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Abstract

Degenerations of Negative Kähler-Einstein Surfaces

By

Holly B Mandel

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Song Sun, Chair

Aubin and Yau [2, 23] proved that every compact Kähler manifold with negative first Chern
class admits a unique metric g such that Ric(g) = −g. Understanding how families of these
metrics degenerate gives insight into their geometry and is important for understanding the
compactification of the moduli space of negative Kähler-Einstein metrics. I study a special
class of such families in complex dimension two. Following the work of Sun and Zhang in
the Calabi-Yau case [19], I construct a Kähler-Einstein neck region interpolating between
canonical metrics on components of the central fiber. This provides a model for the limiting
geometry of metrics in the family.
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Chapter 1

Introduction

1.1 Kähler-Einstein metrics
Kähler-Einstein metrics sit at the intersection of physics, differential geometry, and alge-

braic geometry. In physics, they form a class of solutions to the Einstein field equations. In
differential geometry, they are higher-dimensional analogues of constant curvature metrics
on Riemann surfaces that are more rigid than constant scalar curvature metrics and less rigid
than constant curvature metrics. In algebraic geometry, they are canonical objects associated
to certain complex varieties whose properties reflect the underlying algebraic structure.

The existence theory of Kähler-Einstein metrics on compact manifolds dates back to Yau’s
theorem [23] but was partially open until 2014. Since the Ricci curvature of a manifold X
represents its first Chern class, the existence of a Kähler-Einstein metric on X implies that
c1(X) has a representative that is either positive definite, negative definite, or identically
zero. Conversely, if c1(X) = 0, the existence of a Ricci flat metric in any Kähler class of
X follows from Yau’s theorem, while if c1(X) has a negative representative, the existence
of a unique (up to rescaling) Kähler-Einstein metric with negative scalar curvature was
proved by Aubin and Yau in 1978 [2, 23]. If c1(X) is positive, however, there are nontrivial
obstructions to existence [10, 13, 15]. A full understanding was not achieved until 2014,
when Chen-Donaldson-Sun proved that existence is equivalent to the algebraic condition of
K-stability [6, 7, 8].

In this thesis I study the case c1(X) < 0. I call a Kähler-Einstein metric on such a space
a negative Kähler-Einstein metric, since the constant of proportionality between the metric
and its Ricci curvature is negative. Though existence and uniqueness in this case have long
been established, the proof is implicit and provides little geometric information. It remains
a challenge in Kähler geometry to characterize these metrics.

One goal is to describe the compactification of the moduli space of negative Kähler-
Einstein metrics. Since limits in this space will not always be smooth, a key question is
how families of such metrics degenerate. For instance, given a manifold X, we can vary
the complex structure on X to produce a family of Kähler-Einstein metrics. If the complex
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manifold develops a singularity, the limit space does not have a Kähler-Einstein metric in
the usual sense, but we can try to define a generalization to compactify the family.

A first step in this direction is to characterize the convergence of the family outside a
singular set. Previous work has explicitly demonstrated convergence to known metrics. If
X = X̄ \D for a projective manifold X̄ and smooth divisor D such that c1(X) < 0, there ex-
ists a unique complete, finite-volume negative Kähler-Einstein metric onX [3, 9, 11, 21]. Tian
[20] showed that a degenerating family of Kähler-Einstein metrics will Gromov-Hausdorff
converge to this metric on the smooth locus of the central fiber under the assumptions that
the total space of the degeneration is smooth, the central fiber has only normal crossing sin-
gularities, and its components intersect only pairwise. The pairwise intersection assumption
was later removed by Ruan [17]. Greater generality was achieved by Song [18], who used
results from birational geometry to obtain convergence without loss of volume for a general
algebraic degeneration and to further characterize the structure of the central fiber.

I aim to investigate the geometry that collapses to the singular set. This perspective will
be necessary for understanding what types of spaces are needed to compactify the moduli
space of negative Kähler-Einstein metrics. In addition, the techniques I use give an explicit
description of the nonsingular metrics close to the central fiber. This allows us to “see”
the negative Kähler-Einstein metrics whose existence has long been established but whose
geometry is mostly unknown.

1.2 Degenerations of Kähler-Einstein metrics
A degeneration of Kähler-Einstein metrics is defined as a flat family π : X → ∆ of

algebraic varities over the complex disc ∆ such that Xt = π−1(t) is smooth for t 6= 0 and
KX/∆ is positive. For generic t ∈ ∆, KX/∆|Xt' KXt , so there is a unique Kähler-Einstein
metric ωt in 2π c1(KX/∆|Xt).

In this thesis we investigate a specific family of the above type. For i = 1, 2, 3, let fi
be a homogeneous polynomial in 4 variables of degree di such that d1 + d2 = d3 > 4. Let
X ⊆ CP 3 ×∆ be the variety

Xt = V (f1f2 − tf3),

where the fi are interpreted as polynomials on CP 3 and t is the coordinate on ∆. Say
that Yi = V (fi) is smooth for i = 1, 2 and Xt is smooth for t 6= 0. Finally, assume that
D = V (f1) ∩ V (f2) and D ∩ V (f3) are complete intersections. By the adjunction formula,
KXt is ample for generic t.

Sun and Zhang [19] have characterized the Calabi-Yau case (d1 + d2 = 4). They found
that after rescaling to unit diameter, Xt converges in the Gromov-Hausdorff topology to an
interval in R. The interior of the interval reflects the geometry of an infinitesimal neighbor-
hood of the singular point but contains all of the rescaled volume of the space. Meanwhile,
rescaled limits at the end points converge to the complete Calabi-Yau metrics on Yi \ D
constructed by Tian and Yau [22]. An interesting corollary is that these Tian-Yau metrics,
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though not known to be unique as solutions to a prescribed Ricci curvature problem, are
canonical in the sense they arise from degenerating families.

In our case, Yi \ D admits a unique complete Kähler-Einstein metric [3, 9, 11, 21]. We
hypothesize that as in [19], (Xt, ωt) will degenerate to a space with three parts: one com-
ponent for Yi, i = 1, 2, equipped with the Kähler-Einstein metric on Yi \ D, plus a neck
region gluing these spaces near D. Like the Tian-Yau metric, the Kähler-Einstein metric
on Yi \ D resembles a Calabi model space over the normal bundle of D in Yi near D, so
a suitable neck region would be a Kähler-Einstein interpolation between these two Calabi
model spaces. Indeed the bulk of [19] is the construction of an analogous neck region in the
Calabi-Yau case.

The main result of this thesis is the succesful construction of this neck region. We will
give a precise definition of (C±, gC±) in Section 4.1.2.

Theorem 1.2.1. Fix a complex curve D with c1(D) < 0 and integers k− ≥ 0, k+ ≤ 0. Let
(C±, gC±) be the Calabi model space over k−ND and −k+ND, respectively. Then there exists
α0 ∈ (0, 1), a manifoldM with boundary components ∂M± that gives a singular S1 fibration
over D × I for some interval I ⊂ R, and a family of S1-invariant negative Kähler-Einstein
metrics ωKE,T onM, such that the following holds: for any α ∈ (0, α0), ε > 0, k ∈ Z≥0, and
R > 0, BR(∂M−) is ε-close in Ck,α to a ball in C−, and similarly for ∂M+, for T � 0.

Our proof yields a detailed description of the geometry of (M, ωKE,T ) for large T . The
diameter of (M, ωKE,T ) grows without bound as T →∞, and if we rescale the diameter to a
constant, the resulting spaces collapse to an interval in R. We can say more, however, about
the pointed convergence of (M, ωKE,T ).

Theorem 1.2.2. Under the assumptions of Theorem 1.2.1, there exists a family of functions
WT : M→ R>0 with the following property: Let (xj)

∞
j=1 be a sequence of points in M and

choose a sequence Tj → ∞. Then there exists a subsequence of (M,WTj(xj)
−2ωKE,Tj , xj)

that converges in the pointed Gromov-Hausdorff topology to one of the following:

1. the Taub-NUT space (C2
TN , gTN),

2. the Riemannian product C× R,

3. the Riemannian cylinder D × R,

4. the Calabi model space (C±, gC±).

In cases 1 and 4, convergence is smooth. In cases 2 and 3, there is collapsing with bounded
curvature away from finitely many points.

The rescaling factorWT is related to the local regularity scales of ωKE,T . In cases 2 and 3,
there is smooth convergence without collapsing on local universal covers. Thus the theorem
provides an explicit pointwise description of ωKE,T up to error terms that decay as T →∞.
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To construct (M, ωKE,T ), we guess that the desired metric can be approximated by a
Kähler metric with S1 symmetry on a singular S1 fibration over D × I for some interval
I ⊂ R. The constraints on the end behavior of the metric determine the topology of M.
The Kähler-Einstein equation onM can then be expressed in terms of the fiber size h−1 and
a scaling χ of a fixed metric on D (Section 2). We solve the linearization of this reduced
equation to construct a family of approximately Kähler-Einstein metrics ωT (Sections 3 and
4). By adding an inhomogeneous delta function term to the linearized equation, we change
the degree of the restriction of the S1 bundle to D to match the Calabi model spaces at either
end ofM. Once we have solved the inhomogeneous linearized equation, we investigate the
local rescaled geometry of ωT as T → ∞ (Section 5). The resulting description, reflected
in Theorem 1.2.2, allows us to derive weighted Schauder estimates that are independent of
T . Finally, we use these estimates to correct ωT to a Kähler-Einstein metric ωKE,T by the
implicit function theorem (Section 6).

Our techniques follow [19], but major differences from the Calabi-Yau case appear in
Sections 3, 5, and 6. These differences result from the fact that the linearization of the
negative Kähler-Einstein equation is ∆ − 1 rather than ∆. In Section 3, this implies that
the linearization of the Kähler-Einstein equation results (after separation of variables) in an
ordinary differential equation whose solutions are qualitatively different from the exponential
functions in [19]. In Section 6, this requires us to adopt a different framework for our use of
the implicit function theorem. As a result, we must derive different Schauder estimates in
Section 5.
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DY1 D Y2

•

•

•

k− k+

z

Figure 1.1: The construction of (M, ωKE,T ). The base space is the manifold D × Iz. The
diameter of D is bounded below independently of T and blows up near the singular points.
M is a singular S1 fibration over D× I. The size of the S1 fiber, given by h−1, decreases to
0 near the singular points. The degree of the restriction of the S1 fibration to D is given by
k− for z < 0 and −k+ for z > 0 and changes at z = 0 because there are k− − k+ singular
points.
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Chapter 2

Kähler Reduction

2.1 Kähler metrics with Hamiltonian symmetry
Our first step toward the construction of (M, ωKE,T ) is to create an approximately Kähler-

Einstein space with the desired end behavior. We attempt to build such a space under the
added assumption of S1 symmetry. In the Calabi-Yau case this is the Gibbons-Hawkings
ansatz. The discussion in this section is based on Section 2.1 in [19] .

First, let’s assume we already have such a space and see how our calculations are sim-
plified. Let (X,ω, J) be a Kähler manifold of complex dimension n. We say that X has a
holomorphic S1 symmetry if there is an action ϕ : S1×X → X such that ϕθ is holomorphic
and ϕ∗θω = ω for each θ ∈ S1, where ϕθ(x) = ϕ(θ, x). In this case let ξ be the vector field
generating the action, so

∂

∂θ
ϕ(θ, x)

∣∣∣∣
θ=θ0

= ξ(x).

We say that X is Hamiltonian if there exists a function z such that

dz = iξω.

If the holomorphic Hamiltonian S1 action onX is also free, we can simplify the description
of ω and J by dividing out the S1 symmetry. Locally we can quotient by the orbits of the
complexified action, generated by ξ1,0 = ξ − iJξ, to form an (n − 1) dimension complex
manifold D. Then we can identify X with an S1 bundle over D× I for some interval I ⊂ R
with coordinate z. Since ω is S1 invariant it can be parameterized by the base space D× I.

Let y be a local holomorphic coordinate on D with the convention that Jdy = −i dy,
Jdȳ = i dȳ. Let t be a function such that ξ(t) = 1. Then y, y, t, z form a local coordinate
system for X, but the coordinates z and t are not holomorphic. We write

Jdz = h−1(−dt+ θ)

where h is a function and θ is an S1-invariant one-form without a dt component. We can
determine h by observing that by our choice of z,

Jdz(∂t) = −dz(J∂t) = −ω(ξ, Jξ) = −‖ξ‖2.
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D

S1 fiber h−1

ω̃(z)

z

Figure 2.1: Kähler reduction. Locally, the total space is decomposed into an S1 fibration
over D × Iz. The S1-invariant metric on X is specified by the fiber size, given by h−1, and
the z-family ω̃(z) of metrics on D.

Therefore h = ‖ξ‖−2.
Write Θ = −dt+ θ and define

ω̃ = ω − dz ∧Θ. (2.1)

The form ω̃ does not have components in dz or dt. In addition,

Lξω̃ = Lξω − Lξ(dz ∧Θ).

The first term on the right vanishes due to S1 invariance, and Cartan’s formula can be used
to show that Lξ(dz ∧Θ) = 0 as well. Thus ω̃ can be thought of as a z-family of (1, 1)-forms
on D.

The integrability of J and the Kähler condition on ω imply (see [19] 2.1) that h and ω̃
satisfy the system {

∂2
z ω̃ + dDd

c
Dh = 0

∂zω̃ − dz ∧ dcDh = dΘ.
(2.2)
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2.2 The reduced Kähler-Einstein equation

2.2.1 From X to (χ, h)

We now assume that n = 2 and D is a Riemann surface of genus at least two. Let ωD
be a Kähler-Einstein metric on D normalized so that RicωD = −ωD. For the remainder of
this thesis, we assume that all Kähler-Einsten metrics are negative and normalized this way.
Because D has complex dimension one, we can write ω̃ = χωD for some function χ on D×I.
Our goal is to reduce the equation Ric ω = −ω to a simpler collection of equations on χ and
h.

Let Ω be a local S1-invariant holomorphic volume form on X and let κ = i(hdz+ iΘ+κ′)
be the (1, 0) form dual to ξ1,0, where κ′ does not have a dz or dt component. We can write

Ω = κ ∧ Ω̃

for Ω̃ = iξ1,0Ω also S1 invariant and compute that

Ω ∧ Ω̄ = −2ih dz ∧ dt ∧ Ω̃ ∧ ¯̃Ω.

There are functions χ and σ such that

ωD = σ iΩ̃ ∧ ¯̃Ω ω̃ = χωD,

so
ω2

Ω ∧ Ω̄
=

ω̃

ihΩ̃ ∧ ˜̄Ω
=
χσ

h
, (2.3)

and so
Ricω = −i∂∂̄ log det

ω2

Ω ∧ Ω̄
= −i∂∂̄(log(χ) + log(σ)− log(h)).

