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Abstract. Long term, high quality estimates of burned area 13 years. This burned area time series serves as the basis
are needed for improving both prognostic and diagnosticfor the third version of the Global Fire Emissions Database
fire emissions models and for assessing feedbacks betwedGFED3) estimates of trace gas and aerosol emissions.

fire and the climate system. We developed global, monthly.
burned area estimates aggregated té 8patial resolution
for the time period July 1996 through mid-2009 using four 1
satellite data sets. From 2001-2009, our primary data source

was 500-m burned area maps produced using Moderatggs garth-system modeling efforts increasingly recognize and
Resolution Imaging Spectroradiometer (MODIS) surface re-incjude fire as an important process in the terrestrial carbon

flectance imagery; more than 90% of the global area burneglycie, there remains a strong need for long term, spatially-
during this time period was mapped in this fashion. Dur- ang temporally-explicit global burned area data sets. Among
ing times when the 500-m MODIS data were not available, gther purposes, such data are essential for quantifying py-
we used a combination of local regression and regional rejqgenic trace gas and aerosol emissions, discriminating nat-
gression trees developed over periods when burned area anfla| versus anthropogenic contributions to global change,
Terra MODIS active fire data were available to indirectly €s- 5n igentifying feedbacks between fire and climate change
timate burned area. Cross-calibration with fire observationg|_angmann et a).2009. In response to this need, a grow-
from the Tropical Rainfall Measuring Mission (TRMM) Vis-  jng number of multi-year, satellite-based global burned area
ible and Infrared Scanner (VIRS) and the Along-Track Scan-proqucts have been made publicly available over the past
ning Radiometer (ATSR) allowed the data set to be extendedgyeral years. These include: 1) the 1-km L3JRC prod-
prior to the MODIS era. With our data set we estimated ,ct (Tansey et a).2008, currently spanning April 2000~
that the global annual area burned for the years 1997-200§4rch 2007, and produced from SPOT VEGETATION im-
varied between 330 and 431 Mha, with the maximum oc-agery with a modified version of thansey et al(2004
curring in 1998. We compared our data set to the recenisjgpal Burnt Area (GBA) 2000 algorithm: 2) the 1-km
GFED2, L3JRC, GLOBCARBON, and MODIS MCD45A1 G| OBCARBON burned area product, currently spanning
global burned area products and found substantial differenceg | 1998-December 2007, derived from SPOT VEGETA-
inmany regions. Lastly, we assessed the interannual variabilrjoN; Along-Track Scanning Radiometer (ATSR-2), and
ity and long-term trends in global burned area over the pasizgyanced ATSR (AATSR) imagery using a combination of
mapping algorithmsKlummer et al.2006; and 3) theRoy

et al.(2008 500-m Moderate Resolution Imaging Spectrora-

Correspondence td. Giglio diometer (MODIS) burned area product (MCD45A1), gen-
BY (louis.giglio@ssaihg.com) erated from Terra and Aqua MODIS imagery and available
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from mid-2000 through the present. All three data sets mamf the 500-m burned area maps is limited to Southern Africa,
the spatial extent of burned vegetation (variously referred toSiberia, and the Western United States through comparison
asburned areasburnt areas burn scarsfire scars andfire- with high resolution Landsat imageréiglio et al, 2009.
affected aregsat daily temporal resolution. At coarser spa- Individual calendar months were processed for most
tial and temporal scales, the version 2 Global Fire EmissionsMODIS land tiles, yielding a total of approximately 8300
Database (GFEDZ2) provides monthly global burned area estile-months” of burned area maps between November 2000
timates at 1 spatial resolution from January 1997—-Decemberand July 2009. This is nearly 19 times the quantity of training
2008. In GFEDZ2, burned area was estimated indirectly usingiata used to produce the GFED2 burned area dat&ggiq
monthly active fire observations from the MODIS, ATSR, et al, 2006). The resulting maps were aggregated t® 0.5
and Tropical Rainfall Measuring Mission (TRMM) Visible spatial resolution and monthly temporal resolution.
and Infrared Scanner (VIRS) sensors, drawing upon a rela- While the theGiglio et al. (2009 DB mapping algorithm
tively small set of MODIS 500-m burned area observationsshares some similarities with tfRoy et al.(20059 MCD45
(Giglio et al, 2006h van der Werf et a).20086. bi-directional reflectance modeling approach — both produce
Here we describe the next generation of the Global Fireburned area maps from 500-m MODIS surface reflectance
Emissions Database burned area data set — GFED3 — whidimagery, for example — the two algorithms have some im-
provides global, monthly burned area aggregated t6 0.5 portant differences. Among these are the following: 1) the
spatial resolution from mid-1996 through the present, andDB algorithm makes heavy use of active fire observations;
is specifically intended for use within large-scale (typically the MCD45 algorithm uses no active fire information what-
global) atmospheric and biogeochemical models. Unlikesoever. 2) The DB algorithm relies primarily on a change
existing products, the data set was compiled using interin a vegetation index to identify burns, whereas the MCD45
calibrated observations from multiple sensors, followed byalgorithm relies primarily on a change in reflectance. 3) By
a correction phase to improve consistency, thus reducing theesign the DB algorithm is somewhat more tolerant of cloud
need for end users to manually stitch together multiple (andand aerosol contamination since such noise is often more
potentially inconsistent) burned area data sets over extendelikely to be encountered in a (typically near-real time) direct
time periods. Included in the data set are spatially-explicitbroadcast data stream.
uncertainties that reflect the varying quality of the burned
area estimates produced from each source and methodok.2 Active fire data
ogy. Following a summary of the input data in Setand
a description of our methods in Se8t.we use the GFED3 We used the Collection 5, version 1 Terra MODIS monthly
data set to assess the interannual variability and long-ternClimate Modeling Grid (CMG) fire product at O.5patial
trends in global burned area over the past 13 years in &ect. resolution (“MOD14CMH") from November 2000 through
and then compare it to the independent L3JRC, GLOBCAR-mid-2009. We also used tl&iglio et al.(2003 0.5 gridded
BON, and Collection 5 MODIS MCD45A1 global burned monthly VIRS fire product, from January 1998 through De-
area products in Sed. cember 2008, and the ATSR World Fire Atlas (algorithm 2)
from July 1996 through December 200%rino and Rosaz
1999. For compatibility the ATSR fire locations were grid-
2 Data ded to produce monthly C?5ATSR fire counts.

