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Preface

This is an expanded version of Anderson (1990), a Chapter
forthcoming in Volume IV of the Handbook of Mathematical
Economies. It provides a precise statement of the proper-
ties of nonstandard models and a number of proofs which
will be omitted from the Handbook because of space limi-
tations.

It is intended that this paper will form the nucleus of
a monograph. In order to give an indication of the topics
which will be covered, we have included in the text the
titles of phantom sections and chapters which remain to be
written. Ilustrations also need to be prepared.

Nonstandard analysis is a mathematical technique widely
used in diverse areas in pure and applied mathematics,
including probability theory, mathematical physics, func-
tional analysis. Our primary goal is to provide a careful
development of nonstandard methodology in sufficient de-
tail to allow the reader to use it in diverse areas in mathe-
matical economics. This requires some work in mathemat-
ical logic. More importantly, it requires a careful study of
the nonstandard treatment of real analysis, measure theory,
topological spaces, and so on.
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century, the e-6 formulation replaced infinitesimals as the
generally accepted foundation of calculus and real analysis.

In 1961, Abraham Robinson discovered that model the-
ory, a branch of mathematical logic, provided a satisfactory
foundation for the use of infinitesimals in analysis. In the
remainder of Section 1, we will provide an informal descrip-
tion of a model of the nonstandard real numbers. In Section
2, we will provide a formal description of nonstandard mod-
els, along with a precise statement of the rules of inference
which are allowed in reasoning about nonstandard mod-
els. The proof of the underlying theorems which justify the
rules of inference will be presented in the Appendix.

1.3 Ultraproducts

A very simple construction which produces elements with
infinitesimal properties is RN, the space of real sequences.
We can embed R into RN by mapping each r € R to the
constant sequence ¥ = (r, r,ry...). Now consider the se-
quence defined by z, = 1. Let R, denote the set of
strictly positive real numbers. Given any r € R, observe
that z, < 7, for all but a finite number of values of n. In

other words, if we were to define a relation <r on RN by

r<py <= I, <Yy, Torallbuta finite numberof n € N,

(1.2)
then z would be infinitesimal in the sense that z <p ¥ for
every positive r € R. Unfortunately, this very simple con-
struction does not yield a satisfactory theory 'of infinitesi-
mals. For example, consider y defined by y, = 2 for » odd
and y, = O for n even. Neither y <7 1 nor 1 <p y is true;
in other words, <y is only a partial order on RN, In order
to construct a satisfactory theory of infinitesimals, we con- -
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sider a slightly more elaborate construction, known as an
ultraproduct.

Definition 1.3.1 A free ulirafilter on N is a collection u
of subsets of N satisfying the following properties:

1.if A, Bel,then ANBel;

2. ifAEUandACBCN,thenBEU;
3. if A is finite, then A g U;

4. f ACN, either AcUor N\ A€ U.

Remark 1.3.2 Note that by item 4 of Definition 1.3.1, we
must have either {2,4,6,...} € U or {1,3,5,...} € U, but
not both by items 1 and 3.

Proposition 1.3.3 Suppose N =A,U...UA, withne N,
and A;NA;=0fori#j. Then A; € Ul Jor ezactly one 1.

Proof: Let B; = N\ A;. If there is no ¢ such that A €U,
then B; € U for each i. Then §# = B, N (BzN...N(Bp1 N
By)...) € U by n—1 applications of Property 1 of Definition
1.3.1, which contradicts Property 3 (since @ is finite}, Thus,
A; € U for some 1, If A; € U and A; € U with ¢ # j, then
0 = A;NnA; € U, again contradicting Property 3. Thus,
A; € U for exactly one 1. m

Definition 1.3.4 The equivalence relation =y on RN is
defined by

r=yy <= {n:z,=y,}el. (1.3)

Given z € RN, let [z] denote the equivalence class of z
with respect to the equivalence relation =y. The set of
nonstandard real numbers, denoted *R, is {[z] : z € RN},
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Any relation on R can be extended to *R. In particular,
given [z, [y] € *R, we can define

2] <u [y) = {n:z. <wn} € U. (1.4)

The reader will easily verify that this definition is indepen-
" dent of the particular representatives = and y chosen from
the equivalence classes [z], [y].

Proposition 1.3.5 Suppose [z],[y] € *R. Then ezactly
one of [z] <y [y], [z] =u [y], or [z] >y [y] is true.

Proof: Let A={neN:z, <y}, B={neN:z, =
Yn}, and C = {n € N : z, > y,}. By Proposition 1.3.3,
exactly oneof A,Bor Cisin . m

Example 1.3.8 Let z € RN be defined by z, = 1 and
Ff=(rr..)forrcR. Ifr>0,then {n:z, <} €,
since its complement is finite. Thus, [z] <y [#] for all r €
R4, ie. [z]is an infinitesimal. We write [z] ~ [y] if {z]—[y]
(defined to be [2] where 2, = z,, — y,.) is an infinitesimal.

Definition 1.8.7 [z] € *R is said to be infinite if [z] >, ™
for all m € N.

Given any function f : R — R, we can define a function
*F:*R - R by

2]} = [(f(z1), f(z2), )] (1.5)

In other words, *f is defined by evaluating f pointwise on
the components of z.
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1.4 Internal and External Sets

In order to work with the nonstandard real numbers, we
need to be able to talk about subsets of *R. We extend the
ultraproduct construction to sets by considering sequences
in (P(R))N, where P(R) is the collection of all subsets of R,
and extending the equivalence relation =, from Definition
1.3.4.

Definition 1.4.1 Suppose A4, B € (P(R))N, [z] € *R. We
define an equivalence relation =y by

A=y B <> {n:A,=B,}el. (1.6)
Let [A] denote the equivalence class of A. We define
[zl €y [A] <= {n:z,€ A} el (1.7)

Note that [A] is not a subset of *R; it is an equivalence
class of sequences of sets of real numbers, not a set of equiv-
alence classes of sequences of real numbers. However, we
can associate it with a subset of *R in a natural way, as
follows,

Definition 1.4.2 (Mostowski Collapsing Function)
Given A € (P(R))N, define a set M([A]) C *R by

M([A]) = {[z] € *R : [z] €y [A]}, (1.8)

A set B C *R is said to be internal if B = M([A]) for
some A € (P(R))N; otherwise, it is said to be ezxternal. A
function is snternal if its graph is internal.

1As above, the reader will have no trouble verifying that the defini-
tion does not depend on the choice of representatives from the equiva-
lence classes.
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Definition 1.4.3 Suppose B C R. Define *B = M{[A]),
where A € (P(R))YN is the constant sequence A, = B for
alln € N.

Example 1.4.4 The set of nonstandard natural numbers
is

*N={o€*R:{n:2z, e N}et}. (L9
Let N = {[n} : n € N}. Then N C *N. Indeed, N is a

proper subset of *N, as can be seen by considering [z], where
Zn=nforallneN.IfmeN, {n:z, =m,} = {m} g U,
so [z] # [m].

Proposition 1.4.5 *N\ N is ezternal.

Proof: Suppose *N \ N = M{[A]). We shall derive a con-
tradiction by constructing [y} € *N\ N with [y] ¢ M([4]).

Let J = {n: A, € N}. We may choose z € RN such
that z, € A, \N forn e N\ J, and z, = 0 for n € J.
Therefore, {n € N : z, € N} = 0, so [z] € *N. Since
M([A]) € *N, [z] € M([4]), 5o N\J € U, s0 J € U.
Without loss of generality, we may assume that A, CN
for all n € N.

FormeN,let T, ={ne€N:m ¢ 4,)}; since ] &
M([A]), T € U. For m &€ N U {0}, let

Sm={neN:4,Cc{mm+1,m+2,..}}. (1.10)

Then S = ME'Te, 50 S, € U, S; = N. Let S, =
NmeNSm ={n € N: A, = @}. If S, € U, then M([4]) =0,
a contradiction since *N\ N # §§ by Example 1.4.4. Hence,
Seo & U.

