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The hippocampus has long been known to play a central role in various behavioral and cognitive 

functions. Despite extensive behavioral, anatomical studies postulating roles of the hippocampus 

and its sub-regions, the underlying dynamics of the neural circuits responsible for region-specific 

roles in the hippocampus remains poorly understood. In addition, the communication between the 

hippocampal sub-regions also plays a major role in learning and memory but has not been explored 

as much due to the lack of access to the individual axons. This paper seeks to understand the role 

of slow waves (4-100 Hz) known as Local Field Potentials (LFP) in the hippocampal sub-regions, 

their dynamics and role in information transmission to bind cell assemblies through synchrony by 

timed-bursts and individual spikes, by space (EC, DG, CA3, CA1) in the hippocampal sub-regions 

and by frequency   (4-11 Hz theta and 30-100 Hz gamma bands). We used a four-chambered 

polydimethysiloxane (PDMS) micro-tunnel device over a multi-electrode array (MEA) with the 

engineered living reconstruction of the hippocampal sub-regions. The 5 x 10 µm micro-tunnels 

between each chamber allow axonal growth and inhibit the migration of 15 µm diameter cell 

bodies or traversal by dendrites providing insight into the role of axons in inter-regional 
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communication. A significant advantage of our system is the ability to separate activity in the 

axons in the tunnels from the computations of the neural cells in the wells of the 4-chambered 

device. Functional connectivity within hippocampal sub-regions and the axonal tunnels helped in 

ascertaining the role of LFP in information processing and transmission. A computationally simple 

and linear method, Cross-Correlation of the theta power and the cross correlation of the gamma 

power was used to estimate synchrony of LFP.  Comparison between the theta-theta and gamma-

gamma LPF’s from the different sub-regions indicates that the CA3 has the strongest correlation. 

CA3 sub-region is characterized by recurrent network wiring pattern and such strong correlation 

can be associated with this kind of network pattern. The spatial distribution of the theta and gamma 

correlation between electrodes was estimated by computing the correlation as a function of the 

inter-electrode distance within each sub-region. A common relationship of LFP power with the 

inverse square of distance during bursting events suggested LFP transmission through synapses of 

branching dendritic trees in the plane of the network.  These first measures of LFP’s in axons 

suggests axonal transmission of slow waves, independent of spikes and synapses. Understanding 

these network properties within the hippocampus could provide important information for steps in 

memory formation, neuromorphic computing and artificial intelligence systems in addition to 

better detection of hippocampal diseases such as epilepsy and Alzheimer’s disease. 
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Chapter 1  

INTRODUCTION 

This chapter mainly focusses on the basics to understand the work done in this project 

beginning by understanding the hippocampal structure and its role in cognition and memory 

(section 1.1). The underlying neural dynamics that supports behavior of the subregions can be 

interpreted by understanding the Local field potential oscillations in each subregion of the 

hippocampus (section 1.2). Statistical dependence LFP between sub-regions and tunnels can be 

addressed by comprehending connectivity and its measures (section 1.3). Here, we propose that 

LFP synchrony indicates a potential interaction between the recorded sites and a possible 

mechanism to facilitate synaptic transmission and network-to network communication. We wanted 

to draw a comparison of the LFP synchrony in the different sub-regions of the hippocampus and 

how well each sub-region was correlated to the axonal information in the tunnels. This would 

allow us to more accurately determine the relationships of network communication to LFP 

synchrony in inter-network communication, which is achieved by axon isolation in the tunnels. To 

provide more information on the spatial dependence of LFP synchrony, a distance cross-

correlation based approach was used to determine the relationship between the correlation of the 

LFP oscillations with increase in inter-electrode distance. In this paper, we report 

electrophysiological, exploratory data analysis for LFP synchrony and visual evidence to show the 

association of the LFP oscillations to bursts of spikes in the hippocampal sub-regions and the 

axonal tunnels thereby suggesting a possible role of slow waves in binding of cell assemblies for 

information processing and transmission. 
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1.1 Hippocampus and its role, an overview 

Located deep within the medial temporal lobe of the brain is a sea horse shaped structure 

namely the hippocampus. The hippocampus has been a leading area of research among the 

researchers since the 1957 case of H.M. who lost his memory after surgical removal of the 

hippocampus. Anatomical studies clearly delineate at least 3 subregions of the hippocampus that 

receive inputs from the entorhinal cortex (EC): Dentate Gyrus (DG), CA3 and CA1[1]. The 

Hippocampal region which includes the CA and DG sub-regions along with adjacent EC is 

essential for declarative memory[2] as illustrated in Fig 1.1(a). This system of the Hippocampus 

and EC are principally concerned with memory and its consolidation, in addition to operating 

maintaining and establishing long term memories. The hippocampus may have a special role in 

tasks that depend on relating or combining information from multiple sources, such as tasks that 

ask about specific events (episodic memory) or associative memory tasks that require different 

elements to be remembered as a pair (e.g., a name and a face) or what in the context of when and 

where[2].Behavioral studies attempt to decipher the various functions of the hippocampus as a 

whole. A number of studies including functional imaging and studies on animals characterizing 

the information encoded by single neurons have revealed the roles of hippocampus and para-

hippocampal regions in memory[3], [4]. 
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Figure 1.1: Reverse engineered sub-regions of the rat hippocampal network reconstructed in a four chambered device 

with axonal connectivity via micro-tunnels over a micro-electrode array (200 µm electrode spacing). (a) Entorhinal 

cortex (EC) and Hippocampal subregions (DG, CA3, CA1) that were co cultured on the 4 chambered PDMS device ; 

(b) Layout (Zoom in) of the four chambered reconstruction of the hippocampal sub-regions on a Multi-electrode array 

(MEA) showing micro-tunnel connectivity between the different sub-regions;(c) Micro-Tunnels between the sub-

regions highlighted-there are 2 electrodes per tunnel; (d)The 4 chambered PDMS device on multielectrode array to 

measure the properties of the network.  
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Do all the sub-regions of the hippocampus process the same kind of information? How are 

the structural differences between the subregions associated with the tasks performed by them? In 

order to be able to answer such questions electrophysiological, functional imaging studies are 

carried out. Originally many memory tests were performed to assess the hippocampal function of 

the brain in contrast to tests that were sensitive to the other brain regions, however now these 

studies have differentiated the roles played by each individual sub-region. Studies have shown that 

the hippocampal regions differentially associate with standardized memory tests[5].Recent 

findings supports the idea that each individual subregion is associated with distinct cognitive and 

computational behavior[6]–[8].The roles of the different regions range from pattern separation, 

pattern completion to memory recall, sparse coding and information storage. Episodic memories 

are the memory of experience or events that took place at time, location with other information 

like associated emotions and circumstantial knowledge. An important property of such episodic 

memory is the retrieval of information. The ability to recall a whole memory from a partial cue is 

an important property of episodic memory and is referred to as completion[9]. Proposed roles of 

CA3 include the formation and storage of these episodic memory as well as their recall in pattern 

completion. The auto-association nature of the CA3 networks enables the retrieval of the whole 

information in response to a small cue[6], [9]. CA1 is considered as the end sub-region of the 

hippocampus, most of the output to the neocortex is from CA1, thus it can also be called the output 

sub-region of the hippocampus. In addition, there are a number of roles associated with the CA1 

region of the hippocampus namely parallel processing of information, novelty detection, 

enhancement and distribution of information to the other regions of the cortex, retrieval of remote 

episodic memory and are also considered important for autonoetic(self-knowing)- which gives rise 

to remembering in the sense of self-recollection of previous events at which on was present[10]–
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[14].DG being the first site to receive information form the EC can be considered to a play a major 

role in production of episodic memories[15]. Another most important property of episodic 

memories is its ability of pattern separation which allows for discrimination between similar inputs 

thereby enabling to avoid overwriting information similar to existing information and preventing 

catastrophic interference[16]. Electrophysiological studies have shown the role of DG in pattern 

separation[8].In spite of such extensive behavioral, anatomical studies postulating the roles of 

hippocampus and its sub-regions, the underlying dynamics of the neural circuits responsible for 

these roles of the different regions and the hippocampus remains poorly understood. 

Understanding these algorithms could provide important information for neuromorphic computing 

and artificial intelligence systems in addition to better detection of hippocampal diseases such as 

epilepsy and Alzheimer’s disease, for example. 

 

1.2 Network patterns and underlying dynamics 

Neural oscillations are pervasive across several regions of the cortex and the hippocampus. 

A clear understanding of the oscillations is thus important for the understanding of the complex 

behaviors and functions of the different sub-regions of the hippocampus as discussed in (section 

1.1). The oscillations are postulated to regulate the encoding and retrieval of information in the 

hippocampus. The neural oscillations within the hippocampus can either be the information itself 

or assist in the flow of spiking information within the neural circuits of the hippocampus, or an 

artifact of the spiking[17]. Cognitive functions requires dynamic coordination of different groups 

of the neurons[18]. Synchronization of the neural oscillations-a well-known mechanism play a 

major role in the aforementioned function of dynamic coordination. The hippocampal local field 

potential (LFP) exhibits three major types of rhythms, theta (~4-11Hz), sharp wave-ripples  
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(~110-250 Hz ripples superimposed on ~0.01-3 Hz sharp waves) and gamma(~25-100Hz)[19]. 

