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ABSTRACT 

Light-Mediated Control of Polymeric Materials 

by 

Neil D. Dolinski 

 

The synthesis and characterization of precision polymeric materials represents a 

broad research area with significant value to society. Recently, light-mediated 

approaches to controlled polymer synthesis have attracted significant interest due to 

the low cost and tremendous tunability of modern light sources. Through manipulating 

these various properties (wavelength, intensity, etc), researchers have made 

considerable progress in controlling a wide range of important polymeric properties 

such as molecular weight distribution, comonomer composition, and molecular 

architecture. However, the systems developed to date have largely focused on 

homogenous targets and have lacked in-depth photophysical interpretation. This 

dissertation describes the development of an in-situ approach to studying light-

mediated chemical reactions and efforts to better understand the temporal control of 

state-of-the-art photopolymerizations. Furthermore, the lessons learned from these 

studies led to the development of a new approach to 3D printing, wherein specific 

wavelengths of visible light were used to independently and simultaneously define 

local materials properties throughout a part in a single step. This breakthrough in 

additive manufacturing greatly expands the potential of multi-material printing 

techniques. The findings of these works have broad implications for using light as a 

tool for the future development of synthetic approaches to advanced polymeric 

materials. 
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Chapter 1: Introduction 

Light as a Tool for Synthesis 

The use of light as a powerful stimulus to impact properties has been broadly 

implemented throughout materials chemistry across a wide range of fields. Of 

particular note is the sustained interest of light as a stimulus for the production and 

manipulation of soft materials systems, with applications spanning lithography,1,2 drug 

delivery,3,4 adaptable gels,5,6 and even in the synthesis of well-defined polymer 

chains.7,8 The continued interest in photo-controlled approaches to soft materials is 

largely due to the low cost, tunability, and wide availability of light sources available to 

researchers. Even in applications where materials could be synthesized through 

traditional thermally-driven approaches, as in the synthesis of polymers with well-

defined molecular weights, light offers new possibilities in terms of its spatiotemporal 

control, allowing for the development of new materials like patterned polymer brushes 

with intensity-controlled surface features.9 

This chapter highlights a variety of background information for key light-driven 

chemistries, forming a foundation for the work described in Chapters 2–4. Each 

section serves to recount recent developments in the field, and to give the reader a 

baseline understanding of the unifying principles presented in the literature. In 

particular, this chapter covers the basic concepts of photochromic molecules with 

applications in soft materials systems, the development of photo-mediated controlled 

radical polymerizations, and the use of light in additive manufacturing. 
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Photochromic dyes and Donor Acceptor Stenhouse Adducts 

 Photochromic dyes, also known as photoswitches, are an interesting class of 

compounds whose optical properties (color/absorbance) can be manipulated through 

exposure to light, which induces a change in molecular structure.10 The primary use 

for photochromic molecules industrially has been for the production of light-responsive 

lenses that selectively darken upon exposure to light, typically exposure to the UV 

component of sunlight inducing lens darkening.11 However, as this class of molecules 

has developed, the potential applications of photochromic dyes have expanded 

dramatically. Some particularly impressive examples have utilized photochromic 

molecules as chemical sensors,12 molecular motors,13 handles for monitoring stress,14 

polymerization catalysts,15,16 and drug delivery agents.17 The key characteristic of 

photoswitches that have enabled their use in these applications is the large change in 

properties (volume, solubility, charge, etc) that occurs during isomerization. This 

section will discuss the fundamental properties of photochromic molecules and 

introduce select classes of photochromic dyes of particular importance to this thesis. 

 Photochromic molecules can be broadly divided into two classes, P-type and T-

type, which describe the transition between their isomers. The first of these classes, 

P-type photoswitches, only undergo isomerization through exposure to light and 

remain stable in either isomeric form. In contrast, T-type molecules will change in color 

when exposed to a suitable set of wavelengths but will fade back to their initial state 

with time. For simplicity in this thesis, even if isomerization can be facilitated by light 

in both directions, if there is a thermal pathway between states a switch is said to be 

T-type. Examples of both classes can be seen in Figure 1.1, where T-type molecules 
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are denoted by a Δ along one of the reaction arrows. Interestingly, when a 

photochromic molecule has a stable isomer in the conjugated colored form, the 

molecule is said to exhibit negative photochromism.18 

 

Figure 1.1: Select photochromic molecules from popular families. Colored isomers (left) undergo 
isomerization to a transparent isomer (right). Reactions with a Δ denote T-type photochromes and the 
directionality dictates the stable isomer. 
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 The families of organic photoswitches discussed thus far have been extensively 

modified with a variety of chemistries enabling researchers to tune their photophysical 

behavior and allow for their introduction into materials systems. As expected, by 

changing the electronics of the molecule through electron donating / withdrawing units, 

a wide range of optical properties can be manipulated.19 There are many examples of 

modifying the electronics to impact absorbance of nearly all classes of photoswitches, 

however these modifications also serve to directly impact the half-life of T-type 

switches and the photostationary state (equilibrium of isomeric species under 

irradiation that arises from overlapping absorbance bands) in both T-type and P-type 

motifs. Additionally, in certain examples, electronic modification has changed the 

character of a photoswitch from T-type to P-type.20,21 Also, examples introducing steric 

 

 

 

Figure 1.2: (left) Chemical structure of an acrylate polymer with pendant azobenzene units that undergo 
a trans to cis isomerization upon exposure to light. (right) Solutions of the two isomeric polymers and 
their isolated properties. The trans form remains solid while the cis form forms a viscous liquid. Adapted 
from reference 23 with permission. Copyright 2016, Springer Nature. 
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bulk near points of bond rotation serve to hinder the thermal back reaction in T-type 

switches, notably in azobenzene.22 In diarylethene structures, the addition of a bulky 

hexafluorocyclopentene unit significantly increases the fatigue resistance of the 

molecules to repeated isomerization.23 Additionally, through the installation of reactive 

handles, photoswitches have been readily tethered to polymer backbones, enabling 

large changes in bulk properties in polymers upon photoswitching events. As an 

example, Figure 1.2 highlights the change of a polymer from glassy/solid to 

viscous/liquid through the photoswitching of pendant azobenzene units.24 Given the 

large breadth of photochromic molecules and the chemical modifications thereof, the 

remainder of this section will focus on the modification of Donor Acceptor Stenhouse 

Adducts and their application in polymeric materials. 

Donor Acceptor Stenhouse Adducts (DASA) were first synthesized by the Read de 

Alaniz group in 2014 through the reaction of alkyl amines (donor) with activated furans 

(acceptor).25 This first generation of DASA molecules (Gen1) demonstrated many 

attractive features for photochromic molecules, namely high molar extinction 

coefficients (~100,000 M-1 cm-1), negative photochromism, and large changes in 

molecular volume and solubility upon photoswitching. The high absorptivity of Gen1 

DASA was leveraged through the use of DASA as a small molecule thermal sensor 

embedded in a polybutadiene matrix, allowing for the tracking of the heat generated 

by a bullet fired through the sample.26 Additionally, by taking advantage of the strong 

change in solubility between isomers of Gen1 DASA light-addressable micelles were 

developed and shown to be effective for drug release.27 Despite these impressive 

applications, Gen1 DASA had a limited range of absorbance, which could only be 
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impacted through manipulating the acceptor group.28 Furthermore, Gen1 DASA 

molecules could only be switched in highly nonpolar environments such as Toluene, 

significantly limiting their application. 

To address these issues, the second generation of DASA (Gen2) was developed 

using a variety of conjugated aniline donors.29 The addition of these tunable donors  

 

 

Figure 1.3: (top) Chemical structures of the second generation of DASA photoswitches, which can be 
tuned through the aniline donor resulting a wide range of absorbances. (bottom) Solutions of Gen2 
DASA demonstrating the breadth of color made possible with aniline donors. Adapted from reference 
28 with permission. Copyright 2016, American Chemical Society. 
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yielded an impressive range of absorbance, see Figure 1.3. Furthermore, Gen2 

DASA significantly increased the range of solvents in which photochromism could be 

demonstrated, which is essential for implementation in materials systems. With these 

impressive properties in mind, Gen2 DASA was tethered onto polymers to make 

tunable photochromic polymer films, see Figure 1.4 for images of these films under 

several  irradiation  conditions.30 Interestingly, after bleaching, the  pendant  DASA  

units were unable to revert to their colored triene form until heated above the Tg of the 

 

 

Figure 1.4: (top) Chemical structures of copolymers P1 and P7 with distinct tethered DASA moieties 
at a similar loading (m = 3–4%). (bottom) The result of blending P1 and P7 together to form a film. Each 
DASA can be individually addressed with different wavelengths of visible light. Adapted from reference 
29 with permission. Copyright 2017, American Chemical Society. 
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polymer matrix. It is hypothesized that the more compact cyclopentenone form of 

DASA gets trapped upon switching and is unable to ring open until there is sufficient 

free volume in the system. 

 Despite the clear advances of Gen2 DASA, several of the synthesized species had 

low equilibrium ratios of the open, colored form. This limitation was targeted in the 

introduction of the third generation (Gen3) of DASA. In this iteration, the tunable 

aniline donors were paired with a series of new acceptor moieties, further increasing 

the range of switching conditions and newfound control of the equilibrium state of 

isomerization.31 Additionally, the Gen3 DASA compounds were demonstrated to 

undergo switching upon exposure with near infrared light, which is a highly desirable 

stimulus for biomedical applications.32 

 Despite the rapid advances in the synthesis of DASA compounds, their T-type 

nature, solvent dependency, and large extinction coefficients make the measurement 

of their photophysical parameters quite challenging. Given these issues, the primary 

characterization techniques used for DASA were normalized absorbance spectra and 

thermal recovery traces, which don’t give the necessary information to calculate 

important parameters such as quantum yield. In order to measure the photophysical 

parameters, direct measurement of the ratio of isomers would be necessary during 

irradiation. To solve this issue, a fiber-coupled Nuclear Magnetic Resonance (NMR) 

technique was developed, this technique is described fully in Chapter 2.33 

 

 

 



 

 9 

Light-Mediated Controlled Radical Polymerizations 

 The introduction of techniques to control polymer molecular weight, dispersity, and 

architecture is perhaps one of the most important developments in polymer chemistry. 

While many approaches to controlled polymerizations have been developed, the 

simplicity of controlled radical polymerization (CRP) techniques such as nitroxide-

mediated polymerization,34–36 atom transfer radical polymerization (ATRP),37–39 and 

reversible addition-fragmentation chain-transfer polymerization (RAFT)40–43 have 

enabled researchers to synthesize a remarkably diverse collection of polymers with 

seemingly limitless variety and ever-increasing complexity. CRP approaches to 

polymerization differ from free radical polymerizations through the addition of labile 

‘mediating’ groups that act to reversibly activate/deactivate the growing chain end of 

propagating polymer chains, shown schematically in Figure 1.5. This process reduces 

the concentration of radicals in the system, reducing termination events and allowing 

the polymers to grow at a constant rate, resulting in user-defined molecular weights 

with low dispersity. In practice, ATRP and RAFT approaches represent the most 

commonly used procedures for generating controlled radical polymers, these two 

techniques can be readily differentiated by their mediating group / chain ends; a labile 

halogen atom (typically Br) vs a thiocarbonylthio (typically trithiocarbonate or 

benzodithioate) compound for ATRP and RAFT, example structures shown in Figure 

1.5. Each system has its own advantages and disadvantages, namely RAFT tends to 

be more robust through a larger variety of monomer families, but the Br chain ends of 

ATRP have greater flexibility for modification after polymerization. Between these  
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Figure 1.5: (top) Schematic representations of free radical and controlled radical polymerizations. 
Controlled radical polymerizations use a mediating group that reversibly reacts with the growing chain 
end, resulting in polymers growing at the same rate, yielding narrow molecular weight distributions. 
(bottom) Sample chemical structures of polymers synthesized using ATRP and RAFT. 
 
 

techniques, a wide variety of conditions and catalysts have been developed for the 

successful polymerization of a wide range of monomers in aqueous and organic 

media. In recent years, great attention has been directed towards the development of 

CRP approaches regulated by external stimuli44 such as mechanical force,45 applied 

voltage,46 or light.47 Of these stimuli, light has emerged as a particularly attractive 

avenue for externally regulated CRP given the low cost, tunability, and spatiotemporal 

control offered by modern light sources. In the seminal work by Fors and Hawker, it 

was demonstrated that ATRP could be mediated by an external light source through 

a photoredox catalyst, Figure 1.6.47 This advance gave researchers the ability to 

temporally control polymerizations by simply turning the light ‘off’ to cease 

polymerization, only starting growth again after subsequent irradiation, Figure 1.6c. 
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Since this report, many additional light-mediated CRP systems were developed, 

including both metal-free8,48–50 and more traditional Cu-ligand catalysts51–54 for ATRP 

as well as a catalysts for photoinduced electron transfer RAFT (PET-RAFT).55–58 An 

abridged timeline of the development of select photo-CRP catalysts is shown in 

Figure 1.7. Between the many newly developed photo-CRP approaches, a wide 

range of monomer classes and polymer architectures have been synthesized, 

highlighting the added versatility light-mediated techniques bring to CRP. 

 

 

 

Figure 1.6: a) Reaction scheme for the polymerization of methyl methacrylate using Ir(ppy)3 as a 
catalyst under visible light conditions. b) Demonstration of linear kinetics, implying the radical density 
is constant throughout the polymerization. c) Demonstration of temporal control of the polymerization 
through turning the light source ‘on’ and ‘off’ at regular intervals. Adapted from reference 45 with 
permission. Copyright 2012, John Wiley and Sons. 
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Figure 1.8: Timeline of the development of select state-of-the-art photo-mediated controlled radical 
polymerization systems. These catalytic systems are featured heavily in Chapter 4. 

 

 The incorporation of photo-CRP in materials applications largely involves the use 

of focused / patterned light to spatially define materials properties in systems 

inaccessible to thermal approaches. This concept has been exploited in the synthesis 
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of a variety of interesting materials, such as polymers grown from the surface of 

cells,59 light emitting diodes,60 materials with spatially defined mechanical properties,61 

and the growth of patterned polymer brushes.62–64 Perhaps the best demonstrations 

of the spatial patterning enabled by photo-CRP are surface initiated polymer brushes. 

A wide range of polymer brushes with high resolution (< 20 microns) have been 

demonstrated using precisely defined photomasks. By taking advantage of the living 

nature of the brush growth process, additional monomers can be added to the system 

after an initial growth step, allowing for the production of features with chemo-selective 

response or surfaces with precise bottlebrush architectures.64,65 Along with the 

development of new catalysts, the procedures for producing patterned polymer 

brushes have become more user-friendly, enabling the patterning of wafer-scale 

brushes, Figure 1.8.66 

 

 

Figure 1.8: Series of consecutively grown polymer brushes on a 2” silicon wafer. Circular patterns were 
templated with a simple glass cover slip. Adapted from reference 64 with permission. Copyright 2018, 
John Wiley and Sons. 
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Despite the rapid growth of photo-CRP techniques, there are still several 

outstanding issues in the field. Throughout the literature, there is evidence of growth 

occurring during dark periods in temporal studies, but this growth is typically dismissed 

as experimental error.67–70 Since this issue is rarely discussed at length, the underlying 

mechanisms that may or may not be at work during dark periods are left unexplored 

and can therefore not be successfully addressed in further developments of photo-

CRP. Additionally, there are few direct comparisons between photo-CRP systems 

(constant irradiation conditions, sample volumes, etc), especially between CRP 

families such as PET-RAFT and metal-free ATRP, despite similar underlying 

mechanisms. These issues are discussed at length in Chapter 3.71 

 

Light in Additive Manufacturing 

Additive manufacturing, or 3D printing, has received growing attention from the 

scientific community given its ability to rapidly produce materials with a wide range of 

properties from easily manipulated digital files.72 As an example, researchers are now 

able to directly modify a parts underlying mesostructure, allowing for a wide range of 

interesting materials properties such as impacting local stiffness and selectively 

patterning Poisson’s ratio.73–75 The vast majority of 3D printing techniques can be split 

between direct-write and projection approaches. Direct-write techniques such as 

fused deposition modelling and direct ink writing utilize nozzles or similar sources to 

extrude molten filaments or inks which solidify at room temperature or upon exposure 

to a light source that closely follows the printing nozzle. These approaches, especially 

direct ink writing, have seen considerable attention in recent years given the modular 
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nature of the nozzles and possible ink chemistries. This modularity has resulted in a 

vast number of printable materials systems from hydrogels76–79  to highly aligned 

composites80–82 capable of remarkable shape changes upon swelling, Figure 1.9. 

