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ABSTRACT OF THE THESIS

Non-Boussinesq stability analysis of natural convection over a horizontal hot plate

by

Haotian Sun

Master of Science in Engineering Sciences (Aerospace Engineering)

University of California San Diego, 2018

Professor Antonio L. Sánchez, Chair

Flow that develops over a semi-infinite horizontal plate has been studied over the past

decades. In this particular case, a boundary-layer flow over a horizontal hot plate is chosen and its

stability characteristics at a finite distance from the leading edge are analyzed. A critical value of

the Grashof number Gr based on the local boundary-layer thickness is defined and used to analyze

the resulting instability.

Due to the nature of the hot plate, the Boussinesq approximation used in previous linear

stability analyses becomes less desirable since wall-to-ambient temperature differences are not

vi



close to unity. And as a result, a non-Boussinesq analysis is needed and presented here for two

instability modes: vortex, i.e. Görtler-like streamwise vortices, and wave, i.e. spanwise traveling

waves.

Numerical results are presented such as the neutral stability curve, and critical Grashof

number for Prandtl numbers of 0.7 over a wide range of wall-to-ambient temperature ratios. It is

found that as this ratio increases, the susceptibility of the flow to the vortex mode of instability

decreases while the wave mode instability becomes more prominent. The present study provides

an approach suitable for both the vortex and wave instability modes with different wall-to-ambient

temperature ratio. The results for the two modes are compared with each other as well as to other

available instability data.
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1 Introduction

Flow that develops over a semi-infinite plates is one of the fundamental problems that

appears in many science and engineering applications. Ever since the beginning of the 20th century,

research has been performed on this topic. However, the majority of the studies available in the

literature have focused on experiments, by using air or water as working fluid. In fact, at the time,

numerical methods for the solution of the governing equations were not yet fully developed and

valid [1].

Schmidt and Beckmann [2] first studied free convection over a horizontal flat surface exper-

imentally in the 30s. Sparrow and Husar [3] were the first to identify the stability issue experimen-

tally for an inclined plate. Two modes of instability were discovered. Vortex instability represents

the stability mode involving streamwise Görtler-like vortices, whereas wave instability represents

that involving spanwise traveling waves following existing terminology [4] [5] from here on.

With the help of more advanced analytical and numerical approaches, a large body of the-

oretical efforts was obtained. However, most of them were performed in the Boussinesq approxi-

mation, when the wall-to-ambient temperature ratio is close to 1.

The present investigation focus on the analysis of vortex and wave instability of a boundary-

layer natural convective flow over a horizontal, upward-facing hot plate for various wall-to-ambient

temperature ratios. Unlike the previous analyses, it does not employ the Boussinesq approximation

or study an inclined plate [6]. The present study covers a temperature ratio ranging up to 2.55 in

which no available stability results have been reported in existing literature. A local stability anal-

ysis using normal mode is employed by our work. A unique neutral curve in the Grashof—wave

number plane can be established for each mode. In reality, the mode with the lowest associated

critical Grashof number for all wave numbers would dominate.

The thesis is structured as follows. Section 2 presents the governing equations and bound-

ary conditions for the base flow and for the linear stability analysis. Section 3 and 4 study the

vortex and wave instability, respectively. Analysis and comparison are made to the two modes in
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Section 5 while Section 6 concludes.

2 Problem formulation

The problem considered here is shown schematically in Fig. 1:

Figure 1: Schematic diagram of the boundary-layer flow over a hot horizontal surface [6].

