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EPIGRAPH

Imagination is more important than knowledge. For knowledge is limited to all

we now know and understand, while imagination embraces the entire world, and

all there ever will be to know and understand.

—Albert Einstein
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ABSTRACT OF THE DISSERTATION

Mathematical Analysis of Signal Transduction and Information
Measurement in Cells

by

Wen Chen

Doctor of Philosophy in Physics (Biophysics)

University of California, San Diego, 2011

Herbert Levine, Chair

In biology signal transduction is the process by which an extracellular sig-

naling molecule activates a membrane receptor that in turn alters intracellular

molecules creating a response. The chemical signal binds to the outer portion of

the receptors, which span the cell membrane with part outside the cell, changing

its shape and conveying another signal inside the cell. Some chemical messengers

can pass through the cell membrane, and bind directly to receptors in the cyto-

plasm or nucleus. Sometimes there is a cascade of signals within the cell. With

each step of the cascade, the signal can be amplified, so a small signal can result in

a large response. Eventually, the signal creates a change in the cell, either in the

expression of genes in the nucleus or in the activity of enzymes in the cytoplasm.

xii



Since signal transduction and information measurement are so important for the

cell, we are aiming to theoretically understand how signals are transferred inside

cell and how cell measures its environment information.

The first part of this dissertation focused on the compartmentalization of

second messengers. Intracellular signal transduction is largely carried out by sec-

ond messenger molecules. It is well known that a variety of signaling pathways can

share a common second messenger, generated through different external stimuli.

Obviously, this leads to the potential of cross-talk between these pathways. One

possibility to avoid this cross-talk and thus ensure pathway specificity is to create

spatial regions in which the concentration of the second messenger is markedly

different. By spatially localizing the targets of the second messenger in these mi-

crodomains it would be possible to excite different pathways for different external

stimuli. The second part of this dissertation studied how cell as a information

processing machine senses chemical gradients in its environment. Using informa-

tion theory, a formula for the mutual information between the input gradient and

the spatial distribution of bound receptors was derived. By estimation theoretic

methods, the physical limits of gradient sensing was also determined for both

circular and ellipse cells. The third part of this dissertation investigated how bi-

ological processes are controlled by biochemical switches which are regulated by

upstream signal, in order to understand how input fluctuation affect the dynamic

of a molecular switch. This understanding is critical toward a full understanding

of noise regulation in biological signaling systems.
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Chapter 1

Introduction

This dissertation mainly contains three parts, which cover different aspects

of signal transduction and information measurement in cells. First, it is well known

that a large number of signaling pathways share the same second messengers. How

to avoid cross-talk to achieve signaling specificity is one major concern of signal

transduction in cells. Chapter two aims to give a possible solution to this signaling

specificity problem. One of the other topics is chemotaxis, the chemically guided

movement of cells, which plays an important role in several biological processes

including cancer, wound healing, and embryogenesis. Many motile cells determines

their direction by measuring external chemical gradients through the binding of

ligands to membrane bound receptors. The physical limit of this measurement is

discussed in Chapter three. The topic discussed in Chapter four is biochemical

switches, which are regulated by certain upstream molecules. Understanding how

the noise of upstream chemical signal affects downstream switch is important to

understand the signal transduction in a biochemical cascade.

Chapter two studies intracellular compartmentalization of a second messen-

ger, which leads to microdomains of elevated concentration. The elevated concen-

tration is thought to be involved in ensuring signaling specificity. Most experimen-

tal evidence for this compartmentalization involves the second messenger adenosine

monophosphate (cAMP), which is degraded by phosphodiesterases (PDEs). One

possible way of creating these compartments, supported by recent experiments, is

to spatially separate the source of cAMP from regions of elevated PDE concen-

1
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tration. To quantify this possibility, we study here a simplified geometry in two

dimensions (2D) and in three dimensions (3D), containing a cAMP point source

and regions with different degradation constants. Using the symmetry of our ge-

ometry, we are able to derive steady state solutions for the cAMP concentration

as a function of the system parameters. Furthermore, we show, using analytical as

well as direct numerical simulations, that for physiologically relevant time scales

the steady state solution has been reached. Our results indicate that elevating

the degradation constant throughout the cell, except for a small microdomain sur-

rounding the source, requires an unphysiologically high cellular PDE concentration.

On the other hand, a tight spatial relationship of localized PDEs with the cAMP

source can result in functional microdomains while maintaining a physiologically

plausible cellular PDE concentration. Some experiments in hippocampal neurons

have demonstrated the existence of compartments with elevated levels of second

messenger molecules such as cAMP. This compartmentalization is believed to be

necessary to ensure downstream signaling specificity. Here we use analytical and

numerical techniques to investigate the diffusion of a second messenger in the soma

and in the dendrite of a neuron. We obtain analytical solutions for the diffusion

field and examine the limit in which the width of the dendrite is much smaller

than the radius of the soma. We find that the concentration profile depends both

the degradation rate and the width of the dendrite and that compartmentalization

can be indeed be achieved for small width to soma radius ratio.

Chapter three studies eukaryotic chemotaxis. Chemotacting cells are able to

sense shallow chemical gradients where the concentration of chemoattractant dif-

fers by only a few percent from one side of the cell to the other, over a wide range

of local concentrations. Exactly what limits the chemotactic ability of these cells

is presently unclear. Here we determine the chemotactic response of Dictyostelium

cells to exponential gradients of varying steepness and local concentration of the

chemoattractant cAMP. We find that the cells are sensitive to the steepness of the

gradient as well as to the local concentration. Using information theory techniques,

we derive a formula for the mutual information between the input gradient and

the spatial distribution of bound receptors and also compute the mutual informa-
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tion between the input gradient and the motility direction in the experiments. A

comparison between these quantities reveals that for shallow gradients, in which

the concentration difference between the back and the front of a 10µm-diameter

cell is < 5%, and for small local concentrations (< 10nM) the intracellular infor-

mation loss is insignificant. Thus, external fluctuations due to the finite number of

receptors dominate and limit the chemotactic response. For steeper gradients and

higher local concentrations, the intracellular information processing is suboptimal

and results in a smaller mutual information between the input gradient and the

motility direction than would have been predicted from the ligand-receptor bind-

ing process. In this chapter, we apply estimation-theoretic methods to determine

the physical limits of gradient sensing for cells that are non-circular and for cells

that have an internal bias. Specifically, we derive theoretical expressions for the

accuracy of gradient sensing in elliptical cells. This accuracy for highly elliptical

cells can significantly deviate from the gradient sensing limits derived for circular

cells. Furthermore, we find that a cell cannot improve its sensing of the gradient

steepness and direction simultaneously by elongating its cell body. Finally, we

derive a lower bound on the accuracy of gradient sensing for cells that possess an

internal bias and compare our analytical results with recent experimental findings.

Chapter four studies biochemical switches. Many biological processes are

controlled by biochemical switches which themselves are regulated by certain up-

stream molecules (input). Understanding how input fluctuations affect the dynam-

ics of a molecular switch is critical toward a full understanding of noise regulation

in biological signaling systems. In this chapter, we propose a simple and general

modeling framework in which the input signal, described by certain Markov diffu-

sion process, directly modulate the transition rates of a downstream switch. We

apply the Feynman-Kac theorem to characterize the probabilistic structure of the

output switching process. Together with Monte-Carlo simulations, we show that

our model system can exhibit a wide range of interesting dynamics, potentially

corresponding to various important biophysical schemes. Our results suggest that

the conventional additive input-output noise relationship is insufficient to describe

signaling systems containing a single molecular switch.



Chapter 2

Second Messenger

Compartmentalization

2.1 A mathematical analysis of second messen-

ger compartmentalization

2.1.1 Introduction

It has long been known that a large number of signaling pathways can share

a common second messenger, generated through a variety of different external stim-

uli. Obviously, this leads to the potential of cross-talk between these pathways in

which an external stimulation excites multiple pathways in an indiscriminate man-

ner. One possibility to avoid this cross-talk and thus ensuring pathway specificity

is to create spatial regions in which the concentration of the second messenger is

markedly different. By spatially localizing the targets of the second messenger in

these microdomains it would be possible to excite different pathways for different

external stimuli.

Most of the evidence for this compartmentalization comes from work study-

ing cyclic adenosine monophosphate (cAMP) pathways. cAMP is a ubiquitous

second messenger, involved in a multitude of processes including differentiation,

development, and excitation/contraction coupling in muscle cells. cAMP primarily

4
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activates the cAMP-dependent protein kinase (PKA) and is generated by mem-

brane bound adenylyl cyclases (ACs) which, in turn, are activated by transmem-

brane receptors [1]. Experimental evidence has demonstrated that different stimuli

can result in the activation of different downstream pathways [2]. In other words,

cAMP-dependent pathways can be activated in a selective and specific fashion.

This is surprising since cAMP is a small molecule with a large diffusion coeffi-

cient and thus any local elevation in cAMP concentration should rapidly lead to a

homogeneous increase in cytosolic cell-wide cAMP levels.

The existence of cAMP microdomains was demonstrated in recent high

resolution fluorescence resonance energy transfer (FRET) experiments with sub-

micrometer resolution. These experiments showed that cardiac myocytes, following

β-adrenergic stimulation, displayed multiple discrete microdomains of high cAMP

concentration [3]. This compartmentalization is thought to play an important

role in functional differences between β1-adrenergic and β2-adrenergic signaling

[2, 4, 5, 6] and might be impaired during heart failure. Similar spatial cAMP gra-

dients have also been found in human embryonic kidney cells [7] and hippocampal

neurons [8].

Two scenarios to limit the spatial extent of the second messenger, and thus

ensuring specificity, have been postulated. In the first, the cell geometry creates

anatomical barriers that naturally limits the diffusion of cAMP. In the second

scenario, the degradation of cAMP by phosphodiesterases (PDEs) acts to create

a ”functional” compartment [9]. These PDEs exist in many isoenzyme variants

and have been shown to act either close to the membrane, in the cytosol or both

[10]. Recent experiments have shown that the microdomains of cAMP can be

abolished by treating the cells with a PDE inhibitor [11], strongly suggesting that

the second scenario plays a dominant role in the creation of cAMP microdomains.

In fact, additional experiments have demonstrated that the PDEs themselves are

not uniformly distributed throughout the cell [12, 13]. Instead, they appear to be

anchored to subcellular structures, possibly through A-kinase anchoring protein

(AKAP) [14].

Several modeling studies have addressed the β-adrenergic pathway in my-
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ocytes [15, 16]. What has been lacking to date, however, is a quantitative and

analytical investigation of the effect of PDEs on the spatial distribution of cAMP.

In this study we will examine a simplified spherically symmetric model in which

molecules from a point source, located on an impermeable membrane, diffuse into

a space that contains a region of elevated PDE concentration. Note that our model

does not address localization effects that might arise from more complicated ge-

ometries. This was shown to occur in a recent numerical study in neurons where

the different surface-to-volume ratios for the cell body and for the dendrites can

lead to significant concentration gradients [17]. In addition, we do not include

possible feedback from cAMP on the PDEs, as considered in [17].

In this study, we derive expressions for the steady state concentration in

both 2D and 3D and obtain a simple expression that links the critical experimental

parameters (the size of the microdomain, the diffusion constant of the second mes-

senger, the production rate and the degradation constant) to a threshold value for

PKA activation of the cAMP concentration. We find that a significant lowering of

the concentration requires a large value of the degradation constant. If the PDEs

are only excluded from the microdomain adjacent to the cAMP source, such a

large degradation constant would necessitate cellular PDE concentrations that are

unphysiological. On the other hand, our results show that a tight localization of

PDEs can also create functional cAMP microdomains and that by limiting the spa-

tial extent of PDEs the cellular PDE concentration can remain in the physiological

range.

2.1.2 Compartment Model

The detailed cellular geometry of the cAMP machinery, including the lo-

cation of PDEs is complex and not precisely known. Therefore, we have chosen a

highly simplified geometry, depicted in Fig. 2.1, that is amenable to an analytical

treatment. In this geometry, we consider the cell to occupy the half space below

a reflecting boundary. A source is located at the origin, emitting molecules that

can diffuse into the cell. As we are interested in the general localization proper-

ties of the ensuing diffusion, we do not specify the detailed nature of this source.
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Figure 2.1: The geometry considered in this paper. A point source emits cAMP
molecules into the unbounded half space below the reflecting membrane. The
cAMP molecules diffuse freely but the degradation rate β is non-uniform: it is low
in the first compartment, of size R1, and second compartment (r ≥ R2) but is high
in the region R1 < r < R2.

Furthermore, since we assume that the spatial scale of the source is much smaller

that the cell body, we will consider a point source that emits molecules into an

infinite domain. The effect of different zones of degradation in the cell is modeled

by defining three regions with different degradation constants: a region of radius

R1 with degradation rate β1, a region R1 < r < R2 with degradation rate β2 and

a region which extends beyond R2 and which has a degradation constant β3. Of

course, since we are investigating scenarios where the degradation constant can

form microdomains, we will be most interested in the case where β2 is much larger

than β1.

The concentration in the microdomain, C1, in the high degradation zone,

C2, and in the remainder of the cytosol, C3, obey the diffusion equation:

∂C1

∂t
= D∇2C1 − β1C1, 0 ≤ r ≤ R1

∂C2

∂t
= D∇2C2 − β2C2, R1 < r < R2

∂C3

∂t
= D∇2C3 − β3C3, r ≥ R2 (2.1)
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At the boundary separating the three regions, both the concentration and

its derivative must be continuous:

C1(R1, t) = C2(R1, t)

C2(R2, t) = C3(R2, t) (2.2)

∂C1(R1, t)

∂r
=
∂C2(R1, t)

∂r
∂C2(R2, t)

∂r
=
∂C3(R2, t)

∂r
(2.3)

while far from the source we have

C3(∞, t) = 0 (2.4)

Finally, we assume that the initial concentration is zero throughout the

domain:

C1(r, 0) = C2(r, 0) = C3(r, 0) = 0 (2.5)

2.1.3 Analytical Steady State Solution

Two dimensions

The steady state solution for the concentration field in two dimensions can

be found using the angular symmetry and writing the diffusion equation in polar

coordinates. In these coordinates, the proper boundary condition for a constant

source of F molecules/s reads

lim
r→0

r
∂C1

∂r
= − F

πD
(2.6)

This, along with the boundary conditions at r = R1 and r = R2, can be

used to find a general solution in terms of the flux F , the diffusion constant D,

the degradation constants β1, β2, and β3 and the radii of the compartments:
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C1(r) =
F

πD

(
A1

K0(α1r)

K0(α1R1)
+ A2

I0(α1r)

I0(α1R1)

)
C2(r) =

F

πD

(
B1

K0(α2r)

K0(α2R2)
+B2

I0(α2r)

I0(α2R2)

)
C3(r) =

F

πD
(B1 +B2)

K0(α3r)

K0(α3R2)
(2.7)

where αi =
√

βi
D

for i = 1, 2, 3. Here, and in the remainder of the paper, In

and Kn represent the modified Bessel function of the first kind and second kind of

order n (see, e.g. [18]). The coefficients are given by

A1 = K0(α1R1)

B1 =
dA1

b+ ac
B2 = aB1

A2 =
K0(α2R1)

K0(α2R2)
B1 +

I0(α2R1)

I0(α2R2)
B2 − A1

with

a =

α2K1(α2R2)
K0(α2R2)

− α3K1(α3R2)
K0(α3R2)

α2I1(α2R2)
I0(α2R2)

+ α3K1(α3R2)
K0(α3R2)

b = α1
I1(α1R1)K0(α2R1)

I0(α1R1)K0(α2R2)
+ α2

K1(α2R1)

K0(α2R1)

c = α1
I1(α1R1)I0(α2R1)

I0(α1R1)I0(α2R2)
− α2

I1(α2R1)

I0(α2R2)

d = α1

(
K1(α1R1)

K0(α1R1)
+
I1(α1R1)

I0(α1R1)

)
Note that for the special case of uniform degradation α1 = α2 ≡ α the

solution simplifies to

Cuni(r) =
F

πD
K0(αr) (2.8)
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Three dimensions

In three dimensions the diffusion equations can be written in spherical co-

ordinates while the proper flux condition reads

lim
r→0

r2∂c1

∂r
= − F

2πD
(2.9)

Now, the solution is written in terms of modified spherical Bessel functions

kn and in [18]. To distinguish our 3D steady state results from the 2D results we

will denote the 3D solutions in lower case:

c1(r) =
F

2πD

(
A′1

k0(α1r)

k0(α1R1)
+ A′2

i0(α1r)

i0(α1R1)

)
c2(r) =

F

2πD

(
B′1

k0(α2r)

k0(α2R2)
+B′2

i0(α2r)

i0(α2R2)

)
c3(r) = =

F

2πD
(B′1 +B′2)

k0(α3r)

k0(α3R2)

The expressions for the coefficients are identical to the ones in 2D with Kn

and In replaced by kn and in, respectively and with

A′1 = α1k0(α1R1)

For completeness, we also give the solution for uniform degradation

cuni(r) =
Fα

2πD
k0(αr) (2.10)

and for free diffusion (α1 = α2 = α3 = 0)

cfree(r) =
F

2πD

1

r
(2.11)

2.1.4 Results and discussion

R2 →∞

We first address the case of an infinite compartment with high degradation,

i.e. R2 →∞. In this case, the steady state solutions can be simplified considerably,
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leading to

C1(r) =
F

πD

(
A1

K0(α1r)

K0(α1R)
+ A2

I0(α1r)

I0(α1R)

)
C2(r) =

F

πD
(A1 + A2)

K0(α2r)

K0(α2R)
(2.12)

with

A1 = K0(α1R) (2.13)

A2 =
α1K0(α2R)K1(α1R)I0(α1R)− α2K0(α1R)K1(α2R)I0(α1R)

α1I1(α1R)K0(α2R) + α2K1(α2R)I0(α1R)
(2.14)

where we have defined R ≡ R1. The 3D solutions can be found from these

expression by replacing Kn and In with kn and in, the prefactor with F/(2πDR)

and A1 with A′1. In Fig. 2.2A we show the concentration, normalized by the

prefactor of Eq. 2.12, as a function of the radial distance from the source for

several values of the degradation constant β2. The first compartment has radius

R = 0.1µm, indicated by the dashed line, and was chosen to have a negligible

degradation constant. As expected, the effect of the degradation in the second

compartment becomes more pronounced for larger values of the degradation con-

stant.

In Fig. 2.2B we show a similar set of curves, but now for the 3D case.

Again, the concentration profile is normalized by the prefactor (F/(2πDR)) and

is markedly altered for large values of the degradation constant. As a comparison,

we have also plotted the concentration for the freely diffusion case (i.e., βi = 0).

Note that such a comparison can not be made in 2D since there the free diffusion

profile diverges (Cfree ∼ ln(r)).

Obviously, the presence of a non-zero degradation constant reduces the

concentration, especially for large values of β2. To quantify the effect of the

degradation in 3D, we can calculate the ratio of the concentration at r = R,

c(R) ≡ c1(R) = c2(R), for non-zero β2 and for β2 = 0:

c(R)

cfree(R)
=

1

α2R

k0(α2R)

k1(α2R)
(2.15)
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Figure 2.2: Results for R2 →∞. The concentration as a function of the distance
from the source in 2D (A; normalized by F/(πD)) and in 3D (B; normalized by
F/(2πDR)) for different values of the degradation constant. The compartment
size is indicated by the dashed line and was chosen to be R = 0.1µm. For r ≤ R
the degradation constant was set to zero while for r > R it was chosen to be β2.