These rhythms defined by their frequencies, have behavioral correlates in several species including 

rats and humans, and have been proposed to perform distinct functions in hippocampal memory 

processing. We know limited about the origins of these oscillations, the mechanism and the role 

of these oscillations in connection with the overall behavior of the different sub-regions of the 

hippocampus. 

 

Gamma Oscillations 

The high frequency of the gamma oscillations (30-300 Hz) supports its function during 

behaviors which require high level of coordination on a time scale beyond perception. Such fast 

coordination is required for various activities such a selection of inputs, grouping of neurons and 

retrieving memories[18], [20]. Gamma oscillations occur in bursts at particular times within the 

theta cycle[21], [22] and have been proposed to select particular cell assemblies for processing at 

those times.[18], [23].  Current source density analyses have supported the evidence of the 

presence of two independent hippocampal gamma generators in EC and CA3.  Experiments on 

guinea-pigs conducted by S.Charpak et al. [24] also supports the presence of individual gamma 

generators in the entorhinal cortex. In addition, studies on animals with lesion in EC have shown 

the more apparent presence of slower gamma oscillations (30-100 Hz) suggesting multiple origins 

of gamma oscillations. Gamma generators were independent of each other but also coupled at 

certain times suggested by recent study[25]. Routing of information was thus a hypothesized 

function of the gamma oscillations, it provides the temporal segregation of information from 

different sources[25]. Pascal Fries[27] suggested the hypothesis that synchronized gamma 

oscillations facilitate information transmission between the sending and the receiving neurons. 
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Colgin et al. [18] were able to illustrate the presence of distinct fast (~ 65-140 Hz) and slow (~ 25-

50Hz) gamma oscillations in the CA1 region and how the 2 components of gamma oscillations 

differentially coupled to inputs from CA3 and EC. In addition to information transmission and 

routing, memory encoding is also an important function of the gamma oscillations. Intracranial 

studies on epilepsy patients demonstrated that the gamma oscillations were able to predict 

encoding of the new verbal memories[26]. Another study conducted in the macaque hippocampal 

formation suggested an increase in neural synchronization in the gamma band reflecting enhanced 

coordination among the neurons, facilitating memory encoding[27].  Memory retrieval typically 

involving the CA3 and CA1 regions of the hippocampus. Gamma oscillations proposed to serve 

as the underlying physiological mechanism in retrieval of information [28]. The increase in gamma 

power and coherence at the CA3-CA1 interface exhibit dynamic coupling of the hippocampal 

networks depending on the behavioral demands. Thus, these studies discussed, demonstrate a 

range of critical functions of the gamma oscillations, however the exact source of these coupling 

and synchronization functions is unknown. A two-dimensional neuronal network may reduce 

complexity to be better able to decipher specific roles for gamma oscillations in synchronizing 

spiking for stronger inputs or directing those inputs to specific subregions. 

 

Theta Oscillations 

Theta oscillations are most  regular in hippocampal CA1 regions, but also found in DG, 

CA3, Entorhinal cortex(EC) and several other cortical structures[28], [29].These structures are 

thus considered the main current generators of theta rhythm[30].Theta waves in all cortical targets 

were abolished on inactivation of medial septum-diagonal band of Broca (MS-DBB) has suggested 

MS-DBB to be the an ultimate rhythm generator of theta oscillations[31]. However the exact 
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mechanism of these oscillatory patterns remains poorly understood. The Hippocampal theta 

rhythm is associated with numerous functions ranging from memory and spatial behavior, rapid 

eye movement sleep, anxiety[32]. EEG data analyzed showed changes in theta power band 

supporting the hypothesis that the episodic memory was indeed primarily reflected in the theta 

band[33]. Animals studies also showed strong evidence supporting presence of theta oscillations 

in hippocampus[34]. Hippocampal theta rhythm correlates with learning and memory functions in 

rats[35]. Notably, theta oscillations play a major role in hippocampal information processing in 

both humans and animals including timing of neuronal spiking thereby suggesting an association 

or intervention of LFP in causing spike occurrence and other neuronal computations [36]. Stark et 

al.,[37] showed Firing rates and rate modulations of individual neurons, and multineuronal 

sequences of pyramidal cell and interneuron spiking, were correlated during theta oscillations, 

spontaneous ripples, and synthetic ripples. However there exists disconnect between research in 

the rodents versus other species where there is no evidence of prominent theta oscillations[38]. 

Theta oscillations also play a major in sensory input processing[34]. Several investigations also 

linked hippocampal theta oscillations to spatial navigation which is also considered as type of 

sensory information processing[35], [39]. Stronger than these associations, Caplan et al [40] 

correlated theta amplitude to the level of difficulty of a task. Thus these signals are of interest due 

to its relation to various aspects of cognition and behavior. Due to the existence of diverse range 

of functions of theta oscillations, it is important to understand role of LFPs to understand the 

functional and behavioral computations of the hippocampus as whole and its sub-regions. An 

important aspect is to understand the role of theta oscillations in inter-regional communication and 

how it establishes connections across the different neuronal networks.  Future studies will also 

focus on revealing association of LFP rhythm and the output of active single cells-action potentials.  
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              Future studies employing hippocampal-dependent tests and observing the flow of 

information will be essential for dissociating the contributions of gamma/theta oscillations to 

various types of memory processing. Results of future studies are likely to impact theories of 

memory operations such encoding, retrieval and storage in the hippocampus and may lead to novel 

and precise development of therapies to diseases due to aberrant development of connections 

between the networks of neurons. 

 

1.3 Connectivity and its measures 

Brain, a complex organ is made of numerous functional units that connect and 

communicate with each other. These units make anatomical, functional or effective connections 

with the other units within the nervous system. The units can be individual neurons, populations 

or different brain regions. Understanding the connectivity thus helps to understand the role of 

individual units in physiology, cognition, pathology, behavior and various other conditions. What 

are the different levels and modes of brain connectivity? What are the different methods in 

existence to analyze this connectivity?  

 

1.3.1 Types of connectivity: 

Neural connectivity gives us the knowledge of how the neuronal units of the brain are 

connected and understanding the neural connectivity also helps determine the functional properties 

of the neurons and the connections they form within the brain. The different levels of connectivity 

and the measurement scales are discussed in section 3.2. This section focuses on the fundamental 

distinction between connectivity and the different measures/metrics to quantify connectivity 
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1. Anatomical Connectivity: It refers to physical or structural connections between the 

neurons and dependent on the morphology of the neuronal elements. 

2. Functional Connectivity: It describes the patterns of statistical dependence among neuronal 

elements. 

3. Effective Connectivity: It refers to a combination of anatomical and functional 

connectivity. Combined understanding of the physical connection and the level of 

connection between the neuronal networks is important to understand the overall effective 

relationship between them. 

 

Brain connectivity can be studied and analyzed using a broad range of network analysis. 

The functional and effective connectivity estimation can be achieved through a number of methods 

including pattern recognition[41], [42], entropy estimation, model fitting[43], [44] and data 

mining[45]. Structural connectivity on the other hand are more likely to be clearly elucidated using 

invasive tracing studies. Functional connectivity being a more statistical concept unlike the other 

2 types of connectivity, explains the type of interactions between any 2 or more types of neuronal 

elements or population at any given time thereby explaining role of the neuronal elements in 

computational and behavioral interactions between the different networks of the brain. 

Understanding the role of neural oscillations and their interaction between the population of 

neurons will help determine the functional role of neurons and networks in information processing 

and communication between the different regions of the brain. Several methods, such as coherency 

[46], mutual information[47], partial-directed coherence[48] and phase synchronization [49], [50] 

have been used to measure the interactions among different areas of the brain to establish a 

network. 
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1.3.2 Measures of connectivity 

Functional connectivity can be analyzed by linear statistical analysis using Pearson’s correlation 

coefficient and cross-correlation analysis. 

Cross-Correlation is a relatively simple and useful technique to measure the statistical 

dependence between two time series. It not only provides measures of similarity but also the time 

delay in similarity between the two signals. The time delay provides information on the lag 

between the two signals when there is maximum similarity. Cross Correlation as a function of 

delay 𝜏 can be found from equation 1, where f and g represent the time series signals. 

                                                  𝜌𝑓𝑔(𝜏) = ∫ 𝑓(𝑡)𝑔(𝑡 + 𝜏)
∞

−∞
                                                (1) 

In MATLAB, the cross correlation between two time series sequences can be obtained using the 

in-built function ‘XCORR’ 

                                       [r,lags]=xcorr(x,y,maxlag, scaleopt)                              (2) 

The xcorr function from equation 2 returns the cross correlation (r) of the time series signals x, y 

and also the lag (lags) at which the cross-correlations are computed. Maximum lag(maxlag), 

specified as an integer scalar to set the range over which delays are determined from -

maxlag to maxlag. If you do not specify maxlag, the lag range equals 2N – 1, where N is the 

greater of the lengths of x and y. Finally, setting the scaleopt parameter to ‘coeff’ in the normalize 

property returns the correlation coefficient values(r) at each lag. Cross-correlation can help in 

identifying the directionality of functional connectivity and estimating lags between sites. The 

directionality of information transmission along with the lag between the sub-regions of the can 

be estimated using cross-correlation. 

 

https://www.mathworks.com/help/matlab/ref/xcorr.html#mw_8adef77a-3f62-4b27-a3ce-7fe41e1ba9fd
https://www.mathworks.com/help/matlab/ref/xcorr.html#mw_8227cab7-cbc2-462a-8605-43ed6c5e3fb2
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Pearson’s correlation coefficient is another linear measure of correlation between 2 signals. 

