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A B S T R A C T

Targeted gene lists have been used in clinical settings to specify breast tumor type, and to predict breast cancer
prognosis and response to treatment. Separately, panels have been curated to predict systemic toxicity and
xenoestrogen activity as a part of chemical screening strategies. However, currently available panels do not
specifically target biological processes relevant to breast development and carcinogenesis. We have developed a
gene panel called the Breast Carcinogen Screen (BCScreen) as a tool to identify potential breast carcinogens and
characterize mechanisms of toxicity. First, we used four seminal reviews to identify 14 key characteristics of
breast carcinogenesis, such as apoptosis, immunomodulation, and genotoxicity. Then, using a hybrid data and
knowledge-driven framework, we systematically combined information from whole transcriptome data from
genomic databases, biomedical literature, the CTD chemical-gene interaction database, and primary literature
review to generate a panel of 500 genes relevant to breast carcinogenesis. We used normalized pointwise mutual
information (NPMI) to rank genes that frequently co-occurred with key characteristics in biomedical literature.
We found that many genes identified for BCScreen were not included in prognostic breast cancer or systemic
toxicity panels. For example, more than half of BCScreen genes were not included in the Tox21 S1500+ general
toxicity gene list. Of the 230 that did overlap between the two panels, representation varied across character-
istics of carcinogenesis ranging from 21% for genes associated with epigenetics to 82% for genes associated with
xenobiotic metabolism. Enrichment analysis of BCScreen identified pathways and processes including response
to steroid hormones, cancer, cell cycle, apoptosis, DNA damage and breast cancer. The biologically-based sys-
tematic approach to gene prioritization demonstrated here provides a flexible framework for creating disease-
focused gene panels to support discovery related to etiology. With validation, BCScreen may also be useful for
toxicological screening relevant to breast carcinogenesis.

Introduction

Breast cancer represents a significant public health concern, with
approximately 250,000 new diagnoses in US women each year [2].
While heritable genetic mutations like BRCA1 and BRCA2 have been
shown to greatly increase risk in a subset of the population [28,27,26],
known non-heritable risk factors for breast cancer include exposure to
pharmaceutical hormones, medical radiation, age of first birth and
other aspects of reproductive history, post-menopausal body mass index
(BMI), reduced physical activity, alcohol consumption, and smoking
[34,1,46,25,23,38]. To date, most breast cancer research has focused
on treatment, heritable gene mutations, and the behavioral factors
mentioned above. However, hormone-relevant risk factors and other

medical and scientific evidence suggest additional influences on non-
heritable breast cancer risk, including environmental chemical ex-
posure [14,18,38]. At least three environmental chemical classes that
are likely to increase breast cancer risk have been identified: 1) che-
micals that cause mammary gland tumors via DNA damage pathways,
2) endocrine disrupting chemicals (EDCs) that alter mammary tumor
growth, 3) toxicants that alter susceptibility by disrupting mammary
gland development [7,41,39,38]. Investigating environmental chemical
risk and associated mechanisms of carcinogenesis could inform pre-
vention efforts, shape public health policy, and also illuminate avenues
for new treatments.

Currently, the Mammary Carcinogens Review Database names over
200 chemicals considered to be mammary carcinogens (MCs) based on
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increased mammary gland tumors in animal studies [40,39]. However,
many commercial and industrial chemicals have not been evaluated for
breast cancer risk at any level. With thousands of untested chemicals in
use and many more being introduced to the market each year, current
toxicological approaches are not sufficient to identify chemicals that
may increase breast cancer risk.

A paradigm proposed by the Interagency Breast Cancer and
Environmental Research Coordinating Committee (IBCERCC) and
others suggests working “ … backward from a disease to identify the
changes caused by chemicals that could serve as early indicators of
toxicity” [9,24,43]. Such changes may serve as a link between cellular
events relevant to breast cancer that are also responsive to environ-
mental chemical exposures. For example, in vivo and in vitro studies
have shown that environmental exposure to carcinogens and endocrine
disruptors may exert influence via changes in gene expression
[20,53,49,47]. These and other gene expression changes could be used
to build a centralized list of environmentally susceptible genes that are
also important in breast cancer. Such a gene list would serve as a critical
tool in the evaluation of chemicals for carcinogenicity, and advance our
mechanistic understanding of mammary carcinogens and mammary
gland developmental disruptors.