Thus the assumption that ω is Kähler-Einstein gives that

−ω = −1

2
ddc logχ− i∂D∂̄D log σ +

1

2
ddc log h. (2.4)

For clarity we have replaced i∂∂̄ with 1
2
ddc for functions that vary in z and i∂D∂̄D for functions

that do not.
We expand out this relation and separate into components to derive four equations re-

lating χ and h. On the one hand,

−ω = −(dz ∧ (−dt+ θ) + ω̃).
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On the other hand, for any t-invariant function F on X we have

ddcF = dJ(Fzdz + dDF )

= d(Fzh
−1(−dt+ θ) + dcDF )

= (Fzh
−1)zdz ∧ (−dt+ θ) + dD(Fzh

−1) ∧ (−dt+ θ)

+ (Fzh
−1)(dz ∧ ∂zθz + dDθ) + dz ∧ dcD(Fz) + dDd

c
DF

= (Fzh
−1)zdz ∧ (−dt+ θ) + dD(Fzh

−1) ∧ (−dt+ θ)

+ (Fzh
−1)(dz ∧ −dcDh+ ∂zω̃) + dz ∧ dcD(Fz) + dDd

c
DF.

Let F = log h− logχ. Then Equation 2.4 becomes

−2(dz ∧ (−dt+ θ) + ω̃) = ((log h− logχ)zh
−1)zdz ∧ (−dt+ θ)

+ dD((log h− logχ)zh
−1) ∧ (−dt+ θ)

+ (log h− logχ)zh
−1(dz ∧ −dcDh+ ∂zω̃)

+ dz ∧ dcD((log h− logχ)z)

+ dDd
c
D(log h− logχ)− 2i∂D∂̄D log σ.

The covector fields dz, dt, dy and dȳ form a local basis for forms on X. Collecting compo-
nents involving only dz ∧ dt yields

((log h− logχ)zh
−1)z = −2. (2.5)

Since θ does not have a dt component, collecting components involving only dt wedged with
either dy or dȳ yields

dD((log h− logχ)zh
−1) = 0. (2.6)

Collecting terms in only dy and dȳ yields

(log h− logχ)zh
−1∂zω̃ + dDd

c
D(log h− logχ)− 2i∂D∂̄Dσ = −2ω̃ (2.7)

Finally, cancelling all of these terms and “dividing” by dz, we have

−(log h− logχ)zh
−1 dcDh+ dcD(log h− logχ)z = 0, (2.8)

but this is trivial by Equation 2.6.

2.2.2 From (χ, h) to X

The key point is that we can also work backwards from these equations. Fix (D,ωD) a
complex curve with Ric ωD = −ωD. For the remainder of this thesis we will assume that
k− = 0 and k+ = −1. We will discuss this simplification further in Section 4.2.

Fix a point pD ∈ D and let δp be a delta function at (pD, 0) ∈ D × [−1, 1/2], i.e.∫
D×[−1,1/2]

f δp dz ∧ ωD = f(pD, 0). (2.9)
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Since we are free to add a constant to the moment map z, it is sufficient to find a pair (χ, h)
solving the following equations:

(log h− logχ)z = −2hz (2.10)

∂2
zχ+ ∆Dh = 2πδp (2.11)

ω̃ − (ωD + z∂zω̃) = −1

2
dDd

c
D(log h− logχ). (2.12)

Equation 2.10 comes from integrating Equations 2.5 and 2.6. Equation 2.11 is part of
Equation 2.2, except that we have added a delta function at z = 0. We will explain this
choice in Section 4. Equation 2.12 is the result of substituting Equation 2.10 into Equation
2.7.

The second line of Equation 2.2 gives an additional constraint. Define

Γ = ∂zω̃ − dz ∧ dcDh.

If 1
2π

Γ is an integral (1, 1)-form and z is defined on [−1, 1/2], there exists an S1 bundle
π : M → D × [−1, 1/2] with connection form −iΘ and curvature −iΓ. Choices of such Θ
modulo gauge equivalence are parameterized by Hom(H1(M), S1) and yield distinct complex
structures onM.

Given such a χ, h, and Γ, and fixing a choice of Θ, the metric on M is given by ω =
ω̃ + dz ∧ Θ. The computation above shows that Lξω = 0. Equations 2.11 and the second
line in Equation 2.2 give that the complex structure defined by the complex structure on D
and the condition that Jdz = hΘ is integrable and also that ω̃ is Kähler. Finally, Equations
2.10 and 2.12 ensure that ω̃ is Kähler-Einstein.

Note that by our addition of a delta function to Equation 2.11, χ and h will be singular
at a fixed p = (pD, 0) ∈ D × [−1, 1/2]. Since all of our computations have been pointwise,
our construction goes through without change on D × [−1, 1/2] \ {p}. Though a priori the
S1 bundleM is defined only over D × [−1, 1/2] \ {p}, we will see in Section 4.3 that it can
be completed over the singular point. The singularity in Equation 2.11 causes a change in
the degree of the S1 bundle restricted to D as we pass through z = 0. This is necessary to
match the Calabi model spaces at either end.

2.3 Deriving a linearized equation for δh.
We may ask whether there is a solution such that h and χ are constant over D for each

z. In this case Equation 2.11 tells us that away from the singularity,

χ = az + b

for constants a and b. In fact, Equation 2.12 tells us that b = 1. Now if we write u = h
az+1

,
then we can rewrite Equation 2.10 as

(log u)z = −2u(az + 1)z.
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We find that
h =

az + 1
2
3
az3 + z2 + c

for some constant c.
Motivated by this result, we guess that a nontrivial approximate solution takes the form

h = h0 + δh, χ = 1 + δχ (2.13)

for h0 = 1
z2+T−2 , functions δh and δχ that are small in some sense, and T a large constant.

Then Equation 2.10 becomes

∂z

(
log(h0) + log

(
1 +

δh

h0

)
− log(1 + δχ)

)
= −2(h0 + δh)z.

Since h0 solves Equation 2.10 with χ ≡ 1, it follows that

∂z

(
log

(
1 +

δh

h0

)
− log(1 + δχ)

)
= −2z δh.

Expanding the logarithmic terms into a power series and keeping only terms linear in δh and
δχ, we derive that

∂z

(
δh

h0

)
− δχz = −2z δh. (2.14)

Taking another derivative yields that

(z2 + T−2)δhzz + 4z δhz + 2δh− δχzz = −2δh− 2z δhz.

By Equation 2.11, this becomes

(z2 + T−2)δhzz + 6z δhz + (4 + ∆D)δh = 2πδp. (2.15)

Equation 2.15 is the linearization of the Kähler-Einstein equation under S1 symmetry.
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Chapter 3

Constructing an Approximate Solution

In this section we solve Equation 2.15. In the notation introduced in Section 2, this gives
us a candidate for h, and we can define χ using Equation 2.11. Since the resulting pair (χ, h)
gives an exact solution to Equation 2.11, the resulting space is Kähler, but since we have
linearized Equation 2.10, it is not Einstein. In Section 6 we will check that the discrepancy
between the metric and a negative multiple of its Ricci curvature is not too large and then
correct to an honest Kähler-Einstein space.

3.1 Solving the linearized equation for δh

3.1.1 Separation of variables

We assume that the solution can be expanded in the eigenfunctions of ∆D and write

δh =
∑
λ≥0

fλψλ (3.1)

where ∆Dψλ = −λ2ψλ, ψλ(pD) ≥ 0, and
∫
D
|ψλ|2 ωD = 1. We then have the formal expansion

δp =
∑
λ

ψλ(pD)ψλδ0,

where δ0 = δ0(z) is a delta function at 0 on [−1, 1/2]. Matching terms, Equation 2.15 then
gives an ordinary differential equation

(z2 + T−2)f ′′λ (z) + 6zf ′λ(z) + (4− λ2)fλ(z) = 2πψλ(pD)δ0(z) (3.2)

for each eigenvalue λ.
Now if ‖fλ‖L2(R)<∞ for some λ > 0 then for each test function χ ∈ C∞0 (D× [−1, 1/2]),

〈fλψλ, χ〉 =

∫ 1/2

−1

fλ(z)

(∫
D

ψλ(·)χ(·, z)ωD
)
dz.
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But by elliptic regularity,
‖ψλ‖C0= O(

√
λ). (3.3)

Therefore ∣∣∣∣ ∫
D

ψλ(·)χ(·, z)ωD
∣∣∣∣ =

∣∣∣∣ 1

λ2`

∫
D

∆`
Dψλ(·)χ(·, z)ωD

∣∣∣∣
=

∣∣∣∣ 1

λ2`

∫
D

ψλ(·) ∆`
Dχ(·, z)ωD

∣∣∣∣
≤ C

λ2`− 1
2

‖χ‖C2`(D×I),

where C does not depend on λ. Now say that ‖fλ‖L2(R) grows slower than λN for some N .
Weyl’s law guarantees that

#{λ an eigenvalue of ∆D : λ ∈ [k − 1, k)} ≤ Ck (3.4)

for some C > 0. Therefore for any M > 0,〈 ∑
1≤λ≤M

fλψλ, χ

〉
≤ C

∑
1≤λ≤M

‖fλ‖L2(R)

λ2`− 1
2

‖χ‖C2`(D×I)

≤ C
∞∑
k=2

kN+ 3
2
−2`‖χ‖C2`(D×I).

Since there are only finitely many independent eigenvectors with λ < 1, choosing ` large
enough proves that

∑
fλψλ gives a well-defined distribution solving Equation 2.15. It remains

to show that each fλ is defined on [−1, 1/2] and that ‖fλ‖L2(−1,1) has polynomial growth in
λ.

3.1.2 ODE solution for each eigenvalue.

To do this, we solve Equation 3.2 explicitly. The change of variables x(z) = 1
2
(1 + iTz)

converts Equation 3.2 to the hypergeometric equation

x(x− 1)f ′′(x) + (6x− 3)f ′(x) + (4− λ2)f(x) = Tπ ψλ(pD)δ0(x). (3.5)

Note that
1− x(z) = x(z), z ∈ R. (3.6)

For n ∈ R, define

(n)k =

{∏k−1
j=0(n+ j) k ∈ Z>0

1 k = 0
.
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Let F be the hypergeometric series

F (α, β, γ;x) =
∞∑
k=0

(α)k(β)k
k! (γ)k

xk.

For any α, β, γ ∈ R with γ 6∈ Z<0, F is absolutely convergent on the open unit disk in C.
Now let

α(λ) =
5 +
√

9 + 4λ2

2
β(λ) =

5−
√

9 + 4λ2

2
γ = 3.

Using the recursion in the coefficents of F , it is checked that for all λ, the functions

vλ1 = F (α(λ), β(λ), γ(λ);x(z)) and vλ2 = F (α(λ), β(λ), γ(λ);x(z))

solve the homogeneous version of Equation 3.2. Now it is easily observed from the definition
that

d

dx
F (α(λ), β(λ), γ;x) =

α(λ)β(λ)

γ
F (α(λ) + 1, β(λ) + 1, γ + 1;x),

so the Wronskian W [vλ1 , v
λ
2 ](0) = vλ1 (0)vλ2

′
(0)− vλ1

′
(0)vλ2 (0) is evaluated as

−iTα(λ)β(λ)

γ
F (α + 1, β + 1, γ + 1,

1

2
)F (α, β, γ,

1

2
).

An identity due to Gauss states that

F (α, β,
1 + α + β

2
;
1

2
) =

Γ(1
2
)Γ(1+α+β

2
)

Γ(1+α
2

)Γ(1+β
2

)
(3.7)

where Γ is the gamma function ([14] 3.13.2). Thus for our choices of α, β, and γ,

W [vλ1 , v
λ
2 ](0) = −iTα(λ)β(λ)

γ

Γ(1
2
)2Γ(1+α(λ)+β(λ)

2
)Γ(3+α(λ)+β(λ)

2
)

Γ(1+α(λ)
2

)Γ(2+α(λ)
2

)Γ(1+β(λ)
2

)Γ(2+β(λ)
2

)
.

Now Γ has no roots but has a simple pole with residue (−1)k

k!
at −k for k = 0, 1, 2.... The

sum α(λ) + β(λ) = 5 for all λ, so the numerator of the second term in the above product is
constant in λ. For all λ, α(λ) is positive, so the Γ terms involving α(λ) are finite positive
numbers. However, we may have that 1+β(λ)

2
or 2+β(λ)

2
is equal to a negative integer for

infinitely many λ.
Let

Σ = {λ > 0 : λ is an eigenvalue of ∆D and
√

9 + 4λ2 ∈ Z}.
Then Σ is discrete but possibly infinite. For λ 6∈ Σ, vλ1 and vλ2 give independent solutions to
the homogeneous version of Equation 3.2. In this case, we can solve the non-homogeneous
equation by variation of parameters. We write

vλ = c1v
λ
1 + c2v

λ
2 ,
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where
c1(z) = −

∫ z

−∞

2πψλ(pD)δ0

s2 + T−2

vλ2 (s)

W [vλ1 , v
λ
2 ](s)

ds

= −2πi ψλ(pD)σ0(z)
Tγ

α(λ)β(λ)

Γ(2+α(λ)
2

)Γ(2+β(λ)
2

)

Γ(1
2
)Γ(3+α(λ)+β(λ)

2
)

and
c2(z) =

∫ z

−∞

2πψλ(pD)δ0

s2 + T−2

vλ1 (s)

W [vλ1 , v
λ
2 ](s)

ds

= 2πi ψλ(pD)σ0(z)
Tγ

α(λ)β(λ)

Γ(2+α(λ)
2

)Γ(2+β(λ)
2

)

Γ(1
2
)Γ(3+α(λ)+β(λ)

2
)

= −c1(z).

Since v1(z) = v2(z), this gives that

vλ = 2i c1(z) Im vλ1 (z) = 12πσ0(z)
Tψλ(pD)

α(λ)β(λ)

Γ(2+α(λ)
2

)Γ(2+β(λ)
2

)

Γ(1
2
)Γ(3+α(λ)+β(λ)

2
)
Im vλ1 (z),

where

σ0(z) =

{
0 if z < 0

1 if z ≥ 0
.

It is verified that vλ is a solution to Equation 3.2 in the distributional sense.

3.1.3 Finding a decaying solution for λ 6∈ Σ

We would like to define fλ = vλ, but for Equation 3.1 to converge we must modify vλ by
a linear combination of homogeneous solutions to Equation 3.2 so that fλ(z) grows at worst
like a fixed polynomial in λ for all z. In this section we write α for α(λ) and β for β(λ) for
brevity.