For large values of α2R this becomes

c(R)

cfree(R)
∼

√
D

β2

1

R
(2.16)

This result shows that, as expected, the difference between free diffusion and

diffusion in the presence of a high degradation region increases as the degradation

constant is increased.

To further determine the effect of high degradation rates in the second com-

partment we compare the value of the concentration at r = R to a threshold value

ε. After all, the desired effect of the second region is to create a compartment in

which the concentration of cAMP is high enough to activate downstream path-

ways while decreasing the concentration in the second compartment such that it

is lower than this activation threshold. In the limit α1 → 0, the expression for

concentration at r = R in 2D, C(R) ≡ C1(R) = C2(R), simplifies to
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C(R) ∼ F

πD

K0(α2R)

α2RK1(α2R)
(2.17)

with an equivalent expression in 3D. The resulting threshold condition

C(R) ≤ ε can be further simplified in the limit of large degradation constants

(α2R ≥ 1). Thus in 2D, we find a minimum value for the degradation constant

β2 >̃ F 2

π2Dε2R2 (2.18)

and as following, in 3D we obtain

β2 >̃ F 2

4π2Dε2R4 (2.19)

Of course, the expression in 3D is only valid if the concentration for the

free diffusion case is above the threshold value. This sets a constraint on the flux,

which has to be at least Fmin = 2πDRε. Again, since its free diffusion case is

divergent there is no equivalent constraint in 2D. The above expressions show the

expected dependence on the system parameters. For example, for increasing flux

one needs to increase the degradation constant. Also, a smaller compartment size

requires a larger degradation constant.

To address possible transient effects, we have also obtained an analytical

time-dependent two dimensional solution in the case of a instantaneous flux source

in 2D (see Appendix A):

lim
r→0

r
∂C1

∂r
= − F

πD
δ(t) (2.20)

The solution can be found using the method of Laplace transforms and

details are given in the Appendix A. The final expressions are given by
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C1(r, t) =
F

πD

[
1

2t
exp(− r2

4Dt
− β1t)+

n∑
j=1

N1(xj)

N ′(xj)
I0(rk1(xj)) exp(xjt)− L[F1(r, s)] exp(−β2t)

]

C2(r, t) =
F

πD
(
n∑
j=1

K0(r
√

xj+β2
D

)

N ′(xj)
exp(xjt)− L[F2(r, s)] exp(−β2t)) (2.21)

The first term in C1 can be recognized as the free diffusion solution. The

second term is a sum over all the zeroes xj of a function N , given in the Appendix

A, in the interval (−β2, β1). The final term involves the Laplace transform of

the function F1, again given in the Appendix A. Likewise, the expression for C2

contains a term which is a sum over the zeroes xj of a function given in the

Appendix A, along with a term which is the Laplace transform of F2, which can

be found in the Appendix.

It is possible to simplify the expression by expanding the Laplace transform

for large values of t (see Appendix A). To examine the accuracy of this expansion

we have plotted in Fig. 2.3A the normalized concentration at r = R/2 as a function

of time following a sudden turning on of the flux F at t = 0. The red line represents

the result using Eq. 2.21 without the Laplace transform and the green line shows

the results with the first term in the expansion. As a comparison, the black line

is the result of the full numerical solution. The figure shows that keeping only

the first term in the expansion accurately captures the time dynamics, especially

for larger times. In Fig. 2.3B we plot the concentration at r = R, assuming a

source that releases a constant flux for 1 ms which should be well below the time

of activation of AC. Importantly, the concentration in the compartment reaches

steady state within 1 ms.

In three dimensions, finding an analytical solution for the dynamic case

becomes more difficult. To obtain time-dependent solutions for this geometry we

have numerically integrated our equations. Again, we find that the concentration

reaches a steady state within 1 ms (data not shown). Taken together, these results

demonstrate that to investigate cAMP microdomains in our simple model it is
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Figure 2.3: Time-dependent solutions for the concentration field for R2 → ∞
in 2D. (A) The concentration, normalized by F/(πD), as a function of time at
r = R/2 for R = 0.1µm. The flux was turned on at t = 0. Shown are the exact
numerical solution (black line) and two approximative analytical solutions (see
text). (B) The numerically obtained concentration at r = R, R = 0.1µm, as a
function of time for different degradation constants β2. The source was turned on
at t = 0 and turned off at t = 1ms.
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sufficient to examine the steady state response.

Finite R2

From the above results, it becomes clear that the degradation rate in the

second region needs to be large to ensure a small value of the second messenger

concentration at its boundary. This degradation rate can be translated into a

cellular PDE concentration when we assume Michaelis-Menten dynamics. If we

use simple first order kinetics, we can approximate the degradation rate as

β =
kcat[PDE]

Km + [cAMP ]
(2.22)

where kcat is the catalytic constant and Km is the Michaelis-Menten con-

stant. Experimental values for these constants are subject to considerable uncer-

tainty. Nevertheless, if we use reported values (kcat = 5s−1 and Km = 1.3µM,

[19]), based on our model we can rewrite above equation as below (since the con-

centration beyond the boundary, c2, is much lower than Km)

β2 =
kcat[PDE]

Km + c2

≈ kcat[PDE]

Km

(2.23)

Hence, we find that for the degradation rates presented in Fig. 2.2B require

PDE concentrations that are many orders of magnitude larger than Km and much

larger than reported values [19, 20]. Thus, our results suggest that using a a

uniform high degradation zone is physiologically implausible.

Next, we examined the case of finite R2 and take, for the sake of simplicity,

β1 = β3 = 0. Results are shown in Fig. 2.4 where we plot the normalized concen-

tration as a function of r in 3D for different values of R2 and a fixed value of β2

and R1. From the figure we can see that the concentration profile within the high

degradation compartment approaches the one corresponding to R2 → ∞ already

for small values of R2 − R1. This can be understood by realizing that when the

size of the high degradation zone is larger than the decay length, i.e. when

R2 −R1 >

√
D

β2

(2.24)
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Figure 2.4: The 3D steady state concentration profile, normalized by F/(2πDR1),
for a fixed value of β2 = 107s−1 and for different values of R2. The size of the first
compartment is R1 = 0.1µm.

the size of the region becomes irrelevant. For the parameter values used in

Fig. 2.4 and for D = 100µm2/s we find that
√

D
β2
∼ 0.003µm.

To quantify the effect of the high degradation rate in the second compart-

ment, we can again compare the steady state solution to a threshold value ε. In

particular, we can determine for which parameter values c2(R2) crosses this thresh-

old. In the limit of large α2R2 we can again find a simple relationship between this

threshold and the relevant system parameters. Apart from a numerical factor of

order 1, and assuming that (R2 −R1)/R1 << 1, these expressions are identical to

the ones shown in Eqns. 2.18 and 2.19. It then becomes obvious that localizing the

PDEs can, at the same time, produce a region with a large degradation constant

while maintaining an overall PDE concentration that is physiologically plausible.

In fact, we can estimate the ratio between the PDE concentration in high degra-

dation area and the cellular PDE concentration. This ratio is simply the ratio of

the total volume of spherical half shells and the cell volume:

[PDE](finiteR2)

[PDE](R2 →∞)
∼ Ntot

2πR2
1(R2 −R1)

Vcell
(2.25)



18

where Ntot is the total number of separate sites emitting cAMP (i.e. the

number of the spherical half shells). Taking a cell volume of Vcell = 1.6× 104µm3

[21] and using the parameter values of Fig. 2.4 with R2 − R1 = 0.01µm we get

that this ratio is approximately 5 × 10−8Ntot. Using the reported value of ∼ 105

β-adrenergic receptors per cell [22] for Ntot we find that the cellular concentration

of PDE can be several orders of magnitude smaller than the concentration within

the high degradation compartment.

An accurate estimate of the required degradation constant is difficult with-

out a precise knowledge of the involved parameters. Nevertheless, we can estimate

its order of magnitude using a threshold value of ε = 0.1µM [23]. Recalling the

experiments that show that PDE inhibitors abolish microdomains [11], this thresh-

old should be significantly lower that the value reached via pure diffusion. Hence,

the flux should be larger than the aforementioned minimum value Fmin = 2πDRε.

For this value of the threshold, combined with a microdomain size of R = 0.1µm

and a diffusion constant of D = 100µm2/s we find a minimum 3D flux rate of

at least Fmin ∼ 4000molecules/s. Comparing this to the turn over rate of AC,

which is estimated for the soluble form to be around 10s−1 [24], we find, as in a

previous modeling study [25], that the source needs to consist of multiple ACs. Of

course, a significant reduction of the diffusion constant, as argued in a recent study

[26], might alter this conclusion. Note also that if this source contains multiple

receptors the ratio computed above (Eq. 2.25) will become even larger.

Assuming that the flux at our source is F = 10000molecules/s, we find that

for R2 → ∞ the minimum degradation rate is β2 ∼ 104s−1. With the previously

quoted catalytic and Michaelis-Menten constants, this would require a local PDE

concentration of roughly 2×103µM . Clearly, the reduction in the required cellular

PDE concentration by limiting the spatial extent of the PDEs is able to bring

this number into the physiological range. Furthermore, this local concentration

of PDEs translates to ∼ 750 PDE molecules in a thin spherical shell of thickness

0.01µm. Assuming a single layer of PDEs, this would result in an inter-PDE

spacing of approximately 0.01µm, equal to the thickness of the shell. Thus, we can

conclude that our study demonstrates that the PDEs need to be localized in the
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neighborhood of the cAMP sources to ensure a tight control of the spatial extent

of the cAMP concentration.

Our approach has made a number of simplifications and is amenable to

future extensions. For example, we have assumed simple Michaelis-Menten dy-

namics and have ignored potentially more complicated interactions between the

second messenger and the PDE, including possible feedback loops. Such interac-

tions will certainly alter the dynamics of cAMP but should be easy to implement,

at least at the numerical level. Also, we have not explicitly modeled PKA activa-

tion, AC activation etc. [15, 16] but this can be incorporated easily. Finally, we

have neglected the detailed structure of the cell by assuming a simple spherical

symmetry. Going beyond this idealized geometry requires currently unavailable

detailed anatomical knowledge of the location of the PDEs and the cell geometry.

Incorporating these details in a numerical approach is, in principal, straightfor-

ward. We do not expect, however, that the main conclusion of this study, that

PDEs need to be localized to ensure compartmentalization in cAMP signaling, will

be changed by these extensions.

2.2 Compartmentalization of Second Messengers

in Neurons: a Mathematical Analysis

2.2.1 Introduction

A large variety of cellular processes are regulated by the diffusible second

messenger cyclic AMP (cAMP). This messenger is generated by membrane bound

adenylyl cyclases (ACs) which, in turn, are activated by external signals. cAMP

is degraded by phosphodiesterases (PDEs), which can be localized to specific cell

locations or can be diffusible. The fact that cAMP is able to activate multiple

pathways raises the question of signal specificity: how can one avoid the activation

of undesirable pathways following the input to a specific pathway? One way to

achieve signaling specificity is to have cAMP levels that are elevated in small spatial

compartments but remain low in the rest of the cell. Indeed, an increasing number
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of experiments had shown that there exist cAMP microdomains in several different

cell types, including cardiac myocytes [27, 28], kidney cells [29] and neurons [30].

This compartmentalization is surprising since cAMP is a small, hydrophilic

molecular, which diffuses very fast with a diffusion constant of D = 100 ∼
700µm2/s. Thus, with no restriction on diffusion, AC activation will quickly lead

to an increase in the global cAMP level. To prevent the indiscriminate activation

of multiple pathways, there needs to be a mechanism that restricts the diffusion

away from the microdomain. Possible mechanisms to create compartments with

elevated levels of cAMP include physical barriers, including cell membranes and

intercellular structures, and non-uniform degradation. An example of the latter

mechanism was suggested for myocytes where physical barriers appear not to play

a significant role. In this mechanism, cross-talk is avoided by co-localizing the fi-

nal targets of the signaling pathway with the ACs, and by spatially separating the

source of cAMP from regions with an elevated PDE concentration. In our previ-

ous work we constructed a mathematical model to investigate the viability of this

mechanism. Using an analytical approach, we derived expressions for the steady

state cAMP concentration field and found conditions for which this mechanism

can lead to signal specificity [31].

Here, we will again examine second messenger compartmentalization using

analytical techniques but will now focus on the cAMP concentration profiles in

neurons. We are motivated by recent experiments in rat hippocampal slices [32]

which demonstrated that, after stimulation, cAMP accumulates preferentially at

the distal dendrites and that the soma maintains a low level of cAMP. Thus, sharp

gradients of cAMP exist at the junction between the dendrites and the soma and

it was suggested that the two domains with sharply different cAMP concentrations

ensure signal specificity.

Using a simple representation of the cell geometry, we will present asymp-

totic analytical solutions that quantify how cell shape and degradation rates affect

the spatial cAMP concentration profiles. This will be done both in 2d and 3d,

the latter assuming axial symmetry; for ease of presentation we have placed the

3d results in an Appendix C. Our model does not consider downstream pathways,
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such as protein kinase A (PKA), but is able to capture the salient ingredients re-

quired for second messenger compartmentalization. Our main result, in agreement

with the numerical findings of Neves et al. [32], is that a sharp cAMP gradient

between the soma and the dendrite requires a minimum level of signal degradation.

Furthermore, we find that the cAMP gradient at the junction depends critically

on the width of the dendrite.

2.2.2 Model

As in the numerical work of Neves et al. [32], we assume a neuron with

the simplified geometry shown in Fig. 2.5. It consists of a circle with radius

R, representing the cell body, and a protruding rectangle with length L and half

width w, representing the dendrite. The 3d version, where the rectangle is replaced

by a right circular cylinder, is presented in the Appendix C. Since the width of

the dendrite is much smaller than the radius of the soma, i.e. w � R, we can

approximate the connecting part of the circle and the rectangle to be a straight

line. Thus, we have

w = R sin θ0 ' Rθ0. (2.26)

where θ0 is defined in Fig. 2.5. Note that the surface-to-volume ratio for

the dendrite is much larger than for the soma.

For simplicity, we will assume that the PDEs are uniformly distributed in

both the soma and the dendrite. Thus, the concentration in the circle, C1, and

in the rectangle, C2, obey the diffusion equation with a homogeneous degradation

rate β

∂C1(r, θ, t)

∂t
= D∇2C1 − βC1, (0 ≤ r ≤ R,−π ≤ θ ≤ π) (2.27)

∂C2(x, y, t)

∂t
= D∇2C2 − βC2, (0 ≤ x ≤ L,−w ≤ y ≤ w) (2.28)

where D is the diffusion constant of cAMP and where we have used a

Cartesian coordinate system for the dendrite and a polar coordinate system for

the soma.
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Figure 2.5: The circle with radius R represents the soma, and the rectangle
with length L and half width w represents the dendrite. The sources for the
second messengers are uniformly distributed on the perimeter, and the degradation
molecules are uniformly distributed in both the soma and the dendrite.

It has been shown that the cAMP production machinery is distributed on

both the soma and the dendrite membrane with little [33, 34] to no [35] observable

spatial heterogeneity. Thus, it is reasonable to assume that the neuron has a con-

stant cAMP source flux, f with unit 1/(sµm), on the entire membrane. Therefore,

the boundary conditions on the various parts of the membrane read

∂C1(R, θ, t)

∂r
=
f

D
, (θ0 ≤ θ ≤ 2π − θ0) (2.29)

∂C2(L, y, t)

∂x
=
f

D
, (−w ≤ y ≤ w) (2.30)

∂C2(x,±w, t)
∂y

= ± f
D
, (0 ≤ x ≤ L). (2.31)

We require that the concentration at the connection between the soma and

the dendrite is continuous. Thus, under the condition that w � R, we have

C1(R, θ, t) = C2(0, y, t), (−θ0 < θ < θ0) (2.32)

∂C1(R, θ, t)

∂r
=
∂C2(0, y, t)

∂x
, (−θ0 < θ < θ0) (2.33)
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where y ' Rθ.

2.2.3 Results

We will focus here on steady state solutions which can be found by setting

the left hand sides of Eqn. (2.27, 2.28) to zero. Then, a general steady state

solutions for C1(r, θ) and C2(x, y) can be obtained as

C1(r, θ) =
∞∑
m=0

Bm
Im(r/l)

I ′m(R/l)
cosmθ

+
f√
βD

π − θ0

π

I0(r/l)

I ′0(R/l)

−
∞∑
n=1

2f√
βD

sinnθ0

nπ

In(r/l)

I ′n(R/l)
cosnθ, (2.34)

C2(x, y) =
∞∑
n=0

An[ex
√

( 1
l
)2+(nπ

w
)2

+ e(2L−x)
√

( 1
l
)2+(nπ

w
)2 ] cos(nπ

θ

θ0

)

+
f√
βD

cosh(x/l)

sinh(L/l)
+

f√
βD

cosh(y/l)

sinh(w/l)
, (2.35)

where l =
√

D
β

is a decay length. Here, and in the remainder of the paper,

In represents the modified Bessel function of the first kind, and ′ represents the

derivative of the argument. The coefficients Bm are determined by An through

Eqn.(2.33),

B0 =
l

2π

∫ θ0

−θ0
g(θ)dθ, (2.36)

Bm =
l

π

∫ θ0

−θ0
g(θ)dθ,m = 1, 2, 3, ... (2.37)

where function g(θ) is the gradient at the connection of the circle and the

rectangle, i.e. a function of An, for −θ0 < θ < θ0
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g(θ) =
∂C2(0, y)

∂x
=
∞∑
n=0

An

√
(
1

l
)2 + (

nπ

w
)2[1

− e2L
√

( 1
l
)2+(nπ

w
)2 ] cos(nπ

θ

θ0

). (2.38)

To determine An, we can apply the continuity condition Eqn.(2.32) which

results in a set of countable infinite linear equations for An: MA = a where

M and a are a matrix and column vector with infinite dimension determined by

Eqn.(2.32), respectively, and where A is the vector A0, A1, ....

The resulting linear algebra problem is difficult to solve, even numerically.