Define asequencey € RN by y, =mifne Smt1\Smaz,
Yn = 0 for n € S,,. Then {n:y. e N} =N\5, €U,
so [yl € *N. Givenm € N, {n : y, = m} = Spip\
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Sm+z2 C N\ Sz € U, s0 [y] € N, and hence [y] € *N\ N.
However, {n : yp € A,} C 8, & U, so [y] € M([A]), so
M([4]) # *N\N. =

Corollary 1.4.8 N is external.

Proof: Suppose N = M([4]). Let B, = N\ 4, for each
n € N. M([B]) C *N. Suppose [y] € *N; we may assume
without loss of generality that y, € N for all n € N. Then

vle M([B]) & {neN:y. € B.} el

& {neN:y, €A} ¢ U & [y] € M([A)]). (1.11)

Thus, M([B]) = *N\N, so *N\N is internal, contradicting
Proposition 1.4.5. =

1.5 Notational Conventions

It is customary to omit *’s in many cases. Note first that
we can embed R in *R by the map r — [f]. Thus, it is
customary to view R as a subset of *R, and to refer to
[F] as r. Thus, we can also write N instead of the more
awkward N. Basic relations such as <,>,<,> are written
without the addition of a *. Functions such as sin, cos,
log, €%, | - | (for absolute value or cardinality) are similarly
written without *’s.

Consider the function g(n) = R™. If n is an infinite
natural number, then *R" is defined to be (*g)(n); equiva-
lently, it is the set of all internal functions from {1,...,n}
to *R. The summation symbol ¥ represents a function
from R" to R. Thus, if n is an infinite natural number and
y € *R", (* X)L,y is defined. It is customary to omit the
* from summations, products, or Cartesian products.
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Thus, the following expressions are acceptable:

Vz e *R € > 0; (1.12)
He*N Y z;=0. (1.13)
i=1

1.6 Standard Models

We need to be able to consider objects such as topological
spaces or probability measures in addition to real numbers.
This is accomplished by considering a superstructure. We
take a base set X consisting of the union of the point sets
of all objects we wish to consider. For example, if we wish
to consider real-valued functions on a particular topological
space (T, T ), we take X = R UT. The superstructure is
the class of all objects which can be obtained from the base
set by iterating the operation of forming subsets; we will
refer to it as the standard model generated by X.

Definition 1.6.1 Suppose X is a set in all of whose mem-
bers are atomic, i.e. @ ¢ X and no z € X contains any
elements, Let

Xo=X; (1.14)

l’n“ = lp( G Xk)] U Xo (TL = 0, 1,2, . ) (1.15)
k=0

where P is the power set operator, which associates to any
set S the collection of all the subsets of S. Let

X =1 X (1.16)
n=0

X is called the superstructure determined by X. For any set
B € X, let 7P(B) denote the set of all finite subsets of B.
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The superstructure determined by X contains represen-
tations of subsets of X, functions defined on X, Cartesian
products of subsets of X, and indeed essentially all the clas-
sical mathematical constructions that can be defined using
X as the initial point set.2 The exact form of the rep-
resentation can become quite complicated; fortunately, we'
- need never work in detail with the superstructure represen-
tations, but only need to know they exist. The following
examples illustrate how various mathematical constructions
are represented in the superstructure.

Example 1.8.2 An ordered pair (z,y) € X? is defined in
set theory as {{z},{z,y}}. =,y € Xy, so {z} € X; and
{z,y} € X1, s0 {{z},{z,y}} € Xa.

Example 1.6.3 A function f:A — B, where A, B C X ,
can be represented by its graph G = {(z, f(z)):z € A}
From the previous example, we know that each ordered pair
(z, f(z)) in the graph G is an element of X3, so G € Xa.

Example 1.8.4 The set of all functions from A to B, with
A, B C X, is thus represented by an element of X.

Example 1.8.5 If N C X, an n-tuple (z1,...,20) € X
can be represented as a function from {1,...,n} to X.
Thus, if A C X, then A" is an element of X,.

Example 1.8.8 X, is an element of X,,;.

Example 1.8.7 Let {T, T) be a topological space, so that

T is the set of points and T the collection of open sets.
Take X =T. Then T € X,.

%Indeed, formally speaking, the definition of each of these con-
structions is expressed in terms of set theory; see for example
Bourbaki(1970).
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Example 1.6.8 Consider an exchange economy with a set
A of agents and commodity space R, Let X = AUR.
An element of Ri is a k-tuple of elements of X, and hence
is an element of X5. A pair (z,y) with z,y € R can be
viewed as an element of R%*, and so is also an element of
Xs. A preference relation is a subset of Ri X Rf‘,_, so it is an
element of Xy. A preference-endowment pair (>, e(a)) with
e(a) € RE is an element of Xq. The exchange economy is a
function from A to the set of preference-endowment pairs,
so it is an element of Xs.

Remark 1.8.9 If Z € X, then Z € X, for some n; thus,
there is an upper bound on the number of nested set brack-
ets, uniform over all elements z € Z. In particular, the set
{z,{z}, {{z}}, {{{z}}},.. .} is not an element of the super-

structure X. Moreover, I is not an element of X.

1.7 Superstructure Embeddings

Given a standard model X, we want to construct a non-
standard extension, i.e. a superstructure Y and a function
* 1 X — Y satisfying certain properties.

Definition 1.7.1 Consider a function * from a standard
model X toasuperstructure Y. A € Y is said to be internal
if A€ *B for some B € X, and external otherwise. The
function * : X — Y is called a superstructure embedding® if

1. * is an injection;

2. Xo C Yo; moreover z € Xy = *z = z.

3. ¥l = yo;

4. ¥*X, C Yn;

3Some of the properties listed can be derived from others.
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(Lot \ L) CUnt1\Ya  (n=0,1,2,...);
T1,e0sZn € X = ¥z, 20} = (F2y,..., ¥z}
A BeX = {AcB&*Ac*B}

A Be I =

(a) *(ANnB)=*AnNn*B;

(b) *(AU B} = *AU *B;

(€) *(A\ B) = *4\ *B;

(d) *(A x B) =*A x *B;

© N oo o

9. If T is the graph of a function from A to B, with
A,B € X, then *T is the graph of a function from *A4
to *B;

10, A€*X,,BEA=>Bec* , 1

11. Ainternal, AC B, B € *(P(C)) = A € *(P(C)).

A € Y is said to be standard if A = *B for some B € X.
A € Y is said to be hyperfinite if A € *(FP(B)) for some
set B € X (recall 7P (B) is the set of all finite subsets of
B). Let *X denote {y € Y : yis internal}. A function
whose domain and range belong to Y is said to be internal
if its graph is internal.

Example 1.7.2 Suppose X = R. Take ¥ = *R, defined
via the ultraproduct construction. Let Y is the superstruc-
ture constructed with Y as the base set. Then * as defined
by the ultraproduct comstruction is a superstructure em-
bedding. Note that I/, contains both internal and external
sets; thus, the embedding * is not onto.
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1.8 A Formal Language

“I shall not today attempt further to define the
kinds of material I understand to be embraced
within that shorthand description; and perhaps
I could never succeed in intelligibly doing so.
But I know it when I see it.” Justice Potter
Stewart, concurring in Jacobellis v. Ohio, 378
U.S. 184 at 197.

In order to give a precise definition of a nonstandard ex-
tension, one must define a formal language £; see Chapter
2 for details. In practice, one quickly learns to recognize
which formulas belong to £. The formal language £ is rich
enough to allow us to express any formula of conventional
mathematics concerning the standard model X, with one
caveat: all quantifiers must be bounded, i.e. they are of
the form Vz € B or dz € B where B refers to an object
at a specific level X,, in the superstructure X. Thus, the
quantifier Vf € 7(R,R}, where 7(R,R) denotes the set of
functions from R to R, is allowed; the quantifiers Vz € X
and Vz are not allowed.

