-NSR Emission 5.31 4.54 0.78∗∗

Standard [lbs/mmBTu] (3.07) (3.17) [3.14]

Latitude 38.67 37.51 1.15∗∗

(4.02) (4.75) [3.16]

Longitude −87.21 −90.90 3.69∗∗∗

(8.87) (9.82) [4.85]

Capacity 251.31 497.17 −245.86∗∗∗

(243.45) (247.36) [−12.62]

Age 36.78 12.05 24.73∗∗∗

(11.07) (5.99) [44.71]

Inservice Year 1, 962.66 1, 993.05 −30.39∗∗∗

(12.18) (10.96) [−34.66]

Retirement Year 2, 010.99 2, 013.52 −2.52∗∗

(8.03) (4.09) [−2.92]

Retire 0.51 0.14 0.37∗∗∗

(0.54) (0.35) [12.36]

Duration† [hr/yr] 6, 071.61 7, 104.42 −1, 032.81∗∗∗

(1, 936.48) (1, 410.65) [−8.02]

Generation† [GWh/yr] 1, 602.98 3, 366.25 −1, 763.27∗∗∗

(1, 571.93) (1, 637.21) [−11.52]

SO2 Emissions† [lbs/mmBTu] 1.03 0.35 0.68∗∗∗

(0.76) (0.25) [19.87]

Weighted Average Mine Sulfur 1.66 1.63 0.03
Content [% weight] (0.19) (0.22) [1.92]

Share of Co-operatives 0.06 0.10 −0.04
(0.23) (0.30) [−1.79]

Share of Commercial 0.01 0.02 −0.00
(0.11) (0.13) [−0.27]

Share of Federal 0.04 0.08 −0.04
(0.20) (0.27) [−1.77]

Share of Investor-Owned 0.56 0.41 0.15∗∗∗

(0.50) (0.49) [3.74]

Share of Industrial 0.01 0.03 −0.01
(0.12) (0.16) [−0.99]

Share of Municipal 0.06 0.09 −0.03
(0.24) (0.29) [−1.35]
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Variable Grandfathered Non-Grandfathered Difference

Share of Political 0.07 0.10 −0.03
(0.25) (0.30) [−1.48]

Share of IPPs 0.12 0.13 −0.01
(0.32) (0.34) [−0.54]

Share of State 0.07 0.05 0.02
(0.26) (0.21) [1.39]

Number of Boilers 1, 030 192

Notes: This table displays average characteristics by NSR grandfathering status. Standard de-
viations are in parentheses, with t-statistics of the difference between ‘grandfathered’ and ‘non-
grandfathered’ boilers in brackets where *** p¡0.001; ** p¡0.01; * p¡0.05. All variables utilize the
full extent of our dataset, except for those from CEMS which are from 1997 onwards and are iden-
tified with a †. Each row is a separate calculation, and is not conditional on the other variables
reported here. Co-operatives, commercial, federal, investor-owned, industrial, IPPs (independent
power producers), municipal, political, and state refer to boiler ownership.
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3.C. State regulation
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Figure 3.C.1. Mean state regulations by year
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Notes: The line shows local emissions requirements averaged over active boilers in a given year. Absence of pollution limits
for individual boilers was coded as a standard of 9 lbs/mmBTU. Grey boxes indicate states for which we either were unable to
compile the information on local regulations or states that had no active coal boilers.
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3.D. Robustness checks

This appendix presents results for the robustness checks discussed in Section 3.5.4.

3.D.1. Restricting the boiler vintages.

First, we perform a robustness check of our main results in Table 3.1 by restricting the sample to

boilers taken into service in years 1970 to 1994. Table 3.D.1 reports the main regression results,

while the first three columns in Table 3.D.2 presents the results of the corresponding first stage

regressions.