Additionally, through the addition of spiropyran units as crosslinkers have enabled the 

3D printing of patterned mechanochromic materials.83 Despite this range of materials, 

direct-write approaches suffer from poor interfacial connectivity, extremely slow build 

rates (< 1 cm per hour), and low line resolution. These issues can, in part, be avoided 

by projection curing techniques such as stereolithography (SLA) and digital light 

projection (DLP) which will be the focus of this section. 

 

 

Figure 1.9: top) Structure printed with aligned filler particles through direct write printing designed to 
undergo programmed folding events upon swelling. bottom) Top down and side views of the part upon 
swelling to form orchid-like patterns. Adapted from reference 78 with permission. Copyright 2016, 
Springer Nature. 
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In contrast to direct-write techniques, where each layer is traced out by a moving 

nozzle, SLA/DLP approaches cure entire layers of resin near simultaneously using a 

rapidly rastered laser source or projected image. The layer-by-layer curing of DLP 

techniques is illustrated in Figure 1.10, where a part built on a moving stage is lowered 

into a photocurable resin, at which point a pattern is projected into the resin thereby 

curing the desired layer, the part is then delaminated from the tank and repositioned 

for the next layer to be cured. The precise optics of projection 3D printing technique 

greatly enhance the resolution of parts relative the direct-write techniques, which are 

limited by nozzle diameter and ink viscosity. In addition to the increased resolution of  

 

 

 

Figure 1.10: Schematic of printing process of DLP approaches to  3D printing. (left) A layer is projected 
into a bath of curable resin and bonded to the growing part. (right) The part is delaminated from the 
bottom of the tank and repositioned for the next layer to be cured. 
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SLA and DLP techniques, chemists and engineers have been able to take advantage 

of light intensity to spatially grade the crosslink density of parts, resulting in local tuning 

of mechanical properties.84  

Despite the vastly improved resolution of SLA / DLP, the parts produced by these 

approaches are plagued by defects between cured layers.85 The root cause of layering 

defects in DLP parts is the delamination / repositioning step in printing, which serves 

to remove the in-progress part from the bottom of the resin tank, resulting in stepwise 

growth. To remove these defects from 3D printed parts, the layers would have to be 

continuously cured and removed from the tank in a fluid motion. The first reported 

continuous approach to 3D printing, called continuous liquid interface production 

(CLIP), utilized radically-cured resins in conjunction with an oxygen permeable 

window at the bottom of the tank that set up a thin ‘dead zone’ where radicals were 

actively consumed, eliminating part lamination.85 With the issue of lamination 

eliminated, the in-progress part can be pulled from the resin at a constant rate 

(hundreds of mm per hour), effectively eliminating layers in the finished product, 

Figure 1.11. In addition to the oxygen-mediated mechanism of CLIP, continuous 

printing can be accomplished using a high-density immiscible fluid at the bottom of the 

resin tank to avoid part lamination. 

 Through the use of clever chemistry and processing techniques, projection 

approaches have considerable advantages over their direct-write counterparts for the 

production of single material parts. However, in order to produce parts with multiple 

chemistries throughout, current projection techniques require their resin tanks to be 

swapped out mid-print, potentially within a given layer, greatly reducing the build 
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rate.86,87 Although this approach enables multimaterial printing in projection-style 

printers, the exchange of resin baths is directly contrary to the notion of continuous 

printing. For this reason, a majority of multimaterial printing is carried out using multi-

nozzle techniques, where discrete inks can be delivered from individual nozzles of 

specialized microfluidic devices greatly increasing the complexity of multimaterial 

techniques.88 To overcome this limitation, new chemistry and processing techniques 

were developed for continuous 3D printing, which is discussed in Chapter 4.89 

  

 
Figure 1.11: (left) Schematic of Continuous Liquid Interface Production. (right) The results of different 
slicing profiles on parts printed with CLIP, at the thinnest setting the part has no signs of layering. The 
continuous nature of the printing process eliminates layer defects within the printed parts. Adapted from 
reference 83 with permission. Copyright 2016, AAAS. 
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Thesis scope 

 This thesis describes the development of approaches for the measurement and 

synthesis of light-mediated precise polymeric materials. Chapter 2 describes the 

construction of a fiber-coupled Nuclear Magnetic Resonance (NMR) system for in situ 

monitoring of photochemical transformations. Interestingly, the development of this 

technique was catalyzed by interest in studying photochromic molecules (primarily 

DASA) in collaboration with the Read de Alaniz group, which lead to the discovery of 

well-behaved photobleaching fronts in optically dense samples. The fiber-coupled 

NMR technique was then implemented in studying photo-mediated CRP, which led to 

a series of studies spanning a wide array of state-of-the-art CRP techniques, the topic 

of Chapter 3. The core concepts of these chapters, namely photobleaching fronts and 

photopolymerizations, were then combined to develop a fundamentally new approach 

to multimaterial 3D printing taking advantage of wavelength-specific chemistries, the 

topic of Chapter 4. The final chapter gives a brief summary of these works and an 

outlook on future challenges and opportunities for photochemical monitoring and light-

driven additive manufacturing. 
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Chapter 2: Fiber-coupled NMR: a versatile approach for in situ 

monitoring of photoswitches and photopolymerizations  

This chapter was originally published in ChemPhotoChem.  
Reproduced with permission from ChemPhotoChem 2017, 1, 4, 125–131.  
Copyright 2017, John Wiley and Sons. 
 

 

A simple, inexpensive, and modular method to directly illuminate NMR samples for in 

situ analysis of photochemical transformations is reported. The versatility of this 

technique is demonstrated by analyzing the light‐induced propagating front for small‐

molecule photoswitches and the kinetics of photocontrolled living radical 

polymerizations. In situ measurements allow oxygen‐sensitive and rapid photoevents 

to be studied in detail, leading to reliable determination of photoswitching quantum 

yields and polymerization rates. By systematically tuning light intensity, a direct 

relationship between propagation rate and intensity is revealed. Of particular note is 

the facile translation of the conditions identified through this NMR analysis to 

analogous benchtop experiments with insight into the nature of the photoreactive 

species. 

See Acknowledgments (page iii) for full author list. 
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Photochemical transformations encompass a wide variety of reactions, including 

deprotection, acid/base generation, dehalogenation, isomerization, and 

polymerization, where the absorption and conversion of photon energy is 

central.1 Over the past decade, the design of new photochemical switches2–16 and 

photopolymerization processes17–25 has led to functional platforms with applications 

in actuators, sensing, biology, catalysis, and electronics. A key to these advances 

has been insight into the mechanism and pathway of the photochemical processes 

with the most commonly utilized techniques to probe these reactions being ultraviolet‐

visible (UV/vis) absorption,15,26 real‐time Fourier transform (near) infrared (RT‐

FT(N)IR) absorption,25,27,28 and nuclear magnetic resonance 

(NMR)8,22,23,29,30 spectroscopies. Although operating effectively at different 

concentrations, important criteria to consider for each technique include: 1) utilization 

of probe radiation outside the active range of the system under observation, 2) 

modular external stimuli (for example temperature and light intensity), 3) technical 

simplicity and low cost, and 4) high resolution with fast acquisition times (on the order 

of seconds). 

UV/vis‐based strategies utilize ultraviolet and visible light as a probe, which is often 

within the active energy window for stimulating the photochemical process under 

study, making it undesirable as a monitoring method (especially for sensitive 

systems). Similarly, RT‐FT(N)IR absorption does not provide a high degree of 

detailed structural information and the desired signals may be diluted by those from 

overlapping solvent absorption. In contrast, NMR spectroscopy is a common, 

versatile, and rapid technique, which provides detailed information about molecular 
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structure and composition and uses non‐invasive radio frequencies as a probe. 

Although successful for conventional thermal reactions, a number of issues still 

persist with employing NMR procedures for the study of photochemical processes. 

These include relatively high concentrations of NMR experiments (mM range) as 

compared to UV/vis absorption spectroscopy (μM range), along with manual transfer 

of a photochemical reaction mixture, or an aliquot thereof, to an NMR tube. As for 

FT(N)IR approaches, this is time consuming and provides a dataset limited by 

transfer rate as opposed to measurement acquisition. Moreover, removing aliquots 

from a reaction can lead to contamination (e.g., oxygen) and continually decreases 

the volume of the system. Alternatively, direct illumination and monitoring has been 

accomplished within an NMR spectrometer, either by installing a light source inside 

the instrument or using an optical fiber, which typically requires probe modification or 

a coaxial glass insert, respectively.31–43 The use of light‐coupled optical fibers with 

NMR spectroscopy has distinct advantages from the standpoint of technical 

simplicity, compatibility with a wide radiation range (UV–IR), and relatively low cost 

(compared to probe modifications). Apart from traditional coaxial capillary inserts, 

“pencil tip” inserts41,42 and fiber‐tip etching procedures31,36 have been utilized to 

provide uniform light distribution within the NMR measurement zone, but does not 

lead to the formation of a propagating reaction front needed to determine photoswitch 

isomerization quantum yield (Φ; see below). However, etching of delicate optical 

fibers requires harsh conditions, such as the use of hydrofluoric acid, and can be 

difficult to reproduce, while coaxial capillary inserts often lead to reduced sensitivity. 
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Herein we report a simple NMR‐based technique to monitor photochemical 

transformations in situ using inexpensive and universal optical‐fiber inserts, coupled 

with modular, computer‐controlled LED irradiation. To illustrate the utility of this 

strategy, the Φ of two photochromic small molecules, a donor–acceptor Stenhouse 

adduct (DASA)2,3,26,44–48 as well as a diarylethene (DAE),5 were determined from 

optically dense propagating fronts. Complementing the small‐molecule studies, this 

new technique was also used to analyze several light‐driven controlled 

polymerizations, leading to kinetic insights and a detailed understanding of molecular 

weight, structure, and dispersity evolution with conversion.25,49–58 These examples 

showcase the versatility and potential impact of our method on the broad field of 

photochemistry. 

 

Figure 2.1: Schematic representation of the LED system and insert used to uniformly illuminate NMR 

samples. The setup includes a computer‐controlled driver, fiber‐coupled LED (with specified 
wavelength), multimode optical fiber, a Teflon insert for fiber centering, and a standard 5 mm NMR 
tube. 
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In this work, a length of optical fiber connected to modular LEDs (Thorlabs) with 

controllable intensity, is centered over an NMR sample and used to collect real‐time 

data on photochemical transformations. Initial attempts to irradiate samples without 

centering the fiber tip gave irreproducible results due to non‐uniform illumination. To 

remedy this, a small universal Teflon insert, designed to fit standard 5 mm NMR 

tubes, allowed for the tip of the optical fiber to be centered directly above the sample, 

thereby ensuring uniform lateral irradiation during measurement (an engineering 

drawing of the Teflon insert is provided in Figure A1 in Appendix A). As compared to 

typical glass coaxial inserts, the reusable Teflon inserts can be fabricated with simple 

machinery to keep cost to a minimum and have the added benefit of being both 

mechanically and chemically robust. Additionally, the LEDs used to illuminate the 

samples are modular, having tunable light intensities for wavelengths spanning from 

the deep‐UV to far‐IR regions, suitable for a wide range of photochemical processes 

(Figure 2.1). The light intensity of the LEDs was controlled by modulating the current 

output of a commercial LED driver and provided an intensity range from 4 to 66 

mW cm−2, 4 to 114 mW cm−2, 8 to 140 mW cm−2, and 6 to 68 mW cm−2 for the warm‐

white (4000 K, λ≈400–800 nm), violet (405 nm), blue (470 nm), and green (530 nm) 

LEDs used in these studies, respectively (see Figure A2 for LED profiles and 

intensities). Additionally, a LabVIEW program was written to control the light intensity 

of the LED as well as control light “on” and “off” times for cycling experiments. 

Donor–acceptor Stenhouse adducts (DASAs) represent a new class of “negative” 

or “reverse” photochromes and were selected for initial study due to their high molar 

absorptivity (ϵ≈100,000 M−1 cm−1) in the visible range of the spectrum and 



 

38 

characteristic 1H NMR signal shifts upon photoisomerization (Figure 2.2).2,3,48 These 

features allow the two forms of the DASA switches, that is, the colored “open” 

triene 1 and the colorless “closed” cyclopentenone 2, to be identified and tracked 

throughout the process. Importantly, during the measurement employing irradiation 

with visible light, it is only the colored form 1, but not its colorless valence tautomer 2, 

which absorbs and thus only ring closure is taking place. Briefly, a 10 mM toluene 

solution of the open tetrahydroquinoline (THQ) barbituric acid derivative 1 was 

irradiated using a white LED (46 mW cm−2) through the optical fiber/Teflon insert with 

a circa 2 mm gap between the tip of the fiber and the top of the DASA solution (Figure 

2.2B; absorption profile Figure A3; thermal equilibration Figure A4). Due to the high 

optical density of 1, 99.9 % of the white light coming from the optical fiber tip is 

absorbed within the first 10 μm of the solution, with photoisomerization to 

colorless 2 allowing for the light to progressively penetrate deeper into the solution, 

generating a front that propagates in a linear fashion over time. This regular 

propagation rate suggests that the solvent and tube act as an efficient “waveguide” 

(Figure A5), retaining uniform light intensity throughout the measurement. The 

samples were measured in the dark for two scans (30 s scan−1), followed by 

illumination, with the resulting photochemical transformation being tracked over time 

by integrating the N‐methyl protons of the barbituric acid, which shift from δ=3.22 and 

3.08 ppm (HA) in 1 to 2.99 and 2.76 ppm (HB) in 2 (Figure 2.2C; the full 1H NMR 

spectrum is given in Figure A6). Plotting the relative fraction of 1 revealed three 

distinct regions: 1) buffering, where the front has not entered into the measurement 

window; 2) active, where photoswitching occurs in the measurement window; and 3) 
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post‐active, where the front has passed through the measurement window. Notably, 

a linear front is observed as it moves through the measurement window, in good 

agreement with video analysis (represented as X′s in Figure 2.3B and showed as 

still images in Figure 2.2B). The utility of this method was also demonstrated by 

analyzing front‐propagation kinetics with respect to the effective power (considering 

only light absorbed by 1). Simple tuning of the LED provided a comprehensive range 

of irradiation powers to be effectively studied, resulting in a linear relationship from 

about 4 to 54 mW cm−2. 

 

Figure 2.2: DASA photoswitching in an NMR tube. A) Chemical structures for tetrahydroquinoline 
barbituric acid DASA in the open, colored triene form 1 and the closed, colorless cyclopentenone 
form 2. B) An optically dense sample of 1 in toluene (10 mM) forming a switching front upon exposure 
to white light from above (46 mW cm−2) that is linear with time. C) 1H NMR signals from diagnostic 
methyl signals of the DASA molecule, used for tracking photoconversion. 
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Given the complete disappearance of absorption bands in the visible region, these 

materials follow the equation developed by Pearlstein and Terrones59 describing 

idealized photoinitiation fronts from perfectly bleaching molecules [Eq. 1]: 

𝑆[𝑧, 𝑡] = [1 − 𝑒−𝛼𝐶𝑜𝑧(1 − 𝑒Φ𝐼𝑜𝛼𝑡)]−1  (1) 

where α is the molar extinction coefficient, C0 is the initial concentration, z is the 

position, I0is the incident photon flux at the surface, Φ is the quantum yield, and t is 

time. Though diffusion is not accounted for in Equation (1), numerical solutions for 

the governing equations yield nearly identical results to those expected for typical 

small‐molecule diffusion coefficients.60 For solutions where α and C0 are sufficiently 

large, as is the case for the DASA samples measured here, the front velocity (V) 

simplifies to the following form [Eq. 2]: 

𝑉 =
Φ𝐼𝑜

𝐶𝑜
  (2) 

