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TempMesh – A Flexible Wireless Sensor Network for
Monitoring River Temperatures

SCOTT G. BURMAN, JINGYA GAO, GREGORY B. PASTERNACK, and

NANN A. FANGUE, University of California, Davis

PAUL CADRETT, U.S. Fish and Wildlife Service

ELIZABETH CAMPBELL, U.S. Army Corps of Engineers

DIPAK GHOSAL, University of California, Davis

For a Chinook salmon restoration project in the lower Yuba River in California, we designed and deployed a

wireless sensor network to monitor river temperatures at micro-habitat scales. The study required that tem-

peratures be measured along a 3 km study reach, across the channel, and into off-channel areas. To capture

diel and seasonal fluctuations, sensors were sampled quarter-hourly for the full duration of the six-month ju-

venile salmon winter residency. This sampling duration required that nodes minimize power-use. We adopted

event-based software on MSP430 micro-controllers with 433 MHz radio and minimized the networking duty-

cycle. To address link failures, we included network storage. As the network lacked real-time clocks, data

were timestamped at the destination. This, coupled with the storage, yielded timestamp inaccuracies, which

we re-aligned using a novel algorithm. We collected over six months of temperature data from 35 sensors

across seven nodes. Of the packets collected, we identified 21% as being incorrectly timestamped and were

able to re-align 41% of these incorrectly timestamped packets. We collected temperature data through major

floods, and the network uploaded data until the flood destroyed the sensors. The network met an important

need in ecological sampling with ultra-low power (multi-year battery life) and low-throughput.

CCS Concepts: • General and reference→ Empirical studies; • Hardware→ Sensor applications and

deployments; • Computer systems organization→ Sensor networks; • Networks→ Network proto-

col design; Sensor networks;

Additional Key Words and Phrases: River temperature monitoring, wireless sensor network, fluvial tempera-

tures, network storage, power efficiency, timestamp alignment, sensor deployment, fish, salmon
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1 INTRODUCTION

Anadromous fish like salmon swim from oceans into rivers where they spawn. While their time in
rivers is much shorter than their oceanic life-stages, the in-river stages are extremely energetically
costly: Adults swim for miles against currents (without feeding), generate gametes, and then dis-
tribute them by spawning. Then, the next generation’s juveniles hatch, grow in size by orders of
magnitude, avoid predators, find and consume food, and finally smoltify—which is a physiological
change from juvenile parr to smolt, to prepare for downstream migration. These anadromous fish
must be adapted to the oceans where they live, which are fairly homogeneous in temperature. At
the same time, they must retain (and pass on to their progeny) the ability to expend considerable
energy and thrive in rivers with unique temperature profiles. To reach our study system, the lower

Yuba River (LYR), the fish must first enter the San Francisco Bay, move up the Sacramento River
and then into the Feather River, migrate up the Feather River, then move into the Yuba River. This
migration is a particular challenge, as the Feather River is considerably warmer than the very cold
Yuba River. This study system is therefore ideal for addressing questions about thermal tolerances
of salmonids. The diversity of temperatures these fish traverse is extreme, and we sought insights
into their adaptation to the different rivers that they traverse to reach spawning sites, and where
juveniles grow and smoltify. Beyond these adaptive or evolutionary energetic impacts of temper-
ature, we endeavored to place river temperature into an ecological context by assessing tempera-
tures in micro-habitats. Micro-habitats in this context are at scales below the river-reach, which
required sensors dispersed both across the channel and longitudinally along the length of the river.

Fluvial river temperatures are dynamic and complex. Two trends tend to dominate river tempera-
tures: They generally increase moving downstream from headwaters to mouth [1] and are related-
to (but not forced by) air-temperatures [2]. Yet, these trends vary both seasonally and daily [3].
Solar warming is a strong predictor of river temperature [4], and as a result, vegetative shading
can have intense local effects on micro-habitat temperatures [5]. Finally, flows through sediments,
which are shaded from the sun and have no convective warming from air can maintain relatively
consistent temperatures over vast distances [6]. Integrating these various inputs makes tempera-
ture predictions in rivers challenging. Modeling river temperatures was found to be feasible, but
computationally difficult, particularly at fine-scales. Physics-based models were less effective than
interpolative models [7, 8].

We found that existing sensing methodologies (FLIR [9] and fiber-optics [10]) could not meet the
(spatial and temporal) sampling density and extent that we required to characterize juvenile micro-
habitats and instead opted to build a wireless sensor network to collect real-time temperature data.

Wireless sensor networks (WSNs) [11, 12] have been used in monitoring applications in
similarly harsh applications, including in the early detection of forest fires [13], in actuating
applications such as precision agriculture [14], to measure and control energy usage in smart
homes [15, 16], for high-resolution spatio-temporal monitoring of underwater environments [17],
and in tracking applications such as animal telemetry [18]. In a typical scenario, sensors are dis-
tributed over a geographical area and the data from these sensors are—using a network of relay
nodes—aggregated at a gateway node, which in turn uploads the data to a server for processing
and analysis.
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Multiple environmental factors influenced the design of the sensors and the wireless mesh net-
work that we created. First, the temperature sensors needed to be able to survive changing flows
and river conditions. Second, the river on which sensors were installed was difficult to access and
there was no access to reliable power. Consequently, sensors and wireless networking nodes were
battery-powered. Once deployed, changing batteries at remote node locations was impractical and
costly. It was therefore imperative that we optimize the software to minimize power use. There
were also challenges to consider when placing nodes: topography and geography limited the places
where sensors and nodes could be placed. Finally, hikers, poachers, and animals (beavers and bears)
damaged equipment. These constraints limited the density and positioning of relay nodes, which
meant that they were spread over larger distances, which rendered link quality more susceptible
to failure during inclement weather. To solve these issues, we introduced a network layer function
to store data in intermediate nodes until network links were re-established.

This is a practical implementation paper, in which we describe the design, implementation,
and deployment of a wireless mesh network to gather spatial and temporal river-temperature data
from the lower Yuba River at scales appropriate to assess juvenile salmonid micro-habitat. The key
contributions of this article include:

(1) Design considerations of the data transfer protocol and network architecture, which include
a network storage function robust to intermittent link failure;

(2) Node software architecture based upon event driven proto-threads, designed explicitly to
minimize power use;

(3) Experimental results that quantify the node power use and an evaluation of the efficacy of
the architecture and implemented low power modes;

(4) A methodology for correcting timestamps of data with an incremental identifier, collected
via a network with unknown transmission delays.

The remainder of this article is organized as follows: In Section 3, we discuss some of the tech-
nological choices we made and the constraints imposed by these choices. In Section 4, we describe
the network architecture and the data transfer protocol. We present how the network storage
function was implemented to account for intermittent link failure. In Section 5, we describe the
software architecture of the node based on proto-threads and the methods that were implemented
to minimize power. In Section 6, we present the field results and discuss the important issue of
timestamp alignment. In Section 7, we characterize what we have learned from this work and how
it contributes to in situ environmental sensing more broadly. In Section 8, we discuss the related
work, and in Section 9, we give the conclusions and discuss the future work.