Table 3.D.1. Robustness regression results: Boilers born near the passage of NSR

(1) (2) (3) (4) (5) (6) (7)

OLS OLS OLS OLS IV IV IV

IOU+ IOU+ IOU+ IOU+ IOU+ All IOU

Panel A: Utilization

GF −27.49 1098.45∗∗∗ 1074.67∗∗∗ 1058.31∗∗∗ 1375.20∗∗∗ 530.49∗∗∗ 695.81∗∗

(−0.41) (4.48) (4.27) (4.25) (5.49) (3.62) (2.70)

size 896.93∗∗∗ 2044.37∗∗∗ 1965.68∗∗∗ 1915.58∗∗∗ 2803.18∗∗∗ 1808.92∗∗∗ 1785.73∗∗∗

(6.31) (6.28) (5.90) (5.53) (7.49) (8.30) (4.85)

GF × size −1290.01∗∗∗ −1240.45∗∗∗ −1479.83∗∗∗ −1856.84∗∗∗ −684.25∗∗ −857.34∗

(−3.99) (−3.75) (−4.46) (−5.50) (−3.28) (−2.53)

NAAQS 322.42∗ 298.72 461.57∗∗ 283.87 691.82∗∗∗ 238.96
(2.25) (1.81) (3.02) (1.72) (4.31) (1.42)

GF × NAAQS −312.15 −243.12 −128.19 −112.77 −636.43∗∗ −120.03

(−1.42) (−0.98) (−0.67) (−0.45) (−2.98) (−0.45)

MMBTU 145.08∗∗ 140.48∗∗ 76.59 120.08∗ −9.37 96.49

(2.95) (2.80) (1.63) (2.36) (−0.25) (1.90)

GF × MMBTU −280.60∗∗∗ −272.83∗∗∗ −103.86∗ −292.15∗∗∗ −99.33∗ −228.24∗∗

(−4.11) (−3.91) (−2.39) (−4.18) (−2.07) (−3.28)

SO2cont IV 541.43∗∗∗ 347.30∗∗ 306.90∗∗

(4.24) (3.11) (2.65)

Year FE X X X X X X X
State FE X X X X X X X

Utility FE X X X X X X

Market Controls X X X X X
Sulfur Controls X X X X

Observations 4,308 4,308 4,122 3,964 4,122 6,849 3,880
R2 0.283 0.295 0.282 0.291 0.286 0.348 0.243
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(1) (2) (3) (4) (5) (6) (7)

OLS OLS OLS OLS IV IV IV

IOU+ IOU+ IOU+ IOU+ IOU+ All IOU

Panel C: Emissions

GF −0.60∗∗∗ 0.40 0.40 0.32 −0.38 0.03 0.19
(−3.99) (1.31) (1.31) (1.02) (−1.04) (0.11) (0.59)

size 1.07∗∗∗ 2.10∗∗∗ 2.10∗∗∗ 1.99∗∗∗ 0.09 0.90∗ 0.91
(4.96) (5.78) (5.78) (5.26) (0.15) (2.16) (1.84)

GF × size −0.97∗ −0.97∗ −0.87∗ 0.55 −1.28∗∗ −0.10
(−2.39) (−2.39) (−2.13) (1.05) (−3.01) (−0.21)

NAAQS 0.88∗∗ 0.88∗∗ 0.24 0.84∗∗ 0.56 0.90∗∗

(2.70) (2.70) (0.77) (2.61) (1.96) (2.93)

GF × NAAQS −1.25∗∗ −1.25∗∗ −0.53 −1.18∗∗ −0.37 −1.22∗∗

(−3.09) (−3.09) (−1.37) (−2.91) (−0.74) (−3.20)

MMBTU −0.32∗∗ −0.32∗∗ −0.31∗∗ −0.26∗ −0.40∗∗∗ −0.26∗

(−2.93) (−2.93) (−2.79) (−2.28) (−6.19) (−2.39)

GF × MMBTU −0.18 −0.18 −0.17 −0.13 −0.18∗ −0.13

(−1.58) (−1.58) (−1.49) (−1.11) (−2.40) (−1.17)

SO2cont IV −1.44∗∗∗ −0.45 −0.81∗∗∗

(−4.86) (−1.54) (−3.33)

Year FE X X X X X X X

State FE X X X X X X X
Utility FE X X X X X X

Market Controls
Sulfur Controls X X X X

Observations 4,136 4,136 4,136 4,027 4,136 6,971 4,037

R2 0.460 0.476 0.476 0.479 0.483 0.438 0.485

Notes: Regression results using samples restricted to boilers which started their service between 1970 and 1994.