Fortunately, as we will see below, for thin dendrites the series converges rapidly

and the first coefficient A0 can be calculated in the limit w = θ0 → 0. Let us use

c1,2 to represent the concentrations for this limiting case, which can be related to

C1,2 respectively, as follows

c1(r, θ) = lim
θ0→0

C1(r, θ), (2.39)

c2(x) = lim
w→0

∫ w

−w
C2(x, y)dy. (2.40)

The diffusion equation and boundary condition for c1 are identical to Eqn.(2.27)

and Eqn.(2.29) while the diffusion equation for c2 becomes one dimensional:

0 = D
d2c2

dx2
− βc2 + 2f, (2.41)

with as boundary condition

dc2(L)

dx
= lim

w→0

∫ w

−w

f

D
dw = 0. (2.42)

The continuity equation Eqn.(2.32, 2.33) at the junction of the dendrite

and the soma reduces to
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c2(0) = lim
θ0→0

∫ θ0

−θ0
Rc1(R, θ)dθ = 0, (2.43)

∂c1(R)

∂r
=

f

D
+

J

DR
δ(θ), (2.44)

dc2(0)

dx
=

J

D
, (2.45)

where J denotes the flux from the dendrite to the soma with units 1/s. The

proof of the last identity in Eqn.(2.43) is given in Appendix B. c2(0) = 0 reflects

the fact that in this extreme case, molecules at the junction flow into the soma and

never flow back to the dendrite. Solving the above equations leads to an analytic

expression

J = 2fl tanh(L/l), (2.46)

c1(r, θ) =
f√
βD

I0(r/l)

I ′0(R/l)
+

f

βR

tanh(L/l)

π

I0(r/l)

I ′0(R/l)

+
2f

βR

tanh(L/l)

π

∞∑
n=1

In(r/l)

I ′n(R/l)
cosnθ, (2.47)

c2(x) =
2f

β
− 2f

β

ex/l

1 + e2L/l
− 2f

β

e(2L−x)/l

1 + e2L/l
. (2.48)

Comparing the coefficients of c1,2 and C1,2 through Eqn.(2.39, 2.40), we find

A0 = − f

βw

1

1 + e2L/l
, (2.49)

B0 =
f

βR

tanh(L/l)

π
+ o(w), (2.50)

Bm =
2f

βR

tanh(L/l)

π
+ o(w),m = 1, 2, 3, ... (2.51)

Therefore, we can obtain an approximate form of the concentration in the

soma
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C1(r, θ) =
∞∑
n=1

2f

βR

tanh(L/l)

π

In(r/l)

I ′n(R/l)
cosnθ

−
∞∑
n=1

2f√
βD

sinnθ0

nπ

In(r/l)

I ′n(R/l)
cosnθ

+
f

βR

tanh(L/l)

π

I0(r/l)

I ′0(R/l)

+
f√
βD

π − θ0

π

I0(r/l)

I ′0(R/l)
+ o(w), (2.52)

and in the dendrite

C2(x, 0) =
f√
βD

cosh(x/l)

sinh(L/l)
+

f√
βD

1

sinh(w/l)

− f

βw

cosh((L− x)/l)

cosh(L/l)
+ o(

1

w
). (2.53)

Furthermore the gradient at the junction reads in this limit

∂C2(0, 0)

∂x
=

f

w
√
βD

tanh(L/l) + o(
1

w
). (2.54)

In Fig. 2.6 we plot the approximate solution in the dendrite as a function x

(solid line), along with the full solution obtained by numerically solving the model

(dotted line) for two different dendrite widths. As we can see, the approximate

concentration is quite close to the numerical solution away from the soma but starts

to deviate closer to the soma. The analytical solution is a function of w, of course,

and approaches the numerical solution as w get smaller. This is also demonstrated

in Fig. 2.7A where we plot the gradient at the junction of the the soma and the

dendrite for both the full solution (circles) and our analytical approximation (solid

line). Clearly, the error between the two results, plotted in Fig. 2.7B, becomes

smaller as the width of the dendrite decreases, consistent with the expectation that

the analytical solution converges to the full solution as w → 0. We note here that

our results can be extended to three dimensions as shown in Appendix C.
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Figure 2.6: (Color online) A comparison between the analytical approximation
(solid line) and the numerical result (dotted line) for the cAMP concentration in
the dendrite along the symmetry line for w = 0.1µm (A) and w = 1µm (B). Other
parameters used are R = 10µm,L = 100µm, f = 20s−1, D = 200µm2/s, β =
10s−1.
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Figure 2.7: (Color online) A: A comparison between the analytical approximation
(solid line) and the numerical result (circles) for the gradient at soma-dendrite
junction as a function of w. B: The corresponding error as a function of w−1.
Other parameters used are R = 10µm,L = 100µm, f = 20s−1, D = 200µm2/s, β =
10s−1.
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2.2.4 Discussion

The main advantage of having analytical expressions for the concentrations

in the two compartments and the concentration gradient at the junction is that it

becomes easier to assess the effect of the system parameters on compartmentaliza-

tion. From Eq. 2.52 we see that the concentration at the center of the soma can

be approximated by

C1(0, 0) ' f

I ′0(R/l)

(
tanh(L/l)

βπR
+

1√
βD

)
(2.55)

Upon inspection of this equation, we can conclude that the cAMP concen-

tration in the soma is largely independent of the length of the dendrite provided

that this length is much larger that the decay length l. Furthermore, the concentra-

tion is independent of the width of the dendrite and thus, for small w and L >> l,

the soma concentration depends only weakly on the geometry of the dendrite and

is mostly determined by the degradation rate β.

A similar analysis can be carried out for the concentration in the middle of

the dendrite (x = L/2), where we find from Eq.(2.53)

C2(L/2, 0) ' f

βw

(
1− cosh(L/(2l))

cosh(L/l)

)
+

f√
βD

cosh(L/(2l))

sinh(L/l)
(2.56)

Thus, the cAMP level in dendrite decreases as the degradation rate in-

creases but is also strongly dependent on the width of the dendrite. We note that

for L >> l the concentration reduces to the simple form C2(L/2, 0) ' f
βw

. We can

also conclude that the largest gradient of cAMP occurs at the junction between

the soma and the dendrite and Eq.(2.54) shows that this gradient is inversely pro-

portional to w and to the square root of the diffusion constant and the degradation

rate. It also shows that the radius of cell body has no effect on the gradient. In

fact, for L >> l the gradient becomes independent of the length of the dendrite

and the only geometric dependence is through the width: ∂C2(0,0)
∂x

' f
w
√
βD

.

Finally, we have performed numerical simulations, using MATLAB’s PDE

Toolbox, to confirm the role of degradation and geometry on the concentration

fields in the soma and dendrite. Fig. 2.8 shows the cAMP concentration in a



29

[c
A

M
P

] (
µm

−2
)

2.2e3

4.0e3

Figure 2.8: (Color online) Numerical results without degradation mechanism
for different widths of the dendrite w = 0.5, 1.0, 1.5, 2.0µm (from left to right
respectively). The radius of the soma was taken to be R = 10µm and the length of
the dendrite was chosen to be L = 100µm. Other parameters are f = 20s−1, D =
200µm2/s, T = 300s.

[c
A

M
P

] (
µm

−2
)

0.25

4.0

Figure 2.9: (Color online) Numerical results with degradation rate β = 10s−1

for different widths of the dendrite w = 0.5, 1.0, 1.5, 2.0µm (from left to right
respectively). Parameter values are as in Fig. 2.8.
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color scale in the absence of degradation (β = 0) using C1(r, θ) = C2(x, y) = 0

as initial condition. Clearly, this is an unrealistic situation as the concentration

would increase indefinitely as long as the flux is constant. Nevertheless, we can

investigate the dependence of the cAMP fields in the two compartments by plotting

the concentration at a particular time. This is done in Fig. 2.8 for 4 different

values of w and T = 300s. We can see that the concentration in the dendrite

increases significantly if the width becomes smaller. However, in support of our

analysis above, the concentration in the soma increases as well and the resulting

high concentration in both the soma and the dendrite would make it difficult to

achieve signal specificity. In Fig. 2.9 we show the steady state cAMP concentration

for the same set of dendrite widths and a non-zero degradation constant. Again,

the results are shown for T = 300s, chosen such that the concentration has reached

a steady state, starting at the same initial condition as in Fig. 2.8. As is evident

from the figures, the introduction of cAMP degradation is able to drastically reduce

the concentration of cAMP in the soma while maintaining a high cAMP level in

thin dendrites. The results also show that w has little effect on cAMP level in the

soma, again verifying our analytic results above.

In summary, we have derived analytical solutions for the cAMP concen-

tration field in a simplified neuronal geometry where the difference in surface-to-

volume ratio between the soma and the dendrite, coupled with a constant cAMP

flux, leads to compartmentalization [32]. We find that the expression become par-

ticularly easy to analyze in the limit of thin dendrites. Our solutions show that

a sufficient level of degradation, along with a dendrite with a width that is much

smaller that the radius of the soma, does lead cAMP compartmentalization and

offers a mechanism for signal specificity.
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Chapter 3

Gradient Sensing

3.1 External and internal constraints on eukary-

otic chemotaxis

3.1.1 Introduction

Chemotaxis, the chemically guided movement of cells, plays an important

role in several biological processes including cancer, wound healing, and embryo-

genesis. Chemotacting cells are able to sense shallow chemical gradients where

the concentration of chemoattractant differs by only a few percent from one side

of the cell to the other, over a wide range of local concentrations. Exactly what

limits the chemotactic ability of these cells is presently unclear. Here we deter-

mine the chemotactic response of Dictyostelium cells to exponential gradients of

varying steepness and local concentration of the chemoattractant cAMP. We find

that the cells are sensitive to the steepness of the gradient as well as to the lo-

cal concentration. Using information theory techniques, we derive a formula for

the mutual information between the input gradient and the spatial distribution of

bound receptors and also compute the mutual information between the input gra-

dient and the motility direction in the experiments. A comparison between these

quantities reveals that for shallow gradients, in which the concentration difference

between the back and the front of a 10-m-diameter cell is < 5%, and for small local

32
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concentrations (< 10nM) the intracellular information loss is insignificant. Thus,

external fluctuations due to the finite number of receptors dominate and limit the

chemotactic response. For steeper gradients and higher local concentrations, the

intracellular information processing is suboptimal and results in a smaller mutual

information between the input gradient and the motility direction than would have

been predicted from the ligand-receptor binding process.

Chemotaxis, the motion of cells guided by chemical gradients, plays an

important role in a variety of biological processes, including wound healing, em-

bryogenesis, and cancer metastasis. The chemical gradients required for efficient

chemotaxis can be very shallow for eukaryotic cells. For example, the rapidly

crawling neutrophils of the mammalian immune system and the social amoebae,

Dictyostelium discoideum [36]-[43], are able to sense shallow chemical gradients

where the concentration of chemoattractant differs by only a few percent from one

side of the cell to the other, over a wide range of local concentrations [44]-[46].

The chemotactic response of these cells can be considered as the outcome

from two distinct steps: establishment of spatial differences in the distribution of

receptors with bound chemoattractant on the cell’s surface [47] and the response

to these differences by the signal transduction pathways leading to directed motil-

ity [48]. The first step is subject to the external fluctuations in chemoattractant

binding to the surface receptor. This external noise can be precisely character-

ized, either through direct numerical simulations [73, 50] or through approximate

analytical calculations [95]-[53]. The second step involves a number of pathways

that are subject to internal background noise generated by any of the components

that drive the extension and retraction of pseudopods leading to cell movement.

Furthermore, these pathways can operate in a nonlinear fashion that can reduce

the amount of intracellular information transfer. The internal noise and the ef-

fect of the nonlinearity of the pathways are difficult to quantify. Multiple signaling

pathways operating in parallel, each with a number of unknown components, deter-

mine the direction of movement. The quantification of noise necessitates knowledge

about the number of involved molecules, their reaction rates, and their diffusion

constants whereas quantifying the signal processing of the nonlinear pathways re-
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quires a detailed and complete mechanistic motility model.

In this study, we investigate the chemotactic response of Dictyostelium cells

in stable exponential chemoattractant gradients generated in microfluidics devices.

Using these experimental data, we compute the mutual information between the

external gradient direction and the motility direction, which is a measure of the

information that these variables share [54]. We also calculate analytically the

mutual information between the external gradient and the spatial distribution of

bound receptors. A comparison of these two quantities allows us to evaluate when

the chemotactic response is being limited by sensing noise (assuming that the

directional motility response is indicative of the goal of the chemotactic process)

or alternatively by suboptimal intracellular processing of the information from the

bound receptors.

3.1.2 Results

Quantitative Experimental Studies of Chemotaxis

We performed quantitative experiments of developed Dictyostelium cells in

exponential cAMP gradients, using microfluidic devices. Within these devices, we

can define a difference of the concentration between the front and the back of

the cells, ∆C, along with the local concentration experienced by the cell, Clocal.

The choice of an exponential gradient ensures that the proportional concentration

difference, i.e., the ratio ∆C/Clocal, is independent of the position in the device.

Furthermore, the fluid flow within the microfluidic devices guarantees that signal-

ing between cells can be neglected. An example of an exponential gradient in the

microfluidic devices using a fluorescent dye is shown in Fig. 3.1A.

We examined the chemotactic response as a function of the two gradient

parameters: Clocal and the gradient steepness, p, which can be expressed as the

percentage of difference in concentration between the front and the back. We used

devices that generated gradients of different steepnesses, ranging from a 1.25 to a

10% difference in concentration across a cell with a diameter of L = 10µm, and

tracked the paths of cells over a period of 8 min. The chemotactic index (CI)

was calculated as the ratio of the distance covered in the direction of the gradient
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traveled. Cell tracks in a representative steep and shallow gradient
are shown in Fig. 1 B and C. In the steep gradient (10%, Fig. 1B),
most cells move in the direction of the gradient and the CI for this
experiment was 0.56. On the other hand, in the shallow gradient
(1.25%, Fig. 1C) there was no detectable directional bias,
resulting in a CI that is indistinguishable from 0.
The chemotactic response was determined in devices that

generated gradients with five different steepnesses (Fig. 2A).
Cells that were exposed to an average local concentration in a 1-
to 10-nM range are shown as circles whereas cells with an av-
erage local concentration within 10–30 nM are plotted as
squares. For the 1- to 10-nM concentration range, the cells failed
to recognize the shallowest gradient (1.25%) but responded
with increasingly accurate directionality to the steeper gradients
(2.5–10%) with a maximum CI that is consistent with previous
reports (20).
To investigate the effect of the local concentration on the CI

we systematically varied the concentration range in a 1.25% and
a 2.5% exponential gradient and report the CI as a function of
the geometric mean of the minimal and maximal local concen-
tration within the microfluidic device �Clocal (Fig. 2B). For a 1.25%
gradient, the CI increases for increasing average local concentra-
tion, reaches a maximum around �Clocal ~ 15 nM, and decreases
upon further increasing the local concentration. The dependence
of the CI on the local concentration in a 2.5% gradient is quali-
tatively similar but peaks at a smaller local concentration. Thus,
our experiments indicate that the maximum CI is reached well

below the reported value for the receptor dissociation constant
Kd = 30 nM (21).

Analysis Using Information Theoretic Techniques. To quantify the
fluctuations originating from the external binding process we first
computed the mutual information (22) between the external
chemoattractant gradient direction θs and the resulting spatial
distributions of bound receptors Y. This mutual information is
a measure of how much the uncertainty in Y is reduced by the
knowledge of θs. It is typically expressed in units of bits and is
always ≥0: A mutual information equal to 0 implies that knowing
the external gradient direction does not reduce the uncertainty in
the spatial distribution of bound receptors.
We considered a circular two-dimensional cell, divided the cell

membrane into n segments containing an equal number of N/n
receptors, where N is the total number of receptors, and con-
sidered simple first-order ligand–receptor kinetics. An exact
formula for this external mutual information I(Y; θs) for a single
measurement is derived in SI Text and for shallow gradients
this reduces to

IðY ; θsÞ ≈ NKdClocalp2

16 lnð2ÞðKd þ ClocalÞ2
; [1]

where Kd is the dissociation constant of the ligand–receptor
binding process. Thus, the external mutual information has
a maximum at a local concentration equal to Kd and the value of
this maximum depends only on the number of receptors and on
the gradient steepness. Our choice of equal numbers of receptors
per segment was motivated by experimental data that show
a homogeneous spatial distribution of receptors on the mem-
brane (23, 24). The case of randomly placed receptors, leading to
a variable number of receptors in each segment, is analyzed in SI
Text. We found that the mutual information in this case is almost
identical to the mutual information found using Eq. 1. In SI Text
we also discuss the mutual information for elliptical cells and
show that the mutual information can increase only by a modest
amount (∼20%) for highly elongated cells.
To determine how much additional information is lost in the

internal processing steps, we computed the mutual information I
(θr; θs) between the gradient direction θs and the motility di-
rection θr. This mutual information determines how much in-
formation an observer of the cell motion has about the gradient
direction and takes into account both the external and the in-
ternal steps. It follows from the data processing inequality that it
can be at most equal to the external mutual information. We
determined, for each experiment, the instantaneous response
angle θr for all cell tracks. Next, we divided the 360 ° range of θr
in m bins and computed the fraction of angles falling within each

Fig. 1. The chemotactic response of cells in exponential gradients depends on the gradient steepness. (A) The concentration as a function of the position
along the gradient direction in the microfluidic device. The exponential gradient spans a 550-μm-wide region and the concentration can be described by
ClocalðxÞ ¼ Cð0Þeðp=LÞx, where L = 10 μm and p is a measure of the steepness of the gradient. The steepness is expressed as the fractional difference in the
concentration across 10 μm and measures 5% for the data shown. (B and C) Typical cell tracks, with their origins brought to a common point, are shown for
a steep (10%) gradient (B) where the concentration within the microfluidic device varies between 1 and 256 nM and for a shallow (1.25%) gradient (C) where
the concentration spans values between 1 and 2 nM. The arrow indicates the direction of the gradient. (Scale bars: 20 μm.)

Fig. 2. Dependence of the chemotactic index, CI, on the gradient steepness
and the local concentration. (A) Mean value of the CI as a function of the
gradient steepness for cell migration trajectories with an average local
concentration between 1nM and 10nM (○) and between 10nM and 30nM
(■). (B) The CI as a function of the local concentration for two different
values of the gradient steepness. Each data point is an average value for cells
exposed to local concentrations in a twofold (for p = 1.25%) or fourfold (for
p = 2.5%) range, with the plotted value of �Clocal corresponding to the
geometric mean of the range. In both figures, the error bars represent the
standard error of the mean.
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Figure 3.1: The chemotactic response of cells in exponential gradients depends
on the gradient steepness. (A) The concentration as a function of the position
along the gradient direction in the microfluidic device. The exponential gradient
spans a 550−µm−wide region and the concentration can be described by , where
L = 10µm and p is a measure of the steepness of the gradient. The steepness is
expressed as the fractional difference in the concentration across 10 m and measures
5% for the data shown. (B and C) Typical cell tracks, with their origins brought to
a common point, are shown for a steep (10%) gradient (B) where the concentration
within the microfluidic device varies between 1 and 256 nM and for a shallow
(1.25%) gradient (C) where the concentration spans values between 1 and 2 nM.
The arrow indicates the direction of the gradient. (Scale bars: 20µm.)
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traveled. Cell tracks in a representative steep and shallow gradient
are shown in Fig. 1 B and C. In the steep gradient (10%, Fig. 1B),
most cells move in the direction of the gradient and the CI for this
experiment was 0.56. On the other hand, in the shallow gradient
(1.25%, Fig. 1C) there was no detectable directional bias,
resulting in a CI that is indistinguishable from 0.
The chemotactic response was determined in devices that

generated gradients with five different steepnesses (Fig. 2A).
Cells that were exposed to an average local concentration in a 1-
to 10-nM range are shown as circles whereas cells with an av-
erage local concentration within 10–30 nM are plotted as
squares. For the 1- to 10-nM concentration range, the cells failed
to recognize the shallowest gradient (1.25%) but responded
with increasingly accurate directionality to the steeper gradients
(2.5–10%) with a maximum CI that is consistent with previous
reports (20).
To investigate the effect of the local concentration on the CI

we systematically varied the concentration range in a 1.25% and
a 2.5% exponential gradient and report the CI as a function of
the geometric mean of the minimal and maximal local concen-
tration within the microfluidic device �Clocal (Fig. 2B). For a 1.25%
gradient, the CI increases for increasing average local concentra-
tion, reaches a maximum around �Clocal ~ 15 nM, and decreases
upon further increasing the local concentration. The dependence
of the CI on the local concentration in a 2.5% gradient is quali-
tatively similar but peaks at a smaller local concentration. Thus,
our experiments indicate that the maximum CI is reached well

below the reported value for the receptor dissociation constant
Kd = 30 nM (21).