Gene prioritization is broadly defined as the process by which the
most promising genes or proteins are selected or targeted from a larger
pool using systematic methods [32]. Some involve the use of a “seed” or
training genes that are already associated with the endpoint or process
of interest [52], while others are developed through the manual review
of public biomedical and scientific databases. Targeted gene panels
have previously been used in a variety of prediction contexts: to iden-
tify breast tumor subtype [10], therapeutic response [11], and like-
lihood of tumor recurrence [37]. Separately, a number of toxicology
initiatives have sought to create sentinel or representative gene sets that
can serve as markers or predictors of systemic toxicity including
Tox21′s S1500+ [31], and the LINCS L1000 list [36,16]. Finally, gene
panels have also been created to predict estrogen activity as a tool to
identify xenoestrogens [42]. However, none of the currently available
gene panels specifically target diverse biological processes relevant to
breast development and carcinogenesis. This gap may be due to the
difficulty in integrating multiple sources of gene data, as well as the
heterogeneity of data quality and database curation.

To this end, we have developed a framework to prioritize and curate
a panel of 500 genes to serve as a biomarker of mammary toxicity and

breast carcinogenesis. Known as the Breast Carcinogen Screen
(BCScreen), this approach represents a departure from conventional
breast cancer gene platforms which focus on biomarkers for diagnosis
and response to therapeutics. Instead, BCScreen is intended as a tool to
identify potential breast carcinogens and the key molecular initiating
events and pathways that may increase breast cancer risk in the context
of chemical exposure. It can be applied in experimental studies in an-
imals or in vitro systems, including high-throughput chemical screening.
BCScreen synthesizes information from multiple sources including
seminal papers on carcinogenesis, primary biomedical literature, whole
transcriptome data from the publicly available GEO database, chemical-
gene interactions from the Comparative Toxicogenomics Database
(CTD) and expert literature review (ELR). In addition, this study in-
troduces a novel application of normalized pointwise mutual informa-
tion (NPMI), a data-mining technique that assigns a co-occurrence score
between genes in PubMed and 14 key characteristics of breast carci-
nogenesis [55]. This framework combines data and knowledge driven
approaches in that it relies on expert judgment for input selection and
weighting, and subsequently applies a systematic approach to select
genes based on those criteria and weights. This hybrid methodology
allows us to integrate heterogeneous data, while maintaining flexibility
to accommodate alternate input streams, model systems and weighting
schema relevant to breast carcinogenesis or other disease etiologies.

Methods

In order to select genes for BCScreen, we first integrated four in-
formative data streams including: 1) genes annotated in the scientific
literature to biological processes established as key characteristics of
carcinogenesis using normalized pointwise mutual information (NPMI);
2) gene expression data from endocrine disruptor exposures in vitro; 3)
genes associated with rodent mammary carcinogens or chemicals that
alter rodent mammary gland development; and 4) genes identified as
involved in breast carcinogenesis through traditional expert literature
review (ELR). Genes from these data sources were united into a can-
didate list of 18,482 genes, intended to capture all genes that may be
relevant for carcinogenesis and mammary cancers. Fig. 1 shows the
sources and selection criteria for candidate genes. Criteria and methods
for ranking genes and identifying 500 high priority genes are described
below.

Fig. 1. Conceptual data inputs and selection criteria for
candidate gene list. Legend: MeSH: Medical Subject
Headings; NPMI: normalized pointwise mutual informa-
tion; MCF-7: Michigan Cancer Foundation-7 mammary
tissue cell line; EC: effective concentration; MC: mammary
carcinogens; MGDD: mammary gland developmental dis-
ruptors.
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Key characteristics of breast carcinogenesis

To capture key biological characteristics important in breast carci-
nogenesis, we identified seminal papers on carcinogenesis [21,19,48]
and breast cancer [43]. Reviewing these articles, we compiled 14
common characteristics or biological processes important in breast
carcinogenesis (Table 1). Many characteristics were identified by mul-
tiple sources. For example, evading apoptosis, immune modulation,
inflammation, genotoxicity and immortalization were identified in all
of the seminal papers. The mammary gland was only specifically
mentioned in Schwarzman et al. [43]. Each characteristic was then
assigned a Medical Subject Heading (MeSH), which represents a con-
trolled vocabulary of over 27,000 keywords structured in a hierarchical
tree to categorize concepts covered in an article. MeSH terms are both
manually and automatically tagged in articles in PubMed, a biblio-
graphic database largely comprised of biomedical literature maintained
by the US National Library of Medicine (NLM).