This behavior is independent of the exact α value, which is advantageous given the 

difficulty associated with measuring α for transient photoswitches (e.g., 

thermodynamic state not in the colored form). As seen in Figure 2.3, the front speed 

is linear with intensity as predicted by Equation (2). Therefore, the slope of this line 

can be used to estimate the Φ value of the switch, which for 1 was found to be 0.15, 

and opens up interesting questions regarding the associated consequences of DASA 

structure, solvent polarity, and surrounding temperature on Φ.26 To the best of our 

knowledge, this is the first reported use of the above equations for the determination 

of Φ for a photoswitchable molecule. To affirm the accuracy of this technique, a 

classic diarylethene photoswitch (DAE), 1,2‐bis[2‐methylbenzo[b]thiophen‐3‐yl]‐

3,3,4,4,5,5‐hexafluoro‐1‐cyclopentene, with a known Φ (about 0.3)61–63 was 
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measured (the structure, absorption profile, and 1H NMR spectra given in Figures A3 

and A7). The previously used white LED was exchanged with a 530 nm LED and 

photoisomerization of the colored closed form to the colorless open form of DAE in 

toluene at different light intensities was monitored inside the NMR spectrometer to 

determine a series of front velocities. A Φ value of 0.30 for the ring‐opening reaction 

was obtained, which is consistent with literature reports.61–63 Given the simplicity of 

the governing equation, Equation (2), this NMR‐based method offers significant 

potential for the rapid screening of otherwise difficult‐to‐analyze photochromic 

compounds.64 In addition, the method is particularly useful for negative photochromic 

systems, also known as T‐type, since NMR allows for convenient measurements at 

low temperatures, at which the thermal back reaction of the colorless metastable form 

is slow/negligible. 
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Figure 2.3: Monitoring front propagation of a DASA and DAE photoswitch using white and green (530 
nm) light, respectively. A) Representative analysis of DASA front propagation with NMR spectroscopy, 
annotated in three sections: a buffering region, where the front has not entered into the measurement 
window; an active region, where the front is measured; and a post‐active region, where the front has 
passed through the measurement window. B) Plotting the front velocity versus light power used to 
switch the sample yields a linear relationship, with the slope equal to Φ when plotted against photon 
flux (see Equation (2) and Figure A8). 
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To further demonstrate the versatility of this technique, several light‐driven 

controlled polymerization systems were subsequently studied (Figure 2.4A; NMR 

spectra provided for all systems in Figures A9–A11). Unlike traditional, uncontrolled, 

polymerizations (such as free radical or polycondensation polymerizations) the use 

of a controlled or “living” polymerization provides easy access to specifically targeted 

chain lengths, architectures, and block copolymers by using a reversible capping 

agent (e.g., chain transfer agent (CTA) or redox‐active halogen atom) to maintain a 

low concentration of reactive radical chain ends. As light‐mediated polymerization 

techniques have received growing attention in recent years, the ability to quickly and 

accurately screen kinetic behavior is of significant utility to the field.1,17,20 

Traditionally, methods involving the repeated aliquoting of samples for analysis are 

used to monitor polymerizations, especially photopolymerizations. This limits the 

number and distribution of data points, potentially introducing unwanted oxygen, or 

significantly reducing sample volume, any one of which can skew polymerization 

kinetic results. A major advantage of this fiber‐coupled NMR technique is that a single 

sample can be monitored in situ without perturbing the reaction environment. Such in 

situ monitoring allows facile access to polymerization features such as 1) log‐linear 

propagation rate (kp) over time, 2) temporal control with light “on”/“off” cycles and 3) 

analysis of the increase in degree of polymerization (DP) with conversion. Finally, it 

is shown how the ultimate dispersity (Ð) of the polymer chains can be predicted at 

low conversion by monitoring the CTA. 

The photoinduced electron transfer/reversible addition–fragmentation chain 

transfer (PET‐RAFT) polymerization of methyl acrylate (MA) with tris(2,2′‐
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bipyridyl)dichlororuthenium(II) [Ru(bpy)3Cl2] as the photocatalyst and 2‐

(butylthiocarbonothioylthio)‐2‐methylpropionic acid (BTPA) as the CTA was initially 

chosen for its fast polymerization rate,25  which would make analysis using traditional 

techniques challenging (Figure 2.4A). As shown in Figure 2.4B for light intensities 

of 8, 35, and 140 mW cm−2, the polymerizations exhibited linear growth rates over 

time, which is expected for controlled, living polymerizations. Increasing the light 

intensity leads to faster rates of polymerization with kp values of 0.9, 2.2, and 4.8 

h−1 being measured for light intensities of 8, 35, and 140 mW cm−2, respectively.25 To 

translate these measurements to a typical benchtop‐scale, batch reaction, a constant 

light intensity (140 mW cm−2) was used with the scale of the polymerization ranging 

from 0.1 to 3.0 g of MA (Figure A12). Significantly, similar kp values and monomer 

conversion were observed between the in situ NMR experiments and the benchtop 

polymerizations with both systems showing a correlation between reaction scale and 

light intensity. This suggests facile transfer of kp values determined in a small‐scale 

NMR experiment to large‐scale batch processes under known irradiation intensities. 

Temporal control is a particularly sought‐after feature that has been achieved with 

living photopolymerizations, where aliquots are again traditionally used to monitor 

chain growth during cycles of light “on” and “off”. Two PET‐RAFT systems and one 

photo‐atom transfer radical polymerization (photo‐ATRP) system were therefore 

monitored using this in situ NMR strategy and rich kinetic data was acquired during 

automated “on”/“off” cycling (Figure 2.4C). Systems examined were: i) MA, 

[Ru(bpy)3Cl2] (87 ppm relative to the monomer), and BTPA with 470 nm  



 

45 

 

 

Figure 2.4: Monitoring controlled photopolymerization kinetics. A) Reaction scheme for polymerization 

of i) MA by PET‐RAFT, ii) DMA by PET‐RAFT, and iii) MMA by photo‐ATRP. Kinetic traces of all three 

polymerization systems are shown in Figure A13. B) Kinetic plot of MA conversion over time at three 

light intensities, where Xsymbols represent aliquots from representative benchtop reactions at three 

different scales of monomer, using the highest light intensity. The X′s have been shifted to account for 

the inhibition time present in the NMR samples due to oxygen contamination. C) A series of “on”/“off” 

plots showing detailed temporal control of (i), (ii), and (iii) where the light intensity and cycles were 

digitally controlled. D) Degree of polymerization versus conversion determined by 1H (blue circles) and 

DOSY (orange squares) NMR, as well as a theoretical line for (i) targeting a DP of 200. 

 

 

illumination at 35 mW cm−2; ii) N,N‐dimethylacrylamide (DMA), tris[2‐

phenylpyridinato‐C2,N]-iridium(III) [Ir(ppy)3] (66 ppm relative to monomer), and BTPA 

with 405 nm illumination at 23 mW cm−2; and iii) methyl methacrylate (MMA), [Ir(ppy)3] 

(66 ppm relative to the monomer), and ethyl α‐bromophenylacetate illumination at 

114 mW cm−2 (Figure 2.4C). Impressive temporal control is observed for all three 

systems, where rapid polymerizations halt when the light is turned “off” and begin 

again within 18 sec of the light being turned “on”; notably, with the same kp values for 

each “on” cycle (kp=2.04, 2.92, and 0.13 h−1 for MA, DMA, and MMA, respectively). 

For “living” polymerizations, DP versus conversion is a linear relationship, and as 

a final measure of “control” this was determined for PET‐RAFT of MA using 1D and 
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2D NMR spectroscopy (Figure 2.4D). 1H NMR spectroscopy was used to determine 

both DP and conversion by comparing the integration of polymer backbone protons 

and either the polymer chain‐end proton located α to the carboxylic acid (for DP) or 

vinyl monomer protons (for conversion; see Figures A9‐A11). Six time points were 

taken and a plot of DP versus conversion revealed a linear relationship, indicative of 

a “living” polymerization (Figure 2.4D). Moreover, diffusion‐ordered spectroscopy 

(DOSY) was used to determine DP relative to poly(methyl methacrylate) (PMMA) 

standards and show the compatibility of this technique with 2D NMR spectroscopy. 

Diffusion coefficients (D) were measured during six “off” cycles and interpolated in a 

PMMA calibration curve to determine DP (corresponding details are given in 

Appendix A, see Table A1 and Figures A14 and A15). The results again show a 

linear relationship, with the data being consistent with that obtained from 1D NMR 

spectroscopy. The ability to monitor photopolymerizations in real time using 1D and 

2D NMR spectroscopy is a powerful combination, and can be used to provide 

additional information from a single photopolymerization sample, including intrinsic 

viscosity (η), weight average molecular weight (Mw), and Ð.65,66 

One of the unique advantages of NMR analysis is the ability to identify and monitor 

specific molecular entities in reaction mixtures. In this case, the 1H NMR signals from 

the CTA were visible and on insertion of one or more acrylate units, a distinct change 

in the chemical shift (δ), in particular for the proton located α to the trithiocarbonate 

group (HC to HD), is observed (Figure 2.5). Complete reaction of the CTA leading to 

the trithiocarbonate chain ends of the growing polymers (that is, initiation) is an 

important aspect for RAFT, as the rate of initiation must greatly exceed propagation 
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for a controlled/living polymerization. Fast consumption of the CTA leads to narrower 

Ð and a more controlled process. Upon examination of the NMR spectra for the 

polymerization, described in Figure 2.4B, the conversion at which all CTA was 

incorporated into the monomer chain ends increased with catalyst loading from 13, 

to 16, to 20 % for 44, 87 and 175 ppm (relative to monomer), respectively (marked 

by X symbols in Figure 2.5B). Table 2.1 shows the molecular weight and Ð data 

obtained from gel permeation chromatography (GPC). As predicted, the increased 

catalyst loadings, which had higher conversion for complete CTA incorporation, have 

a larger Ð value, increasing from 1.14 to 1.24, and 1.30 for 44, 87, and 175 ppm 

catalyst loadings, respectively (Figure A16). The ability to simply measure these 

trends with high‐molecular‐weight precision is made possible by this technique and 

is the first time a photomediated controlled polymerization process has been 

monitored in real time using NMR spectroscopy. 

https://onlinelibrary.wiley.com/doi/full/10.1002/cptc.201600045#cptc201600045-tbl-0001
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Figure 2.5: Monitoring CTA incorporation at different catalyst loadings relative to monomer. A) 
Reaction scheme denoting the observable chemical shift when going from the intact small molecule 
(HC) to the fully incorporated CTA (HD). B) Plots of conversion versus time, with the point of full CTA 
incorporation marked with an X. Inset: NMR signals used to determine CTA conversion. 
 
 
 
Table 2.1: Results from the CTA study shown in Figure 2.5. Polymerizations were carried out to 70 % 
monomer conversion in all cases and molecular weights and dispersities were measured using GPC 
in chloroform relative to polystyrene standards. 
 

[Ru(bpy)3Cl2]  
[ppm] 

Time  
[min] 

Mn
[a]  

[kDa] 
Mp

[a]  
[kDa] 

Ð 

44 45 9.7 11.1 1.14 

87 21 8.5 10.7 1.24 

175 15 8.3 11.3 1.30 

 

https://onlinelibrary.wiley.com/doi/full/10.1002/cptc.201600045#cptc201600045-fig-0005
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Conclusions 

In summary, a method to monitor photochemical transformations with in situ NMR 

spectroscopy using fiber‐coupled LEDs and reusable Teflon inserts was presented. 

Observing the front propagation of optically dense DASA and DAE photoswitch 

solutions led to a unique way of determining reaction quantum yields, while rich 

kinetic data on PET‐RAFT of MA revealed different levels of polymerization “control” 

as well as a relative prediction for dispersity of the growing polymer chains. By 

removing the requirement for obtaining aliquots to monitor reactions in a rather 

invasive manner, our direct and non‐invasive technique serves to streamline 

researchers’ efforts to analyze new photochemical processes. As shown here, basic 

one‐dimensional NMR spectroscopy can be insightful with this novel illumination 

technique being easily used in combination with two‐dimensional NMR spectroscopy 

to provide more complex structural, compositional, and dynamic information. It is 

anticipated that this method will be beneficial for future developments in both small 

molecule and polymer photochemistry. 
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Chapter 3: What happens in the dark? Assessing the temporal 

control of photo‐mediated controlled radical polymerizations 

This chapter was originally published in the Journal of Polymer Science Part A. 
Reproduced with permission from J. Polym. Sci. Part A: Polym. Chem. 2019, 57, 3, 
268–273. Copyright 2019, John Wiley and Sons 
 

 

A signature of photo-mediated controlled polymerizations is the ability to modulate 

the rate of polymerization by turning the light source ‘on’ and ‘off.’ However, in many 

reported systems, growth can be reproducibly observed during dark periods. In this 

study, emerging photo-mediated controlled radical polymerizations are evaluated 

with in situ 1H NMR monitoring to assess their behavior in the dark. Interestingly, it is 

observed that Cu-mediated systems undergo long-lived, linear growth during dark 

periods in organic media. 
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The utility and sweeping impact of controlled radical polymerization (CRP) has 

fundamentally changed the direction of polymer synthesis. By enabling the accurate 

control of molecular weight, architecture, and dispersity (Ð) for a wide variety of 

functional monomers, the facile synthesis of complex polymeric materials such as 

extended multiblocks1, surface-modified nanoparticles2,3, and bioconjugates4–6 is 

now possible. Recently, the use of external stimuli, such as light7,8, reducing 

agents9, applied voltage10, and mechanical forces11 to mediate CRP processes has 

further increased the usefulness and impact of CRP.12 Of these stimuli, light is  

particularly attractive, as it is environmentally benign and highly tunable.13–15 

Numerous examples of photo-mediated controlled radical polymerization (photo-

CRP) have recently been developed, including Cu-mediated reversible-deactivation 

radical polymerization (Cu-mediated RDRP)16–19, Cu-free atom transfer radical 

polymerization (Cu-free ATRP)8,17,20–22, and photo induced electron transfer-

reversible addition-fragmentation chain transfer (PET-RAFT).23,24 These systems 

operate over a wide variety of wavelengths and employ a variety of catalysts to 

polymerize different monomer classes,25–27 with the broad scope of these systems 

leading to the development of well-defined, functional materials. Notable examples 

include patterned polymer brushes28,29, organic light-emitting diodes30, soft gels31,32, 

and complex polymer architectures33,34. 

In photo-CRP, temporal control is typically demonstrated through sequential ‘on’ - 

‘off’ cycles. This cycling is performed by irradiating the reaction mixture, 

polymerization then initiates/propagates, followed by a ‘dark’ period  
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Figure 3.1: Schematic of the in situ fiber-coupled NMR system showing idealized schemes for photo-
CRP in active (‘on’) and dormant (‘off’) states. 
 
 

where, in an ideal scenario, no additional conversion takes place.  However, for 

many reported photo-CRP systems, a small yet reproducible amount of polymer 

growth can be observed during the ‘off’ cycles.22,35–39 This apparent growth has 

been attributed to several factors, from experimental error to residual active catalyst. 

While the kinetics of growth and the presence of side reactions has been 

extensively studied for ‘on’ periods5,40,41, no systematic examination of the 

polymerization reaction during the ‘off’ or ‘dark’ periods has been conducted.  

To address this challenge and provide insight into photo-CRP processes, a 

recently developed in situ NMR spectroscopy method is utilized to evaluate temporal 

control for a selection of widely studied photo-CRP processes (see Figure 3.1 and 

Figure B1 for a representative schematic and photograph of the setup).42 
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Compared to conventional sampling methods, this approach is uniquely suited for 

studying temporal control of photo-CRPs, allowing accurate modulation of irradiation 

intensity and wavelength through the combination of LEDs and fiber optics. In 

addition, in situ coupling with NMR spectroscopy permits rapid and repeated 

measurements to be taken without invasive sampling of the polymerization reaction. 

As a result, accurate polymerization kinetics can be obtained in both the ‘on’ and 

‘off’ states. 

In this study, PET-RAFT, Cu-free ATRP, and Cu-mediated RDRP systems were 

selected as representative examples of photo-CRP methods. To facilitate an 

unbiased comparison across techniques, irradiation conditions were held constant 

(equivalent photon flux) and polymerization conditions, such as monomer 

concentration and targeted degree of polymerization, were fixed at 33 wt% and 

DP=150. Temporal control experiments were also carried out with equal ‘on’ and 

‘off’ times targeting conversions of ~40% with an initial ‘off’ period conducted to 

establish a baseline before exposure to light. To show the general trends of a given 

technique, a representative catalyst/ligand combination will be discussed, however 

full data for all catalysts studied is available in Appendix B.  

 

 



 

 64 

Scheme 1: Simplified mechanisms reported for a) PET-RAFT / Cu-free ATRP and b) Cu-mediated 
RDRP. See review by Johnson and co-workers13 for in-depth discussions of the above photo-CRP 
mechanisms. 

 

 

As they both utilize the photocatalyst as an electron transfer agent, the initial 

systems chosen for study were PET-RAFT and Cu-free ATRP, Scheme 1a.43 Under 

traditional PET-RAFT conditions, the polymerization of methyl acrylate (MA) in 

DMSO was examined, (Figure 3.2a) and after an inhibition period attributed to 

residual oxygen being consumed,24,44,45 the polymerization demonstrated linear 

kinetics with significant deviation from linearity only observed at high monomer 

conversions (Figure 3.2b). As expected, the polymerization of methyl methacrylate 

(MMA) under Cu-free ATRP conditions (Figure 3.3a) was slower than the polymeri- 
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Figure 3.2: a) PET-RAFT conditions for the polymerization of methyl acrylate (MA) using 470 nm light 
and tris(2,2′-bipyridyl)dichlororuthenium(II) hexahydrate. b) Kinetic plots of the polymerizations at a 
fixed photon flux. c) Temporal control experiments for the PET-RAFT demonstrate ideal temporal 
control. 
 