The temperature of the horizontal upward-facing plate is held at a constant value Tw∗ which

is higher than the ambient temperature T∞∗ found in the surrounding quiescent air atmosphere. The

conservation equations can be written in the following form,

∂ρ∗

∂t∗
+∇∗ · (ρ∗v∗) = 0 (1)

ρ∗
∂v∗

∂t∗
+ ρ∗v∗ · ∇∗v∗ = −∇∗p∗ + (ρ∗ − ρ∗∞)g∗ +∇∗ · [µ∗(∇∗v∗ +∇∗v∗T ] (2)

ρ∗
∂T ∗

∂t∗
+ ρ∗v∗ · ∇∗T ∗ =

1

Pr
∇∗ · [µ∗∇∗T ∗] (3)

with the following boundary conditions:

u∗ = v∗ = w∗ = T ∗ − T ∗w = 0 at y∗ = 0 and x∗ > 0 (4)

u∗ = v∗ = w∗ = T ∗ − T ∗∞ = p∗ = 0 as (x∗2 + y∗2)→∞ and x∗ > 0

The asterisk in the text indicates the corresponding quantity is dimensional while ρ∗,v∗ and T ∗

represent the density, velocity, and temperature of the gas, respectively. The velocity components

v∗ = (u∗, v∗, w∗) correspond to the streamwise distance measured along the plate from the leading

2



edge x∗, the transverse distance from the surface of the plate y∗ and the spanwise coordinate z∗ in

the cartesian coordinates. Gravity becomes g∗ = −g∗ey.

The following equations of state are then needed along with the Prandtl number and ambi-

ent kinematic viscosity. The∞ subscript denotes properties in the ambient air.

R =
ρ∗

ρ∗∞
=
T ∗∞
T ∗

(5)

µ∗

µ∗∞
=

κ∗

κ∗∞
= (

T ∗

T ∗∞
)σ (6)

Pr =
c∗pµ
∗
∞

κ∗∞
(7)

ν∗∞ =
µ∗∞
ρ∗∞

(8)

With air as the working fluid, a Pr value of 0.7 and a σ value of 2/3 are chosen. The present flow

begins as a Navier-Stokes flow from its leading edge with its characteristic properties defined as

the following. Their derivations are based on the assumption that in this region, x∗ and y∗ are of the

same order of magnitude. However, in our case, an assumption that the appearance of instability

happens much further downstream is made and only the boundray-layer region is studied.

x∗NS = y∗NS = (
ν∗∞

2

g∗
)
1
3 (9)

u∗NS = (ν∗∞g
∗)

1
3 (10)

Such assumption implies with our definition of Gr, shown in Eq. (9), the appearance of the in-

stability occurs when the critical value of Gr is much larger than 1. This is required to enable

us to use the conditions of the nearly parallel approximation, with the self-similar boundary layer

solutions used to evaluate the base flow, as indicated below. Hence the streamwise velocity u∗,

3



transverse velocity v∗ and streamwise velocity u0∗ at x∗ = x0
∗ take the form,

u∗ = (g∗2ν∗∞x
∗)

1
5 (11)

v∗ = (
g∗ν∗∞

3

x∗2
)
1
5 (12)

u∗0 = (g∗2ν∗∞x
∗
0)

1
5 (13)

while the boundary layer thickness being y∗ with δ0 representing the local one at x∗ = x0
∗,

y∗ = (
ν∗∞

2x∗2

g∗
)
1
5 (14)

δ∗0 = (
ν∗∞

2x∗0
2

g∗
)
1
5 (15)

The value of the associated Grashof number then determines the stability of the boundary layer

at a given streamwise location x∗ = x0
∗. A different approach to define the Grashof number is

taken from [7] [8]. In our case, Gr is in fact the Reynolds number based on the local values of the

thickness δ0 and streamwise velocity u0∗.

Re =
V D

ν
=
u∗0δ

∗
0

ν
= Gr =

x∗0
δ∗0

= (
x∗0

3g∗

ν∗∞
2

)
1
5 =

δ∗0
3
2 g∗

1
2

ν∗∞
(16)

2.1 Base flow

The base flow is needed for the following stability analysis. In order to do so, we obtain

the steady solution. Clarke and Riley [9] showed that the resulting solution is self-similar. The

velocity field will be represented in terms of the stream function ψ∗ and the boundary-layer region

characteristic thickness will be scaled dimensionlessly as η from the previous equations, Eq. (11)-