Unlike the Cross-correlation measures, Pearson’s correlation does not consider the lag between 

the two signals. It is mathematically defined as the covariance between the signals multiplied by 

the inverse product of their standard deviations. 

                                                     𝜌𝑋,𝑌 =  
𝐶𝑂𝑉(𝑋,𝑌)

𝜎𝑋𝜎𝑌
                                                  (3) 

In equation 3, X and Y are two time series signals of interest. 𝜌𝑋,𝑌 is the Pearson’s correlation 

coefficient. COV(X,Y) refers to the Covariance between X and Y. 𝜎𝑋 refers to the standard 

deviation of X and 𝜎𝑌 refers to the standard deviation of Y. The value of the correlation coefficient 

ranges between -1 to +1 with -1 indicating a negative linear correlation between X and Y, +1 

indicates a positive linear relationship between X and Y, 0 indicates no linear correlation between 

X and Y. 

In addition to the aforementioned methods, functional connectivity can also be described 

using measures such as coherence and phase synchronization which are the frequency domain 

equivalents of the former methods. 

 

Fisher weighted average correlation coefficient  

Because the value of the correlation coefficient is not a linear function of the magnitude of 

the relation between the variables, correlation coefficients cannot simply be averaged. In such 

cases, it must be first converted into additive measures. I use the method of Fisher Weight to 

compute the average correlation coefficient throughout the analysis. The r to Z fisher 

transformations can be defined by (4)  

                  𝑍 =  
1

2
[𝑙𝑛(1 + 𝑟) − 𝑙𝑛(1 − 𝑟)] =

1

2
[

𝑙𝑛(1+𝑟)

𝑙𝑛(1−𝑟)
]                                                  (4) 
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According to Faller[75], an arithmetic mean can be computed after Z transformation. Fisher 

Weighted mean average is then obtained by re-arranging equation (5) 

                                   𝑟 =
𝑒2𝑧 −1

𝑒2𝑧+1
=

𝑒𝑧 −𝑒−𝑧 

𝑒𝑧 +𝑒−𝑧 
                                                                            (5) 

 

Coherence is a widely used mathematical method that quantifies the phase synchrony between a 

pair of measured signals. Measures of coherence includes both phase and amplitude 

synchronization. The magnitude of the squared coherence between two channel waveforms can be 

calculated as follows: 

                                          𝐶𝑥𝑦 =
|𝑃𝑥𝑦(𝑓)|

2

𝑃𝑥𝑥(𝑓)𝑃𝑦𝑦(𝑓)
                                                                  (6) 

 
Cxy corresponds to the magnitude of the squared coherence of the signals. The magnitude of the 

squared coherence estimate is a function of frequency with values between 0 and 1 and indicates 

how well x corresponds to y at each frequency. Equation 6 indicates that the coherence is measure 

of Power spectral density (PSD) of x (Pxx) and y (Pyy), cross-power spectral density 

(Pxy).  Coherence is an estimate of the consistency of relative amplitude and phase between signals 

detected in coils or electrodes within a set frequency band. Coherence is one mathematical method 

that can be used to determine if two or more brain regions, have similar neuronal oscillatory 

activity with each other. 

In this work, linear analysis methods discussed will be predominately used to understand 

the functional connectivity of LFP oscillations in the hippocampal sub-regions and the role of LFP 

synchrony in neuronal information processing and transmission. 
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Chapter 2 

MATERIALS AND METHODS 

2.1 Engineered neural circuits in vitro 

Information processing is dependent on the network’s ability to generate action potentials. 

Although investigations on individual neurons has continued for decades, quantification of inter-

regional communication between populations of neurons simultaneously at multiple locations has 

been limited recording methods. The 3-dimensional distribution of neurons in the brain makes 

access difficult for simultaneous multisite recording. Studying the neuronal structures, the factors 

affecting the communication and the behavior of the networks can be done using brain slices, 

animal behaviors as well as in vivo[52], [53]. However, engineered neural circuits could provide 

improvements in  access to the individual components of multiple neurons. Many methods have 

been used to develop neuronal cultures with defined connectivity patterns. In order to control the 

connectivity and to develop stable patterns, methods like caging neurons using physical 

barriers[54]and patterning rough surface coatings[55] continue to be investigated. Our lab has 

developed engineered neuronal circuit with defined connectivity patterns [56]. With the notion 

that re-engineering neural circuits will help in uncovering the various mechanisms of the 

underlying neuronal circuit, there has been a recent increase in the use of engineered neuronal 

networks to study the brain in vitro. Arseniy Gladkov et al. [57] developed a microfluidic devices 

with microchannels that couple 2 chambers with cultures neuron networks to analyze and compare 

neurite growth within the mirco-channels. Edwards D et al. [58] were able to demonstrate directed 

formation of electrically active and synaptically connected small circuits of neurons of 

hippocampus of adult rats through chemically engineered culture surfaces that gives  polarity to 

neuronal processes. Daniele Poli et al. [59] used a 2 chambered device with axonal connectivity 
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via tunnels to understand the process of encoding and decoding between the DG and CA3 regions 

of rat hippocampus. In this work, for the first time we use an engineered four chambered network 

to reverse engineer the hippocampal formation. This living neuron network of 4 hippocampal sub-

regions EC, DG, CA3, CA1 isolated from rat, cultured within a 4 chambered device with axonal 

connectivity via 5 x 10 x 400 µm micro-tunnels (Fig 1.1). Our model of the four sub-regions of 

the hippocampal formation helps evaluate specific information transmission in axons and circuitry 

within and between these sub-regions, allowing insight into the roles of slow waves in facilitating 

information transmission. The 5 x 10 µm micro-tunnels allow axonal growth and inhibit the 

migration of 15 µm diameter cell bodies or traversal by dendrites[60], [61] allowing insight into 

the role of axons in inter-regional communication. The procedure for a 2 chambered device has 

been described in Brewer et al. [62]. The same protocol was used for the development of the 4 

chambered devices used in this work. The hippocampus was removed from the neocortex of each 

hemisphere of postnatal day 3 rats before dissection of the sub-regions as described in short by 

Poli et al. [59]. Each hippocampal sub-region tissues were subjected to brief digestion in papain 

followed by trituration into a suspension of single cells. Tissues were plated in proportion to the 

anatomical density. 

 

2.2 Micro Electrode Arrays (MEAs) and Recordings 

Electrophysiology plays a vital role in understanding the varied behaviors of the different 

regions of the brain[64]. There are a wide range of recording techniques to capture these 

electrophysiological properties of the brain. However, it is important to know the advantages and 

the pitfalls of such systems to choose the most appropriate choice for analysis. What are MEAs 

and why are we interested in them? What is our spatial scale of interest and why? 
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The recording techniques are also classified according to spatial resolution into microscale, 

mesoscale and macroscale recordings. Different kinds of neurophysiological recordings contain 

comprehensive information pertaining to the connectivity between the brain regions at different 

scales. The microscale is focused towards the study of the individual neurons and their firing 

patterns. These allow the characterization of single cell behavior to stimuli. At the macroscale, 

fMRI, measures large-scale communication and the association of the different cortical regions of 

the brain. However, it is necessary to understand how the neurons behave as population in order 

to understand their role in communication between the different regions of the brain and as well 

the computational and behavioral of a group or a population of neuronal assemblies. Thus, 

recording of the local field potential at the mesoscopic scale bridges the gap between the 

microscale single neuron recording and macroscale whole cortical subregion analysis to study the 

behavior of a population of neuronal assemblies. 

 

MEAs (multi-electrode arrays) have made simultaneous recording from multiple neuronal 

assemblies possible, an important feature since hippocampal coding likely proceeds through cell 

assemblies rather than between single neurons [57]. The electrical interface of the MEA with the 

cultured neurons has made it useful to study neuronal cultures.  Cell patterning methods along with 

effective MEAs provides non-invasive and long-term recordings (5 mins in this work) 

simultaneously from multiple neurons[59]. They increase the yield of neurons per recording 

session and simultaneous recording from a population of neurons makes pairwise correlations 

easier[65]. MEAs measure the extracellular field potentials generated by the membrane currents 

including fast 1 ms action potentials and slower 10-1000 ms slow wave potentials.  
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To develop the 4 chambered compartment, poly-dimethyl-siloxane device was aligned 

over a  multielectrode array MEA120 (Multichannel Systems, Germany; ALA Instruments, USA)  

consisting of a 12 X 12 layout grid  sparing 6 electrodes in each corner, 120 recording electrodes 

with 4 internal reference electrodes was used to record the signals from the in-vitro hippocampal 

cell culture for this work. The spacing between the electrodes is 200 µm with an electrode diameter 

of 30 µm. This array thus made it possible to record simultaneously across the 4 chambers in 2D 

reducing the complexity of the brain network recordings (Fig 1.1). The unique design of the device 

also offers the prospects of measuring signals from both the somata and the axons. Activity from 

each multielectrode array was recorded at 25 kHz sampling frequency with 1100x amplification 

and a hardware filter of 1-3000 Hz. The recordings were made at 37oC under continuous flow of 

hydrated sterile 5% CO2, 9% O2 and balance N2 (Airgas custom, Santa Ana, CA, USA) over a 

Teflon film cover (ALA scientific) as suggested by Brewer et al. We waited 3-4 weeks for the 

robust development of the axons, dendrites and the synapses[67]. Five minutes of spontaneous 

activity was recorded using Multichannel System’s MCRack software and analyzed offline using 

MATLAB Scripts. 
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2.3 Signal Processing  

 

2.3.1 Local Field Potentials: 

For analysis of band-limited LFP oscillations, the signals were down sampled to 625 Hz 

from 25 kHz, lowpass filtered < 300 Hz. To extract specific LFP frequencies, signals were filtered 

using band-pass filters with cutoff frequencies 4-11 Hz (Theta) and 30-100 Hz (Gamma). As with 

connectivity measures computed over time, the main parameter to select is the length of the time 

segment used to compute the correlation coefficient. If the time segment is too long, transient 

changes in connectivity might not be detected, but if the time segment is too short, you may have 

too little data for robust correlation coefficient estimates. The time segment was selected so that at 

least four cycles of theta oscillations were included (1 s), and this number decreases with higher 

frequencies. To analyze the LFP, we segmented them into 1 sec intervals for theta oscillations and 

40 ms time segments for gamma oscillations after extraction of bursts and non-bursts segments 

obtained from burst detection algorithm discussed in section 2.3.2. LFP instantaneous phase and 

amplitude can be computed from the respective analytic signal via Hilbert transform. 