 

zation of MA by PET-RAFT due to the increased kp values. However, in  

both the PET-RAFT and Cu-free ATRP experiments, linear kinetics with little to no 

deviation were observed up to conversions of 30–40%. To simplify comparison, this 

conversion range was thereby targeted in the temporal control studies (Figure 3.2c, 

3.3c). Significantly, for all PET-RAFT and Cu-free ATRP systems studied, high  
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Figure 3.3: a) Cu-free ATRP conditions for the polymerization of methyl methacrylate (MMA) using 
405 nm light and 10-phenylphenothiazine. b) Kinetic plots of the polymerizations at a fixed photon flux. 
c) Temporal control experiments for the Cu-free ATRP reactions demonstrate ideal temporal control. 
 
 
 

fidelity is observed with no observable conversion being measured during the ‘dark’ 

period. 

Unlike PET-RAFT and Cu-free ATRP, which directly drive polymerization through 

light-driven electron transfer events, Cu-mediated RDRP in a secondary fashion, 

generating active Cu(I) from inactive Cu(II), potentially leaving residual catalytic 

Cu(I) in solution after irradiation has stopped, Scheme 1b. To examine this behavior 

and compare Cu-mediated RDRP to both PET-RAFT and Cu-free ATRP, Me6TREN  
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Figure 3.4: a) Cu-mediated RDRP conditions for the polymerization of MA and MMA using CuBr2 and 
tris[2-(dimethylamino)ethyl]amine (Me6TREN). b) Kinetic plots of the polymerizations at a fixed photon 
flux. c) Temporal control experiments wherein distinct linear growth during dark periods after initial 
irradiation are observed for both polymerizations (~10–15% of the ‘on‘ rate). 
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and CuBr2 were employed in the polymerization of both MA and MMA (Figure 

3.4a). Although there are differences in the overall behavior of the polymerization of 

MA and MMA compared to the PET-RAFT and Cu-free ATRP examples, namely a 

lack of inhibition for MA and evidence of severe termination for MMA, both systems 

show linear kinetics up to monomer conversions of ~30–40% (Figure 3.4b). 

For both MA and MMA, significant differences were observed during ‘off’ periods 

(Figure 3.4c). While the initial ‘dark’ periods did not result in any monomer 

conversion, the Cu-mediated systems exhibited substantial polymer growth during 

the subsequent ‘dark’ periods (~5–10% of the ‘on’ rate in both the MA and MMA 

systems). Interestingly, upon extending the dark window from ~10 minutes to ~5 

hours, linear polymerization kinetics in the ‘off’ state are still observed. Even at high 

conversions, the Cu catalyst was active with linear kinetics being observed (86 to 

91%) despite being in an ‘off’ or ‘dark’ period for 3.5 hours (Figure B24). These 

results suggest that during the ‘off’ periods a significant amount of Cu(I) (initially 

produced by reduction of Cu(II)) remains in solution and is responsible for polymer 

growth through a conventional ATRP mechanism, rather than a photo-mediated 

ATRP process. To further investigate the temporal control of Cu-mediated RDRP 

systems, the dark periods were extended for different Cu/ligand pairs (Me6TREN 

and TPMA). The equilibrium constants for Me6TREN and TPMA are reported in the 

literature, and it has been shown that TPMA has a KATRP value approximately an 

order of magnitude lower than Me6TREN.46 After initial irradiation to similar 

conversions, both systems did show growth during the ‘dark’ period. However, 

Me6TREN displays a considerably higher rate of conversion (approximately an 
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order of magnitude) when compared to the corresponding TPMA system (Figure 

3.5). This result illustrates that Cu-mediated RDRP in organic media does not 

exhibit ideal temporal control for any of the conditions/ligands studied due to the 

unwanted presence and extended lifetime of CuBr during ‘dark’ periods. 

To improve the temporal control of Cu- mediated polymerizations, we envisage 

that a system must exhibit rapid consumption of residual Cu(I) catalyst during the 

‘off’ cycles. Aqueous systems are subject to high equilibrium constants,47,48 and the 

concentration of Cu(I) should therefore decrease rapidly during ‘dark’ periods, 

translating to increased temporal control relative to the corresponding organic 

systems. As a control, Cu-mediated RDRP of poly(ethylene glycol) methyl ether 

acrylate (PEGA, Mn = 480) using Me6TREN/CuBr2 was conducted in organic and 

aqueous media (Figure 3.6). In analogy with the Cu-mediated polymerization of MA 

 

 

Figure 3.5: Kinetics of MMA polymerizations using Me6TREN/CuBr2 (DMF-d7) and TPMA/CuBr2 
(DMSO-d6) photosystems at equal loadings. Me6TREN undergoes more growth in the dark period 
due to its higher activity (KATRP). 
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in DMSO, a linear increase in conversion for PEGA occurs during an extended 

‘dark’ period of ~5 hours after initial irradiation (Figure 3.6b). To achieve a 

comparable controlled polymerization of PEGA in water, the copper loading was 

increased 5x relative to that used in DMSO.48 Interestingly, after irradiation with 365 

nm light, rapid polymerization continued for 2 hours in the dark (though in a non-

linear fashion) before decreasing to undetectable levels. Importantly, the 

polymerization continued upon further irradiation, highlighting that the end groups 

were still active and implying that the active Cu(I) was consumed during the ‘off’ 

period, presumably by conversion to Cu(II). While this aqueous system 

demonstrated the potential for improved temporal control compared to a similar 

polymerization in organic media, significant monomer conversion does occur in the 

‘dark’ after turning off the light source. In an attempt to increase fidelity further, it 

was hypothesized that a lower amount of initial CuBr2 would generate less residual 

catalyst, which could then be deactivated more rapidly in the absence of light. In 

order to maintain control with a reduced amount of CuBr2, NaBr was therefore 

added to the polymerization mixture.48 Indeed, under these conditions, nearly 

immediate cessation of the polymerization was observed upon switching the light 

‘off,’ leading to a high degree of temporal control. These results highlight the 

importance of mechanistic understanding in the development of strategies for 

temporal control of Cu-mediated CRP processes. 
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Figure 3.6: a) General reaction scheme for polymerization of poly(ethylene glycol) methyl ether 
acrylate (PEGA) macromonomers. b) Temporal experiments for PEGA polymerized in DMSO (top), 
water at an elevated Cu concentration (middle), and water with a reduced Cu content and NaBr 
(bottom). Only the reduced Cu-concentration aqueous polymerization shows ideal temporal behavior. 
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Conclusions 

In summary, a modular in situ NMR technique was utilized to investigate monomer 

conversion during the ‘on’ and ‘off’ cycles for a selection of photo-CRP procedures. 

Temporal control during metal-free ATRP and PET-RAFT was demonstrated to 

have high fidelity and little to no conversion during ‘dark’ periods. In direct contrast, 

Cu-mediated polymerizations conducted in DMSO showed significant growth during 

‘off’ cycles, which is attributed to the increased lifetime of residual Cu(I) catalyst 

after initial photoactivation. The use of aqueous conditions (low Cu(II) concentration 

and added NaBr) quickly consumes the residual catalytic species and alleviates this 

problem. This allows well-controlled polymers with no observable ‘dark’ growth to 

be obtained. However, it should be noted that these conditions cannot currently be 

broadly generalized with understanding and improving the temporal control in Cu-

mediated polymerizations in organic media being an area of future focus. The 

findings of non-ideal temporal behaviour herein also illustrate the necessity for 

employing long ‘off’ periods when studying temporal control to ensure 

measurement fidelity and accuracy. 
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Chapter 4: Solution Mask Liquid Lithography (SMaLL)  

for One‐Step, Multimaterial 3D Printing 

This chapter was originally published in Advanced Materials.  
Reproduced with permission from Adv. Mater. 2018, 30, 31, 1800364.  
Copyright 2018, John Wiley and Sons 
 

 

A novel methodology for printing 3D objects with spatially resolved mechanical and 

chemical properties is reported. Photochromic molecules are used to control 

polymerization through coherent bleaching fronts, providing large depths of cure and 

rapid build rates without the need for moving parts. The coupling of these 

photoswitches with resin mixtures containing orthogonal photocrosslinking systems 

allows for simultaneous and selective curing of multiple networks, providing access 

to 3D-objects with chemically and mechanically distinct domains. The power of this 

approach is showcased through the one-step fabrication of bioinspired soft joints and 

mechanically reinforced “brick-and-mortar” structures.  
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The ability to rapidly convert digital designs into 3D-objects through direct printing 

is revolutionizing fundamental scientific discovery and commercial fabrication of 

industrial materials.1–6 While traditional systems print objects using a single starting 

material, multi-material printing has emerged as a particularly attractive avenue to 

design advanced materials with unique properties (e.g., polymer-polymer 

composites). This interest is inspired by natural systems where numerous examples 

of hierarchical multi-material structures have been observed, including wood, nacre, 

and abalone shells. In these systems, synergy between domains with disparate 

properties leads to significant mechanical enhancement, providing, for example, 

strong and lightweight objects.7,8 The ability to produce synthetic systems based on 

these biological motifs would significantly impact the 3D printing field, enabling 

access to desirable engineering properties, such as crack resistance, impact 

toughness, etc.  To-date, a major challenge in realizing this goal has been the 

development of resins incorporating multiple photochemical reactions that allows for 

spatial resolution and orthogonal crosslinking. The ability to control these 

independent processes would permit hierarchical structures with mechanically 

distinct and orientated domains (e.g., stiff/flexible) to be fabricated.  

To address this challenge, techniques have recently emerged for 3D-printing of a 

variety of soft multi-material objects based on diverse building blocks, such as 

composite structures of polymer matrices with aligned filler particles, mixtures of soft 

and hard curing resins, and hydrogels containing live cells. This structural diversity 

impacts applications ranging from soft robotics to tissue engineering.8–18 Currently, 

the printing of these multi-material systems is accomplished using complex 
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equipment with multiple single component inks, resins, or thermoplastic filaments. An 

additional challenge with these systems is the tendency to fail at the various material 

interfaces due to undesirable mechanical anisotropy.3 In overcoming these 

shortcomings, Boydston19, Lefebvre20, and Lewis21 have developed strategies to 3D 

print materials with multiple mechanical responses using single resin stocks, thereby 

eliminating inter-material layering. These state-of-the-art examples use greyscale 

irradiation for mechanical gradation19, programmable anisotropy of foams20, and two-

layer direct ink writing for selective swelling21. However, the reliance on a single 

curing reaction limits the range of chemical and mechanical properties that can be 

achieved for these systems. The development of a rapid and continuous multi-

material printing methodology using resins based on multiple, orthogonal crosslinking 

reactions (i.e., radical/cationic curing) is therefore highly desirable.  

The present work describes the development of orthogonal photochemistries that 

undergo independent crosslinking/photoswitching reactions upon irradiation with 

different wavelengths of visible light. The ability to selectively control reactions based 

on wavelength22 allows materials with diverse, and spatially defined chemical and 

mechanical properties to be prepared. The approach, termed Solution Mask Liquid 

Lithography (SMaLL), takes advantage of coherent photobleaching fronts arising 

from the use of mixtures of photochromic molecules (solution masks), to provide rapid 

build rates, large depths of cure, excellent feature resolution, and 3D-objects with no 

layering defects. 

Traditional light-driven 3D printing systems employ dye molecules (i.e., Sudan 

dyes23) to improve resolution and control cure rate. However, light attenuation from 
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these dyes severely reduces cure efficiency and limits penetration depth, resulting in 

a thin zone of crosslinking, and necessitating the use of moving stages for part 

production. The layered objects produced in this manner have pronounced defects, 

interfacial weakness, and corresponding non-isotropic materials properties. To 

overcome this inherent limitation with traditional dyes, visible photochromic switches 

were examined as a novel strategy to control 3D-printing. Initially, the photochromic 

switch (1) absorbs light and inhibits the independent photoinitiating system, thereby 

“masking” the initiator and retarding cure. Photoswitching to the corresponding 

nonabsorbing (e.g., colorless) isomer (2) then occurs, resulting in a bleaching front 

that moves through the solution, activating the photosensitizers and allowing the 

curing/crosslinking process to occur through the depth of the resin. From initial 

experiments it was observed that irradiating optically dense photochromic solutions, 

see Figure 4.1a, with collimated light leads to rapid and linear photobleaching fronts 

that, consistent with previous reports,24–26 follow Equation 1, 

𝑉 =
Φ𝐼𝑜

𝐶𝑜
  (1) 

where V is the front velocity, Φ is the photobleaching quantum yield, and Co is the 

concentration of photochromic dye. This provides excellent contrast between 

irradiated and non-irradiated areas, yielding desirable confinement of light. Critical to 

the success of SMaLL is selection of a photochromic switch with an absorption profile 

that masks one or more photosensitizers (Figure 4.1b).27–30 Diarylethenes were 

therefore selected as an ideal photochromic platform due to their chemical stability 

and widely tunable photophysical properties (absorption profile, quantum yield, 

etc.).31–33 
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Figure 4.1. a) Ring-opening transformation of the photochromic switch, DAE530, from a colored to 
optically transparent form upon irradiation with 530 nm light; b) Absorbance spectra of DAE530 and 
HNu535 showing overlapping profiles; c) printing in the absence of dye or photoswitch; d) printing in the 
presence of a non-bleaching control dye (Sudan IV) and e) Object printed with photoswitch and 
SMaLL; f) Timelapse photographs of the SMaLL printing process. (1 cm scale bars)  
 
 

To demonstrate the performance of SMaLL, a resin (G1) comprised of N,N-

dimethyl acrylamide (DMA) as the monomer, 1,4-butanediol diacrylate (BDA) as the 

cross-linker, a xanthene-derivative as the photosensitizer (HNu535), and a 

diarylethene photoswitch, 1,2-bis(2-methyl-1-benzothiophen-3-

yl)perfluorocyclopentene (DAE530), as the mask was prepared and exposed to 

collimated green light (λmax ≈ 530 nm). As predicted by Equation 1, the front 

propagates through the resin with time in a linear fashion. This provides a large depth 

of cure (> 6 cm, see Figure C14 and C16) with collimated light being necessary to 

maintain features over this scale (> 1 cm) due to focusing issues. This is in direct 

contrast to the uncontrolled polymerization observed in the absence of any dye or 
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thin cures due to traditional, non-bleaching, dyes when exposed to 530 nm light 

(Figure 4.1c-d). Spatial confinement in the lateral dimension with SMaLL was further 

illustrated by exposure of resin, G1, to collimated green light through a focusing lens. 

Significantly, curing traced the focal envelope of the lens leading to the formation of 

a cone shaped 3D-object (Figure 4.1e-f). Notably, the growth of this cone, ~2.2 cm 

in height, requires no moving parts and occurs with a build rate of ~50 cm/hr, using a 

narrow band collimated green LED (450 mW/cm2). To print a cone of the same 

dimensions via a state-of-the-art UV-based inkjet printing methodology requires a 

build time of greater than 1 hour at a build rate of ~2 cm/hr. Additionally, pairing 

SMaLL resins with a projector enabled the production of parts with a lateral resolution 

of approximately 100 microns (Figure C17), on par with commercial printers. This 

comparison clearly demonstrates the versatility of SMaLL as a rapid, low-cost 

continuous 3D printing process. 

A key feature of SMaLL is the continuous nature of the process which has the 

potential to alleviate layering issues and non-isotropic properties. Initial examination 

of the surface morphology of 3D-objects produced by either SMaLL or traditional 

stereolithographic (SLA) techniques clearly shows the ability to produce featureless 

objects using SMaLL. Scanning electron microscopy (SEM) analysis of the object 

surfaces and cross-sections correlate closely with profilometry studies, highlighting 

the clear layering defects from SLA printing and the layerless nature of SMaLL 

(Figure 4.2 and Figure C18–C22). To further verify the isotropic nature of the 

structures afforded by SMaLL, a cube sample with 8 mm sides was printed and the 
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mechanical properties of the object interrogated along multiple faces with 

nanoindentation.34 For this sample, similar mechanical values (H = 75 ± 5 MPa; E =  

 

Figure 4.2. Scanning electron micrographs of “as printed” surfaces for cones printed by a) SMaLL and 
b) stereolithographic printing (SLA). 

 

1.85 ± 0.05 GPa) were obtained irrespective of the face measured (Figure C25), 

indicating uniform curing in all directions, and critically, isotropic properties.3,35  

In expanding the range of materials compatible with SMaLL, different resin 

formulations were examined based on changing monomers, wavelength of irradiation 

(470 nm vs. 530 nm) and crosslinking chemistry (radical vs. cationic) (Figure 4.3a). 