Fix a branch of the complex logarithm cut along the negative real axis. We have that for
λ 6∈ Σ, F (α, β, γ;x) has the analytic extension

F (α, β, γ;x) =
Γ(β − α)Γ(γ)

Γ(β)Γ(γ − α)
(−x)−αF (α, α + 1− γ, α + 1− β;x−1)

+
Γ(α− β)Γ(γ)

Γ(β)Γ(γ − β)
(−x)−βF (β, β + 1− γ, β + 1− α;x−1),

which is defined for all x such that −x is in the domain of log (see [14] 3.6(28)-(30)). For
clarity, define

f1(x) =
Γ(β − α)Γ(γ)

Γ(β)Γ(γ − α)
|x|−αe−αi(arg(x)−π)F (α, α + 1− γ, α + 1− β;x−1),
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and
f2(x) =

Γ(α− β)Γ(γ)

Γ(β)Γ(γ − β)
|x|−βe−βi(arg(x)−π)F (β, β + 1− γ, β + 1− α;x−1)

on C \ R. Then if z > 0,
F (α, β, γ;x) = f1(x) + f2(x), (3.8)

while if z < 0,
F (α, β, γ;x) = e−2πiαf1(x) + e−2πiβf2(x). (3.9)

Now because f1 and f2 are linearly independent solutions to the homogeneous version of
Equation 3.2 ([14] 3.7) and F (α, β, γ; 1 − x) is defined on the upper half-plane, there exist
µ1 and µ2 such that

F (α, β, γ; 1− x(z)) = µ1f1(x(z)) + µ2f2(x(z)) (3.10)

for z > 0. But by Equations 3.6 and 3.9 we have that if z > 0,

F (α, β, γ; 1− x(z)) = e−2πiαf1(x̄(z)) + e−2πiβf2(x̄(z)). (3.11)

Let z → +∞ and divide Equation 3.10 by Equation 3.11. Note that as |z|→ ∞, F (β, β +
1 − γ, β + 1 − α;x−1) → 1 and likewise for the conjugate. Since β < α, |x|−β dominates
|x|−α, while the phase of x goes to π/2, so we have that

e2πiβµ2 = lim
z→+∞

f2(x̄(z))

f2(x(z))
= eπiβ.

But since F (α, β, γ;x) is a real power series, F (α, β, γ; 1 − x(z)) = F (α, β, γ;x(z)). Thus
Equations 3.8 and 3.10 give that

lim
z→∞

Im(F (α, β, γ;x(z)))

Re(F (α, β, γ;x(z)))
= tan

(π
2
β
)
.

Taking the complex conjugate, we must have that

lim
z→−∞

Im(F (α, β, γ;x(z)))

Re(F (α, β, γ;x(z)))
= − tan

(π
2
β
)
.

Thus if we let ρ = − tan(π
2
β), we have that(

σ0(z)− 1

2

)
Im(vλ1 )(z) +

ρ

2
Re(vλ1 )(z) = O((Tz)−α)

Now let

C1 =
12πψλ(pD)T

αβ

Γ(2+α
2

)Γ(2+β
2

)

Γ(1
2
)Γ(3+α+β

2
)
,
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so that
vλ(z) = C1σ0(z)Im(vλ1 (z)).

Define
fλ(z) =

C1

2

(
− Im(vλ1 )(z) + ρRe(vλ1 )(z)

)
+ vλ(z). (3.12)

By our discussion above,
fλ(z) = O((Tz)−α). (3.13)

Indeed our choice of fλ is the unique decaying solution to the inhomogeneous equation 3.2.

3.1.4 Extension to Σ

By Equation 3.6, we can replace Im(F ) and Re(F ) in Equation 3.12 with appropriate
linear combinations of F (α, β, γ, x) and F (α, β, γ, 1 − x). It can be checked that both of
these functions are locally holomorphic in x, α and β. Checking all other terms in Equation
3.12, we find that if we ignore the step function term, the function

fλ(x)

ψλ(pD)
,

extends to a meromorphic function of α (recall that β = 5− α) and of x away from x = 1.
Call this function g(α, x). Now in Section 3.1.6 we will show that away from λ = 0, fλ(z)
is uniformly bounded by a polynomial in λ for λ 6∈ Σ and z ∈ R. Therefore for λ∗ ∈ Σ, g is
holomorphic in a neighborhood of

{α(λ∗)} × {x(z) : z ∈ [−1, 0]} ⊂ C2,

and so g(α(λ), x(z)) converges smoothly to a function of z ∈ (−1, 0) as λ → λ∗. Note
that convergence holds up to the boundary, i.e. ∂kz g(α(λ), x(0)) → ∂kz g

k(α(λ∗), x(0)) for all
integers k ≥ 0.

By a similar argument, g(α, x) converges smoothly to a function for z ∈ [0, 1/2]. We
define

fλ∗(z) = ψλ∗(pD)g(α(λ∗), z).

Smooth convergence up to the boundary on [−1, 0] and [0, 1/2] ensures that fλ∗ satisfies
Equation 3.2.

3.1.5 Solution for λ = 0

This convergence argument does not give the solution at λ = 0 because the uniform
bound on g does not hold as λ → 0. In this case, however, the general solution to the
homogeneous version of Equation 3.2 is given by

1

(1 + (Tz)2)2

(
µ1 + µ2

(
z +

T 2z3

3

))
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for µ1, µ2 ∈ R.
Variation of parameters yields an inhomogeneous solution

v0 = 2πσ0(z)T 2ψ0(pD)
z + T 2z3

3

(1 + (Tz)2)2
.

We add a homogeneous solution to define the even function

f0(z) = (2σ0(z)− 1)πT 2ψ0(pD)
z + T 2z3

3

(1 + (Tz)2)2
.

3.1.6 L2 estimates of the ODE solutions

To show the convergence of Equation 3.1, we first control the growth of the solutions to
Equation 3.2 at the origin. Then we use the maximum principle to show that the value at
the origin bounds the value everywhere.

Proposition 3.1.1. For all λ > 2 and T > 0, let fTλ be the unique decaying solution to
Equation 3.2. Then fTλ (0) ≤ 0. Further, there exists N > 0 independent of T and λ such
that

|fTλ (0)|= TO(λN)

as λ→∞.

Proof. Using Equation 3.7 to evaluate vλ1 (0) and noticing that vλ1 (0) is a real power series
with a real argument, we see that if λ 6∈ Σ then

(3.14)
fTλ (0) = −12πTψλ(pD)

2αβ

Γ(2+α
2

)Γ(2+β
2

)

Γ(1
2
)Γ(4)

Γ(1
2
)Γ(3)

Γ(1+α
2

)Γ(1+β
2

)
tan
(π

2
β
)

= −CTψλ(pD)

αβ

Γ(2+α
2

)Γ(2+β
2

)

Γ(1+α
2

)Γ(1+β
2

)
tan
(π

2
β
)

for some C > 0 independent of λ and T . First we note that by elliptic regularity,

ψλ(pD) = O(
√
λ)

as λ→∞. To understand the gamma function terms, we note that for x ≥ 3,

bx− 1c!≤ Γ(x) ≤ dx− 1e! . (3.15)

In addition, we have the following identities (see [14] 2.2).
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Lemma 3.1.2. For x ∈ R and N ∈ Z>0,

Γ(x+N) = (x)NΓ(x), (3.16)

Γ(x)Γ(1− x) = π csc πx, (3.17)

and
Γ(

1

2
+ x)Γ(

1

2
− x) = π sec πx. (3.18)

Equation 3.17 and 3.18 give that

Γ(2+α
2

)Γ(2+β
2

)

Γ(1+α
2

)Γ(1+β
2

)
= −

Γ(2+α
2

)Γ(1−β
2

)

Γ(1+α
2

)Γ(−β
2

)
cot

(
πβ

2

)
.

Cancelling the tangent terms and noting that β < 0 as long as λ > 2, this proves that
fTλ (0) ≤ 0. Further, since a → ∞ as λ → ∞ and β = 5 − α, Equation 3.15 gives that for
large enough λ,

Γ(2+α
2

)Γ(1−β
2

)

Γ(1+α
2

)Γ(−β
2

)
≤
dα

2
e! dα−6

2
e!

bα−1
2
c! bα−7

2
c!
,

which by Equation 3.16 is bounded by a polynomial in α as α → ∞. But α = O(λ) as
λ→∞.

Proposition 3.1.3. Take fTλ as in Proposition 3.1.1. Then fTλ (z) is nonincreasing on
(−∞, 0] and nondecreasing on [0,∞).

Proof. We first note that fTλ (z) ≤ 0 for all z and λ > 2. For away from z = 0, fTλ is a
smooth solution to the homogeneous version of Equation 3.2. Therefore by Proposition 3.1.1
and Equation 3.13, if fTλ (z) > 0 for any z < 0 then fTλ has a positive local maximum at
some z∗ ∈ (−∞, 0). But then (fTλ )′′(z∗) ≤ 0, (fTλ )′(z∗) = 0, and fTλ (z∗) > 0, contradicting
Equation 3.2. An identical argument shows that fTλ is nonpositive on (0,∞).

Now we show that for λ > 2, fTλ (z) is nonincreasing on (−∞, 0]. An argument as in the
previous paragraph shows that fTλ (z) cannot have a negative local minimum on (−∞, 0).
But if fλ(z1) < fλ(z2) for z1 < z2 < 0, there must be a negative local minimum on (−∞, z2).

A similar argument gives that fTλ is nondecreasing from 0 to ∞.

Propositions 3.1.1 and 3.1.3 give the desired L2 growth control.

Proposition 3.1.4. Fix T > 0. Then

‖fTλ (z)‖L2(−1,1)= O(λN)

for some N > 0.

Remark 3.1.5. The solutions fTλ are defined on all of R, and the convergence arguments
of this section apply to any compact interval. Therefore it is justified to speak of δh as a
function on R.
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3.1.7 Decay of δh

Away from the singular point, the behavior of δh is controlled by the zero mode which is
constant over D.

Proposition 3.1.6. Let δhT =
∑

λ≥0 f
T
λ ψλ. Then there exists ρ > 0 such that

δhT = fT0 ψ0 + T O((Tz)−4) (3.19)

and
∆Dδh

T = T O((Tz)−4) (3.20)

on |z|≥ ρT−1 as T →∞ .

Proof. We see from Equation 3.2 that 1
T
δhT (z) = δh1(Tz). Therefore it is sufficient to show

that
δh1(z) = f 1

0ψ0 +O(z−4)

for |z|≥ ρ. By Remark 3.1.5 we may treat δh1 as a function on R. If λ > 0 then α(λ) > 4,
so by Equation 3.13 each ψλfλ(z) is dominated by z−4Cλ for some Cλ > 0. It remains to
show that the series

∑
λCλ converges.

Now for z ∈ (0,∞) and ε ∈ (0, 1) let

gλ(z) = zελ+4 max
D
|ψλ| fλ(z).

Then Equation 3.2 gives that

z2(1 + z2)g′′λ(z) + ... + (λ2(ε2 + (ε2 − 1)z2) + λ(3εz2 + 9ε) + 20)gλ(z) ≡ 0, (3.21)

on D, where we have omitted the g′λ(z) term. The coefficient of g′′λ(z) and the coefficient of
gλ(z) are positive for all |z|< 1 for ε close enough to 1.

Assume that λ � 0. By Proposition 3.1.1, gλ(z) < 0 for all z > 0. Equation 3.13 gives
that lim

z→±∞
|gλ(z)|= 0, since

α(λ) > 4 + ελ, λ� 0.

Also, since fλ is continuous, lim
z→0

gλ(z) = 0. But by Equation 3.21 and the arguments from
Proposition 3.1.3, gλ(z) cannot have a negative local maximum in (0,∞). Therefore there
exists η > 0 such that gλ(z) is nondecreasing on (η,∞).

Fix ρ and ρ1 such that η < ρ1 < ρ. By Proposition 3.1.1, Proposition 3.1.3, and Equation
3.3,

|max
D

ψλ fλ(ρ1)|= O(λk)

for some k <∞. Then

|ρ4 max
D

ψλ fλ(ρ)|≤
∣∣∣∣(ρ1

ρ

)ελ
ρ4

1 max
D

ψλ fλ(ρ1)

∣∣∣∣ ≤ C

(
ρ1

ρ

)ελ
λk,
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where C depends on ρ1 but not λ. Using Equation 3.4, the right hand side is summable, so
we can take Cλ = C(ρ1

ρ
)ελλk with C as above. By nondecreasingness, this bound holds for

all z > ρ. Meanwhile, because fλ is even-symmetric, the bound holds for z < −ρ as well.
Since ∆Dδh =

∑
λ>0−λ2ψλfλ, the proof for ∆Dδh

T (z) follows with Cλ = C(ρ1
ρ

)ελλk+2.

3.2 Correction to h
Given the solution h = h0 + δh to the linearization of Equation 2.10 that we have just

constructed, we can define χ by integrating Equation 2.11 and choosing a = k− = 0. Having
done so, we see that (χ, h+ q(z)) also solves Equation 2.11 for q a smooth function of z. We
make use of this freedom to construct another solution h̃ that has the desired behavior near
the of the z-interval [−1, 1/2].

Fix a constant C2 > 0 as in Proposition 3.1.6. Then we have that for |z|≥ C2

2T
,

h = T 2

(
1

1 + (Tz)2
+ (2σ0(z)− 1)πψ0(pD)

z + T 2z3

3

(1 + (Tz)2)2
+O(T−1)

)
.

Now for each T let h̃ be a smooth function satisfying

T−2h̃ =


T−2h |z|< C2

2T

T−2h+O(T−1) C2

2T
≤ |z|< C2

T
k±z+1

2
3
T 2k±z3+T 2z2+1

+O(T−5z−4) C2

T
≤ |z|< 1

with k± interpreted as k− for z < 0 and k+ for z > 0. This is possible because for C2

2T
≤ |z|≤

C2

T
,

k±z + 1
2
3
T 2k±z3 + T 2z2 + 1

=
1

1 + (Tz)2
± πψ0(pD)

z + T 2z3

3

(1 + (Tz)2)2
+O(T−1).

Therefore a smooth interpolation of T−2h and k±z+1
2
3
T 2k±z3+T 2z2+1

in this region differs from T−2h

by a function that is O(T−1). But the zero eigenfunction ψ0 is constant, so by Equation 3.19,
the D-dependent terms of δh are TO((Tz)−4) for |z|> C2

2T
. Therefore after a T−1O((Tz)−4)

correction, we can take T−2(h̃− h) to be a function of z only.
For simplicity of notation, the symbol h will refer to the function h̃ for the remainder of

this thesis.

3.3 Expansion near the singular point
Equation 2.15 and the linearization of Equation 2.11 yield a useful expansion of the metric

near the singular point.
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First, we introduce a notation for describing the regularity of functions defined near a
singularity. For ` ∈ N and U ⊆ R3

a,b,w containing 0, let

rw(a, b, w) =
√
a2 + b2 + w2

and

W`(U) = {f ∈ C∞(U \ {0}) : ∇jf = O(r`−jw log(rw)) as rw → 0, ∀j ≥ 0}. (3.22)

Now for any ` ∈ N and U ⊂ R3
a,b,w containing 0 we take w` to be a function in W `(U).