Normalized pointwise mutual information (NPMI) scoring to identify genes
associated with characteristics of carcinogens in biomedical literature

To associate and rank genes for each characteristic, we extracted
relevant gene-MeSH associations using normalized pointwise mutual
information (NPMI; [8]). NPMI is a text-mining algorithm that identi-
fies and ranks word pairs that co-occur more frequently like “hot tea” or
“crystal clear”. Specifically, NPMI assigns a rank measure between -1
and 1, such that -1 means no co-occurrence, 1 means perfect co-oc-
currence, and 0 means co-occurrence at random. A gene-MeSH term
association network was created by integrating gene-curated articles
from multiple resources including PubMed, the Comparative Tox-
icogenomics Database (CTD), the Rat Genome Database (RGD), Mouse
Genome Informatics (MGI), and Universal Protein Resource (UniProt).
This network paired every gene mentioned in these sources with each of
the MeSH terms selected to represent the 14 key characteristics
(Table 1).

We identified genes that are overrepresented for each of the char-
acteristics by selecting those genes with an NPMI greater than 0. This
meant that each gene has evidence of co-occurrence with one or more
of the breast cancer-related MeSH terms over random chance [55]. In
total, 14,545 genes had a greater than zero ranking with at least one
characteristic. Genes lacking an association with a characteristic were
assigned an NPMI of 0.0 for that characteristic. For characteristics with
multiple MeSH terms, NPMIs were averaged across terms. UniProt Re-
ference Clusters (UniRef50) was used to identify human homologs of
non-human genes identified in the gene-MeSH network with at least
50% sequence identity and at least 80% overlap [3,50]. Human
homologs increased the total number of relevant articles from under
500K to over 700K curated articles.

Gene expression changes in MCF-7 cells treated with endocrine disruptors

To incorporate genes with evidence of expression changes in re-
sponse to endocrine disruptor exposure, we used NCBI’s Gene
Expression Omnibus (GEO; [17,4]). GEO is a publicly available data
repository where researchers deposit and retrieve microarray and other
functional genomics data. We combined 13 transcriptome-wide data-
sets (Affymetrix Human Genome U133 Plus 2.0 Array only) from NCBI’s
GEO database describing MCF-7 cells treated with endocrine disrupting
chemicals (GSE5200: [44]; GSE7765: [22]; GSE50705: [45]). Chemi-
cals include Bisphenol A (BPA), daidzein, diethylstilbestrol (DES), 17β-
estradiol (E2), ethinyl estradiol (EE2), genistein, p-nonyl phenol (PNP),
tris 4-hydroxyphenyl-4-propyl-1-pyrazole (PPT), and dioxin. When
chemical dose-response data were available, we selected gene expres-
sion results at IC10-IC20 concentrations range for cell proliferation.
This approach was used to include genes that are responsive at low dose
concentrations. These efforts produced a list of 13,256 genes thatTa
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showed significantly altered expression using the Benjamini and
Hochberg false discovery rate (p < 0.05; [6]).

Genes associated with mammary carcinogens and mammary gland
developmental disruptors

Previously, we identified 243 chemicals that are either mammary
carcinogens, mammary gland development disruptors or both
(Supplemental Table 1; [40,41]). We used this list to probe the che-
mical-gene interaction data maintained by the Comparative Tox-
icogenomics Database (CTD; [15]). CTD uses a manually curated lit-
erature pool of approximately 50,000 articles with information related
to chemical-gene/protein interactions in vertebrates and invertebrates.
The mammary carcinogen list contained 237 chemicals that matched to
any chemical-gene interaction in CTD. We selected those chemical-gene
interactions that were identified in mammals or zebrafish models and
had greater than three publications supporting the interaction. Human
homologs for non-human genes were identified using UniRef50 [3,50].
The final list of genes from CTD included 15,078 unique entries that
were linked to 99 chemicals from the mammary carcinogen list with
sufficient chemical-gene interactions.

Expert literature review (ELR)

We used a traditional subject matter expert literature review to
manually curate a list of 289 genes important in normal breast biology
and breast cancer etiology and progression. The ELR was considered to
contain high value observations that may not yet have been transmitted
to literature or other toxicological databases. This expert-based list in-
cludes genes important in estrogen, progesterone, and prolactin ac-
tivity, breast-specific xenobiotic metabolism [56,33], genotoxicity, ro-
dent mammary gland biology [60], breast tumor biology and
biomarkers of breast cancer prognosis identified from several sources
including Quantitative Nuclease Protection Assays (qNPA) in ToxCast
[5], in vitro cancer hallmarks from Toxcast [58], Qiagen breast cancer
microarray panels, BC-related literature [30,10,54], and curated data-
bases (OMIM, CTD, tumorgene.org).