Substitution of the original monomer pair (DMA and BDA) with methyl acrylate (MA) 

as the monomer, and tetra(ethylene glycol) diacrylate (TEGDA) as the crosslinker, 

while keeping the same photosensitizer (HNu535), photoswitch (DAE530) and light 

source (λmax = 530 nm) results in a significantly softer material, G2  (500 ± 5 kPa), 



 

 87 

when compared to the original resin G1 (1.6 ± 0.3 GPa). An even greater variation in 

properties is realized when the curing chemistry is changed from a radical to a 

cationic process. To accomplish this, camphorquinone (CQ), which is capable of 

inducing both radical and cationic polymerizations, was examined as the 

photosensitizer. As the λmax for CQ is ~470 nm, a different photoswitch, 1,2-bis(3-

methyl-1-benzothiophen-2-yl)perfluorocyclopentene (DAE470), with an absorbance 

profile that masks CQ was also employed. Irradiation with blue (470 nm) light now 

allows efficient cationic crosslinking of an epoxy-based resin, B1, containing (3-

ethyloxetan-3-yl)methanol (OXA) and 3,4-epoxycyclohexylmethyl 3,4-

epoxycyclohexanecarboxylate (ECC). Alternatively, a vinyl-based resin B2 could also 

be formulated from butyl acrylate (BA) and TEGDA under the same 

photoswitch/photosensitizer pair, leading to radical curing. These blue-cured resins, 

B1 and B2, were shown to have substantially different mechanical properties, with 

B1 being stiff (E ≈ 3.5 ± 0.6 GPa) and B2 giving soft and compliant materials (E ≈ 100 

± 15 kPa) (Figure 4.3b-c). This dual radical/cationic curing with CQ and the ~4 orders 

of magnitude variation in moduli clearly highlights the versatility of SMaLL as a 

methodology to print 3D-objects with a range of mechanical properties through 

wavelength selective activation of commercially viable monomer systems. 

Additionally, it was demonstrated that SMaLL resins can be used in conjunction with 

a moving stage to afford 3D objects with increasing complexity, which suggests facile 

integration into preexisting dynamic 3D printing technologies (e.g., SLA) (Figure 

C23). 
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Figure 4.3. Various resin formulations and 
resultant tensile mechanical properties. a) 
Chemical structures for the resin components in 
G2, B1, and B2; b) Stress strain plots of stiff 
samples cured using green (G1) and blue (B1) 
light (using digital image correlation); c) Stress 
strain plots of flexible samples cured using green 
(G2) and blue (B2) light. 
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To generate multi-material 3D-objects with predefined and spatially resolved 

chemical and mechanical domains, resins G2 and B1 were combined in a 1 to 3 ratio 

(G2:B1), resulting in a resin containing multiple monomers (MA and OXA), 

crosslinkers (TEGDA and ECC), photosensitizers (HNu535 and CQ), and masks 

(DAE530 and DAE470) (full resin formulation details included in Appendix C). With this 

formulation, wavelength-selective photocuring could be achieved. Initially, irradiation 

with blue light led to the formation of an interpenetrating network with undesirable 

microphase separation, indicated by an opaque product. To address this issue, a 

small amount (~2.5 wt%) of dual-functional monomer, (3-ethyloxetan-3-yl)methyl 

acrylate (OXA-A), was introduced to the formulation, leading to hybrid acrylate/epoxy 

(radical/cationic) curing and covalent coupling between the different networks, 

arresting phase separation.36 In contrast to irradiation with blue light (470 nm), 

exposure to green light (530 nm) led to acrylate (radical- only) curing and a 

substantially different material, schematically shown in Figure 4.4a. Specifically, the 

blue cured material had a modulus 5 orders of magnitude greater than the same initial 

resin formulation cured with green light, while the green cured samples had an 

elongation at break that was approximately 200 times longer than the dual crosslinked 

systems prepared via irradiated with blue light (Figure C30).  
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Figure 4.4: a) Schematic of resulting network structure when the resin combination, B1 and G2, is 
exposed to blue or green (470 or 530 nm) light: blue exposure leads to dual radical and cationic curing, 
while green exposure results in only radical crosslinking; b) Solid state 13C CP-MAS NMR spectra of 
blue and green cured samples after washing to remove residual monomer. 

 

To further characterize the chemical selectivity of SMaLL, solid-state 13C-NMR 

spectroscopy (CP-MAS) was performed on purified multi-material samples prepared 

from 1:1 B1(epoxy):G2(acrylate) resin mixtures. As seen in Figure 4.4b, no epoxy 

signals centered at 70 ppm were observed for the sample cured with 530 nm green 

light, indicating excellent orthogonality and wavelength-selectivity for cationic 

crosslinking, while irradiation with 470 nm blue light revealed resonances for both the 

epoxy and vinyl networks. This striking disparity in properties, achievable from a 

single photocurable resin mixture using irradiation with different wavelengths, 

provides an avenue toward spatially resolved objects with 3-dimensionally defined 

domains of tailored chemical and mechanical composition. 
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For multi-material design, bio-inspired systems containing hierarchical patterns of 

materials with dissimilar properties were then targeted for evaluating the range of 

sub-structures that SMaLL could print.7,8 Two motifs found in natural systems that are 

challenging for 3D printing are soft joints and brick-and-mortar structures.37,38  

 

 

Figure 4.5. Demonstration of soft joints with SMaLL multi-material printing. a) Digital butterfly design 
with blue areas correlating to stiff sections and green areas to soft joints; b) Optical micrograph of the 
dried butterfly sample; c) Butterfly specimen stretched outward from the body, d) showing selective 
straining in the soft joints. 

 

The potential of soft joint fabrication using SMaLL was initially demonstrated 

through the fabrication of a butterfly template having stiff and structural “wings” and 

“body” separated by soft and flexible joints (Figure 4.5). Significantly, this bio-inspired 

3D-printed object could be fabricated in a single step from the 3:1 B1:G2 resin mixture 

in only 10 minutes. Upon application of tension to the “wings,” local strain and flexing 

is observed selectively in the flexible, acrylate-based joint regions while the body and 

wings remain rigid due to the stiff epoxy domains (white arrows Figure 4.5d). The 

bonding between material interfaces in these one-step SMaLL objects also leads to 

robust mechanical fatigue resistance with repeated cycling and stretching (> 100% 

strain) providing impressive energy dissipation and having no discernable impact on 

these soft joints, which highlights the benefits of linking mechanically distinct domains 
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in 3D printing (Figure C31). Furthermore, under extreme strains, failure does not 

occur at the interface, illustrating the beneficial interwoven nature of the multi-material 

objects (Figure C32). 

The versatility of SMaLL was further demonstrated via the fabrication of brick-and-

mortar structures with unique mechanical properties that inhibit crack propagation 

and fracture. To illustrate the toughening of multi-material objects containing hard 

bricks in a continuous soft matrix, a design of stiff (blue) bowties embedded in a matrix 

of elastic (green) material was printed in a single step using the same 3:1 B1:G2 resin 

(Figure 4.6). Once dried, the printed object shows intermaterial spacing of 200 

microns, which allows the individual bricks to interdigitate (Figure C33). Under 

tension, it was note-worthy to observe that the straining of the elastic matrix causes 

the stiff bowties to lock against one another, resulting in novel synergistic interactions 

when compared to objects fabricated from the individual starting materials. As a 

result, the bricks “lock” and the path of crack propagation is tortuous (Figure C34), 

following the mortar-bowtie interface (Figure 4.6e), with the toughness nearly 

doubling from the point of initial failure (~39 kJ/m3) to the point of ultimate failure (~77 

kJ/m3). In contrast, when the stiff domains are removed the resulting structure is ~2 

orders of magnitude less stiff and shows no post-failure toughening, which illustrates 

the synergistic multi-material properties that are now accessible using SMaLL. 
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Figure 4.6. Multi-material printing of brick-and-mortar structures: a) Digital image with blue bowties 
correlating to stiff regions within a compliant green matrix; b) Optical micrograph of a dried dogbone 
sample; c,d) Optical micrographs of the sample before and after applied tension, showing ‘locking’ 
behavior between bowtie ‘bricks’; e) Tensile measurement of the bowtie sample with toughening due 
to the sacrificial breaking of soft mortar between the stiff bricks (failures denoted by arrows). 
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Conclusions 

In summary, we have developed a novel 3D printing method, SMaLL, for the 

fabrication of unique structures with mechanically and chemically distinct regions. By 

using tunable, visible wavelength photoswitches, in combination with orthogonal 

crosslinking reactions, a single resin formulation can be employed for the facile, one-

step printing of complex, bio-inspired structures. Performance and build rates were 

significantly enhanced compared to traditional techniques such as SLA. The 

fabrication of soft joints and brick-and-mortar architectures showcases the utility of 

SMaLL for printing novel all-polymer composites with well-defined regions of different 

mechanical and chemical properties. Ongoing research includes the in-depth 

characterization of multi-material interfaces produced by SMaLL and the optimization 

of multi-material resin curing using dynamic printing processes to access more 

advanced hierarchical 3D structures. 
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Chapter 5: Conclusion 

In summary, light-mediated chemical transformations have a wide range of 

applications in soft materials, and through understanding the underlying mechanics of 

these chemistries, new processes and synthetic systems can be developed. The fiber-

coupled NMR technique described in Chapter 2 demonstrated a long-lived 

photobleaching front phenomenon for optically dense solutions of photochromic 

molecules. While these fronts have great potential for the direct measurement of 

quantum yield for challenging T-type negative photochromes, they also showed great 

promise for controlling photochemistry through the depth of a reaction. The in situ 

fiber-coupled technique was then applied to a variety of state-of-the-art photo-

meidated controlled radical polymerizations to assess their temporal control in 

Chapter 3. Of the catalytic systems studied, it was demonstrated that the current 

generation of Cu-mediated ATRP photopolymerizations demonstrated nonideal 

growth during dark periods. By isolating these catalytic systems, the underlying 

mechanism of the dark growth could be investigated, identifying residual Cu(I) 

activator species as the likely cause of the undesirable growth. While this result is 

intriguing, this Chapter was the first to compare vastly different polymerization 

approaches operating through a wide range of wavelengths under unified reaction 

conditions (fixed photon flux, monomer concentration, etc). The concepts learned in 

the preceding Chapters, photobleaching fronts and the use of different wavelengths 

to induce dissimilar polymerization mechanisms, were then combined to develop a 

novel approach to multimaterial 3D printing. By pairing photochromic molecules with 

light-sensitive initiating systems with similar absorbances, different wavelengths of 
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light could be used to continuously cure parts with color-specified mechanical 

properties using a simple office-style projector. This technique (Solution Mask Liquid 

Lithography) was then used to produce high resolution parts with a variety of useful 

bio-inspired motifs. Moving forward, these techniques have great promise in a variety 

of applications across the broad field of photochemistry. 

The rapid development of negative photochromic systems, particularly Donor 

Acceptor Stenhouse Adducts (DASA) at UCSB, requires effective procedures for the 

determination of quantum yield. While the fiber-coupled technique was used to obtain 

the quantum yield of a single Gen2 DASA species, without comparison across several 

species this information does little to enhance our understanding of the impacts of 

electronics on switching efficiency. Similarly, although fiber-coupled NMR was used 

to identify the potential cause of dark growth in Cu-mediated ATRP, further 

experimentation is necessary to address the underlying mechanism. While reducing 

the Cu loading is an obvious route to reducing dark growth, this approach will likely 

significantly reduce the rate of polymerization. An ideal approach will likely include an 

additional reactant that can selectively react with residual Cu species in dark periods 

to retain fast kinetics while acting to eliminate dark growth.  

The use of simple colored light to define mechanical properties in DLP printing 

represents a large advance in multimaterial printing, with a vast range of opportunities. 

As currently formulated, SMaLL resins are able to define regions of radically-cured 

and radically/cationically cured materials. While an innumerable variety of resins with 

interesting properties could be formulated using this approach, further development 

of orthogonal chemistries will lead to increased flexibility for future additive 
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manufacturing approaches. Additionally, the incorporation of a range of filler particles, 

from expandable microspheres to conducting particles, would add an extra dimension 

of materials properties to wavelength specific resins. However, to best take advantage 

of wavelength selective resins, they must be used in conjunction with dynamic printing 

setups such as more traditional DLP systems and potentially a continuous CLIP-like 

approach. To accomplish this, significant effort will have to be placed in finding robust, 

photostable dyes to mask the photosensitizing systems without interfering with the 

curing chemistry. 

In closing, this thesis demonstrates that thorough investigation of underlying 

photochemical mechanisms can lead directly to the development of new techniques 

and processes for polymeric materials engineering. 
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Appendix A: Supporting Information for Chapter 2 

The content of Appendix A was originally published in ChemPhotoChem. 
Reproduced with permission from ChemPhotoChem 2017, 1, 4, 125–131.  
Copyright 2017, John Wiley and Sons. 
 

Materials 

All materials were purchased from Sigma Aldrich and used as received unless 

otherwise stated. All solvents were purchased from Fisher Scientific and used as 

received. Methyl acrylate was passed through a column of basic alumina (~150 

mesh, Brockmann I grade) prior to use in order to remove the inhibitor. 

Tetrahydroquinoline barbituric acid DASA (1) was synthesized according to a 

literature procedure.1 The Teflon insert was machined in house (for engineering 

drawing see Fig S1). The optical fiber (FT1000UMT; End A flat cleave; End B- SMA 

adapter; Furcation Tubing-FT038), and the five fiber-coupled LEDs, warm white 

(MWWHF2), 405 nm (M405FP1), 470 nm (M470F3), 530 nm (M530F2), and 617 

nm (M617F2), were purchased from Thorlabs. A 1 mm hole was drilled into a 

standard polyethylene NMR tube cap using a lathe to guide the fiber. 
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Instrumentation 

All nuclear magnetic resonance spectra were recorded on a Varian 600 MHz 

spectrometer with a regulated temperature of 25 °C. Size exclusion chromatography 

(SEC) for molecular weight analysis, relative to linear polystyrene standards, was 

performed on a Waters 2690 separation module equipped with Waters 2414 

refractive index and 2996 photodiode array detectors using CHCl3 containing 0.25% 

triethylamine as eluent at a flow rate of 1 mL/min.  For photochemical 

transformations in the NMR the LED was coupled into a multimode optical fiber 

terminated with a flat cleave and the intensity and ‘on’/‘off’ cycles were controlled 

through a digital-to-analog converter (National Instruments USB-6009) using 

LabVIEW, which was connected to a T-cube LED driver (LEDD1B) from Thorlabs. A 

spectrophotometer with cosine corrector and radiometric calibration (Ocean Optics, 

model USB 4000) was used to measure LED emission profiles and calculate the 

power density of emission coming out of the fiber tip. 

Video analysis was carried out by filming a propagating front with a suitable scale 

bar and measuring the front position as a function of time to determine velocity. A 

sample video is included with the supplemental materials. 
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Synthesis 

The synthesis of 1,2-bis(2-methylbenzo[b]thiophen-3-yl)hexafluorocyclopentene 

(S1) was accomplished according to previously reported protocols.2,3 

S1 S2

300 nm

Hexane

 

A solution of S1 (2.272 g, 4.85 mmol) in 2.0 L of hexane was added to a 2.5 L 

quartz container and placed in a Rayonet Photochemical Reactor equipped with 11x 

300 nm lamps. The solution was irradiated for 25 min while stirring vigorously. After 

evaporation of the solvent the residue was purified by column chromatography 

(hexane) affording S2 as a dark red solid (0.591 g, 1.26 mmol, 26%). 
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Sample preparation for in situ NMR analysis 

Photoswitches: 

White LED

1 2

Toluene-d8

 

A 10 mM solution of 1 (open DASA) in toluene-d8 was prepared in the dark and 

added to a 5 mm NMR tube such that the solution was ~2 mm above the 

measurement region. The optical fiber and Teflon insert were placed into the NMR 

tube such that the fiber was ~2 mm above the solution. All NMR measurements 

were performed as an array and the intensity of the white LED was controlled by a 

LabVIEW program connected to a T-cube LED driver. The 1H-NMR measurements 

were taken every 30 seconds, monitoring methyl protons corresponding to the two 

valence tautomers 1 and 2 to determine front propagation (Figure A4). 

 

S2 S1

530 nm LED

Toluene-d8

 

A 30 mM solution of S2 (closed DAE) in toluene-d8 was prepared in the dark and 

added to a 5 mm NMR tube such that the solution was ~2 mm above the 

measurement region. The optical fiber and Teflon insert were placed into the NMR 

tube such that the fiber was ~2 mm above the solution. All NMR measurements 



 

 107 

were performed as an array and the intensity of the green (530 nm) LED was 

controlled by a LabVIEW program connected to a T-cube LED driver. The 1H-NMR 

measurements were taken every 30 seconds, monitoring methyl protons 

corresponding to the two valence tautomers S1 and S2 to determine front 

propagation (Figure A5). 