Similarly, for any k ∈ Z≥0 and α ∈ (0, 1), we take gk,α to be a function in C∞(U \ {p}) ∩
Ck,α(U). We allow gk,α, w`, and the corresponding domains U to change in each invocation
(as is convention for the constant C), but it will always be assumed that they have no
dependence on T .

The following elementary result will provide the desired regularity for an expansion
around the singular point.

Lemma 3.3.1. Let f(a, b, w) be a homogeneous polynomial of degree k and L′ a differential
operator such that L′(W1) ⊆ W1. Then there exist u, v′ ∈ W1 such that

(∆R3 + L′)u =
f

rk+1
w

+ v′.

Proof. Since L′(W1) ⊆ W1, we may assume L′ = 0. Now let p(k) be a homogeneous polyno-
mial of degree k. Then

∆R3

p(k)

rk−1
w

= −(k − 1)(k + 2)
p(k)

rk+1
w

+
∆R3p(k)

rk−1
w

.

But ∇(p
(k)

rjw
) = p(k+1)

rj+2
w

for p(k+1) a homogeneous polynomial of degree k + 1, so p(k)

rk−1
w
∈ W1. In

particular, f

rk−1
w
∈ W1, so taking u = −1

(k−1)(k+2)
f

rk−1
w

, we see that if k > 1 and the result holds
for k′ < k, it holds for k as well.

To establish the base cases k = 0, 1, we note that

∆R3rw =
2

rw

and
∆R3(a log(rw)) =

3a

r2
w

.
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Now return to the space constructed above and assume that in the notation of Section
3.2, |z|< C2

2T
. If we let

LhT,z = (∆D + T−2∂2
z ) + z2∂2

z + 6z ∂z + 4

then Equation 2.15 gives that
LhT,z(δh) = 2πδp.

Define a new coordinate
w = Tz. (3.23)

Changing coordinates, we have that

LhT,z = (∆D + ∂2
w) + w2 ∂2

w + 6w ∂w + 4 = ∆cyl + w2 ∂2
w + 6w ∂w + 4 = Lh1,w,

where ∆cyl is the Laplacian on the Riemannian product D × Rw, and

Lh1,w(δh) = T 2πδp, (3.24)

where δp now refers to a delta function with respect to the coordinate w.
Now let y = a + ib be a Kähler normal coordinate on D in a neighborhood U of the

singular point pD and define

rw =
√
|y|2+w2 =

√
a2 + b2 + w2 (3.25)

on U . Then if ω0 is the standard metric and ∆0 = (∂2
a + ∂2

b ) is the standard Laplacian in
these coordinates,

∆D −∆0 = O(r2
w)D,

where D is a second-order differential operator with continuous coefficients with respect to
y and w. Let R = w2∂2

w + 6w ∂w + 4. Since

∆cyl (r−1
w ) = 4πδp

in the sense of distributions, we find that

Lh1,w
(
δh− T

2rw

)
= Lh1,w(δh)− (∆0 + ∂2

w)

(
T

2rw

)
− (∆D −∆0)

(
T

2rw

)
−R

(
T

2rw

)
= Tg0,α(a, b, w) +

Tp3(a, b, w)

r4
w

+
Tp4(a, b, w)

r5
w

,

where pk(a, b, w) is a homogeneous polynomial of degree k in a, b, w with coefficients inde-
pendent of T . Lemma 3.3.1 plus Schauder regularity give that

δh =
T

2rw
+ Tg2,α + Tw1. (3.26)
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Equation 3.26 yields a similar expression for δχ. By Equation 2.14, we have that for
some smooth function g∞ on D,

δχ = h−1
0 δh+ 2

∫
zδh dz + zg∞

=
w2 + 1

T 2

(
T

2rw
+ Tg2,α + Tw1

)
+

2

T

∫ (
w

2rw
+ w g2,α + ww1

)
dw + zg∞

=
1

2Trw
+
rw
T

+ T−1g2,α + T−1w1.

Since rw ∈ W1, this implies that

δχ =
1

2T rw
+ T−1g2,α + T−1w1. (3.27)

Remark 3.3.2. We can repeat the above analysis on an arbitrary coordinate path U on D.
If U does not contain the singular point, we find that

δh|U= Tg2,α + Tw1.

Since D is compact, this implies that

δh =
T

2rw
+ Tg2,α + Tw1 on D × [−C2, C2]w.

Similarly,

δχ =
1

2Trw
+ T−1g2,α + T−1w1 on D × [−C2, C2]w.
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Chapter 4

Construction of the Singular S1

Fibration Over D × [−1, 1/2]

In Section 2, we derived a system of equations sufficient to define a Kähler-Einstein
metric on an S1 fibration over D × [−1, 1/2] \ {p}. In Section 3, we constructed the data
(χ, h) = (χT , hT ) of a family of approximate solutions to this system parameterized by
T � 0. As noted in Section 2.2, there is a gauge freedom in the choice of connection on the
resulting S1 fibration. Now we will make a choice of connection such that the S1 fibration
can be completed over the singular point to a C2,α fibration M, allowing us to define the
family ωT of approximately Kähler-Einstein metrics onM. To motivate this choice, we first
consider two spaces on which we aim to model the geometry of M: the Taub-NUT space,
to describe the behavior near p, and the Calabi model space, to describe the behavior as
z approahces the ends of the interval [−1, 1/2]. Our techniques in this chapter follow [19]
Section 4.1.

4.1 Two model spaces

4.1.1 The Taub-NUT space

Let u1, u2 be coordinates on C2 and y, ȳ, w coordinates on R3 = C ⊕ R. The Hopf
fibration πH : C2 \ {(0, 0)} → R3 \ {(0, 0, 0)} is an S1 fibration given by

πH(u1, u2) = (u1u2,
1

2
(|u1|−|u2|2)) = (y, w).

It is checked that if r =
√
|y|2+w2, then

gC2 =
1

2r
π∗HgR3 + 2rΘ2

0,

where
Θ0 =

1

2r
Jπ∗Hdw,
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and J is the standard complex structure on C2 with the convention Jdy = −i dy. The Taub-
NUT space is constructed by changing 1

2r
→ 1

2r
+ a for some constant a > 0. The resulting

metric is still complete and Ricci flat.

Definition 4.1.1. Fix a > 0. The Taub-NUT space with parameter a on C2 is

gTN,a =

(
1

2r
+ a

)
π∗HgR3 +

(
1

2r
+ a

)−1

Θ2,

where
Θ =

(
1

2r
+ a

)
Jπ∗Hdw. (4.1)

The Taub-NUT space is invariant under the S1 action on C2 that the rotates the fibers
of πH , so as in the discussion in Section 2.2, the Kähler form of the Taub-NUT space gTN,a
is

ωTN,a =

(
1

2rw
+ a

)
π∗HωC + dw ∧Θ, (4.2)

and
dΘ = ∂wπ

∗ω0 − dw ∧ dc
(

1

2r
+ a

)
, (4.3)

where ω0 = ( 1
2r

+ a) i
2
dy ∧ dȳ and dc is computed with respect to the complex structure on

C ⊂ C⊕ R (see [19] 2.3).
Note that if we make the change of coordinates y = a

b
y, w = a

b
w, and rw =

√
|y|2+|w|2,

then we have
a gTN,a = b g

TN,b
, (4.4)

where g
TN,b

is the Taub-NUT metric with parameter b with respect to the new coordinates.

4.1.2 The Calabi model space

Let (D,ωD) be a compact curve with KD ample and ωD negative Kähler-Einstein nor-
malized such that ωD ∈ 2π c1(KD). We can choose a Hermitian metric ‖·‖D on KD such
that

−i∂∂̄ log‖·‖2
D= ωD. (4.5)

Our goal is to construct a negative Kähler-Einstein metric with constant −1 on a subset of
the total space of nKD for some n ∈ Q. We hypothesize that there exists such a metric of
the form

ω = i∂∂̄F (− log‖·‖2n
D ) (4.6)

for some function F . We write x = − log‖·‖2n
D and view F as a function of x.
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(D,ωD)

(nKD, ‖·‖nD)

(TD, i∂∂̄F (−‖·‖2n
D ))

Figure 4.1: The Calabi model space. Let (D,ωD) be a compact negative Kähler-Einstein
curve with canonical bundle KD and ‖·‖D a Hermitian metric on KD with curvature ωD. The
Calabi model space is the tubular neighborhood TD = {−1/2n < z < 0} ⊂ nKD equipped
with the metric ω = i∂∂̄F (−‖·‖2n

D ).

If locally ‖·‖2
D= h|u|2 for a real function h(y) of a localD coordinate y and fiber coordinate

u, then by Equation 4.5,

−i∂∂̄ log

(
−i∂∂̄ log(h)
i
2
dy ∧ dȳ

)
= i∂∂̄ log(h),

which will be satisfied if

−h∂∂̄h− ∂h ∧ ∂̄h
h2

=
i

2h
dy ∧ dȳ,

or equivalently

i∂∂̄x = n
i

2h
dy ∧ dȳ. (4.7)

Taking the Ricci curvature of ω and applying Equation 4.7, we find that it is sufficient to
solve the ordinary differential equation

log(F ′F ′′) +
x

n
− F = C (4.8)

for any constant C.
The generator of the natural S1 action on nKD is

ξ = i(u ∂u − ū ∂ū),

so if a metric is defined by Equation 4.6,

h−1 = ‖ξ‖2
ω= 2

d2F

dx2
.
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In addition, by Cartan’s formula, ιξω = i d ξy∂̄F (x), so

z(x) =
dF

dx
− 1

n

is a moment map for such a metric. Let

µ(z) =
nz(x)3

3
+
z(x)2

2

and define
F (x) = log(µ(z(x))) +

x

n
.

Then
z(x) =

(
µ′

µ

)
dz

dx
,

while
h−1 = 2

dz

dx
= 2

(
zµ

µ′

)
,

and it is easily verified that F satifies Equation 4.8.
By the discussion in Section 2, ω satisfies Equation 2.1. A computation with Equations

2.1 and 4.6 then gives that ω̃ = (1 + nz)ωD.
Note that

x =

∫ z ns+ 1
ns3

3
+ s2

2

ds+ C.

The integrand is positive for −1/n < z < 0. Restricting z to this interval, we see that since
x → ∞ near the zero section, z increases towards the zero section as well. We define the
Calabi model space as the subset

TD = {−1/2n < z < 0} ⊂ nKD

equipped with the metric ω. This space is punctured along the zero section and has a
“tubular” boundary.

For convenience of notation we consider the n = 0 case as part of this family. In this
case the metric takes the D-invariant form described in Equation 2.13 and we define TD =
{−1 < z < 0}.

4.2 Construction ofM∗

Our neck regionM should resemble a Calabi model space at each end, but the two Calabi
model spaces have different degrees and are oriented in opposite directions. Concretely, if
Θ = hJdz as in Equation 2.2 and taking k± as in the statement of Theorem 1.2.1, near ∂M−
we must have that

h =
k−z + 1

2
3
k−z3 + z2 + T−2
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while near ∂M+, we must have that

h =
k+z + 1

2
3
k+z3 + z2 + T−2

.

Note that if we interpret the negative sign of k+ as part of the z coordinate, Θ behaves as
if z increases towards the zero section, as in our discussion of the Calabi model space. This
explains why k− ≥ 0 and k+ ≤ 0.

Recall the 2-form Γ = ∂zω̃ − dz ∧ dch on D × [−1, 1/2] \ {p}. By Equation 2.2, dΘ = Γ,
so Γ is closed. By Lemma 4.2.1, 1

2π
Γ is the curvature of a connection form of a singular

S1 bundle over D × [−1, 1/2]. This S1 bundle will become the manifoldM underlying our
family of metrics, and the change from k− to k+ will correspond to a change in the degree
of its restriction to D.

In Section 2.2.2 we made the choice to add a singularity of the form 2πδp to Equation 2.11.
We can now see that this singularity increments the degree of the circle bundle corresponding
to Γ by one, corresponding to the assumption that k−− k+ = 1. Larger increments between
k− and −k+ are achieved by adding multiple separate singular points to the neck region, for
instance by choosing several points p1, ..., pn on D × {0} and changing the inhomogeneous
term to 2π

∑n
i=1 δpi . We then add the linearized solutions constructed in Section 3 and the

analysis goes through without change.

Lemma 4.2.1. For all T > 0, 1
2π

Γ ∈ H2(D × [−1, 1/2] \ {p};R) is integral.

Proof. By a Mayer-Vietoris argument it suffices to show that 1
2π

Γ integrates to an integer
over a slice D × {z0} for some z0 6= 0 and over the boundary of a ball

Sε(p) = {q : rw(q) ≤ ε}

for some sufficiently small ε > 0.
For the first integral, note that since

∂2
z ω̃ = −(∆Dh)ωD,

away from z = 0, we have that

∂z[∂zω̃] = [∂2
z ω̃] = 0 ∈ H2(D;R),

and therefore [∂zω̃] is constant in z. However, by Proposition 3.1.6,

∂zω̃ = (k± +O(T−3))ωD

for large z. Thus letting |z|→ ∞ (see Remark 3.1.5) shows that [∂zω̃] = k±[ωD]. The
component dz ∧ dch does not contribute to the integral of Γ over D.

For the second integral, observe that by Stokes’ theorem,∫
∂Sε(p)

1

2π
Γ = lim

ε′→0

∫
∂Sε′ (p)

1

2π
Γ.
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Now by Equation 3.27 we have for rw small that

∂zω̃ =

(
− Tz

4r3
w

)
i dy ∧ dȳ +O(log(rw))

and by Equation 3.26 we have that

dz ∧ dch =
−iT
4r3

w

dz ∧ (y dȳ − ȳ dy) +O(log(rw)).

But
d(z dy ∧ dȳ − y dz ∧ dȳ + ȳ dz ∧ dy) = 3 dz ∧ dy ∧ dȳ,

so
lim
ε′ →0

∫
∂Sε′ (p)

1

2π
Γ = lim

ε′→0

∫
Sε′ (p)

− 3iT

8π(ε′)3
dz ∧ dy ∧ dȳ +O((ε′)2 log(ε′))

= − lim
ε′→0

∫
Sε′ (p)

3

4π(ε′)3

(
i

2
dy ∧ dȳ

)
∧ dw

= −1,

as desired.

By Lemma 4.2.1, there is an S1 bundle π : M∗ → D × [−1, 1/2] \ {p} with connection
form −iΘ′ whose curvature is −iΓ. The connection form −iΘ′ is not unique, but we fix an
arbitrary choice. Note that the spacesM∗ are diffeomorphic for all T , since changing T only
rescales all data with respect to the z coordinate.

