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Modeling non-ignorable attrition and measurement error in 
panel surveys: an application to travel demand modeling 
 
David Brownstone and Thomas F. Golob 
University of California, Irvine 
 
Camilla Kazimi 
San Diego State University 

1 Introduction 

Modern panel surveys frequently suffer from high and likely 
non-ignorable attrition, and transportation surveys suffer from poor 
travel time estimates.  This paper examines new methods for adjusting 
forecasts and model estimates to account for these problems. The 
methods we describe are illustrated using a new panel survey of 1500 
commuters in San Diego, California.  These data are being collected to 
evaluate a federally-funded “Congestion Pricing” experiment 
investigating the impacts of allowing solo drivers to pay to use freeway 
carpool lanes.  The panel survey, begun in Fall 1997, collects data on 
travel behavior and attitudes at six-month intervals through telephone 
interviews.  The panel sample is refreshed with new respondents at each 
wave to counteract the attrition between waves.  Both the original and 
refreshment samples are stratified on commuters’ mode choice (solo 
drive in free lanes, pay to solo drive in the carpool lanes, or carpool for 
free in carpool lanes) to insure sufficient sample size for estimating our 
models. 

We illustrate this methodology using a standard conditional logit 
model of commuters’ mode choice (solo drive in free lanes, pay to solo 
drive in the carpool lanes, or carpool for free in carpool lanes).  The basic 
model is documented in Kazimi et al. (2000), and it is summarized in 
Sections 2 and 6 of this chapter.  Our model is calibrated from the third 
wave of the panel study which was collected in Fall, 1998.  We use data 
from the second wave to estimate an attrition model and then use this 
model to predict attrition probabilities as described in Section 5.  We 
expect non-ignorable attrition because commuters who use the carpool 
lanes are more interested in the survey questions.  It turns out that 
attrition does not significantly bias key parameter estimates even though 
there is some indication that it is non-ignorable.  
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We also have potentially non-ignorable measurement error in the 
time saved by using the carpool lane.  Objective measurements of time 
savings are available from two types of data on speeds.  First, floating 
car observations were obtained by driving cars down the corridor at 
frequent intervals and recording the actual travel times. During wave 3 of 
the panel survey, these floating car measurements were carried out for 5 
days, but the panel survey data collection involved reported travel 
behavior over two months.  Second, point speeds derived from magnetic 
loop detectors placed along the corridor for general traffic counting 
purposes were available during the entire data collection period, but 
these data are subject to significant errors as described in Section 4. 

We have built a model that predicts the floating car data from the 
loop detector data.  This model fits well (R-squared of .9), and we use it 
to predict the actual time savings faced by each survey respondent as a 
function of the date and time they entered the corridor.  We use multiple 
imputations to account for the component of error in our estimates and 
predictions from this imputation model.  Correcting for measurement 
error leads to significant differences in key model estimates as reported 
in Section 6. 

We view measurement error as formally equivalent to nonresponse 
for the true key time savings variable.  Since we have external data, we 
can model the measurement error process and use multiple imputations 
(which was originally devised to handle non-response) to correct for the 
problems caused by measurement error.  In our nonlinear model, 
measurement error in any independent variable causes all of the 
parameter estimates to be inconsistent.  Even if measurement error 
doesn’t bias some mean estimates in simpler models, it almost always 
biases inferences unless some corrections are made.  In our application, 
the measurement error occurs in engineering data, but measurement 
errors are endemic in survey samples. (see Biemer, et al., 1991, Groves, 
1989, and Lessler and Kalsbeek, 1992).  Fuller (1987) and Carroll, et al. 
(1995) review methods for modeling measurement error and correcting 
its effect on inference. 

This chapter examines the impact of a number of common survey 
problems (non-random sampling, panel attrition, and measurement error) 
on estimates from a nonlinear model.  Although only one of these 
problems (measurement error) led to significant biases, there is no way to 
know without carefully analyzing the impacts of all possible problems. 
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2 The San Diego Congestion Pricing Project  