1.9 Transfer Principle

Leibniz asserted, roughly speaking, that the nonstandard
real numbers obey all the same properties as the ordinary
real numbers. The Transfer Principle gives a precise state-
ment of Leibniz’ assertion. The key fact which was not
understood until Robinson’s work is that the Transfer Prin-
ciple cannot be applied to external sets. Thus, the distine-
tion between internal and external sets is crucial in non-
standard analysis. Given a sentence F € £ which describes
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the standard superstructure X, we can form a sentence *F
by making the following substitutions:

1. For any set A € X, substitute *4;

2. For any function f : A — B with A, B € X, substi-
tute *f,

3. For any quantifier over sets such as VA € P(B) or
JA € P(B), where B € X, substitute the quantifier
VA € *(P(B)) or 3A € *(P(B)) which ranges over all
internal subsets of *B.

4. For any quantifier over functions such asVf € ¥(4, B)
or 3f € F(A, B}, where (A, B) denotes the set of
functions from A to B for A, B € X, substitute the
quantifier Vf € *(¥(A, B)) or 3f € *(F(4, B)) which
ranges over all ¢nternal functions from *A to *B.

We emphasize that quantifiers in *F range only over inter-
nal entities. The Transfer Principle asserts that F is a true
statement about the real numbers if and only if *F is a true
statement about the nonstandard real numbers.

Example 1.9.1 Consider the following sentence F:
VSeP(N) [S=08VvIneS VmeS m>nl. (1.17)

N
F asserts that every nonempty subset of the natural num-
bers has a first element. *F is the sentence

VS e*(P(N)) [S=0Vv3ne S VmeS m>n] (1.18)

*F asserts that every nonempty internal subset of *N has
a first element. External subsets of *N need not have a
first element. Indeed, *N \ N has no first element; if it did
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have a first element n, then n — 1* would of necessity be an
element of N, but then n would be an element of N.

1.10 Saturation

~ Saturation was introduced to nonstandard analysis by Lux-
emburg (1969).

Definition 1.10.1 A superstructure embedding * from ¥
to Y is saturated® if, for every collection {Ax: A € A} with
A, internal and JA] < | X,

nA.\:@:}B’\lv“,An nAA'.=@. (1.19)
A€A i=1

One can construct saturated superstructure embeddings
using an elaboration of the ultraproduct construction de-
scribed above. To make the saturation property plausible,
we present the following proposition.

Proposition 1.10.2 Suppose *R. s constructed via the ul-
traproduct construction of Section 1.8, If {A,:n€ N} isa
collection of internal subsets of *R, and N,cnA, = 0, then
MNpey1Ap = @ for some ng € N.

Proof: Since A, is internal, there is a sequence B,,, (m €
N) such that 4,, = M([Bn.]).fIf,Alﬂ- MNA, #0forallne

*We can define a function f : N — N U {0} by f(m) = m - 1.
Then n —1 is defined to be *f(n). It is easy to see that, if n = [z] for
mERN, n—1=|[(z; ~1,z3 — 1,...)]

50ur use of the term “saturated” is at variance with standard us-
age in nonstandard analysis or model! theory. Commonly used terms
are “polysaturated” (Stroyan and Luxemburg (1976)) or | X |-saturated.
Model theorists use the term “saturated” to mean that equation 1.19

holds provided [A] < |X|.
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N, we can find [z,] € *R with [z,] € 4,0 .--N A, for each
n. Note that z, € RN, so let z,,, denote the m'th element
of z,. Then {m : Zpm € By N+++N Bym} € U. We may
assume without loss of generality that z,,,, € By, -NBo
for all n and m. Define [z2] € *R by zm = Zpm. Then
{m: zn € Bam} D {n,n+1,---} € U. Thus, [2] € A, for
all n,50 NeNAn £ 0. B

Theorem 1.10.3 Suppose *: X — Y is a saturated su-
perstructure embedding. If B is internal and z;,%,,... i5 a
sequence with , € B for each n € N, there is an internal
sequence Yy, with y, € B for all n € *N such that y, = z,
for n € N.

Proof: Let A, = { internal sequences y : y; = z; 1<t
n), ¥ € B(i € *N)}. Fix b € B. If we consider y defined
by ¥ = z:;(1 <1 < n), and y; = b for ¢ > n, we see that
An # 0. By saturation, we may find y € N,enA,. Then y
is an internal sequence, y, € B for all n € *N, and y, = z,
forallneN. m

1.11 Internal Definition Principle

One consequence of the Transfer Principle, the Internal Def-
inition Principle, is used sufficiently often that it is useful
to present it separately. The informal statement of the In-
ternal Definition Principle is as follows: any object in the
nonstandard model which is describable using a formula
which does not contain any external expressions is inter-
nal. For a formal statement, see Definition 2.7.1

Example 1.11.1 The following examples will help to clar-
ify the use of the Internal Definition Principle.

1. If n € *N, {m € *N : m > n} is internal.
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2. If f is an internal function and B is internal, then
f~(B) is internal.

3. If A, B are internal sets with A C B, then {C €
P(B) : C D A}, the class of all internal subsets of B
which contain A, is internal.

4. {z € *R : z ~ 0} is not internal; the presence of
the external expression z = O renders the Internal
Definition Principle inapplicable.

1.12 Nonstandard Extensions, or
Enough Already with the Ul-
traproducts

Definition 1.12.1 A nonstandard eztension of a standard
model X is a saturated superstructure embedding * : X —
Y satisfying the Transfer Principle and the Internal Defini-
tion Principle.

As we noted above, the real numbers R are defined as
the completion of the rational numbers Q. The completion
is constructed in one of two ways: Dedekind cuts or Cauchy
sequences. In practice, mathematical arguments concern-
ing R never refer to the details of the construction. Rather,
the construction is used once to establish the existence of a
set R satisfying certain axioms. All further arguments are
given in terms of the axioms.

In the same way, the ultraproduct construction is used
to demonstrate the existence of nonstandard extensions.
Nonstandard proofs are then stated wholly in terms of those
properties, without reference to the details of the ultraprod-
uct construction.
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1.13 Hyperfinite Sets
Definition 1.13.1 Suppose that A€ Y and * : X — VY
is a nonstandard extension. Let 7P (A) denote the set of

finite subsets of A. A set B C *4 is said to be hyperfinite
if B € *(FP(4)).

Example 1.13.2 Suppose m is an infinite natural number,
Consider B = {k € *N : k < m}. The sentence

VmeN {keN:k<m}ec FP(N) (1.20)

is true in the standard model X. By the Transfer Principle,
the sentence

Vm € *N {k € *N : k <m} € *(FP(N)) (1.21)

is true, so B is hyperfinite.

Remark 1.13.3 The Transfer Principle implies that hy-
perfinite sets possess all the formal properties of finite sets.

Theorem 1.13.4 Suppose * : X — Y is a nonstandard
extension. If B € X and n € *N \ N, then there ezists a
hyperfinite set D with |D| < n such that x € B= *z € D,

Proof: See Theorem 2.8.3. m

Proposition 1.13.5 Suppose that *: X — Y is a non-
standard extension. Suppose that B is hyperfinite and A C
B, A internal. Then A ts hyperfinite.

Proof: See Proposition 2.6.5. ®
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1.14 Nonstandard Theorems Have
Standard Proofs

Although nonstandard proofs never make use of the details
of the ultraproduct construction, the construction shows
that the existence of nonstandard models with the assumed
properties follows from the usual axioms of mathematics.
Any nonstandard proof can be rephrased as a proof from
the usual axioms by reinterpreting each line in the proof as
a statement about ultraproducts. Consequently, any the-
orem about the standard world which has a nonstandard
proof is guaranteed to have a standard proof, although the
proof could be exceedingly complex and unintuitive. The
important point is that, if we present a nonstandard proof
of a standard statement, we know that the statement fol-
lows from the usual axioms of mathematics.