Columns (1) to (4) are estimated using OLS, while Columns (5) to (7) use 2SLS and leverage sulfur content of the available
coal as an instrument for sulfur content of the combusted coal. The unit of observation is boiler-year. The IOU specification

further restricts the sample to boilers belonging to IOUs, while the IOU+ specification restricts to commercial, industrial
and IOU boilers. All uses all types of available boilers. Utilization and emissions estimations are based on data between

1995 and 2018, while survival estimations are based on 1985 to 2017. Estimations of survival effects are not possible given

that the sample contains too few retirements. We use robust standard errors. Significance is represented as *** for p<0.001,
** for p<0.01, and * for p<0.05; while, t-statistics are in parentheses.

3.D.2. Grandfathering status.

Next, we check the robustness of our main results presented in Table 3.1 by adopting a conser-

vative definition of NSR grandfathering status. Table 3.D.3 presents the main results, while the

corresponding first stage results are shown in the last three columns of Table 3.D.2.
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Table 3.D.2. Robustness regressions first-stage results

Restricted vintages Alternative GF definition

IOU+ All IOU IOU+ All IOU

sulfur 2.6∗∗∗ 2.09∗∗∗ 2.87∗∗∗ 2.58∗∗∗ 2.32∗∗∗ 2.8∗∗∗

(20.36) (21.07) (21.12) (37.18) (38.33) (37.77)

GF −0.72∗∗∗ −0.45∗∗∗ −0.6∗∗∗ −0.5∗ 0.21 −0.41∗

(−10.23) (−8.64) (−7.81) (−2.31) (1.07) (1.96)

size −1.82∗∗∗ −1.04∗∗∗ −1.76∗∗∗ −0.87∗∗∗ −0.49∗∗∗ −.97∗∗∗

(−21.24) (−16.12) (−19.2) (−19.69) (−12.46) (−21.45)

GF × size 1.31∗∗∗ 0.82∗∗∗ 1.15∗∗∗ .66∗∗∗ 0.39∗∗∗ 0.6∗∗∗

(14.79) (11.63) (11.96) (16.48) (10.7) (16.42)

NAAQS −0.01 0.082 −0.07 .167 −0.01 0.09

(−0.04) (0.82) (0.6) (0.18) (−.011) (0.95)

GF × NAAQS −0.22 −0.38∗∗∗ −0.16 −.22∗ −.12 −0.245∗

(−1.71) (−3.43) (−1.22) (−2.33) (−1.27) (2.44)

MMBTU 0.02 −0.025 0.02 0.88∗∗∗ −0.00 0.08∗∗∗

(0.97) (−1.41) (1.06) (4.34) (−.08) (3.82)

GF × MMBTU 0.07∗∗∗ 0.08∗∗∗ 0.06∗∗ −0.04∗ −.018 −.03

(2.7) (4.37) (2.47) (−2.02) (−1.29) (−1.61)

Year FE X X X X X X

State FE X X X X X X
Utility FE X X X X

Market Controls X X X X X X
Observations 5,111 8,076 4,766 13,365 19,750 12,503

R2 0.694 0.622 0.689 0.594 0.48 0.588

Notes: The dependent variable is sulfur dioxide content of the combusted coal. All specifications are
estimated using OLS. The unit of observation is boiler-year. The sample for the Restrict vintages columns
is restricted to boilers which started their service between 1970 and 1994. The Alternative GF definition

columns rely on a “conservative” measure of grandfathering status. The IOU specifications use only boilers

belonging to IOUs, while the IOU+ specifications use commercial, industrial and IOU boilers. All uses all
available boilers. Estimations are based on data between 1995 and 2018. We use robust standard errors.