The pricing demonstration project (referred to as FasTrak) allows 
solo drivers to pay to use an eight-mile stretch of reversible high 
occupancy vehicle (HOV) lanes along Interstate Route 15 (I-15).  The 
combination of free HOV use and priced solo driver use is generally 
referred to as high occupancy toll (HOT) lanes.  The HOT Lanes are 
about eight miles long and are operated in the southbound (inbound to 
San Diego) direction for four hours in the morning and in the northbound 
(outbound) direction for four hours in the afternoon and evenings.  The 
per-trip fee for solo drivers is posted on changeable message signs 
upstream from the entrance to the lanes, and may be adjusted every six 
minutes to maintain free-flowing traffic conditions in the HOT lanes.  
Solo drivers who subscribe to the FasTrak program are issued 
windshield-mounted transponders used for automatic vehicle 
identification.  Each time they use the lanes, their accounts are 
automatically debited the per-trip fee.  This is a dynamic form of 
voluntary congestion pricing, where solo drivers can choose to pay to 
reduce their travel time, and the payment is related to the level of 
congestion. 
 
2.1 The Panel Survey 

The panel survey consists of three samples of approximately equal 
size: 1) FasTrak program subscribers and former subscribers, 2) other I-
15 users, and 3) a control group of users of another freeway corridor (I-8) 
in the San Diego Area.  The analysis in this paper excludes the I-8 
control group.  The first wave of the panel was conducted prior to per-
trip pricing.  The second wave of the panel was conducted in spring 
1998, during the first few months of dynamic pricing.  For the purposes 
of this analysis, we focus primarily on program subscribers and other I-
15 users in the third wave of panel data, collected during the fall of 1998 
(October through November).  During this time period, dynamic per-trip 
congestion pricing was well established. 

FasTrak subscribers were picked at random from a list 
maintained by the billing agency, and the remaining respondents were 
recruited using random digit dialing (RDD) of residential areas along the 
respective corridors.  In the initial wave of the panel, a partial quota 
sampling procedure was used to increase the number of carpoolers in 
non-subscriber parts of the sample.  Panel attrition is about 33% per 
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wave, and the sample is refreshed at each wave with a new random 
sample of FasTrak subscribers as well as I-15 and I-8 commuters 
recruited using RDD sampling.  The partial quota sampling procedure 
implies that the resulting sample is choice-based and weights are needed 
to represent the population of regular I-15 corridor users.  We estimated 
sampling weights from traffic counts carried out during the survey 
period.   

Survey respondents were queried for detailed information about 
their most recent inbound trip along I-15 if that trip was made during the 
hours of operation of the HOT facility and covered the portion of I-15 
corresponding to the facility.  By design, trip lengths must be at least 
eight miles long (the length of the facility).  There were 699 I-15 
respondents with full information on morning peak-period inbound trips, 
divided into three modes: 1) 304 solo drivers in the main lanes, 2) 279 
solo drivers using FasTrak transponders to travel in the HOT facility, and 
3) 116 carpoolers who also travel the HOT facility for free. 
 
2.2 Dynamic Per-Trip Tolls 

Solo drivers face tolls that are a function of arrival time at the 
HOT facility.  The level of congestion in the HOT facility determines the 
toll (i.e. tolls increase to avoid exceeding preset capacity constraints).  
While program subscribers are provided with a profile of maximum tolls 
that vary by time-of-day, actual tolls may be less than the maximum tolls 
depending upon usage of the facility.  

In October and November 1998 (excluding Thursday and Friday 
of Thanksgiving weekend), the actual maximum toll by time of day is 
flat at $0.50 before 6:30, rising in an approximately linear fashion to 
$4.00 over the 6:30 to 7:30 period.  It stays at $4.00 in the 7:30 to 8:30 
period, then falls back down to $1.00 by about 8:45 and $0.75 by about 
9:30.  The average actual toll paid by the survey respondents who chose 
FasTrak varies by time of day in a similar manner from $0.50 to a 
maximum of approximately $3.50 in 7:45 to 8:00 period.  Average tolls 
are remarkably similar across the days of the week. (Kazimi et. al., 
2000). 

Based on the estimated arrival time at the HOT lanes, each 
survey respondent is assigned a toll price for that specific arrival time 
and date of travel.  For respondents who choose to drive alone in the 
HOT lanes, this represents actual price paid.  For solo drivers in the 
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regular lanes and those who carpool, this represents the price they would 
have paid had they chosen to use FasTrak. 