2 BACKGROUND AND MOTIVATION

In 2014, river managers and experts working on the Yuba Accord Management Team for the lower
Yuba River in California’s Central Valley sought to enhance Chinook salmon populations by tar-
geting the juvenile life-stage for in-river restoration efforts. There was hope that restoration work
could modify the river to better meet the energetic needs of juvenile Chinook salmon, which were
historically abundant in the Yuba River [19]. Energy balance is dictated by exertion and consump-
tion. To improve the available habitat for the energetics of an organism, the system must either
have more abundant or more nutritious food (higher consumption), or require that the organism
use less energy in the system (less exertion). Energy use of salmon is largely dependent upon water
temperature. To find the optimal temperatures for salmonids, laboratory experiments have consid-
ered the relationship between water temperature and aerobic scope (the difference in the fish’s
energy-use at maximum exertion and at rest). These studies found that salmonids were adapted
to the temperatures they experienced in their home rivers [20, 21].
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We determined that to meaningfully sample the temperature experienced by juvenile salmonids
in the lower Yuba River, we would need hourly temperature data for a 3 km reach of this multi-
threaded river. To capture the full juvenile life-stage, this sampling needed to survive in-river for
at least six months. We also knew that sensors needed to be able to record and report data even
when we could not physically access the river during flood events. Monitoring needed to be highly
resolved, both in space and time. Specifically, it was important that the temperature be monitored
both longitudinally (along the river, with sensors spaced hundreds of meters apart) and across the
channel (with sensors spaced a few meters apart). We opted to sample every 15 minutes to provide
multiple samples per hour.

3 TECHNOLOGY

3.1 Temperature Sensing

There exist a few sensing technologies capable of the type of data collection required for the project.
Forward-looking infrared (FLIR) cameras can be used to image temperatures at the necessary
spatial density, either aerially or from channel margins. Unfortunately, achieving the required
spatial extent was infeasible, as it would require that we install dozens of FLIR cameras or move
them constantly. They also can only image the water’s surface [9]. FLIR deployments also fail to
meet the temporal extent needed for this study, as they would require considerable maintenance
and power over the course of the six-month juvenile residency period.

Fiber-optic networks can sample large distances (~13 km) at a time, with about 1 meter spatial
resolution [10]. As a result, fiber optic temperature sensing met the necessary spatial density and
extent for our work, with the fiber optics repeatedly crossing the river in a zig-zag pattern. Un-
fortunately, fiber-optic temperature sensing was not feasible for this study due to the required
lasers, which use considerable amounts of power and the need for continuous, on-going upkeep
and maintenance. This was impractical given the access issues of the study sites and the sampling
duration.

It became clear that the best option for temperature monitoring was the use of electronic
temperature sensors. We initially considered data-logging sensors, but moved away from these
because the lower Yuba River experiences extreme flood events that can transport trees, large
boulders, and other detritus down-river. These events can damage, bury, or dislodge temperature
sensors. Since there is no way to remotely recover data from low-cost in situ logging sensors,
destructive events eliminate all data since the previous download, and data from flood events is
lost.

Ultimately, we opted to construct a wireless sensor network that sensed data using off-the-shelf
temperature sensors. We selected the Campbell Scientific CS225-L SDI-12 temperature sensor ca-
bles, which were environmentally sealed and protected all sensor hardware by housing it in a thick,
sealed cable assembly. These assemblies included individually addressable, digital temperature sen-
sors, allowing for long cable runs without concern about voltage loss or other drift that could alter
sensor readings. These sensors were sufficiently accurate for the study (±0.2oC). Sensor assemblies
were designed to contain five sensors, evenly spaced either 5 m or 10 m apart along the length of
the cable, depending upon the river width at a particular location. Sensor cables also had between
10 m and 100 m of additional cabling on the end to allow for transmitters to be concealed in ripar-
ian foliage. These sensors were tethered to anchors buried in the riverbed. Sensors were initially
designed to withstand large changes in the flow of the river, with sacrificial anchors, which would
detach under destructive flows and allow the sensor cables to survive. Despite these precautions,
it proved nearly impossible to design the sensor systems to survive impacts from massive detritus
such as logs carried down by the river during the highest of flows.
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3.2 Wireless Mesh Network

The Campbell Scientific CS225-L temperature sensors were integrated with a wireless mesh net-
work built using inexpensive, low-power devices. Each device was equipped with a radio with
reasonable range to aggregate the temperature data from the sensor strings to one aggregation
point from which the data could be back-hauled to a server on the University of California, Davis,
campus using a cellular connection.

There are four main technologies for implementing wireless mesh networks [22], based on
(1) IEEE 802.11s, (2) Bluetooth Low Energy (BLE), (3) IEEE 802.15.4, and (4) LoRa (and the
corresponding MAC layer protocol, LoRaWAN). The key advantage of devices built using these
technologies is that they come with protocols for node discovery, topology formation, and data
forwarding and routing. These technologies also have high bandwidth. The range for BLE-based
devices is about 30 m. While BLE’s relatively high bandwidth at this range is optimal for its in-
tended application, it was infeasible for the present study, as 30 m node ranging was inadequate
and would have required far more mesh nodes than could be installed in the given terrain. IEEE
802.11s [23], IEEE 802.15.4 [24], and LoRa [25] are designed for Internet of Things (IOT) appli-
cations in industrial setting or Smart City applications where either power is readily available or
batteries can be easily recharged or replaced. These technologies were not designed to minimize
power use. We wanted to use 433 MHz band because of its superior propagation characteristics
outdoors compared to 2.4 GHz or 900 MHz, despite the negative effects of having a larger Fresnel
zone. As a result, the 433 MHz band has gained momentum for machine-to-machine communica-
tions using low-power wireless technologies [26]. DASH7 and IEEE 802.15.4f are two standards
that have been developed for the 433 MHz band. At the time of the deployment, LoRa had not yet
added support for the 433 MHz band. Our application required reliable data transmission in an
energy-deficient environment. We prioritized power savings and data fidelity over bandwidth, la-
tency or other considerations, because the raw temperature data occupied only a few bytes, which
meant each sensor node could generate small packets every 15 minutes.

We opted to use wireless communication operating at 433 MHz, because the frequency struck
a reasonable balance between range and penetration. It also was an unregulated frequency band—
requiring only a Federal Communications Commission (FCC) experimental license. Using
low-power transmitters like ours, operating at 433 MHz, 500 m range was achievable with simple,
low-cost whip antennae. At this range, 433 MHz transmissions can penetrate vegetation while
reflecting off of solid surfaces. In a river, the steep embankments leading up to the floodplains and
levees can create something of an echo chamber, which we found to enhance transmission ranges.

3.3 Hardware

The nodes of the wireless mesh network were implemented using WizziMotes [27], an IoT device
built on top of the Texas Instruments (TI) CC4305137, an MSP430-based micro-controller unit

(MCU) with integrated 433 MHz wireless networking. The MSP430 family of MCUs are ideal for
this application, as they are low-power and can be switched to ultra-low power modes, which
significantly extend battery life [28, 29]. We used WizziMote because they were among the only
devices available at the time that operated in the 433 MHz band and implemented some aspects of
the DASH7 protocol [27, 30].