Chapter 2

Nonstandard Analysis
Regular

2.1 Warning: Do Not Read this
Chapter

There is nothing innately difficult about the mathematical
logic presented in this Chapter. However, learning it does
require a perspective that is a little foreign to many math-
ematicians and economists, and this may produce a certain
degree of intimidation. Do not worry! At the first sign of
queasiness, rip this Chapter and Appendix A out of the
book, and go on to Chapter 3!

2.2 A Formal Language

In this Section, we specify a formal language £ in which
we can make statements about the superstructure X. One
must first specify the atomic symbols, the vocabulary in
which the language is written. Next, one specifies gram-

23
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mar rules which determine whether a given string of atomic
symbols is a valid formula in the language. The grammar
rules are described inductively, showing how complicated
formulas can be built up from simpler formulas. Implicit in
the grammar rules is a unique way to parse each formula,
so that there is only one sequence of applications of the
rules that yields the given formula. Together, the atomic
symbols and the grammar rules determine the syntaz of
the language. All formulas will be given the conventional
mathematical interpretation; the formal specification of the
interpretation process is given in Section 2.4.

Definition 2.2.1 The atomie symbols of L are the follow-
ing:

logical connectives V A = & -

variables v; v4 ...

quantifiers V 3

brackets | |

basic predicates € =

constant symbols C, {one for each z € X)

A A

function symbols C; (one for each function f with
domain z, range y and z,y € X)

8. set description symbols { : }
9. n-tuple symbols (,)

Definition 2.2.2 A finite string of atomic symbols is a
formula of L if it can be derived by iterative application of
the following rules: '

1. If F is a variable or constant symbol, then F is a
term;
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2. If F is a term and Cy is a function symbol, then C;(F)
is a term;

3. If F is a formula and G is a term, F does not contain
the quantifier Vu;, the quantifier 3v;, or a term of
the form {v; € H : J}, and G does not contain the
variable v, then {v; € G: F} is a term;

4. ¥ F,...,F, are terms, then {F,...,F,} and
(F1y...,F,) are terms;

5. If F and G are terms, then [F € G} and [F = G] are
formulas;

6. If F is a formula, [~F] is a formula;

7. If F and G are formulas, {F vV G|, [F A G}, [F = G],
and [F & G| are formulas;

8. If F is a formula and G is a variable, a constant sym-
bol, or a term, and neither F nor G contains 3v;, Vv,,
or a term of the form {v; € H : J}, then [Jv; € G[F]]
and [Vv; € G[F}]] are formulas.

2.3 Extensions of [

In practice, mathematics is always written with a certain
degree of informality, since strict adherence to the formulas
of a formal language like £ would make even simple argu-
ments impenetrable. One of the key ways a formal language
is extended is through the use of abbreviations. It is impor-
tant to be able to recognize whether or not a given formula,
expressed with the degree of informality commonly used in
mathematics, is in fact expressible as a formula in the for-
mal language. In the following examples, we show how to
construct formulas in £ using the grammar rules and ab-
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breviations; we also give some examples of strings of atomic
symbols which are not formulas.

Example 2.3.1 The symbol string Vv;[v; = v} is not a
formula, because the quantifier is not of the correct form.
However, Vv, € C;[vy, = vy] is a formula of £ provided z is
an element of the superstructure X. It is important that,
every time a quantifier is used, we specify an element of the
superstructure X over which it ranges.

Example 2.3.2 The symbol strings

A [UIVCX (2.1)
NEVE (2.2)
V{vs € vg) (2.3)

are not formulas because they cannot be constructed by
iterative application of the grammar rules.

Example 2.3.3 The induction axiom for the natural num-
bers N is the following:

Yy € Cpy [[v1 = 0] V [Fvs € v, [Vus € [{v3,v5) € sz])
2.4
where z = {{n,m) € N? : n < m}. Note that, although
we could describe the set z in our language £, there is no
need for us to do so; since z € X, we know there is a
constant symbol C, corresponding to it already present in
our language.

Given z € X, we can substitute z for the more cum-
bersome C;, the constant symbol which corresponds to z.
We can omit all brackets [,] except those which are needed
for clarity. We can substitute function and relation sym-
bols such as f(z) or m < n for the more awkward C,(z)
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or (m,n) € C, where z is the graph of the relation “<”.
Finally, we can substitute more descriptive variable names
(by using conventions such as small letters to denote indi-
vidual elements, capital letters sets, etc.).

Example 2.3.4 Using the above abbreviations, the induc-
tion axiom can be written as

VSEPN)3IneS Vme S n<m; (2.5)

since we know this is an abbreviation for a formula in £,
we know that we can treat it as if it were in £.

Example 2.3.5 The grammar of the language £ does not
permit us to quantify directly over functions. However,
we can easily get around this restriction by representing
functions by their graphs. Given A,B € X, let 7(A, B)
denote the set of all functions from A to B, §(4, B) the set
of graphs of functions in (A4, B). §(A4,B) € X. Consider
the function Fyp : G{A, B) X A — B defined by

Fap(T,a) = f(a) where f is the function whose graph is T

| (2)
Note that Fsp € F(G(A,B) x A, B), so there is a func-
tion symbol in £ corresponding to F4p. The formula Vf &
F7(A, B)[G(f)] is an abbreviation for

VT € §(4, B)|G(Fas (T, )] (2.7)
For example, the sentence _
Vi€ F(0,1,R)Ic € [0, € [0,1)f(2) > /(4) (2.8)

which asserts (falsely) that every function from [0,1] to R
assumes its maximum is an abbreviation for the following
sentence in [:

VI e 9([0, 1],R)3$ € [0, l]Vy & [0, I]F{OJ]R(F,?J)

2.9
> For(T,v) (29)
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Example 2.3.8 As noted in Section 1.5, summation is a
function defined on n-tuples or sequences. Thus, expres-
sions like 33, . Z, are abbreviations for formulas in L.

Example 2.3.7 Suppose z,y € X,. We can define a re-
lation C by saying that z C y is an abbreviation for Vz €
- Xu[2z € £ = 2 € y]. In the induction axiom discussed in the
previous example, we did not write

VSCN3IneSVvmeSnim (2.10)

because the quantifier is required to be of the form VS € C
for some set C € X. A key issue in nonstandard models is
the interpretation of quantifiers over subsets; for this rea-
son, we will not use the abbreviation C within quantifiers.

2.4 Assigning Truth Value to For-
mulas

We shall be interested in interpreting formulas in the stan-
dard universe, as well as in nonstandard models. For this
reason, it is important that we specify precisely the proce-
dure by which formulas are interpreted. In the standard
world, every formula F in [ is interpreted according to the
conventional rules for interpreting mathematical formulas.
Thus, the logical symbol v will have the conventional inter-
pretation “or,” while the quantifier V has the conventional
interpretation “for all.” If all the variables appearing in F
appear within the scope of a quantifier, then F can be as-
signed an unambiguous truth value; if not, then the truth
value of F depends on how we choose to interpret the vari-
ables which are not quantified. This leads to the following
set of definitions.
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Definition 2.4.1 An occurrence of a variable v; in a for-
mula F is bound if there is a formula E such that F =
E...,

E= {VU,' < G[H” or E = {31),' € G[H”

or F={v,e G: H} (2.11)

and the occurrence of v; is inside E. If the occurrence of
v; is not bound, it is said to be free. If every occurrence of
each variable in F is bound, F is said to be a sentence.

Definition 2.4.2 An interpretationof £ in X is a function
I mapping {v1,vq,...} to X.

In the next definition, we show how to extend an inter-
pretation so that it assigns an element of X to each term
and a truth value t (“true™) or £ (“false”) to each formula.