Arrival time at the HOT lanes is determined using a combination 
of information from the panel survey and speed estimates for the 
upstream portion of I-15.  The panel survey queried respondents for 
onramp used in the morning commute and arrival time at that onramp.  
Travel time from the onramp to the beginning of the HOT lanes is 
estimated using time-of-day point speeds calculated from California 
Department of Transportation (CALTRANS) loop detectors embedded in 
the roadway.  These loop detector data are computed  every six minutes. 
Point speeds at loop detector locations are converted into speeds on 
intervening roadway segments using an algorithm that assumes that the 
point speed at the beginning of the segment applies to the first half of the 
segment and the point speed at the end applies to the second half of the 
segment (van Grol, 1997).  Since loop detectors are placed near onramps, 
the freeway is effectively broken into segments traveling from onramp to 
onramp.   
 
2.3 Time Savings From HOT Lane Use 

For mode choice modeling, we must determine possible time 
saving from travel on the HOT lanes for all respondents regardless of 
mode choice.  Time saving is defined as the difference in travel time on 
the HOT lanes and travel time on the parallel main lanes.  Both are a 
function of when commuters arrive at the facility, speeds along the HOT 
lanes, and speeds in the main lanes.  Speed on the HOT facility is 
assumed to be 70 miles per hour based on several days of floating car 
experiments.  Speeds on the main lanes are estimated every six minutes 
during the entire survey period using the loop detector data.  These 
speeds were also estimated by driving along the roadway every fifteen 
minutes for one week in the middle of the survey period (referred to as 
floating car measurements).  Section 6 shows results using the loop 
detector speeds and using a combination of loop detector speeds and 
floating car speeds.  

The median time saving, based solely on loop detector speed 
measurements by time of arrival at the HOT facility, peaks at about 
seven minutes at the same time period (7:30-8:00 AM) that average tolls 
peak at four dollars.  Considerable variation occurs within each half-hour 
time period as indicated by the divergence between median, 90th 
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percentile, and 10th percentile time savings.  Ten percent of the time, 
peak time saving exceeds twelve minutes.  Details are provided in 
Kazimi, et al., (2000). 

Those entering I-15 at one particular onramp (the Ted Williams 
Parkway onramp at the north end of the HOT Lanes) may also benefit 
from a special dedicated entrance to the HOT facility that avoids a 
congested main-lane onramp with a ramp-meter traffic signal.  We 
estimated this additional time savings for each time interval from floating 
car observation of queuing times, and added it to the estimated time 
savings from use of the HOT lanes for those respondents entering I-15 at 
this location (approximately 36 percent of the sample).  These additional 
time savings ranged up to five minutes  (Kazimi, et al., 2000). 

3 Mode Choice and Value of Time  

The key ingredient in evaluating projects designed to reduce travel 
time is commuters’ willingness to pay for these reductions.  If 
commuters value time saved from congestion reduction highly, then it 
may be worthwhile to make costly investments in new transportation 
infrastructure.  This section reviews the model structure and estimation 
methods that transportation economists use to estimate value of time 
(VOT) from reducing travel delays. 
 
3.1 Conditional Logit Mode Choice Models 

Suppose that respondent n faces a choice of three modes for travel 
to work indexed by j.  In this paper the modes are drive alone, pay to 
drive alone in the HOT lanes (FasTrak), or carpool in the HOT lanes.  In 
most previous studies the modes are automobile, bus, or subway.  The 
Conditional Logit model assumes that the probability that respondent n 
takes mode j conditional on observed variables xjn is given by: 

( )
( )∑

=

= 3

1

exp

exp

i
in

jn
jn

x

x
P

θ

θ
.   (1) 

The value of time saved (VOT) is given by the increase in cost 
required to keep Pjn constant after a small decrease in travel time.  If time 
and cost only enter as linear terms in x, then the VOT is just given by 

ttime cosθθ .   
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Small (1992) and Wardman (1998) provide comprehensive 
reviews of VOT studies, and Gonzalez (1997) provides a review of the 
theory of consumer choice and its connection to value of time and mode 
choice modeling.  Based on his review, Small (1992) suggests that 50 
percent of gross wage rate is a reasonable value of time estimate.  On the 
higher end of previous studies, Cambridge Systematics (1977) estimate 
that VOT for commuters in Los Angeles is 72 per cent of gross hourly 
wage.  These previous studies are based upon mode choice models that 
consider differences between transit and automobile travel, and to the 
extent that differences between transit and private automobiles are not 
captured, the results will be biased.  In more recent work, Calfee and 
Winston (1998) attempt to avoid this problem by using stated preference 
data that only considers the tradeoff between travel by automobile in 
slower, free lanes and travel by automobile in faster, priced lanes.  Their 
results indicate that commuters have a lower VOT than previously 
estimated (roughly $3.50 to $5.00 per hour or 15 to 25 percent of hourly 
wage).  Calfee and Winston rely upon stated preference data because 
they lack revealed preference data for the choices involved with 
congestion pricing.  Our results are not subject to the same potential 
biases associated with stated preference data as we use revealed 
preference data.   