Photopolymerizations: 

(i) Polymerization of methyl acrylate (MA) by PET-RAFT 

DMSO

470 nm

BTPA,

Ru(bpy)3

 

Methyl acrylate (1 mL, 11.2 mmol), DMSO-d6 (3.38 mL), 2-

(((butylthio)carbonothioyl)thio)propanoic acid (13.3 mg, 56 µmol) and Ru(bpy)3 (84 

µL of a 1 mg/mL solution in DMSO-d6, 0.11 µmol, 87 ppm relative to monomer) 

were mixed to generate a stock solution that was used for all NMR experiments (2.5 

M MA, target DP = 200). A fraction of the mixture was added to a 5 mm NMR tube 

so that the solution was ~2 mm above the measurement region. The optical fiber 

and Teflon insert were placed into the NMR tube such that the fiber was ~2 mm 

above the solution. All NMR measurements were performed as an array and a 

LabVIEW program connected to a T-cube LED driver was used to automate both 

intensity and ‘on’/’off’ times of a 470 nm LED. 
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Bench scale polymerizations of (i): 

(a) Small scale benchtop reaction: Methyl acrylate (0.1 g, 1.16 mmol), DMSO (0.35 

mL), 2- (((butylthio)carbonothioyl)thio)propanoic acid (1.4 mg, 5.8 µmol), and 

Ru(bpy)3Cl2 (8.7 µL of a 1 mg/mL solution in DMSO, 0.012 µmol, 87 ppm relative to 

monomer) were mixed in a 2 mL glass vial equipped with a magnetic stir bar and 

threaded septum cap (2.5 M MA, target DP = 200). An optical fiber (1 mm diameter) 

was inserted through the septum and placed above the solution. The mixture was 

degassed with argon for 5 minutes, the vial was wrapped in aluminum foil, and the 

solution was illuminated using a 470 nm LED (140 mW/cm2 ) coupled to the optical 

fiber. Aliquots were removed via syringe at 5, 10, and 15 minutes and the 

conversion was checked with 1H NMR, providing 27, 49, and 71 % conversion, 

respectively. (b) Medium scale benchtop reaction: Methyl acrylate (0.6 g, 6.97 

mmol), DMSO (2.11 mL), 2- (((butylthio)carbonothioyl)thio)propanoic acid (8.3 mg, 

34.8 µmol), and Ru(bpy)3Cl2 (52.2 µL of a 1 mg/mL solution in DMSO, 0.070 µmol, 

87 ppm relative to monomer) were mixed in a 4 mL glass vial equipped with a 

magnetic stir bar and threaded septum cap (2.5 M MA, target DP = 200). An optical 

fiber (1 mm diameter) was inserted through the septum and placed above the 

solution. The mixture was degassed with argon for 5 minutes, the vial was wrapped 

in aluminum foil, and the solution was illuminated using a 470 nm LED (140 

mW/cm2 ) coupled to the optical fiber. Aliquots were removed via syringe at 15, 30, 

45, and 60 minutes and the conversion was checked with 1H NMR, providing 26, 

59, 79, and 90 % conversion, respectively. (c) Large scale benchtop reaction: 

Methyl acrylate (3.0 g, 34.8 mmol), DMSO (10.54 mL), 2- 

(((butylthio)carbonothioyl)thio)propanoic acid (41.5 mg, 174 µmol), and Ru(bpy)3Cl2 
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(260.9 µL of a 1 mg/mL solution in DMSO, 0.348 µmol, 87 ppm relative to monomer) 

were mixed in a 20 mL glass vial equipped with a magnetic stir bar and threaded 

septum cap (2.5 M MA, target DP = 200). An optical fiber (1 mm diameter) was 

inserted through the septum and placed above the solution. The mixture was 

degassed with argon for 5 minutes, the vial was wrapped in aluminum foil, and the 

solution was illuminated using a 470 nm LED (140 mW/cm2 ) coupled to the optical 

fiber. Aliquots were removed via syringe at 30, 60, 90, and 120 minutes and the 

conversion was checked with 1H NMR, providing 16, 49, 65, and 79 % conversion, 

respectively. 

 

(ii) Polymerization of dimethylacrylamide (DMA) by PET-RAFT 

DMSO

405 nm

BTPA,

Ir(ppy)3

 

N,N-Dimethylacrylamide (0.77 mL, 7.5 mmol), DMSO-d6 (2.13 mL), 2-

(((butylthio)carbonothioyl)thio)propanoic acid (8.9 mg, 37.5 µmol), and Ir(ppy)3 (98 

µL of a 0.5 mg/mL solution in DMSO-d6, 0.075 µmol, 66 ppm relative to monomer) 

were mixed to generate a stock solution that was used for all NMR experiments (2.5 

M MMA, target DP = 200). A fraction of the mixture was added to a 5 mm NMR tube 

so that the solution was ~2 mm above the measurement region. The optical fiber 

and Teflon insert were placed into the NMR tube such that the fiber was ~2 mm 

above the solution. All NMR measurements were performed as an array and a 
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LabVIEW program connected to a T-cube LED driver was used to automate both 

intensity and ‘on’/’off’ times of a 405 nm LED. 

 

(iii) Polymerization of methylmethacrylate (MMA) by photo-ATRP 

DMF

405 nm

EBPA,

Ir(ppy)3

 

Methyl methacrylate (0.53 mL, 5.0 mmol), DMF-d7 (1.43 mL), methyl α-

bromophenylacetate (3.9 µL, 25 µmol), and Ir(ppy)3 (33 µL of a 1 mg/mL solution in 

DMF-d7, 0.05 µmol, 66 ppm relative to monomer) were mixed to generate a stock 

solution that was used for all NMR experiments (2.5 M MMA, target DP = 200). A 

fraction of the mixture was added to a 5 mm NMR tube so that the solution was ~2 

mm above the measurement region. The optical fiber and Teflon insert were placed 

into the NMR tube such that the fiber was ~2 mm above the solution. All NMR 

measurements were performed as an array and a LabVIEW program connected to 

a T-cube LED driver was used to automate both intensity and ‘on’/’off’ times of a 

405 nm LED. 
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Figure A1: Engineering schematic of insert used to center fiber in NMR tube. Teflon 

was used as the insert material for this work. The tap shown is recommended for 

insert retrieval from the tube. Dimensions provided are in inches. 
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CHARACTERIZATION 

Photoswitch front propagation 

 

Figure A2: a) Intensity profiles of exchangeable fiber-coupled LEDs. This data was 

collected using an Ocean Optics USB 4000. The resulting spectra had units of 

W/cm2/nm, allowing for power density determination via integration of the spectra. 

DASA overlap (460-660 nm) was used to determine effective power for Fig 3. b) 

Power densities measured from the tip of the optical fiber connected to the various 

LEDs as a function of percent current. 
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Figure A3: Absorption profiles for DAE and DASA photoswitches measured in 

toluene. 

 

Figure A4: Thermal equilibration of closed form DASA in toluene at 45C. Even at an 

elevated temperature (frontal experiments held at 25C) thermal relaxation is a 

negligible process in the typical frontal experiment time of ~30 minutes. Data was 

collected via in situ NMR at a constant temperature of 45C, the sample was 

equilibrated for ten minutes at 45C before data acquisition. Data points determined 

by the ratio of open/closed methyl peaks as shown in Figure A6. 
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Figure A5: Example of waveguiding provided by the combination of the NMR tube 

containing solvent, this is a similar phenomenon to the internal reflection occurring 

within the fiber optic cable. This behavior enables the generation of a coherent front 

with linear propagation. 
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Start, open form (1)

Halfway

End, closed form (2)

aa

bb

1 2

HA

HB

HB

HA

White LED

Toluene-d8

 

 

Figure A6: Stack of 1H-NMR spectra showing various stages of switching from the 

open to the closed form of THQ DASA. Peaks labeled a and b, respectively, were 

used for calculations according to the formula shown on the bottom. 
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Start, 

closed 

form (S2)

Halfway

End, 

open 

form (S1)

methyl (S2)

methyl (S1)

tol-d8

S2 S1

530 nm LED

Toluene-d8

 

 

Figure A7: Stack of 1H-NMR spectra showing various stages of switching from the 

closed to the open form of DAE. Inset shown for the region of the methyl protons. 

Note that the open isomer at room temperate exists as a mixture of two non-

interconverting conformers, i.e. antiparallel and parallel, each with one distinct 

methyl proton signal. Peaks labeled S1 and S2, respectively, were used for 

calculations according to the formula shown on the bottom. 
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Figure A8: a) NMR data (as shown in Fig 3a) converted to distance for DASA 

samples, this is done by normalizing the first data point to 1 and multiplying by the 

size of the measurement window (in this case 16 mm). b) Front position data for 

DAE samples. c) Front velocity vs incident light for determination of quantum yield, 

where light intensity is converted to photon flux for the calculation. Photon energy 

given by  where h is Planck’s constant, c is the speed of light, and λ is the 

wavelength. 
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Controlled photopolymerizations 

 

 

 

 

Figure A9: Stack of 1H-NMR spectra of PET-RAFT of MA at various stages of 

conversion. Peaks labeled a,b and a’,b’, respectively, were used for calculations 

according to the formula shown on the bottom. 
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Figure A10: Stack of 1H-NMR spectra of PET-RAFT of DMA at various stages of 

conversion. Peaks labeled a,b and a’,b’, respectively, were used for calculations 

according to the formula shown on the bottom. 
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Figure A11: Stack of 1H-NMR spectra of photo-ATRP of MMA at various stages of 

conversion. Peaks labeled a,b and a’,b’, respectively, were used for calculations 

according to the formula shown on the bottom. 
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Figure A12: Photograph of benchtop reaction of (i) using a 470 nm fiber-coupled 

LED. 
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Figure A13: Kinetic traces of (i) under 470 nm irradiation at an intensity of 140 

mW/cm2 as well as (ii) and (iii) under 405 nm irradiation at an intensity of 114 

mW/cm2. Inset shows long-time kinetic profile of (iii). 

 

Table A1: DOSY samples used to generate a calibration curve to determine DP. 
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Figure A14: Diffusion vs molecular weight (Mp) plot for DOSY experiments using 

PMMA GPC standards. DOSY measurements used the factory standard Varian 

procedure, derived from literature procedures.4 Dashed line represents model 

according to D = A*MWc, where A and c are fitted parameters. Red squares 

represent the fitted experimental data for PMA by PET-RAFT using condition (i). 

Calibration sample compositions are provided in Table A1. 
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Figure A15: Results of 1H NMR scans taken between DOSY experiments (labelled 

with arrows). DOSY experiments were carried out with the light (LED) being turned 

off to ensure little to no growth during measurements. 

 

Figure A16: GPC traces of polymers shown in Figure 5. All peaks overlay, due to the 

in situ monitoring of conversion yielding polymers with similar molecular weights. As 

predicted by tracking the CTA, Ð values increase with increasing catalyst loading. 
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Appendix B: Supporting Information for Chapter 3 

The content of Appendix B was originally published in the Journal of Polymer 
Science Part A. Reproduced with permission from J. Polym. Sci. Part A: Polym. 
Chem. 2019, 57, 3, 268–273. Copyright 2019, John Wiley and Sons 
 

Materials 

All materials were purchased from Sigma Aldrich and used as received unless 

otherwise stated. All deuterated solvents were purchased from Fisher Scientific and 

used as received. Methyl acrylate (MA), methyl methacrylate (MMA), and 

polyethyleneglycol acrylate (Mn ~400) were passed through a column of basic 

alumina (~150 mesh, Brockmann I grade) prior to use in order to remove the 

inhibitor. 3,7-di(4-biphenyl) 1-naphthalene-10-phenoxazine (PhenBP)1, 10-

phenylphenothiazine  (PTH)2, and [Cu(Me6-Tren)(O2CH)](ClO4)3 were synthesized 

according to literature procedures. The Teflon insert was machined in house 

according to literature.4 The optical fiber (FT1000UMT; End A flat cleave; End 

BSMA adapter; Furcation Tubing-FT038), and the fiber-coupled LEDs 365 nm 

(M365FP1), 405 nm (M405FP1), 470 nm (M470F3), 530 nm (M530F2), were 

purchased from Thorlabs. 

Instrumentation 

All nuclear magnetic resonance spectra were recorded on a Varian 600 MHz 

spectrometer with a regulated temperature of 25 °C. Size exclusion chromatography 

(SEC) for molecular weight analysis, relative to linear polystyrene standards, was 

performed on a Waters 2690 separation module equipped with Waters 2414 

refractive index and 2996 photodiode array detectors using CHCl3-containing 0.25% 
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triethylamine as eluent at a flow rate of 1 mL/min. For photopolymerizations in the 

NMR spectrometer, the LED was coupled into a multimode optical fiber terminated 

with a flat cleave and the intensity and ‘on’ / ‘off’ cycles were controlled through 

methods described previously.4 

Sample preparation 

Polymerizations were prepared in 1 dram vials with 33% monomer targeting 150 

repeat units (~1.5 mL batches). Catalytic loadings were chosen as appropriate from 

the corresponding literature. After mixing, the samples were sparged with Ar for 5 

minutes prior to transfer into a foiled NMR tube (Ar atmosphere provided via 

balloon). The foil was removed and the NMR tube was then quickly loaded with the 

optical fiber and inserted into the NMR for measurement. 
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LED selection 

Excitation wavelengths were chosen such that the calculated absorbance for a 

sample at 1 cm (using Beer’s Law) was maximized, but below 0.25, as 

recommended in previous work4 to ensure even irradiation conditions. In the case of 

highly absorbing catalysts, or the presence of a large UV shoulder, LEDs with output 

maxima slightly shifted from the peak/shoulder were chosen to satisfy the 

absorbance requirements. 

Table B1: LEDs used for each catalyst studied 

Catalyst System Solvent LED (nm) 

Ru(bpy)3Cl2 DMSO-d6 470 

ZnTPP DMSO-d6 530 

PTH DMF-d7 405 

Ir(ppy)3 DMF-d7 405 

PhenBP DMF-d7 470 

CuBr2/Me6TREN DMSO-d6/DMF-d7 405 

CuBr2/Me6TREN D2O 365 

Cu-Formate Complex DMSO-d6 365 

CuBr2/TPMA DMSO-d6 405 
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Fiber-coupled NMR setup  

 

 

Figure B1: (Left) Cartoon schematic of the fiber-coupled NMR setup. (Right) Photograph of the 

‘active’ portion of the setup, where the Teflon spacer centers the tip of the optical fiber ~1 mm from 

the top of the reaction solution. Full details on spacer dimensions and necessary hardware for 

operation given in previous work.4 
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NMR processing 

  

Figure B2: Representative 1H-NMR spectra for the polymerization of MA by PET-RAFT at various 

stages of conversion. Peaks labeled a, a’, b, and b’ were used for calculations according to the 

formula shown below. Additional peaks are labeled for completion. 
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Figure B3: Representative 1H-NMR spectra for the polymerization of MMA by Cu-free ATRP at 

various stages of conversion. Peaks labeled a and b’ were used for calculations according to the 

formula shown below. Additional peaks are labeled for completion. 
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Figure B4: Representative 1H-NMR spectra for the polymerization of PEGA by Cu-mediated RDRP 

(aqueous) at various stages of conversion. Peaks labeled a, b, c, and c’ were used for calculations 

according to the formula shown below. Additional peaks are labeled for completion. 
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Characterization 

LED outputs 

 

Figure B5: Irradiance measurements of the various LEDs (365, 405, 470, and 530 nm) used in this 

work at 100% current. 

 

  

Figure B6: (Left) Power measurements for the fiber coupled LEDs at various supplied currents. 

(Right) The power measurements converted to photon flux (see equation below). All experiments 

were run such that the photon flux was constant (using the value for the weakest LED at 100% 

current). 
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Where P is LED power (W), λ is peak LED wavelength (m), h is Planck’s constant (J·s), c is the speed 

of light (m/s), and NA is Avogadro’s Number 

Table B2: Irradiation conditions used in this study with constant photon flux 

LED 

Wavelength 

(nm) 

Current for equal  

photon flux 

(%) 

365 100 

405 34.0 

470 17.7 

530 36.6 

 

Catalyst absorption profiles 

PET-RAFT 

 

Figure B7: (Left) UV-vis measurements to determine the molar extinction coefficient of Ru(bpy)3Cl2 in 

DMSO. (Right) Trace of the calculated extinction for Ru(bpy)3Cl2 and overlap with 470 nm light. 
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Figure B8: (Left) UV-vis measurements to determine the molar extinction coefficient of ZnTPP in 

DMSO. (Right) Trace of the calculated extinction for ZnTPP and overlap with 530 nm light. 