Definition 2.4.3 The value of a constant symbol or set
description J under the interpretation I, denoted I{J), and
the truth value of a formula F under the interpretation I,
denoted I(F), are defined inductively as follows:

1. For any constant symbol C,, I(C,) = z (i.e. every
constant symbol is interpreted as the corresponding
element of X).

2. If F is Cy(G), where C; is a function symbol and
G is a term, then I(F) = f(I(G)) if I{@) is defined
and I(G) is an element of the domain of f; otherwise,
I(F) is undefined.

3. If J is a term {v; € H : K}, then
HJy={zcI(H): I'(K) =t where I'(y;) =z

and I'(v;) = I(v;) for j # i} (2.12)
if I{H) is defined, and I(J) is undefined otherwise.
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4. (a) ¥ Fis (F,...,F,), then

{ (I(R),...,I(F,)) if I(Fy),...,I{F,)
I(F) = are all defined;

undefined otherwise.
(2.13)
(b) f Fis {Fi,...,F,}, then
{I{(R),.... I{F,)} if I{(F),...,I{F.)
I(F) = are all defined;
undefined otherwise.

(2.14)

5. (a) If F is (G € H|, where G and H are terms,
then I{F) =t if I{(G) and I{H) are defined and
I(G) € I(H), while I{F) = f otherwise.
(b) If F is [G = HJ|, where G and H are terms,
then I(F) = t if I(G) and I{H) are defined and
I{G) = I(H), while I(F) = f otherwise.
6. If F' is [G], then I(F) = t if I(G) = and I(F) =f
if 1(G) = t.
7. {(a) ¥ Fis [GV H| then I(F) = t if I{(G) = t or
I{H) =t and I(F) = f otherwise;
(b) If F is [G A H| then I(F) =t if I{G) =t and
I(H) =t and I(F) = f otherwise;
(c) f Fis [G = H]then I(F) =t if I{G) =f or
I(H) =t and I(F) = f otherwise;
(d) ¥ F is [G < H] then I(F) = t if I(G) = t
and I{H) =t or I(G) =f and I{H) = f and
I(F) = f otherwise.
8. (a) If Fis |Vv; € G[H]|, then I(F) = t if I(G) is
defined and, for every z € X, I'(H) = t, where
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I'(v;) = z and I'(v;) = I(v;) for every § # 1
I(F) = f otherwise.

(b) ¥ F is [Jw; € G[H]], then I(F) = t if I(G) is
defined and there exists some z € I(G) such that
I'(H) = t, where I'(v;) = z and I'(v;) = I(v;)
for every j # 1; I(F) = f otherwise.

Remark 2.4.4 (The King of France Has a Beard)
It would be possible, but exceedingly tedious, to restrict
our language so that it is impossible to write formulas that
contain expressions of the form f(r) where z is outside the
domain of f. We have instead taken the route of allow-
ing them in the language, and have specified a more or
less arbitrary assignment of truth value. In practice, such
nonsensical formulas are easily spotted, and so no prob-
lems will arise. Note that, assuming for concreteness that
f +N — N, our assignment of truth value has the following
consequernces:

e I(f(m)=0)=1.
o The formula f(r) # 0 is ambiguous. It is not an
element of £.

— If it is an abbreviation for —=[f(r) = 0], then
1(f(m) #0) = t.
— If it is an abbreviation for (f(z),0) € C where

C={(0:8) €Ny # 23, then I(f(m) #0) =

Proposition 2.4.5 If F is a sentence, then I(F) is inde-
pendent of the interpretation I.

Proof: Let v; be a variable which occurs in F. Since every
occurrence of v; is bound, I(F) is independent of I(v;) by
items 3 and 8 of Definition 2.4.3. Thus, I(F) is independent
of I.m
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Definition 2.4.6 Suppose F is a sentence. We say F holds
in X if I(F) = t for some (and thus every) interpretation
of £in X, and F fatls in X if I(F) = f for some (and thus
every) interpretation I of £ in X.

2.5 Interpreting Formulas in Su-
perstructure Embeddings

Suppose that * is a superstructure embedding from X to
1'. We shall define the first of two languages which we will
tse to desc~"be Y.

Definition 2.5.1 The tnternal language *L is defined in
exactly the same way as the language £, except that the
set of constant symbols is {C, : z € *X} = {C, : y <
Y,y internal} and the set of function symbols is {C; : f is
an internal function from z to y for some z,y € *X'}. An
interpretation of *£ in *X is a function I : {vy,vs,...} —

*X.

Given an interpretation I of *£ in *X, we can extend
it to assign truth values to formulas in *£ in exactly the
same way as in Definition 2.4.3.

Remark 2.5.2 Definition 2.5.1 forces the interpretation of
a variable to be internal. The astute reader may wonder
whether, given an interpretation I, I(J) is internal for com-
plex terms J such as {v; € G : F} or C;(F). If the super-
structure embedding satisfies the Internal Definition Prin-
ciple, and I is an interpretation of ¥*£ in *X, then I{J) is
internal for every term in *£. However, since the assign-
ment of truth values in the previous definition makes sense
whether or not I{J) is internal, we will defer the formal
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discussion of the Internal Definition Principle to Section
2.7.

Proposition 2.5.83 If F is a sentence in *L, then I(F) is
independent of the interpretation I.

Definition 2.5.4 Suppose F is a sentence in *. We say
F holds in *X if I(F) = t for some interpretation I of *£
in *X, and F fails in i if *I(F) = f for some interpretation
Tof *Lin*X.

2.6 Transfer Principle

Definition 2.6.1 Given an interpretation J of £ in X, we
can associate an interpretation *I of *£ in *X by specifying
(*I)(v:) = *(I(v;)) for each variable v;. Given a formula
F € [, we associate a formula *F € *£ by replacing each
constant symbol C, (z € X) with the constant symbol Cx,
and each function symbol C; with the function symbol Cx 5

Definition 2.6.2 A superstructure embedding * from X
to Y satisfies the Transfer Principle if, for every formula
F € £ and every interpretation I of £ in X,

I{F) =t if and only if*I(*F) = t. (2.15)

Proposition 2.6.3 If a supersiructure embedding * from
X to Y satisfies the Transfer Principle, and F is a sentence
in L, then F holds in X if and only if *F holds in *X.

Remark 2.8.4 The astute reader may have noticed a very
important point arising in the case that F involves quan-
tifiers over sets or other objects not in X,. Assume for
concreteness that we are considering a formula F = [Vv, €
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Crx)[G]]; I(F) = t if the property specified by G holds for
every subset of X. *I(F) = t if the property specified by
G holds for every element of ¥(P(X)) C P(*X) = P(Yo);
thus, the property specified by G need hold only for inter-
nal subsets of Yy; it need not hold for external subsets of

Yo.

Proposition 2.6.5 Suppose that the superstructure embed-
ding * from X to Y satisfies the Transfer Principle, B is
hyperfinite, and A C B, A internal. Then A is hyperfinite.

Proof: Since B is hyperfinite, B € *(FP(C)) for some
C € X. Since A is internal, and A C *C, A € *P(C) by
item 11 of Definition 1.7.1. The sentence

VB € FP(C)VA € P(C) [Vz€Clz€ A= z € B

= |4 € FP(O)]], (2.16)

which asserts that a subset of a finite subset is finite, holds
in X; by transfer, the sentence

VB € *FP(C)VAE *P(C) [Vz€*Clz € A= z € B]|

= [A € *FP(C)]], (2.17)
holds in *X. Thus, A € *¥P(C), so A is hyperfinite. m

2.7 Internal Definition Principle

Definition 2.7.1 A superstructure embedding * from X
to *X satisfies the internal definition principle if, for every
term J in *£, and every interpretation I of *£ in *X, I{J)
is internal or undefined.
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2.8 Nonstandard Extensions

Definition 2.8.1 A nonstandard eztension of a superstruc-
ture X is a superstructure embedding *: X — Y which is
saturated {Definition 1.10.1) and satisfies the Transfer Prin-
ciple {Definition 2.6.1) and the Internal Definition Principle
(Definition 2.7.1).