Analysis Using Information Theoretic Techniques. To quantify the
fluctuations originating from the external binding process we first
computed the mutual information (22) between the external
chemoattractant gradient direction θs and the resulting spatial
distributions of bound receptors Y. This mutual information is
a measure of how much the uncertainty in Y is reduced by the
knowledge of θs. It is typically expressed in units of bits and is
always ≥0: A mutual information equal to 0 implies that knowing
the external gradient direction does not reduce the uncertainty in
the spatial distribution of bound receptors.
We considered a circular two-dimensional cell, divided the cell

membrane into n segments containing an equal number of N/n
receptors, where N is the total number of receptors, and con-
sidered simple first-order ligand–receptor kinetics. An exact
formula for this external mutual information I(Y; θs) for a single
measurement is derived in SI Text and for shallow gradients
this reduces to

IðY ; θsÞ ≈ NKdClocalp2

16 lnð2ÞðKd þ ClocalÞ2
; [1]

where Kd is the dissociation constant of the ligand–receptor
binding process. Thus, the external mutual information has
a maximum at a local concentration equal to Kd and the value of
this maximum depends only on the number of receptors and on
the gradient steepness. Our choice of equal numbers of receptors
per segment was motivated by experimental data that show
a homogeneous spatial distribution of receptors on the mem-
brane (23, 24). The case of randomly placed receptors, leading to
a variable number of receptors in each segment, is analyzed in SI
Text. We found that the mutual information in this case is almost
identical to the mutual information found using Eq. 1. In SI Text
we also discuss the mutual information for elliptical cells and
show that the mutual information can increase only by a modest
amount (∼20%) for highly elongated cells.
To determine how much additional information is lost in the

internal processing steps, we computed the mutual information I
(θr; θs) between the gradient direction θs and the motility di-
rection θr. This mutual information determines how much in-
formation an observer of the cell motion has about the gradient
direction and takes into account both the external and the in-
ternal steps. It follows from the data processing inequality that it
can be at most equal to the external mutual information. We
determined, for each experiment, the instantaneous response
angle θr for all cell tracks. Next, we divided the 360 ° range of θr
in m bins and computed the fraction of angles falling within each

Fig. 1. The chemotactic response of cells in exponential gradients depends on the gradient steepness. (A) The concentration as a function of the position
along the gradient direction in the microfluidic device. The exponential gradient spans a 550-μm-wide region and the concentration can be described by
ClocalðxÞ ¼ Cð0Þeðp=LÞx, where L = 10 μm and p is a measure of the steepness of the gradient. The steepness is expressed as the fractional difference in the
concentration across 10 μm and measures 5% for the data shown. (B and C) Typical cell tracks, with their origins brought to a common point, are shown for
a steep (10%) gradient (B) where the concentration within the microfluidic device varies between 1 and 256 nM and for a shallow (1.25%) gradient (C) where
the concentration spans values between 1 and 2 nM. The arrow indicates the direction of the gradient. (Scale bars: 20 μm.)

Fig. 2. Dependence of the chemotactic index, CI, on the gradient steepness
and the local concentration. (A) Mean value of the CI as a function of the
gradient steepness for cell migration trajectories with an average local
concentration between 1nM and 10nM (○) and between 10nM and 30nM
(■). (B) The CI as a function of the local concentration for two different
values of the gradient steepness. Each data point is an average value for cells
exposed to local concentrations in a twofold (for p = 1.25%) or fourfold (for
p = 2.5%) range, with the plotted value of �Clocal corresponding to the
geometric mean of the range. In both figures, the error bars represent the
standard error of the mean.

Fuller et al. PNAS | May 25, 2010 | vol. 107 | no. 21 | 9657

CE
LL

BI
O
LO

G
Y

Figure 3.2: Dependence of the chemotactic index, CI, on the gradient steepness
and the local concentration. (A) Mean value of the CI as a function of the gra-
dient steepness for cell migration trajectories with an average local concentration
between 1nM and 10nM and between 10nM and 30nM. (B) The CI as a func-
tion of the local concentration for two different values of the gradient steepness.
Each data point is an average value for cells exposed to local concentrations in a
twofold (for p = 1.25%) or fourfold (for p = 2.5%) range, with the plotted value of
C local ∼ 15nM corresponding to the geometric mean of the range. In both figures,
the error bars represent the standard error of the mean.

and the total distance traveled. Cell tracks in a representative steep and shallow

gradient are shown in Fig. 3.1 B and C. In the steep gradient (10%, Fig. 3.1B),

most cells move in the direction of the gradient and the CI for this experiment was

0.56. On the other hand, in the shallow gradient (1.25%, Fig. 3.1C) there was no

detectable directional bias, resulting in a CI that is indistinguishable from 0.

The chemotactic response was determined in devices that generated gra-

dients with five different steepnesses (Fig. 3.2A). Cells that were exposed to an

average local concentration in a 1- to 10-nM range are shown as circles whereas

cells with an average local concentration within 10C30 nM are plotted as squares.

For the 1- to 10-nM concentration range, the cells failed to recognize the shallow-

est gradient (1.25%) but responded with increasingly accurate directionality to the

steeper gradients (2.5C10%) with a maximum CI that is consistent with previous

reports [55].

To investigate the effect of the local concentration on the CI we systemat-

ically varied the concentration range in a 1.25% and a 2.5% exponential gradient
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and report the CI as a function of the geometric mean of the minimal and max-

imal local concentration within the microfluidic device C local (Fig. 3.2B). For a

1.25% gradient, the CI increases for increasing average local concentration, reaches

a maximum around Clocal(x) = C(0)exp/L, and decreases upon further increasing

the local concentration. The dependence of the CI on the local concentration in a

2.5% gradient is qualitatively similar but peaks at a smaller local concentration.

Thus, our experiments indicate that the maximum CI is reached well below the

reported value for the receptor dissociation constant Kd = 30nM [56].

Analysis Using Information Theoretic Techniques

To quantify the fluctuations originating from the external binding process

we first computed the mutual information [57] between the external chemoattrac-

tant gradient direction θs and the resulting spatial distributions of bound receptors

Y . This mutual information is a measure of how much the uncertainty in Y is re-

duced by the knowledge of θs. It is typically expressed in units of bits and is

always ≥ 0: A mutual information equal to 0 implies that knowing the external

gradient direction does not reduce the uncertainty in the spatial distribution of

bound receptors.

We considered a circular two-dimensional cell, divided the cell membrane

into n segments containing an equal number of N/n receptors, where N is the

total number of receptors, and considered simple first-order ligandCreceptor ki-

netics. An exact formula for this external mutual information I(Y ; θs) for a single

measurement is derived in Appendix D and for shallow gradients this reduces to

I(Y ; θs) ≈
NKdClocalp

2

16 ln(2)(Kd + Clocal)2
(3.1)

where Kd is the dissociation constant of the ligandCreceptor binding pro-

cess. Thus, the external mutual information has a maximum at a local concentra-

tion equal to Kd and the value of this maximum depends only on the number of

receptors and on the gradient steepness. Our choice of equal numbers of receptors

per segment was motivated by experimental data that show a homogeneous spatial
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distribution of receptors on the membrane [58, 59]. The case of randomly placed

receptors, leading to a variable number of receptors in each segment, is analyzed in

Appendix D. We found that the mutual information in this case is almost identical

to the mutual information found using Eq. 3.1. In Appendix D we also discuss

the mutual information for elliptical cells and show that the mutual information

can increase only by a modest amount (∼ 20%) for highly elongated cells.

To determine how much additional information is lost in the internal pro-

cessing steps, we computed the mutual information I(θr; θs) between the gradient

direction θs and the motility direction θr. This mutual information determines how

much information an observer of the cell motion has about the gradient direction

and takes into account both the external and the internal steps. It follows from

the data processing inequality that it can be at most equal to the external mu-

tual information. We determined, for each experiment, the instantaneous response

angle θr for all cell tracks. Next, we divided the 360◦ range of θr in m bins and

computed the fraction of angles falling within each bin, Nj. The choice of the

number of bins was optimized using a procedure that minimizes a cost function

that is a measure of the error introduced by binning the data [60] (Appendix D).

The resulting histogram of θr using the optimal bin size is shown in Fig. 3.3A for a

10% gradient. Then, the external and internal mutual information was calculated

as

I(θr; θs) =
m∑
j=1

Nj logNj + logm (3.2)

In Fig. 3.3B we show this mutual information as a function of the gradient

steepness, along with the numerically determined external mutual information,

and in Fig. 3.3C we show these quantities as a function of for a gradient of 2.5%.

The error bars in the external and internal mutual information are due to the finite

number of data points and the range of local concentrations to which the cells are

exposed.
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bin, Nj. The choice of the number of bins was optimized using
a procedure that minimizes a cost function that is a measure of
the error introduced by binning the data (25) (SI Text). The
resulting histogram of θr using the optimal bin size is shown in
Fig. 3A for a 10% gradient. Then, the external and internal
mutual information was calculated as

Iðθr;  θsÞ ¼ ∑
m

j¼1
Nj log Nj þ log m [2]

(see SI Text for more details). In Fig. 3B we show this mutual
information as a function of the gradient steepness, along with
the numerically determined external mutual information, and in
Fig. 3C we show these quantities as a function of �Clocal for
a gradient of 2.5%. The error bars in the external and internal
mutual information are due to the finite number of data points
and the range of local concentrations to which the cells
are exposed.

Discussion
Recently, the role of fluctuations in chemotaxis has received
significant attention (15, 16, 18, 20, 26, 27). Most studies, how-
ever, were either purely theoretical or performed under con-
ditions that were difficult to quantify. Our approach, which uses
exponential gradients generated in microfluidic devices, has
several benefits. It allows us to precisely quantify the gradient
presented to the cells, because the exponential profile ensures
that the fractional concentration difference is independent of the
position in the device. Moreover, the fluid flow abolishes any
potential cell-to-cell signaling. The main parameters that de-
termine the gradient (the steepness and the local concentraton)
can be controlled in each device, allowing us to fix one and vary
the other.
Our experiments in which the local concentration was re-

stricted to a narrow range show that the CI increases for in-
creasing gradient steepness (Fig 2A). These results are in
agreement with recent theoretical investigations of the di-
rectional sensing process that predict a sigmoidal dependence of
the CI on the gradient steepness (16, 27). Our results also in-
dicate that the minimum gradient steepness required for a di-
rectional response depends on the local concentration: Cells
exposed to a 1.25% gradient do not respond directionally in a 1-
to 10-nM concentration range but do respond in a 10- to 30-nM
concentration range. Hence, chemotaxis is controlled by both the
gradient steepness and the local concentration. This is further
illustrated when we keep the gradient steepness constant and
vary the local concentration (Fig. 2B). The dependence of the CI
on the local concentration in both a 1.25 and a 2.5% gradient is
qualitatively similar. However, the CI in the 2.5% gradient peaks

at a smaller local concentration. Thus, our experiments indicate
that the maximum CI is reached well below the reported value
for the receptor dissociation constant Kd = 30 nM (21).
To characterize the fluctuations originating from the external

binding process we computed the mutual information between
the external chemoattractant gradient direction θs and the
resulting spatial distributions of bound receptors Y. The result
shows that this external mutual information has a maximum
when the local concentration equals Kd. A similar result was also
found from a signal-to-noise analysis (15). In other words, purely
on the basis of spatial distribution of bound receptors, chemo-
taxing cells would perform ideally when the local concentration
is equal to the dissociation constant. The optimal local concen-
tration for neutrophils in an exponential gradient was also de-
termined to be ∼Kd (10) whereas an analysis in which receptors
are randomly distributed can reduce the optimal concentration
by at most 50% (26). Thus, our experiments, combined with this
theoretical analysis, suggest that the processing of the gradient
cues inside cells reduces the optimal local concentration for
chemotaxis and that this optimal concentration is determined
through a convolution of the external (i.e., receptor binding and
unbinding) and internal steps (27).
This conclusion is unchanged when one takes into account that

Eq. 1 is valid for a single “snapshot” measurement and needs to
be modified to include multiple independent measurements of
the receptor binding distribution. A typical correlation time for
this distribution can be calculated (15) using experimentally
measured off rates (12) and is ∼5 s, which is comparable to the
pseudopod lifetime. In SI Text, we show that this leads to an
estimated prefactor of order 1.
For shallow gradients (<5%) we find that the external mutual

information is comparable to the mutual information for the
entire chemotactic process (Fig. 3B). This observation means
that the information lost in intracellular signal pathways is neg-
ligible and that the intracellular information processing is near
optimal. In other words, the receptor–ligand binding noise
dominates the chemotactic process and determines the precision
of the cells in shallow gradients. Implicit in reaching this con-
clusion is the assumption that the chemotactic process is evolu-
tionarily designed to allow the cells to track the gradient
direction as accurately as possible. For steeper gradients, on the
other hand, the amount of information lost due to internal
fluctuations is significant and can be as high as 1.5 bits. A com-
parison between the two mutual informations for a fixed gradient
(Fig 3C) reveals that they are comparable for small local con-
centrations. For large (>10 nM) concentrations, however, the
external mutual information is much larger than the external and
internal mutual information. Thus, we conclude that for steep
gradients and for high local concentrations the intracellular in-
formation processing is suboptimal and that intracellular path-

Fig. 3. Dependence of the mutual information (MI) on the gradient parameters. (A) Histogram of the instantaneous response angle θr for the cell tracks in
a 10% gradient, showing a pronounced peak at θr = π, the gradient direction. (B and C) The external and internal MI between the input gradient angle, θs, and
θr calculated using the experimental data (dashed lines), and the external MI between θs and the spatial distribution of bound receptors Y, calculated nu-
merically (solid lines), as a function of the gradient steepness for cells with an average local concentration between 1 and 10nM (B) and as a function of the
mean local concentration for a 2.5% gradient (C). Parameters used for the computation of the external MI are N = 70,000 and Kd = 30 nM.

9658 | www.pnas.org/cgi/doi/10.1073/pnas.0911178107 Fuller et al.

Figure 3.3: Dependence of the mutual information (MI) on the gradient param-
eters. (A) Histogram of the instantaneous response angle θr for the cell tracks in
a 10% gradient, showing a pronounced peak at θr = π, the gradient direction. (B
and C) The external and internal MI between the input gradient angle, θs, and
θr calculated using the experimental data (dashed lines), and the external MI be-
tween θs and the spatial distribution of bound receptors Y , calculated numerically
(solid lines), as a function of the gradient steepness for cells with an average local
concentration between 1 and 10nM (B) and as a function of the mean local con-
centration for a 2.5% gradient (C). Parameters used for the computation of the
external MI are N = 70, 000 and Kd = 30nM .



40

3.1.3 Discussion

Recently, the role of fluctuations in chemotaxis has received significant at-

tention [50, 95, 53, 55, 61, 62]. Most studies, however, were either purely theoretical

or performed under conditions that were difficult to quantify. Our approach, which

uses exponential gradients generated in microfluidic devices, has several benefits.

It allows us to precisely quantify the gradient presented to the cells, because the

exponential profile ensures that the fractional concentration difference is indepen-

dent of the position in the device. Moreover, the fluid flow abolishes any potential

cell-to-cell signaling. The main parameters that determine the gradient (the steep-

ness and the local concentration) can be controlled in each device, allowing us to

fix one and vary the other.

Our experiments in which the local concentration was restricted to a nar-

row range show that the CI increases for increasing gradient steepness (Fig 3.2A).

These results are in agreement with recent theoretical investigations of the di-

rectional sensing process that predict a sigmoidal dependence of the CI on the

gradient steepness [95, 62]. Our results also indicate that the minimum gradient

steepness required for a directional response depends on the local concentration:

Cells exposed to a 1.25% gradient do not respond directionally in a 1- to 10-nM

concentration range but do respond in a 10- to 30-nM concentration range. Hence,

chemotaxis is controlled by both the gradient steepness and the local concentra-

tion. This is further illustrated when we keep the gradient steepness constant and

vary the local concentration (Fig. 3.2B). The dependence of the CI on the local

concentration in both a 1.25% and a 2.5% gradient is qualitatively similar. How-

ever, the CI in the 2.5% gradient peaks at a smaller local concentration. Thus,

our experiments indicate that the maximum CI is reached well below the reported

value for the receptor dissociation constant Kd = 30nM [56].

To characterize the fluctuations originating from the external binding pro-

cess we computed the mutual information between the external chemoattractant

gradient direction s and the resulting spatial distributions of bound receptors Y.

The result shows that this external mutual information has a maximum when the

local concentration equals Kd. A similar result was also found from a signal-to-
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noise analysis [50]. In other words, purely on the basis of spatial distribution

of bound receptors, chemotaxing cells would perform ideally when the local con-

centration is equal to the dissociation constant. The optimal local concentration

for neutrophils in an exponential gradient was also determined to be ∼ Kd [45]

whereas an analysis in which receptors are randomly distributed can reduce the op-

timal concentration by at most 50% [61]. Thus, our experiments, combined with

this theoretical analysis, suggest that the processing of the gradient cues inside

cells reduces the optimal local concentration for chemotaxis and that this optimal

concentration is determined through a convolution of the external (i.e., receptor

binding and unbinding) and internal steps [62].

This conclusion is unchanged when one takes into account that Eq. 3.1

is valid for a single snapshot measurement and needs to be modified to include

multiple independent measurements of the receptor binding distribution. A typical

correlation time for this distribution can be calculated [50] using experimentally

measured off rates [47] and is ∼ 5 s, which is comparable to the pseudopod lifetime.

In Appendix D, we show that this leads to an estimated prefactor of order 1.

For shallow gradients (< 5%) we find that the external mutual informa-

tion is comparable to the mutual information for the entire chemotactic process

(Fig. 3.3B). This observation means that the information lost in intracellular

signal pathways is negligible and that the intracellular information processing is

near optimal. In other words, the receptorCligand binding noise dominates the

chemotactic process and determines the precision of the cells in shallow gradients.

Implicit in reaching this conclusion is the assumption that the chemotactic pro-

cess is evolutionarily designed to allow the cells to track the gradient direction as

accurately as possible. For steeper gradients, on the other hand, the amount of

information lost due to internal fluctuations is significant and can be as high as

1.5 bits. A comparison between the two mutual information for a fixed gradient

(Fig. 3.3C) reveals that they are comparable for small local concentrations. For

large (> 10nM) concentrations, however, the external mutual information is much

larger than the external and internal mutual information. Thus, we conclude that

for steep gradients and for high local concentrations the intracellular information
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processing is suboptimal and that intracellular pathways leading from the receptor

to the establishment of a leading edge determine the chemotactic limits. For shal-

low gradients and low local concentrations, on the other hand, the receptorCligand

fluctuations limit the chemotactic efficiency.