Eq. (15). A prime is used to denote differentiation with respect to η:

η =
y∗

(ν∗∞
2x∗2g∗−1)

1
5

(17)
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Stream function:

ψ∗ = (g∗ν∗∞
3x∗3)

1
5F (η), (18)

The mass-weighted velocity field:

ρ∗u∗ = ρ∗∞(g∗2ν∗∞x
∗)

1
5F ′ (19)

ρ∗v∗ = ρ∗∞(
g∗ν∗∞

3

x∗2
)
1
5 (

2

5
ηF ′ − 3

5
F ). (20)

The pressure and temperature functions,

T ∗ = T ∗∞Θ(η), (21)

p∗ = ρ∗∞(g∗2ν∗∞x
∗)

2
5G(η), (22)

with Θ(η) and G(η) being the self-similar variables. With boundary conditions

F (0) = F ′(0) = F ′(∞) = Θ(0)−Θw = Θ(∞)− 1 = 0 (23)

where ΘW is the wall-to-ambient temperature ratio, these equations allow us to reduce the problem

to

[Θσ(
F ′

R
)′]′ +

3

5
F (
F ′

R
)′ − 1

5R
F ′2 +

2

5
(ηG′ −G) = 0 (24)

(ΘσΘ′)′ +
3

5
PrFΘ′ = 0 (25)

G′ +R− 1 = 0 (26)

A numerical solution is employed to solve the base flow problem. The easiest way to achieve this

was found to be using Chebfun [10] integration with the above boundary conditions. Resulting

profiles are shown in Fig. 2 for a range of ΘW .
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Figure 2: The self-similar base-flow solutions for different values of ΘW
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2.2 Linear stability analysis

The linear stability of the flow at x∗ = x∗0 is investigated by introducing the following the

perturbed non-dimensional variables into Eq. (1) to (3) and Eq. (5) to (8):

v∗

u∗0
= v̄(x/Gr, y) + v(x, y, z, t) = (ū, v̄, 0) + (u, v, w) (27)

T ∗

T ∗∞
= ¯̄T (x/Gr, y) + θ(x, y, z, t)

ρ∗

ρ∗∞
= ρ̄(x/Gr, y) + ρ(x, y, z, t)

µ∗

µ∗∞
= µ̄(x/Gr, y) + µ(x, y, z, t)

p∗

ρ∞∗u∗0
2 = p(x, y, z, t)

and

x =
x∗ − x∗0
δ∗0

, y =
y∗

δ∗0
, z =

z∗

δ∗0
, t =

t∗

δ∗0/u0
∗ . (28)

As a result, the linearized equations become:

∂ρ

∂t
=− ρ̄∇ · v− ρ∇ · v̄− v · ∇ρ̄− v̄ · ∇ρ, (29)

ρ̄
∂v
∂t

=− ρ̄v̄ · ∇v− ρ̄v · ∇v̄− ρv̄ · ∇v̄−∇p (30)

− 1

Gr
ρey +

1

Gr
∇ · [µ̄(∇v +∇vT ) + µ(∇v̄ +∇v̄T )],

ρ̄
∂θ

∂t
=− ρ̄v̄ · ∇θ − ρ̄v · ∇T̄ − ρv̄ · ∇T̄ (31)

− 1

Gr

1

Pr
∇ · [µ̄∇θ + µ∇T̄ ],

and

ρ = −T̄−2θ, µ = σT̄ σ−1θ, (32)
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Based on the results of the self-similar velocity and temperature profiles, the base profiles then

become with new notations:

ū = Ū , v̄ = Gr−1V̄ , T̄ =
1

ρ̄
, T̄ = µ̄1/δ, D =

∂

∂y
(33)

using rescaled coordinates according to Eq. (28).

A reminder [6] is needed here that we assumed the slenderness of the flow previously.