As a System-on-Chip (SOC), MSP430 provides integrated peripherals for a variety of battery-
operated wireless applications. The operating modes take into account three different needs: ultra-
low power, speed and data throughput, and minimization of individual peripheral power consump-
tion [28, 29]. Built with Low Power Modes (LPMs; LPM0: 80μA, LPM2: 6.5μA, LPM3: 2μA, LPM4:
1μA), MSP430 can preserve energy by shutting down respective clocks on the processing chip and
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Fig. 1. Map of the network deployed in November 2018, which remained functional through May 2019 on the

3 km study reach of the lower Yuba River, immediately downstream from Daguerre Point Dam (not featured:

just upstream of top-right of map) near Marysville, in California’s Central Valley. The orange nodes are the

sensor nodes, the blue nodes are the relay nodes, and the magenta node is the gateway node. Map generated

using Google My Maps, and is 3.7 km by 2.1 km.

later returning to Active Mode (AM: 160μA, radio in RX: 15mA, radio in TX: ~30mA depending
on transmit power) through enabled interrupts in less than 6μs [28, 29]. The state of execution is
saved on the stack and is restored unless altered during the interrupt service routine. State and
memory are maintained and, as a result, the network is able to store data while nodes are put to
sleep. This was an important requirement given that we had intermittent link failures.

The network protocol stack of WizziMote is built around the DASH7 standard [30]. The data
communication is simplex, i.e., the network interface can only operate as a transmitter or as a re-
ceiver at one time. The radio channel bandwidth is 1.74 MHz, spanning from 433.05 to 434.79 MHz.
While DASH7 offers different classes of communication channels, in this project, we used the nor-
mal category [30]. It provides eight channels, each with a data-rate of 55 Kbps. In our experimental
analysis with the WizziMote, the neighboring channel interference was high. As a result, we used
only four non-overlapping channels.

4 NETWORK ARCHITECTURE AND PROTOCOLS

The wireless mesh network contained three types of nodes; sensor nodes that measured water
temperatures, assembled the data into packets, and transmitted the packets to a backbone of relay

nodes, which in turn moved the data packets to a gateway node, which uploaded the data to a
server.

(1) Sensor Nodes (Figure 1: orange, Figure 2(a)) interfaced with a string of five Campbell CS225-
L temperature sensors, spaced either 5 or 10 m apart on the length of the sensor cable and
anchored into the river bed. These nodes contained WizziMotes that connected to the wire-
less network and were the sources of the temperature data. At the heart of these nodes was
an Arduino Mini Pro, which periodically polled sensors for the temperature data, formatted
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Fig. 2. Pictures illustrating the disparate nodes installed in the lower Yuba River, including a sensor node

(a - red box indicates the path of the sensor), a relay node (b - inset of the relay in red), and the

gateway (c).

the data into a packet, and passed the packet over a serial interface to the WizziMote that
then transmitted the packet to a relay node in the wireless network. While our deployment
had up to nine sensor nodes (this number fluctuated with damage and fouling by wildlife,
but seven remained active through most of the sampling period), the network could handle
many more sensor nodes. Each of our sensor nodes were equipped with five sensors an-
chored to the riverbed. The placement of sensors was based upon two criteria: (a) interest or
importance of micro-habitat for juvenile salmonids and (b) feasibility of installation. Installed
sensors both bisected major channels, and zig-zagged through off-channel micro-habitats.

(2) Relay Nodes (Figure 1: blue, Figure 2(b)) passed data packets from relay and/or sensor nodes
to other relay nodes, until the packets reached the the gateway node. These nodes contained
a battery and a WizziMote. Together, these nodes formed the network of relay nodes trans-
porting the sensor data to the gateway node. The main function of these nodes was to receive
packets and transmit them. These nodes were able to buffer packets during periods when
the network links failed and were unable to transmit packets towards the gateway node.

(3) Gateway Node(s) (Figure 1: magenta, Figure 2(c)) was the aggregation point. On the
network side, the gateway received packets via a WizziMote from one or more relay nodes.
It then transmitted these data to a Raspberry P0 over a serial interface. The Raspberry
Pi timestamped the data packets, stored them on a memory card, and periodically used
a cellular modem to upload the data to an off-site server. In our deployment, there was a
single gateway node that was powered by a solar-charged battery.

ACM Transactions on Sensor Networks, Vol. 19, No. 1, Article 15. Publication date: December 2022.
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The relay and the sensor nodes were powered by non-rechargeable batteries, so energy savings
was critically important for these nodes. Only the gateway node’s batteries were charged by a solar
panel. The most important reason for not using solar rechargeable batteries for the sensor and relay
nodes was the need to hide the electronics from hikers, hunters, and animals. We needed to create
a package that was small and could be hidden in trees and other hard-to-reach places where solar
rechargeable batteries would not be very effective. This also meant that we could only fit a small
number of batteries (sensors contained four, and relays contained only a single 19 Ah lithium
thionyl-chloride batteries). This limited number of batteries further necessitated power savings.
The gateway node with the solar panel was deployed in a tree and appropriately camouflaged.

4.1 The Deployed System

The network was deployed in November 2018 on the 3 km study reach of the lower Yuba River.
The sensor network remained functional through May 2019. The study reach was immediately
downstream from Daguerre Point Dam (Figure 1: not featured, just upstream of the top-right of
the map) near Marysville, in California’s Central Valley. The river is a multi-threaded river. The
primary channel of the river is approximately 100 m wide in the study reach, with a bankful flow
of roughly 141.6 m3/s . The river has a course riverbed of large cobble, allowing for considerable
hyporheic flows through the gravel. The river is heavily modified due to extensive aggregate gold
mining in the region. This reach of river was in fact re-located a century ago, moved around the
gold-fields and to the dam. As a consequence, the river is quite treacherous—surrounded by large
gravel mounds. Further, the movement of the river was relatively recent, so there has been little
ecological succession that would yield sedimentary organization. Indeed, much of the floodplain
contains large, exposed cobble. It is a very difficult area to navigate, and low sediment organization,
substantial hyporheic flows, high velocities, large cobble size, and forced channeling all contribute
to a particularly dynamic study reach, prone to re-organization and movement during flood events
(Figure 3). As such, sensors were placed within the river in places that were accessible by foot, with-
out the need of a boat. Sensors were placed, orthogonal to the direction of flow, with effort made
to run them through as many different geomorphic features as possible. Because of the limitations
of this dynamic system, sensor placement was not random (though random number generators
were used to select approximate location), field crew safety required adaptation to place sensors in
areas that could be reached without workers being harmed or carried away by substantial flows.

4.2 Packet Types and Structure

There were three types of packets: data (D; presently temperature data), health (H), and test

(T). Temperature packets consisted of a node ID (the unique identifier of the sensor node from
which the data originated), sequence number (a counter that incremented at the sensor node for
each transmitted packet so duplicate packets could be identified), sensor type (an ASCII charac-
ter to characterize the sensor—presently “T” for temperature), message type “D” for data, first
sensor ID, last sensor ID (sensor nodes were designed with multiple sensors per node—presently
five—using the first and last sensor ID, we could infer whether sensor readings were ascending or
descending in their ordering and allowed for the pinpointing of malfunctioning sensors), up to 20
bytes of data (in this application, up to 10 temperature readings), and two bytes of 0xFF to signify
end of message.

A health packet (H) contained only metadata: node ID, sequence number, sensor type of “R”
for recovery (sent when a node restarted or regained power after a power loss), and message
type of “H” for health. Sent at one-hour intervals, the reception of health packets ensured that
the network was functional between the originating nodes and the gateway. These packets were
particularly useful during periods when network links failed. All nodes (including relay nodes)
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Fig. 3. Image of a flood event in the lower Yuba River side channel, within the study reach, just downstream

of the Gateway node. Marked in the image is the approximate location of a sensor (red), and a relay node

(orange).

generated health packets, which allowed us to localize failures to a specific node or region of the
network. A testing packet (T) was used for debugging purposes. Testing packets had a structure
of node ID, sequence number, sensor type “T,” and data type “T”; they were generated by handheld
nodes, carried by researchers to test wireless communications between nodes as they were being
deployed in the field, ensuring optimal node positioning and placement.