Given a random sample of N commuters, the model in equation (1) 
is typically estimated by maximizing the likelihood function 

( )∑∑
==

=
3

11

log
i

inin

N

n

PDL , (2) 

where Din=1 if respondent n chooses mode i and zero otherwise.  This 
likelihood function is globally concave and therefore easy to maximize 
using standard algorithms.  See Train (1986) for more information about 
this model and its application to transportation problems. 
 
3.2 Choice-base Sampling 

It is very common for one mode to have a very low market share, 
which makes collecting a random sample with a reasonable sample size 
for each mode very expensive.  For example, in the I-15 corridor the 
FasTrak users account for only 3.5 percent of the inbound peak period 
trips.  To reduce data collection costs most transportation surveys stratify 
on mode choice, which results in a non-ignorable sampling scheme. 
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 Maximizing a random-sample likelihood function as in equation 
(2) with a choice-based sample will generally yield inconsistent 
parameter estimates.  McFadden (see proof in Manski and Lerman, 1977) 
shows that for the conditional logit model with a full set of mode-specific 
constants only the parameters associated with these mode-specific 
constants are inconsistent.  Scott and Wild (1986) provide similar results 
and give links to case-control sampling schemes.  These results imply 
that we can use unweighted maximum likelihood for our conditional 
logit model.  However, it is useful to consider alternative estimators that 
are consistent for more general choice models such as the Nested Logit 
Model (see Train, 1986). 
 A relatively simple estimator which yields consistent estimates 
under choice-based sampling was developed by Manski and Lerman 
(1977).  Their Weighted Exogenous Sample Maximum Likelihood 
Estimator (WESMLE) is the maximand of the weighted likelihood 
function: 

  ,)x,(L nnnn θω∑  (3) 
where Ln is the log likelihood function for the nth observation and the 
sampling weight, nω , is the inverse of the probability that the nth 
observation (individual) would be chosen from a completely random 
sample of the population.  This estimator is also known as the “pseudo 
maximum likelihood estimator in the survey sampling literature (Skinner, 
1989).  If the sampling scheme were completely random, then all of the 
sampling weights would be equal and the WESMLE would simply be the 
usual maximum likelihood estimator.  The WESMLE is inefficient, but 
Imbens (1992) gives an efficient method of moments estimator for choice-
based samples. 

4 Measurement Model 

The loop detector data described in Section 2.3 can give inaccurate 
estimates of the actual time savings commuters get from taking the HOT 
lanes.  Depending on the traffic flows between the loop detectors (which 
are miles apart on the I-15 corridor), actual speeds can be either over or 
under-predicted.  Since these measurement errors will generally be larger 
when the road is congested, the measurement errors in time savings are 
likely to be larger for FasTrak and carpool lane users.  Since time saved 
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using the HOT lanes is a key independent variable in the choice models 
in Section 6, this measurement error will bias key parameter estimates. 

We use the five days during the survey period where we have 
both floating car and loop detector data available to fit a model which we 
use to predict floating car travel time for the other seven weeks of the 
survey period.  These predicted floating car data are then used to fit 
mode choice models in Section 6.  This approach assumes that the 
floating car data are correct, and we will use multiple imputations to 
correct for the measurement error caused by imperfect predictions.  

The floating car data are collected at 15 minute intervals while 
the loop detector data are at 6 minute intervals.  To make these data 
compatible, we interpolated the floating car data into 6 minute intervals.  
The floating car estimates over the morning commutes from October 26 
through October 30, 1998 are generally more than twice as large as the 
loop detector time savings.  The median floating car time savings is 8.5 
minutes, while the median loop detector time savings is 2.2 minutes.  
Obviously the loop detector estimates are badly biased for this corridor. 