Theorem 2.8.2 Suppose *: X — Y is a nonstandard ez-
tension, and N C X. Then "N\ N #0.n€ *N\N =
n > m for every m € N.

Proof: Given m € N, let A, = {n € *N : n > m}.
A, is internal by the Internal Definition Principle; Ap O
{n € N:n > m}, so A, # 0. Given m;,...,mp € N
with k € N, Nk Am; = Amax{m,,..m;} 7 0. By Saturation
NmeNAm # 0. Take any n € NpeNAm; then n € *N, but
n > m for every m € N,so n € *N \ N.

The sentence

WmeNVmeN [[m<n]V[m=n]Vvim>n] (2.18)
holds in X : by Transfer, the sentence
Vn € *NVm € *N [[m < n]V [m=n]Vm>n] (2.19)

holds in *X. Now suppose n is any element of *N\ N, and
fix m € N. Since * is a superstructure embedding, m € *N,
Since n € *N \ N, m # n. Suppose n < m. The sentence

YmeN[m<n=>[n=1vn=2V...Vrn=m—1]]
(2.20)
holds in N. By Transfer, we must haven =1V n =2V
...Vn=m—1,s0on € N. Accordingly, n € *N\ N implies
n>mioreverymeN. =
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Theorem 2.8.3 Suppose *: X — Y is a nonstandard ez-
tension. If B € X and n € *N \ N, then there ezists a
hyperfinite set D with |D| < n such that £ € B = *z € D.

Proof: Since n € *N\ N, n > m for each m € N by
Theorem 2.8.2. Let A = B, Ay = {D € *3P(B) : *A €
D,|D| < n}. Ay is internal by the Internal Definition Prin-
ciple and |A| = |B} < |X|. Given Ay,...,An with m € N,
{*A1,...,*An} € N7, Ay, s0 the intersection is not empty.
Accordingly, NaeaAs # 0 by saturation; if D is any element
of Nxeady, then D € *FP(B),s0 D is hyperfinite, |D| < n,

and D> {*z:z€ D}.m '

2.9 The External Language

We shall define a language £ which permits us to refer to
external objects, including the set of ordinary natural num-
bers N, viewed as a subset of its nonstandard extension *N,
or the set of all ncnstandard real numbers infinitely close
to a given real number. We can use all the usual axioms
of conventional mathematics to make arguments involving
formulas in [; however, the Transfer Principle cannot be
applied to formulas in L.

Definition 2.9.1 The erxternal language £ is defined in ex-
actly the same way as the language L, except that the set
of constant symbols is {C, : 2 € Y} and the set of func-
tion symbols is {C; : f is a function from z to y for some
z,y € Y}. An interpretation of £ in Y is a function from
{vy,vz,...} to Y. Given a formula F in £ and such an in-
terpretation I, the truth value I (F) is defined exactly as
in Definition 2.4.3. If F is a sentence of L, we say that F
holds in Y if I(F) = t for some interpretation of I(F)inY,
and F fails in i otherwise.
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2.10 The Conservation Principle

The usual axiomatization of set theory is due to Zermelo
and Frankel. The Zermelo-Frankel axioms, with the addi-
tion of the Axiom of Choice, are collectively referred to as
ZFC.

Theorem 2.10.1 (Los,Robinson,Luxemburg) Let X be
a supersiructure in a model of ZFC. Then there exists a
nonstandard extension *: X — VY.

Proof: See Appendix A. m

Corollary 2.10.2 (The Conservation Principle) Let
A be a set of arioms containing the azioms of ZFC. Sup-
pose F 15 a sentence tn L which can be deduced from A and
the assumption that there exists a nonstandard eztension
*: X — Y. Then F has a proof using the azioms of A
alone.
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Chapter 3

Fuclidean, Metric and
Topological Spaces

In this Chapter, we explore the nonstandard formulation
of the basic results in Euclidean, Metric and Topological
Spaces. The results are due for the most part to Robinson
(1966} and Luxemburg (1969). The results stated here are
of considerable use in applications of nonstandard analysis
to economics. In addition, the proofs given here illustrate
how the properties of nonstandard extensions are used in
writing proofs. We form a superstructure by taking X, to
be the union of the point sets of all the spaces under con-
sideration, and suppose that * : X — Y is a nonstandard
extension.

3.1 Monads

Definition 3.1.1 Suppose (X, T) is a topological space.
If z € X, the monad of z, denoted u(z), is Nyerer*T. If
¥y € *X and y € u(z), we write y = z (read “y is infinitely
close to z7).

39
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Definition 3.1.2 Suppose (X,d) is a metric space. f z €
*X, the monad of z, denoted u(z), is {y € *X : *d(z,y) =
0}. If z,y € *X and y € u(z), we write y ~ z {read “y is
infinitely close to 7).

Proposition 3.1.3 Suppose (X,d) s a metric space, and
x € X. Then the monad of z (viewing X as a metric space)
equals the monad of x (viewing X as a topological space).

Proof: Suppose y is in the metric monad of z. Then
*d(z,y) ~ 0. Suppose £ € T € T. Then there exists
6 € R, such that the formula

d(z,z) < 6=>z€T (3.1)
holds in X. By Transfer,
*d(z,z) < §=> 2z € *T (3.2)

holds in *X. Since this holds for each T satisfyingz € T €
T, y is in the topological monad of z.

Conversely, suppose y is in the topological monad of
z. Choose § € Ry, and let T = {z € X : d(z,2) < 6}.
z €T e T,soy € *T. Therefore, *d(z,y) < é for each
§ € Riy, so *d{z,y) = 0. Thus, y is in the metric monad
ofz. m

Remark 8.1.4 The topological monad of z can be defined
for an arbitrary z € *X, not just for x € X. However, it is
not very well behaved.

Proposition 3.1.5 (Overspill) Suppose (X, T) is a topo-
logical space, = € X, and A 1s an tnternal subset of *X.

1. If z € A C p(z), there exisis S € *T with AC S C
u(z).
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2. If A DO u(z), then A O *T for some T saiisfying
zeTeT. '

8. If (X,T) is a T space and pu(z) ss internal, then
ulz)={z}eT.

Proof: Let T'={T €T :2€T}.

(1)Suppose A C u(z). By Theorem 1.13.4, there exists
a hyperfinite set § C *T' such that T € T' implies *T € §.
Let §' = {T'€ § : T > A}; §' is internal by the Internal
Definition Principle, and hyperfinite by Proposition 1.13.5.
Let § = Npes:T. Then A C S C u(z). Since T is closed
under finite intersections, *T is closed under hyperfinite
intersections, by Transfer. Therefore S € *T.

(2) Suppose 4 D u(z). Given T € T', let Ar =
*T \ A. Ar is internal by the Internal Definition Principle.
NperrAr = (Nrer*T) \ A = p{z) \ A = 8. By Saturation,
there exist Ty,...,T, {n € N) such that NL A7, = 9, so
A DN, = *(NL,T;). Since z € N, T; € T, the proof
of (2) is complete.

(3) Suppose u(z) is internal and (X, T) is a T} space.
By (2), there exists T € *T such that u(z) C *T C u(z), so
ulz) =*T. Hye€ X, y # z, then there exists S € T with
z€ S and y € §. By Transfer, y ¢ *S, so y & u(z) = *T.
By Transfer, y ¢ T. Since y is an arbitrary element of
X different from z, T = {z}. Then pu(z) = *T = {z} by
Transfer. u

Proposition 3.1.86 (Overspill) Suppose A 1s an internal
subset of *N.

1. If A D *N\N, then 4 D {n,n+1,...} for some
n € N.

2. If ADN, then A D {1,2,...,n} for somen € *N\
N.
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Proof: We could prove this as a corollary of Proposition
3.1.5 by considering X = N {co} with the one-point com-
pactification metric. However, weé shall present a direct
proof. Every nonempty subset of N has a first element; by
transfer, every nonempty internal subset of *N has a first
element.