2.1 Burned area data

3 Method
Reference burned area maps were produced from the 500-m
MODIS atmospherically-corrected Level 2G surface re-As an interim product based on a small quantity of 500-m
flectance productermote and Justice2002, the MODIS  burned area training data, the GFED2 burned area data set
Level 3 daily active fire productsl(stice et a).2009, and  was composed solely of indirect burned area estimates de-
the MODIS Level 3 96-day land cover produétried! et al, rived from gridded active fire counts. In that approach, a se-
2002 using theGiglio et al.(2009 MODIS direct broadcast ries of regional regression trees were used to relate monthly
(DB) burned area mapping algorithm. The algorithm iden- active-fire and ancillary land cover information to monthly
tifies the date of burn (to the nearest day) for each grid cellarea burned at°1spatial resolution Giglio et al, 20068.
within individual MODIS Level 3 tiles \(Volfe et al, 1998 The enormous quantity of 500-m MODIS burned area train-
by applying dynamic thresholds to composite imagery genering data we have produced since that earlier work, however,
ated from a burn-sensitive vegetation index. These thresholdkas allowed us to incorporate several major refinements into
are derived locally using training samples of both burned andGFED3. First, the spatial resolution of the global grid was
unburned pixels identified with the 1-km MODIS active fire quadrupled from 1to 0.5. Second, we used 500-m MODIS
mask, enabling the algorithm to function over a wide rangedaily burned area map$(glio et al, 2009 as the default
of conditions in multiple ecosystems. At present, validation source; indirect estimates are derived from active fire counts
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L. Giglio et al.: Assessing burned area variability and trends 1173

only when the 500-m direct measurements are unavailable3.1.3 Regional regression trees

Finally, in producing the indirect, active-fire based estimates

of burned area, we largely (though not entirely) replaced theAs noted above, the highly spatially-constrained local regres-
regional regression trees of GFED2 with a local regressiorsion approach can lead to uncalibrated grid cells in areas
approach that greatly reduces the spatial scales over whicheldom (or never) experiencing fires. In such cases no esti-

the regression relationships are extrapolated. mate of monthly burned area can be produced using Hq. (
The similarly problematic issue of extrapolation must also be

3.1 MODIS era dealt with since use of Eql) in a predictive manner may at
some point require extrapolation beyond the largest number

3.1.1 Direct mapping of monthly fire counts seen in the training observations used

for calibration. The obvious solution is to expand the spatial
As mentioned above, the GFED3 monthly burned area estiwindow from which training observations are collected, but
mates during the MODIS era (2000-present) were obtainedhis proves problematic because larger spatial windows are
almost exclusively from daily 500-m burned area maps pro-jikely to include observations from a wider range of tree and
duced using thé&iglio et al.(2009 MODIS direct broadcast  herbaceous vegetation cover fractions not representative of
burned area mapping algorithm and aggregated to$p&-  the center grid cell. For uncalibrated grid cells, therefore, and
tial and monthly temporal resolution. Nearly 92% of the areafor predictions requiring excessive extrapolation, we instead
burned worldwide from November 2000 through mid-2009 produce burned area estimates using a set of regional regres-

was mapped directly in this manner. sion trees Breiman et al. 1984. Compared to local regres-
. sion, regression trees pool the training data into much larger,
3.1.2 Local regression “optimal” subsets, and are consequently better able to han-

During iods wh 500-m MODIS b d dle both situations described above. Following the approach
uring time periods when our -m urned areéa, ;seq for GFED2, we used the training data to construct re-

maps were not available for a particular MODIS tile, we esti- gression trees for 14 geographic regions (EjgFor consis-

mated burned area within the affected grid cells on a monthlytency with the local regression approach, our regression trees

basis using a regression relationship obtained by Ca”bratingnodeled monthly burned area as the same nonlinear function
Terra MODIS monthly active fire counts to monthly burned ?f monthly fire counts within each terminal node, i.e

area derived from our 500-m reference maps. The quantity o
training data was sufficient to constrain the regression to betA (i, 1) =, Nt (i,1)?", )

ter capture local environmental characteristics and fire man-

agement practices. To this end, we used local regression t¢herec; and g, are functions of the splitting variables ex-
express the month|y area burned in aocgﬁd cell at loca- pressed asa regression tree for reg‘ioAs with GFED2, the
tion i during months as a nonlinear function of overpass- Splitting variables consisted of the mean percent tree cover

corrected monthly active fire coundg (i, 1), i.e., (Tt), mean percent herbaceous cové)( and mean percent
_ bare ground B;) from the 2001 global MODIS Vegetation
AG, 1) =a()Ni(i,0)PD, (1)  Continuous Fields (VCF) productsiénsen et a).2003 for

) ) all fire pixels within the grid cell, as well as monthly mean
wherex (i)>0 andf(i)>0. The parametersandp were de-  fire_pixel cluster sizes) and monthly fire counts\().
rived independently for each grid cell using all training ob-

servations available for the grid cell for which E4) vas 3.1.4 Merging of approaches

being fitted. During the least squares fitting process observa-

tions having zero burned area and zero active fire pixels wer&or those locations and time periods lacking direct obser-
excluded as these had no influence aside from artificially in-vations of burned area from our 500-m MODIS maps, we
flating the apparent quality of the fit. If fewer than eight train- combined the two regression approaches to generate an esti-
ing observations were available, or if examination of the his-mate of the area burned in a particular grid cell during a par-
torical active fire time series for the grid cell revealed that sig-ticular month in the following manner. If regression coeffi-
nificant extrapolation was necessary at least once during theients were available for the grid cell, and if the number of
historical record, then additional training observations weremonthly fire counts in the cellN;(i,7)] was not so large that
gathered from the eight neighboring grid cells adjacent to theexcessive extrapolation was necessary, then the burned area
grid cell being processed. Grid cells lacking a sufficient num-in the grid cell for the month was estimated using EL. (

ber of training observations even with this broadened searchf, however, either condition was not satisfied, the monthly
criteria were flagged as having no reliable calibration; for burned area for the grid cell was instead estimated using
such cells no estimate of monthly burned area can be madgq. ) with regression parameters obtained from the appro-
via Eq. (1) even when active fires were observed. An alterna-priate terminal node of the appropriate regional regression
tive approach for producing estimates in such cases will baree. We deemed extrapolation to be excessivé (f,7)>10
discussed in the next section. and Ns(i,t)>1.25M;, where M; was the maximum number

www.biogeosciences.net/7/1171/2010/ Biogeosciences, 7, 11862010



1174 L. Giglio et al.: Assessing burned area variability and trends

3.3 Uncertainties

The uncertainty in the area burned allocated to each grid cell
arises from two distinct sources: errors in the 500-m burned
area maps, and the inability of the relationships in Ef. (
and @) to perfectly model the training data, leading to scat-
ter of observations about the regression line. We considered
both sources when assigning uncertainty estimates suitable

BONA Boreal North America NHAF Northern Hemisphere Africa . f

TENA Temperate North America SHAF  Southern Hemisphere Africa for propagatlon into glObaI mOdelS .