The maximum packet size was 28 bytes, set statically by the sensor node when creating packets.
The first four of these 28 bytes were reserved for the packet metadata. The actual packet could
be smaller, depending upon the amount of data collected by the sensors connected to the sensor
node.

4.3 Medium Access Control (MAC) Protocol

Due to the limited access to the lower Yuba River, the lack of access to power, and the threat
of vandalism posed to visible structures like solar panels, it was imperative to minimize power
use. The sensor nodes aggregated temperature data from the sensors and transmitted to the next
upstream relay node every 15 min. This implied that all sensor nodes could be powered down to
low-power states with a duty cycle of 15 min. A related issue was that nodes that transferred data
to the same upstream node use the same frequency. This led to collisions, which needed to be
prevented to minimize power use.

Energy-efficient MAC protocols have been extensively studied in the context of wireless sen-
sor networks with a sleep-awake duty cycle. Broadly, they can be categorized into four classes:
synchronous, asynchronous, hybrid, and random [31]. Due to the lack of real-time synchronized
clocks in the nodes, synchronous approaches such as T-MAC [32] and hybrid approaches that com-
bine synchronous and asynchronous approaches could not be used. It was further impractical to
implement any wireless time correction like GPS, as GPS reception can be impacted by vegetation,
and this interference can yield errors in both positional and timing signals [33]. Additionally, GPS-
based timers used considerably more power than was available in our installation. GPS receivers
were also more expensive than our budget allowed. With low duty cycle sensors (such as those
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implemented in this project), it has been found that idle listening can be reduced by having the
transmitting node be the active entity when synchronizing with the receiving node [31]. A com-
mon way for this to be achieved is for the sender to—when it has data—transmit a preaamble that
lasts for a length of time that is long enough to overlap with the short duration of time for which
the receiving node wakes to listen for the preamble. This overlap is guaranteed even if the clocks
in the transmitting and receiving nodes are not synchronized. If the receiving node detects the
preamble, then it stays awake to receive the data. This is the approach adopted in B-MAC with
additional optimization in X-MAC [31]. Recently, a randomized algorithm based on the Birthday
protocol [34] has also been implemented [35].

The MAC protocol adopted by WizziMote was similar to B-MAC [36]. In the WizziMote, time
was measured in “ticks,” with each tick equal to 1/1, 024 seconds. For our deployment, we set the
sleep duration to 900 ticks, while any advertisements were transmitted for 1,000 ticks. This ensured
that receiving nodes woke up before the end of the advertisement period of the transmitting node.
During the 1,000 ticks, the transmitting node continuously sent packets containing the remaining
time of advertisement (in ticks). The receiving node used this information to synchronize with the
start of the data transmission. At the transmitting node, the packet was transmitted immediately
after the completion of the advertisement. Once the data were transmitted, the transmitting node
switched the radio interface to the receive mode to receive the acknowledgment. At the receiving
node, if the data passed the checksum, then the node immediately acknowledged the transmission
on the same (backward) channel. Notably, the acknowledgments did not use advertisements. The
data transmission and the acknowledgment were performed in one single operation [37]. Further-
more, nodes transmitted data regardless of whether or not any node received the advertisement
due to a link failure. If the transmitting node did not receive an acknowledgment, then it reat-
tempted the transmission in between sleeping until the receiving node acknowledged the data
packet. The reattempts were guided by an exponential back-off algorithm (Section 4.5).

The energy savings of this approach was derived from the fact that the sender advertised only
when it had data to send and the receiver was only awake for only a small fraction of the time.
The use of advertisement to synchronize nodes significantly increased the chance of collision at
locations where multiple branches of the network converged (i.e., where multiple nodes trans-
mit to a single node). At these locations, multiple nodes could be advertising, transmitting, or ac-
knowledging at the same time. This yielded considerable interference in laboratory experiments.
These transmission collisions substantially increased transmission times and diminished network
fidelity, filling the distributed network storage (discussed in Section 4.5). To avoid these collisions,
while still preserving the advertisement-based synchronization, we implemented cross-listening:
The transmitting node listened on the channel before it started to advertise on the channel. This
was similar to Carrier Sense Multiple Access (CSMA). The main difference was that traditional
CSMA with collision detect (CD) and CSMA with collision avoidance (CA) required the ra-
dio interface to operate in full-duplex mode, i.e., able to transmit and receive at the same time;
whereas the WizziMote radio interface operated in simplex mode. Thus, in cross-listen, the trans-
mitting node only listened for the advertisement and not a general carrier signal before any data
transmission. By minimizing channel conflicts, reducing contention, and decreasing transmission
attempts, cross-listening also reduced duplicate packet transmissions, decreased the time for a
packet to reach the gateway node, and reduced network-wide power use.

4.4 Routing Protocol

Routing protocols in the context of wireless sensor networks have been extensively studied [38]
and there is a standard routing protocol defined for low-power, lossy networks like wireless sensor
networks [39]. There were multiple constraints that limited the design and implementation of the
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routing protocol. First, WizziMotes did not have any in-built node discovery and routing algorithm.
As a result, any routing algorithm had to be implemented from scratch. Besides the complexity of
many of the standard algorithms, there was limited memory in each WizziMote (see Section 3.3).
Additionally, there were both topographical constraints (dense foliage and sharp embankments
at many locations) and constraints on the number of potential locations where relay nodes could
be deployed. Consequently, the network of the relay nodes was a sparse network and there were
only a few routes between the sensor nodes and the gateway node. Near many of the sensor nodes
there was only a single reachable relay node.

There were a number of conflicting constraints imposed upon our network; in balancing them,
we opted for simple static routing and implemented network storage to account for temporary
link failures. The locations of the temperature sensors were fixed by the scientific requirements.
Specifically, we needed to measure temperature along a 3 km river reach at regularly spaced loca-
tions. At each location, we needed multiple, evenly spaced (5–10 m) sensors. The sensor nodes that
aggregated the cross-channel temperature at different locations along the river were constrained
by the river’s inherent geometry. The harsh terrain prevented a very dense deployments of relay
nodes and was further complicated by the incidence of fouling and vandalism. The equipment and
deployment budget limited the number of relay nodes. We therefore deployed a relatively sparse
network of relay nodes. Furthermore, the 433 MHz radio that was implemented in the WizziMotes
could reliably discriminate only four out of the seven available channels. For all of these reasons,
we implemented a simple static routing strategy and used network storage to mitigate link failures.

To simplify the routing of packets and reduce energy use by eliminating the need for node dis-
covery and distributed topology creation, all routes in the network were set statically. To minimize
interference, nodes that were in the hearing range of each other but on different routes were as-
signed different channels. The channels were reused in links that were far apart. Developing the
network with static routing simplified the implementation and provided greater control over the
exact traversal path of packets. This came at the cost that there were no alternate paths for packets
when field conditions changed. But the limited deployment meant that in most places on the river,
no alternative path existed.

A potential approach to deal with link failures would be to set up static back-up paths. If the
primary path broke, then the back-up path could take effect to maintain the connectivity of the
network. However, this option would only be viable with a dense deployment of relay nodes. In
fact, for a dense deployment of relay nodes and with more power, processing, and memory in the
relay nodes, a dynamic routing protocol would be beneficial. The overall topology of the sensor
and the relay nodes had an unbalanced tree structure with the gateway at the root node (Figure 1).
It was only at merge points that nodes in tree branches were close enough to hear each other. We
used cross-listen at these points to reduce collisions.