 

Cu-free ATRP 

 

Figure B9: (Left) UV-vis measurements to determine the molar extinction coefficient of PTH in DMF. 

(Right) Trace of the calculated extinction for PTH and overlap with 405 nm light. 
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Figure B10: (Left) UV-vis measurements to determine the molar extinction coefficient of Ir(ppy)3 in 

DMF. (Right) Trace of the calculated extinction for Ru(bpy)3Cl2 and overlap with 405 nm light. 

 

 

Figure B11: (Left) UV-vis measurements to determine the molar extinction coefficient of PhenBP in 

DMF. (Right) Trace of the calculated extinction for PhenBP and overlap with 470 nm light. 
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Cu-mediated RDRP 

 

Figure B12: (Left) UV-vis measurements to determine the molar extinction coefficient of CuBr2 / 

Me6TREN in DMSO. (Right) Trace of the calculated extinction for CuBr2 / Me6TREN and overlap with 

405 nm light. 

 

 

Figure B13: (Left) UV-vis measurements to determine the molar extinction coefficient of CuBr2 / 

Me6TREN in H2O. (Right) Trace of the calculated extinction for CuBr2 / Me6TREN and overlap with 

365 nm light. It should be noted that moving to water significantly shifted the absorbances relative to 

DMSO, necessitating the use of 365 nm light. 
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Figure B14: (Left) UV-vis measurements to determine the molar extinction coefficient of [Cu(Me6-

Tren)(O2CH)](ClO4), the Cu-formate complex, in DMSO. (Right) Trace of the calculated extinction for 

the Cu-formate complex and overlap with 365 nm light. 

 

 

Figure B15: (Left) UV-vis measurements to determine the molar extinction coefficient of CuBr2 / 

TPMA in DMSO. (Right) Trace of the calculated extinction for CuBr2 / TPMA and overlap with 405 nm 

light. 
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Polymerization kinetics, cycling experiments, and extended ‘off’ periods 

PET-RAFT (MA) 

 

Figure B16: Kinetic traces of PET-RAFT polymerizations of MA using Ru(bpy)3Cl2 (left) and ZnTPP 

(right) under 470 and 530 nm irradiation, respectively. 

 

Table B3: Summary of PET-RAFT polymerizations of MA and results     

catalyst λ 
(nm) 

[M]:[I]:[catalyst] time 
(hr) 

conversion Mn,theo Mn,exp 

(SEC) 
Đ 

Ru(bpy)3Cl2 470 150 : 1 : 0.002  1.3 0.89 11700 14300 1.16 

ZnTPP 530 150 : 1 : 0.005 3 0.83 11000 13400 1.15 
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Figure B17: Temporal control cycles for PET-RAFT polymerizations of MA using Ru(bpy)3Cl2 (left) 

and ZnTPP (right) under 470 and 530 nm irradiation, respectively. Both polymerizations demonstrate 

rapid and ideal halting of conversion upon turning off the light. 

 

 

Figure B18: An extended off cycle for the PET-RAFT polymerization of MA using Ru(bpy)3Cl2 under 

470 nm irradiation, clearly demonstrating ideal temporal control over the polymerization. Furthermore, 

the polymerization could be readily re-started upon further irradiation. 
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Cu-free ATRP (MMA) 

 

Figure B19: Kinetic traces of Cu-free ATRP of MMA using PTH (left), Ir(ppy)3 (center), and PhenBP 

under 405, 405, and 470 nm irradiation, respectively.  

 

Table B4: Summary of Cu-free ATRP of MMA and results      

catalyst λ 
(nm) 

[M]:[I]:[catalyst
] 

time 
(hr) 

conversion Mn,theo Mn,exp 

(SEC) 
Đ 

PTH 405 150 : 1 : 0.1 14 0.61 9400 11100 1.83 

Ir(ppy)3 405 150 : 1 : 0.02 14 0.58 9000 7000 1.77 

PhenBP 470 150 : 1 : 0.1 14 0.70 10800 17700 1.55 

 

 



 

 142 

 

Figure B20: Temporal control cycles of Cu-free ATRP of MMA using PTH (left), Ir(ppy)3 (center), and 

PhenBP under 405, 405, and 470 nm irradiation, respectively. All three polymerizations demonstrate 

rapid and ideal halting of conversion upon turning off the light. 

 

 

Figure B21: An extended off cycle for the Cu-free ATRP of MMA using PTH under 405 nm irradiation, 

clearly demonstrating ideal temporal control over the polymerization. Furthermore, the polymerization 

could be readily re-started upon further irradiation. 
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Cu-mediated RDRP (MA) 

 

Figure B22: Kinetic traces of the Cu-mediated RDRP of MMA using CuBr2/Me6TREN (left) and the 

discrete Cu-formate complex (right) under 405 nm irradiation. Significant termination events can be 

seen in the case of the complex after ~75% conversion. 

 

 

Table B5: Summary of Cu-mediated RDRP of MA and results     

  

 

ligand/catalyst λ 
(nm) 

[M]:[I]:[CuBr2]:[ligand] time 
(hr) 

conversion Mn,theo Mn,exp 

(SEC) 
Đ 

Me6TREN 405 150 : 1 : 0.02 : 0.12 1.3 0.86 11300 11000 1.09 

Cu-formate 
complex 

365 150 : 1 : 0.08 : ----- 2.5 0.80 10500 9000 1.15 
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Figure B23: Temporal control cycles for the Cu-mediated RDRP of MMA using CuBr2/Me6TREN (left) 

and the discrete Cu-formate complex (right) under 405 nm irradiation. Both Cu-mediated RDRP 

reactions demonstrate significant and linear growth during off periods after initial irradiation, 

corresponding to ~10% and ~15% of the on rate, respectively. 

 

 

Figure B24: Extended off cycles for the Cu-mediated RDRP of MMA using CuBr2/Me6TREN under 

405 nm irradiation, clearly demonstrating extended linear growth during off periods at intermediate 

(left) and high (right) conversions. Upon reirradiation, polymerization resumes at a rate comparable to 

the initial rate (left). 
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Cu-mediated RDRP (MMA) 

 

 

Figure B25: Kinetic traces of the Cu-mediated RDRP of MMA using CuBr2/Me6TREN (left) in DMF-d7 

and CuBr2/TPMA (right) in DMSO-d6 under 405 nm irradiation. Both systems demonstrated similar 

growth at low conversions (below ~35%) making them ideal for comparison in temporal studies. 

 

Table B6: Summary of Cu-mediated RDRP of MMA and results     

  

ligand λ 
(nm) 

[M]:[I]:[CuBr2]:[ligand] time 
(hr) 

conversion Mn,theo Mn,exp 

(SEC) 
Đ 

Me6TREN 405 150 : 1 : 0.03 : 0.18 14 0.50 7700 5200 1.42 

TPMA 405 150 : 1 : 0.03 : 0.18 14 0.79 12100 9400 1.15 
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Figure B26: Temporal control of the Cu-mediated RDRP of MMA using CuBr2/Me6TREN (left) in 

DMF-d7 and CuBr2/TPMA (right) in DMSO-d6 under 405 nm irradiation. Both Cu-mediated RDRP 

reactions demonstrate growth during off periods after initial irradiation, although in the case of 

CuBr2/TPMA, this growth only corresponds to ~2% of the on rate. 
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Cu-mediated RDRP (PEGA) 

 

 

Figure B27: Kinetic traces of the Cu-mediated RDRP of PEGA in DMSO-d6 and D2O using 

CuBr2/Me6TREN under various conditions. 

 

Table B7: Summary of Cu-mediated RDRP of PEGA and results     

   

solvent λ 
(nm) 

[M]:[I]:[CuBr2]:[ligand]:[NaBr] time 
(hr) 

conversion Mn,theo Mn,exp 

(SEC) 
Đ 

DMSO-
d6 

405 150 : 1 : 0.02 : 0.12 : - 0.7 0.73 53000 45500 1.20 

D2O 365 150 : 1 : 0.10 : 0.12 : - 0.7 0.86 62400 48100 1.22 

D2O 365  150 : 1 : 0.02 : 0.12 : 3 0.8 0.89 64600 53200 1.19 
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Appendix C: Supporting Information for Chapter 4 

The content of Appendix C was originally published in Advanced Materials.  
Reproduced with permission from Adv. Mater. 2018, 30, 31, 1800364.  
Copyright 2018, John Wiley and Sons 
 

Materials 

Chemicals. All chemicals were used as received unless otherwise noted. Aluminum 

oxide activated (basic, Brockmann I), methyl acrylate (MA, 99%, contains ≤100 ppm 

monomethyl ether hydroquinone as inhibitor), tetra(ethylene glycol) diacrylate 

(TEGDA, technical grade, contains 150-200 ppm MEHQ as inhibitor, 100-150 ppm 

HQ as inhibitor), N,N-dimethylacrylamide (DMA, 99%, contains 500 ppm 

monomethyl ether hydroquinone as inhibitor), 1,4-butanediol diacrylate (BDA, 

technical grade, contains ~75 ppm hydroquinone as inhibitor, 90%), 3,4-

epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate (ECC), acryloyl chloride 

(≥97%, contains ~400 ppm phenothiazine as stabilizer), and triethylamine (TEA, 

≥99.5%) were purchased from Sigma Aldrich and inhibitors were removed by 

running through a plug of basic alumina for all monomers apart from acryloyl 

chloride. Dichloromethane (99.8%, extra dry) and DL-camphorquinone (CQ, 99%), 

benzothiophene (97%), methyliodide (99%, stabilized with copper), and n-

butyllithium (2.3 M solution in cyclohexane) were purchased from ACROS 

organics™. (3-ethyloxetan-3-yl)methanol (OXA. 98%) was purchased from Arc 

Pharm Inc. and used as received. Ethyl 4-(dimethylamino)benzoate (EDMAB, 99%) 

was purchased from Alfa Aesar. [4-[Octyloxy]phenyl]phenyliodonium 

hexafluoroantimonate (H-Nu 254), 2-(butyryloxy)-N,N,N-trimethylethan-1-aminium 
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butyltriphenylborate (Borate), and 6-hydroxy-2,4,5,7-tetraiodo-3H-xanthen-3-one (H-

Nu 535) were purchased from Spectra group limited. 3-methyl-1-benzothiophene 

(>96%) and octafluorocyclopentene (>98%) were purchased from TCI. N-

bromosuccinimide (99%) was purchased from ABCR. XHT-500 fluorinated oil was 

purchased from Grainger. 

LEDs: 470 nm (M470F3), 530 nm (M530F2), collimated 530 nm (M530L3-C1) were 

purchased from Thorlabs. 

Instrumentation 

Nanoindenation was performed on an iMicro Nanoindenter (Nanomechanics, Inc., 

Oak Ridge, TN, USA). A 10 μm radius sphero-conical tip was used. Tests went to a 

maximum load of 5 mN at a loading and unloading rate of 1 mN/s. A 10 second hold 

at the maximum load was used to avoid the “nose” problem which occurs due to the 

visco-elastic nature of polymers1. The hardness and modulus were obtained from 

the compliance method as described by Briscoe et al1 using the area function for a 

spherical tip. 

Tensile tests on the stiffer materials (G1, B1, Blue cured B1:G2 blends) were 

performed on a displacement-controlled tensile tester with a 100-lb load cell. The 

strain rate was 8·10-4 s-1. Strains were measured by digital image correlation (DIC), 

using Vic-2D software (Correlated Solutions, Inc., Columbia, SC, USA). A digital 

camera (Point Grey Research Grasshopper, Richmond, BC, Canada) with a CCD 

resolution of 2448x2048 pixels and a 70-180 mm lens (Nikon ED AF Micro Nikkor) 

was used for imaging. The magnification of these images was 7.5 μm/pixel. Speckle 

patterns for DIC were made by painting a white base coat on the samples followed 
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by speckling with black spray paint. The strain resolution was found to be 5·10-6 for 

this method. 

Tensile tests on softer materials (G2, B2, Green cured B1:G2 blends) were 

performed on a displacement-controlled tensile tester (MTS Bionix2000) with a 10-lb 

load cell. Strains were calculated as a function of displacement. 

Profilometry was performed using a Bruker DektakXT Stylus Profilometer for 1 mm 

lengths on printed cone samples held in a custom printed holder to ensure flat 

surfaces. 

 

Figure C1: Photograph of sample holder for profilometry / Scanning Electron 

Microscopy (dashed red line 2.2 cm) 

 

Scanning electron microscopy was performed using FEI Nova Nano 650 FEG SEM. 

 

A spectrophotometer with cosine corrector and radiometric calibration (Ocean 

Optics, model USB 4000) was used to measure LED emission profiles and calculate 
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the power density of emissions from all light sources. For particularly intense 

sources (focused LCD projector) an OD-1 filter was used.  

Absorption profiles were measured on a home built pump-probe setup. The pump 

beam was generated by fiber coupled LED sources (Thorlabs) coupled into a 

multimode optical fiber terminated with an output collimator. The probe beam was 

produced by an incandescent light bulb source (Ocean Optics LS1) coupled into a 

multimode fiber with an output collimator for the light delivery to CCD collector. The 

pump beam was blocked after passing through the sample and the probe beam was 

directed by a system of lenses onto an input slit of a spectrometer (Princeton 

Instruments Acton SP 2150) equipped with a charge coupled device (CCD) detector 

(Andor Idus DV420AOE), which acquired spectra of the probe light. 

 

Optical microscopy was performed on a Keyence VHX-5000 Microscope at 10x 

magnification. 

 

Solution 1H and 13C nuclear magnetic resonance spectra were recorded on a Varian 

600 MHz spectrometer with a regulated temperature of 25 °C. 

 

13C CP-MAS nuclear magnetic resonance spectra were recorded on a Bruker 300 

MHz spectrometer. 
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UPLC/MS was performed with a Waters UPLC Acquity equipped with a Waters LCT 

Premier XE Mass Detector for UPLC-HR-MS, with Waters Alliance systems 

(consisting of a Waters Separations Module 2695, a Waters Diode Array Detector 

996 and a Waters Mass Detector ZQ 2000). Masses were recorded with a Thermo 

scientific LTQ Orbitrap XL mass spectrometer. 

 

1 cm base x 2.2 cm height reference cones were printed using a variety of traditional 

systems: 

Stereolithography: FormLabs Form 2 – Clear FLGPCL02.  

Fused Deposition Modeling: Ultimaker 3 – PLA stock.  

Inkjet: Stratasys Objet 30 Pro – RGD450 (matte finishing). 
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Printer Setup 
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Synthesis 

Synthesis of 1,2-bis(2-methyl-1-benzothiophen-3-yl)perfluorocyclopentene 

(DAE530) 

 

 

 

 

  

open isomer (colorless)   closed isomer (red color) 

 

 

The synthesis of the open isomer and the corresponding closed isomer of DAE530 

was conducted according to previously reported protocols.2–4 

 

Synthesis of 1,2-bis(3-methyl-1-benzothiophen-2-yl)perfluorocyclopentene 

(DAE470) – open isomer 
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Under an argon atmosphere, 3-methyl-1-benzothiophene (0.65 mL, 5.0 mmol, 2.0 

eq.) was dissolved in 20 mL of dry THF and cooled to -78 °C. After adding n-

butyllithium (2.3 M solution in cyclohexane, 2.39 mL, 2.2 eq.) dropwise to the 

solution, the mixture was stirred for 30 min at -78 °C. Subsequently, the mixture was 

treated with octafluorocyclopentene (0.34 mL, 2.5 mmol, 1.0 eq.) and stirred for 

further 60 min at -78 °C before the reaction was quenched with 2 mL of ethanol. The 

crude reaction mixture was washed twice with brine (10 mL) and the organic phase 

was dried over MgSO4. Purification by flash column chromatography (SiO2; 

cyclohexane) provided the product (0.88 g, 1.88 mmol, 75%) as a yellow solid.  

1H NMR (500 MHz, CDCl3, 25 °C): δ = 7.84–7.81 (m, 2H), 7.63–7.60 (m, 2H), 7.43–

7.35 (m, 4H), 1.99 (s, 6H) ppm. 13C{1H} NMR (126 MHz, CDCl3, 25 °C): δ = 140.87 

(s), 139.28 (s), 136.11 (s), 126.32 (s), 124.71 (s), 123.16 (s), 123.10 (s), 122.49 (s), 

115.76 (s), 13.39 (s) ppm. Two carbon atoms could not be detected due to low 

intensity of fluorine splitting and low signal to noise ratio. 19F NMR (471 MHz, CDCl3, 

25 °C): δ = –109.42 (t, 3J(F,F) = 5.4 Hz, 4F), –131.39 (p, 3J(F,F) = 5.4 Hz, 2F) ppm. 