4.3 Compactification ofM∗

Now we can construct a compactification of M∗ modeled on the Taub-NUT space. As
manifolds this only involves adding a point to M∗ and it is easily seen that the resulting
spaces will be diffeomorphic for all T . Let (y, ȳ, w) be the coordinates on D × [−1, 1/2] in
the punctured neighborhood U ′ = U × [−1, 1/2] \ {p}, where U is as defined in Section 3.3.
If V = π−1(U ′), then in some coordinates u1, u2, V gives a subset of C2 \ {0}, and we can
define the Hopf fibration π′ : V → U ′ by

(u1, u2)→ (u1u2,
1

2
(|u1|2−|u2|2)). (4.9)

Now π and π′ are S1 fibrations of the same degree, so there is an S1-equivariant smooth map
φ : V →M, diffeomorphic with its image, such that φ∗π = π′. In other words, we can choose
complex-valued (though not necessarily holomorphic) coordinates u1 and u2 such that π is
the Hopf fibration given in coordinates by Equation 4.9, i.e. y = u1u2, w = 1

2
(|u1|2−|u2|2),

and the connection is given by φ∗(−iΘ′).
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From now on we will assume we have made such a transformation and take u1, u2, and
π as in the Hopf fibration. In addition, we define in these coordinates

s2 = |u1|2+|u2|2. (4.10)

Notice that
π∗rw =

1

2
s2. (4.11)

The connection form determines the metric onM∗ via Equation 2.1. However our arbi-
trary choice of connection may not have the desired behavior near p. Now we modifyM∗ by
a Gauge transformation so that near p the metric onM∗ differs from the Taub-NUT space
by a form of sufficiently high regularity. This will give a C2,α compactification ofM∗ over
p, completing our construction of the singular S1 fibrationM and its C2,α Kähler structure.

We adopt the coordinates u1, u2 defined above so that the map π :M∗ → D× [−1, 1/2]\
{p} is identified with the Hopf fibration. Define Θ0 by Equation 4.1, taking a = T , J the
natural complex structure on C2

u1,u2
, and with πH given by π. Note also that by our choice

of coordinates in Section 4.2, r = rw. By Equations 3.26, 3.27, and 4.3, we have that near
p ∈ D × [−1, 1/2],

Γ− dΘ0 = ∂z(ω̃ − T−1ω0) + dw ∧ dcD
(
h

T
− 1

2rw
− T

)
= ∂z(g

2,α + w1)
i

2
dy ∧ dȳ + dw ∧ dcD(g2,α + w1)

= c1 dy ∧ dȳ + c2 dw ∧ dy + c3 dw ∧ dȳ

for some c1 ∈ C1,α(U) +W 0(U) and c2, c3 ∈ C2,α(U) +W 1(U). Pulling back toM∗, we have
that with respect to the flat metric in u1, u2,

π∗(c1 dy ∧ dȳ) = (g1,α + w0)O(s2) = g1,α, (4.12)

while by the same argument the c2 and c3 term have higher regularity. Therefore we denote
ω1,α = c1 dy ∧ dȳ + c2 dw ∧ dy + c3 dw ∧ dȳ.

If we impose the gauge-fixing condition d∗θ = 0, then for some ε > 0, we can solve the
elliptic system 

dθ = ω1,α

d∗θ = 0
θ(ν) = 0 on δBε(p)

on Bε(p), where ν is the unit normal to Bε(p). The resulting one-form θ is smooth away
from π−1p since ω1,α is, and since the system is S1 invariant, θ can be chosen S1-invariant
by averaging. We also have that θ ∈ C2,α(Bε(p)), since

∆θ = d∗ω1,α ∈ C0,α(Bε(p)).

Finally, θ(∂t) = 0. For by Cartan’s formula, d(ι∂tθ) = −ι∂tω1,α = 0, so θ(∂t) is constant.
But ∂t → 0 near p, so by the regularity of θ, θ(∂t) = 0.
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Now define Θ = Θ0 + θ. Because dΘ = Γ = dΘ′, there is a gauge transformation that
takes Θ′ to Θ. Since gauge transformations only rotate the fibers of the S1 bundle, π is still
modelled on the Hopf fibration as in Equation 4.9. However, we will see in Section 5.3.1
by taking Θ as our connection, ω is asymptotic to the Taub-NUT metric near p. Therefore
(M, ω) is a C2,α compactification ofM∗.



33

Chapter 5

Limiting Behavior of the Approximate
Solution

5.1 Convergence of Riemannian manifolds
The space (M, ωT ) we constructed in Chapters 3 and 4 is Kähler, but since it solves

the linearization of Equation 2.10 rather than the full equation, it is only approximately
Einstein. We aim to argue that for large enough T , ωT is sufficiently close to being Einstein
that it can be perturbed to an Einstein metric. Several notions of the distance between
metrics will be useful in making this argument. Our discussion in this section follows [16]
Chapter 11.

5.1.1 Gromov-Hausdorff convergence

The weakeast notion of convergence we use is Gromov-Hausdorff convergence. The
Gromov-Hausdorff distance quantifies the dissimilarity between metric spaces.

Definition 5.1.1. Let (X, dX) and (Y, dY ) be metric spaces and let A be the set of metrics
on X ∪ Y that extend dX and dY . The Gromov-Hausdorff distance is defined as

dGH((X, dX), (Y, dY )) = infd∈A d(X, Y ),

where for a metric d on X ∪ Y , d(X, Y ) = inf{ε : ∀x ∈ X, ∃y ∈ Y : d(x, y) < ε}.

In Riemannian geometry, the metric spaces will be Riemannian manifolds (M, g) with
the metric dg induced by distance in the Riemannian metric g. Thus we say that (Mi, gi)
converges to (M, g) in the Gromov-Hausdorff topology if dGH((Mi, dgi), (M,dg)) → 0 as
i → ∞. In such a situation, we may also informally say that xi ∈ Mi → x ∈ M if there
exists a sequence of metrics di ∈ A realizing the Gromov-Hausdorff convergence such that
d(xi, x)→ 0.
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The Gromov-Hausdorff distance defines a complete, separable metric space on the set of
equivalence classes under isometry of compact metric spaces (see [16] 11.1.18). On noncom-
pact spaces, we instead consider pointed Gromov-Hausdorff convergence. Let (X, dX , x) and
(Y, dY , y) be metric spaces with distinguished points x and y. We define

dGH((X, dX , x), (Y, dY , y)) = infd∈A (d(X, Y ) + d(x, y)).

Then (Xi, dXi , xi) → (X, dX , x) if for all R > 0, (B̄R(xi), dXi , xi) → (B̄R(x), dX , x) with
respect to the pointed Gromov-Hausdorff distance.

Gromov-Hausdorff convergence on its own is a relatively weak notion. It does not imply
the convergence of derivatives in any sense, and limits of manifolds may not be manifolds.
In addition, a sequence of n-dimensional manifolds may converge to a manifold of any lower
dimension (by collapsing) or higher dimension (by space-filling). With additional assump-
tions, however, Gromov-Hausdorff convergence can imply stronger convergence. For instance,
Cheeger and Naber [5] proved that a sequence of manifolds with Ricci curvature uniformly
bounded and local volume noncollapsing converges smoothly outside a singular set of real
codimension at least 4.

The local volume noncollapsing assumption does not hold in our case, and we will see that
if we rescale to a constant diameter, our spaces converge to a real interval. The usefulness
of Gromov-Hausdorff convergence for our purposes is in allowing us to describe the limiting
geometry of different parts of the neck region we are constructing. We will see that after an
appropriate rescaling, some portions of the neck region collapse to lower-dimensional spaces.
The notion of Gromov-Hausdorff convergence allows us to state the sense in which these
lower-dimensional spaces occur as limits. Subsequent analysis will require passing to local
universal covers to “un-collapse” these spaces and achieve Ck,α convergence.

5.1.2 Hölder regularity scales

It is often useful to discuss convergence of the derivatives of a sequence of metrics. For
this purpose we measure the Hölder norms of these metrics in local coordinates. If we were
to naively allow any choice of charts, however, we could “zoom in” to normal neighborhoods
around each point and every smooth metric would look like the Euclidean metric. Therefore
we must control the radius of the chart and the extent of magnification in our definition of
the Hölder norm.

Definition 5.1.2. Let (M, g) be a Riemannian manifold, p ∈ M a distinguished point,
and r > 0. For any k ∈ Z≥0 and α ∈ (0, 1), ‖(M, g, p)‖Ck,α,r is defined as the supremum
over constants Q such that there exists a Ck+1,α chart φ : (Br(0), 0) ⊂ Rn → (U, p) ⊂ M
satisfying the following conditions:

1. |Dφ|≤ eQ on Br(0) and |Dφ−1|≤ eQ on U .

2. For all multi-indices I such that |I|≤ k,

r|I|+α‖∂Iglm‖C0,α(Br(0))≤ Q.
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Then globally
‖(M, g)‖Ck,α,r= sup

p∈M
‖(M, g, p)‖Ck,α,r.

The Hölder norm computes the largest constant for which the metric can be controlled
at a fixed scale r. Conversely, we can ask for the largest scale at which a fixed constant Q
controls the metric. This gives rise to the notion of a local regularity scale.

Definition 5.1.3. Fix ε > 0 and r > 0. We say that a Riemannian manifold (M, g) is
(r, k + α, ε)-regular at p ∈M if g is Ck,α-regular on B2r(p) and

‖(M, g, p)‖Ck,α,r≤ ε.

We define the Ck,α-regularity scale of (M, g) at p to be the supremum over the set of r for
which (M, g) is (r, k + α, ε)-regular at p.

Intuitevely, the Ck,α ε-regularity scale at p is the scale on which the Ck,α geometry ofM is
“ε-interesting.” Thus it provides a choice of resolution that is in a sense uniform throughout
M .

5.1.3 Hölder convergence and Einstein regularity

The Ck,α, r norm defined in Section 5.1.3 is useful for deriving compactness results but
cannot be used to measure the distance between two metrics. For this purpose, we make
use of the Ck,α topology on compact Riemannian manifolds. Instead of defining the norm
locally, we use the Riemannian distance function to compute the denominator in the Hölder
seminorms. Then we say that (Mi, gi, pi) → (M, g, p) in the pointed Ck,α topology if there
exists a compact exhaustion Uj of M and a collection Fj,i : Uj → Mi of diffeomorphisms
mapping p to pi such that F ∗j,igi → g in the Ck,α topology on Uj.

Our use of the implicit function theorem to correct (M, ωT ) to a Kähler-Einstein metric
will only give C0,α convergence. Happily, the following result of Anderson and Colding gives
higher regularity without any additional work.

Theorem 5.1.4. [1, 4] Let (Mi, gi)i∈Z and (M, g) be compact n-dimensional Riemannian
manifolds such that Ric gi = λigi for |λi|≤ n − 1. If (Mi, gi) → (M, g) in the Gromov-
Hausdorff topology, then (Mi, gi)→ (M, g) in Ck,α for any k and α ∈ (0, 1).

5.1.4 Regularity on local universal covers

We will see that Definition 5.1.3 and the notion of Ck,α convergence in Section 5.1.3 are
too demanding for our family of spaces (M, ωT ). This is because as T →∞, the size of the
S1 fiber, given by h−1, collapses near the singular point, so charts in this region must be
correspondingly small. However, the curvature is still uniformly bounded, and if we unroll
the S1 fiber by taking the universal cover in a neighborhood of a point that does not contain
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p, we will find that the regularity scale is bounded from below. Using this observation, we
generalize the idea of Ck,α convergence. These definitions follow [19] 4.3.

Definition 5.1.5. Let (Mi, gi) be a sequence of Riemmanian manifolds of dimension n. For
each i, a local universal cover of (Mi, gi) is the Riemannian universal cover (B̃r(xi), g̃i) of
Br(xi) ⊂ Mi for any xi ∈ Mi and r > 0. If (Mi, gi) converges in the Gromov-Hausdorff
topology to (M, g) a manifold such that dim M = n − 1, we say that (Mi, gi) converges to
(M ×R, g×gR) in Ck,α on local universal covers if whenever xi → x ∈M , there exists r > 0

such that B̃r(xj)→ Br(x)× R in Ck,α.

We can also update Definition 5.1.3 (see [19] Definition 4.22).

Definition 5.1.6. Fix ε > 0 and r > 0. We say that a Riemannian manifold (M, g) is
(r, k + α, ε)-regular in the sense of universal covers at p ∈ M if g is Ck,α-regular on B2r(p)
and

‖(B̃2r(p̃), g̃, p̃)‖Ck,α,r≤ ε,

where (B̃2r(p̃), g̃) is the Riemannian universal cover of B2r(p) and p̃ is a preimage of p. We
define the Ck,α-regularity scale in the sense of universal covers of (M, g) at p to be the
supremum over the set of r for which (M, g) is (r, k + α, ε)-regular in the sense of universal
covers at p.

For the remainder of this paper, when we discuss regularity scales, we mean “in the sense
of universal covers.” However when discussing convergence we will be explicit about whether
we are referring to local universal covers or not.

5.2 Spaces of functions on (M, ωT )

We return to our goal of perturbing (M, ωT ) to an exact solution for large enough T .
To achieve this, we must first prove a certain weighted Schauder estimate that is uniform
in T . While in the previous section we discussed Hölder norms on families of manifolds, in
this section we define Hölder spaces of functions on such families. The estimates we derive
will establish the boundedness of the inverse in our use of the inverse function theorem in
Section 6.

The global metric behavior of (M, gT ) as T →∞ is not simple to describe. However, we
will only need to understand the geometry near a sequence of points (xj) where xj ∈ (M, gTj)
for some sequence Tj → ∞. We will see that after passing to a subsequence and rescaling,
a sequence of neighborhoods of these points converges in the Gromov-Hausdorff sense to
one of four model spaces. Further, we can achieve C2,α convergence by passing to the local
universal cover. Therefore we will see that the existence of a weighted Schauder estimate on
(M, gT ) reduces to a collection of statements about these model spaces.

To state the desired Schauder estimate, we must first define the weight function ρ(k+α)
δ,ν,µ :

M→ R>0. In what follows, the functions W and ρ(k+α)
δ,ν,µ depend on T , but we suppress this
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dependence for (relative) ease of notation. Pick C3 > 0 such that rw is defined up to C3 for
all T and let W be a smooth and “reasonable” function such that

W (q, T ) =


T−1 rw ≤ T−1

rw(q) 2T−1 ≤ rw ≤ C3

2

1 rw ≥ C3 or rw is undefined
. (5.1)

The significance ofW is that we will need to rescale gT byW (q, T ) to see nontrivial Gromov-
Hausdorff convergence in a neighborhood of q.

Now for k ∈ {0, 1, 2} define

ρ
(k+α)
δ,ν,µ (q) = (1 + w(q))−δW (q, T )ν+k+αT µ.

The factor of W (q, T )k+α will ensure that the weight function is compatible with differen-
tiation in the proof of Proposition 5.4.1. The factor of W (q, T )ν controls the behavior of
functions at infinity from the vantage point of the singular point p. The factor of (1+w(q))−δ

controls the behavior of functions at infinity from the vantage point of the two boundary
components. Finally, if µ is large enough then the factor of T µ ensures that ρ(0)

δ,ν+2,µ is
bounded below, allowing us to take powers within the weighted Hölder space.