Hence the inverse of Gr, ε : Gr−1, is relatively small for the nearly parallel stability analysis used

here. To impose this locally non-parallel flow assumption, some of the non-parallel terms of the

base flow will be included in the stability equations. So only using terms up to O(ε0) is not enough

since they only describe the inviscid instability of strictly parallel flow. Thus, we decide to include

terms up to O(ε1) for the present work. Terms of O(ε2) and higher are ignored.

ε : Gr−1 (34)

O(ε0) : Ū ,DŪ,D2Ū ,

: T̄ , DT̄ ,D2T̄ ,

O(ε1) : V̄ , DV̄ ,

:
∂Ū

∂x
,
∂T̄

∂x
,
∂ρ̄

∂x
,

O(ε2) :
∂V̄

∂x
, etc.

Appendix A shows the simplified equations used for the numerical solution for the following

normal-mode perturbations,

(p, u, v, w, ρ, µ, θ) = (p̂(y), û(y), iv̂(y), ŵ(y), ρ̂(y), µ̂(y), θ̂(y))ei(kx+lz−ωt) (35)

where ω = ωr + iωi contains both the frequency ωr and the growth rate ωi and k and l are the

dimensionless streamwise and spanwise wave numbers.

8



3 Vortex instability

3.1 The simplified eigenvalue problem

We first study the appearance of the streamwise Görtler-like vortex rolls, known to be more

prominent for cases with Boussinesq approximation. Following the linear stability analysis setup

from the previous section, the eigenvalue problem can be simplified to make the calculations easier.

It can be investigated by setting k = 0 in the normal-mode ansatz (Eq. (24)) and then constructed

in the standard form Af = ωBf with f = (p̂(y), û(y), iv̂(y), ŵ(y), θ̂(y)). This equation is result

from Eq. (35) where the ρ̂ and µ̂ terms are expressed in terms of θ̂. In this particular case, an

additional step can be taken to make the task even simpler. Chen et al. [11] proved the validity

of the principle of exchange of stabilities for this type of instabilities, so it is in fact safe for us to

believe that in the full eigenvalue spectrum, the eigenvalue with the largest growth rate ωi has a

corresponding zero real-part frequency ωr. As a result, we can set ω equal to zero in addition to k in

the simplified stability equations for the the critical conditions of vortex instability. However, this

extra step was not taken during the numerical process. This allows us to keep the codes consistent

with the one used for the wave modes.

3.2 Critical neutral stability curves

The above eigenvalue problem was then solved numerically so that we can determine the

critical value Gr shown in Fig. 3. The top figure corresponds to the variation of Gr against l for

different ΘW . It can be seen that for each neutral curve, it reaches a minimum value Grm at a

certain wave number l. This minimum determines the wave length with wave number lm of the

most unstable mode along with the downstream location x∗m = (Gr5mν∞
2/g)

1
3 at which the vortices

begin to develop.

With these results, the variation of Grm and lm for the most unstable mode is plotted as a

function of ΘW at the bottom as well. We can clearly conclude from the plots that increasing the

wall-to-ambient temperature ratio ΘW decreases the associated critical Grashof number and has a

9



Figure 3: Results of the non-Boussinesq analysis of the vortex instability, including curves of neu-
tral stability along the spanwise wave number l of different ΘW (top) and critical Grashof number
along the various temperature ratio ΘW (bottom).

destabilizing effect on the flow. The departure of the critical Grm and lm with higher ΘW from

when ΘW − 1� 1 is also evident.
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4 Wave instability

4.1 The simplified eigenvalue problem

As for the vortex mode, the eigenvalue problem for wave mode is simplified with a simi-

lar approach. However, unlike the vortex mode, the previous statement that in the full eigenvalue

spectrum, the eigenvalue with the largest growth rate ωi has a corresponding zero frequency ωr

does not hold true anymore and the condition ω = 0 ceases to be valid. The wave number l = 0

becomes the only simplification can be employed and during the numerical solving process. All

the equations are retained and the same standard form Af = ωBf with Aand B being linear dif-

ferential operators is used for the sake of consistency. According to the existing literature [14,20],

it is worth mentioning that even though a spatial stability analysis is recommended in terms of ac-

curacy, a simpler temporal stability analysis is sufficient to determine the curves of neutral stability

since we are only focusing on the the determination of the curves of neutral stability, associated

with both the wave number k and the frequency ω.