 

Filters and filtering data before applying Hilbert transform 

 

Filters generally serve two purposes (1) separation of signals that have been combined, and 

(2) restoration of signals that have been distorted in some way. Different types of filters are used 

in multiple applications ranging from online to offline, from analog to digital and from hardware 

to software in their implementation. Filters as such can also introduce undesired components into 

the signal. In particular, filters can induce changes in phase of different frequencies in addition to 

affecting the magnitude of the signal [65].  Such distortion in the signal can result in 
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misinterpretation of results and erroneous conclusions. The distortions that arise by online filtering 

is exacerbated by offline processing. Filters need to be designed to reduce the adverse effects of 

distortion of the signal of interest. One other way of correcting can be done if we know the exact 

properties of the filter and the original timing of the signals. In the offline correction process, a 

filter similar in properties to that of the online filter can be designed and the signal can be filtered 

in the reverse direction to nullify the effects of distortion thereby leading to phase shifts back to 

zero [65], [66].  This filtering is applied to signals using the “filtfilt” function in MATLAB, which 

is a zero-phase filtering technique. It processes the input data, x, in both the forward and reverse 

directions. After filtering the data in the forward direction, “filtfilt” reverses the filtered sequence 

and runs it back through the filter. The result has the following characteristics of zero phase 

distortion, a filter function equal to the squared magnitude of the original filter transfer function 

and filter order double the order specified by the transfer function coefficients b and a (7). It also 

minimizes the start-up and ending transients by matching initial conditions. 

                                                    

                                                      𝑦 =  𝑓𝑖𝑙𝑡𝑓𝑖𝑙𝑡(𝑏, 𝑎, 𝑥)                                                                     (7) 

 

 

The analytic signal obtained from the Hilbert transform can be difficult to interpret if all 

frequencies are present in the signal leading to biased interpretations of the data. Therefore, it is 

necessary to filter the data into separate frequency bands of interest before applying Hilbert 

transform for further computations of power or phase of a signal. This method of filtering and then 

transforming the data is considered as an advantage over wavelet transform where the control over 

the Morlet wavelet characteristics are lesser compared to a filter characteristic. However, each of 

the three methods of computation Fourier, Hilbert transform and Morlet wavelets are well-suited 

and produce similar results[67]. This particular work used Hilbert transform for signal processing.  



20 
 

Computation of the analytic signal with the Hilbert transform:  

To estimate the power of a narrowly bandpass-filtered signal without using the wavelet 

transform the Hilbert transform was used to calculate an analytical signal. The analytical signal 

X(t) is complex and can be used to calculate the phase/power. The Hilbert transform 𝑋ℎ(t) is equal 

to the signal phase shifted by 90°. The real part of the analytic signal equals the raw signal, X(t) 

and the complex part is the Hilbert transformed signal (8) 

 

                                                            𝐻(𝑡) =  𝑋(𝑡) + 𝑖𝑋ℎ(t)                                                   (8) 

 

Given a complex signal as a function of time H (t), the following equation were used to estimate 

the instantaneous power R(t) (9). H(t) is the result of a Hilbert transform (8). with R{H} and I{H} 

the real and imaginary part of H, respectively.  

 

                                                        𝑅(𝑡) =  (𝑅{𝐻})2 +  (𝐼{𝐻})2                                                       (9) 

 

2.3.2 Spike/Burst detection: 

The digitized signal from each electrode was filtered using a 300 Hz high pass filter 

followed by spike detection as discussed by Bhattacharya et al. [68] in detail. Briefly, spikes were 

identified as peak-to-peak voltages exceeding 11 × the minimum root-mean-square value of 200 

ms contiguous windows (Spycode v3.9) [69], [70]. We imposed a 1 ms dead-time or refractory 

period after a spike before another could be detected. As mentioned by Brewer et al. [62], bursts 

were defined as four or more spikes with an inter-spike interval (ISI) of 1–50 ms, on a per electrode 

basis, not summed over multiple electrodes. The start and stop time of the bursts were extracted 



21 
 

into an array on a per electrode basis and used for segmentation of the LFP-theta and gamma 

oscillations into burst and non-bursts segments for connectivity analysis. 

 

2.3.3 Cross-correlation  

A common idea to understand the connectivity between brain regions is to use multi-site 

electrode studies to sample LFP simultaneously from multiple regions, to determine if one regions 

leads/lags with respect to the other and to estimate the time lag between the connected regions. 

There are number of methods to detect directionality of functional connectivity using LFP signals 

such as Granger causality [71], partial directed coherence [72] in addition to the non-linear 

methods discussed in the introduction section . However, these methods are mathematically 

complex, are also sensitive to noise. In this work, I use Cross correlation - a relatively simple and 

mathematically straightforward method to estimate connectivity between the hippocampal sub-

regions. The mathematics of the method was already discussed in section 1.3.1. In brief, the LFP 

oscillations was divided into bursting and non-bursting segments. The cross-correlation within 

theta oscillations during the bursts and non-bursts duration between the electrodes was computed 

respectively. Similarly, the gamma cross correlation during the burst and non-bursts durations was 

computed between the electrodes respectively. A natural starting point for estimating spatial falloff 

of correlation between electrodes within a sub-region and between a sub-region electrode and an 

axonal electrode was also computed and plotted as function of the square of the inter-electrode 

distance in order to analyze the communication between electrodes. The cross correlation between 

electrodes were computed between all possible inter-electrode distances and the average cross 

correlation computed at unique inter-electrode distances to quantify the fall off in spatial 

correlation. The cross correlation between electrodes during the bursts and non-bursts durations in 
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the regions and the axonal tunnels were computed between all possible bursting electrode 

combinations. After computation of the cross-correlations of the filtered power vectors, the 

distribution of the lags at which the cross-correlation peaks occur was obtained. Wilcoxon’s non-

parametric rank sum test was performed on the sample of lags to verify whether the mean of the 

distribution was significantly different from zero.  

Cross-correlation is designed to make inferences about synaptic connectivity between 

neurons. One can observe narrow peaks (a few ms) in the latency of the LFP of one neuron with 

respect to another in investigating synaptic connectivity. If such a peak is observed, then one can 

potentially make inferences about the number of synapses between each neuron [73]. Cross-

correlation can also be applied to make inferences about local circuits [74]  

 

2.4 Significance of functional interaction 

In any analysis of functional interactions, one must establish clear criteria for statistical 

significance to determine if interactions observed are due to chance. The best way to establish 

empirical significance is to reapply the same statistical tests to the same data in which the 

dimension of interest is randomly permuted. This dimension is time in my analysis. Using 

shuffling, I tested the significance of a functional interaction by (1) Shuffling the LFP segments  

in time or in trials and (2) Applying functional interaction analysis of interest which is Cross 

Correlation  to shuffled data [73].  This process can be easily achieved in MATLAB using the 

‘randperm’ function. It returns a row vector containing a random permutation of integers. This 

type of shuffling is called random shuffling or Independent and Identically distributed (IID) 

shuffling These integers were used as row indices to shuffle our segmented LFP data and cross 
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correlation analysis was performed on the shuffled data to determine the if the observed 

interactions are due to chance. 

 

2.5 Statistics 

All statistical analyses were performed using the standard statistical toolbox in MATLAB. 

No specific analysis to estimate minimal population sample or group size was used. Mainly two 

sample t-test was used to compare between the bursts and non-bursts related LFP functional 

connectivity data, which returns a test decision for the null hypothesis that the data in 

vectors x and y comes from independent random samples from normal distributions with equal 

means and equal but unknown variances, using the two-sample t-test. The alternative hypothesis 

is that the data in x and y comes from populations with unequal means. The result h is 1 if the test 

rejects the null hypothesis at the 5% significance level, and 0 otherwise. Multiple comparison tests 

using ‘multcompare’ in MATLAB along with ANOVA from the statistics and machine learning 

toolbox in MATLAB. The purpose of one-way ANOVA is to determine whether data from several 

groups (levels) of a factor have a common mean. 
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Chapter 3 

RESULTS 

The goal of this work is to quantitatively determine the functional connectivity among the sub-

regions of the hippocampus. In addition, the living engineered reconstruction of the hippocampal 

subregion (Fig 1.1) will enable ascertaining the role of the slow waves, their dynamics in the 

hippocampal subregion and in information transmission into the neighboring regions.  