CEAM Central America BOAS Boreal Asia

NHSA Northern Hemisphere South America CEAS  Central Asia .
SHSA  Southern Hemisphere South America SEAS  Southeast Asia 3 . 3 . l Ag g regated 500‘m bu m ed area u ncel’tal nty
EURO Europe EQAS Equatorial Asia

MIDE Middle East AUST  Australia and New Zealand

Assigning burned area to a monthly grid cell by spatially
Fig. 1. Map of the 14 regions used in this study, af&glio et al. and temporally aggregating (or binning) the 500-m MODIS
(2006 andvan der Werf et al(2006). burned area maps is essentially an exercise in counting pix-

els, and the net uncertainty in this process is the combined

result of four underlying types of errors: 1) misclassifica-
of fire counts among the monthly training observations usedjon errors, in which burned pixels are mistakenly classified
to calibrate the grid cell. as unburned, and vice versa; 2) temporal binning errors, in
which burned pixels are assigned to the incorrect calendar
month due to the inherent uncertainty in the estimated date

To extend the GFED3 time series prior to the start of high_Of the burn (typically2 days); 3) quantization error aris-

quality Terra MODIS data (November 2000) we used ac-n9 from the inherent 500-m spatial resolution of the MODIS
pixels used to map burns; and 4) resampling errors accrued

tive fire observations from the VIRS and ATSR sensors.] L . .
n projecting the native 500-m MODIS swath pixels onto the

Using the same reference data derived from our 500-m. ) . ) :
MODIS burned area maps, the calibration procedures dgtlxed MODIS sinusoidal grid. We assumed that the first error

scribed in Sects3.1.2and3.1.3were repeated for each sen- fnoﬁLcreangf 2;)Smg:/':na{1hde'?2; rtiev(lfhigzrpsir!ngtie; (;rnsdotjerr(;es
sor, yielding local regression coefficients and regional re- ySIS. y p

gression trees constructed specifically for use with VIRS anuooralbrlesolunon ?f the GFED3 grid, this was not an unrea-
ATSR monthly fire counts. During the pre-MODIS era the solr:ja ﬁassump I(I)(;L | bott 500 el
monthly burned area in each grid cell was then estimated us- cally we could employ a bottom up, -m pxer
ing Egs. () and @), as described above, using ATSR- and level probabilistic approach to estimate an uncertainty in the
VIRS-specific regression parameters and regression trees. .Itz)urned area assigned to each monthly grid cell. Ata mini-

ensure better continuity with the MODIS era, these estimateg:um.th!s woutl)d req(ljure__\ e:lstlmatets; ofthe probgblh_tlels of mis-
required a correction that will be discussed in S4@&. classifying a burned pixel as unburnegh{) and misclassi-

Note that the ATSR World Fire Atlas is supplied in raw fying an unburned pixel as burne@E[b). A Monte Carlo .
form with no overpass correction, hence for this sensor Weapproach could then be used to estimate the net uncertainty
calibrated against raw fire counts directly. While this has!" bumed area_for each mqnthly grid cell, thOUQh this .WOUI.d
no detrimental effect on the local regression, which will im- be a computationally formidable undertaking, especially it
plicitly “absorb” the correction into the paran;eterei) and the secondary error sources noted above were also included.
B(@), it will slightly degrade the quality of the burned area (Upder rather drastic ;implifying_assumptipns yncertainty
estimates made using the ATSR regional regression trees. estimates could be derived analytlc_ally. By ignoring all sec-

We note here that the choice of a relatively coarse one-Ondary sources .qf error a_nd assuming faai=0, for exam-
month time step in Egs.1f and @) was dictated not by ple, the probability density of monthly burned area would

MODIS but rather our desire to have the GFED3 time se—fOIIOW a binomial dis?ribution.) Confound_ing any pixe_l—level
ries extend back into the pre-MODIS era. The ability to pre- approach, however, is the fact that the misclassification prob-

dict burned area at the 0.%5FED3 spatial resolution using abilities are in reality highly dep'enQent on spat!al anq tem-
poral context. For example, the likelihood of having misclas-

either VIRS or ATSR fire counts is essentially nil at time ifiod 4 ©b 4500 ol i h higher th
scales much less than one month. (This is related to the issu% éd a lone, remote burne -M pixetis much higher than

: : ; the likelihood of having misclassified a burned pixel near the
of sampling frequency to be discussed in Sdct.) In ad- . ) : .
dition, VIRS is constrained to a monthly time step to avoid interior of the large €100 000 ha) burns common in Africa

strong diurnal sampling biases arising from the orbital pre_inthus.tral!a. S|mh|ITrIy, rlpllslclajsﬁqu[hunburped p|xelsth|n
cession of the TRMM satellite. e tropics is much less likely during the wet season than

during the (dry) fire season.

3.2 Pre-MODIS era

Biogeosciences, 7, 1171486 2010 www.biogeosciences.net/7/1171/2010/



L. Giglio et al.: Assessing burned area variability and trends 1175

As we currently lack sufficient data to estimate meaning-
ful contextual pixel-level misclassification probabilities for
our 500-m burned area maps, we used a simpler, top down
approach to approximate the net uncertainty in our grid-
ded 500-m burned area estimates using validation data from
Giglio et al.(2009. In that study the authors assessed the ac-
curacy of the areas of individual fire scars mapped with the
MODIS 500-m burned area mapping algorithm in Siberia,
Southern Africa, and the Western United States using ground
truth maps produced manually from high resolution Landsat
imagery. An analysis of the residuals in MODIS vs. Landsat
burned areas showed that the variance in the measured area
of an individual fire scar is approximately proportional to the
area of the fire scar (Fi@). As the range of burn sizes exam-
ined in that study (approximately 0.1 ha to 300 000 ha) spans MODIS Burned Area (ha)
the range of burned area possible within &@3-ED3 grid

Siberia

25000
1

[residual| (ha)
15000
!

5000

0

cell, we may use this result to conservatively model the un- § N —

certainty in our binned monthly burned area estimates. Thus g | — ilfzigak()?/?; CS‘(5C° h_a)282 hay
) o S | — Africa. high TC (cs = 3145 ha)

oq(i,t) =c()A(,1), ) 8 | — USA(ca=53.1ha)

where o4 (i,t) is the standard deviation of the monthly g § |

burned area estimate (here obtained by binning pixels of our ¢ g

500-m burned area maps) anglis the “binned-burned-area 5

uncertainty coefficient” for the grid cell at locatienin hav- S

ing estimated the coefficieng using validation data for indi- ©

vidual burns (rather than total burned area in a grid cell) we o

are not accounting for the potential canceling of errors due T
to the presence of multiple burns within the same grid cell,
hence our description of this approach as a “conservative”
model since it may tend to overestimate the actual uncer- MODIS Burned Area (ha)

tainty. In extrapolating the results from the three validation

regions we used the results for Siberia in BOAS and BONAFig. 2. Top: example of fitted residuals fro@iglio et al. (2009
(see Fig.1), the results from the Western United States in Sibe_rian validation data. Residugls are those rema_ining f_rom alin-
TENA, and the results for Southern Africa in SHAF and €& fit of MODIS vs. Landsat-derived areas of individual fire scars.
NHAF, partitioned into low and high tree cover regions using Eottom: one-stagda:rg(-)ocl)eviationt_ ulncert?irt]_ty in Siz? of ti_ndivi;ﬂgal
the global VCF data set averaged to“Ogpatial resolution. e Scars mapped & “m spatial resolfion as a tunction of bum

. . . éize for theGiglio et al. (2009 validation regions, with results for
In the remaining GFED regions we used the median value o outhern Africa partitioned into high and low fractional tree cover

cg=571ha. (TC) subsets.