A possible interpretation of our results comes from realizing that the opti-

mal local concentration for the receptorCligand process is at Kd. This interpre-

tation suggests that the intracellular signaling networks have an optimal concen-

tration well below this value. Increasing the steepness of the gradient increases

the difference in the number of bound receptors between the front and the back

of the cell. This could enlarge the relative contribution of the internal pathways,

shifting the optimal local concentration to smaller values. The mechanisms behind

the observed intracellular information loss are unclear. One possibility is that in-

tracellular fluctuations become larger and limit the information transfer. Another

possibility is that the signaling pathways are nonlinear and saturate for steep gra-

dients and large concentrations, leading to a reduction in transfer of information.

The latter possibility can be studied using existing models for directional sensing

[50] and is currently under investigation.

3.2 Estimation Theory of Eukaryotic Gradient

Sensing

3.2.1 Introduction

The response in biological systems to external stimuli is often limited by

the inherent stochasticity of these stimuli. For example, the accuracy of human

(and other vertebrate) vision at low light intensities approaches a fundamental

limit set by statistical fluctuations of the number of absorbed photons [66, 67].

Another example is the embryo patterning along the anterior-posterior axis of the

fruit fly Drosophila melanogaster, determined by concentration profiles of certain

morphogens. The accuracy of the resulting pattern is limited by the noise levels

in these gene expression profiles. A final example is provided by chemotaxis, the
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directed movements of cells up or down a chemical gradient. In either prokaryotic

chemotaxis, where cells measure and compare concentration signals over time [68,

69], or eukaryotic chemotaxis, where cells measure concentration differences in

space [70, 40], the precision of gradient sensing is limited by the stochastic binding

of diffusing chemical molecules (ligands) to specific chemoreceptors on the cell

membrane.

These examples highlight the crucial role noise has on the capacities of bio-

logical signaling systems and point to the central question concerning the reliability

of cells to detect environmental stimuli based on their noisy measurements. To ad-

dress this question, we will use estimation theory which attempts to estimate the

values of parameters based on measured data that contain a random component.

The parameters represents an underlying physical setting in such a way that the

value of the parameters affects the distribution of the measured data. An estima-

tor takes the measured data as input and attempts to approximate the unknown

parameters using the measurements. In order to find a desired estimator, it is first

necessary to determine a probability distribution for the measured data, and the

distribution’s dependence on the unknown parameters of interest. After deciding

upon a probabilistic model, it is helpful to find the limitations placed upon an

estimator. This limitation, for example, can be found through the Cramér-Rao

bound.

In this paper, we apply techniques from estimation theory to study eu-

karyotic gradient sensing and use the social amoeba Dictyostelium discoideum as

our model system. Specific G-protein coupled receptors on the Dictyostelium cell

membrane bind and detect the chemoattractants in the surrounding medium. This

results in an asymmetric distribution of ligand-occupied receptors, which further

activates multiple second-messenger pathways inside the cell and drive the exten-

sion of pseudopods preferentially in the direction of the chemoattractant gradient.

Due to fluctuations in the ligand binding to chemoreceptors, the receptor signal

is inherently noisy, as demonstrated by recent single-molecule imaging experiment

[47]. Surprisingly, Dictyostelium cells exhibit extremely high sensitivity to gradi-

ents, as they are able to sense a ∼ 1% difference in chemical concentration across
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the cell length [44, 71]. The difference in receptor occupancy between the front

and back halves of a cell in these shallow gradients can be calculated to be 10-30.

This raises a puzzle about eukaryotic chemotaxis: how can cells reliably acquire

the gradient information from such a noisy receptor signal?

In 1977, Berg and Purcell analyzed the bacterial (e.g., E. coli) chemotaxis

and demonstrated that the limit uncertainty of concentration sensing is set by the

diffusion of ligand particles [86]. Their seminal work has been extended by many

others [53, 72, 73, 95, 74]. The results of Berg and Purcell, however, do not com-

pletely carry over to eukaryotic cells, which employ a spatial sensing mechanism.

In this mechanism, and in contrast to prokaryotic chemotaxis, cells use the spatial

asymmetry (including the gradient steepness and direction) to direct their motion.

A number of studies have been carried out to reveal the limits to spatial gradient

sensing, but are either applicable to idealized mechanisms that ignore the recep-

tor kinetics [95] or are based on heuristic signaling models [50, 62]. We recently

addressed this problem for circular cells using a general statistical mechanical ap-

proach, where we view the surface receptors as a (possibly coupled) spin chain

and treat the chemical gradient as a perturbation field [75]. By calculating the

system’s partition function, we were able to derive the gradient sensing limits for

either independent receptors or receptors exhibiting cooperativity. In this paper,

we will first revisit the spatial gradient sensing problem for circular cell shapes

using purely estimation-theoretic methods. This will be the foundation for our

extension to the elliptical cell shapes in the next section. Finally, we will examine

how the intracellular bias can affect the perceived gradient and compare our results

with recent experimental data.

3.2.2 Gradient sensing for a circular cell

We revisit the gradient sensing problem which we have examined in our

previous paper [75]. But here we directly use the method of maximum likelihood

estimate (MLE) [76]. Consider a circular cell with diameter L placed in a chemoat-

tractant gradient and assume that there are N receptors uniformly distributed on

the cell perimeter. The angular coordinates of these receptors are denoted by ϕn
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for n = 1, ..., N , which all satisfy the uniform distribution P (ϕn) = 1/(2π). We fur-

ther assume that the gradient field takes an exponential profile as has recently been

realized in experiments [71, 96]. Then the local concentration at the n-th receptor

can be expressed as Cn = C0 exp
[
p
2

cos(ϕn − φ)
]
, where C0 is the ambient (mean)

concentration, p ≡ L
C0
|~∇C| defines the gradient steepness that quantifies the per-

centage concentration change across the cell length L, and φ denotes the gradient

direction. Each receptor switches independently between two states, either empty

(0) or occupied (1), with transition rates determined by the local concentration

and the relevant chemical kinetics. Therefore, these receptors in a single snapshot

constitute a series of independent Bernoulli random variables, represented by

xn =

 1, with probability Pn,

0, with probability 1− Pn,
(3.3)

for n = 1, ..., N . For simple ligand-receptor kinetics, the occupancy probability

of the nth receptor is Pn = Cn/(Cn + Kd), where Kd = k−/k+ is the dissociation

constant. The probability mass distribution for Eq. (1) can be expressed as:

fn(xn|Θ) = P xn
n (1− Pn)1−xn , for xn ∈ {0, 1}, (3.4)

where Θ ≡ {p, φ} represents the parameters to estimate. Therefore, the likelihood

function for a sample of N independent receptors is given by

L(Θ|x1, ..., xN) = f(x1, ..., xN |Θ) =
N∏
n=1

fn(xn|Θ), (3.5)



46

and the log-likelihood function is

lnL =
∑
n

[
xn ln

Cn
Cn +Kd

+ (1− xn) ln
Kd

Cn +Kd

]
=

∑
n

xn ln
Cn
Kd

+
∑
n

ln
Kd

Cn +Kd

=
1

2

∑
n

xnp cos(ϕn − φ) + ln
C0

Kd

∑
n

xn

+

∫ 2π

0

N

2π
ln

[
Kd

C0 exp
[
p
2

cos(ϕ− φ)
]

+Kd

]
dϕ

=
p cosφ

2

∑
n

xn cosϕn +
p sinφ

2

∑
n

xn sinϕn

+ ln
C0

Kd

∑
n

xn −
NC0Kdp

2

16(C0 +Kd)2
+O(p4). (3.6)

Here, we introduce the transformation Θα = (α1, α2)T ≡ (p cosφ, p sinφ)T and de-

fine (z1, z2) ≡ (
∑

n xn cosϕn,
∑

n xn sinϕn) which measures the spatial asymmetry

in the receptor occupancy. Then, we have p2 = α2
1 + α2

2, and for shallow gradients

the log-likelihood function becomes

lnL ≈ α1z1 + α2z2

2
+ ln

C0

Kd

∑
n

xn −
NC0Kd(α

2
1 + α2

2)

16(C0 +Kd)2
. (3.7)

The method of maximum likelihood estimates the unknown parameters by finding

a value of Θα that maximizes L(Θα|x1, ..., xN), i.e.,

Θ̂α,mle = arg max
Θα

L(Θα|x1, ..., xN). (3.8)

Since the logarithm is a continuous strictly increasing function over the range of

the likelihood, the values which maximize the likelihood will also maximize its

logarithm. Thus, the MLE can be found from ∂α1 lnL = 0 and ∂α2 lnL = 0, with

the following solution

Θ̂α,mle =

(
α̂1

α̂2

)
=

1

µ

(
z1

z2

)
, where µ ≡ NC0Kd

4(C0 +Kd)2
. (3.9)

This solution is indeed the maximum of the likelihood function since it is the only

turning point in Θα and the second derivative is strictly less than zero. By the
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properties of MLE, both α̂1 and α̂2 are asymptotically unbiased and normal as the

sample size N goes to infinity, i.e., α̂1
d−→ N (α1, σ

2
1) and α̂2

d−→ N (α2, σ
2
2), where

“
d−→” denotes convergence in distribution. The asymptotic variances σ2

1 and σ2
2 can

be derived from the inverse of the Fisher information matrix [76]. This matrix has

to be diagonal here as α1 and α2 are independent of each other. Thus, we have

1

σ2
1,2

= E

[(
∂ lnL
∂α1,2

)2
]

= −E
[
∂2 lnL
∂α2

1,2

]
=
µ

2
, (3.10)

where E[·] represents the expectation and the proof of the second equality can be

found in [76]. This equality holds because lnL is twice differentiable with respect

to α1 and α2. From the relation α̂1,2 = z1,2/µ, we can see that E[z1,2] = µα1,2 and

that the asymptotic variances of z1 and z2 are equal:

σ2 = µ2σ2
1,2 = 2µ2/µ = 2µ. (3.11)

In addition, one can check that Cov[z1, z2] = 0, as reflected in the affine form of the

log-likelihood: lnL = α1z1/2+α2z2/2+ .... Thus, for small p, the joint probability

density of z1 and z2 is [75, 96]

P (z1, z2|Θα) =
1

2πσ2
exp

[
−(z1 − µα1)2 + (z2 − µα2)2

2σ2

]
. (3.12)

As the one-to-one transformation of Θ̂α,mle, the MLE of Θ = (p, φ)T is given by

Θ̂mle =

(
p̂

φ̂

)
=

(
µ−1
√
z2

1 + z2
2

arctan(z2/z1)

)
. (3.13)

If we introduce the complex random variable Z ≡ z1 + iz2, then Z follows the

complex Gaussian distribution, and in the polar coordinates Z = µp̂ exp(iφ̂). Eq.

(3.12) suggests that we can define a signal-to-noise (SNR) ratio

κ ≡ µ2p2

σ2
=
µp2

2
=

Np2C0Kd

8(C0 +Kd)2
. (3.14)

Again, by the properties of MLE, both p̂ and φ̂ tend to be unbiased and normal

in the large N limit, i.e., p̂
d−→ N (p, σ2

p) and φ̂
d−→ N (φ, σ2

φ). It has been found nu-

merically that the asymptotic normality becomes excellent when the SNR is larger
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than 9 [78, 75]. Similarly, the asymptotic variances σ2
p and σ2

φ can be computed

from the inverse of the Fisher information matrix with respect to Θ = (p, φ). The

matrix is still diagonal due to the orthogonality of p and φ. Thus, we have

1

σ2
p

= E

[(
∂ lnL
∂p

)2
]

= −E
[
∂2 lnL
∂p2

]
=
µ

2
, (3.15)

1

σ2
φ

= E

[(
∂ lnL
∂φ

)2
]

= −E
[
∂2 lnL
∂φ2

]
=
µp2

2
, (3.16)

or equivalently

σ2
p =

8(C0 +Kd)
2

NC0Kd

and σ2
φ =

8(C0 +Kd)
2

Np2C0Kd

=
1

κ
. (3.17)

The above results are identical to the ones we have recently derived in [75]. Accord-

ing to the Cramér-Rao inequality, the variances σ2
p and σ2

φ represent the minimal

uncertainties of gradient measurements from an instantaneous sampling of the re-

ceptor states [76].

If the cell in question integrates receptor signals over some time interval T ,

then averaging over multiple measurements should obviously reduce the errors of

gradient sensing. However, the error-reduction via temporal averaging is limited

by the expected time it takes for every independent measurement. As shown

in [73, 55], the time to make a single measurement is roughly twice the receptor

correlation time τ which results from the diffusion and binding of ligand molecules.

So the number of independent measurements a cell can make within T is about

T /(2τ). The correlation time can be decomposed as τ = τrec + τdiff , where τrec =

1/(k− + C0k+) is the timescale of receptor-ligand reaction and τdiff describes the

diffusive transport time of ligands. Let η ≡ τdiff/τrec, then the measurement is

reaction-limited if η � 1 and diffusion-limited if η � 1 [64]. In a sum of the above

arguments, we find that averaging signals over T yields a lower uncertainty of the

gradient estimate,

σ2
p,T '

2τ

T
σ2
p =

4τrec(1 + η)

µT
=

16(1 + η)(C0 +Kd)

NT k−C0

. (3.18)

We shall have similar results for the direction inference, since σ2
φ,T = σ2

p,T /p
2. For

typical eukaryotic cells, it has been estimated [73, 64] that η � 1, which implies

σ2
φ,T ' 16(C0 +Kd)/(Np

2T k−C0).
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A hidden assumption in the above derivation as well as in our previous pa-

per [75] is that the cell in question can tell the location of each receptor, as reflected

in (z1, z2) ≡ (
∑

n xn cosϕn,
∑

n xn sinϕn) which keep track of every individual re-

ceptor and its spatial position. Since the density of receptors on the cell surface can

be high, one may argue that the cell cannot distinguish between receptors that are

very close to each other. Nonetheless, we can easily relax this hidden assumption by

taking advantage of the Central Limit Theorem (CLT). We divide the cell surface

into M small sensory sectors such that receptors in the same sector are responding

to an almost identical chemical concentration. Therefore, receptors in the same sec-

tor can be regarded as independent and identically distributed (Bernoulli) random

variables, and the state of each sector should be represented by its receptor occu-

pancy number which follows the binomial distribution. One can think of M as a

quantity that reflects to what extent the cell can spatially distinguish its receptors.

Of course, we want to ensure that the number of receptors in each sectorNs = N/M

is large enough for the application of CLT. For example, we may choose M = 1000

for N = 40, 000, leading to Ns = 40. Now the local concentration at the mth sec-

tor with angular position ϑm = 2πm/M is given by Cm = C0 exp
[
p
2

cos(ϑm − φ)
]

for m = 1, ...,M . In a single snapshot, the number of occupied receptors in

the mth sector is approximately a Gaussian random variable by CLT, denoted

ym = NsCm/(Cm + Kd) + ηm for m = 1, ...,M . The random component ηm satis-

fies 〈ηm〉 = 0 and 〈ηmηn〉 = δmnNsCmKd/(Cm + Kd)
2 ≈ δmnNsC0Kd/(C0 + Kd)

2

[64, 50, ?], which means the variance of ym is approximately the same for all sectors.

For small gradients, we can expand ym around p:

ym ≈
NsC0

Kd + C0

+
NsKdC0

2(C0 +Kd)2
p cos(ϑm − φ) + ηm. (3.19)

We can see that the sector states, denoted by Y = {y1, y2, ..., yM}T , constitute

a vector of independent Gaussian random variables with space-dependent means

but approximately identical variance σ2
s ≡ NsKdC0/(C0 + Kd)

2. Hereafter, the

superscript symbol T means transpose. Eq. (3.19) suggests that one can view

Y = {y1, y2, ..., yM}T as observations of a sinusoidal signal corrupted by some
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white Gaussian noise. The likelihood function of Y conditional on Θ reads,

P (Y|Θ) ≈ 1

(2πσ2
s)
M/2

exp

[
−J(Y|Θ)

2σ2
s

]
, (3.20)

where

J(Y|Θ) =
M∑
m=1

(
ym −

NsC0

C0 +Kd

− σ2
s

2
p cos(ϑm − φ)

)2

. (3.21)

To maximize P (Y|Θ) is equivalent to minimize J(Y|Θ) which can be converted

to a quadratic function by the one-to-one transformation Θα = (α1, α2)T =

(p cosφ, p sinφ)T :

J(Y|Θα) = (Y −Y0 −HΘα)T (Y −Y0 −HΘα), (3.22)

with

Y0 =
NsC0

C0 +Kd


1

1

...

1

 and H =
σ2
s

2


cosϑ1 sinϑ1

cosϑ2 sinϑ2

... ...

cosϑM sinϑM


We can apply the formula of ordinary least squares (OLS) estimate to find the

MLE solution that minimizes the quadratic objective function J(Y|Θα) and hence

maximizes the likelihood function P (Y|Θα):

Θ̂α,mle = (HTH)−1HT (Y −Y0). (3.23)

For large M , we have 1
M

∑
m cosϑm ≈ 1

M

∑
m sinϑm ≈ 0, 1

M

∑
m cosϑm sinϑm ≈ 0,

and 1
M

∑
m cos2 ϑm ≈ 1

M

∑
m sin2 ϑm ≈ 1/2. Thus,

Θ̂α,mle =

(
α̂1

α̂2

)
≈ 4

σ4
s

(
M/2 0

0 M/2

)−1

HT (Y −Y0)

=
4(C0 +Kd)

2

NKdC0

( ∑
m ym cosϑm∑
m ym sinϑm

)
' 1

µ

(
z1

z2

)
,

where in the last line we have noticed that z1 =
∑

n xn cosϕn '
∑

m ym cosϑm and

z2 =
∑

n xn sinϕn '
∑

m ym sinϑm for sufficiently large M . By inverse mapping,
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we recover the MLE of Θ given in Eq. (3.13). According to the asymptotic

properties, Θ̂mle = (p̂, φ̂)T
d−→ N (Θ, I(Θ)−1), with the Fisher information matrix:

I(Θ) = E
[
∂ lnP (Y|Θ)

∂Θi

∂ lnP (Y|Θ)

∂Θj

]
≈

(
Mσ2

s/8 0

0 Mσ2
sp

2/8

)

=

(
µ/2 0

0 µp2/2

)
. (3.24)

Then, we recover our main MLE results:

p̂ = µ−1
√
z2

1 + z2
2

d−→ N
(
p, σ2

p =
2

µ

)
, (3.25)

φ̂ = arctan(z2/z1)
d−→ N

(
φ, σ2

φ =
2

µp2

)
. (3.26)

3.2.3 Summary

In this paper, we have used various concepts and techniques in estimation

theory to investigate the physical limits of eukaryotic gradient sensing. We have

derived explicit formulas for the variances of estimating both the gradient direction

and steepness for an elliptical cell.Our theoretical and numerical results all suggest

that a cell cannot improve its sensing of both the gradient steepness and direction

at the same time by simply elongating itself. We also show that highly eccen-

tric cell shapes can significantly change the gradient sensing limits, which may be

relevant in experimental observations for chemotactic eukaryotes like neutrophils

and Dictyostelium. Finally, we examined how an intracellular bias may distort

the cell’s perception of external stimuli. As expected, the accuracy of gradient

detection increases when the internal bias aligned with the external gradient but

decreases when the direction of the internal bias is significantly different from the

external gradient direction. Our approach is general and in principle can be ex-

tended to cases including non-uniformly distributed receptors or more complicated

cell shapes.
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Chapter 4

Biological Switch

4.1 Introduction

A wide spectrum of biological processes are mediated by certain ligand-

receptor systems where receptors randomly alternate between bound and unbound

states upon interacting with diffusing ligands [79]. For example, both prokaryotic

and eukaryotic gene transcription depends on whether DNA promoters are occu-

pied by specific transcription factors which either recruit or block RNA polymerase

[80, 81, 82, 83, 84]. At synapses, the ligand-gated ion channels are responsible to

convert the presynaptical chemical message into postsynaptic electrical signals.