 

3.1 Recorded spontaneous activity from microelectrode arrays 

 The primary purpose of using the micro-electrode arrays over the engineered neuronal 

networks chambers is to measure the activity of single neurons in small populations from the 

dissected hippocampal sub-regions. The spontaneous spiking activity from each of the electrodes 

in each subregion and the tunnels over 5 arrays was computed in order to determine reproducible 

dynamic features while eliminating inactive electrodes from the analysis. Electrodes were 

considered inactive if there were less the 5 spikes per 5 minutes of recording. The spike rate across 

all the electrodes were computed and the spatial distribution of the log of spike rate on a standard 

MEA120 layout for all the 5 arrays is shown in Fig 3.1. All the electrodes showed activity greater 

than 5 spikes per 5 minutes and none were eliminated from analysis. 
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Figure 3.1: Spontaneous spike activity from electrodes in each sub-network of 5 arrays. Note higher spike rates in 

tunnels and variability from one array to another.  File names of each recording are indicated for data rigor. Figure 

File name: spike_activity.fig 
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3.2 Directionality from relative timing of oscillatory peaks  

Multi-site recordings are often used in identifying the directionality of functional 

connectivity and estimating velocities between sites. Cross-correlation is a simple, method to 

estimate directionality and velocity based on distance divided by lag from local field potentials 

(LFPs) generated by axons in the tunnels. This work is aimed at deciphering the lags from the sub-

regions to the axons in the tunnels which is used to make inference about the type of connectivity 

between the regions and tunnels. However, a causal relationship cannot be established using cross-

correlation. More complex mathematical methods like Granger Causality are used to establish 

causal relationship or better yet an intervention to promote or interfere with the LFP [73]. The 

distribution of lags between LFP oscillations is depicted in Fig 3.2 for theta oscillations and Fig 

3.3 for gamma oscillations. The information about the lag is used to make inference about the 

synaptic connectivity in the neurons. Using the cross-correlation method, we demonstrate a 

circular path of theta waves from EC to the EC-DG tunnels into DG to the DG-CA3 tunnels, into 

CA3 to the CA3CA1 tunnels.  However, in 3.15 D, the EC leads the EC-CA1 tunnels for feedback 

in the theta and gamma frequency range.  Lag times of 5.1-8.2 ms for theta and 5.2-6.9 ms for 

gamma are consistent with transmission through an average of one synaptic delay on either side 

of the axons in the tunnels. The lags between the sub-regions and the tunnel found in the theta and 

gamma frequency ranges suggests that theta and gamma oscillations in the axons could drive 

functional connectivity between the hippocampal sub-regions. The next section thus shows few 

individual examples of correlation and transmission between the sub-region and tunnels. 
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Figure 3.2:  Distribution of lags of theta correlation between the sub-regions and the tunnels. The negative mean lag 

indicates that the sub-region leads the tunnel and a positive mean lag occurs when the sub-region follows the tunnels. 

The lags suggest at least one synaptic connection exists between the sub-region and tunnels. Wilcoxon’s non-

parametric rank sum test was performed on the sample of lags to test whether the mean of the distribution was 

significantly different from zero (p=0.01 in all cases; n=5 arrays). File name of this figure: theta_lag.fig 

 

 

 



28 
 

 

 

 

 

 

 

Figure 3.3:  Distribution of lags of gamma correlations between the sub-regions and the tunnels. Negative lags indicate 

that the sub-region leads the tunnels and a positive lag indicates the sub-region follows the tunnels. These lag times 

can indicate an average of a single synaptic connection exist between each sub-region and tunnels. Wilcoxon’s non-

parametric rank sum test indicates the mean of the distribution was significantly different from zero (p=0.01 in all 

cases; n=5 arrays). File name of this figure: gamma_lag.fig 
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3.3 Relationship of LFP to bursts and their synchrony  

Inspection of the neural signal in the time-domain is necessary to characterize how changes 

in neural LFP oscillations contribute to information processing and transmissions. It is important 

to account for their spatio-temporal characteristics and their association with burst of spikes. For 

this, we determined the theta (4-11Hz), gamma(30-100Hz) wave power by bandpass filtering with 

the Hilbert transform. The spikes were obtained by high pass filtering of the raw data. Fig 3.4 

shows the association of robust theta oscillations with a burst of spikes in the subregion (CA3). 

Fig 3.5 shows the raw and filtered theta waveforms of adjacent axonal tunnel electrodes (CA3-

CA1). Fig 3.6 illustrates the association of theta oscillation and bursts in the sub-region (CA3) 

considered as a source where the computation occurs and the axonal tunnel between CA3 and CA1 

(CA3-CA1) that transmits the product of computation into the neighboring regions. In addition, 

Fig 3.4, 3.5, 3.6 also suggests certain level of correlation of LFP between neighboring electrodes 

suggesting the binding of cell assemblies for network wide communication through synchrony of 

LFP oscillations. The red boxes in the figure not only shows the association of theta oscillations 

with the bursts but also highlights the synchrony in the occurrence of both between electrodes. 

These results   provide compelling evidence that time-domain features of both hippocampal LFP 

waveform and bursts, reflects local circuit properties. These results point to the possibility of 

inferring circuit states from local field potential features in the hippocampus and perhaps other 

brain regions with other rhythms. This analysis also serves as a starting point for analysis to infer 

the causal relationship between the LFP and spikes which will be analyzed in the future works. 
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Figure 3.4: Raw signal and filtered theta waveforms of adjacent electrodes (K9, L9) in CA3 sub-region suggests theta 

synchrony between nearby electrodes and transmission of theta oscillations between neurons is associated with a burst 

of spikes. The peak of theta oscillation (black line) of L9 electrode at 126.69s and the peak of the theta oscillation 

(green line) of K9 at 126.73s suggest the propagation of theta oscillations. Magnification of a time interval to show 

burst and corresponding theta cycle. Recording file: ECDGCA3CA1 19914 150805 150828 d25 5minspont0001. 

Figure File name: Theta_region.fig 
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Figure 3.5: Raw signal and filtered theta waveforms of adjacent tunnel electrodes (L7, M7) in CA3 –CA1 tunnel 

suggests theta synchrony between electrodes and transmission of theta oscillations via the axon tunnels is associated 

with a burst of spikes. Magnification of a time interval to show burst and corresponding theta cycle. Recording file: 

ECDGCA3CA1 19914 150805 150828 d25 5minspont0001.Figure File name: Theta_tunnel.fig 
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Figure 3.6: Electrode L10 in CA3 serves as source for axonal electrode L7 in a CA3 –CA1 tunnel suggests theta 

propagation from regional electrodes into the tunnel and their association with a burst of spikes at 126.7 s. Note 

opposite apparent direction for events at 127.9 s in which the axon appears to transmit a theta oscillation into the 

neighboring CA3 region. Note larger signals in the tunnels because of higher resistance there. Recording file: 

ECDGCA3CA1 19914 150805 150828 d25 5minspont0001.Figure File name: Theta_source_tunnel.fig 
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We now shift focus to how the hippocampal gamma rhythms, relate to the network activity 

of neurons in hippocampal sub-regions and the axonal tunnels. The gamma oscillations also show 

similar behavior like the theta oscillations as illustrated in Fig 3.7, 3.8, 3.9. Such analysis approach 

allows us to analyze if the theta/gamma cycles contain information about the underlying neuronal 

sequences. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



34 
 

 

 

 

  

Figure 3.7: Adjacent electrodes (K9, L9) in CA3 sub-region suggests some gamma synchrony between nearby 

electrodes, transmission of gamma oscillations between neurons is associated with a burst of spikes. Recording file: 

ECDGCA3CA1 19914 150805 150828 d25 5minspont0001.Figure File name: gamma_region.fig 
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Figure 3.8: Raw signal and filtered gamma waveforms of adjacent tunnels on electrodes L7 and M7 between CA3 

and CA1 regions suggests a type of gamma synchrony associated with bursts of spikes with unique gamma oscillations 

via the axon tunnels. Recording file: ECDGCA3CA1 19914 150805 150828 d25 5minspont0001.Figure File name: 

gamma_tunnel.fig 
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Figure 3.9: Electrode L10 in CA3 and electrode L7 in a CA3 –CA1 tunnel suggests gamma oscillations in  regional 

electrodes, the tunnel and their association with a burst of spikes; Suggests gamma synchrony between electrodes 

from the region and tunnel separating computation within sub-region, the output of the computation in the axons and 

hence transmission of gamma oscillations into a neighboring region. Magnification of a time interval to show burst 

and corresponding gamma cycle. Also note gamma power in absence of spiking.  Recording file: ECDGCA3CA1 

19914 150805 150828 d25 5minspont0001.  Figure File name: gamma_source_tunnel.fig. 
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3.4 Quantification of hippocampal connectivity in theta  

The above examples were from single pairs of electrodes. To statistically evaluate 

consistent behavior, we assessed connectivity between all pairs in each sub-region of the 

hippocampus and in the axonal tunnels, between pairs of electrodes, I adopted by a common 

linear synchronization approach of Cross-Correlation, which was described in detail in 

methods.  Each sub-region contains a 19×19 connectivity matrix and a tunnel matrix of 5×5 

elements with the connectivity weights being the cross-correlation of the theta oscillations from 

4–11 Hz (Fig 3.10).  Only 1 electrode from each tunnel was chosen since electrodes from the 

same tunnel are expected to carry the same information since both measure the LFP from the 

same axons. Node indices are organized by the electrode names per the indicators on the axes. 