Summary score and BCScreen gene panel selection

We combined the four candidate gene lists, calculated a summary
score and ranked each gene as described below and depicted in Fig. 2.
To calculate the summary score for each gene, the NPMI score for each
gene in each of the 14 categories – which ranged from 0 to 1 - was
incrementally increased by 0.5 if it appeared on the GEO dataset, by 0.5
if it appeared on the ELR list and by 0.05 if it resulted from the CTD
search. The GEO and ELR datasets were equally weighted to ensure that
the dataset was enriched for MCF-7 genes that have shown expression
changes in response to exogenous compounds and for genes identified
through expert knowledge sources in breast carcinogenesis. Genes from
the CTD dataset were not weighted as heavily for a number of reasons.
First, the gene-chemical associations were based on a relatively small
number of manually curated articles, so relevant associations may be
missing (see Discussion). In addition, the CTD data incorporated into
the gene prioritization algorithm did not specify the nature of the gene-
chemical interaction. Finally, some of the gene-chemical interactions
may be indirect, i.e. mediated by other chemicals or genes. Each sum-
mary score was assigned a random number between 1E-10 and 5E-11 to
break any ties.

To compile a panel of 500 genes for BCScreen, each gene was as-
signed to the cancer characteristic where it held the highest summary
score, and then the top 33 genes were selected for each characteristic
(71 for mammary). Once a gene was assigned to the characteristic
where it had the highest score, that gene could not be selected for any
other characteristic. This process was repeated until each characteristic
contained a unique set of the highest scoring genes, resulting in a final

panel of 500 genes (see Supplementary Table 2).

Enrichment analysis

To evaluate whether BCScreen captured biological processes and
terms relevant to the 14 characteristics, we conducted enrichment
analysis using the web-based Enrichr software (http://amp.pharm.
mssm.edu/Enrichr/; [12,29]). Enrichr uses a compendium of over 70
publicly available libraries containing ontologies, gene-disease and
gene-metabolism information to rank pathways and terms in user-up-
loaded gene lists. Enrichr presents significance using multiple measures
including the Fisher exact test as well as an in-house rank-based sta-
tistical measure. We selected the following nine pathway or term li-
braries from the Enrichr portal: Disease_perturbations_from_GEO_down,
GO_Biological_Process_2015, HMDB_Metabolites, KEGG_2016, NUR-
SA_Human_Endogenous_Complexome, OMIM_Disease, PANTHER_2016,
REACTOME_2016 and WikiPathways_2016.

Statistical analysis

All data analysis and visualization was completed using R, version
3.3.2 (R Core Team 2013).

Results

Integrated approach identifies genes in breast carcinogenesis

Combining information from multiple sources including text mining
of PubMed and other biomedical libraries, a genomics data depository,
a curated toxicogenomics database, and subject matter expert literature
review, we created a gene panel focused on biological processes of
breast development and breast carcinogenesis. This panel was built
around 14 key concepts related to carcinogenesis and the mammary
gland. Table 2 lists the five top-scoring genes for each characteristic in
the BCScreen panel. Using the mammary characteristic as an example,
the highest scoring genes include BRCA1, BRCA2, PRLR, PRL and
ERBB2. BRCA1 and BRCA2 are well-studied tumor suppressor gene
variants which are associated with a breast cancer risk five times higher
than average [28,27]. The PRL and PRLR encodes the prolactin hor-
mone and receptor respectively, and modulates the effects of prolactin
in both normal and cancerous breast tissue. Lastly, the ERBB2 gene
encodes a member of the epidermal growth factor (EGF) receptor fa-
mily of receptor tyrosine kinases known as HER2. HER2 plays an im-
portant role in cancer progression as an activator of signaling pathways
that regulate cellular processes such as apoptosis and proliferation [59].
HER2 is overexpressed in 30% of breast tumors, as well as other cancer
types [61]. The complete list of genes in BCScreen is included in
Supplemental Table 2.

Intersection between BCScreen and other gene panels

Several gene sets have been curated to represent diverse biological
mechanisms for studies on predictive and mechanistic toxicology. For
example, due to the expense of whole transcriptome analysis, the Tox21
Working Group identified a subset of sentinel xenobiotic-responsive
genes suitable for evaluating toxicity [31]. Called the S1500+, this
gene list comprises approximately 2700 genes and was created using a
hybrid data- and knowledge-driven approach to identify a gene set that
encompassed key pathways in systemic toxicity.