(1) LetB-:-{ne*N:Vme*N[m?_n:vaA]}.
B is internal by the Internal Definition Principle. Let n be
the first element of B. Since AD*N\N,BD>*N \ N, so
n € N.

(2) Let B = {n €*N :VmE*N{mSn#meA]}. B
and *N\ B are internal by the Internal Definition Principle.
¥ *N\ B = 0, we are done. Otherwise, let n be the first
clement of *N \ B. Since ADN,BDN,son¢€ *N\N. =

Proposition 3.1.7 Suppose (X,T)isa topological space.
Then X is Hausdorff sf and only if for every every T, Y eX
with z # ¥, p(z) N p(Y) =0

Proof: Suppose X is Hausdorff. fz,y € X and = # Y, we
may ﬁndS,TwitthSET,yeTe T,andSﬂT=@.
sg N *T = *SnT) =0, by Transfer. w(z) N u(y) C
xS N AT =0,

Comversely, suppose p(z) N ply) = §. By Proposition
3.1.5, we may find 5, T € *T with z € 5 ¢ p{x) and
ye T Cpy) and thus SN T = 0. Thus, the sentence

JSe*T T e*T [z€85 A yeT A snT =0] (3.3)
holds in *X. By Transfer, the sentence
35T ITeT [z€8 AyeT A SnT =08 (34)

holds in X,so0 X is Hausdorff.




3.1. MONADS 43

Definition 8.1.8 If (X, T) is a Hausdorff space, y € *X,
and y € u(z), we write z = °y (read “z is the standard part

of ).

Proposition 3.1.9 Suppose {z,: n € *N} is an internal
sequence of elements of *R. Then the standard sequence
{°z, : n € N} converges to z € R if and only if there ezists
no € "N\N such that z,, = z for everyn < ng,n € *N\N.

Proof: Suppose °z,, converges to z. Fix § € Ri;. There
exists n; € N such that n > ns,n € N implies [z, — z| <
6/2; thus, |z, — z] < 6. Thus, given § € RisandkeN, -
let Asy ={n€*N:n>kand|z, —z| < 6for each m e
{k,...,n}}. For any finite collection {(é;,%,),... {(6n,kn)}
with ki > ng, N Ase, # 0. Let A = {(6,k) € Ry, x
N : k > ns}. By Saturation, Nisk)eadsr # 0. Choose
7o € N(sk)eaAse. Then ng € *N\Nj given n € *N\N with
n < ng, |2, — z| =0.

Conversely, suppose there exists ng € *N \ N such that
n € *N, n < np implies z, ~ z. Given § & Ry, let
A={ne€*N:|z,-z|]<é2lu{ne*N:n> no}.
A is internal and contains *N \ N. By Proposition 3.1.8,
AD{n,n+1,...} for some n € N. Thus, |°Zm — x| < 6 for
m € N satisfying m > n. Therefore °z, converges to z. m

Proposition 3.1.10 Suppose {z, : n € N} is a sequence
of elements of R. Then z, —» z € R if and only if 2, ~ z
for every n € *N\ N,

Proof: Suppose r, — z. Given € € R, there exists
ng € N such that the sentence

Vn € N[n > no = |z, — 2| < ¢ (3.5)
holds in X. By Transfer, the sentence

Vn € *N[n > ng = |z, — z| < ¢] (3.6)
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holds in *X. If n € *N \ N, then |z, — z| < ¢; since ¢ is an
arbitrary element of Ry ., z, = z.

Conversely, suppose z, =~ z for all n € *N \ N. For
n €N, °z, = z,, so , — z by Proposition 3.1.9. ®

3.2 Open and Closed Sets

Proposition 3.2.1 Suppose (X, T) is a topological space.
Then A C X is open if and only if u(z) C *A for every
X e A.

Proof: If A is open and z € A, then u(X) C *A by Def-
inition 3.1.1. Conversely, suppose p{z) C *A for every
z € A. By Proposition 3.1.5, we may find § € *T with
z € § C p(z). Thus, the sentence

ISe*T z€SC*A (3.7)
holds in *X, so the sentence

ST zeSca (3.8)
holds in X by Transfer. Thus, A is open. ®

Proposition 3.2.2 Suppose (X, T) ts a topological space.
Then A C X is closed if and only if y € *A implies z € A
for every z € X such that y € u(z).

Proof: Let B = X\ A.

Suppose A is closed. If y € *A and y € p(z) with
z € X\ A, then z € B. Since A is closed, B is open.
Since y € u(z), y € *B by Proposition 3.2.1. *BN*4 =
*(BN A) = 0, by Transfer. Thus, y ¢ *A4, a contradiction.

Conversely, suppose y € *A implies z € A for every
z € X such that y € u(x). Suppose £ € B. Then we must
have y € *X \ *A = *B for every y € u(z). Accordingly, B
is open by Proposition 3.2.1, so A is closed. m
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Proposition 8.2.3 Suppose(X,T) is a topological space,
and A C *X is internal. Then {z€ X :3y€ Aly € u(2)]}
ts closed,

Proof: Let C = {z € X : Jy € A [y € u{z)]}; we shall
show that B = X'\ C is open. Let D = *X \ 4; D is
internal by the Internal Definition Principle. If z € B, then
D > p(z),s0 D O *T for some T satisfying X € T € T, by
Proposition 3.1.5. If y € T, then u(y) C *T, so D D uly),
so y € B. Thus, B is open, so C is closed. m

3.3 Compactness

Definition 3.3.1 Let (X, T) be a topological space and
v € *X. Wesay y is nearstandard if there exists z € X such
that y ~ z. We let ns(*X) denote the set of nearstandard
points in * X,

Theorem 8.3.2 Let (X, T) be a topological space. Then
(X, T) #s compact if and only if every y € *X is nearstan-
dard.

Proof: Suppose (X, T) is compact, and there is some y €
*X which is not nearstandard. Then for every z € X,
there exists T, with z € T, € T and y ¢ *T,. {T, :
z € X} is thus an open cover of X; let {T},,..., 7%, } be
a finite subcover (so n € N). Since * is a superstructure
embedding, UL,*T,, = *(UL,T,,) = *X,s0y € *X, a
contradiction.

Conversely, suppose that every y € *X is nearstan-
dard. Let {T) : A € A} be an open cover of X. Let
Cx = X \ Ti. If there is no finite subcover, then for
every collection {A1,...,A,} with n € N, N, C,. # 6.
ML *Co = *(N74Ch,) # 8. |A| € 11X, so by saturation,
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C = Nxea*Cy # 8. Choose any y € C. Given z € X, there
exists A such that z € T). Sincey € C C *C, y € *T,
so y % z. Since z is an arbitrary element of X, y is not
nearstandard, a contradiction. Thus, {T) : A € A} has a
finite subcover, so X is compact. B

Definition 3.3.3 z € *R is said to be finite if there is
some n € N such that z < n.

Proposition 3.3.4 Suppose y € *R, and y is finite. Then
y ts nearstandard.

Proof: Let A = {# € R : z < y}, z = supA. Given
§eER,,,wecanfind z€ Awithz>z 6. But z <y, so
z — § < y. On the other hand, z + § > y by the definitions
of A and z. Therefore z—&§ < y < z+ 6. Since § is an
arbitrary element of R, y ~ z, so y is nearstandard. =

Theorem 3.3.5 {Bolzano-Welerstrass) If C is a closed
and bounded subset of R* (k € N), then C is compact.