4.5 Network Storage

By doing a pilot study with a small, experimental field deployment, we found that weather, dis-
tance, local topography, vegetation, antenna position and direction, and other factors reduced link
fidelity and intermittently hindered transmissions. Further, transmission were lost to collisions at
points where network branches merged. For times of diminished network stability, we designed
modules that minimized repeated re-transmissions while maximizing the throughput of unique
packets. This was achieved by exponentially backing off of the transmitter when transmissions
failed. For example, if the base transmission rate was every 4 s, then after subsequent unsuccess-
ful transmissions, the base was binary exponentially increased to 8 s, 16 s, 32 s, and so on. When
the link quality was impacted by weather, it often remained so for some time. Thus, the exponen-
tial back-off (as opposed to a linear back-off) reduced the number of unsuccessful transmission
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attempts, and saved power. While the node slowed down its transmissions, it still received packets
until its queue was filled. This, in turn stored as many packets as possible within the relay nodes in
the network. Once the link became reliable—or in other words, once the node successfully trans-
mitted a packet again—it quickly recovered from exponential back-off by immediately resetting its
base to four seconds.

We have separated the network storage algorithm into two parts (Algorithm 1): The first was
done by the transmit thread, wherein it retrieved the number of unsuccessful packet transmissions,
and then the receive thread updated the back-off timer. This back-off timer reduced the frequency
with which transmissions were attempted. In our current implementation, the delay began at four
seconds between transmission attempts and doubled for each transmission failure, up to a maxi-
mum of 30 minutes. This maximum ensured that each node attempted a transmission at least every
half-hour. Any successful transmissions restored the delay to four seconds.

ALGORITHM 1: Network Storage Algorithm

Input: Back-off timer TB ; Counter Cf for failed transmission in the last round; Transmission
base value BB ; Max transmission back-off BMAX ; Minimum transmission back-off BMI N .

1: procedure TX(Cf , BB , TB ) � For any TX round i
2: if Successful transmission then

3: Cf ← 0
4: BB ← TMI N � reset transmission base
5: TB ← 1
6: else if Unsuccessful transmission then

7: Cf ← Cf + 1
8: end if

9: end procedure

10: procedure RX(Cf , BB , TB ) � For RX round i+1
11: if Cf > 0 and BB < BMAX then

12: Cf ← 0
13: BB ← BB × 2
14: end if

15: if TB mod BB == 0 then

16: TB ← 1
17: call TX procedure
18: end if

19: end procedure

These transmission delays coupled with the 10-slot queues in each relay node coalesced to yield
up to a few hours of distributed network storage (depending upon the design and topology of
the network). This data retention was crucial for scientific sensing, which could generate a steady
stream of sensor-derived data packets. Their timestamps were reverse-calculated once they suc-
cessfully reached the gateway (Section 6).

5 NODE SOFTWARE ARCHITECTURE

In discussing the software architecture of the nodes, we focus on the relay nodes, as they were the
only nodes that contained both transmit and receive functions.
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5.1 Event-driven Proto-threads

Nodes in the network utilized the WizziMote’s Kernal Abstraction Layer (KAL), which main-
tained the illusion of multi-threading at a high level by encapsulating the Contiki proto-thread
library [27], an open-source operating system that offers dynamic loading of application code
onto embedded systems. While similar to a threaded architecture, pseudo-threads cannot run in
parallel. Proto-threads are lightweight and stack-less, providing a blocking context on top of an
event-driven kernel. Sequential flow of control is implemented with macros that save the pro-
cessing states of functions without using complex state machines or full multi-threading. Proto-
threads were particularly well suited for memory constrained devices (WizziMotes had only
4 KB of memory). Another useful feature is that preemptive multi-threading is implemented in the
proto-threads as an application library. Consequently, multi-threading can be optionally linked
with programs that explicitly require it [40].

Two types of events—timer and radio—controlled a pseudo-thread’s execution flow. A pseudo-
thread was always in one of the following states: inactive, processing an event, or waiting for an
event. The WizziMote radio library was written with only one radio buffer. While both the transmit
and receive threads could be active at the same time, they could not process radio events simulta-
neously because of the shared buffer. To prevent conflicts over radio resources, these threads were
scheduled sequentially (transmit after receive).

5.2 Packet Queue

A finite packet buffer, implemented as a queue, connected the threads and acted as shared storage.
Packets received from the receive thread were inserted into the queue, which were then removed
from front of the queue by the transmit thread. To reduce network load from re-transmissions that
resulted from unheard acknowledgments, the receive thread compared each received packet with
the packet received before it. Identical, sequential packets were not inserted into the queue.

5.3 Thread Architecture

In each relay node, there were three threads: the management thread, the transmit (TX) thread,
and the receive (RX) thread (Figure 4). At points of intersection in the topology, we also intro-
duced the cross-listen thread for collision control.

5.3.1 Management Thread. (Finite State Machine (FSM): Figure 4) as the name suggests, man-
aged the transmit and receive threads by initializing them with the necessary parameters. There
was also a main() function that initialized the Hardware Abstraction Layer (HAL), KAL, and
the management thread. The main() function and management thread coexisted because all KAL
processes had to exit before the node could transition into sleep mode. Since the management
pseudo-thread controlled the other threads, killing the management thread terminated the other
threads, which yielded a clean state.

In addition, the main() function controlled two timers: the main timer, which put the node to
sleep (see Section 5.4), and the watchdog timer, which detected inactivity. The MSP430’s built-in
watchdog timer performed a hardware restart if the timer was not reset within 16 seconds, which
allowed for recovery from any hangs or bugs. This was particularly useful in our implementation,
as elements of the WizziMote’s software were provided pre-compiled and we did not have access
to their source [28].

5.3.2 Receive (RX) Thread. (FSM: Figure 5) listened on the backwards channel for any incoming
messages and inserted them into the queue. If nothing was on the channel, then the node switched
to the transmit thread to transmit any packets that were in the queue. If the RX thread successfully
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Fig. 4. Finite State Machine (FSM) showing the overall organization of the pseudo-threads and the events

that triggered transitions to the different threads.

Fig. 5. The Finite State Machine of the RX thread referenced in Figure 4.

received a packet, then the thread acknowledged the packet to the transmitting node on the
backwards channel, which signaled a successful transfer.

In the sequence of events upon waking up from sleep, the receive thread was instantiated before
the transmit thread. This was to fill the queue as much as possible to maximize the storage utilized
in the network. Even when the forward channel was broken, the node continually tried to receive
until the queue was full.
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Fig. 6. The Finite State Machine of the TX thread referenced in Figure 4.

5.3.3 Transmit (TX) Thread. (FSM: Figure 6) transmitted packets (if there were any in the packet
queue) on the forward channel. First, an advertisement was transmitted continuously on the for-
ward channel to signal that a transmission was to be sent. The advertisement period had to be
longer than the sleep period of the receiving node to ensure that the receiving node’s listening
period would overlap with parts of the advertisement. At the end of the advertisement, the node
transmitted the data packet, regardless of whether a receiving node was active to listen for it or
not. Finally, the transmitting node listened for an acknowledgment, which if received, prompted
the removal of the transmitted packet from the sending node’s queue. To minimize power use, the
transmit process was not invoked every cycle of the node. If the forwarding channel was down,
then the node only transmitted after the delay timer had expired (Section 4).