The opening and closing of those channels are directly linked to the binding and

unbinding of specific ligands [79]. As our last example, eukaryotic chemotaxis

requires an accurate sensing of chemical gradients, which is accomplished by uti-

lizing chemoreceptors to detect external ligand concentrations [85]. A common

issue behind all the above phenomena is that input signals (ligand concentrations)

are intrinsically noisy, due to molecular diffusion [86] or as a result of stochastic

births and deaths of molecules [87]. This raises a central question concerning the

role of input noise in regulatory circuits.

Recent years have witnessed appreciable research efforts devoted to tackle

this problem [87, 88, 89, 90, 91, 92, 93, 94, 95, 96], mostly using the Langevin

approach with linear-noise approximation and/or the fluctuation-dissipation the-

orem. These approaches and associated results have facilitated a widely accepted

53
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view that the input noise will contribute additively to the variance of the output.

Previous approaches, however, involve a few caveats that deserve a careful discus-

sion. First, it is necessary to assume that the fluctuations of input signals are very

small such that one can linearize the input noise in the chemical Langevin equa-

tion. Remarkably, this linear-noise approximation itself guarantees the additive

noise rule because equation variables are continuous. Second, previous methods

usually lead to results in terms of the input-output variance relationship, whereas

other details about the system, such as the residence time statistics, have been

largely ignored. Third, when dealing with a single receptor (e.g., an individual

DNA promoter), the linear-noise method is inappropriate: the Langevin equation

with constant input is originally derived based on an infinite number of independent

copies of the system; if one modifies this equation by allowing the input variable to

fluctuate, the resulting equation demands that all those system copies be subject

to identical input fluctuations, and hence it no longer describes an independent

statistical ensemble.

4.2 Model

In this Letter, we propose a different theoretical framework that avoids all

the above caveats and generates new insights about the ligand-receptor system.

The input of our model, denoted by X(t), represents the ligand concentration

at time t and directly regulates the transition rates of a downstream receptor.

The receptor states in continuous time constitute the output process, Y (t). A

popular proposal for X(t) may be the Ornstein-Uhlenbeck (OU) process for its

analytical simplicity and mean-reverting property [97]. However, the OU process

may take negative values, an undesirable feature for modeling chemical concentra-

tions. Here, we choose for X(t) the following square-diffusion process [98], which

is mostly well-known as the Cox-Ingersoll-Ross (CIR) model [99] for interest rates

in mathematical finance:

dX(t) = λ(µ−X(t))dt+ σ
√
X(t)dWt. (4.1)
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Figure 4.1: X(t) represents the ligand concentration which fluctuates in time,
while Y (t) records the receptor configuration which alternates between the un-
bound (Y = 0) and bound (Y = 1) states, with transition rates konX(t) and
koff for simple receptor-ligand kinetics. The first passage time τ̃ for the recep-
tor switching into the bound state is equivalent to its residence time of staying
unbound.

Here, λ represents the rate at which X(t) will approach its steady-state mean

value µ, σ controls the input noise intensity, and Wt denotes the standard Wiener

process. Clearly, the CIR process is not only mean-reverting but also nonnega-

tive. Moreover, its square-root noise term captures a common statistical feature

for many biochemical processes, that is, the standard deviation of chemical concen-

trations scale as the square root of those concentrations. The stationary solution

of Eq. 4.1 is Solving the Fokker-Planck equation for Eq. 4.1 yields the steady-state

solution,

Ps(X = x) =
βαxα−1e−βx

Γ(α)
, α ≡ 2µλ

σ2
, β ≡ 2λ

σ2
, (4.2)

which is a Gamma distribution with steady-state variance σ2
X = µσ2/(2λ). The

parameter α in Eq. (2) can be interpreted as the signal-to-noise ratio, since we

have α = µ2/σ2
X . For α ≥ 1 (the Feller condition), the origin is guaranteed to

be inaccessible for X(t). Using Itó calculus [97], one can also find its steady-state

covariance: Cov[X(t), X(t + s)]t→∞ = σ2
Xe
−λ|s|. Therefore, X(t) is a stationary

Markov process with the relaxation time λ−1.

For the simplest receptor-ligand reaction (Fig. 4.1), the forward and back-
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ward transition rates of the receptor are given by konX(t) and koff , respectively.

If we ignore any fluctuations of X(t), the output process Y (t) is simply a two-

state continuous-time Markov process with transition rates konµ and koff . Since

the backward rate koff is constant in both cases, we expect that the input fluc-

tuations will affect the switching dynamics only when the receptor is unbound.

In general, the input noise will make Y (t) a non-Markovian process because the

residence times for the receptor staying unbound will no longer be exponentially

distributed. To demonstrate this point more rigorously, we consider the following

first passage time problem. Without loss of generality, suppose the receptor starts

being unbound at t = 0 and the initial ligand concentration is X(t = 0) = x. Let

τ̃ denote the first time of the receptor switching into the bound state. Then the

survival probability for the receptor staying unbound, conditioned on the initial

input value, is

f(x, t) ≡ P (τ̃ > t|X(0) = x) = Ex
[
e−

∫ t
0 konX(s)ds

]
, (4.3)

where Ex[...] denotes expectation over all possible sample paths of X(s) for 0 ≤
s ≤ t, conditioned on X(0) = x. The Feynman-Kac formula [97] asserts that

f(x, t) solves the following partial differential equation:

∂f(x, t)

∂t
= λ(µ− x)

∂f

∂x
+

1

2
σ2x

∂2f

∂x2
− konxf, (4.4)

with initial condition f(x, 0) = 1. A structurally similar equation to Eq. 4.4 has

been solved in Ref. [99] to price financial bonds under the CIR interest rate model.

The exact solution for our problem is similar and found to be:

f(x, t) =

[
λ̃eλt/2/ sinh(λ̃t/2)

λ+ λ̃ coth(λ̃t/2)

]α
exp

[
−2konx

λ+ λ̃ coth(λ̃t/2)

]
, (4.5)

where λ̃ ≡
√
λ2 + 2konσ2 = λ

√
1 + 2konσ2/λ2. Evidently, f(x, t) remembers the

initial input x and decays with t in a manner that is not exactly exponential.

To see how the output dynamics under input noise will deviate from that of a

constant input model, we first study the case where X(t) relaxes to its equilibrium

very rapidly such that λ−1 � TY . Here, TY ≡ (konµ + koff)−1 is the output

autocorrelation time for the constant input model. In this case, the initial input
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value x in f(x, t) is effectively drawn from the stationary distribution Ps(x) given

by Eq. 4.2, and all the residence times during which the receptor staying unbound

are almost independent with each other. The distribution of these residence times

is P (τ̃ ≤ t) = 1 − P (τ̃ > t) = 1 −
∫∞

0
f(x, t)Ps(x)dx, where by direct integration

we find

P (τ̃ > t) =

[
βλ̃eλt/2

(βλ+ 2kon) sinh(λ̃t/2) + βλ̃ cosh(λ̃t/2)

]α

'

[
2βλ̃e−(λ̃−λ)t/2

β(λ+ λ̃) + 2kon

]α
' exp(−k̃onµt). (4.6)

In the last step of the above derivation, we have used the following relationship

which defines the parameter k̃on:

α(λ̃− λ)

2µ
=

λ

σ2
(λ̃− λ) =

2λ

λ̃+ λ
kon ≡ k̃on ≤ kon. (4.7)

By introducing θ ≡ konσ
2/λ2 which reflects the deviation of λ̃ from λ, one can also

check that as long as λ � konµ (as guaranteed by λ−1 � TY ), it holds regardless

of θ: [
2βλ̃

β(λ+ λ̃) + 2kon

]α
=

(
1

2
+

1 + θ

2
√

1 + 2θ

)− 2
θ
· konµ
λ

' 1.

Fig. 4.2A shows that the approximate result P (τ̃ > t) ' e−k̃onµt is strikingly

excellent, independent of the values of θ. Hence the output Y (t) can be well

approximated as a two-state Markov process with transition rates k̃onµ and koff .

The probability to find Y = 1 is then given by µ/(µ+ K̃d), where K̃d ≡ koff/k̃on is

the effective dissociation constant. Combining the assumption λ−1 � TY with the

Feller condition α = µ2/σ2
X ≥ 1, we see that:

θ ≡ kon
σ2

λ2
=

2konµ

λ

(
σ2
X

µ2

)
� 1 and λ̃ ' λ(1 + θ). (4.8)

So the stationary variance of Y (t) can be expanded as:

σ̃2
Y =

µK̃d

(µ+ K̃d)2
' σ2

Y +
µKd(µ−Kd)

2(µ+Kd)3
θ +O(θ2),

= σ2
Y +

µ−Kd

(µ+Kd)3

koff

λ
σ2
X +O(σ4

X), (4.9)
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Figure 4.2: Here we use λ = 10, kon = 0.02, and koff = 0.1 (thus Kd = 5). (A)
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where σ2
Y ≡ µKd/(µ + Kd)

2 is the output variance of the constant input model

and Kd ≡ koff/kon is the original dissociation constant. Eq. 4.9 indicates that

the input noise σ2
X does not always contribute additively to the output variance

σ̃2
Y . In fact, the contribution is negligible when µ is near Kd and even negative for

µ < Kd (Fig. 4.2B). This seemingly surprising result has a simple explanation: a

two-state switch at any moment is just a Bernoulli random variable and hence its

variance is strictly upper bounded by one quarter. From Eq. 4.9 and Fig. 4.2C,

one can see that the net effect of input noise is to slightly shift the dissociation

constant from Kd to K̃d. This turns out to be a general feature for any two-state

(single) receptor system, no matter how the input process is assigned or whether

the receptor is mediated by cooperative binding of ligands. We will elaborate

this point in a separate publication. Back to our noisy input model, the output

autocorrelation time is T̃Y ' (k̃onµ+ koff)−1, which can also be expanded in σ2
X by

using Eq. 4.8:

T̃Y ' TY

(
1− λ̃− λ

λ̃+ λ

µ

µ+Kd

)−1

' TY +
1

λ

σ2
X

(µ+Kd)2
. (4.10)

Thus, T̃Y increases almost linearly with σ2
X (Fig. 2D). Consider an integration of

the output Y (t) over a time window T (assuming T � TY ). The output variance

after temporal averaging will be: Var
[

1
T

∫ T
0
Y (t)dt

]
' 2σ̃2

Y T̃Y /T , which may still

decrease with the input noise σ2
X when µ � Kd, just as σ̃2

Y does (Fig. 4.2B). All

the above results show that the additive noise rule is incomplete to characterize

the input-output noise relationship for a single receptor system.

We now examine the opposite extreme where the receptor switches much

faster than the input process relaxes to its equilibrium (i.e. λ−1 � TY ). Intuitively,

the initial input values for successive “first-passage” events of duration τ̃ should

be correlated in this case. This temporal correlation makes it difficult to calculate

P (τ̃ > t) like what we have done in Eq. 4.6. We thus resort to the Monte Carlo

simulations. If the input noise is sufficiently large such that α ∼ O(1), then by Eq.

4.8 we have θ = 2konµ/(λα) � 1 since λ << konµ. As shown in Fig. 4.3A, the

successive residence times of the receptor staying unbound are mildly correlated

with each other, as a natural result of the interdependence in the input time series.
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The distribution of these unbound-state residence times is not simply exponential

(Fig. 4.3B), especially at the head, although its tail decays exponentially again

at the rate k̃onµ. We can still use the analytical expression f(x, t) in Eq. 4.5

to fit the simulation data (open circles in Fig. 4.3B). Specifically, we evaluate∫∞
0
f(x, t)Pe(x)dx (solid line in Fig. 4.3B) where Pe(x) is the empirical distribution

of the initial input x for each ”first-passage” event and is obtained from Monte-

Carlo simulations. In Fig. 4.3C, we draw the sample autocorrelation function

(ACF) for the simulated output process. Clearly, the ACF of Y (t) exhibits a much

longer tail than what one expects from a constant input model, demonstrating a

long-term memory in Y (t). All the above results (Fig. 4.3A-C) show that the

output process Y (t) is strongly non-Markovian in the dynamic scheme λ−1 � TY
and θ � 1. Finally, we illustrate the interdependence of the input and output

processes by plotting the input distributions conditional on the output in Fig.

4.3D. In fact, P (X = x|Y = 1) ' Pe(x).

4.3 Discussion

The results we have so far presented can have broad biological implications.

The impact of input noise on the output dynamics may be quite different, depend-

ing on the input relaxation time λ−1 compared to the typical receptor switching

time TY . An usual biophysical basis for the relaxation time λ−1 is molecular dif-

fusion. If the input (ligand) dynamics is governed by molecular diffusion, then

a larger diffusion coefficient of the ligands will make the input noise less appre-

ciable, consistent with the Burg-Percell formula for concentration sensing limits

[86, 89, 94, 95]. Many biological processes may be classified into this scheme where

fluctuations of input signals are not impactful. For example, switching of DNA

promoters usually occurs at a time scale much longer than the characteristic diffu-

sion time of transcription factors, providing a temporal averaging opportunity to

suppress the input noise. Eukaryotic gradient sensing is another example where the

chemoattractant cAMP diffuses so fast that one can ignore the input diffusive noise

when considering cellular gradient sensing capacities [94, 96]. Nonetheless, there
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exist biological situations where the input relaxes much slower than the receptor

flips its states. Take for example the bacterial chemotactic movements which are

generated by rotations, either clockwise or counterclockwise, of certain bacterial

flagellar motors. In E. coli, the probability of clockwise motor spinning depends

sharply on the concentration of CheY-P [101]. Nonetheless, the input CheY-P

correlation time is dominated by slow methylation kinetics and hence should far

exceed the characteristic switching time for the flagellar motors [102]. Therefore,

the input noise in this system is expected to have interesting effects on the mo-

tor switching dynamics, as experimentally revealed in [100, 101] and theoretically

explored in [102].

In summary, we present a new theoretical approach to analyze how input

fluctuations can influence the output dynamics of a simple biochemical switch.

Contrary to the common belief, our analysis shows that the presence of input

noise does not necessary increase the output variance for a single switch. We

also demonstrate that a long-last memory in the input process can generate non-

exponential statistics in the output switching dynamics. We stress that these

results are of general value since they do not rely on the details of how the input

process is specifically modeled. Future research may extend our current framework

by incorporating other effects like feedback loops and cooperative ligand binding.



Appendix A

Laplace Transforms

Here, we find an analytical solution for the time dependent 2D problem in

the case of an instantaneous flux source:

lim
r→0

r
∂C1

∂r
= − F

πD
δ(t) (A.1)

We will employ the Laplace transform

C̃1(r, s) =

∫ ∞
0

C1(r, t)e−tsdt (A.2)

C̃2(r, s) =

∫ ∞
0

C2(r, t)e−tsdt (A.3)

for which the problem at hand is written as

(D∇2 − β1)C̃1 = sC̃1,0 ≤ r ≤ R (A.4)

(D∇2 − β2)C̃2 = sC̃2,r > R (A.5)

with as boundary conditions:

C̃1(R, s) = C̃2(R, s) (A.6)

∂C̃1(R, s)

∂r
=
∂C̃2(R, s)

∂r
(A.7)
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lim
r→0

r
∂C̃1

∂r
= − F

πD
(A.8)

Using polar coordinates, these equations can be rewritten as

∂2C̃1

∂r2
+

1

r

∂C̃1

∂r
− β1 + s

D
C̃1 = 0 (A.9)

∂2C̃2

∂r2
+

1

r

∂C̃2

∂r
− β2 + s

D
C̃2 = 0 (A.10)

with as solution

C̃1(r, s) =
F

πD
K0(rγ1) +

F

πD

N1(s)

N(s)
I0(rγ1), 0 ≤ r ≤ R (A.11)

C̃2(r, s) =
F

πDR

1

N(s)
K0(rγ2), r > R (A.12)

where

N(s) = γ1I1(Rγ1)K0(Rγ2) + γ2K1(Rγ2)I0(Rγ1) (A.13)

N1(s) = γ1K1(Rk1)K0(Rk2)− γ2K1(Rγ2)K0(Rγ1) (A.14)

and γ1(s) =
√

β1+s
D

, γ2(s) =
√

β2+s
D

.

The final solutions can be found through the inverse Laplace transform

C1(r, t) =
1

2πi

∫ x0+i∞

x0−i∞
C̃1(r, s)etsds

=
F

2πDt
exp(− r2

4Dt
− β1t) +

F

πD

1

2πi

∫ x0+i∞

x0−i∞

N1(s)

N(s)
I0(rγ1)etsds,

0 ≤ r ≤ R (A.15)

C2(r, t) =
1

2πi

∫ x0+i∞

x0−i∞
C̃2(r, s)etsds

=
F

πDR

1

2πi

∫ x0+i∞

x0−i∞

1

N(s)
K0(rγ2)etsds, r > R (A.16)
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where x0 is an arbitrary positive number.

The main challenge is to calculate the following two inverse Laplace trans-

forms:

u1(r, t) ≡ L−1[U1(s)] ≡ 1

2πi

∫ x0+i∞

x0−i∞

N1(s)

N(s)
I0(rγ1)etsds, x0 > 0 (A.17)

u2(r, t) ≡ L−1[U2(s)] ≡ 1

2πi

∫ x0+i∞

x0−i∞

1

N(s)
K0(rγ2)etsds, x0 > 0 (A.18)

where U1(s) = N1(s)
N(s)

I0(rγ1), U2(s) = 1
N(s)

K0(rγ2).

A.1 Region 1

We first calculate u1(r, t) by contour integration of s = x+iy in the complex

plane as shown in Figure A.1:

u1(r, t) = − 1

2πi
[

∫
BC+JA

U1(z)etzdz +

∫
FG

U1(z)etzdz

+

∫
CDn+

∑n
j=2 EjDj−1+E1F

U1(z)etzdz

+

∫
GH1+

∑n−1
j=1 IjHj+1+InJ

U1(z)etzdz

+
n∑
j=1

∫
DjEj+HjIj

U1(z)etzdz] (A.19)

Since β2 > β1 ≥ 0, it is easy to proof that N(s) has only zeros in the

range (−β2,−β1). We will use xj (j = 1, 2, · · ·, n) to denote these zeroes which are

all located on the negative real axis. Notice that U1(s) contains the multivalued

functions K0, K1 and
√
· with branch points at 0 and∞. Consequently the contour

involves a branch cut along the negative real axis of the s-plane starting from −β1,

i.e. (−∞,−β1] (see Figure A.1).
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Figure A.1: The contour used to invert the Laplace transform in region 1.