Overall, we found that BCScreen encompassed a biological space
not captured by other gene lists. We compared the S1500+ list to
BCScreen, and found that less than half (230/500 or 46.0%) of
BCScreen genes are included in the Tox21 S1500+. The overlap varied
across characteristics (Table 2). For example, overlap with the
S1500+ ranged from 21% for genes related to epigenetics to 82% for
xenobiotic metabolism. Fewer than one-third of the genes involved in
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epigenetics, angiogenesis, growth hormones and immortalization are
also on the S1500+. Fig. 3 shows summary scores for the 500 genes on
BCScreen, and indicates whether the gene is included in the S1500+. In
general, scores of genes that are included in S1500+ are similar to
those that are only on BCScreen, although some high scoring genes
involved in genotoxicity and xenobiotic metabolism are not included in
S1500+. In some cases, such as for cell cycle, only lower scoring genes
are missing from S1500+. Note that genes on BCScreen are assigned to
a single characteristic but may have high relevance and scores for
multiple characteristics (data not shown).

Three of the highest scoring genes in the BCScreen panel that do not
appear on the S1500+ gene list include BRCA2, RAD51, and IL2.
BRCA2 is a well-known tumor suppressor and breast cancer suscept-
ibility gene. Its functions are essential for the repair of DNA double
strand breaks. BRCA2 is most strongly associated with mammary
characteristic, likely due to the large body of evidence on breast cancer
susceptibility. Similarly, RAD51 is a DNA repair gene with a central role
homologous recombination repair of double strand breaks. This is
consistent with its strong association and high ranking within the
genotoxicity characteristic. Interestingly, BRCA2 and RAD51 are both

central to repairing DNA double strand breaks and directly interact
during this biological process. RAD51 is overexpressed in different
cancers, including breast cancer. The IL2 gene encodes for a signaling
molecule involved in key functions of the immune system.
Overexpression of IL2 has been observed in breast carcinoma biopsies,
but not in normal breast tissues [57].

BCScreen shared some but not all genes with other panels. In a re-
cent paper by Ryan et al. [42], a 47-gene biomarker for estrogen re-
ceptor α (ERα) activity was defined using microarray data from MCF-7
cells. Seven of these genes were included in BCScreen including ALAD,
AREG, CCND1, CXCL12, FHL2, PGR and RBBP8. A set of 50 genes
known as the PAM50 was developed to identify four breast cancer
subtypes and predict recurrence. Of these 50 genes, 20 (40.0%) were
included on BCScreen. Lastly, the Broad Institute’s Library of Integrated
Network-based Cellular Signatures (LINCS) compiled a list of “land-
mark” genes that are intended to represent the response of the full
transcriptome in response to pharmacologic perturbation, known as the
LINCS L1000. Of the 978 genes on the LINCS 1000, 84 (8.5%) were
represented in BCScreen.

Fig. 2. Ranking, scoring and selection of genes for final
BCScreen panel.

Table 2
Top scoring genes and percentage inclusion in S1500+by characteristic.

Characteristic Genes with highest summary score Percentage of genes appearing on S1500+

Angiogenesis VEGFA, THBS1, HIF1A, MMP2, TWIST1 30.3%
Apoptosis PTRH2, CAV1, MMP11, SRC, TP53 75.8%
Cell cycle CCNB1, CDK1, CDK2, CDK4, CCNA1 69.7%
Epigenetics GREB1, HMGCS2, TFF3, TSSC4, JUNB 21.2%
Genotoxicity EXO1, ATM, XRCC5, RAD51, BRIP1 39.4%
Growth hormones IGF1, GH2, GH1, GHR, CSH2 30.3%
Immortalization BCL2L1, BCL2, ZNF165, ARMC1, BIRC5 30.3%
Immunomodulation IL2, CD69, GATA3, CD38, CSF1 48.5%
Inflammation IL6, PYCARD, IL1B, F3, IL8 54.5%
Mammary BRCA2, BRCA1, PRLR, PRL, ERBB2 39.4%
Oxidative stress NOL3, HMOX1, CAT, ENO1, HSPA8 42.4%
Proliferation NOTCH1, MYC, CTNNB1, TBX3, CCND2 36.7%
Steroid hormones ESR1, ESR2, PGR, CYP17A1, STS 51.5%
Xenobiotic metabolism NR1I3, NR1I2, EPHX1, NAT1, CYP1A2 81.8%

R.G. Grashow et al. Computational Toxicology 5 (2018) 16–24

20



Enrichment analysis of BCScreen identifies key characteristics of breast
carcinogenesis