Table 1 shows the best fitting linear regression model for 
predicting floating car HOT lane time savings. To avoid unreasonable 
predictions we first transform both time savings measures to keep them 
bounded between zero and 35 minutes, which is the maximum observed 
loop detector time savings.  The exact transformation for both time 
savings variables is given by the following transformed logit: 

 













 +








35
1

35
log

tt
 (4) 

We tried a number of different specifications including higher order 
terms in loop detector time savings and toll variables, but none of them 
significantly improved the fit of the model.  Since the purpose of this 
model is accurate prediction, we are looking for the most parsimonious 
model with the best fit.  Although including the main effect is traditional 
when including interactions in a regression model, including the logit of 
loop detector time savings results in a coefficient of .06 with a standard 
error of .22.  Since no other coefficients were changed, we deleted the 
main effect to avoid inflating the variance of the model’s predictions. We 
also experimented with lagged values, but the cubic polynomial in time 
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effectively removes the autocorrelation in the time savings measures 
(residual first-order autocorrelation is .08).  

Although the variables involving the tolls are not individually 
significant, they are jointly significantly different from zero at the one 
percent level.  If they are excluded from the model, then the R2 drops 
slightly to .89.  However, excluding the loop detector data reduces the R2 
to .82 and increases the MSE of the residuals to .46. 

There are two general approaches for estimating a behavioral 
model with measurement error in the explanatory variables: joint 
maximum likelihood of the behavioral and measurement models, or 
Rubin’s multiple imputation approach.  Joint maximum likelihood would 
be very difficult for the model in Section 6 since the actual explanatory 
variables are complicated non-differentiable transformations of the 
variable expla ined by the measurement model in Table 1.  We will 
therefore implement the multiple imputation approach as given in Rubin 
(1987 and 1996).  Brownstone (1998) gives more detail using the same 
notation as this section.  Rubin developed his methodology for missing 
data, and in our application floating car time savings are missing for 
approximately 80 percent of our respondents. 
 Suppose we are interested in estimating an unknown parameter 

vector θ.  If no data are missing, then we would use the estimator 
~
θ and its 

associated covariance estimator 
~
Ω .  If we have a model for predicting the 

missing values conditional on all observed data, then we can use this 
model to make independent simulated draws for the missing data.  If m 
independent sets of missing data are drawn and m corresponding parameter 

and covariance estimators,  
~
θj  and  

~
Ω j , are computed for each of these 

imputed data sets, then Rubin's Multiple imputation estimators are given 
by : 

 $ ~
θ θ= ∑ jj=1

m
m

 (5) 

 ( )$ ,Σ = U m B+ 1 + -1  where (6) 

 ( ) ( ) ( )B m
m

= − −
′

−∑ ~ $ ~ $ 1
=1

θ θ θ θjj j  (7) 

 U m
m

= ∑ ~
.Ω jj=1
 (8) 
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Note that B is an estimate of the covariance among the m parameter 
estimates for each independent simulated draw for the missing data, and U 
is an estimate of the covariance of the estimated parameters given a 
particular draw.  B can also be interpreted as a measure of the covariance 
caused by the nonresponse (or measurement error) process. 
 
Table 1.  Imputation Model for Floating Car HOT Lane Time 
Savings 
Dependent Variable: Logit of Floating 

Car Time Savings 
R2 = 0.90 

Root MSE = 0.36
Independent Variables: Coef. Std. Err. t-Stat. 
Logit of Loop Detector Time Savings × 

Minutes Past 5:00 A.M. 
0.0029 0.00031 9.3 

Minutes Past 5:00 A.M. 0.222 0.0149 14.8 
(Minutes Past 5:00 A.M.)2 -0.00138 0.000121 -11.4 
(Minutes Past 5:00 A.M.)3 2.73E-06 2.91E-07 9.38 
Toll -0.229 0.188 -1.22 
Toll × Minutes Past 5:00 A.M. 0.00222 0.00126 1.77 
Constant -11.4 0.52 -22.1 
 

 Rubin (1987) shows that for a fixed number of draws, m ≥ 2, $θ  is 
a consistent estimator for θ and $Σ  is a consistent estimator of the 

covariance of $θ .  Of course B will be better estimated if the number of 
draws is large, and the factor (1 + m-1) in equation (6) compensates for the 
effects of small m.  Rubin (1987) shows that as m gets large, then the Wald 
test statistic for the null hypothesis that θ = θ0 , 

 ( ) ( )θ θ θ θ−
′

−−0 1 0$ ,Σ   (9) 

is asymptotically distributed according to an F distribution with K (the 
number of elements in θ) and ν degrees of freedom.  The value of ν is 
given by: 
 ν = (m - 1)(1 + rm-1)2 and  
 rm = (1 + m-1) Trace(BU-1)/K  (10) 
This suggests increasing m until ν is large enough (e.g. 100) so that the 
standard asymptotic Chi-squared distribution of Wald test statistics 
applies.  We used this stopping rule and found that the models in Section 
6.2 required m=20 multiple imputations.  Although this is more than the 4-
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5 multiple imputations used in most applications, recall that the proportion 
of missing floating car data is 80 percent in our application.  Meng and 
Rubin (1992) show how to perform likelihood ratio tests with multiply-
imputed data.  Their procedures are useful in high-dimensional problems 
where it may be impractical to compute and store the complete covariance 
matrices required for the Wald test statistic (equation 9). 