10* 102 10° 10* 10°

3.3.2 Regression uncertainties
Eq. @), but with monthly burned area(i,t) predicted using
When using Eg. X) to indirectly estimate monthly area Eg. (1). Thus
burned we followed the approach @figlio et al. (2006h 2. o
and regressed the square of the residuals against monthly fi@ ({:) = s AG.1). ®)

counts for each grid cell. The varianeg predicted by this g total one-standard-deviation (“one-sigma”) uncertainty
supplementary fit then provides an estimate of the regressioggiimate for all future predictions is then the sum of the re-

uncertainty, i.e., spective one-sigma uncertainties:
oii,1) = cr(1) Ns (i, 1), 4) oa(i,t) =or(i,t) +os(i,1) (6)

wherecr is the “regression variance coefficient” for the grid Here we do not add the'respective gncertainties in qu.adrature
cell at locationi. We must also account for the inherent vari- S both terms on the right hand side of E6). gre derived

ance in the binned 500-m burned area training observation§0m monthly fire counts and are consequently not indepen-
used in calibrating Eq.1). We estimate this variance using

www.biogeosciences.net/7/1171/2010/ Biogeosciences, 7, 11862010



1176 L. Giglio et al.: Assessing burned area variability and trends

When using Eq.3) to indirectly estimate monthly burned
area the procedure is identical except that a separate regres:
sion variance coefficient is now associated with each terminal | -
node of each regression tree, i.e., : e &

ﬁh km? ixe" -
. . (0), e e
o2(i.1) =cr,Ni(i.1), 7) 2

where the coefficientr , is a function of the splitting vari- e G
ables in the region regression tree. L Lo
P 8

o " N

3.4 Ancillary fire and burned area data layers ic : gka pier) - ’
In addition to the gridded monthly burned area and uncer-
tainty estimates described above, GFED3 provides additional "5=<gs%,
ancillary data layers useful for modeling as well as for gen- -
eral use of the data set. These include: 1) the distribution of |- - ) - U N
burned area within the grid cell as a function of fractional tree te 0 /. _

cover from the MODIS VCF producHansen et al.2003, T
2) the distribution of burned area within the grid cell across Fig. 3. Effective burned area per fire pixel (left column) and corre-

different MODIS land cover classesied! et al, 2002,  sponding linear correlation (right column) for the constrained linear
and 3) the fraction of burned area observed in organic peagase g=1 in Eq.1) for the Terra MODIS(a, b), VIRS (c, d) and
(currently our peat map is limited to Borneo and Sumatra,ATSR (e, f) sensors. Note different scales used in (a), (c), and (e).
where peat fires are most prevalent). For the MODIS era weThe spatial coverage of the VIRS is restricted to within approxi-
compiled these fields using our high quality 500-m MODIS mately 38 of the Equator due to the highly inclined TRMM orbit,
burned area maps for each ‘O@qd cell; when these maps hence no data are available at higher latitudes for this sensor.
were not available (as during the pre-MODIS era) we com-

piled the fields based on the locations of all 1-km active fire ) .
pixels (2.5 km for VIRS) within each grid cell. Based on the satelhte.overpas.ses. For the MODIS and_ VIRS sensors this
utility of fire persistence for identifying deforestation fires, feature is effectively absent since the gridded MODIS and
monthly fire persistence was calculated using active fire obVIRS fire products are corrected for this variation in over-

servations as described@iglio et al.(20068) and provided ~ Pass frequency (which is characteristic of all polar-orbiting
in an additional ancillary data layer. and precessing satellites). Additional factors affecting-

clude local variations in topography, fire management prac-
tices, and cloud and forest canopy obscuration.

4 Results Comparing across platforms, the MODIS instrument con-
sistently has the least burned area per fire pixel (lowgst
4.1 Local regression and the highest correlation between monthly fire counts and

monthly burned area, while the ATSR-2/AATSR sensor con-
Equation () was fitted separately for each sensor to obtainsjstently has the most burned area per fire pixel (highgst
the spatially-dependent regression coefficientndg. Be-  and the lowest correlation. The VIRS sensor in turn lies be-
cause small changes in the expongotn produce very large  tween these two extremes. This trend is a result of the lower
changes in the coefficient (over several orders of magni- relative sampling frequencies of the VIRS and ATSR sensors
tude), it is instructive to consider the special case in which(Giglio et al, 2006l). Consequently, more burned area must
B is constrained to unity. Under this constraint the coeffi- be assigned to each fire pixel (thus raising and the fre-
cienta represents the effective burned area per fire pixel, andquency of unobserved fires is greater (thus reducing the cor-
is directly comparable across all grid cells. For this specialrelation) for these sensors. The impact on the GFED3 burned
linear case we show the coefficientsand the correspond-  area data set will be larger uncertainties in the pre-MODIS

ing correlation for each sensor in Fi. For all three sen-  and especially the pre-VIRS time periods.
sors the general spatial pattern in the effective burned area

per fire pixel reflects an increase anwith an increase in 4.2 Regional regression trees

herbaceous vegetation fraction due to the lower densities and

higher fire spread rates characteristic of dryer, herbaceouRegression trees were constructed for each sensor and each
fuels Scholes et al.1996 van der Werf et a).2003 Giglio region. A representative example for each sensor is shown
et al, 20061. A secondary (and independent) feature appli- for the NH Africa region in Fig4. The number of terminal
cable only to the ATSR sensor is a decrease iat higher  nodes in the Terra MODIS trees ranged from 9 (NHSA) to
latitudes due to the latitudinal increase in the frequency of16 (BONA, SHSA, NHAF, and BOAS), and for the ATSR
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MODIS T<12 T<45
Tgo/ \CSZJS CSZ.IS/ \TSSI
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Fig. 4. Example of regression trees relating monthly fire counts to monthly burned area obtained for the Terra MODIS, VIRS, and ATSR
sensors in the Northern Hemisphere Africa region. The left fork is taken when the condition at a split is satisfied. The upper and lower
numbers in each terminal node (leaf) are the respective values of the parametiers) and g, appearing in Eq.2) for the node. As in

Giglio et al.(20068), the subscript “f” has been dropped from the splitting variaileercent tree coveri; (percent herbaceous cover),

B (percent bare groundl; (mean fire-pixel cluster size), ari¢ (corrected monthly fire counts) to reduce clutter.