Fig. 4 shows the top five significant pathways and terms from nine
libraries which include WikiPathways, Reactome, Protein ANalysis
THrough Evolutionary Relationships (PANTHER), Dis-
ease_perturbations_from_GEO_down (GEO), OMIM_Disease (OMIM),
Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology
(GO) Biological Process, Human Metabolome Database (HMDB), and
the Nuclear Receptor Signaling Atlas (NURSA). Note that enrichment is
based on each gene set library, therefore the number of genes and an-
notated terms may be different for each library (see Supplemental
Table 3). For these databases, the p-value was computed using the
Fisher exact test and adjusted according to a z-score of the expected
rank for each term [12]. Fig. 4 shows the absolute value of the mag-
nitude of the log adjusted p-value for each pathway or process. For
example, the p-value for the Sporadic Breast Cancer pathway identified
in our list in the GEO library was 5.9× 10−8, graphed to the value of 8.
Shading in Fig. 4 reports the extent of overlap between the genes
identified as part of the Enrichr pathway and those in BC Screen. Using
the Sporadic Breast Cancer pathway from GEO again, 35 BCScreen
genes (9%) were represented in the 400 named as part of the Sporadic
Breast Cancer Pathway in GEO. The two most significantly enriched
pathways identified were the integrated pancreatic cancer pathway in
WikiPathways, and the response to steroid hormones process in GO.
The two pathways with the greatest overlap with BCScreen included
resolution of D-loop structures (involved in DNA repair) in REACTOME
and bladder cancer in KEGG.

The two disease-related libraries we probed (GEO and OMIM)
showed enrichment for breast and other cancers. KEGG, PANTHER,
WikiPathways and REACTOME all map genes to functions and pro-
cesses in biological systems. Across these libraries, pathways related to
multiple cancers, DNA damage and repair, and cell cycle pathways were
most prominently represented in BCScreen. Interestingly, GO identified
significant biological processes related to exposures associated with

breast cancer including, responses to drugs, steroid hormones and al-
cohol. Metabolites most closely associated with the BCScreen panel
included important steroid hormones and retinoic acid, a vitamin A
metabolite important in growth and development. The NURSA database
links nuclear receptors with their co-regulators, ligands, and down-
stream transcriptional targets. BCScreen showed enrichment of down-
stream targets involved in DNA repair and cell cycle regulation.

Sensitivity analysis

We purposefully selected genes with experimental evidence of al-
tered expression in response to endocrine disruptors (GEO), and genes
that had been identified as important to breast biology and cancer
through ELR. We therefore assigned strong weights of 0.5 to each of
those categories. An alternate approach to building the BCScreen panel
would be to rely completely on the text mining of the biomedical lit-
erature to prioritize genes and assign them to the 14 characteristics of
carcinogenesis. We evaluated how the genes obtained from the ELR and
GEO MCF-7 data influenced the BCScreen gene list by comparing panels
obtained if we did not consider those sources, i.e. if we gave them zero
weight in the scoring. The extra 0.5 score for the 289 ELR genes in-
creased the number of ELR genes on BCScreen from 76 to 276. The
added 0.5 score for genes selected from GEO increased the number of
GEO genes in BCScreen from 399 to 492, a small effect since such a
large fraction of genes in the transcriptome were selected from the GEO
query (13,256). Thus the ELR greatly influenced the final BCScreen
panel. This contrast between the influence of weighting GEO versus ELR
is not surprising because many more genes met the GEO selection cri-
teria compared with the ELR criteria (13,256 versus 289). We also were
interested in whether broader inclusion criteria for GEO would produce
a substantially altered list. To this end, we created a supplemental
version of BCScreen that used the unadjusted p-value to select differ-
entially expressed genes in GEO. We found that 79% of genes were
similar in adjusted and unadjusted lists (Supplemental Table 4).

RAD51

BRCA2

IL2

Fig. 3. Summary scores for 500 BCScreen genes assigned to
14 characteristics. Blue circles indicate genes that appear in
both BCScreen and the S1500+. Empty circles represent
genes included in BCScreen only.
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Discussion

We developed and applied a novel gene prioritization framework to
curate a panel of 500 genes responsive to chemicals that induce
mammary toxicity and breast carcinogenesis. The purpose of this panel
is to probe cellular or tissue responses to known mammary carcinogens
and elucidate mechanisms relevant to breast cancer etiology. Gene
expression profiles could be used to classify chemicals based on biolo-
gical activity and highlight those whose profiles are similar to known
breast or mammary carcinogens, thus strengthening chemical screening
and prioritization strategies for breast cancer prevention.