For carefully chosen parameters, ρ(k+α)
δ,ν,µ will give us an appropriate weight function to

define weighted Hölder spaces on (M, gT ). As in Section 5.1.4, our definition of these Hölder
spaces differs from the standard theory in that distances are measured on local universal
covers.

Definition 5.2.1. Fix T > 0. Let K ⊂ M be a compact subset and χ ∈ T r,s(K) an
(r, s)-tensor field. Let a tilde denote the lift of an object to the Riemannian universal cover
of BW (x,T )(x). The weighted Ck,α seminorm is defined by

[χ]Ck,αδ,ν,µ(x) = sup
ỹ∈BW (x,T )(x̃)

ρ
(k+α)
δ,ν,µ (x)

|∇kχ̃(x̃)−∇kχ̃(ỹ)|
d̃(x̃, ỹ)α

.

and
[χ]Ck,αδ,ν,µ(K) = sup

x∈K
[χ]Ck,αδ,ν,µ(M)(x).

The difference |∇kχ̃(x̃) − ∇kχ̃(ỹ)| is computed by parallel transporting ∇kχ̃(ỹ) to x̃. We
also write

[χ]Ckδ,ν,µ(K) = sup
x∈K

[χ]Ckδ,ν,µ(x) = sup
x∈K
|ρ(k)
δ,ν,µ∇

kχ|.

The weighted Ck,α norm of χ is then constructed from the seminorm in the usual way:

‖χ‖Ck,αδ,ν,µ(K)=
k∑

m=0

[χ]Cmδ,ν,µ(K) + [χ]Ck,αδ,ν,µ(K).
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Figure 5.1: The weight function ρ(2)
δ,ν,µ as a function of z along two cross sections (p, t) ∈ D×I

for t ∈ (−1, 0). In the first case, the cross section goes through the singular point (pD, 0),
while in the second case, it takes the form {(q, t), t ∈ (−1, 0)} for some point q ∈ D such that
rw((q, 0)) > C3. Parameters are chosen in accordance with Theorem 5.2.2, and in addition
we are assuming that ν + 2 < δ, though the opposite may be true.

We can now state the main theorem of this section.

Theorem 5.2.2. For each T , define the operator

LT = ∆gT − 1.

There exists δ0 > 0 such that for all α ∈ (0, 1), if ν ∈ (−2,−3/2), δ ∈ (0, δ0), and µ ∈
(max(δ, ν + 2), 1), there exists C > 0 such that for large enough T ,

[u]C2,α
δ,ν,µ(M) + [u]C2

δ,ν,µ(M) + ‖u‖C0,α
δ,ν+2,µ(M)≤ C‖LTu‖C0,α

δ,ν+2,µ(M)

for all u ∈ C2,α(M) such that ∂u
∂n
|∂M= 0.

The operator LT will arise in Section 6 as the linearization of a functional whose zeros
are negative Kähler-Einstein metrics.
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5.3 Local rescaled geometries
The key ingredient in the proof of Theorem 5.2.2 is the following characterization of the

rescaled geometry of the model spaces (M, gT ).

Proposition 5.3.1. Let (Tj)
∞
j=1 be a sequence of positive real numbers tending to infinity.

If (xj)
∞
j=1 is a sequence of points with xj ∈ M, then there exists a subsequence (which we

also call j) such that as j → ∞, (M,W (xj, Tj)
−2gTj , xj) converges in the pointed Gromov-

Hausdorff topology to one of the following spaces:

1. the Taub-NUT space C2
TN ,

2. the Riemannian product C× R,

3. the Riemannian cylinder D × R,

4. the Calabi model space (C±, gC±).

In case 1, convergence is in the pointed C2,α topology. In cases 2 and 3, convergence is in
Ck,α on local universal covers away from p for k ≥ 0. In case 4, convergence is in the pointed
Ck,α topology for k ≥ 0.

Proof. Let Wj = W (xj, Tj) and define rw as in Section 3.3. We will also write rw for the
pullback of rw by π :M→ D × [−1, 1/2]. In addition, let ĝj = W−2

j gTj denote the rescaled
metric and B̂R(x) = BWjR(x) denote the R-ball around a point x ∈ M with respect to the
rescaled metric.

We consider four possible behaviors of (xj)
∞
j=1 such that there must exist a subsequence

falling into at least one of these categories.

Case 1. Trw(xj) → C < ∞. Using the coordinates defined in Section 3.3 and writing
ωC = i

2
dy ∧ dȳ, we have by Equation 3.27 and the discussion in Section 4.3 that

(5.2)

ωT = π∗χωD + dz ∧Θ

= π∗ωD +

(
1

2Trw
+

1

T
(g2,α + w1)

)
π∗ωC +

1

T
dw ∧Θ

= π∗ωD +

(
1

2Trw
+

1

T
(g2,α + w1)

)
π∗ωC +

1

T
dw ∧ (Θ0 + θ)

Meanwhile, since the projection π : M→ D × [−1, 1/2] is modelled on the Hopf fibration,
we have by Equation 4.2 that

(5.3)
1

T
ωTN,T =

(
1

2Trw
+ 1

)
π∗ωC +

1

T
dw ∧Θ0,
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where ωTN,T is the Taub-NUT metric in the complex-valued coordinates u1, u2 defined in
Section 4.3 and with parameter T . Thus

ωT −
1

T
ωTN,T = π∗(ωD − ωC) +

1

T
(g2,α + w1)π∗ωC +

1

T
dw ∧ θ.

Now change coordinates such that ui = 1√
TW

ui, y = 1
TW 2y, and w = 1

TW 2w. Then we let
s2 = 1

TW 2 s
2 = |u1|2+|u2|2. By Equation 4.4, we have

ωTN,T = TW 2ωTN,T 2W 2 .

In addition, noting that π∗dy = u1du2 + u2du1 = O(s) with respect to the flat metric on
C2
u1,u2

, we have that
π∗(ωD − ωC) = O(r2

w)π∗(dy ∧ dȳ)

= (TW 2)4O(s6).

Similarly
(g2,α + w1)π∗ωC = (TW 2)2g2,α.

Therefore
‖W−2ωT − ωTN,T 2W 2‖C2,α= O(T−1)

in C2
u1,u2

on any region where s is bounded. Since s is bounded on a ball of (W−2
j gTj)-radius

R around xj for any R > 0, this gives pointed C2,α convergence.

Case 2. Trw(xj)→∞, rw(xj)→ 0. Note that

gT = π∗g̃ + hT dz
2 + h−1

T Θ2, (5.4)

is the Riemannian metric corresponding to ωT , where g̃ is the Riemannian metric correspond-
ing to ω̃. By Equation 5.1, Wj = rw(xj) for sufficiently large j, so we study the regularity of
ĝj = rw(xj)

−2gTj .
Integrating h along w shows that for any q ∈M,

|ArcSinh(w(xj))− ArcSinh(w(q))|≤ dgTj (xj, q) +O(T−1/2). (5.5)

Now take q ∈ B̂R(xj) = Brw(xj)R(xj). Since w(xj) → 0 and dgTj (xj, q) → 0, w(q) can
be assumed arbitrarily small. This lower-bounds the derivative of ArcSinh, allowing us to
conclude that

|w(q)− w(xj)|≤ 2rw(xj)R

for large enough j. Thus if for each j we make the change of coordinates w = rw(xj)
−1w,

y = rw(xj)
−1y, and ui = rw(xj)

−1/2ui, we have that w(xj) ≤ 1 and |w(q)− w(xj)|≤ 2R.
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Now assume R > 1 and q ∈ B̂R(xj)\B̂ε′(p) for some small ε′ > 0. Thus rw(q) ≥ Cε′rw(xj).
By Equation 3.26,

hT =
T 2

rw(xj)2w2 + 1
+

T

2rw
+ T (g2,α + w1)

Thus
rw(xj)

−2hT dz
2 =

(
1

rw(xj)2w2 + 1
+O((Trw(xj))

−1)

)
dw2,

and so
|π∗(rw(xj)

−2hT dz
2 − dw2)|→ 0

pointwise uniformly on the annulus with respect to C2
u1,u2

.
By analogous arguments, the growth of hT implies that

|rw(xj)
−2h−1

T Θ2|→ 0,

with convergence as described in the previous paragraph. To analyze the g̃ term, we observe
that by Equation 3.27,

rw(xj)
−2π∗g̃ =

(
1 +

1

2Trw
+ T−1O(1)

)
i

2
dy ∧ dy =

i

2
dy ∧ dy +O((Trw)−1).

In summary,

ĝT →
i

2
dy ∧ dy + dw2 = π∗gCy×R

on B̂R(xj) \ B̂ε′(xj). A diagonal argument in j and ε′ therefore gives Gromov-Hausdorff
convergence B̂R(xj)→ BR(x∞) ⊂ R3.

Now pass to a local universal cover ˜̂
Bε(q) for q ∈ B̂R(xj) \ B̂ε′(p) and assume that

B̂ε(q) ⊂ (B̂ε′(p))
c. If we choose a coordinate such that Θ = dt, then locally

˜̂
Bε(q) ' U × Rt

for some U ⊆ D× [−1, 1/2]. Since T−2hT → 1, we can rescale the t coordinate to t so that
on the local universal cover

ĝT → π∗g3
R + dt2

in C∞, since all terms are smooth away from p.

Case 3. rw(xj) 6→ 0, w(xj) 6→ ∞. Assume that the limit of rw is such that Wj = 1 and
ĝj = gTj for large enough j. Passing to a subsequence, we can assume that w(xj)→ w∞ <∞
and d(xj, p)→ d∞ <∞, since the diameter of ω̃(z) and the S1 fiber are bounded.

Now fix R > 1 and consider the domain B̂R(xj) \ B̂ε′(p) for some small ε′. As above,
for any q ∈ B̂R(xj) \ B̂ε′(p) we can pass to a local universal cover ˜̂

Bε(q) ' U × Rt with
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coordinates y, ȳ, w on U and dt = Θ. We analyze the metric on the universal cover as in
the previous bullet, except there is no need to rescale by Wj.

Since we may assume B̂ε(q) ⊂ (B̂ε′(p))
c, rw is bounded below on ˜̂

Bε(q). Thus we have by
Equation 3.27 and Proposition 3.1.6 that

π∗g̃ → π∗gD.

in C2,α in these coordinates. Similarly, by the discussion in Section 3.2,

hT → T 2

(
1

w2 + 1
+O(T−1)

)
.

Thus by a rescaling of t,

ĝT → π∗gD +
1

w2 + 1
dw2 + (w2 + 1) dt2

in C∞ on the local universal cover. Meanwhile, since h−1
T → 0, this gives Gromov-Hausdroff

convergence to D × R.

Case 4. w(xj)→∞. In this case we must have that z(xj)→ z∞ ∈ [−1, 1/2], and again we
have ĝj = gTj . Fix R > 0 and take q ∈ B̂R(xj). Then

d(q, xj) ∼ |ArcSinh(w(q))− ArcSinh(w(xj))|∼ |log(w(q))− log(w(xj))|, (5.6)

so
inf

q∈B̂R(xj)
rw(q)→∞

as j →∞.
First assume that z∞ = 0 and define w = w(q)

w(xj)
. Then by the discussion in Section 3.2,

h(q) dz2 =

(
k±z(xj)w(q) + 1

2
3
k±(z(xj)w(q))3 + (z(xj)w(q))2 + T−2

)
z(xj)

2 dw2 → 1

w2
dw2. (5.7)

By arguments similar to the previos section, the metric collapses to D × R, while

ĝT → π∗gD +
1

w2
dw2 + w2 dt2

in C∞ on the local universal cover.
Now assume z∞ > 0. Take q ∈ B̂R(xj) with coordinates y, ȳ, z and t as above. As

previously the discussion in Section 3.2 gives that for z < 0,

h =
k−z + 1

2
3
k−z3 + z2 + T−2

+O(T−5z−4). (5.8)
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Meanwhile, Remark 3.3.2 gives that

δχ = O(T−1), |w|= C2.

Using Equations 2.11 and 3.20 to integrate δχ outside of this region, we find that

χ = 1 + k±z +O(T−1). (5.9)

Thus

ĝT → (1 + k−z)π∗gD +
k−z + 1

2
3
k−z3 + z2

dz2 +
2
3
k−z

3 + z2

k−z + 1
Θ2,

in C∞, and this metric is recognized to be the Calabi model space metric described in Section
4.1.2 for n = k−. The discussion is similar for z > 0.

Note that the distance from xj to ∂M is finite if |z∞|> 0, since

lim
j→∞

(ArcSinh(Tj)− ArcSinh(w(xj))) = − lim
j→∞

log(T−1
j w(xj)). (5.10)

Thus in this case a sufficiently large definite ball around x∞ will contain a portion of the
boundary.

5.4 Schauder estimates on (M, ωT )

The usefulness of Proposition 5.3.1 will become apparent in the proofs of Propositions
5.4.1 and 5.2.2. In the first proof, we will see that the proposition gives a lower bound on the
regularity scale of (M, ωT ), directly implying a local Schauder estimate. In the second proof,
we will assume that a global Schauder estimate fails to hold and take a sequence of functions
violating the estimate. After passing to a rescaled limit, the sequence will converge to a
function whose behavior contradicts the properties of the spaces described in Proposition
5.3.1.

Proposition 5.4.1 is modeled on [19] Proposition 4.37.

Proposition 5.4.1. (Local weighted Schauder estimate). For T � 0 and (M, gT ) as con-
structed in Section 4, the following estimates hold:

1. (Interior estimate) For all α ∈ (0, 1), there exists Cα > 0 such that for all x ∈ Mo,
r ∈ (0, 1

8
], and u ∈ C2,α(B2rW (x)(x)),

r2+α‖u‖C2,α
δ,ν,µ(BrW (x)(x))≤ Cα(‖LTu‖C0,α

δ,ν+2,µ(B2rW (x)(x))+‖u‖C0
δ,ν,µ(B2rW (x)(x))).
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2. (Boundary estimate) For all α ∈ (0, 1), there exists Cα > 0 such that for all x ∈ ∂M,
r ∈ (0, 1

8
], and u ∈ C2,α(B2rW (x)(x)),

r2+α‖u‖C2,α
δ,ν,µ(BrW (x)(x))≤ Cα

(
‖LTu‖C0,α

δ,ν+2,µ(B2rW (x)(x))

+ ‖u‖C0
δ,ν,µ(B2rW (x)(x))+

∥∥∥∥∂u∂n
∥∥∥∥
C1,α
δ,ν+1,µ(B2rW (x)(x))

)
.