To draw one set of imputed values for the missing floating car 
data, first draw one set of slope and residual variance parameters from 
the asymptotic distribution of the linear regression estimators from Table 
1.  The slope parameters are drawn from the joint normal distribution 
centered at the parameter estimates with covariance given by the usual 

least squares formula ( ( ) 12 −′XXs ).  The residual variance, 2
*σ , is drawn 

by dividing the residual sum of squares by a draw from an independent 
2
dχ  distribution, where d is the residual degrees of freedom.  An imputed 

residual vector is then drawn from independent normal distributions with 
mean zero and variance equal to 2

*σ .  The imputed values are then 
computed by adding this imputed residual to the predicted value from the 
regression using the imputed slope parameters.  Additional sets of 
imputed values are drawn the same way beginning with independent 
draws of the slope and residual variance parameters.  Observations where 
floating car data are observed are fixed at these observed values across 
all imputations.  This imputation method, which Schenker and Welsh 
(1988) call the “full normal imputation” procedure, is equivalent to 
drawing from the Bayesian predictive posterior distribution when the 
dependent variable and the regressors follow a joint normal distribution 
with standard uninformative priors. 

For each imputed value we add the mean time savings for those 
respondents entering the I-15 at Ted Williams Parkway.  The medians 
and 90th percentiles across each month are computed for each 6-minute 
time interval.  These medians and the difference between the 90th 
percentiles and the medians are then used to estimate the parameters of 
the choice model in Section 6.2.  The multiple imputation procedure 
described here has been implemented in STATA, and it could be 
programmed in most modern statistical packages. 
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5 Attrition Model 

The 39% attrition rate between Waves 2 and 3 of our panel is not 
unusual for transportation panel surveys (Raimond and Hensher, 1997).  
The high attrition might be due to the required detailed questions about 
the commute trip which respondents find difficult to answer and/or 
intrusive.  Although new respondents (the refreshment sample) are 
recruited each wave to maintain sample size, it is crucial to account for 
attrition when analyzing these data.  Once the data are collected there is 
nothing to be done about the loss of efficiency due to the decreased 
sample size, but there are flexible modeling techniques to identify and 
correct for non-ignorable attrition. 

The simplest approach is to compare the panel sample with the 
refreshment sample.  There do not appear to be striking differences in the 
distribution of key variables across these samples, but the panel sample 
exhibits slightly higher income and longer commute distance.  Since the 
samples are approximately equal size, it is also possible to fit the choice 
model in Section 6.1 separately for each sample.  The hypothesis that 
attrition is ignorable is then equivalent to the hypothesis that the 
coefficients of the choice model are equal across the samples.  A 
standard likelihood ratio test shows that this hypothesis cannot be 
rejected at any reasonable significance level for these data. 

If there is no reasonable size refreshment sample, or if the data 
are used for dynamic analysis, then the attrition process can be modeled 
using the initial wave of the panel.  The results from fitting a binomial 
logit attrition model show that the only significant predictors of attrition 
are refusal to disclose income, distance, and proportion of FasTrak use 
during the previous week.  Commute distance enters as a quadratic term 
that has a maximum negative effect on attrition at 42 miles.  This implies 
that for the relevant range of the data longer distance commuters are less 
likely to attrite.  Proportion of FasTrak use is an endogenous variable in 
our choice models, so its significance in the attrition model implies that 
the attrition process is non-ignorable.  The higher attrition of FasTrak 
users might be related to the substantial number of additional survey 
questions administered to this group. 

Unless there are significant interactions between the dependent 
variable and other independent variables, the attrition process described 
above is just another form of choice-based sampling.  Therefore 
unweighted maximum likelihood estimates of the conditional logit model 
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will be consistent except for the alternative-specific constants.  In our 
application, there are no significant interactions in the attrition model, so 
we will base our estimates in Section 6 on unweighted estimates.  If there 
are significant interactions, then Brownstone (1998) and Brownstone and 
Chu (1997) show that the WESMLE estimator can be used with multiply 
imputed weights from the attrition model to get consistent inference.  