Blue areas represent weaker connections and red being the stronger connectivity indicator. The 

white line on the diagonal represent the auto correlation. Fig 3.10 suggests strongest theta 

correlation in the CA3 sub-region, which could be an attribute of their recurrent neuronal 

networks [61]. Also, connectivity to CA3 from both sides, DG-CA3 and CA3-CA1 tunnels also 

seem to be the highly theta correlated in this network. Averages for 5 arrays in Fig 3.11 also 

confirms the strong correlation in the CA3 region.   

These connectivity matrices also suggest the theta correlations are spatially concentrated 

i.e, stronger correlation between adjacent electrodes compared to electrodes far away which 

could be indicative of the fall in correlation by the inverse square law with distance from an 

electrode. Signal from a strong dipole source that propagates in the extracellular medium would 

be expected to fall off as the inverse-cube of the distance, while a monopole would dissipate as 

the inverse-square and a cable as 1/r.  
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Figure 3.10: Theta band power correlations for the 19 by 19 electrode combinations for the sub-regions and 5 by 5 

electrode combinations for the tunnels suggest strongest functional connectivity within CA3 and among the tunnels 

between CA3 and either CA1 or DG. In the correlation matrix, each row and each column represent the cross-

correlation coefficient obtained from the XCORR between pairs of electrodes in each sub-region and tunnels. 

Recording file: Single array ECDGCA3CA1 19914 150805 150828 d25 5minspont0001.Figure File name: 

theta_connectivity (EC, DG, CA3, CA1). fig 
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Figure 3.11: Sub-regional and axonal theta correlations suggest coordinated flow of theta oscillations during 

bursts. Significance test for theta correlations in subregions and tunnels (a) Synchronization of theta oscillations 

during bursts within a region were significantly greater than the non-burst segments with especially high burst 

correlation in CA3 compared to other sub-regions (N=5 Arrays); These measures were together above levels for IID  

randomly shuffled data; (P<0.05,ANOVA;N=5 Arrays) (b) Synchronization of theta oscillations in axonal tunnels 

during bursts and non-bursts is higher in tunnels (P<0.05,ANOVA) indicating the transmission of information from 

the same source or parallel transmission of the same output. Theta correlations within tunnels are significantly greater 

than shuffled data (P<0.05, ANOVA; N=5 Arrays). File name for this figure: theta_region_BNB.fig, 

theta_tunnel_BNB.fig  
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Differences in synchrony in the sub-regions and the tunnels could suggest differences in 

how each region processes information via LFP oscillations. Fig 3.11 (a) shows the correlation 

within the subregions during bursts and non-bursts segments of the theta oscillations. It suggests 

that overall the correlation of burst theta is significantly greater that than non-burst theta (2-sample 

t-test, P=0.015). However, the lower correlation of the non-burst theta is still significantly above 

shuffled data suggesting that it is not because of a random background fluctuation. In addition, 

comparison between the burst theta from the different sub-regions suggests that the CA3 has the 

strongest correlation with significant difference among all the other sub-regions (P=0.02, ANOVA 

multiple comparisons).  CA3 sub-region is known to be a recurrent network wiring pattern and 

such strong correlation can be associated with this kind of network pattern [61].  EC sub-region 

was significantly different from the other sub-regions (P=0.015, ANOVA multiple comparison) 

except DG (P=0.67, ANOVA).  Fig 3.11(b) shows results of similar analysis performed in the 

axonal tunnels. Measuring from individual axons, we were able to observe LFP in the axons 

suggesting that non-axonal membrane currents transmit LFP information. Tunnel correlations are 

also like that in the sub-regions, in that burst correlations are significantly greater than the non-

bursts theta correlations (P~0.011). Note that the two-fold higher values of correlations in the 

tunnels between EC and DG and between EC and CA1 suggests coordinate axonal LFP 

information transmission to and from these regions. It is necessary to investigate if observations 

are due to random chance occurrence as opposed to a defined connectivity pattern. By random 

shuffling of the segments of LFP oscillations the relationships between neuronal population 

activity and random background fluctuations. The observed interactions are significant and are not 

due to chance (P~0.002 ANOVA multiple comparisons).  
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3.5 Quantification of hippocampal connectivity in low gamma 

 
  The low gamma network is similarly constructed from frequencies between 30–100 Hz.  

Fig 3.12 suggests strongest gamma correlation in the CA3 sub-region, but correlations were 

about 50% lower than those for theta. Again, DG-CA3 or CA3-CA1 tunnels seem to be the 

more highly correlated tunnels. These type of results for a single array were averaged for 5 

arrays for statistical comparison (Fig 3.13).  Differences in synchrony in the sub-regions could 

suggest differences in how each region processes information via LFP oscillations. Fig 3.13 (a) 

shows the correlation within the subregions during bursts and non-bursts segments of the gamma 

oscillations. It suggests that overall the correlation of burst theta is significantly greater that than 

non-burst gamma (2-sample t-test, P=0.02). However, the lower correlation of the non-burst 

gamma is still significantly above shuffled data. In addition, comparison between the burst gamma 

from the different sub-regions suggests that the CA3 has the strongest correlation (P= 0.03, 

ANOVA multiple comparison). Fig 3.13(b) shows results of similar analysis performed in the 

axonal tunnels. Measuring from individual axons, we were able to observe LFP in the axons 

suggesting that non-axonal membrane currents transmit LFP information. Tunnel correlations are 

also like that in the sub-regions, in that burst correlations are significantly greater than the non-

bursts theta correlations (P=0.0015, ANOVA multiple comparisons). Note that the two-fold higher 

values of correlations in the tunnels between EC and DG and between EC and CA1 suggests 

coordinate axonal LFP information transmission to and from these regions. It is necessary to 

investigate if observations are due to random chance occurrence as opposed to a defined 

connectivity pattern. By random shuffling of the segments of LFP oscillations the relationships 

between neuronal population activity and random background fluctuations. The observed 

interactions are significant and are not due to chance (P=0.006, ANOVA multiple comparison).  
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Figure 3.12: Gamma band power correlations for the 19 by 19 electrode combinations for the sub-regions and 5 by 5 

electrode combinations for the tunnels  suggest strongest functional connectivity within CA3 and among the tunnels 

between CA3-CA1 or DG-CA3. In the adjacency matrix, each row and each column represent the cross-correlation 

coefficient obtained from the XCORR between pairs of electrodes in each sub-region and tunnels. Recording file: 

Single array: ECDGCA3CA1 19914 150805 150828 d25 5minspont0001.Figure File name: gamma_connectivity (EC, 

DG, CA3, CA1). fig 
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Figure 3.13. Sub-regional and axonal gamma correlations suggest coordinated flow of gamma oscillations 

during bursts. Significance test for gamma correlations in subregions and tunnels (a) Synchronization of gamma 

oscillations during bursts within a region were significantly greater than the non-burst segments with especially high 

burst correlation in CA3 compared to other sub-regions (N=5 Arrays); is. These measures were together above levels 

for IID randomly shuffled data; (P<0.05, ANOVA; N=5 Arrays) (b) Synchronization of gamma oscillations in axonal 

tunnels during bursts and non-bursts is higher in tunnels (P<0.05, ANOVA) indicating the transmission of information 

from the same source or parallel transmission of the same output. Gamma correlations within tunnels are significantly 

greater than shuffled data (P<0.05, ANOVA; N=5 Arrays).  File name for this figure: gamma_region_BNB.fig, 

gamma_tunnel_BNB.fig 
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3.6 Slow wave correlations decrease as the inverse-square of the distance  

The theta and gamma correlations between adjacent electrodes are spatially concentrated 

from the connectivity matrices (Fig 3.10, 3.12).  Three types of relations might be expected for a 

decrease in correlated LFP power with distance from the origin.  1) For direct connections from a 

slow wave of varying membrane potential that propagates down an axon or dendrite, power would 

decrease according to the cable equation as 1/distance 2) For LFP’s originating from synapses that 

fan out from a strong source in two dimensions, correlated power would follow an inverse-square 

law (1/r2).  3) For LFP’s originating from neuronal dipoles that source and sink currents, correlated 

propagation into the medium would follow an inverse cube law (1/r3).  To define the spatial 

relationship of the theta and gamma correlation, we determined correlations of LFP power vs 

distance between the electrodes as shown in Fig. 3.14, Fig 3.15 respectively. These functions were 

fit separately for both bursts, non-bursts theta and gamma correlations, allowing maximum 

goodness of fit and equal opportunity for different functions to describe the different frequencies. 

The best-fit is the one with the highest R-squared value using a least-squares method. For each 

component, the best-fit was chosen to represent the average falloff of correlation versus distance. 