ranged from 5 (EURO, SHAF, and SEAS) to 8 (BONA, tors to our monthly VIRS- and ATSR-based burned area es-
TENA, MIDE, BOAS, and AUST). For VIRS the largest timates to achieve better consistency with our MODIS-based
tree (AUST) contained 16 terminal nodes. (The minimum monthly estimates. We denote these factorsybywhere
VIRS tree size is not meaningful to compare because theéhe subscript- denotes the region. The corrected monthly
sensor provides only partial coverage in many extra-tropicaburned area estimat€ (i, ¢) in the grid cell at location dur-
regions.) Unlike GFED2, the wide range of sizes does not reing monthz is then

flect differences in the quantity of calibration data available

for each region, but rather the complexity of the relationshipA’(i,1) = v A, 1), (8
between burned area and fire counts (which is in turn influ-

. . here A(i,t) is the uncorrected monthly burned area esti-
th f th the strength of the as®’
enced by the size of the region), and the strength of the as ate predicted by EqslYor (2)

sociation between these quantities. The significantly lower™ ion f derived by | | ing th
correlations observed in the tropics for the ATSR, for exam- Correction factors were erived by linearly regressing the
total monthly burned area derived from MODIS in each re-

ple, result in smaller trees simply because further splitting™, . . !
of terminal nodes yields no meaningful improvement in the 9i0N against the correspondlng total burn_ed area estimated
predictive capability of the tree. from VIRS and ATSR monthly fire counts, i.e.,

4.3 Pre-MODIS correction ;AMOD'S(Z’D - ;AV'RS(Z’ . ©

As discussed above, both the VIRS and the ATSR providewhere Apmopis(i, ) is the monthly burned area in each grid
substantially lower sampling rates compared to the Terracell within regionr and month as derived from the binned
MODIS sensor. In the case of the ATSR this undersampling500-m MODIS burned area maps [or monthly MODIS fire
can be quite severe, and is further exacerbated by the factounts and either Eqsl) or (2) when the 500-m maps
that the sensor records only nighttime fires occurring wellare unavailable], andiyrs(i,t) is the corresponding un-
after the mid-afternoon peak in tropical fire activitgiglio, corrected burned area in each grid cell as estimated from
2007. This leads to large numbers of grid cells in which ac- monthly VIRS fire counts via Eqsl) or (2). A separate set
tive fires are never detected, yet which contain burned areaof regression coefficients is similarly derived for the ATSR.
In this situation it is impossible for burned area to be allo- The resulting coefficientg, are then used to correct the ini-
cated to such grid cells via Eqdl)(or (2), and the cumula- tial ATSR and VIRS burned area estimates in each grid cell
tive effect of such occurrences over large spatial and tempothrough Eq. §). An example regression for the ATSR is
ral scales is to underestimate the total area burned. To conshown in Fig.5. A complete list of regional correction fac-
pensate for this effect, we applied regional correction fac-tors is provided in Tabl@.
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Table 1. Monthly ATSR and VIRS burned area correction factors =R
(yr) and linear correlation coefficients)(
ATSR VIRS £ slope = 1.55
Region Vr r Y r = r=0.97
L o |
Boreal North America 135 094 - - -
Temperate North America 1.52 0.95 150 0.90 g
Central America 1.39 097 135 0.95 a
NH South America 142 0.86 1.22 0.89 f
SH South America 155 097 125 0.97 é o L
Europe 1.75 0.95 - - .
Middle East 130 091 238 0.84 é Souther! Hlemisphere
NH Africa 184 091 114 0.99 =
SH Africa 213 097 111 0.96
Boreal Asia 1.36 0.89 - -
Central Asia 1.70 098 - - °r
Southeast Asia 139 0.78 145 0.92 0 5 10 15
Equatorial Asia 140 096 143 0.97
Australia 1.67 098 1.37 0.96 ATSR Uncorrected Monthly Burned Area (Mha)

Fig. 5. 2001-2008 total monthly area burned in the SH South Amer-
ica region derived from MODIS data versus the corresponding un-

Itis important to keep in mind that the correction in E8). ( corrected area estimated from ATSR fire counts. The slope of the
) least squares regression line (solid line) provides the correction fac-

does not restore burned area to those VIRS and ATSR Zerqy . <o this region
fire-count grid cells that cause the cumulative underestima- '
tion of burned area in the first place. The correction merely

increases the area burned in grid cells already Contai”i”%dependently for each region based on sensor coverage and
burned area, based on the average fraction of burned argg, quality of the fit in Eq.9). Under these criteria, ATSR
thatis missing (relative to MODIS) in each region. While far fire ¢onts were used in the high-latitude regions (BONA and
from perfect, we deemed this approach preferable to “paintBOAS) as well as CEAM, SHAF, CEAS, and EQAS, and
ing in” missing burned area on the basis of, e.g., afire clima, g5 fire counts were used in NHSA, SHSA. NHAF, and
tology. _ o . AUST. In the remaining regions data from the two sensors
In propagating uncertainties we must include the effect of\, oo merged, with VIRS observations having precedence
the correction factor, including the uncertainty in the cor- \yhen available. Prior to January 1998 the GFED3 burned

rection factor itself. The uncertainty in our corrected pre- ;a4 time series was produced exclusively from ATSR obser-
MODIS monthly burned area estimates is then vations.

1
oA (i,t))2 (ﬂ)z] 2 (10) 4.5 Multi-year burned area estimates

We used the hybrid approach described in Sgatith the
whereo, . is the uncertainty iry,. Here we have assumed correction and merging described in Seets3 and4.4 to

that the uncertainties 4 (i,r) ando, , are random and in- Produce monthly burned area estimates spanning July 1996
dependent, which is valid since inclusion of our VIRS- and through mid-2009. Regional monthly burned area time series
ATSR-based burned area estimates in the GFED3 time seriea’® shown in Figs6 and7. Here the different colors indi-
was restricted to the pre-MODIS era, hence no pre-MODIScate the proportion of the monthly area burned contributed by

observations were used in fitting E§) ( each of the different sensors and methodologies used to pro-
duce the multi-year data set. In Fwe show the spatially
4.4 Merging of burned area estimates explicit 1997-2008 mean annual area burned and the associ-

ated uncertainties. It is important to note that the magnitude
As the spatial coverage of our ATSR- and VIRS-based es-of the uncertainties in our GFED3 burned area data set are not
timates overlap in the tropics and sub-tropics, we used thainiform over time; they are smallest during the MODIS era,
following scheme to merge the estimates from these sensonwhen the majority of the burned area estimates are obtained
during the pre-MODIS era. From January 1998 (the first full directly from our 500-m burned area maps, larger during the
calendar month of VIRS data) through October 2000 (the lastt998—2000 VIRS/ATSR overlap period, and larger still dur-
month of the pre-MODIS era) the choice of sensor was madeng the 1996-1997 ATSR-only era. For example, the 1997
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Fig. 6. Regional and worldwide July 1996—November 2009 time Fig. 7. Regional and worldwide July 1996—-November 2009 time
series of GFED3 monthly burned area. The different colors indi- series of GFED3 monthly burned area (continued from €)g.

cate the quantity of burned area contributed by each of the different
sensors (ATSR, VIRS, or Terra MODIS) and methodologies (500-m

map, local regression (LR), or regression tree (RT)) used to produce
the entire data set.

global mean burned area uncertainty is nearly seven times

larger than the 2007 global mean burned area uncertainty,
despite comparable total area burned in both years.
Following Giglio et al. (20063, we calculated two clima-

tological fields from our monthly burned area estimates as |-
part of our analysis. These were: 1) the seasonal peak in|

fire activity, defined as the calendar month having the great-
est area burned (Fi®a), and 2) the 12-month lagged auto-
correlation of the full 1996—2008 monthly burned area time
series (Fig9b), which provides a spatially-explicit measure
of the interannual variability and periodicity of fire activity.