6 Choice Model Results 

Sections 6.1 and 6.2 compare mode choice model estimates using 
uncorrected loop detector data and correcting for measurement error.  
We use a model derived from the specification in Kazimi et al. (2000).  
The main difference in the specifications is that here we include a 
variable identifying sample respondents who do not pay their own tolls.  
Any teenager knows that if someone else is paying (here, typically the 
employer), then they will be less sensitive to the price. 

In addition to the parameter estimates, we also report value of time 
(VOT) estimates for the models in Sections 6.1 and 6.2.  Since toll enters 
the specification both linearly and interacted with variability (the 
difference between the 90th percentile and the median of time saved by 
taking the HOT lane over the month), the VOT in dollars per hour saved 
is given by: 
( )

( )yVariabilityVariabilittolltoll

stimesaving
×+

×
*

60
θθ

θ
 . (11) 

Since VOT varies across respondents, we give the distribution across 
respondents weighted by the choice-base sampling weights to match the 
population of morning commuters.  We also give this VOT evaluated at 
the weighted mean of Variability.  This latter quantity is useful for 
comparison with other studies that typically do not report the variable in 
equation (11).  Our definition of variability is based on the notion that 
commuters are much more concerned about unexpected delays than 
about unexpected speedy trips. 
 
6.1 Loop Detector Time Savings 

The left panel of Table 2 gives parameter estimates for the mode 
choice model using loop detector time savings.  High-income, home-
owning, middle-aged females with a graduate degree are the most likely 
group to pay for FasTrak.  Large households with more workers than 



 15

cars are most likely to carpool.  Both carpoolers and FasTrak users have 
similar positive coefficients for time savings, but the reduction in 
Variability from HOT lane use is not significant.  However, if Variability 
is removed from the model then the toll coefficient drops and becomes 
insignificant.  Relative to solo driving, commute trip drivers are more 
likely to choose FasTrak and non-commute trip drivers are more likely to 
carpool. 

The middle column of Table 3 gives various VOT estimates 
(computed from equation 11) from the model using loop detector data.  
Note that the distribution is skewed and there is substantial variance 
across the population.  The median values are much higher than Calfee 
and Winston’s (1998) estimates, and they are on the high end of the 
estimates reviewed in Small (1992).  These medians are simila r to 
equation (11) evaluated at the weighted sample mean variability (labeled 
“VOT at Mean Variability”).  This is the number typically presented in 
studies where VOT varies according to observed variables.  Since this is 
just a scalar, it is straightforward to estimate the standard error of this 
estimate (caused by parameter estimation error) using the delta method.  
Although this estimate is significantly different from zero, the standard 
error is large enough to include almost all previous estimates.  Calfee and 
Winston do not report standard errors for their VOT estimate of $5.00, 
but the $26/hour estimate in Table 3 is more than two standard errors 
away from their point estimate. 

 
6.2 Predicted Floating Car Time Savings 

The right panel of Table 2 gives the results of estimating the choice 
model using the predicted floating car data and multiple imputation 
algorithm described in Section 4.  The coefficient estimates are roughly 
similar to the uncorrected loop detector estimates, but the key 
coefficients of toll and time savings for commuters are reduced in 
magnitude and significance.  Overall the standard errors are considerably 
larger than the uncorrected loop detector estimates.  This is due to the 
component of error caused by the error in the prediction model used to 
generate the predictions. 

Since the floating car time savings are generally larger than the 
corresponding loop detector measures, we would expect that the value of 
time estimates would drop relative to the uncorrected loop detector 
estimates.  The third column of Table 3 confirms this and shows that the 
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VOT estimates have dropped $5 - $7.  While this change is quite 
significant from a policy perspective, it is not statistically significant 
given the large standard errors of these measures. 

If the error in the prediction model is ignored and only one set of 
imputed floating car time savings is used, then the standard errors are 
downward biased by over 50 percent for this model.  Even though the 
prediction model fits very well, the prediction error is still an important 
component of the total estimation error. 