4.2 Critical neutral stability curves

The above eigenvalue problem was solved numerically as well to determine the critical

value Gr investigating the conditions of neutral stability for a given wall-to-ambient temperature

ratio ΘW , which defines the base flow, and a given streamwise wave number k. Fig. (4) shows the

results obtained by integrating numerically the eigenvalue problem for the wave instability. Very

similar to the vortex instability, increasing the wall-to-ambient temperature ratio tends to destabi-

lize the flow. The departure observed previously is seen here as well, reinforcing the importance

of non-Boussinesq effects for wave instability.

5 Comparison

For a more thorough understanding of the flow, an examination of the obtained results is

11



Figure 4: Results of the non-Boussinesq analysis of the vortex instability, including curves of
neutral stability along the streamwise wave number k of different ΘW (left) and critical Grashof
number along the various temperature ratio ΘW (right).

deemed to be necessary.
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5.1 Results from the present study

We start by comparing our own vortex and wave modes instabilities results. As stated in

sections 3 and 4, the eigenvalue problem was solved numerically to determine the critical value

Gr for a range of wall-to-ambient temperature ratio ΘW along different wave numbers. A similar

setup of the standard form Af = ωBf is used for both cases to ensure consistency. The minimum

Gr of each neutral curve and the associated ΘW is then plotted in Fig. (5) respectively. Here in

Figure 5: Curves of ΘW against critical Grashof number for both vortex and wave modes.

Fig. (5), the two figures on the bottom from Fig. (3) and (4) are combined to see the effect of the

various wall-to-ambient temperature ratios on both instability modes.

It is convenient for us to divide this figure into three sections: the low ΘW section, the

transition section and the high ΘW a.k.a. the non-Boussinesq section.

The first section is the low ΘW section shown in Fig. (6) and Fig. (7). This section should

be categorized as the section when ΘW − 1 � 1. We can clearly see the similarity of the critical

Grashof number for both the wave and vortex mode results. However, after enhancing the figures,

it is worth noting that the vortex critical Gr is still slightly smaller than the wave critical Gr

indicating that the vortex mode is being more dominant for a horizontal plate with low ΘW value.

13



Figure 6: Magnified curves of ΘW against critical Grashof number for both vortex and wave
modes—low ΘW region(left) and transition region(right).

The second section is the transition section. The smaller critical Grashof number at a given

wall-to-ambient temperature ratio slowly changes from the one obtained from the vortex mode to

14



the one from the wave mode, shown in Fig. (6)(bottom) as ΘW increases. In the magnified plot, it

is noticed that such transaction happens at a ΘW around 1.19. This is very close to the threshold

where we define the flow as transitioning from being valid for Boussinesq approximation to non-

Boussinesq approximation.

The third section would then be the high ΘW section where the non-Boussinesq approx-

imation should be employed,shown in Fig. (5) and (8) It is evident that the wave mode curve

contains the smallest critical Grashof numbers whereas the gap between the vortex and wave mode

Gr increases as ΘW increases.

Based solely on these observations, it is clear for a non-Boussinesq natural-convection flow

over a horizontal hot plate, as ΘW increases, the susceptibility of the flow to the vortex mode of

instability decreases while the wave mode instability becomes much more dominant, and this holds

especially true when ΘW is out of the Boussinesq approximation range.

5.2 Comparison with results from existing literature

We now compare the present results with results from existing literature. Three papers are

mainly compared for a better understanding of the present instability analysis.