In the limit |z| → ∞ the contribution along the arcs BC, JA, and FG

vanish. Furthermore, the last term can be evaluated using the residues of the

simple poles to obtain

u1(r, t) = − 1

2πi
[

∫
CDn+

∑n
j=2 EjDj−1+E1F

U1(z)etzdz

+

∫
GH1+

∑n−1
j=1 IjHj+1+InJ

U1(z)etzdz]

+
n∑
j=1

res[U1(z)etz, xj] (A.20)

Here,

res[U1(z)etz, xj] =
N1(xj)

N ′(xj)
I0(rγ1(xj))e

xjt (A.21)

where the symbol ′ means d
ds

. After some algebra, we can find expressions

for the single valued real functions N1(xj)I0(rγ1(xj)) and N
′
(xj):
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N1(xj)I0(rγ1(xj))

=
π

2
[

√
xj + β2

D
K1(R

√
xj + β2

D
)Y0(R

√
−xj + β1

D
)−√

−xj + β1

D
Y1(R

√
−xj + β1

D
)K0(R

√
xj + β2

D
)]J0(r

√
−xj + β1

D
)(A.22)

where J and Y represent the Bessel function of the first and second kind,

respectively, and

N
′
(xj) = γ

′

2(xj)K1(Rγ2(xj))J0(Rγ∗1(xj))− γ∗
′

1 (xj)J1(Rγ∗1(xj))K0(Rγ2(xj))

−R
2
γ2(xj)γ

′

2(xj)[K0(Rγ2(xj)) +K2(Rγ2(xj))]J0(Rγ∗1(xj))

−R
2
γ∗1(xj)γ

∗′
1 (xj)[J0(Rγ∗1(xj))− J2(Rγ∗1(xj))]K0(Rγ2(xj))

+R[γ∗1(xj)γ
′

2(xj)− γ∗
′

1 (xj)γ2(xj)]J1(Rγ∗1(xj))K1(Rγ2(xj)) (A.23)

The first two terms in Eq. A.20 are the branch cut integrals. For these, we

have along CDn +
∑n

j=2EjDj−1 +E1F : z = xeπi and dz = eπidx, so that for finite

number of non-integrable points we have,

∫
CDn+

∑n
j=2 EjDj−1+E1F

U1(z)etzdz =

∫ −β1
−∞

U1(xeπi)etxdx

=

∫ −β2
−∞

U1(xeπi)etxdx

+

∫ −β1
−β2

U1(xeπi)etxdx (A.24)

Along GH1 +
∑n−1

j=1 IjHj+1 + InJ we have z = xe−πi and dz = e−πidx so

that

∫
GH1+

∑n−1
j=1 IjHj+1+InJ

U1(z)etzdz =

∫ −∞
−β1

U1(xe−πi)etxdx

=

∫ −β2
−∞
−U1(xe−πi)etxdx

+

∫ −β1
−β2
−U1(xe−πi)etxdx (A.25)
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Summing both contributions we obtain

∫ −β2
−∞

[U1(xeπi)− U1(xe−πi)]etxdx+

∫ −β1
−β2

[U1(xeπi)− U1(xe−πi)]etxdx

= 2i

∫ −β2
−∞

Im[U1(xeπi)]etxdx+ 2i

∫ −β1
−β2

Im[U1(xeπi)]etxdx (A.26)

For x ∈ (−∞,−β2), both γ1 and γ2 are imaginary and both the nominator

N1(z) and the denominator N(z) of U1(z) have different values above or below the

branch cut:

N(xe±πi) =
π

2
(P ± iQ), x ∈ (−∞,−β2) (A.27)

where

P (x) = γ∗1(x)J1(Rγ∗1(x))Y0(Rγ∗2(x))− γ∗2(x)J0(Rγ∗1(x))Y1(Rγ∗2(x))(A.28)

Q(x) = γ∗1(x)J1(Rγ∗1(x))J0(Rγ∗2(x))− γ∗2(x)J0(Rγ∗1(x))J1(Rγ∗2(x)) (A.29)

Similarly

I0(rγ1(xe±πi)) = J0(rγ∗1(x)), x ∈ (−∞,−β2) (A.30)

N1(xe±πi) =
π2

4
(R± iS), x ∈ (−∞,−β2) (A.31)

where

R(x) = −γ∗1(x)J1(Rγ∗1(x))J0(Rγ∗2(x))− γ∗2(x)J0(Rγ∗1(x))J1(Rγ∗2(x))

+γ∗1(x)Y1(Rγ∗1(x))Y0(Rγ∗2(x))− γ∗2(x)Y0(Rγ∗1(x))Y1(Rγ∗2(x))(A.32)

S(x) = γ∗1(x)J1(Rγ∗1(x))Y0(Rγ∗2(x)) + γ∗2(x)J0(Rγ∗1(x))Y1(Rγ∗2(x))

+γ∗1(x)Y1(Rγ∗1(x))J0(Rγ∗2(x))− γ∗2(x)Y0(Rγ∗1(x))J1(Rγ∗2(x))(A.33)
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Thus,

2i

∫ −β2
−∞

Im[U1(xeπi)]etxdx = iπ

∫ −β2
−∞

PS +QR

P 2 +Q2
J0(rγ∗1)etxdx

x=−s−β2
= iπe−β2t

∫ ∞
0

F1(r, s)e−tsds = iπe−β2tL[F1(r, s)] (A.34)

where

F1(r, s) =
P (−s− β2)S(−s− β2)−Q(−s− β2)R(−s− β2)

P 2(−s− β2) +Q2(−s− β2)
J0(rγ∗1(−s− β2)

(A.35)

We can expand L[F1(r, s)] in powers of 1
t

by partial integration

L[F1(r, s)] =

∫ ∞
0

F1(r, s)e−tsds = −1

t

∫ ∞
0

F1(r, s)de−ts

= −1

t
F1(r, s)e−ts|s=∞s=0 −

1

t2

∫ ∞
0

F
(1)
1 (r, s)de−ts

= −
∞∑
n=1

1

tn
F

(n−1)
1 (r, s)e−ts|s=∞s=0 (A.36)

where F
(n)
1 (r, s) = ∂nF1(r,s)

∂sn
. After keeping only the first order of 1

t
, we

obtain

L[F1(r, s)] ∼ 1

t
J0(r

√
β2 − β1

D
) + o(

1

t2
) (A.37)

Similarly, we can compute that

2i

∫ −β1
−β2

Im[U1(xeπi)]etxdx

= iπ
1

t
[exp(− r2

4Dt
− β1t)− exp(− r2

4Dt
− β2t)] (A.38)

By combining the above results we get a final expression for the cAMP

concentration in Region 1:
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Figure A.2: The contour used to invert the Laplace transform in region 2.

C1(r, t) =
F

πD

n∑
j=1

N1(xj)

N ′(xj)
I0(rγ1(xj)) exp(xjt) +

F

2πDt
exp(− r2

4Dt
− β2t)

− F

2πD
L[F1(r, s)] exp(−β2t) (A.39)

∼ F

πD

n∑
j=1

N1(xj)

N ′(xj)
I0(rγ1(xj)) exp(xjt) +

F

2πDt
exp(− r2

4Dt
− β2t)

− F

2πDt
J0(r

√
β2 − β1

D
) exp(−β2t) + o(

1

t2
) exp(−β2t) (A.40)

A.2 Region 2

To obtain a solution in the second region, we again use contour integration

of s in the complex plane as shown in Figure A.2. Since U2(s) has the same

denominator as U1(s), U2(s) has the same simple poles xj ∈ (−β2,−β1) (j =

1, 2, · · ·, n). After some algebra, we find the branch cut of U2(s) is along the

negative axis of s-plane starting from −β2, i.e. (−∞,−β2] (see Figure A.2). Since

the contribution along the arcs BC, FA, and DE, vanish in the limit |z| → ∞ we

find
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u2(r, t) = − 1

2πi

∫
CD+EF

U2(z)etzdz +
n∑
j=1

res[U2(z)etz, xj] (A.41)

where

res[U2(z)etz, xj] =
K0(rγ2(xj))

N ′(xj)
exjt =

K0(r
√

xj+β2
D

)

N ′(xj)
exjt (A.42)

For the branch cut integrals, we have along the CD z = xeπi and dz = eπidx,

while along EF we have z = xe−πi and dz = e−πidx, so that

∫
CD+EF

U2(z)etzdz =

∫ −β2
−∞

U2(xeπi)etxdx−
∫ −β2
−∞

U2(xe−πi)etxdx

=

∫ −β2
−∞

[U2(xeπi)− U2(xe−πi)]etxdx

= 2i

∫ −β2
−∞

Im[U2(xeπi)]etxdx (A.43)

The nominator K0(rγ2) can be expressed in terms of a real and imaginary

part by the using the properties of Bessel functions

K0(rγ2(xe±πi)) = −π
2

[Y0(rγ∗2(x))± iJ0(rγ∗2(x))], x ∈ (−∞,−β2) (A.44)

Thus,

∫
CD+EF

U2(z)etzdz = 2i

∫ −β2
−∞

QY0(rγ∗2)− PJ0(rγ∗2)

P 2 +Q2
etxdx

x=−s−β2
= 2ie−β2t

∫ ∞
0

F2(r, s)e−tsds = 2ie−β2tL[F2(r, s)] (A.45)

where

F2(r, s) =
Q(−s− β2)Y0(r

√
s
D

)− P (−s− β2)J0(r
√

s
D

)

P 2(−s− β2) +Q2(−s− β2)
(A.46)

By expanding L[F2(r, s)] in powers of 1
t

as above, we obtain
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L[F2(r, s)] = −
∞∑
n=1

1

tn
F

(n−1)
2 (r, s)e−ts|s=∞s=0

∼ 0 + o(
1

t2
) (A.47)

After some algebra, we find a final solution for the the concentration of

cAMP in Region 2

C2(r, t) =
F

πDR

n∑
j=1

K0(r
√

xj+β2
D

)

N ′(xj)
exp(xjt)−

F

πDR

L[F2(r, s)]

π
exp(−β2t) (A.48)

∼ F

πDR

n∑
j=1

K0(r
√

xj+β2
D

)

N ′(xj)
exp(xjt) + o(

1

t2
) exp(−β2t) (A.49)
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Proof of equation (2.43)

Here, we will present a proof of the last identity in Eqn.(2.43):

lim
θ0→0

∫ θ0

−θ0
Rc1(R, θ)dθ = 0.

From Eqn.(2.27) with the left hand side set to zero and the boundary

condition Eqn.(2.44), we can obtain the general solution for c1 at the junction

−θ0 < θ < θ0

c1(R, θ) = [
f√
βD

+
1

2π

J√
βDR

]
I0(R/l)

I ′0(R/l)

+
1

π

f

D

∞∑
n=1

In(R/l)

(R/l)I ′n(R/l)
cosnθ, (B.1)

where J is an unknown constant. The first term of c1(R, θ) is independent

of θ, so the limit of the first term’s integration gives zero. Thus, we need to prove

limθ0→0Q(θ0) = 0, where Q(θ0) =
∫ θ0
−θ0

∑∞
n=1

In(R/l)
(R/l)I′n(R/l)

cosnθdθ. Since we can not

change the order of the integral with the infinite summation, we will find the upper

and lower bound of Q(θ0) instead. It is easy to show that for positive arguments x

n+ 1

n(n+ 1) + x2

2

<
In(x)

xI ′n(x)
<

1

n
, n = 1, 2, 3, ... (B.2)

Thus, we have
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| In(x)

xI ′n(x)
cosnθ − cosnθ

n
| ≤ | In(x)

xI ′n(x)
− 1

n
|| cosnθ|

≤ | In(x)

xI ′n(x)
− 1

n
|

=
1

n
− In(x)

xI ′n(x)

<
1

n
− n+ 1

n(n+ 1) + x2

2

=
x2

2

1

(n+ 1)n2 + x2

2
n

<
x2

2

1

(n+ 1)n2
. (B.3)

Therefore, for each n, In(x)
xI′n(x)

cosnθ is bounded as follows

cosnθ

n
− x2

2

1

(n+ 1)n2
<

In(x)

xI ′n(x)
cosnθ

<
cosnθ

n
+
x2

2

1

(n+ 1)n2
. (B.4)

Thus, the upper and lower bound of the infinite summation is given by

∞∑
n=1

cosnθ

n
± 1

2
(
R

l
)2

∞∑
n=1

1

(n+ 1)n2

=
1

2
log

1

2− 2 cos θ
± 1

2
(
R

l
)2(
π2

6
− 1). (B.5)

By integrating Eqn.(B.5) from −θ0 to θ0, we find the upper and lower bound

of Q(θ0)

i[Li2(e−iθ0)− Li2(eiθ0)]− (
R

l
)2(
π2

6
− 1)θ0 < Q(θ0)

< i[Li2(e−iθ0)− Li2(eiθ0)] + (
R

l
)2(
π2

6
− 1)θ0, (B.6)

where Li2 denotes the dilogarithm function. Taking the limit of θ0 → 0 in

Eqn.(B.6), both the lower and upper bound go to zero, so that limθ0→0Q(θ0) = 0

and, hence, limθ0→0

∫ θ0
−θ0 Rc1(R, θ)dθ = 0.
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3D model of cAMP distribution

The analytic solutions found in two dimensions can be extended to three

dimensional geometry. By rotating FIG. 2.5 around the x-axis, we can arrive at

a 3D model with the cell body as a sphere with radius R, and the dendrite as a

cylinder with length L and radius w. Since the dendrite is very thin compared

to the soma, i.e. w � R, Eqn.(2.26) remains valid. The concentration in the

sphere, Ĉ1(r, θ, ϕ), and in the cylinder, Ĉ2(x, ρ, ϕ), obey the diffusion equation

with a homogeneous degradation rate β as in Eqn.(2.27,2.28), but now written in.

n spherical and cylinder coordinate, respectively, where 0 ≤ r ≤ R, 0 ≤ θ ≤ π,

0 ≤ x ≤ L, 0 ≤ ρ ≤ w and 0 ≤ ϕ ≤ 2π. Because of the symmetry around x-axis,

both concentration fields are independent of ϕ and they become effectively two

dimensional: Ĉ1(r, θ, ϕ) = Ĉ1(r, θ) and Ĉ2(x, ρ, ϕ) = Ĉ2(x, ρ).

In the 3D case, the constant cAMP source flux, F, has units of 1/(sµm2),

and the boundary conditions read

∂Ĉ1(R, θ)

∂r
=
F

D
, (θ0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π) (C.1)

∂Ĉ2(L, ρ)

∂x
=
F

D
, (0 ≤ ρ ≤ w, 0 ≤ ϕ ≤ 2π) (C.2)

∂Ĉ2(x,w)

∂ρ
=
F

D
, (0 ≤ x ≤ L, 0 ≤ ϕ ≤ 2π). (C.3)

Since w � R, we can approximate the junction of the sphere and the

cylinder to be a disk, and we require that the concentration and gradient at the
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dist to be continuous

Ĉ1(R, θ) = Ĉ2(0, ρ), (0 ≤ θ < θ0, 0 ≤ ϕ ≤ 2π) (C.4)

∂Ĉ1(R, θ)

∂r
=
∂Ĉ2(0, ρ)

∂x
, (0 ≤ θ < θ0, 0 ≤ ϕ ≤ 2π) (C.5)

where ρ ' Rθ.

Therefore, the steady state solution can be obtained as

Ĉ1(r, θ) =
∞∑
m=0

B̂m
im(r/l)

i′m(R/l)
pm(cos θ)

+
F√
βD

1 + cos θ0

2

i0(r/l)

i′0(R/l)

+
∞∑
n=1

F√
βD

1

2
[pn+1(cos θ0)

− pn−1(cos θ0)]
in(r/l)

i′n(R/l)
pn(cos θ), (C.6)

Ĉ2(x, ρ) =
∞∑
n=0

Ân[ex
√

( 1
l
)2+k2n

+ e(2L−x)
√

( 1
l
)2+k2n ]J0(knρ)

+
F√
βD

cosh(x/l)

sinh(L/l)
+

F√
βD

I0(ρ/l)

I ′0(w/l)
, (C.7)

where in and Jn represent the modified spherical Bessel function of the

first kind and Bessel function of the first kind respectively, kn is the n-th root

of J1(knw) = 0, and Pm
n denotes the Legendre function. Here pn = P 0

n . The

coefficients B̂m are determined by Ân through Eqn.(C.5),

B̂m =
2m+ 1

2
l

∫ θ0

0

ĝ(θ)pm(cos θ) sin θdθ,m = 0, 1, 2, ... (C.8)

where ĝ(θ) is the flux from the dendrite to the soma, given by

ĝ(θ) =
∂Ĉ2(0, ρ)

∂x
=
∞∑
n=0

Ân

√
(
1

l
)2 + k2

n[1

− e2L
√

( 1
l
)2+k2n ]J0(knρ). (C.9)
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To determine Ân, one needs to solve Eq.(C.4), which is a difficult task.

Similarly to out two dimensional case, we can consider the limiting case

w = θ0 = 0, i.e. a sphere connected to a line. We use ĉ1,2 to represent the

concentrations for this limit case, which can be related to Ĉ1,2 as follows

ĉ1(r, θ) = lim
θ0→0

Ĉ1(r, θ), (C.10)

ĉ2(x) = lim
w→0

∫ 2π

0

∫ w

0

Ĉ2(x, ρ)dρdϕ. (C.11)

The diffusion equation and boundary condition for ĉ1 are identical to Eqn.(2.27)

and Eqn.(C.1) while the diffusion equation for ĉ2 becomes one dimensional:

0 = D
d2ĉ2

dx2
− βĉ2 + 2f, (C.12)

where f = πwF .

The boundary condition is

dĉ2(L)

dx
= lim

w→0

∫ 2π

0

∫ w

0

F

D
ρdρdϕ

= lim
w→0

∫ 2π

0

∫ w

0

f

πwD
ρdρdϕ = 0. (C.13)

and the continuity property at the junction reduces to

ĉ2(0) = lim
θ0→0

∫ 2π

0

∫ θ0

0

R2 sin θĉ1(R, θ)dθdϕ

= 0, (C.14)

∂ĉ1(R)

∂r
=

f

πwD
+

J

DR2
δ2(θ, ϕ), (C.15)

dĉ2(0)

dx
=

J

D
, (C.16)

where δ2(θ, ϕ) denotes the Dirac delta function in spherical coordinates.

Solving the above equations leads to an analytic solution
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J = 2fl tanh(L/l), (C.17)

ĉ1(r, θ) =
f

βR2

tanh(L/l)

π

∞∑
n=0

(2n+ 1)
in(r/l)

i′n(R/l)
pn(θ)

+
f

πw
√
βD

i0(r/l)

i′0(R/l)
, (C.18)

ĉ2(x) =
2f

β
− 2f

β

ex/l

1 + e2L/l
− 2f

β

e(2L−x)/l

1 + e2L/l
. (C.19)

Comparing the coefficients of ĉ1,2 and Ĉ1,2 through Eqn.(C.10, C.11), we

find

Â0 = − F

βw

1

1 + e2L/l
, (C.20)

B̂m = (2m+ 1)
πwF

βR2
tanh(L/l) + o(w2),

m = 0, 1, 2, ... (C.21)

Therefore, we can obtain an approximate form for the concentration in the

soma

Ĉ1(r, θ) =
πwF

βR2
tanh(L/l)

∞∑
n=0

(2n+ 1)
in(r/l)

i′n(R/l)
pn(cos θ)

+
F

2
√
βD

∞∑
n=1

[pn+1(cos θ0)

− pn−1(cos θ0)]
in(r/l)

i′n(R/l)
pn(cos θ)

+
F√
βD

1 + cos θ0

2

i0(r/l)

i′0(R/l)
+ o(w2), (C.22)

and in the dendrite

Ĉ2(x, 0) =
F√
βD

cosh(x/l)

sinh(L/l)
+

F√
βD

1

I ′0(w/l)

− F

βw

cosh((L− x)/l)

cosh(L/l)
+ o(

1

w
). (C.23)
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Furthermore the gradient at the junction reads in this limit

∂Ĉ2(0, 0)

∂x
=

F

w
√
βD

tanh(L/l) + o(
1

w
), (C.24)

similar in form to the two dimensional case.