7 Conclusion 

This paper reviews techniques for handling attrition, choice-based 
sampling, and measurement error in panel surveys.  Although we 
concentrate on commuter surveys and value of time measurement, the 
techniques are general and can be applied in other settings.  It turns out 
that only measurement error is a serious problem in our application, 
although there is no way to know this without first carefully modeling 
the attrition and sampling process. 

Section 4 shows that measurement error in travel time is a 
serious problem for mode-choice models.  The relatively cheap 
measures, loop detectors and respondents’ perceptions of time savings, 
are both badly biased.  When we collect additional data on all 
respondents’ perceptions, then we can add these perceptions to our 
imputation models.  In any case the multiple imputations approach used 
here to integrate the measurement error and choice models is a good 
general tool for these sorts of problems.  Ignoring the component of error 
in the choice model parameters caused by the prediction model leads to 
serious underestimates of the precision of the choice model parameters. 
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Table 2. Conditional Logit Mode Choice Model Estimates 

 Loop Detector Data Corrected Data 
Number of obs. = 699 Pseudo R2 =  0.21 Pseudo R2 =  0.20 

 Log likelihood = -606.56 Log likelihood = -611.27 
FasTrak choice Coef. Std. Err. t-Stat. Coef. Std. Err. t-Stat. 
Constant -5.978 1.994 -3.00 -7.179 3.342 -2.15 
Income ≥ $100K + Refused 

to answer* 
0.855 0.183 4.68 0.830 0.271 3.06 

Income < $40K* -0.621 0.505 -1.23 -0.591 0.536 -1.10 
Female* 0.730 0.183 3.98 0.704 0.251 2.81 
Age between 35 & 45* 0.423 0.179 2.36 0.445 0.210 2.12 
Has Graduate Degree* 0.741 0.195 3.80 0.747 0.266 2.81 
Household owns home* 0.754 0.293 2.57 0.812 0.355 2.29 
Distance (miles) 0.019 0.010 1.86 0.015 0.011 1.39 
Toll paid by someone else* 1.747 0.454 3.85 1.816 0.633 2.87 
Toll ($/trip) -0.787 0.220 -3.58 -0.600 0.387 -1.55 
Median total time savings 

for commuters 
0.182 0.047 3.87 0.074 0.037 2.04 

Median total time savings 
for non-commuters 

0.417 0.216 1.93 0.297 0.200 1.49 

Toll × Variability 0.135 0.035 3.83 0.090 0.053 1.69 
Commute trip* 3.395 1.939 1.75 4.495 3.004 1.50 
Carpool Choice      
Constant -2.265 1.006 -2.25 -2.139 1.145 -1.87 
Workers per vehicle 1.005 0.366 2.74 0.982 0.435 2.26 
Distance (miles) 0.102 0.056 1.82 0.099 0.060 1.64 
Distance squared -0.001 0.001 -1.27 -0.001 0.001 -1.23 
Single worker household* -0.973 0.350 -2.78 -1.005 0.426 -2.36 
Two worker household* -0.522 0.289 -1.81 -0.548 0.318 -1.72 
Commute trip* -1.762 0.414 -4.25 -1.747 0.588 -2.97 
Median total time savings 0.144 0.045 3.19 0.056 0.033 1.71 
Carpool ramp bypass*  0.556 0.278 2.00 0.634 0.315 2.01 
Variability of solo drive 

time 
0.098 0.076 1.29 0.039 0.076 0.51 

* These are dummy variables defined to equal one if the condition is true 
and zero otherwise. 
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Table 3.  Value of Time Saved Estimates 

Value of Time (VOT) ($/hour)          Loop Detector Corrected 
90th Percentile 73.63 72.12 
50th Percentile 23.37 18.71 
10th Percentile 14.43 -20.72 

Mean 32.64 25.63 
Std. Dev 94.29 74.75 

VOT at Mean Variability 25.96 18.63 
Std. Dev. Of VOT at Mean Variability 7.70 13.88 

 
The substantive conclusions from the models in Section 6 are 

largely negative.  We cannot estimate value of travel time reduction 
accurately enough to resolve current controversies.  In particular, the 
confidence bands from our estimates cover most existing estimates, and 
the differences between these estimates are important for planning new 
transportation infrastructure investments. Additional work is required to 
combine perceived time savings, loop detector time savings, and floating 
car time savings using data from more recent waves of the I-15 panel. 
Stated preference questions have also been added to the survey so that 
we can jointly model responses to hypothetical and real situations.  
Hopefully the enhanced models will shed more light on the problem of 
evaluating time savings. 
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