Significance is represented as *** for p<0.001, ** for p<0.01, and * for p<0.05; while, t-statistics are in

parentheses.
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Table 3.D.3. Robustness regression results: Conservative grandfathering status

(1) (2) (3) (4) (5) (6) (7)

OLS OLS OLS OLS IV IV IV

IOU+ IOU+ IOU+ IOU+ IOU+ All IOU

Panel A: Utilization

GFc 681.81∗∗∗ 583.31∗∗∗ 604.07∗∗∗ 573.49∗∗∗ 601.71∗∗∗ 219.47∗∗∗ 568.65∗∗∗

(12.45) (9.02) (9.22) (8.99) (9.11) (4.29) (8.55)

size 1391.77∗∗∗ 1275.82∗∗∗ 1225.03∗∗∗ 1395.14∗∗∗ 1188.23∗∗∗ 871.17∗∗∗ 875.79∗∗

(10.45) (6.17) (5.76) (6.47) (4.77) (6.17) (3.28)

GFc × size 267.99 265.58 25.08 297.07 752.60∗∗∗ 519.78∗∗

(1.90) (1.85) (0.18) (1.74) (6.84) (2.99)

NAAQS 702.08∗∗∗ 699.98∗∗∗ 755.28∗∗∗ 700.91∗∗∗ 616.47∗∗∗ 887.24∗∗∗

(5.10) (4.62) (4.94) (4.64) (4.28) (5.40)

GFc × NAAQS −1466.13∗∗∗ −1508.91∗∗∗ −1123.92∗∗∗ −1520.77∗∗∗ −1440.73∗∗∗ −1819.11∗∗∗

(−8.18) (−7.74) (−5.94) (−7.79) (−8.11) (−8.49)

MMBTU −349.03∗∗∗ −357.23∗∗∗ −332.96∗∗∗ −354.65∗∗∗ −63.15 −317.56∗∗∗

(−4.15) (−4.17) (−4.23) (−4.10) (−1.43) (−3.86)

GFc × MMBTU 49.71 57.90 141.43 55.96 −252.70∗∗∗ 16.53

(0.59) (0.68) (1.94) (0.65) (−5.85) (0.20)

SO2cont IV −34.28 72.77 −220.85

(−0.29) (0.79) (−1.92)

Year FE X X X X X X X

State FE X X X X X X X
Utility FE X X X X X X

Market Controls X X X X X

Sulfur Controls X X X X
Observations 10,782 10,782 10,436 9,762 10,436 16,291 9,927

R2 0.287 0.298 0.294 0.286 0.294 0.293 0.282

Panel B: Survival

GFc 0.94∗∗∗ 1.07∗∗∗ 1.21∗∗∗ 0.97∗∗ 1.21∗∗ 0.70∗ 1.33∗∗∗

(3.47) (3.37) (3.29) (2.67) (3.29) (2.40) (3.52)

size 0.73 0.75 1.08 1.02 0.81 0.05 0.98
(1.33) (1.06) (1.33) (1.27) (0.83) (0.08) (0.83)

GFc × size 0.14 0.34 0.24 0.54 1.97∗∗∗ 0.39

(0.29) (0.59) (0.43) (0.73) (3.36) (0.48)

NAAQS 1.17 1.76 0.47 1.79 1.08 1.84

(0.65) (0.74) (0.18) (0.76) (0.84) (0.77)

GFc × NAAQS −2.29 −2.58 −2.51 −2.69 −2.29 −2.75

(−1.20) (−1.02) (−0.92) (−1.05) (−1.54) (−1.07)