5.3.4 Cross-listen Thread. There were nodes at confluences within the network, where two
or more nodes transmitted on the same channel to the same receiving node. In these nodes, an
additional thread was added to minimize transmission collisions. Acting much like the receive
thread, the cross-listen thread listened on the forward channel to see if another node was already
transmitting. If it heard no transmissions, then it notified the TX thread to transmit the packet.
If the channel was in use, then it backed off for a period of time. This delay was randomized to
prevent additional collisions that could propagate from non-random or hard-coded delays.

5.4 Energy Efficiency

For nodes to survive in the field with limited battery power, they were put to sleep when not
transmitting or receiving. During this sleep, each relay node was pulled to Low Power Mode 3
(LPM3), which disabled the CPU (MCLK) and the high frequency clock (SMCLK), leaving only
the 32 kHz low-frequency crystal clock ACLK powered [29]. In the main() of each relay node, a
timer of 900 ticks was initialized and started, which created an interrupt and returned the node to
Active Mode.

main_t imer = k a l _ t i m e r _ s t a r t ( KAL_ETIMER , NULL , TIMER_ID , 9 0 0 ) ;
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A few lines later, after closing the radio layer and the serial, the node was put into LPM3 and global
interrupts were enabled. The node woke up when the main timer timed out.

_BIS_SR ( LPM3_bi ts + GIE ) ;

This process was repeated after every cycle of receive and transmit.

6 DEPLOYMENT AND EVALUATION

The wireless sensor network was installed and active from November 2018 through May 2019.
Many of the actual sensors were secured into the river over the summer of 2018, as low flows
exposed more of the riverbed. The networking hardware was added to the sensors in October and
November 2018 and brought online as it was completed. The full network was completed and func-
tional in January 2019. During the initial deployment, some relays needed to be re-positioned or
relocated to address changes in flow and vegetation (Figure 1). In May 2019, a restoration project
began, which substantially modified the river channel in the study reach. This work rendered
network maintenance impossible. In January and February 2019, much of the river became inac-
cessible due to flooding, and repairs were more challenging. The low-power, small footprint of all
hardware yielded a relatively low-effort field deployment. Field trips were made as day trips from
UC Davis, often with just a single worker in the field. Additionally, because all hardware was pro-
grammed in advance and sealed prior to the field deployment, field workers needed no specialized
skills.

6.1 Power Use

To determine the power used by our relay nodes, we conducted an experiment that logged the
current drawn by relay nodes. We did this by setting up three nodes: a dummy-sensor node that
generated numerous packets at regular intervals, a relay that transmitted the data, and a gateway
node that received the data from the relay. We set up the dummy-sensor node to transmit at regular
intervals of 4, 8, 16, or 32 seconds. The relay node was connected to a 3.600 VDC source, through
a high-speed, logging bench-top multimeter to measure draw. We measured voltages both above
and below this logging meter to ensure that burden voltage was not too large and that supply
voltage to the relay node stayed above 3.500 VDC. These voltage monitoring multimeters were
both put into their high-speed max/min modes, which measured at least once every 1 ms. These
multimeters were recently calibrated; one was an Amprobe AM-270 and the other a Fluke 87. The
power source was a recently calibrated Power Designs 4010. The current was logged by a recently
calibrated Rigol DM3051. This meter was capable of 500 samples per second, with storage for
200,000 samples—yielding 6 minutes and 40 seconds of continuous sampling.

Each of the relay node’s states were reflected consistently in the data (Figures 7 and 8). Low-
power sleep states used 2–3 μA, active mode used about 5 mA, and receive and transmit modes
used 20–30 mA (Figures 7 and 8). These values were consistent with the anticipated power use
from the CC430F5137 datasheet (Section 3.3) [28, 29].

6.2 Network Storage

To test the effectiveness of the network storage, we created a simple experimental network in
the laboratory that simulated link instability and observed the network recovery and loss. We
considered a linear network of a sensor node connected to a gateway node through two relay
nodes. The sensor node transmitted data every 30 seconds, and the relay nodes had a packet queue
of 10 packets. The link between the second relay and the gateway was shut down with increasing
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Fig. 7. Raw power-use data taken from the Rigol DM3051 in mA when relay node received a data packet

every eight seconds. It is notable that the different power modes were very consistent. The readings near

0 mA were low-power sleep states (2–3 μA), the 5 mA readings corresponded to active mode, and those in

the 20–30 mA range corresponded to receiving and transmitting. All others are transitional between states.

duration of 10, 100, 600, and 1,000 seconds. Each link failure was followed by 60 minutes of
potential recovery time. Recall that the definition of network recovery in our network storage al-
gorithm is equivalent to a successful transmission through the broken link (Algorithm 1). Hence,
we defined the time for network recovery time as the time difference between the link failure and
the receiving of the first packet after the link became available again. Note that there existed an
idle time period during which the network has physically recovered, but was undiscovered until a
packet traversed the previously broken link. For the purpose of this application, we considered the
link to be dysfunctional during this idle time period, because the network health was dependent
on the overall traversal of packets in the network rather than the individual link health.

Figure 9 shows the box plot of the recovery time for different durations of link failure. As the
link breakage time increased, the time to recovery also increased. As the link was broken for
longer periods of time, the delays in between transmissions increased exponentially and so did
the recovery time of each node. The queue size also influenced the back-off rate of the network.
When the queues of connected relays filled, the overall recovery time of the network increased as
multiple relay nodes’ back-off durations compounded.

The rate of packet creation was significantly greater than in a real-world deployment, which en-
sured that the packet queues would fill while the link was broken (particularly during the longer
duration link failures). The purpose was to test the back-propagation of packet storage. This ef-
fect was observed by looking at the losses. For any given queue size, breaking any link in the
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Fig. 8. Histogram of the power used in mA when relay node received a data packet every eight seconds.

Each of the peaks in this histogram corresponded to a state for the Wizzimote. The peak around 0 mA

corresponds to the low-power sleep state, 5 mA corresponds to active mode, and the peaks between 20 and

30 mA correspond to transmit and receive modes.

Fig. 9. Network recovery time in seconds (log scale) as a function of link failure duration. The mean recovery

times are shown as the dashed line and were, respectively, 6.36 s, 24.83 s, 415.36 s, and 815.75 s. The median

recovery times were, respectively, 3 s, 28 s, 331 s, 865.5 s.
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network had no effect on the packet loss if the down time was relatively low. Once the queues
of all available relays were filled, the packet loss increased in proportion to the link down time.
In a real-world implementation, the packet frequency would be much smaller, and the number of
relays much larger, granting the network more storage over a longer duration of time, minimizing
the probability of packet loss.

6.3 Timestamp Alignment

The distributed network storage implemented in this network resulted in the accumulation of
unknown delays during the transit of sensed temperature data. The network contained no real-
time clocks, and packets were timestamped upon receipt at the gateway, after any applicable net-
work delays. It was necessary to re-align these packets with real-time. Re-alignment was feasible,
as each packet contained an 8-bit packet ID, which was sequential (rolling over at 255). We per-
formed the re-alignment in a two-step process, first identifying improperly timestamped packets
(Figure 10(a)), then re-aligning them (Figure 10(b)). The central idea underlying both the identifi-
cation and re-alignment of packets was the use of neighboring packets to estimate the timestamp
for each packet.