The seasonal peak shows very good agreement with earlier
work by Giglio et al.(2006g, who used five years of MODIS

Fig. 8. 1997-2008 GFED3 mean annual burned area (top) and as-

active fire observations to characterize the global distribu-gociated one-sigma uncertainties (bottom), expressed as the fraction
tion and seasonality of biomass burning. Consistent also iryf each grid cell that burns each year. One sigma uncertainties were
terms of spatial distribution was the 12-month lagged auto-obtained by adding the monthly, spatially-explicit uncertainty esti-
correlation of monthly burned area. As in this earlier work, mates (assumed to be independent and random) in quadrature.

higher temporal autocorrelation tends to occur in many parts
of the tropics, with the highest values occuring in African
savannas, and lower autocorrelation (i.e., greater interannual

www.biogeosciences.net/7/1171/2010/
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[()NH) and Southern Hemisphere (SH) Africa, witt250 Mha BON (orange), and GFED2 (gregy dashed line) data sets.

urned on the continent annually. This represents on average

about 70% of the global area burned each year. The remain-

ing 30% is composed primarily of area burned in Australia,

followed by SH South America and Central Asia.

At 13 years the duration of our GFED3 data set is still
too short to reliably identify regional burned area trends, par-
ticularly in light of the major 1997-1998 EI-Rd South-
ern Oscillation (ENSO) event at the beginning of the time
series. Considering only the most obvious trends, how-

-2 0 2 4

Southern Oscillation Index
-6

1996 1998 2000 2002 2004 2006 2008 2010

Year

. ; Equatorial Asia Australia
ever, we note the following with respect to burned area: 1) _ = _3
a very gradual increase-(.5Mhayrt) in SH Africasince £ | i |H| g ” ,,,,,,,,,,,,,
2002; 2) an inconsistent though comparatively rapid decreases g {-tllull | [ 52 '“" Al
(=6 Mhayrt) in Australia since 2001; and 3) a gradual % Il .
decrease{8Mhayr?) in global burned area since 1998, ° 3 % J° 3L
which beginning in 2001 is primarily a result of the rapid -5 50 5 1015 -5 -5 0 5 10 15
decrease in Australia. lag (months) lag (months)

With respect to the impact of ENSO events on fire activity
during the GFED3 era, we note a significant association beFlg 11. July 1996-June 2009 Darwin-Tahiti Southern Oscillation

ndex (SOI) monthly time series, with positive values shown in or-
tween the Southern Oscillation Index (SOI) and area burne(ilnge and negative values shown in light blue for clarity (top panel).

in Equatorial Asia and Australia (Fig1). In Equatorial Asia 50| data were obtained from the National Weather Service Climate
the impact of ENSO activity (as measured by negative value$rediction Centerhitp://www.cpc.noaa.gov/data/indicgsBottom

of the SOI) was both positive and immediate, with greaterpanels show cross correlation between detrended monthly GFED3
burned occurring during ENSO events. This is consistentourned area and detrended SOl as a function of lag for the EQAS
with the earlier and more detailed analysigofler and Mur-  (left) and Australia (right) regions. The dashed horizontal lines in-
phy (2006, who reported a strong inverse correlation be- dicate the 95% confidence intervals.

tween the SOI and five years of monthly ATSR fire counts
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Table 2. 1997-2008 estimated annual regional and worldwide area burned.

Area Burned & 10* km?=Mha)
Region 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 Mean

BONA 0.9 4.5 15 0.7 0.3 3.2 2.0 5.0 29 1.9 15 1.4 2.2
TENA 0.5 11 1.8 2.2 1.2 1.4 1.3 0.7 1.7 2.4 2.7 15 15
CEAM 0.9 3.2 1.3 1.7 1.0 1.0 17 0.8 1.9 13 11 1.2 14
NHSA 1.7 2.8 2.0 2.4 20 11 3.3 3.2 1.8 15 2.5 18 2.2
SHSA 16.0 38.9 30.9 15.8 19.4 21.3 16.1 18.7 221 12.5 33.8 13.4 21.6
EURO 0.4 0.8 0.6 12 11 0.4 0.9 0.5 0.6 0.5 1.0 0.5 0.7
MIDE 0.6 0.9 0.8 0.6 1.2 1.0 0.9 0.8 0.7 0.9 1.2 0.6 0.9
NHAF 1524 148.7 1435 1459 1144 1261 1280 1164 1399 1152 1234 117.7 1310
SHAF 1116 153.1 1231 1183 117.3 1139 126.6 127.1 1341 122.2 1242 1315 1252
BOAS 3.1 12.9 4.7 7.2 5.8 8.1 15.9 1.6 2.8 4.3 3.2 12.0 6.8
CEAS 17.4 14.6 8.1 11.0 15.0 25.0 12.8 15.6 151 175 12.5 14.0 14.9
SEAS 3.9 7.9 9.5 4.5 4.5 7.7 6.3 10.7 7.1 5.9 9.9 7.0 7.1
EQAS 9.4 2.6 0.6 0.4 0.7 2.4 0.8 1.2 11 2.7 0.5 0.4 1.9
AUST 40.5 39.0 80.2 81.7 88.3 73.1 29.0 60.4 249 53.1  48.7 26.6 53.8
Global 359.6 431.2 408.7 393.8 3721 3856 3456 363.0 356.7 3420 366.3 329.7 371.2

in a study area corresponding to our EQAS region. In Aus-
tralia, the association between burned area and ENSO was
negative and significantly delayed (by about ten months), |
thus in this region a reduction in burned area tends to fol- | s
low ENSO events nearly a year later. This is a consequence-z=
of the lower fuel loads following drought yearRgnderson
et al, 2005 van der Werf et a).2008. We found significant
(though somewhat weaker) associations in several other re-ctoscason &
gions, in particular CEAM, TENA, and BOAS, with burned
area typically lagging the SOI by five to eight months. Fig. 12.2001-2006 mean annual burned area derived from GFED3,
GLOBCARBON, MCD45A1, and L3JRC burned area data sets, ex-
pressed as the fraction of each grid cell that burns each year.