Appendix D

Calculation of mutual information

D.1 External Mutual Information

We start with the definition of the mutual information for two continuous

random variables U and V [54]:

I(U ;V ) =

∫
p(u, v) log

p(u, v)

p(u)p(v)
dudv (D.1)

where p(u, v) is the joint probability density function of U and V and where

p(u) and p(v) are the marginal probability density functions of U and V respec-

tively. It can be shown that I(U ;V ) ≥ 0 and that I(U ;V ) = 0 if U and V are

independent random variables. The mutual information can also be expressed in

terms of the differential entropy for U and V , H(U) and H(U), and the condi-

tional differential entropy H(U |V ): I(U ;V ) = I(V ;U) = H(U)−H(U |V ), where

the entropies can be calculated as

H(U) = −
∫
p(u) log p(u)du (D.2)

H(U |V ) = −
∫
p(u, v) log p(u|v)dudv (D.3)

Finally, if U is a n-dimensional vector with density function p(u1, · · · , un),

then the differential entropy for U can be expressed as

80
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H(U) = −p(u1, ..., un) log p(u1, ..., un)du1 · · · dun (D.4)

with equivalent expression for H(V ) and H(U |V ).

To derive an expression for the external mutual information between the

direction of the gradient θs and the resulting distribution of bound receptors Y ,

I(Y ; θs), we take a circular disk-shaped cell with diameter L and divide the mem-

brane in n sectors θi, i ∈ {1, 2, · · · , n}. We assume that receptors in each sector

interact independently and the fraction of bound receptors on the membrane is a

n-dimensional vector Y = (y1, y2, · · · , yn)T , with each element yi is the binding

fraction at sector i. We will assume that the cells are unpolarized, i.e., they are

newly introduced to a gradient and have no prior asymmetry. Thus, the gradient

angle θs is uniformly distributed and

p(θs) =
1

2π
, (D.5)

The remaining probability density functions depends on the shape of the

chemoattractant profile.

D.1.1 Exponential Gradient

In our experiments, an exponential gradient of the chemoattractant is pro-

duced by microfluidic device such that difference in concentration across a fixed

length is proportional to the local concentration: Clocal(x) = C0e
p
L
x, where p

is the gradient steepness. Thus, the concentration in the vicinity of sector θi,

i ∈ {1, 2, · · · , n}, can be expressed as

Ci = C0 · e−p cos(θi−θs)/2. (D.6)

During the experiments, the cells are exposed to a steady state gradient and

we can assume that the ligand binding has reached equilibrium. Thus, given the

gradient direction θs, the conditional probability distribution of binding fraction

yi at sector i is normal [64] with mean
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µi(θs) =
Ci

Kd + Ci
, (D.7)

and variance

σ2
i (θs) =

KdCi
Ni(Kd + Ci)2

, (D.8)

where Kd is the ligand-receptor binding dissociation constant and Ni is the

number of receptor in sector i. Therefore, the conditional probability distribution

of binding fraction vector Y is n-dimensional normal distribution Nn(µ,K). Since

we assumed that the sectors are independent, the mean vector is

µ(θs) = (µ1, · · · , µn)T , (D.9)

and the covariance matrix is

K(θs) =


σ2
i 0 0

0
. . . 0

0 0 σ2
n

 (D.10)

It follows that

p(Y |θs) =
1

(
√

2π)n|K(θs)|
1
2

exp[−1

2
(Y − µ(θs))

TK−1(Y − µ(θs))]. (D.11)

By Bayes Theorem, p(Y, θs) and p(Y ) can be calculated as follows

p(Y, θs) = p(θs)p(Y |θs), (D.12)

p(Y ) =

∫
p(Y |θs)p(θs)dθs. (D.13)

We can now derive expressions for the conditional entropy
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H(Y |θs) = −
∫ ∫

p(Y, θs) log p(Y |θs)dY dθs (D.14)

=

∫
p(θs)[−

∫
p(Y |θs) log p(Y |θs)dY ]dθs (D.15)

=

∫
p(θs)[

1

2
log[(2πe)n|K(θs)|]dθs (D.16)

=
1

2
log(2πe)n +

1

2π

∫
log |K(θs)|

1
2dθs (D.17)

=
1

2
log(2πe)n +

1

2π

∫
1

2
log

n∏
i=1

σ2
i dθs, (D.18)

where the derivation of Eq.D.16 can be found in Ref. [54]. Furthermore,

the marginal entropy can be found as:

H(Y ) = −
∫
p(Y ) log p(Y )dY (D.19)

= −
∫ ∫

p(θs)p(Y |θs) log[

∫
p(Y |θ′s)p(θ′s)dθ′s]dY dθs (D.20)

= − 1

2π

∫ ∫
p(Y |θs) log f(Y )dY dθs + log 2π, (D.21)

where

f(Y ) =

∫
p(Y |θs)dθs (D.22)

=

∫
1

(
√

2π)n
n∏
i=1

σi(θs)

n∏
i=1

exp[−(yi − µi(θs))2

2σ2
i (θs)

]dθs. (D.23)

These equations simplify for the case of a shallow gradient, i.e. p/L << 1.

The mean binding fraction in each sector can then be expanded in powers of p as

µi(θs) =
C0 · e−p cos(θi−θs)/2

Kd + C0 · e−p cos(θi−θs)/2
(D.24)

=
C0

Kd + C0

− C0Kd

(Kd + C0)2
cos(θi − θs)p (D.25)

−C0Kd(C0 −Kd)

2(Kd + C0)3
(cos(θi − θs)p)2 + o(p3), (D.26)
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The sector variance can also be simplified by noting the factor Ni(>> 1) in

the denominator of Eq.D.8. Thus, the dependence on p is weaker than the mean

dependence on p and, for simplicity, we can treat σ2
i (θs) be independent of θs:

σ2
i (θs) = σ2

i . This leads to a simplification of Eq.D.22:

f(Y ) =
1

(
√

2π)n
n∏
i=1

σi

∫ n∏
i=1

exp[−(yi − µi(θs))2

2σ2
i

]dθs. (D.27)

Next, we expand (yi − µi(θs))2 in terms of powers of p:

(yi−µi(θs))2 = A2
i +2AiB ·cos(θi−θs)p+B(Aib+B)(cos(θi−θs)p)2+o(p3) (D.28)

where

Ai = yi −
C0

Kd + C0

, (D.29)

B =
C0Kd

(Kd + C0)2
, (D.30)

b =
C0 −Kd

Kd + C0

. (D.31)

Thus we can expand
n∏
i=1

exp[− (yi−µi(θs))2
2σ2
i

] in terms of powers of p:

n∏
i=1

exp[−(yi − µi(θs))2

2σ2
i

] = [
n∏
i=1

exp(− A2
i

2σ2
i

)][1−
n∑
i=1

AiB

σ2
i

cos(θi − θs)p

+
1

2

n∑
i=1

(
A2
iB

2

σ4
i

− B(B + Aib)

σ2
i

)(cos(θi − θs)p)2

+
1

2

∑
i 6=j

AiAjB
2

σ2
i σ

2
j

cos(θi − θs) cos(θj − θs)p2

+o(p3)]. (D.32)

After performing the integration, we find
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f(Y ) =

n∏
i=1

exp(− A2
i

2σ2
i
)

(
√

2π)n
n∏
i=1

σi

{2π +
π

2
p2[

n∑
i=1

(
A2
iB

2

σ4
i

− B(B + Aib)

σ2
i

)

+
∑
i 6=j

AiAjB
2

σ2
i σ

2
j

cos(θi − θj)] + o(p3)},

which gives

log f(Y ) = log 2π − 1

2
log(2π)n − 1

2
log

n∏
i=1

σ2
i −

n∑
i=1

A2
i

2σ2
i

+

[
n∑
i=1

(
A2
iB

2

σ4
i

− B(B + Aib)

σ2
i

) +
∑
i 6=j

AiAjB
2

σ2
i σ

2
j

cos(θi − θj)]
p2

4
+ o(p3).

As Eq.D.21 shows, an estimate of H(Y ) for small p, requires to calculate

the following equation:

〈log f(Y )〉 =

∫
p(Y |θs) log f(Y )dY

= log 2π − 1

2
log(2π)n − 1

2
log

n∏
i=1

σ2
i −

n∑
i=1

〈A2
i 〉

2σ2
i

+[
n∑
i=1

(
B2 〈A2

i 〉
σ4
i

− Bb 〈Ai〉
σ2
i

− B2

σ2
i

)

+
∑
i 6=j

B2 〈AiAj〉
σ2
i σ

2
j

cos(θi − θj)]
p2

4
+ o(p3), (D.33)

where

〈Ai〉 =

〈
yi −

C0

Kd + C0

〉
= µi −

C0

Kd + C0

= −B cos(θi − θs)p− bB(cos(θi − θs)p)2, (D.34)

〈
A2
i

〉
= σ2

i +B2(cos(θi − θs)p)2 + o(p3), (D.35)
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〈AiAj〉 = B2 cos(θi − θs) cos(θj − θs)p2 + o(p3). (D.36)

Thus,

〈log f(Y )〉 = log 2π − 1

2
log(2πe)n − 1

2
log

n∏
i=1

σ2
i −

B2p2

2

n∑
i=1

cos2(θi − θs)
σ2
i

+ o(p3).

By integrating 〈log f(Y )〉 over θs, we arrive at an estimate for H(Y ):

H(Y ) =
1

2
log(2πe)n +

1

2π

∫
1

2
log

n∏
i=1

σ2
i dθs +

B2p2

4

n∑
i=1

1

σ2
i

+ o(p3). (D.37)

Hence, for small p, the mutual information between Y and θs is

I(Y ; θs) = H(Y )−H(Y |θs)

=
B2p2

4

n∑
i=1

1

σ2
i

+ o(p3)

=
(KdC0p)

2

4(Kd + C0)4

n∑
i=1

1

σ2
i

+ o(p3). (D.38)

Following our assumption that σ2
i is independent of θi and that every sector

has the same number of receptors, we have

σ2
i ≈

nKdC0

N(Kd + C0)2
, (D.39)

where N is the total number of receptors on the membrane. Finally, we

arrive at the estimate for p << 1 for the external mutual information reported in

the main text:

I(Y ; θs) ≈
NKdC0p

2

4(Kd + C0)2
+ o(p3) (D.40)
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Iðθr; θsÞ ¼
ð ð

pðθsÞpðθrjθsÞlog pðθrjθsÞ
pðθrÞ dθsdθr [S58]

¼ log2πþ
ð
pðθrjθsÞlog pðθrjθsÞdθr [S59]

¼ log2π− hðΘrÞ; [S60]

where

hðΘrÞ ¼ −
ð
pðθrjθsÞlog pðθrjθsÞdθr [S61]

¼ −
ð
pðθrjθ0Þlog pðθrjθ0Þdθr; [S62]

where the last step can be taken because θs is uniformly dis-
tributed and can be chosen to be equal to the gradient direction
in the experiment, θ0.
A complication in our analysis is that h(Θr) is defined for

a continuous probability distribution p(θr | θ0) whereas the results
of the experiments are a set of discrete data. Thus, to calculate
the probability distribution, we divide the range θr (i.e., [0, 2π])
into m bins of length Δ ¼ 2π

m and compute the number of angles
in each bin, Nj, normalized by the total number of data points.
Then we can calculate

hðΘΔ
r Þ ¼ − ∑

m

j¼1
NjlogNj; [S63]

which can be shown to converge to the continuous quantity (1)

hðΘΔ
r Þ þ logΔ→hðΘrÞ as Δ→0; [S64]

leading to

Iðθr; θsÞ ¼ ∑
m

j¼1
Nj logNj þ logm as m→∞: [S65]

In reality, of course, we cannot make m arbitrarily large due to
the limited size of the data set. To circumvent this problem, we
use a method proposed by Shimazaki and Shinomoto (6) to se-
lect the optimal number of bins m*. This method uses a cost
function that is minimized for the optimal m* (for details see
ref. 6). This optimal number of bins needs to be computed for
each data set, after which we can calculate the discrete entropy
h(Θr

Δ) for finite-sized data sets. An example of this procedure is
shown in Fig. S3, where we plot the value of the cost function as
a function of the number of bins for a representative data set.
For this particular data set, the cost function has a minimum at
m* = 30. Therefore, an estimate of the mutual information is

Iðθr; θsÞ ¼ ∑
m�

j¼1
Nj logNj þ logm�: [S66]

Finally, an estimate of the error in the above procedure is pro-
vided in ref. 7 and is given by

m� − 1
2Nd

; [S67]

which depends on both the number of bins and Nd, the number of
data points, ranging from 1,000 to 6,000 in our case.

1. Cover TM, Thomas JA (2005) Elements of Information Theory (Wiley, New York), 2nd
Ed.

2. Lauffenburger DA, Linderman JL (1993) Receptors (Oxford Univ Press, London).
3. Jin T, Zhang N, Long Y, Parent CA, Devreotes PN (2000) Localization of the g protein

betagamma complex in living cells during chemotaxis. Science 287:1034–1036.
4. Ueda M, Sako Y, Tanaka T, Devreotes PN, Yanagida T (2001) Single-molecule analysis

of chemotactic singaling in Dictyostelium cells. Science 294:864–867.

5. Rappel WJ, Levine H (2008) Receptor noise limitations on chemotactic sensing. Proc
Natl Acad Sci USA 105:19270–19275.

6. Shimazaki H, Shinomoto S (2007) A method for selecting the bin size of a time
histogram. Neural Comput 19:1503–1527.

7. Roulston MS (1999) Estimating the errors on measured entropy and mutual
information. Physica D 125:285–294.

Fig. S1. The external mutual information as a function of the number of sectors for two different values of the gradient and local concentration. The pa-
rameters used are Kd = 30 nM and total number of receptors 70,000.

Fuller et al. www.pnas.org/cgi/content/short/0911178107 4 of 5

Figure D.1: The external mutual information as a function of the number of
sectors for two different values of the gradient and local concentration. The pa-
rameters used are Kd = 30nM and total number of receptors 70,000.

D.1.2 Linear Gradient

A similar analysis can be carried out for linear gradients in which the con-

centration profile has the form C(x) = C0 + ∇Cx where the gradient ∇C is

constant throughout the device. Thus, the concentration of the chemoattractant

in the vicinity of each sector is

Ci = C0 +R∇C cos(θi − θs). (D.41)

Following the same general procedure as for the exponential gradient, we

can derive an expression for the external mutual information I(Y ; θs) for small

gradients (R · ∇C << Kd + C0:

I(Y ; θs) ≈
NKd

4C0

(
R · ∇C
Kd + C0

)2 + o((
R · ∇C
Kd + C0

)3). (D.42)

D.1.3 Comparison between the numerical and analytical

results

I(Y ; θs) for exponential and linear gradient can only be approximated by

Eq.D.40 and Eq.D.42 respectively when the gradient steepness is very small. For
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steeper gradients, we can calculate I(Y ; θs) numerically. The approximate equation

derived above suggests that the mutual information may be independent of n as

long as n is large enough to make the integral approximation reliable. To verify

this, we have numerically evaluated the external mutual information as a function

of n (Fig. D.1). The figure shows that the mutual information converges quickly

when n > 10. Thus, in the following simulations the cell membrane is divided into

n = 36, with a total membrane receptor number of N = 70000, Kd = 30nM and

L = 10µm. Importantly, just as the small p limit expression, the full numerical

calculations peaks at Clocal = Kd.

D.2 External and Internal Mutual Information

We will now derive an expression for the mutual information between the

gradient direction and the motility direction θr, I(θr, θs. Since there is no internal

bias during the downstream signaling process, the conditional probability p(θr|θs)
only depends on θr − θs and the probability of the movement direction θr the cell

will choose is identical, because the gradient angle θs is uniformly distributed:

p(θr) =

∫
p(θr|θs)p(θs)dθs =

1

2π
(D.43)

and

I(θr, θs) =

∫ ∫
p(θs)p(θr|θs) log

p(θr|θs)
p(θr)

dθsdθr (D.44)

= log 2π +

∫
p(θr|θs) log p(θr|θs)dθr (D.45)

= log 2π − h(Θr) (D.46)

where

h(Θr) = −
∫
p(θr|θs) log p(θr|θs)dθr (D.47)

= −
∫
p(θr|θ0) log p(θr|θ0)dθr (D.48)
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Fig. S2. The external mutual information as a function of the semimajor axis of the elliptical cell for different values of the gradient steepness and local
concentration. The semimajor axis has been normalized by the radius of the circular cell (R0 = 5 μm), whereas the mutual information is normalized by the
circular mutual information. The parameters used were Kd = 30 nM and total number of receptors 70,000.
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Fig. S3. The cost function as a function of the number of bins. The asterisk denotes the bin number (m* = 30) that minimizes the cost function and that is
selected to compute the mutual information for this particular value of the gradient p = 7.5e – 2 and mean background concentration 8 nM.
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Figure D.2: The cost function as a function of the number of bins. The asterisk
denotes the bin number (m∗ = 30) that minimizes the cost function and that is
selected to compute the mutual information for this particular value of the gradient
p = 7.5e− 2 and mean background concentration 8 nM.

where θ0 is the gradient direction in experiment. The last step was carried

out since p(θr|θs) only depends on θr − θs. We choose θs = θ0 because we can

calculate each set of p(θr|θ0) for different gradients from the experiments.

A complication in our analysis is that h(Θr) is defined for a continuous

probability distribution p(θr|θ0) while the results of the experiments are a set of

discrete data. Thus, in order to calculate the probability distribution, we divide

the range θr (i.e. [0, 2π]) into m bins of length ∆ = 2π
m

and compute the number of

angles in each bin Pj. Then, for an infinite amount of data points, we can calculate

h(Θ∆
r )∞ = −

m∑
j=1

P∞j logP∞j (D.49)

which can be shown to converge to the continuous quantity [54]

h(Θ∆
r )∞ + log ∆→ h(Θr) as ∆→ 0 (D.50)

leading to

I(θr; θs) =
m∑
j=1

P∞j logP∞j + logm as m→∞ (D.51)

In reality, of course, we cannot make m arbitrarily large due to the limited
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size of the data set. To circumvent this problem, we use a method proposed

by Shimazaki and Shinomoto [60] to select the optimal number of bins m. This

method uses a cost function defined that is minimized for the optimal m. This

optimal number of bins needs to be computed for each data set, after which we

can calculate the discrete entropy h(Θ∆
r ) for finite sized data sets as An example of

this procedure is shown in Fig. D.2 where we plot the value of the cost function as

a function of the number of bins for a representative data set. For this particular

data set, the cost function has a clear minimum at m = m∗.

h(Θ∆
r ) = −

m∑
j=1

Pj logPj. (D.52)

An estimate of the error in the above procedure was provided in Ref. [65]

and is given by

m∗ − 1

2Nd

(D.53)

where Nd denotes the number of data points. In conclusion, the external

and internal mutual information I(θr; θs) can be estimated by

I(θr; θs) =
m∑
j=1

Pj logPj + logm∗ (D.54)
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