5.2.1 Inclined plate with non-Boussinesq approximation

Rajamanickam et al. [6] examined the non-Boussinesq effect on an inclined plate and their

corresponding formulation is based on these conditions. According to [6], with a fixed inclination

angle, the increasing of ΘW decreases the associated critical Grashof number which is more pro-

nounced for the wave mode indicating the instability may switch from vortex mode to wave mode

as the plate temperature increases.

This behavior is in consistent with what we observed from the present work for horizontal

hot plate. Essentially, we can consider our horizontal plate as a unique situation where the given

inclination angle is fixed at 90 degrees according to [6]’s convention when the angle is set from

the vertical plane. One aspect should be kept in mind is that Rajamanickam’s [6] formulations is

15



Figure 7: Curves of wave number k/l against critical Grashof number for both vortex and wave
modes for low ΘW—regular(left) and magnified(right)..

not suitable for completely horizontal plate due to the derivation from inclined conditions. But a

prediction can still be made and as we learned from the previous subsections, the horizontal hot

plate based on our work indeed exhibits such behavior where the wave mode instability becomes

16



Figure 8: Curves of wave number k/l against critical Grashof number for both vortex and wave
modes for high ΘW

more prominent than the vortex mode one when ΘW increases.

However, one factor needs to be noted is that the Gr used in [6], similar to our definition,

appears to be larger than our results even for high ΘW . This discrepancy is very important and will

be discussed during the concluding remarks.

5.2.2 Horizontal plate with Boussinesq approximation

The two papers from Chen et al. [7] [8] are used as comparison to study the departures

from the Boussinesq approximation

Chen et al. [7] [8] showed the Boussinesq effect on a horizontal plate and their formulation

is based on this approximation. A Grashof number is defined as follows for both vortex and wave

mode,

Grchen = gβ(Tw − T∞)x3/ν2. (36)

For a horizontal plate a critical Gr number of 340 for vortex mode and a critical Gr number of 510
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for wave mode are obtained from [7] [8]. With these two values, a prediction derived by extending

the Boussinesq approximation using high ΘW employing the following equation can be made.

Gr = (
Grchen

β(Tw − T∞)
)
2
5 (37)

Two coefficients of thermal expansion β are choosen with βw = 1/Tw and β∞ = 1/T∞. The

vortex mode plot is then shown in Fig. (9) and the wave mode plot is shown in Fig. (10).

Figure 9: Curves of critical Gr with different ΘW from present study (solid curve) and from the
Boussinesq predictions obtained by scaling the value given in [7] for the vortex mode

For the vortex mode, the curve representing results from present work lies between the two

Boussinesq predictions, with the thermal expansion β∞ = 1/T∞ based on the ambient tempera-

ture being a better fit while for the wave mode, we can see that the curve representing results from

present work lies below both Boussinesq predictions regardless of value of the thermal expansion.

It is safe to say that an extension from the Boussinesq approximation can be used to predict situa-

tions even when ΘW − 1 ∼ 1. However, since the wave mode becomes more prominent for high
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Figure 10: Curves of critical Gr with different ΘW from present study (solid curve) and from the
Boussinesq predictions obtained by scaling the value given in [8] for wave mode

ΘW and the solid curve in Fig. (10) lies below the predicted curves, such an extension becomes

less sufficient even with a very small difference in value and our non-Boussinesq calculation needs

to be considered instead. Again, one factor needs to be noted is that the critical Gr for high ΘW

here stops being� 1 and this will be discussed during the concluding remarks as well.

6 Conclusion

The present work fills the void for the study of a flow that develops over a horizontal hot

plate among previous experimental and theoretical researches. Both instability modes: vortex—

Görtler-like streamwise vortices and wave—spanwise traveling waves are examined. It is shown

that the non-Boussinesq effect indeed plays an important role on the dominance of the two in-

stability modes. The results provide predictions of critical Grashof numbers for both vortex and

wave modes of instability and their associated wave numbers, and show that as ΘW increases, the

susceptibility of the flow to the vortex mode of instability indeed decreases while the wave mode

instability becomes more prominent. Based on comparisons with existing literature, unlike the
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inclined plate, the horizontal plate is only moderately affected by non-Boussinesq conditions for

both vortex and wave instabilities even though it is still found that such conditions promotes wave

instabilities slightly more.