Currently, there is little consensus on how gene prioritization or
gene panel selection should be done. In a review on gene prioritization,
Moreau and Trachevent [32], argue that computational approaches that
integrate complex heterogeneous datasets offer a more thorough and
unbiased assessment of candidate genes. Building on this concept, we
employed both manual and automated gene curation and selection
whereby data was extracted, weighted and combined from four sepa-
rate data streams sources to create BCScreen. This modular approach
provided flexibility, such that each source could be dynamically ad-
justed to modify the final list according to the priorities dictated by our
central research question. This flexibility is central to this framework;
investigators working on similar gene prioritization questions could
tailor this approach to emphasize different carcinogenic characteristics,
other disease endpoints, or highlight different functional genomic da-
tasets. Furthermore, it allows researchers to add new data streams that
incorporate other relevant genomic and toxicological data as it is

generated, annotated and shared.
Fourteen characteristics relevant to carcinogenesis and breast

cancer development identified from seminal papers formed the biolo-
gical foundation for the BCScreen gene list [21,19,43,48]. These char-
acteristics were each matched to one or more MeSH terms, and linked
to a multi-source gene-MeSH association network. We used an NPMI
association measure that ranks the degree of co-occurrence between
each gene and the 14 key characteristics. Similar approaches have also
used gene-MeSH annotations by generating a statistical test to de-
termine whether a gene, author or disease has been over-represented
within a particular MeSH term. For example, Cheung et al. [13] used
the MeSH vocabulary to create MeSH Over-representation Profiles
(MeSHOPs) as a means of identifying novel gene-disease relationships.
Instead of using NPMI, their approach uses the Fisher exact test to
determine whether a gene-topic association exceeded statistical sig-
nificance or not, thus allowing for ranking based on p-value alone.
However, our approach uses rank as a continuous variable, which al-
lows us to more easily incorporate a scaled co-occurrence measure into
a gene prioritization workflow.

For our investigation into breast cancer, we heavily weighted the
panel such that genes selected through ELR and from functional
genomic GEO data received the highest priority. The ELR was assigned
a high score weighting because it had been manually curated by experts
in breast cancer. The GEO dataset was assigned a similar high score
weight so that genes that had been shown experimentally to respond to
estrogen disruptors were included. Specifically, we selected a weight or
score increment of 0.5 for the GEO and ELR datasets, which biased the

Fig. 4. Significantly enriched pathways, metabolites and processes in nine Enrichr libraries. Five most significant results are presented as ordered by absolute log p-value magnitude.
Shading indicates the percentage of BCScreen genes represented in each pathway or term. Legend: HTLV-1: Human T-lymphotrophic virus-1; DM: Diabetes mellitus; CCKR: Gastrin and
cholecystokinin receptor; carc.: carcinoma.
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list towards these data streams (see Sensitivity Analysis in Results). The
allocation of 0.5 additional weight to the ELR list greatly altered the
BCScreen panel by adding 200 genes. We will evaluate the value of
information provided by the selected genes in future experimental
work, including comparing the information conveyed by ELR versus the
complete BCScreen. We expect the genes on BCScreen will evolve as
experiments indicate which genes provide the most useful mechanistic
information about breast carcinogens.

We used Enrichr to identify key pathways that are covered within
BCScreen’s 500 gene panel. The multiple enrichment analyses con-
firmed that cancer (in KEGG), breast cancer related pathways (in
WikiPathways), and cell cycle processes (REACTOME and KEGG) were
enriched in BCScreen. Breast cancer and other cancerswere also over-
represented in our gene panel (OMIM and GEO), as were processes
including response to steroid hormones, apoptosis, and DNA repair.
These results serve as a proof of principle that BCScreen captured
pathways, metabolites and processes relevant to breast carcinogenesis.

Advances in next generation sequencing technologies have in-
creased the efficiency of whole transcriptome analyses, however tar-
geted RNA-sequencing using a gene panel like BCScreen has several
advantages for identifying specific gene expression signatures in che-
mical screening. A targeted approach allows for the analysis of low
abundance transcripts that might be lost in the “noise” of whole tran-
scriptome analyses, potentially obscuring biologically important pro-
cesses [51]. Secondly, a whole transcriptome approach to creating a
mammary carcinogenesis biomarker would likely involve identifying a
breast carcinogen gene expression signature by testing a large number
of known mammary carcinogens. However, this approach is vulnerable
to bias based on the set of chemicals used to establish the gene sig-
nature. In contrast, the gene prioritization framework used here was
built based on an a priori designation of cancer-relevant pathways, not
based on a single chemical or set of chemicals. Finally, while whole
transcriptome research costs are decreasing, they remain significant;
targeted gene panels allow resources to be allocated towards increasing
numbers of replicates and chemicals tested, thus enhancing reprodu-
cibility and addressing important knowledge gaps about the toxicity of
a vast number of unstudied chemicals.