To adequately capture the falloff, we used only pairwise correlations.  The inverse square falloff 

pattern was a good fit for both theta and gamma band correlations, but the goodness of fit R2 values 

for theta in CA3 appeared higher and gamma correlations were about half those of theta. The 

correlation analysis was repeated for all the sub-regions of the hippocampus for theta and gamma 

bands, again suggesting the same effect in the fall-off of correlation with increase in the inter- 

electrode distance for the theta and gamma bursts duration. 
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Figure 3.14: Theta Cross-Correlation coefficient declines between electrode pairs (n=5 arrays); Blue represents the 

burst theta correlation as a function of inter-electrode distance; The average correlation coefficient was computed at 

each unique distance; The CA3 region has the highest correlations for bursts and the CA1 the lowest, compared to the 

other regions.  DG region has a best fit at correlation versus 1/distance and is different from the other sub-regions 

which vary as a function of 1/distance2. Note: Red is theta correlation during non-bursts which is relatively 

independent of inter-electrode distance. There first observation at the shortest inter-electrode distance of 200 µm is 

0.04 mm2. File name for this figure is theta_distance.fig 
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Figure 3.15: Gamma Cross-Correlation coefficient depends on the inverse-square of the spatial distance between 

electrode pairs (n=5 arrays); The average correlation coefficient was computed at each unique distance. Blue 

represents the burst theta correlation as a function of inter-electrode distance. Red is gamma correlation during non-

bursts which is relatively independent of inter-electrode distance. Burst correlations with distance are highest in CA3 

and lowest in DG.    File name for this figure is gamma_distance.fig 
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However, the overall correlation of the gamma band across distance is lower than theta 

correlation as suggested by Fig 3.14, Fig 3.15. The line of best fit suggests that the relationship is 

consistent across sub-regions of the hippocampus, but the level of correlation differs depending on 

which frequency band is being represented and varies with the sub-region. The dependence of this 

correlation falloff function on anatomical sub-region appears strong in the CA3 with distance, also 

falloff is much stronger during burst than the non-bursts segments. The correlation in DG region 

however falls better at 1/r. The identification of functional areas of greater correlated power at 

certain frequencies with 1/r2 relationships suggests the fan out of the LFP from a strong source that 

is strong closer to the source and decrease with increase in inter-electrode distance. 

Information processing and transmission comprises two stages (1) the computation that 

occurs in each of the subregion and (2) the transmission of the product of computation via the 

axons to the neighboring sub-region. In order to study the interaction between the sub-regions and 

the tunnels, the theta and gamma cross-correlation analysis was performed between the sub-region 

and the tunnels separated as source to tunnel and tunnel to target interactions as in Fig 3.16. An 

analog approach closely following Poli  et al. [79] was used with LFP signals to compare the 

correlation between the LFP among axonal inputs (i.e. LFP in the tunnels) versus those among 

somata outputs (i.e. LFP in the target well). In pattern completion, the outputs are more similar 

than the inputs.  In pattern separation, the outputs are less similar than the inputs [79].  In our 

system, higher correlations between axons in the tunnel (DG-CA3) and the target (CA3) than 

between the source (DG) and the axons (DGCA3) suggest a role of both theta and gamma LFP 

oscillations in pattern completion in CA3. A role for CA1 in pattern separation has been shown in 

animal models based on spike rates, but the contribution of LFP’s is unknown [80]. We observed 

theta and gamma in the source (CA3) was more strongly correlated to the axons from CA3 to CA1) 
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than those of the axons from CA3 to CA1 to the target (CA1). This suggests a role of gamma and 

theta LFP’s in pattern separation in the CA1 sub-region in support of the findings by Hanert et al 

[80].However, more rigorous analog and digital analysis must be carried to prove the involvement 

of CA1 in pattern separation 
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Figure 3.16: Correlation coefficient against the source to tunnel and tunnel to target interactions across the 

hippocampal sub-regions (a)Theta cross correlation and (b) Gamma Cross correlation. Note that high correlations 

between the tunnels from DGCA3 with CA3(Target) and CA3CA1 with CA3 (Source) sub-region. This might suggest 

a possible role of LFP synchrony in CA3 for pattern completion and in CA1 for pattern separation. File name for this 

figure is source_tunnel_target.fig 
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Chapter 4 

DISCUSSION 

The hippocampus is critically important to cognitive memory formation, as detailed from 

its role in anatomical, physiological, fMRI and behavioral studies. However, much remains to be 

learned in between the macro and single cell levels, specifically the encoding and transmission of 

information between subregions of the hippocampus. Working at the mesoscopic level also allows 

us to bridge the gap between the macroscopic measures of EEG, fMRI and the molecular levels. 

While microelectrodes and arrays have been used to monitor activity in behaving animals and in 

brain slices in in signal trains that filter out low frequency oscillations to focus on spikes [54], [55], 

there remains a need to develop a system that provides better access to the neuronal populations 

and enables single neuron monitoring of the axonal connectivity between the subregions and the 

source of the commonly used scalp EEG and intracranial ECoG field potentials.  These methods 

rely on detection of local field potentials which are variously described as originating from parallel 

waves of fluctuating membrane potential, groups of neuronal spikes, collective synaptic potentials 

or volume conduction of aligned dipoles originating in the cortex and hippocampus [99].  Since 

all these mechanisms are unlikely to be simultaneously active, here, we have begun to identify 

which of these sources contribute most to different regions of a reconstructed hippocampus and 

question whether they are byproducts of the flow of spiking information or independent carriers 

of information.  

The engineered living reconstruction of the hippocampal sub-regions used in this work is 

an extension of the 2 chambered device used by D Poli et al.,[61] and Bhattacharya et al.,[70]. We 

used a 4 chambered PDMS device, one for each sub-region (EC, DG, CA3, CA1) with micro-

tunnel connectivity between the sub-regions thereby separating the axons from the cell bodies. The 
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5 x 10 µm micro-tunnels allow axonal growth and inhibit the migration of 15 µm diameter cell 

bodies or traversal by dendrites[62], [63] allowing insight into the role of axons in inter-regional 

communication. The uniqueness of this system thus enables us to separate the computations carried 

out in the sub-regions from the product of those computation in the axons and hence its 

transmission into the neighboring sub-regions. In vitro neuronal cell-culture preparations used in 

combination with this technology thus provides a straight forward way to manipulate and study 

the effects of connection strength upon network[81], [82]. The 4 chambered device over a standard 

MEA120 electrode thus allows the quantitation of the LFP oscillations, their dynamics and 

transmission at each step of the tri-synaptic circuit. In addition, it also provides the means to 

directly manipulate the structural properties of networks while simultaneously monitoring its effect 

on a network’s functional dynamics. This device thus provides researchers a tool to understand 

network dynamics by having the ability to design both the degree and directionality of connectivity 

among multiple small neural populations. 

 

Quantification of connection strength is one of the most fundamental steps towards a better 

understanding of a brain network’s function [83], [84]. Coordinated activity within the 

hippocampal formation is thought to facilitate information flow and underlie information storage 

and is observable at multiple levels, from synchronized firing of individual neurons to population 

level oscillations at different frequencies [85]. For years we have known that neurons collectively 

have synchronous or oscillatory patterns of activity, the frequencies and temporal dynamics of 

which are associated with distinct behavioral states. Although the function of these oscillations has 

remained obscure, recent experimental and theoretical results indicate that correlated fluctuations 

might be important for a number of processes, such as attention, memory and learning, that control 

the flow of information in the brain. Synchrony is a form of temporal relationship between neurons 
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that has been intensely studied. As with ‘oscillations’ and ‘rhythmic activity’, the term synchrony 

encompasses a spectrum of neuronal behaviors with various spatial and temporal scales. Salinas 

and Sejnowski [86] labeled all these phenomena as temporally correlated activity, which describes 

a common feature: when two neurons are correlated, they do not fire independently of each other; 

when one fires, the other is more or less likely to fire. This is an extremely broad generalization, 

especially as the underlying mechanisms and potential functions can vary greatly. In order to 

understand the underlying mechanism, this work is based on analyzing the synchrony of the LFP 

oscillations at the population level which is considered as a possible mechanism to bind the cell 

assemblies together. The theta (4-11 Hz) and gamma (30-100 Hz) bands of oscillations were 

filtered and segmented into bursts and non-burst durations. We investigated the main hypothesis 

that LFP oscillations (theta and gamma) enable computation and communication in hippocampal 

networks, focusing on the cell assemblies (within a sub-region) and the axonal LFP (in the tunnels) 

and the relationship between the cell assemblies in the sub-region and the axonal tunnels. Donald 

Hebb hypothesized that the fundamental unit of brain operation is not the single neuron but rather 

the cell assembly-an anatomically dispersed but functionally integrated ensemble of neurons [87]. 

Despite the theoretical appeal of Hebb's idea and growing empirical evidence of assemblies, it 

remains unclear how diverse groups of neurons transiently coordinate their activity to form cell 

assemblies or functional networks [88]. This work addresses the question by considering that the 

individual neurons that compose an assembly act as a single functional unit through coordinated 

network activity which is one of the hypothesized roles of the LFP oscillations. The temporal 

synchrony in the neural oscillations are evidence to support a causal role for LFP synchrony to 

cause coordinated activity in the sub-regional neuronal population. In addition, according to the 

‘cell assembly’ hypothesis, this transient synchrony of anatomically distributed groups of 
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neurons underlies information processing and cognitive mechanisms[87]. Brain rhythms may 

play a key role in coordinating neuronal ensembles[89], with a dynamic hierarchy of neuronal 

oscillations modulating local computation and long-range communication[90]. This hypothesis is 

supported by evidence that spiking activity depends on the local field potential (LFP) in the  

hippocampus[21], [91]. This study is also in agreement with the above hypothesis, whereby we 

see the spike of bursts associated with the LFP oscillations (Fig 3-8). Future studies will involve a 

more specific interventions and analysis of the relationship of the spikes with the LFP oscillations 

to definitively establish that LFP oscillations cause the spikes. 