While packets from other sensors may be useful for aligning packets in situations where trans-
mission delays propagate from sensor or network drop-outs, most of our network failures were the
result of power-failures at the gateway. Since timestamps were generated at the gateway, and most
link failures propagated from the gateway (as it was the only solar-powered unit in the network
and was most prone to power loss during inclement weather), we did not use packet timestamps
from other sensors to align packets, opting to instead use packets from each sensor to exclusively
align timestamps from that same sensor.

Each sensor generated a data packet about every 15 minutes, and each packet contained a se-
quential packet ID. It was therefore possible to estimate the timestamp of any individual packet

(P) using the timestamps of neighboring packets (X of length N). By taking the difference in packet
ID and multiplying by time between sensor readings (i.e., 15 min), we were able to estimate which
packets were properly aligned. The method was robust to many different modes of packet delay,
because it treated most aspects of packet timings as variable. To this end, we knew that the time
between sensor readings (T) was determined by a crystal, and never synced to any clock, and there-
fore fluctuated with temperature. To improve timestamp estimates, we began by setting T=14 min,
then increased it in five-second increments until the model heuristics (Figure 10) indicated that
we had reached an optimal timing for each packet. When evaluating whether timestamps were
aligned (Figure 10(a)), we evaluated the range of estimates, the distance of the estimate from the
observed packet timestamp, and the number of estimates used to generate the estimated timestamp.
In each step, we also removed the minimum and maximum estimate in an effort to improve the
mean estimate and decrease the spread of estimates. If the estimates derived from a set of neighbor-
ing packets failed to meet the appropriate model heuristics, or if after filtering out minimum and
maximum, the number of estimates fell below L (L=6, presently), then we increased the number
of packets considered (N) to include additional packets before and after the packet in question. In
this way, we prioritized using the packets closest to the packet in question, expanding the window
only when estimates were not sufficiently robust using a smaller numbers of packets. If N reached
72 (36 packets before and after P), then we marked packet P as bad, meaning that we could not
create a sufficiently robust estimate of the correct timestamp for P. Once each packet P had been
evaluated, any marked bad were removed from the data and the algorithm started over, evaluat-
ing all remaining packets not identified as bad in previous rounds and using only the remaining
packets not already marked bad to evaluate each packet within the reduced dataset. This repeated
until the list of bad timestamps grew by less than 5% in a given round. At this point, we considered
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Fig. 10. Flow of control (filled arrows) and data (empty arrows) for (a) bad timestamp identification and

(b) bad timestamp re-alignment. In both diagrams, T is the approximate time between data packets sent by

the sensor (about 15 min). P is the packet that is being evaluated or re-aligned, X are the N-packets that are

being used to evaluate the timestamp of P (notably, the selection of these packets differs between (a) and

(b)). L is a means of ensuring that despite the removal of outlying time estimates, sufficient estimates are

retained to ensure robust estimates.

the list of bad packets to have been identified for that sensor. These bad timestamps were then fed
into a timestamp re-alignment algorithm (Figure 10(b)).

The process for timestamp re-alignment was similar to that of bad timestamp identification.
We used neighboring packets that were not identified as bad (Figure 10(b)). Instead of using the
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Table 1. Number of Timestamps, Broken Out by Sensor, Including Those with

Bad Timestamps as Well as Those that Were Able to Be Realigned

Sensor Date of Date of Total Packets Bad Corrected
First Packet Last Packet Timestamps Timestamps

A 2018-12-05 2019-02-13 3,578 710 288
C 2018-11-06 2019-05-21 7,247 1,850 487
D 2018-11-12 2019-05-21 8,596 2,241 1,032
E 2018-11-01 2019-05-25 12,205 1,185 764
F 2018-11-07 2019-03-02 6,446 866 312
J 2018-12-14 2019-02-23 4,073 1,592 630
K 2018-12-14 2019-03-06 3,571 1,150 377

Total 2018-11-01 2019-05-21 45,716 9,594 3,890

Total number of packets is the sum of good and bad timestamped packets. Re-aligned timestamps are a

subset of bad timestamps—all others could not be re-aligned.

N-nearest packets as above, we instead used good packets arriving within H hours of P. H was
initialized at 7 hours before and after the documented timestamp of P, increasing iteratively until
the number (N) of packets (X) used to estimate the timestamp of packet P was at least 20, with
H having a maximum of 48 hours. Once H was set and the N-packets (X) within H hours of P, the
timestamp of P was estimated and the minimum and maximum estimates were eliminated until
the range of estimates was less than 30 min. If this could not be reached, then as above, the inter-
packet timing (T) was incremented by 5 seconds and the process was repeated. This was repeated
until T reached 16 minutes.

The parameterization of variables and coefficients in our implementation were largely based
upon the scientific questions at play. We were interested in hourly river temperature data. As
such, we sought at least two measurements per hour. This is why we chose to set our rejection
thresholds at 30 min for both for evaluating whether or not timestamps were correct, relative to
timestamp estimates (i.e., mean (timestamp estimates) - observed timestamp) as well as ranges
of timestamp estimates. Other applications of these methods should use parameters informed by
relevant research questions.

We identified 9,594 incorrectly timestamped packets. Of these, 3,890, or about 40%, were able
to be re-aligned using this procedure (Table 1). As a result of this identification and realignment,
40,012 packets were able to be used in further analyses of fluvial water temperatures. Notably, each
packet contained five sensor readings, yielding a total of 200,060 properly aligned or re-aligned tem-
perature readings from the sampling period (Table 1). For most sensors, timestamp re-alignment
was most common for network delays of under 10 hours (Figure 11). Indeed, for every sensor
except sensor E, 75% of re-aligned timestamps were shifted less than 10 hours (Figure 11). How-
ever, for sensor E, which was closest to the gateway, large delays were more readily fixed during
timestamp re-alignment. As a result, the median re-alignment was much larger (over 10 hrs: Fig-
ure 11). Notably, timestamp re-alignment was feasible for up to 20 hours for at least some packets
from each sensor (Figure 11). Timestamp alignment utilized the sequential packet ID, which rolled
over at 255. Any timestamp alignment was infeasible after 63.75 hr, when the counter rolled over.
Re-alignment also successfully corrected hourly mean temperatures, bringing them in line with
what would be expected, with lowest temperatures in the early morning and warmest tempera-
tures in the late afternoon (Figure 12). Prior to timestamp processing, the mean temperature was
elevated in the early morning. Timestamp alignment rectified these high mean temperatures, as
these incorrectly timestamped packets were shifted to the correct time.
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Fig. 11. Violin plots of the amount of time shifted during timestamp re-alignment, broken out by sensor.

Violin plots also contain box plot, with whiskers at 0th and 100th quantile, and box extents to 25th and 75th

quantiles. Perpendicular lines are at medians.

Fig. 12. Temperature data, broken out by time of day (local, Pacific Standard Time), with mean and stan-

dard deviations in temperature across all sensors for the whole of the sampling period. Red, unfilled circles

demonstrate the data as collected. The red plot includes the data that were rejected during timestamp align-

ment and also uses the raw, unprocessed timestamps. The black, filled circles are the data after processing:

All incorrectly timestamped packets have either been re-aligned (if feasible) or removed.
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Fig. 13. Temperature data collected from the wireless sensor network. These temperatures represent cross-

channel means: They are the average of the five individual sensors attached to each sensor-node. The vertical

red lines are at midnight on days in which there was a flood of at least twice (283m3/s) the bankful flow

(142m3/s).