MS (ESI+): m/z calculated for C23H14F6S2 [M+H]+: 469.051, found: 469.047. 
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Synthesis of 1,2-bis(3-methyl-1-benzothiophen-2-yl)perfluorocyclopentene 

(DAE470) – closed isomer 

 

 
 

A solution of open isomer DAE470 (2.58 g, 5.5 mmol) in 1.0 L of cyclohexane was 

added to a 1.5 L quartz container and placed in a Rayonet Photochemical Reactor 

equipped with 11x 350 nm lamps. The solution was irradiated for 40 min while 

stirring vigorously. After vaporation of the solvent, the residue was purified by flash 

column chromatography (SiO2; cyclohexane) affording the closed isomer (1.20 g, 

2.59 mmol, 47%) as a dark orange solid.  

1H NMR (500 MHz, CDCl3, 25 °C): δ = 7.53 (d, 3J(H,H) = 7.81 Hz, 2H), 7.34–7.30 

(m, 2H), 7.27–7.21 (m, 4H), 1.65 (s, 6H) ppm. 13C{1H} NMR (126 MHz, CDCl3, 25 

°C): δ = 147.91 (s), 138.96 (s), 138.42 (s), 129.67 (s), 127.68 (s), 125.73 (s), 122.75 

(s), 110.12 (s), 63.00 (s), 23.04 (s) ppm. Two carbon atoms could not be detected 

due to fluorine splitting and low signal to noise ratio. 19F NMR (471 MHz, CDCl3, 25 

°C): δ = –115.9 (ddt, 2J(F,F) = 253 Hz, 3J(F,F) = 5.3 Hz, 4J(F,F) = 5.3 Hz, 2F), –

118.4 (ddt, 2J(F,F) = 253 Hz, 3J(F,F) = 5.3 Hz, 4J(F,F) = 5.3 Hz, 2F), –133.4 (q,  

3J(F,F) = 5.3 Hz) ppm. MS (ESI+): m/z calculated for C23H14F6S2 [M+H]+: 469.051, 

found: 469.052. 
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General procedure for perfluoroalkyl salinization of glass:  

Glass growth chambers and slides were coated with a perfluoroalkyl self-assembled 

monolayer to minimize adhesion of parts. Base Piranha (2:3 Ammonium 

hydroxide:H2O2/30wt%(aq)) treatment at 80 °C was accomplished for surface 

cleaning, followed by rinsing with MilliQ water, and drying under a stream of 

nitrogen. To the nitrogen flushed chamber was added toluene (40 mL, anh), 

followed by trimethylamine (144 μL, 1.0 mmol, anh), and 

trichloro(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)silane (130 μL, 

0.3 mmol). A white precipitate was immediately observed, and the solution was left 

at room temperature of 16 hours, followed by rinsing with toluene and ethanol, 

sonicating in ethanol for 1 minute, and drying under a stream of nitrogen. 

 

Figure C3. Images showing a water droplet on perfluoroalkyl functionalized (left) 

and bare (right) glass substrates. Contact angle for the coated surface was 

measured to be approximately 115°. 
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Synthesis of (3-ethyloxetan-3-yl)methyl acrylate:  

 

 

OXA OXA-acrylate

TEA:DCM

 

To a dry 2-neck 250 mL round bottom flask equipped with a magnetic stir bar and 

septum was added (3-ethyloxetan-3-yl)methanol (10 g, 86 mmol), 

dichloromethane(100 mL, anh) and triethylamine (24 mL, 172 mmol). The mixture 

was degassed with argon for 10 minutes and cooled to 0 °C, followed by addition of  

acryloyl chloride (8.4 mL, 103 mmol) using a syringe. The reaction mixture was 

stirred at 0 °C for 10 minutes under argon then allowed to warm to room 

temperature and stirred for an additional two hours. The reaction mixture was 

quenched with methanol, pured into diethyl ether, filtered, and distilled under 

reduced pressure (40 °C), providing the desired product as a clear, colorless liquid 

(12.8 g, 87% yield). 1H NMR (600 MHz, CDCl3) δ 6.43 (dd, J = 17.3, 1.3 Hz, 1H), 

6.15 (dd, J = 17.4, 10.4 Hz, 1H), 5.86 (dd, J = 10.5, 1.3 Hz, 1H), 4.50 (d, J = 6.1 Hz, 

2H), 4.42 (d, J = 6.1 Hz, 2H), 4.30 (s, 2H), 1.77 (q, J = 7.5 Hz, 2H), 0.92 (t, J = 7.5 

Hz, 3H).
 
13C NMR (101 MHz, CDCl3) δ 166.19, 131.27, 128.09, 77.87, 66.38, 42.65, 

26.89, 8.17. IR (ATR) ν 2956, 2862, 1718, 1630, 1614, 1455, 1403, 1379, 1292, 

1262, 1176, 1054, 976, 823, 806, 784 cm-1. LRMS (+ESI): m/z calculated for 

C9H15O3 [M + H]+ 171.10, found 171.11. 
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Resin formulations 

The multi-component photoactive resin (monomer, crosslinker, photosensitizer, 

accelerator, initiator, and photoswitch) were mixed in an amber vial in the absence 

of light, and sonicated until the solution was homogeneous.  

Note 1 – see above materials section for a full list of chemical names and acronyms. 

Note 2 – all components are given as weight percent (wt%) relative to total 

monomer + crosslinker. 

 Acrylamide formulation (Resin G1, Green LED): DMA:BDA (70:30), H-Nu 535 

(0.04 wt%), Borate (0.2 wt%), H-Nu 254 (0.2 wt%), DAE530 (8 mM). 

 Methyl acrylate formulation (Resin G2,Green LED): MA:TEGDA (99.5:0.5), H-Nu 

535 (0.02 wt%), Borate (0.1 wt%), H-Nu 254 (0.1 wt%), DAE530 (8 mM). 

 Epoxy formulation (Resin B1,Blue LED): ECC:OXA (80:20), CQ (0.4 wt%), 

EDMAB (0.4 wt%), H-Nu 254 (0.8 wt%), DAE470 (10 mM). 

 Butyl acrylate formulation (Resin B2, Blue LED): BA:TEGDA (99.5:0.5), CQ (0.4 

wt%), EDMAB (0.4 wt%), H-Nu 254 (0.8 wt%), DAE470 (10 mM). 

 Methyl acrylate formulation (Blue LED): MA:TEGDA (99.5:0.5), CQ (0.4 wt%), 

EDMAB (0.4 wt%), H-Nu 254 (0.8 wt%), DAE470 (10 mM). 

 Epoxy-acrylate formulation (Blue or Green LED): Combination of Resin G2 and 

Resin B1, except additional TEGDA crosslinker is added to achieve 0.5 wt% in 

the final resin. 
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Curing and isolation procedures 
 

A perfluoroalkyl functionalized glass slide is adhered to the bottom of the build 

chamber using a high viscosity fluorinated oil (XHT-500). The chamber is sealed 

with a septum and purged with Argon. The resin of interest is sparged with oxygen 

and ~3.5 mL of resin is transferred into the build chamber. The build chamber is 

placed over the projector and exposed to a digital image. 

G1: 2 minute exposure to green light, followed by removal from the build plate with a 

razor blade. The specimen was retrieved and placed in an oxygen free environment 

and postcured under a compact fluorescent lamp for 30 minutes. 

 

G2: 5 minute exposure to green light, followed by removal from the build plate with a 

razor blade. The specimen was retrieved and placed in an oxygen free environment 

and postcured under a compact fluorescent lamp for 30 minutes. Residual monomer 

was removed through Soxhlet extraction with acetone overnight and drying in vacuo. 

 

B1: 2 minute exposure to blue light, followed by removal from build plate with razor 

blade. Retrieved specimen placed in oxygen free environment and postcured under 

a simple white light lamp for 30 minutes. 

 

B2: 5 minute exposure to blue light, followed by removal from the build plate with a 

razor blade. The specimen was retrieved and placed in an oxygen free environment 

and postcured under a compact fluorescent lamp for 30 minutes. Residual monomer 

was removed through Soxhlet extraction with acetone overnight and drying in vacuo. 
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B1:G2 mixed resins: 8 minute exposure to blue segments (if applicable) and 2 

minute exposure to entire image as a green block, followed by removal from the 

build plate with a razor blade. Residual monomer was removed through dialysis in 

1:1 acetone:isopropanol followed by washing with isopropanol prior to drying in air. 

For mechanical studies, blue samples were postcured for 30 minutes under a 

compact fluorescent lamp.  
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Characterization 

Spectral outputs of light sources 

 

Figure C4: Projector outputs (measured through OD1 filter). 

 

Figure C5: Integrated intensities of projector as a function of white level for different 

color objects impingent on growth chamber. 
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Figure C6: Spectral outputs of (left) 470 nm and (right) 530 nm fiber coupled LEDs. 

470 nm Integrated Intensity: 130 mW/cm2 

530 nm Integrated Intensity: 48 mW/cm2 
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Relevant absorption profiles  

   

 

Figure C7: Normalized absorption profile for nonbleaching Sudan IV (nonbleaching 

control dye). Extinciton coefficient ~26000 M-1cm-1 at 520 nm. 

 

Figure C8: Normalized absorption profile for HNu535 photoinitiator. Extinciton 

coefficient ~91000 M-1cm-1 at 545 nm. 
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Figure C9: Normalized absorption profile for DAE530 photochromic molecule 

(solution mask). Extinciton coefficient ~30000 M-1cm-1 at 530 nm. 

 

 

  

Figure C10: Normalized absorption profile for DAE470 photochromic molecule 

(solution mask). Extinciton coefficient ~9000 M-1cm-1 at 450 nm. 
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Figure C11: Normalized absorption profile for camphorquinone photoinitiator. 

Extinciton coefficient ~50 M-1cm-1 at 470 nm. 

 

 

Figure C12: Time lapse absorption profiles for a ‘masked’ HNu535 in the presence of 

DAE530 exposed to fiber coupled 530 nm LED on a pump-probe setup. Complete 

switching of DAE530 allows the HNu535 photoinitiating system to absorb light. 
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Frontal growth measurements 

 

Figure C13: Heights of 5 mm diameter parts created by exposure to 800 ms of 

white projector light at various light intensities. Linear relationship expected from 

Equation 1 (manuscript). 

 

 

Figure C14: Sample of G1 in a flat bottom NMR tube (5 mm tube diameter) 

exposed to a collimated fiber coupled 530 nm LED. Clear linear frontal behavior can 

be seen as predicted by Equation 1 (manuscript). 
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Dye controls, Cure Depth, and Resolution 

 

 

Figure C15: a) A control study where no photoabsorber is added to a HNu535 

sensitized resin above a focusing lens. The reaction proceeds rapidly and 

exothermicaly, with no obervable spatial control. b) A control study where the 

photosTable Cudan IV dye is added to the same HNu535 sensitized resin. With the 

resulting attenuation of light, only a thin disc was cured. 
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Figure C16:  a) Experimental setup for cure depth experiment, a ~2 mm inner 

diameter tube filled with ~10 cm of resin is exposed to 532 nm light from a green 

laser pointer. b) Result after 6 hours of exposure, providing a depth of cure 

exceeding 6.5 cm. 
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Figure C17:  Cross pattern formed by exposure of G1 to a cross of 0.1 pt lines 

using the setup outlined in Figure C2. The formed object demonstrates lateral 

resolution of 90 microns. 
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Surface Characterization (Profilometry / SEM) 

 

 

 

 

Figure C18: Surface analysis of fused deposition modeling – produced cone 

samples through Scanning Electron Microscopy (top) and profilometry (bottom). 

Build direction horizontal. FDM parts demonstrate large rounded layer features with 

regular periodicity. 
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Figure C19: Surface analysis of stereolithography – produced cone samples 

through Scanning Electron Microscopy (top) and profilometry (bottom). Build 

direction horizontal. SLA parts demonstrate sharp layer features with regular 

periodicity. (Note: waviness due to difficulties aligning rounded cone sample for 

analysis) 
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Figure C20: Surface analysis of inkjet – produced (using ‘matte’ setting) cone 

samples through Scanning Electron Microscopy (top) and profilometry (bottom). 

Build direction horizontal. FDM parts demonstrate large rounded layer features with 

regular periodicity. 
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Figure C21: Surface analysis of SMaLL – produced cone samples through 

Scanning Electron Microscopy (top) and profilometry (bottom). Build direction 

horizontal. SMaLL parts show no observable layering in the build direction, but some 

evidence of parallel-running surface defects. See bulk images. 
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Analysis of 3D printed parts (interior) 

 

 

Figure C22: Scanning electron microscope images of bulk sample morphology of 

3D printed cones (accomplished by polishing to a grit of 1200) by a) FDM, b) SLA, c) 

Inkjet, and d) SMaLL. Layering oriented perpendicular to build direction apparent for 

a-c but no discernable layering is observed for the SMaLL samples. 
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Part growth using dynamic stage 

 

 

Figure C23: Dynamic printing of 1:1 B1:G2 a) Schematic of setup used to produce 

parts using a mechanical stage. Stage was moved in 100 µm incremenets to 

produce a part with b) a central hole composed of G2. Photographs of c) blue 

exposure d) green exposure (labeled) and e) stage repositioning steps. f) The final 

multi-material part produced with a ‘soft’ green hole through the center of the face 

highlighted in dashed red box (swollen with acetone to accentuate G2 regions).  
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Mechanical Properties 

Hardness 

 

Figure C24: Representative hardness data from nanoindentation of G1 samples.  

> 30 individual indents measured 

Hardness:  74 ± 3 MPa 

Modulus:   2.0 ± 0.1 GPa 
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Figure C25:  

Top) Photograph of 8 mm cube (G1) tested along faces via nanoindentation 

Bottom) Hardness data from 3 directions along DMA cube produced via SMaLL 

after 30 minutes of postcuring. The data shows no significant variation in hardness 

or modulus along the faces (> 10 indents per face) and is consistent with previous 

DMA experiments. 
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Figure C26: Representative hardness data from nanoindentation of B1 samples.  

> 30 individual indents measured 

Hardness:  241 ± 4 MPa     Modulus:  3.5 ± 0.2 GPa 

 

Figure C27: Representative hardness data from nanoindentation of 3:1 B1:G2 

samples after exposure to blue light and post curing for 30 minutes.  

> 30 individual indents measured 

 

Hardness:  175 ± 9 MPa     Modulus:  3.5 ± 0.1 GPa
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Tensile measurements 

 

  

Figure C28: Tensile meaurements of G1 (left) and G2 (right) samples. 

 

G1 

Modulus:  1.6 ± 0.3 GPa 

Ultimate Strain: 0.09 ± 0.02 

G2 

Modulus:   500 ± 5 kPa 

Ultimate Strain:  4.2 ± 0.6  
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Figure C29: Tensile meaurements of B1 (left) and B2 (right) samples. 

 

Modulus:  3.5 ± 0.6 GPa 

Ultimate Strain: 0.013 ± 0.001 

 

Modulus:  100 ± 15 kPa 

Ultimate Strain: 3 ± 1.2 
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Multi-material Properties 

 

Figure C30: Left) Tensile meaurements of 3:1 B1:G2 samples after 470 nm 

irradiation and 30 minutes of postcuring. The interpenetrating network produced 

from the blue exposure gives a signature yielding behavior for these samples. Right) 

Tensile meaurements of 3:1 B1:G2 samples after 530 nm irradiation, yielding soft 

highly extensible materials. 

 

470 nm irradiation 

Modulus:  2.25 ± 0.37 GPa 

Ultimate Strain: 0.05 ± 0.01 

 

530 nm irradiation 

Modulus:  28 kPa 

Ultimate Strain: 9.1 
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Figure C31: Results from cyclic tensile measurements to strains of left) 100% and 

right) 300%. Strains of 100% show ideal elastic behavior, however strains of 300% 

show initial losses, but level out to ~80% of initial stresses after 5 strain cycles. 
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Figure C32: a) Micrographs of multimaterial tensile bars printed using a 1:1 B1:G2 

resin before (left) and after (right) testing demonstrating that failure does not occur 

at the blue-green interface. b) Photographs of tensile test to failure (far right). c) 

Stress-strain curve of the blue-green-blue material, demonstrating nearly identical 

properties to pure G2. 
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Figure C33: 100x optical micrograph of intermaterial gaps in a dried bowtie sample, 

demonstrating intermaterial resolution of approximately 200 microns (denoted by 

dashed lines and arrows). 

 

 



 

 187 

  

Figure C34: Images of brick-and-mortar bowtie material at various strains. Failures 

(voids and cracks) begin to occur at strains ~0.40 throughout the specimen, 

eventually bridging together to cause complete material failure. 
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