5 Comparison with other satellite-based burned area
products

We compared our alobal burned area data set to the L3JRdeSS than 0.5% of the total area burned worldwide each year
CoIIectioF; 5 MOD?S (MCD45A1), and GLOBCARBON dnd is in this sense comparatively unimportant at the global
burned area products, as well as the GFED2 burned are%cale' o i ) ,
data set. We binned the L3JRC and MCD45A1 products to Of greater significance is the60% increase in annual

monthly temporal and 0%5spatial resolution to facilitate the Purned area in Southern Hemisphere Africa (SHAF), where
comparison. For each data set we calculated the total are@PProximately one third of the total area burned worldwide

burned annually on a regional basis (Fl§) and the 2001~ ©OCCUrs each year. Based on a separate analysis (not shown)

2006 mean annual area burned (Fig). we determined that about 30% of this difference was due to
significant omission errors in some of the 500-m burned area
5.1 Comparison with GFED2 training maps used to produce GFED2, where the impact of

these errors was amplified by the very small number of train-
The annual time series in Fig0 indicate that while GFED3  ing maps available at the time. This lack of training data was
shows only a relatively modest-(L0%) increase in world-  ultimately responsible for the remaining 70% of the differ-
wide area burned each year over GFED2, the difference irence as well. This can be seen from Hig, which shows the
some regions is substantially larger. The magnitude of thesérequency distribution of the effective burned area per fire
differences can be seen more clearly in Hig.which shows  pixel («) for all grid cells within SHAF for the constrained
the relative change in mean burned area from GFED2 tdocal regressiond = 1) described in Sec4.1 (Here we con-
GFED3. While the relative change is greatest in the Middlesider the constrained case as it permits a direct comparison
East and Europe, the area burned in these regions representith GFED2.) Superimposed on the continuous frequency
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Fig. 13. Change between GFED3 and GFED2 2001-2006 mean
burned area, relative to GFED2. Positive values indicate an increas
in burned area in GFED3 compared to GFED2, while negative val-
ues indicate a decrease.

Eig. 14. Frequency of effective burned area per fire pixélfor all
grid cells within SHAF (grey bars), derived from Terra MODIS lo-
cal regression for the constrained linear cgse-(1). Black vertical
lines indicates the discrete valuescofvithin the terminal nodes of

distribution (which qualitatively resembles an exponential the GFED2 SHAF r_eglonal regression tree (inset), with _the height
of each line indicating the fraction of monthly observations from

QIStrlt?utlon) "?“e thg dlspre.te VglueSoo(shown "?‘S black ver- 2001-2006 falling within each terminal node. Variables in the non-
tical lines, with height indicating frequency) in each of the o/ minal nodes of regression tree are labeled as indig.

seven terminal nodes of the GFED2 SHAF regional regres-

sion tree (Figl4 inset). Of interest here is the difference in

the general shape of each distribution, as well as the signifof ¢ contained within the terminal nodes of the tree provide
icant gaps in the discrete case. Had the regression tree begf\:omparatively poor sampling of the (approximately) expo-
grown with a sufficiently large training sample, the two dis- nential distributions obtained through local regression.
tributions would be in much better agreement, with similar 1o nelp assess the extent of the improvements incor-
shapes and with the discrete valuesxain the (now large) porated into GFED3, we compared burned area estimates
set of terminal nodes spaced much more densely over thgom poth GFED2 and GFED3 to independent estimates
continuous distribution. Being limited in size by the small compiled by the Canadian Interagency Forest Fire Centre
quantity of training data available at the time, however, the(c|FFC) and the National Interagency Fire Center (NIFC).
SHAF regression tree is too small to adequately represent thghe CIFFC provides yearly burned area totals for nine
entire range ot needed to accurately estimate burned areacanadian provinces (British Columbia, Alberta, Manitoba,
with the following consequences: In the 23% of grid cells Newfoundland and Labrador, Northwest Territories, Ontario,
for which GFED3 has a value of below the GFED2 min-  quebec, Saskatchewan, and the Yukon Territories). Plots of
imum of 1.01kn?/pixel, GFED2 will overestimate burned GEED versus CIEEC burned area (F1g, top) show the sig-
area. The terminal node containing this minimum happenssificantly improved agreement attained with GFED3 during
to be the most common destination for the highest tree covepoth the MODIS and pre-MODIS eras. Improvement is also
grid cells found in SHAF, thus GFED?2 tends to allocate this seen in the comparison with NIFC estimates for the United

excess burned area to wooded areas within this regioq. Constates (Fig15, bottom), particularly during the pre-MODIS
versely, the small number of terminal nodes located in theg,g

upper half of the continuous distribution leads to a deficit of

burned area in the less wooded areas of SHAF, thus inthisre5.2  Comparison with the MCD45A1, L3JRC, and
gion GFED2 routinely underestimates the extent of savanna GLOBCARBON burned area data sets

fires.

This same paucity of training data limits the fidelity of the To facilitate our comparison with the MCD45A1, L3JRC,
GFED2 regression trees used to estimate burned area in othand GLOBCARBON products, we analyzed spatially ex-
regions such as NH South America and especially Equatoriaplicit differences during 2001-2006 when data from all four
Asia (here the regression tree contained only two terminaproducts was available (Figl6). Focusing first on the
nodes). As with SHAF, the small number of discrete valuesL3JRC product, the burned area reported in this data set is

Biogeosciences, 7, 1171486 2010 www.biogeosciences.net/7/1171/2010/
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Fig. 15. 1997-2008 GFED2 (left column) and GFED3 (right
column) annual burned area totals versus independent annual to4
tals compiled by the Canadian Interagency Forest Fire Centre
(http://www.ciffc.caj for nine Canadian provinces (top row) and {
the National Interagency Fire Centéttp://www.nifc.gov/fireinfo/ <780.°-40 20 -5 0 5 20 40 80
fire_stats.htn) for the United States (bottom row). Totals from the
pre-MODIS era are shown in red; totals from the MODIS era (2001 Fig. 16. Differences between the 2001-2006 mean annual burned
onward) are shown in blue. area derived from the MCD45A1, L3JRC, and GLOBCARBON
data sets and the corresponding mean derived from GFED3, ex-
pressed as a fraction of each grid cell. Red indicates a surplus of

) ) burned area relative to GFED3, while blue indicates a deficit.
consistently many times larger than both the GFED3 and

MCD45A1 products in seven regions (Boreal North Amer-
ica, Temperate North America, Central America, Europe,
Middle East, Boreal Asia, and Central Asia) and, conversely,
consistently about half as large in NH Africa and two thirds
as large in SH Africa. The large surplus in seven re-

arecent intercomparison of the L3JRC and MODIS products,

although the zero-intercept regression constraint used by the
authors inadvertently obscures those instances in which the
gions is alarming since the validation performedansey L3JRC burned areas and the national statistics are inversely

et al.(2008 using 72 Landsat-based reference maps revealef!ated. The L3JRC product also often reports burned area in
a substantial underestimation of area burned in the L3JRc&'d regions containing little burnable vegetation. The prox-
product (by roughly a factor of two) in all land cover classes IMity of these regions to “pure” deserts suggests that these
they considered with the exception of needle-leaved decigburned areas might actually be false alarms limited in extent
uous forest. This finding might seem to suggest that thePY @ Static desert mask.