6.4 Temperature Data

We collected temperature data from November 2018 through May of 2019 (Figure 13). In this time,
we collected 200,060 temperature measurements. Different sensors intermittently failed at differ-
ent times, as a result of varying network failures (Figure 13). Many were damaged during large
flow events (Figure 13: red lines). Notably, sensor E persisted longest, as it was nearest to the gate-
way and subjected to the fewest relay failures (Table 1). Upon re-aligning the data, we found a
predictable temperature curve, with hourly mean temperatures peaking in the late afternoon and
reaching a minimum in the early morning (Figure 12).

In total, 3,890 packets were re-aligned. We initially questioned the balance between the un-
certainty implicitly introduced by timestamp re-alignment and the value of additional data. We
came to the conclusion that re-alignment was crucial, because while it represented a relatively
small number of packets (only about 11% of the total packets found to have been properly aligned:
Figure 10(a)), timestamp mis-alignment was biased towards packets collected at night or during
inclement weather, when network failures were most common. Eliminating 3,890 sensor readings
explicitly collected at night and during rain would have hampered our ability to model river tem-
peratures during these important times. This re-alignment was therefore crucial to the success of
the network and the underlying ecological science (Figure 12).

7 LESSONS LEARNED

This project began in 2014 and spanned five years from its conception through the design, de-
ployment, data collection, data post-processing, and analysis. It provided a unique opportunity
to develop and deploy a specialized wireless sensor networks for scientific applications in harsh
conditions. The following are some of the important lessons learned from this project:

(1) Sensors developed to measure temperature across the channel were implemented in a thick
cable, which was anchored to the riverbed (Figure 2; Section 3). Despite these steps, some
of the sensors were damaged during flood events or by wildlife. More robust sensor cables
could have reduced the hazard rate and extended the service life of the sensors.

(2) Even though the gateway was powered by solar rechargeable batteries, it failed during ex-
tended dark periods such as nights followed by cloudy or rainy days. To increase resilience
to dark periods, the gateway could have been equipped with additional batteries.

(3) The MAC protocol that was implemented in the WizziMote was a transmitter-driven
advertisement-based synchronization approach (Section 4). In such a design, the energy
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cost of synchronization is predominantly borne by the transmitter. An alternative approach
would be a probabilistic approach, such as that based on the birthday paradox [34, 35]. In
this approach, the transmitter and the receiver randomly advertise and poll the channel and
it can be shown that they have a very high probability of synchronization even with a rel-
atively low number of polls. The energy cost of synchronization is more balanced between
transmitter and receiver, though not completely balanced, as the receive and transmit costs
are not the same. This approach was evaluated and found to be energy-efficient in a field
deployment [35].

(4) An important lesson pertained to our reliance on the closed-source radio library. The
WizziMote radio library was not open source. This hindered our ability to address bugs
and develop the link layer protocol. For example, since we did not have access to the source
code of the radio library, it was impossible to implement the birthday protocol [35]. Addi-
tionally, the radio only reliably discriminated 4 out of the 7 channels standardized in the
DASH7 protocol stack. This also limited our channel assignment.

(5) The DASH7 protocol allows the transmit power to be dynamically adapted. Dynamically
increasing the transmit power during inclement weather when the link quality deteriorated
could be adapted into our back-off algorithm to save power and improve successful trans-
missions. While it would significantly increase the complexity of the transmit protocol, in
the long run it could save energy by reducing the number of reattempts during periods of
poor link quality.

(6) As mentioned in Section 6, we did not timestamp the data at the sensor nodes, because the
clocks in the WizziMotes were not accurate, and there was significant clock skew. Instead, we
included a sequence number in the packets. The data were timestamped at the gateway node.
However, when packets were stored in the network due to link failures, the timestamps had
to be aligned using the sequence numbers (as described in Section 6.3), which was prone
to errors resulting in some packets to be discarded (Table 1). One heuristic would be to
implement a millisecond counter of delays in the packet header as the packet proceeded
from the sensor node to the gateway node. This delay could significantly improve efficacy
of the timestamp alignment algorithm [35].

8 RELATED WORK

Wireless sensor networks (WSNs) [11, 12] have been and continue to be used in many different
applications. These include monitoring application for early detection of forest fires [13], actuating
applications in precision agriculture [14], energy usage control application in smart homes [15, 16],
and tracking applications such as animal telemetry [18]. Wireless sensor networks have been used
in habitat and environment monitoring [17, 41–43]. One of the earliest comprehensive works in
this area was the habitat monitoring on Great Duck Island [41]. The project monitored many envi-
ronmental parameters, including temperature, barometric pressure, humidity, and others. Further-
more, due to the remote location, sensor power use was an important design constraint. The paper
provided significant details on the design of the sensor node, the wireless sensor network, the data
aggregation through patch gateways, and power budget and evaluation. Another seminal work
on the study of scalability of wireless sensor networks was the measurement study performed in
GreenOrbs [42]. Based on detailed measurement study of congestion in a large deployed wireless
sensor network, the study proposed novel event-based routing strategies that were appropriate for
large-scale sensor networks. Another relevant study was the CitySee project [43], which used wire-
less sensor network for real-time monitoring of CO2 in a large urban area. The paper addressed the
challenges of deployment. Despite the similarities of these prior works, each of these environmen-
tal deployments, including the river deployment in this article, have unique features that address
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specific challenges, and as a result the specific techniques and approaches were not necessarily
transferable.

Techniques to minimize energy use in wireless sensor networks have been extensively stud-
ied [44]. In Reference [45], a Sparse Topology and Energy Management (STEM) algorithm
was proposed to efficiently wake up nodes from a deep sleep state without the need for an ultra
low-power radio. The key innovation was to allow tradeoffs between energy efficiency and the
latency incurred to wake up the node. A different tradeoff, between data fidelity and energy effi-
ciency, has been investigated [46]. There has also been a number of studies that have proposed
energy-efficient routing schemes [47, 48].

In our work, we have used an advertisement-based node-synchronization method. An alterna-
tive approach is a randomized algorithm based on the birthday paradox, which has been proposed
for wireless sensor networks [34]. Specifically, the paper adopted the birthday paradox to develop a
suite of protocols that save energy during the deployment phase of the sensors as well as the node
discovery phase. The approach has been been adopted in a number of follow-up studies [49–51] in-
cluding for a randomized data transfer protocol [35]. A comparative analysis of the two approaches
(advertisement-based and randomized) is beyond the scope of this article.

9 CONCLUSIONS

In this article, we have presented a detailed design, implementation, and deployment of a wire-
less sensor network that collected river-temperature data at fine spatial and temporal scales. The
overarching goal was to use temperature data, along with other data including fish habitat quality
data, as well as hydrodynamic and geomorphic features to develop models of the forcings on river-
temperatures. These models will better inform our understanding of juvenile salmonid energetics
at ecological scales. In this article, we discussed the challenges of deploying the mesh network
and how network storage was implemented to address intermittent link failures during inclement
weather. We also described the design of the relay node and how a pseudo-thread architecture
along with low power modes were leveraged to maximize battery life. We did not achieve 100%
success, as a number of the sensors were destroyed during periods of heavy flow and by animals.
Nevertheless, we were able to get considerable amounts of data, including particularly valuable
and unique data from flood events. These data were valuable, because flood events are difficult to
study, as they often scour and fill rivers and can render deployed logging sensors unrecoverable.
As our data were uploaded in real-time, we obtained considerable data during these events. These
data will help address questions about how river temperatures vary through both space and time
and under differing flow regimes. This micro-habitat understanding of fluvial temperatures will
inform future models of habitat quality for juvenile salmonids.
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