Spatial spread of LFP 

This study also addressed the spatial spread function of the LFP signals towards 

understanding the relationship of neural frequency to information transmission. A current trend in 

the use of extracellular electrodes for in vitro and in vivo recordings of neuronal electrical activity 

is to increase spatio-temporal resolution to capture the dynamics of individual neurons or 

interactions within neuronal networks.  We quantitatively defined a common inverse squared 

relationship of neural signal cross-correlation and spatial distance. with spike, but not with non-

burst activity. The magnitude of an electric field from a point source or the fan out of dendritic 

branching and synapse in our planar network is expected to decrease as a function of one over 

distance squared [92].  In contrast, the field along an axon cable is expected to decrease as 

1/distance and from the dipole source of aligned neurons as 1/distance3. 

  The major contributions to the observed spatial correlations, not including artifact or a 

common reference could be one of the following reasons. Firstly, there are functional correlations 

in neural networks due to synaptic connectivity. These functional correlations could appear in 

regions far away from each other because networks are not constrained to neighboring areas. 
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Secondly, there are correlations due to the properties of the underlying neurophysiological 

generators of electric signals, both spike after-potentials and EPSP’s [93] [99]. However, the 

neural origins of the various frequency bands are still not clear. Importantly, our finding of stronger 

falloff of correlations during bursts activity suggests that LFP oscillations during bursts may add 

specificity to functional connectivity within the hippocampal sub-regions or that these oscillations 

may cause the bursts.  

Origin of LFP’s 

Understanding the origin of these neural oscillations and significance of the synchrony 

among these LFP oscillations is equally important. The inverse problem theory helps in 

understanding both the synchrony and origin of the LFP oscillations. The inverse problem [94] 

arises when attempting to infer the microscopic variables from the macroscopic ones - in this case, 

inferring the origin of the LFP oscillations from the spatiotemporal profile, synchrony of the LFP 

- the underlying neuronal dynamics.  Our findings suggest that theta or gamma band neural 

activity could possibly drive synchronization during information processing. The “gamma 

frequency hypothesis” implies that synchronized activity in the gamma range induces memory 

processes more successfully than both slower (e.g., beta-) and faster (e.g., ripple-) activity[95]. It 

has been proposed that neural firing synchrony may accomplish attentional selection in an effective 

manner, in particular perceptual selection[96]. Gamma synchronization during bursts observed 

in our study also supports Fell et al. [97] who reported phase synchronization of gamma activity 

not only seems to be a general mechanism underlying cortical information processing, but also 

appears to be particularly involved in attentional processes. Several studies in addition also report 

similar ideas about gamma synchronization being related to attention. Synchronization is thus an 

appealing mechanism for explaining how the hippocampus stores memories, processes 
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information, and it generally occurs on different timescales-or frequencies-of neural activity. 

In particular, gamma-band (30–100 Hz) synchronization is frequently invoked as a means for 

the hippocampus to communicate between sub-regions, since the fast nature of an oscillatory 

gamma signal is timed appropriately for rapid perceptual operations or induction of synaptic 

strengthening. Precise synchronization of neural firing within the millisecond range is associated 

with synchronization of gamma activity. However, the exact role of synchronized gamma activity 

with respect to different aspects of attentional processing like top-down versus bottom-up 

processing, early versus late selection, spatial versus object-based attention is unclear. Gamma 

synchronization between hippocampal and para-hippocampal regions have also shown to induce 

long term potentiation (LTP) in the CA3 region of the hippocampus[95]. Studies also suggest that 

synchronized neural activity in the gamma frequency range (around 30–100 Hz) plays a functional 

role for the formation of declarative long-term memories in humans. In the future, injecting gamma 

oscillations into the network to evoke greater synchronization or antiphase to inhibit it can test a 

causal gamma mechanism enabling transient associations of neural assemblies which thus may 

play a central role in information processing.  

Synchrony of theta oscillations is necessary to understand the underlying mechanisms of 

hippocampal theta oscillations that play critical roles in higher brain functions, including spatial 

and episodic memory formation [36], [38].  They coordinate activities among hippocampus-

associated brain regions, including entorhinal cortex and neocortex. Theta oscillations are also 

postulated to provide temporal references in the hippocampus and, thus, provide a potential 

mechanism for temporal coding of the relationships for spatial memories or events for episodic 

memories [1], [38], [98]. However, after decades of research, the origins of theta oscillations 

remain elusive. In order to guarantee a defined temporal order of memory processing, 
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synchronization in the gamma frequency range must be accompanied by ongoing theta oscillations. 

Theta oscillations are suggested to coordinate the encoding and retrieval of episodic and spatial 

memories [23].  Recent studies suggest that the theta frequency pacing of network excitability can 

provide temporal packaging and transfer of neuronal information. 

 

LFPs in the brain were long thought to be primarily of synaptic origin [99]. As a 

consequence, many modeling studies focused on the extracellular fields induced by postsynaptic 

currents on the dendrites and the soma of a neuron [100], [101].  However, recent analyses and 

modeling efforts by Ray and Maunsell et al. [102], Schomburg et al. [103] and Ness et al. [104] 

have revealed that active, non-synaptic membrane currents can play an important role in generating 

population-level LFPs.  Currents from the axon are still thought to be so small as to be of minor 

importance for the LFPs. However, our work has shown for the first time the clear presence of 

LFPs in the axons and a significant correlation between these LFP and bursts of spike. The 

contribution of the axonal currents to LFP has also been studied by McColgan et al. [105] and 

supports that axonal projections can contribute substantially to LFPs. The results quantitatively 

showed how the anatomy of axon terminal zones and the activity in axons determine its frequency-

specific far-field contribution to the EFP. More importantly, their presence emanating from axons 

strongly suggests oscillations in membrane currents that could contribute to information 

processing and binding signals from different axons together to activate cell assemblies. 

Electrochemical signal propagation is one of the properties that enables communication 

among neurons. In the hippocampus, such communication is essential for basic neural function, 

such as memorization or spatial navigation. To understand the mechanisms that regulate temporal 

coordination of neuronal activities in the hippocampus sub-regions and inter-regional 
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communication between them, we simultaneously recorded LFP and multiple single neuronal 

activities temporal relationships of neuronal activity between different subregions using the 

measure of cross-correlation. Computation of cross-correlation between the LFP oscillations and 

estimating the delay between the electrodes in the sub-regions and tunnels displayed non-zero 

delays of x-y ms. This could be supported by the studies by Mizuseki et al., [98] on principal cells 

in several mono-synaptically connected layers/regions fired with significantly longer theta phase 

offsets and temporal delays than would be expected by axonal conduction times. Synaptic delays 

and passive synaptic integration which could be attributed to the temporal windows set by the theta 

cycles allow for local circuit interactions. Qui et al. [106] also provide an explanation showing that 

neural signals can propagate by means other than synaptic transmission, gap junction, or 

diffusion.  The population activity in a downstream layer not only reflects an upstream drive but 

also represents the result of autonomous local computation as can be seen from a cross-correlation 

analysis comparing the source to tunnel and tunnel to target interactions significantly noted 

between the DG - CA3 subregions and CA3 - CA1 subregions.  

This study thus provides a detailed analysis showing that the synchrony of the neural 

oscillations is important for information processing and transmission. It also suggests a means for 

hippocampal information processing by binding of cell assemblies via slow wave synchrony.  
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Chapter 5 

5.1 FUTURE WORK 

Having studied the roles of theta and gamma synchrony in the hippocampal sub-regions 

separately. It is also important to understand the interaction of the theta and gamma oscillations 

since they are observed to co-exist in the hippocampal sub-regions. These oscillations interact by 

a mechanism called the cross-frequency coupling. This mechanism has also been suggested to 

form a code in order to represent multiple items in an ordered way as suggested by Lisman and 

Jensen [107].  Recent work also suggests that this coding scheme is important for the inter-regional 

communication and memory processes. Our 4 chambered hippocampal system will thus a provide 

a unique way to understand the cross-frequency coupling in the sub-regions and the axonal tunnels 

separately. 

The origins of the LFP oscillation will also provide important step towards understanding 

the signal processing and routing of information in the hippocampus. Analyzing the phase 

relationships between the LFP oscillations and spikes will help establish causal link between them 

and if it is necessary for the network to produce the LFP oscillations for the propagation of the 

information. 

Further, understanding the contribution of each individual sub-region will help to elucidate 

the role of each individual sub-region of the hippocampal sub-region in encoding and decoding of 

the information, memory formation and other cognitive processes. This can be done by omitting 

one of the 4 sub-regions to see the changes in the synchrony of the LFP oscillations in each of the 

sub-regions and tunnels. 
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5.2 LIMITATIONS 

Despite the increase in use of such engineered models to elucidate the neuronal 

mechanisms and study of the neuronal networks, limitations persist since these 2D cultures do not 

take into consideration the 3D aspects of the cells in vivo. Often cell morphology and the growth 

of the axonal processes are restricted in a 2D cell culture and thus there is a shift to development 

of 3D cell cultures to better elucidate the computational and neurophysiological behavior of 

networks. Such 3D in vitro models are developed and investigated by many researchers [108], 

[109].  Future works will shift to using a 3D polydimethylsiloxane (PDMS) device to develop 3D 

cell cultures and study their computational and neurophysiological behaviors from a closer replica 

of the in vivo cell morphology and connections. Therefore, our findings encourage further analysis 

of the contribution to information processing and transmission processes among the cultured 

hippocampal neurons of the other sub-region through the analysis of theta and gamma coupling 

investigations and to understand the origin of these neural dynamics to decipher whether the LFP 

and the spikes are independent or if one causes the other. 
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