However, one significant flaw of the present work is that the resulting critical Gr number

fails to meet the slenderness requirement for boundary-layer region as ΘW increases. As shown in

section 5, the resulting critical Gr when ΘW = 2.50 is around 3.0 and the order of magnitude of

that value contradicts with our assumption. The promise of having a large Gr as indicated in Eq.

(16) is crucial to maintain the validity of our work. As a result, further improvement regarding the

setup of the problem is warranted.

For instance, a non-local parabolic stability problem could proved to be useful in this case.

Inspired by [6], a global stability analysis in which the instabilities are considered as two dimen-

sional temporal Fourier modes, is worth considering as well. The core of this approach is that it

does not require the flow to be slender and then the Navier-Stokes region could perhaps be studied.
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A Appendix

The simplified stability equations are shown below with ρ̂ = −Θ̄−2θ̂ and µ̂ = σΘ̂σ−1θ̂,

(0)p̂+ (ikρ̄+ ∂xρ̄)û+ (ilρ̄)v̂ + (iρ̄D + iDρ̄)ŵ+ (38)

(∂xŪ + ikŪ +Gr−1W̄D +Gr−1DW̄ )ρ̂+ (0)µ̂+ (0)θ̂ = ω(i)ρ̂

(ik)p̂+ (ikρ̄Ū + ρ∂xŪ +Gr−1ρ̄W̄D −Gr−1[µ̄(D2 − 2k2 − l2) +DµD])û+ (39)

(Gr−1µ̄kl)v̂ + (iρ̄DŪ +Gr−1[kDµ̄+ kµ̄D])ŵ+

(Ū∂xŪ +Gr−1W̄DŪ)ρ̂+ (−Gr−1[∂zzŪ +DŪD])µ̂+ (0)θ̂ = ω(iρ)û

(il)p̂+ (Gr−1µ̄kl)û+ (40)

(ikρ̄Ū +Gr−1ρ̄W̄D −Gr−1[µ̄(D2 − k2 − l2) +DµD])v̂+

(Gr−1[lDµ̄+ lµ̄D])ŵ + (0)ρ̂+ (0)µ̂+ (0)θ̂ = ω(iρ)v̂

(D)p̂+ (−Gr−1ikµ̄D)û+ (−Gr−1ilµ̄D)v̂+ (41)

(−ρ̄Ūk + iρ̄Gr−1W̄D + iρ̄Gr−1DW̄ −Gr−1[iµ̄(2D2 − k2 − l2) + i2DµD])ŵ+

(1)ρ̂+ (−Gr−1ikDŪ)µ̂+ (0)θ̂ = ω(−ρ̄)ŵ

(0)p̂+ (ρ∂xT̄ )û+ (0)v̂ + (iρ̄DT̄ )ŵ+ (42)

(Ū∂xT̄ +Gr−1W̄DT̄ )ρ̂+ (−Gr−1Pr−1[DT̄D + ∂zzT̄ ])µ̂+

(ikρ̄Ū +Gr−1ρ̄W̄D −Gr−1Pr−1[µ̄(D2 − k2 − l2) +DµD])θ̂ = ω(iρ̄)θ̂
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and boundary conditions,

û = v̂ = ŵ = θ̂ = 0 at y = 0 (43)

û = v̂ = ŵ = θ̂ = p̂ = 0 as y →∞

The equations are prepared for the linear differential operatorsAand B used in the standard

form Af = ωBf with f in the form of Eq. (44)

One important note is that all terms along the y- and z- directions are interchanged with

each other for coding purpose. Eqa. (35) is converted and takes the following form.

(p, u, v, w, ρ, µ, θ) = (p̂(z), û(z), v̂(z), iŵ(z), ρ̂(z), µ̂(z), θ̂(z))ei(kx+ly−ωt) (44)
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