Proof. Fix some small ε′ > 0. We observe that Proposition 5.3.1 demonstrates that the
C2,α, ε′-regularity scale r2,α(x) of (M, gT ) with respect to ε′ at x is bounded below by a
multiple of W (x, Tj):

r2,α(x) ≥ CW (x, Tj). (5.11)

For arguing by contradiction, this is equivalent to saying that for any sequence (xj, Tj)
∞
j=1, the

C2,α-regularity scale of (M,W (xj, Tj)
−2gT ) is bounded below by a constant, not necessarily

uniform across sequences, at xj. This follows because (M,W (xj, Tj)
−2gT , xj) converges to

one of the four spaces in the proposition in C2,α on the local universal cover.
Equation 5.11 allows us to apply the local Schauder estimates on Euclidean balls with

respect to the metric ĝT . On any such ball B = B̂r(x) with 2B = B̂2r(x),

‖u‖C2,α(B)≤ C(‖(∆ĝ −W 2)u‖C0,α(2B)+‖u‖C0(2B))

for C uniform in T becauseW (x) is uniformly bounded above by 1. Now we will demonstrate
in the proof of Theorem 5.2.2 that for any fixed r, ρ(0)

δ,ν,µ is equivalent to a constant on
BrW (x)(x) = B̂r(x) uniformly in x ∈ M and T � 0. Therefore, multiplying through by
ρ

(0)
δ,ν,µ(x) and rescaling ĝT → gT yields that

‖u‖C2,α
δ,ν,µ(B)≤ C(‖LTu‖C0,α

δ,ν+2,µ(2B)+‖u‖C0
δ,ν,µ(2B)). (5.12)

The proof of the boundary estimate is similar.

A global version of Proposition 5.4.1 follows from the local version and a covering argu-
ment.

Proposition 5.4.2. Let ν, α, and δ be parameters satisfying the conditions described in
Theorem 5.2.2. Then there exists C > 0 such that for all sufficiently large T and u ∈
C2,α
δ,ν,µ(M),

‖u‖C2,α
δ,ν,µ(M)≤ C

(
‖LTu‖C0,α

δ,ν+2,µ(M)+

∥∥∥∥∂u∂n
∥∥∥∥
C1,α
δ,ν+1,µ(∂M)

+ ‖u‖C0
δ,ν,µ(M)

)
.

We can now give the proof of Theorem 5.2.2.
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Proof. (Theorem 5.2.2) If there is no such C, then there must be a sequence of Tj and C2,α

functions uj with
∂uj
∂n
|∂M= 0 such that

[uj]C2,α
δ,ν,µ(M) + [uj]C2

δ,ν,µ(M) + ‖uj‖C0,α
δ,ν+2,µ(M)= 1

while
‖LTjuj‖C0,α

δ,ν+2,µ(M)→ 0.

Then there must exist a sequence of points (xj) such that

[uj]C2,α
δ,ν,µ(xj)

+ [uj]C2
δ,ν,µ(xj) + [uj]C0,α

δ,ν+2,µ(xj)
+ [uj]C0

δ,ν+2,µ(xj) >
1

8
. (5.13)

We will prove a contradiction by passing to the rescaled pointed Gromov-Hausdorff limit
for the sequence (xj)

∞
j=1 and the rescaling factor W (xj, T ). To preserve norms after rescaling

the metric, we rescale both the functions (uj) and the weight functions ρ(k+α)
δ,ν,µ . Recall that

if ĝ = λ2g for any metric g and λ > 0, then formally,

‖λk+αu‖Ck,αĝ = ‖u‖Ck,αg

on functions, and a similar equality holds for higher degree forms. In our case, since we
are considering weighted Hölder norms, we have a choice of how to divide the scaling factor
between the weight function ρ(k+α)

δ,ν,µ and the target function uj, but we must ensure that the
rescaled weight functions converge on the appropriate rescaled spaces. Thus let

ρ̂k+α
δ,ν,µ(q) = W (xj)

−(ν+k+α)T−µj ρk+α
δ,ν,µ(q) = (1 + w(q))−δ

(
W (q)

W (xj)

)ν+k+α

(5.14)

and
ûj(q) = W (xj)

νT µj uj(q). (5.15)

In what follows, whenever we take a Hölder norm of ûj or a related function, we take the
weight to be ρ̂k+α

δ,ν,µ and the metric to be ĝj = W (xj, Tj)
−2gTj . Thus

[LTj ûj]C0,α
δ,ν+2,µ(M) → 0 (5.16)

and
[ûj]C2,α

δ,ν,µ(M) + [ûj]C2
δ,ν,µ(M) + ‖ûj‖C0,α

δ,ν+2,µ(M)= 1 (5.17)

while
[ûj]C2,α

δ,ν,µ(xj)
+ [ûj]C2

δ,ν,µ(xj)
+ [ûj]C0,α

δ,ν+2,µ(xj)
+ [ûj]C0

δ,ν+2,µ(xj)
>

1

8
. (5.18)

As in the proof of Proposition 5.3.1, there must exist a subsequence of (xj)
∞
j=1 satisfying one

of four behaviors.
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Case 1. Trw(xj) → C < ∞. By Proposition 5.3.1, we can view (ûj)
∞
j=1 as a sequence of

functions on a neighborhood of a point x∞ in (C2, gTN,a) for some a > 1. Now by Equation
5.14,

ρ̂
(k+α)
δ,ν,µ (q) = (1 +O(T−1))

(
W (q)

W (xj)

)ν+k+α

.

But in the Taub-NUT region, rw(q)
W (xj)

converges to d2
gTN,a

(q, 0) (see Equation 4.11), so ρ̂(k+α)
δ,ν,µ (q)

is uniformly equivalent to a constant on B̂R(xj) for any fixed R and large enough j. Thus by
Equation 5.17, the unweighted local Schauder estimates discussed in the proof of Proposition
5.4.1, and the C2,α convergence of the metrics,

‖ûj‖C2,α(BR(x∞))≤ C(R), (5.19)

that is, ûj is bounded in the unweighted C2,α toplogy on BR(x∞) ⊂ (C2, gTN,a) (defined e.g.
using Definition 5.1.5 with weight function ρ(k+α)

δ,ν,µ ≡ 1) with bound depending on R, while

ûj(q) ≤ Cdĝj(q, p)
−2(ν+2). (5.20)

for C independent of R. Also, viewing xj as a point in BR(x∞) we have by Equation 5.18
that

[ûj]C2,α(xj)
+ [ûj]C2(xj)

+ [ûj]C0,α(xj)
+ [ûj]C0(xj)

>
1

C
(5.21)

for C again independent of R. Equation 5.19 gives that for any β < α a subsequence
converges in C2,β(BR(x∞)) to a function û∞, and by Equation 5.20,

û∞(q) ≤ CdgTN,a(q, 0)−2(ν+2) (5.22)

for C independent of R. Because we are rescaling the metric, LT does not converge to
∆gTN − 1. Rather,

‖LT ûj‖C0,α
δ,ν+2,µ(B̂R(xj))

≥ ‖W (xj)
−2∆ĝûj‖C0,α

δ,ν+2,µ(B̂R(xj))
−‖ûj‖C0,α

δ,ν+2,µ(B̂R(xj))

≥ CT 2‖∆ĝûj‖C0,α
δ,ν+2,µ(B̂R(xj))

+O(1).

Thus
‖∆ĝûj‖C0,α(B̂R(x∞))= O(T−2).

By C2,β convergence, this implies that û∞ is a C2 harmonic function on BR(x∞). Also,
standard Schauder estimates on B̂R(x∞) now imply that ûj converges in C2,α.

Since R was arbitrary, choosing a sequence of R → ∞ gives a harmonic function on
(C2, gTN). Since ν + 2 > 0, Equation 5.22 implies that û∞ decays at infinity, so by the
Cheng-Yau gradient estimate, û∞ must vanish ([12] Proposition 6.6). But this contradicts
Equation 5.21 by C2,α convergence.
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Case 2. Trw(xj) → ∞, rw(xj) → 0. By similar considerations as in the previous case, we
have that ρ̂(k+α)

δ,ν,µ (q) is uniformly constant on B̂R(xj) \ B̂R−1(p). Now by Proposition 5.3.1,
(M, ĝj, xj) converges to (R3, gR3 , x∞) in the pointed Gromov-Hausdorff topology. It is not
immediate that ûj induces a function on R3. Instead, we observe that for each j,

‖ûj‖C2,α(B̂R(xj)\B̂R−1 (p))≤ C(R), (5.23)

[ûj]C2,α(xj)
+ [ûj]C2(xj)

+ [ûj]C0,α(xj)
+ [ûj]C0(xj)

>
1

C
, (5.24)

|ûj(q)|≤ C

(
rw(xj)

rw(q)

)ν+2

, (5.25)

and
‖∆ĝûj‖C0,α(B̂R(xj))

→ 0. (5.26)

Take q ∈ BR(x∞) \ {0} and assume that qj ∈ (M, gTj) → q. Proposition 5.3.1 implies

that there is ε > 0 such that (
˜̂
Bε(qj), ĝj) → (BR(q) × R, gR4) in C2,α. Pulling back to these

covers, Equation 5.23 gives that ûj defines a sequence of functions converging to some û∞ in
C2,β(BR(q)×R) for any β < α. In addition, Equation 5.26 implies that û∞ is ∆R4-harmonic.

Now since the S1 fiber diameter vanishes as j → ∞, Equation 5.23 implies that û∞
is constant in the t direction. Therefore û∞ descends to a harmonic function on B̂ε(q).
Repeating this near each point in BR(x∞) except the origin and then letting R → ∞, we
can take û∞ to be defined on R3 \ {0}. Finally, Equation 5.25 gives that

|û∞(q)|≤ CdR3(q, 0)−2(ν+2).

Now ν+2 ∈ (0, 1/2), so a harmonic function on R3\{0} which is bounded by dR3(q, 0)−2(ν+2)

must vanish ([19] Lemma 5.7). As in the previous case, this implies that û∞ = 0, contra-
dicting Equation 5.24.

Case 3. rw(xj) 6→ 0, w(xj) 6→ ∞. We can assume that W (xj) = 1 for large j. Since in this
case dgTj (xj, p) → d∞ < ∞ and ĝj = gTj , we have that ρ̂(α)

δ,ν+2,µ(q) is uniformly constant for
q ∈ B̂R(xj) \ B̂R−1(p). By similar arguments as in the previous case, we have that

‖ûj‖C2,α(B̂R(xj)\B̂R−1 (p))≤ C(R), (5.27)

while
[ûj]C2,α(xj) + [ûj]C2(xj) + [ûj]C0,α(xj) + [ûj]C0(xj) >

1

C
(5.28)

and
|ûj(q)|≤ C(1 + w(q))δrw(q)−(ν+2), (5.29)

for C independent of R, and

‖LT ûj‖C0,α(B̂R(xj)\B̂R−1 (p))→ 0. (5.30)
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As in the previous bullet, ûj converges to an S1 invariant function on each local universal
cover, and these functions stitch to a function û∞ on the punctured cylinder D × R \ {p}
such that |û∞(q)|≤ C(1 + w(q))δ for q away from p. Further, Equation 5.29 and Equation
5.30 give that û∞ is a weak solution to LTu = 0 on D × R. It is computed that

∆ĝj = π∗∆gD + (1 + w2) ∂2
w + 2w ∂w +

1

1 + w2
∂2
t +O(T−1)

in coordinates on each local universal cover (see the proof of Proposition 5.3.1), so u∞ satisfies

π∗∆Dû∞ + (1 + w2) ∂2
wû∞ + 2w ∂wû∞ − û∞ = 0

on D × R.
As above, we characterize this equation by separation of variables. Let x = 1

2
(1 + iw).

The resulting ODE is written

x(x− 1)fxx + (2x− 1)fx − (1 + λ2)f = 0.

This is a hypergeometric equation with

α(λ) =
1 +
√

5 + 4λ2

2
β(λ) =

1−
√

5 + 4λ2

2
γ = 1

in the notation of Section 3. As previously, the parameters satisfy the relation

α(λ) + β(λ) + 1

2
= γ.

Therefore the arguments from Section 3 give that the two fundamental solutions F (α, β, γ;x(z))
and F (α, β, γ; 1−x(z)), each of which grows like |w|−β for large |w|. (Recall that we needed
the inhomogeneous delta function term to achieve globally decaying solutions in Section 3.)
Since −β >

√
5−1
2

, choosing δ < δ0 <
√

5−1
2

gives that u∞ = 0, a contradiction.

Case 4. w(xj) → ∞. Recall that dgTj (xj, δM) → ∞ if and only if z∞ = 0. First assume
that this is the case. Now dgTj (xj, p) → ∞, so B̂R(xj) converges to a ball in the Calabi

model space in the rescaled coordinate w(q) = w(q)
w(xj)

. We have by Equation 5.6 that

Ce−R ≤ |w(q)|≤ CeR.

Now
ρ̂

(k+α)
δ,ν,µ (q) = (1 + w(q))−δ

on B̂R(xj) for any R > 0 and large enough j. Thus if we define v̂j = (1 + w(xj))
−δûj, then

we have that
‖v̂j‖C2,α(B̂R(xj))

≤ C(R), (5.31)
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[v̂j]C2,α(xj) + [v̂j]C2(xj) + [v̂j]C0,α(xj) + [v̂j]C0(xj) >
1

C
(5.32)

|v̂j(q)|≤ C
(1 + w(q))δ

(1 + w(xj))δ
≤ Cwδ(q), (5.33)

and
|LTj v̂j(y)|→ 0. (5.34)

As above, we get an S1-invariant limit function v̂∞. Equation 5.33 implies that v̂∞ = O(wδ).
Using the expression we have derived for the metric in these coordinates and arguing as in
the previous case, we have that

π∗∆Dv̂∞ + w2∂2
wv̂∞ + 2w ∂wv̂∞ − v̂∞ = 0. (5.35)

Using separation of variables, the resulting ODE is

x2fxx + 2xfx − (1 + λ2)f = 0,

whose solutions are given by power functions in w with exponents contained in a discrete
set. The decaying solutions blow up near w(q) = 0, so a global solution to the ODE must be
growing like some definite power of w. This contradicts Equation 5.33 for small enough δ.

Now allow z∞ > 0, so for large enough R, B̂R(xj) contains a portion of the boundary.
We have v̂∞ as previously, but we cannot consider the behavior as w(q)→∞ because w(q)
is bounded. Instead, we argue that by Equation 5.35, the Hopf maximum principle, and the
Neumann boundary condition on uj, v̂∞ cannot achieve its maximum on δM. On the other
hand, by Equation 5.33,

v̂∞(q) ≤ C

(
z(q)

z∞

)δ
,

so since δ > 0, v̂∞(q) decays to zero away from the boundary of C. Thus v̂∞ ≡ 0, contradicting
C2,α convergence and Equation 5.32.
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Chapter 6

Perturbation to an Exact Solution

6.1 Implicit function theorem
Our last step is to apply the implicit function theorem in the following form.

Theorem 6.1.1. Let F : S1 → S2 be a map between Banach spaces such that for all v ∈ S1,

F(v)−F(0) = L(v) +N (v)

for operators L and N with the following properties:

1. (Bounded inverse) L is a linear isomorphism and there exists CL > 0 such that

‖L−1‖op≤ CL.