BCScreen is shaped by a number of external factors that may in-
troduce bias: the extent to which articles have been tagged with MeSH
terms, how many have been annotated to specific genes, the number of
different technologies that reproduce the same types of data, and
publication bias. For example, as a newer area of research, genes linked
to epigenetic studies may have comparatively lower rankings and fewer
annotated genes, despite the fact that epigenetic mechanisms likely
play a critical role in carcinogenesis. To address this, we utilized mul-
tiple input streams and built in modular flexibility to account for new
research or updated sources. By allotting a predetermined number of
genes to each characteristic, more novel areas of research like epige-
netics are still represented in the panel and those genes did not need to
compete with well-established pathways, such as angiogenesis.
Nevertheless, future iterations of BCScreen could include a reallocation
of genes to characteristics if experimental data demonstrate a measur-
able improvement.

BCScreen shares genes with other panels intended to capture gene
expression changes relevant to breast cancer and general toxicity, but
also includes many genes that are not in the other panels. For example,
some genes overlap between BCScreen and PAM50 [54], the estro-
genicity panel [42], and the Tox21 S1500+ panel [31]. This overlap
indicates that while the other panels cover some of the biological space
in BCScreen, our approach produced a unique gene set. One key dif-
ference between BCScreen and the PAM50 gene set is that PAM50
contains genes that have altered expression in cancerous cells. In con-
trast, we are more interested in genes whose expression in normal tis-
sues will be disrupted by chemical exposure and genes that regulate
biological processes that promote cancer development. As another ex-
ample, Tox21‘s S1500+was created to represent the entire

transcriptome in toxicological studies. We found that less than half of
the BCScreen genes are in the S1500+ list, so we hypothesize that some
important breast cancer pathways may not be represented. Experiments
are planned to compare BCScreen, S1500+, and full transcriptomics as
approaches for characterizing mechanisms of action for chemical-in-
duced breast carcinogenesis. Comparing gene responses to breast car-
cinogens using these platforms will indicate which genes are most in-
formative and likely will provide a basis for modifying the genes in the
BCScreen panel. Overall this work will facilitate new discoveries about
how chemicals cause breast cancer and help optimize standard toxicity
testing approaches to be sensitive to these pathways.

There are limited data on which to base a decision about the op-
timum number of genes to include in this panel or to assign to a cancer
characteristic. Our panel size of 500 genes is smaller than S1500+
(2700 genes) and LINCS L1000 (978 genes), both of which are designed
to probe a complete set of known cellular response pathways. On the
other hand, panels used for more specific and specialized purposes,
such as the PAM50, tend to be much smaller. The S1500+ list, designed
to identify systemic toxicity using 2700 genes, selected genes such that
every key pathway included at least three genes. We allotted 33 genes
for each of our characteristics to increase our confidence that each
pathway or process would be adequately covered by the panel, and
decided to assign an equal number of genes to each characteristic. We
assigned a larger number of genes (71) to mammary as a characteristic
to capture pathways specific to this tissue.

A next step for BCScreen is to use it in in vivo and in vitro toxicity
studies to determine whether this panel captures critical mechanisms of
chemical-induced breast carcinogenesis, and can identify new breast
carcinogens. For example, probing BCScreen with breast carcinogens
that have well-established mechanisms can indicate whether the
BCScreen gene expression pattern accurately reflects that mechanism.
Studies comparing gene expression signatures of known breast carci-
nogens with putative non-carcinogens and with carcinogens that don’t
target the breast can begin to evaluate whether BCScreen can classify
chemicals. A similar approach was reported by Ryan et al. [42], who
developed a consensus gene expression signature for estrogen action,
although our expectation is that breast carcinogens act by diverse
biological pathways and we designed BCScreen to capture all of them.
Another important area of work is to compare gene expression re-
sponses among different breast cell and tissue models, including stan-
dard cancer cell lines used in high throughput testing and realistic
normal human breast tissue models.

In summary, recent advances in high throughput testing, the
availability of functional genomic data, and machine learning algo-
rithms like NPMI offer the opportunity to study complex networks of
gene expression changes using tailored gene lists. In fact, these tools are
already being integrated to derive hypotheses between genes, chemical
exposures and disease [35]. However, given the large numbers of
chemicals to be interrogated, and practical and cost limitations asso-
ciated with whole transcriptome analysis, strategies to develop targeted
gene panels are useful. The framework underlying BCScreen can serve
as a useful model for other investigators, and as a research tool for those
interested in the interaction between chemical exposures and breast
cancer.
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