GFED3 and MCD45A1 burned area products even more The GLOBCARBON product strongly resembles the
grossly underestimate burned area in these regions. However3JRC product, with a similar spatial distribution of burned
by comparing annual burned area totals for each product t@rea, but generally lower magnitude. Like the L3JRC prod-
the independent CIFFC and NIFC mentioned above, and aduct, it appears to significantly overestimate burned area in
ditional estimates from the Alaskan Forest Service (AFS), wethe continental United States and Canada, and shares the
conclude that the L3JRC product is significantly overestimat-same poor correlation with independent estimates (&Y.

ing burned area in at least North America (Fig). We note A major difference between the two products occurs in
also that while the GFED3 and MCD45A1 annual totals areCentral America, however, where the GLOBCARBON to-
highly correlated with the independent North American esti-tals are comparable to those of GFED3 and MCD45A1,
mates, the L3JRC totals are either uncorrelated or negativelgnd the L3JRC totals are about three times larger. In
correlated with the independent estimates. These results ai®H Africa, GLOBCARBON consistently reported the least
consistent with the findings d€hang and Song¢2009 in burned area of all data sets, a result that initially appears to
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GFEDS mcoss  Canada  L3IRC GLOBCARBON differences in both regions. Aside from GFED3 again allo-
SR 0L Tl PR cating more burned area along bare-herbaceous gradients, the
spatial trends with respect to vegetation are much less con-

/ \\ I sistent in Africa than elsewhere.
T w1 slope=-2.04 | 7 .
ol = \r=-047 ol

7] slope=0.48 K
4 r=0.88 .

w |
N

00 10 20 30
L1
00 10 20 30

A | Sl ol =04 Jodll N The EQAS region warrants particular attention because
00 T0 B0 300010 K emedaeatina 0 here GFED3 consistently reports much higher annual burned
&+ om0 - 9 . area totals than either the MCD45A1, L3JRC, or GLOB-
FEE RS P R L P SR CARBON products (which are relatively consistent in this
%wf S ~/ a4 94" case). For this region the “surplus” GFED3 annual burned
§“ 1 T o] _ ":f‘;’%%i”-"“ o] _ --'flg%zo_% area is typically 1-2 Mha. The relative discrepancy in EQAS
B T 154 61353 el s m 45 & gxcegds 100% and is worrisome because.comparable rela-
NIFC B“/Tf;s’*gwha) tl\{e discrepancies will propagate into any h|gh§r-level mod-
3 [ Fope-081 S {domzost |51 T8 Toopom e!lng effort (such as emissions m_odel_lng)_ making use of the
o] s s — e R different products. To help explain this discrepancy, we ex-
o] o] S B amined daily MODIS surface reflectance imagery from 2002
K :/: Caopeon1 | ] and 2006 for several MODIS tiles in the region. While exten-
© 00 10 20 30 00 10 20 20 00 10 20 30 00 10 20 30 sive burning could be sporadically identified in the imagery,

AFS Burned Area (Mha)

the combination of persistent cloud cover and aggressive

Fig. 17. 2001-2006 GFED3 (left column, blue points), MCD4sA1 Cloud and aerosolfiltering used in generating the MCD45A1
(second column from left, green points), L3JRC (third column from p_rOdUCt reSt”Ct?d mapping tf) a Sma"_fracuon of the actual
left, red points), and GLOBCARBON (right column, orange points) fire season. This was especially true in 2006, when anoma-
annual burned area totals versus independent annual totals compild@usly high fire activity in Southern Borneo peaked unusually
by the Canadian Interagency Forest Fire Centre for Canada (topate in the fire season and subsequently abutted the onset of
row), the National Interagency Fire Center for the United Statesthe persistently-cloudy wet season, leaving very few post-
(center row), and the Alaskan Forest Service for the state of Alaskdire surface observations available for the predictive model-
(bottom row). Note change of scale in L3JRC and GLOBCARBON ing approach used in tHeoy et al.(2005 MCD45A1 algo-
plots for Canada and USA. rithm. As the mapping algorithm used to produce our 500-m
MODIS burned area maps is to some extent more resistant
to cloud and aerosol contamination in the reflectance time
be inconsistent with the Southern Africa validation Study of Series’ the |arger number of observations available for use

Roy and Boschet(2009. Based on an analysis of 11 Land- translates into fewer unmapped pixels. These same issues of
sat scenes, the authors found that the L3JRC and GLOBpersistent cloud cover and aerosol contamination are likely
CARBON products successfully mapped 14% and 60%, re+o contribute to the relatively low burned areas reported for

spectively, of the true area burned. Based on this result, ongQAS in the L3JRC and GLOBCARBON products as well.
would expect the burned area reported in SHAF to be con-

siderably higher for GLOBCARBON than for the L3JRC
product. The reason for this discrepancy probably lies intheg Conclusions
fact that the Roy and Boschetti study was restricted to about
two months of the SH Africa fire season, while our annual We used a combination of active fire observations from mul-
totals include an additional ten months during which a sub-tiple satellites, 500-m MODIS burned area maps, local re-
stantial number of out-of-season commission errors occur irgression, and regional regression trees to produce a hybrid,
the L3JRC product. In addition, our SH Africa totals were global, monthly burned area data set from July 1996 through
compiled over a much larger area than the Roy and Boschettinid-2009. Annual totals derived from these data showed
study region (by a factor of about 35), and consequently in-good agreement with independent annual estimates available
clude very large areas spanning some climatic zones not corfor Canada and the United States (both nationally and in the
sidered in their analysis for which their results may not bestate of Alaska). Using these data we estimated the global
representative. annual burned area for the years 1997-2008 to vary between
Focusing next on the GFED3 and MCD45A1 data sets, the330 and 431 Mha, with the maximum occurring in 1998 and
annual areas burned for these products have much great#iie minimum in 2008. The most extensive burning consis-
consistency in most regions. We note, however, that theently occurred in Africa, with~250 Mha burned on the con-
former tends to allocate more burned area along gradienttinent each year. This represents on average about 70% of
between bare ground and herbaceous vegetation, while thidae total area burned worldwide annually.
latter tends to allocate more burned area in cropland. De- By considering the 12-month lagged autocorrelation of the
spite having comparable annual totals in NH and SH Africa,burned area time series, we found that the lowest interan-
the GFED3 and MCD45A1 products show substantial spatiaihual variability in area burned occurred in the savannas of
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