2. (Controlled nonlinear error) We have that N (0) = 0, and there exists CN > 0 and
r0 ∈ (0, 1

2CNCL
) such that for all v1, v2 ∈ Br0(0) ⊂ S1,

‖N (v1)−N (v2)‖S2≤ CNr0‖v1 − v2‖S1 .

3. (Controlled initial error) The radius r0 can be chosen such that

‖F(0)‖S2≤
r0

4CL
.

Then there exists a unique x ∈ Br0(0) such that

F(x) = 0.

Further,
‖x‖S1≤ 2CL‖F(0)‖S2 . (6.1)
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In our case

S1 = {φ ∈ C2,α(M), φ is S1 invariant and
∂φ

∂n

∣∣∣∣
∂M

= 0}

with the norm
‖φ‖S1= [φ]C2,α

δ,ν,µ(M) + [φ]C2
δ,ν,µ(M) + ‖φ‖C0,α

δ,ν+2,µ(M) (6.2)

with δ, ν, and µ as in Theorem 5.2.2 and

S2 = {f ∈ C0,α
δ,ν+2,µ(M) : f is S1-invariant}

with the norm
‖f‖S2= ‖f‖C0,α

δ,ν+2,µ(M). (6.3)

Note that these spaces depend on T .
For each T we seek a function FT : S1 → S2 with the property that if FT (v) = 0 then

ωv = ωT + i∂∂̄v is Kähler-Einstein. Recall that in our notation

RicωT = −i∂∂̄ log

(
χ

h

)
− π∗ωD

where ωT is the solution constructed in Section 3 for a fixed T and χ and h implicitly depend
on T . Now say there exists a Kähler potential φ such that

ωT = π∗ωD + i∂∂̄φ.

Then
RicωT + ωT = −i∂∂̄

(
log

(
χ

h

)
− φ
)
.

For each T we define the error function to be

ErrKE =
χ

h
e−φ − 1,

so
RicωT + ωT = −i∂∂̄ log(1 + ErrKE).

But

Ricωv + ωv = Ricωv − RicωT + RicωT + ωT − ωT + ωv

= −i∂∂̄ log

(
ω2
v

ω2
T

)
− i∂∂̄ log(1 + ErrKE) + i∂∂v.

We define
FT (v) = −v + log

(
ω2
v

ω2
T

)
+ log(1 + ErrKE)
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so that Ricωv + ωv = −i∂∂̄F(v).
To linearize at 0, we take η ∈ TS1 ' S1 and evaluate

FT (tη)−F(0) = −tη + log(1 + TrωT i∂∂̄tη +O(t2))

= t(−η + ∆ωT η +O(t)).

Thus the derivative of FT at 0 is ∆ωT − 1. We write

LT (v) = (∆ωT − 1)v (6.4)

and
NT (v) = log

(
ω2
v

ω2
T

)
−∆ωT v. (6.5)

6.2 Error estimates

6.2.1 Nonlinear error estimate

First we examine the nonlinear error.

Proposition 6.2.1. There exists CN > 0 such that for all T � 0 and ρ ∈ (0, 1
CN

),

‖NT (v1)−NT (v2)‖S2≤ CNρ‖v1 − v2‖S1

for all v1, v2 ∈ Bρ(0) ⊂ S1.

Proof. Note that for all choices of parameters satisfying the assumptions of Theorem 5.2.2,
ρ

(0)
δ,ν+2,µ = ρ

(2)
δ,ν,µ is bounded below on M independently of T . For if |w|< 1, then since

W (q) ≥ T−1,
ρ

(0)
δ,ν+2,µ ≥ 2−δT µ−(ν+2)

which is bounded below since µ > ν + 2. On the other hand if |w|≥ 1, then

ρ
(0)
δ,ν+2,µ ≥ 2T µ−δ,

which is bounded below since µ > δ. This bounds the Hölder norms of higher powers of
functions in terms of the Hölder norms of lower powers.

Expanding Equation 6.5, we have that

NT (i∂∂̄v) = log

(
1 + ∆ωT v +

(i∂∂̄v)2

ω2
T

)
−∆ωT v.

Now if vi ∈ Bρ(0) ⊂ S1 for small ρ > 0, we have that∥∥∥∥(i∂∂̄v1)2

ω2
T

− (i∂∂̄v2)2

ω2
T

∥∥∥∥
C0,α
δ,ν+2,µ(M)

≤ C
(
[∇2v1]C0 + [∇2v2]C0

)
[v1 − v2]C2,α

δ,ν,µ(M)

≤ C(ρ
(2)
δ,ν,µ)−1ρ[v1 − v2]C2,α

δ,ν,µ(M)

≤ Cρ[v1 − v2]C2,α
δ,ν,µ(M)
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and ∥∥∥∥(∆ωT v1 +
(i∂∂̄v1)2

ω2
T

)`
−
(

∆ωT v2 +
(i∂∂̄v2)2

ω2
T

)`∥∥∥∥
C0,α
δ,ν+2,µ(M)

≤ C`
(
[∇2v1]C0 + [∇2v2]C0

)`−1
[v1 − v2]C2,α

δ,ν,µ(M)

≤ C`(ρ
(2)
δ,ν,µ)1−`(2ρ)`−1 [v1 − v2]C2,α

δ,ν,µ(M)

≤ C`(2ρ)`−1 [v1 − v2]C2,α
δ,ν,µ(M).

The constant C in this inequality does not depend on ρ, `, or T . Here we have used the
inequality

|a` − b`|≤ |a− b|(|a|+|b|)`−1.

Now since

NT (i∂∂̄v1)−NT (i∂∂̄v2) =
(i∂∂̄v1)2

ω2
T

− (i∂∂̄v2)2

ω2
T

+
∞∑
`=2

(−1)`+1

`

((
∆ωT v1 +

(i∂∂̄v1)2

ω2
T

)`
−
(

∆ωT v2 +
(i∂∂̄v2)2

ω2
T

)`)
,

this estimate gives that

‖NT (i∂∂̄v1)−NT (i∂∂̄v2)‖C0,α
δ,ν+2,µ(M)

≤ Cρ[v1 − v2]C2,α
δ,ν,µ(M) + Cρ

( ∞∑
`=0

(Cρ)`
)
‖v1 − v2‖S1

≤ Cρ‖v1 − v2‖S1

for small enough ρ. By the discussion above, the constant in this inequality and the bound
on ρ do not depend on T .

6.2.2 Deriving the Kähler potential

To understand the initial error, we must compute a Kähler potential for ωT . To do this,
we follow [19] Section 4.2.2.

Such a potential should be an S1-invariant function on the total spaceM such that

π∗ωD +
1

2
ddcφ = ωT . (6.6)

Then dcφ = dcDφ+φzh
−1Θ by S1 invariance and the definition of Θ. Using Equation 2.1 and

separating components as in Section 2.2, Equation 6.6 is equivalent to the system
2ωD + dDd

c
Dφ+ φzh

−1∂zω̃ = 2 ω̃
dcDφz − φzh−1dcDh = 0
d(φzh

−1) = 2 dz
(6.7)
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Integrating the last equation twice yields that

φzh
−1 = 2z + C ′

for a constant C ′, and so integrating again we find

φ =

∫ z

z0

h(2u+ C ′) du+ φ0,

where φ0 is a function on D. Then the second equation is satisfied as well. Taking the z
derivative of the first equation gives the relation

(∆Dφz)ωD + (φzh
−1)z∂zω̃ + (φzh

−1)∂2
zω = 2 ∂zω̃.

Using Equation 2.11 it is checked that the above choice of φ solves this equation. Therefore
φ will be a solution if the first equation is satisfied at any z away from p. Taking z = 1, the
equation yields

2ωD + (∆Dφ0)ωD + (2 + C ′)∂zω̃ = 2 ω̃.

Since ∂2
z ω̃ = −∆Dh, ∂2

z

∫
D
ω̃ = 0, and so∫

D

ω̃(1) =

∫
D

ω̃(0) +

∫
D

∂zω̃ =

∫
D

ωD +

∫
D

∂zω̃.

This implies that C ′ = 0, i.e.
φzh

−1 = 2z. (6.8)

Make the choice z0 = 0. Then to determine φ0, we use Equation 3.27 to solve the first
line of Equation 6.7 on the slice z = 0. By Equation 6.6, we have that

∆Dφ0 =
1

2T |y|
+ T−1g0,α.

By elliptic regularity, this implies that

φ0 =
|y|
2T

+ T−1g2,α. (6.9)

In summary,

φ =

∫ z

0

2hu du+
|y|
2T

+ T−1g2,α. (6.10)

6.2.3 Linear error estimate

Now we are ready to estimate FT (0) = log(1+ErrKE). We show that ErrKE can be made
arbitrarily small in C0,α

δ,ν+2,µ by taking T large enough. The analysis looks different near and
away from the singularity.
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Proposition 6.2.2. For any CL > 0 and ρ ∈ R>0,

‖FT (0)‖C0,α
δ,ν+2,µ(M)≤

ρ

4CL
for large enough T .

Proof. By the discussion in Section 3.2, there exists C2 independent of T such that Equations
3.26 and 3.27 hold for all |w|< C2 up to a smooth correction of order O(T ) for δh and O(T−1)
for δχ. Thus we have that if rw ≤ C2,

h = T 2

(
1

1 + (Tz)2
+

1

2Trw
+ T−1g0,α

)
. (6.11)

Therefore by Equation 6.10,

φ(z) =
|y|
2T

+ log(1 + (Tz)2) + T−1g0,α + C ′

for some C ′ > 0. If we take C ′ = − log(T 2), we find

χ

h
e−φ =

1 + 1
2Trw

+ T−1g0,α

T 2

(
1

1+(Tz)2
+ 1

2Trw
+ T−1g0,α

) Exp(− |y|
2T
− C ′ + T−1g0,α)

1 + (Tz)2

=
1 + 1

2Trw
+ T−1g0,α

1
1+(Tz)2

+ 1
2Trw

+ T−1g0,α
· 1 + T−1g0,α

1 + (Tz)2

=
1 + 1

2Trw
+ T−1g0,α

1 + 1
2Trw

+ T−1g0,α
(1 + T−1g0,α)

= 1 + T−1g0,α.

The calculations when rw ≥ C2 but still |w|≤ C2 are simpler and give a similar estimate.
Since ρ(α)

δ,ν+2,µ is uniformly bounded above by T µ, we therefore have that

‖ErrKE − 1‖C0,α
δ,ν+2,µ({|w|≤C2})= O(T µ−1) (6.12)

But by our requirement that µ < 1, this last term decays in T .
Away from the singular point χ, h, and φ are smooth, so it is sufficient to prove a C0

bound. Integrating Equation 5.8, we find that for z < 0

φ = φ

(
− C2

T

)
+

∫ z

−C2
T

2zh dz

= log(1 + C2
2)− log(T 2) +

∫ z

−C2
T

2T 2z(k−z + 1)
2T 2k−z3

3
+ (Tz)2 + 1

dz +O(T−1)

= log(1 + C2
2)− log(T 2) + log

(
2T 2k−z

3

3
+ (Tz)2 + 1

)
− log(1 + C2

2 +O(T−1)) +O(T−1)

= − log(T 2) + log

(
2T 2k−z

3

3
+ (Tz)2 + 1

)
+O(T−1).
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Therefore by Equation 5.9,

χ

h
e−φ =

1 + k−z +O(T−1)
1+k−z

2T2k−z3
3

+(Tz)2+1
+O(T−5z−4)

1 +O(T−1)
2T 2k−z3

3
+ (Tz)2 + 1

= 1 +O(T−1)

as desired. The calculations are similar for z > 0 since 1+k+z is bounded below for z < 1/2.
Note that the O(T−5z−4) decay of δh provided by Proposition 3.1.6 is necessary for the last
equality since this term must absorb an O(T 2z2) term.

6.3 Proof of Theorems 1.2.1 and 1.2.2
Propositions 6.2.1 and 6.2.2 allow us to perturb (M, ωT ) to a Kähler-Einstein surface for

large enough T via Theorem 6.1.1.

Proof. (Theorem 1.2.1) Fix ε > 0, R > 0, and α < µ−max(δ, ν+2). The operator LT : S1 →
S2 is invertible for all T and Proposition 5.2.2 implies that the inverse is bounded by some
CL independent of T . Proposition 6.2.1 gives the nonlinear error control for all sufficiently
small r0 for some bound CN and large enough T . Fixing some r0 < min(ε, (2CNCL)−1),
Proposition 6.2.2 gives that

‖F(0)‖C0,α
δ,ν+2,µ(M)<

ε

4CL

for large enough T . Finally, for fixed x ∈ ∂M, Proposition 5.3.1 gives that for large enough
T , BR(x) ⊂ (M, ωT ) is ε/2-close in C0,α to a ball in (C±, gC±). Because the scaling of the
cross-section D is bounded in T , T can be chosen uniformly over ∂M.

Choosing T large enough to satisfy all these requirements, Theorem 6.1.1 allows us to
find u such that

ω = ωT + i∂∂̄u

is Kähler-Einstein and
[u]C2,α

δ,ν,µ(M) <
ε

2
.

Since
ρ

(2+α)
δ,ν,µ ≥ CT µ−(max(δ,ν+2)+α), (6.13)

our requirement that µ > (max(δ, ν+ 2) +α) implies that for any x ∈ ∂M and large enough
T , BR(x) is ε-close in C0,α to a ball in (C±, gC±).

Since the ωKE,T are Kähler-Einstein with λ = −1, higher regularity follows from Theorem
5.1.4.

Proof. (Theorem 1.2.2) Let (M, ωTj) be the approximate solution and uj the S1-invariant
correction to a Kähler-Einstein metric, so

ωKE,Tj = ωTj + i∂∂̄uj.
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The proof of Theorem 1.2.1 gives that

‖i∂∂̄uj‖C0,α(M)= o(1).

Thus
|W (xj)

−2i∂∂̄uj(x)|W (xj)−2gTj
= o(1). (6.14)

Now by Proposition 5.3.1, the sequence (M,W (xj)
−2gTj , xj) subconverges in the pointed

Gromov-Hausdorff topology to one of the four desired spaces (X∞, g∞, x∞). This means that
for any ε > 0 and R > 0,

gGH(BR(xj), BR(x∞)) ≤ ε

2

for large enough j. But by Equation 6.14, the correction by i∂∂̄uj changes the distance
between any two points by an arbitrarily small amount. For large enough j, this implies
that

gGH(BR(xj), BR(x∞)) ≤ ε.

In the noncollapsing cases (Taub-NUT and Calabi model space), smooth convergence
follows from Theorem 5.1.4. In the collapsing cases (R3 and D × R), we can make similar
arguments to prove Ck,α convergence for any k on local universal covers. Curvature is then
bounded on the local universal cover, so it is also bounded under the Riemannian covering
map, which is a local isometry.
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