MMBTU −0.09 −0.10 −0.49∗∗ −0.08 −0.13 −0.05
(−0.31) (−0.30) (−2.99) (−0.25) (−0.75) (−0.15)

GFc × MMBTU −0.19 −0.23 0.04 −0.24 −0.40 −0.23
(−1.08) (−1.03) (0.23) (−1.07) (−1.80) (−1.01)

SO2cont IV −0.23 −0.85 −0.17

(−0.33) (−1.50) (−0.22)

Year FE X X X X X X X

State FE X X X X X X X

Utility FE X X X X X X
Market Controls X X X X X
Sulfur Controls X X X X

Observations 15,257 15,257 12,626 11,738 12,626 19,125 11,694
R2 0.101 0.102 0.106 0.102 0.107 0.099 0.108

223



(1) (2) (3) (4) (5) (6) (7)

OLS OLS OLS OLS IV IV IV

IOU+ IOU+ IOU+ IOU+ IOU+ All IOU

Panel C: Emissions

GFc 0.78∗∗∗ 1.04∗∗∗ 1.04∗∗∗ 1.02∗∗∗ 0.95∗∗∗ 1.44∗∗∗ 1.02∗∗∗

(6.11) (7.39) (7.39) (7.09) (6.75) (11.71) (7.36)

size −1.95∗∗∗ −1.12∗∗∗ −1.12∗∗∗ −0.94∗∗ −2.49∗∗∗ −2.98∗∗∗ −2.45∗∗∗

(−8.95) (−4.06) (−4.06) (−3.29) (−6.31) (−12.16) (−6.06)

GFc × size −0.38 −0.38 −0.45∗ 0.71∗ 0.23 0.60

(−1.80) (−1.80) (−2.11) (2.21) (1.08) (1.90)

NAAQS 1.59∗∗∗ 1.59∗∗∗ 0.77∗∗ 1.81∗∗∗ 0.54 1.74∗∗∗

(3.74) (3.74) (2.90) (4.81) (1.67) (4.31)

GFc × NAAQS −2.39∗∗∗ −2.39∗∗∗ −0.82 −2.48∗∗∗ −0.05 −2.33∗∗∗

(−4.52) (−4.52) (−1.87) (−5.04) (−0.12) (−4.57)

MMBTU −0.80∗∗∗ −0.80∗∗∗ −0.77∗∗∗ −0.61∗∗∗ −0.81∗∗∗ −0.65∗∗∗

(−7.27) (−7.27) (−6.91) (−5.24) (−10.58) (−5.67)

GFc × MMBTU −0.22∗ −0.22∗ −0.21∗ −0.29∗∗ −0.34∗∗∗ −0.25∗

(−2.10) (−2.10) (−2.05) (−2.75) (−4.73) (−2.37)

SO2cont IV −2.18∗∗∗ −1.19∗∗∗ −1.67∗∗∗

(−5.66) (−4.33) (−4.47)

Year FE X X X X X X X
State FE X X X X X X X

Utility FE X X X X X X

Market Controls
Sulfur Controls X X X X

Observations 10,227 10,227 10,227 9,706 10,227 16,181 10,049

R2 0.419 0.429 0.429 0.435 0.438 0.406 0.440

Notes: Regression results using a “conservative” definition of grandfathering, GFc. Columns (1) to (4) are estimated

using OLS, while Columns (5) to (7) use 2SLS and leverage sulfur content of the available coal as an instrument for
sulfur content of the combusted coal. The unit of observation is boiler-year. The IOU specification restricts the sample

to boilers belonging to IOUs, while the IOU+ specification restricts to commercial, industrial and IOU boilers. All
uses all available boilers. Utilization and emissions estimations are based on data between 1995 and 2018, survival

estimations on 1985 to 2017. We use robust standard errors. Significance is represented as *** for p<0.001, ** for

p<0.01, and * for p<0.05; while, t-statistics are in parentheses.
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