Proof: Suppose y € *C. Since C is bounded, there exists
n € N such that
Vz € Clz| < n. (3.9)

By Transfer
Vze*Cjz| < n (3.10)

and so each component y; of y is finite. By Proposition
3.3.4, y; is nearstandard, with y; =~ z; for some z; € R. Let
z = (z1,...,%). Then y =~ z. Since C is closed, z € C.
Thus, C is compact by Theorem 3.3.2. m

Theorem 3.3.6 Suppose > s a binary relation on e com-
pact toplogical space (X, T) satisfying

1. irreflezivity (for allz € X, z ¥ z);
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2. transitivity (for all z,y,z € X, z > y,y> 2=z >
z);

3. continusty ({(z,y) € X*: z > y} is open).

Then X contains a mazrimal element with respect to >, i.e.
there is some £ € X such that there ts no z € X with z > z.

Proof: By Theorem 1.13.4, there exists a hyperfinite set A
such that T € T = 3r € A [z € *T). Since > is irreflexive
and transitive, any finite set B C X contains a maximal
element with respect to >. By Transfer, any hyperfinite
set contains a maximal element with respect to *>. Let y
be such a maximal element of A. Since X is compact, there
exists z € X such that y ~ z by Theorem 3.3.2.

Suppose z € X and z > z. Then there exists S, T with
€T €T and z€ S € T such that v > w foreach v € §
and w € T. By transfer, v*>w for each v € *§ and each
w € *T. But there exists v € *S N A, and so v*>y, a
contradiction. Thus, z is maximal in X with respect to ».
]

Proposition 3.3.7 Suppose(X,T) is a regular topological
space, and A C *X is internal. Suppose further that every
Y € A 1s nearstandard, Then {z € X : 3y € A ly € u{z)}
s compact.

Proof: Let C = {z € X : 3y € A [y € u(x)]}. Suppose
{Cx : X € A} is a collection of relatively closed subsets
of C, with MyeaCh = B, but N, Cy. # B for every finite
collection {A;,...,A}; C is closed by Proposition 3.2.3, so
C» is closed in X. Given z € C with = ¢ C), we may
find sets Sy,,Th; € T such that C; C S, 7 € Tz, and
Sx2 N T, = 0. Let A' = {(A\,z) : = & C,}. Given any
finite collection {(A1,21),...,(An,Zn)} C A, N S, is an
open set; because it contains N, C,, # 0, it is not empty.
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Choose ¢ € N, Cy,. Then ¢ € C, so there exists a € A with
a € ple}. Ny*Sa = ¥ Ny Syz; O ul(e) by Proposition
3.2.1. Therefore, AN (NZ,*S) ;) # 0. By saturation, 4 N
(n(A,z)EA'*S).,-z,-) # 0; choose y € ﬂ(ﬂp‘,z)a:*s;i,‘.). Since
Y € A, y is nearstandard, so y € u(z) for some z € X. By
the definition of C, z € C. Since NyesCy = 8, there exists
A € A with z € A, Since *Ty, D u(z), *Sx:N*T, = *(Saz
Tyz) = 0, we get y & u(z), a contradiction. Therefore, C is
compact. =

3.4 Products

Proposition 3.4.1 Let (X, T\) be a family of topologi-
cal spaces, and let (X, T) be the product topological space.
Then

*X = {y : y is an internal function from *A to Use X0
and VA € *A y, € *X,}. (3.11)

Givenz € X,
p(z) ={v € *X: VA€ A y) ~x,}. (3.12)

Proof: The formal definition of the product is
X={feF(A,raX)):VACA f(A) € X} (3.13)

where 7(A, B) denotes the set of all functions from 4 to
B. By the Transfer Principle,

*X = {f € *(?(A,UAE,\XA)) VA€ *A f(}t) = *XA}
(3.14)
={y:*A > U, %, * X5 1y is internal, VA € *A g, € *X,).
(3.15)
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Suppose y € pu(z) withze€ X. Fix A€ A. Given T € Ty
withz,€T,let S={2€6X:2,eT}.S€Tandze S,
so y € *S. Therefore, y) € *T, so ¥, =~ z,.

Conversely, suppose y € *X and yy, ~ z, forallA € A. If
z €T € T, then there exist Ay,...,A, € A with n € N and
Th,e Tisuchthat f S = {z € X : 2, € T),(1 < ¢ < n)},
thenz € SCT. But *S = {2 € *X :12,, € *T),(1 < ¢ <
n}) by Transfer, so y € *S C *T. Therefore y ~ 7. m

Theorem 3.4.2 (Tychonoff) Let (X,,T,) (A € A) be a
family of topological spaces, and (X, T) the product topo-
logical space. If (X,,T)) is compact for each X € A, then
(X, T) ts compact.

Proof: Suppose y € *X. For each A € A, there exists
zx € X such that yy & z,. By the Axiom of Choice, this
defines an element = € X such that y, ~ z, for each ) € A.
Therefore, y ~ z by Proposition 3.4.1. Thus, every y € *X
is nearstandard, so X is compact by Theorem 3.3.2. m

3.5 Continuity

Proposition 3.5.1 Suppose (X, S) and (Y, T) are topolog-
tcal spaces and f : X — Y. Then f is continuous if and
only if *f(u(z)) C u(f(z)) for every z € X.

Proof: Suppose f is continuous. If y = f(z) and y €
T €T,then § = f~YT) € §. Hence, the sentence Vz &
S f(z) € T holds in X. By Transfer, the sentence Vz €
*S *f(2) € *T holds in *X. If z € u(z), then z € *S, so
*f(2) € *T. Since this holds for every T satisfying f(z) €
TeT,*f(z2) € u(f(z)). Thus, *f(u(z)) C p(f(z)).
Conversely, suppose *f(u(z)) C u{f(z)) for every z ¢
X. Choose S such that f(z) € S € §. By Proposition 3.1.5,
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we may find T € *T such that z € T C u{z). Accordingly,
the sentence

AT €*T [z €T A *f(T) C 8] (3.16)
holds in *X; by Transfer, the sentence

JTeT [zeT A f(T)cC 8] (3.17)
holds in X, so f is continuous. m

Corollary 3.5.2 If f : R — R, then f ts continuous if
and only if y =~ z € R implies *f(y) =~ f(z).

Definition 3.5.3 Suppose (X, §) and (Y, T) are topologi-
cal spaces with (Y, T') Hausdorff, and suppose f : *X — *Y
is internal. f is said to be S-continuous if f(z) is nearstan-
dard and f(u(z)) C p(°f(z)) for every z € X.

Definition 3.5.4 A topological space (X, T) is regular if
it is Hausdorff and, given x € X and C C X with z ¢ C
and C closed, there exist S,7 € T withz e §,C C T, and
SNT=29. '

Proposition 8.5.5 Suppose (X, §) and (Y, T) are topo-
logical spaces with (Y, T) regular, and f : *X — *Y is
S-continuous. Define °f : X —»'Y by (°f)(z) = °(f(z)) for
each z € X. Then °f is a continuous function.

Proof: Because f(z) is nearstandard for each z € X, there
exists y € Y such that f{z) € u(y); since (Y, T) is Haus-
dorff, this y is unique by Proposition 3.1.7. Thus, the for-
mula for °f defines a function.

Suppose z € X, y =°f(z}. Hy €V € T, then X\ V
is closed. Since (Y, T) is regular, we may find 5,7 ¢ T




3.5. CONTINUITY 51

withy € §, X\V CT,and SNT = @. Since f is S-
continuous, f~1(*S} D p(z). f~1(*S) is internal by the
Internal Definition Principle, so it contains *W for some
W satisfying z € W € §, by Proposition 3.1.5. fw e W,
then w € *W, so f(w) € *S. If °f(w) ¢ V, then °f(w) €
X\V CT. SinceT €T, f(w) € *T by Proposition 3.2.1.
But *SN*T"=*(SNT) =0, so f(w) € *$, a contradiction
which shows ° f(w) € V for w € W. Thus, °f is continuous.
|

Remark 3.5.6 In the proof of Proposition 3.5.5, one is
tempted to consider the function ¢ = *(°f) and apply
Proposition 3.5.1. However, since °f is constructed using
the nonstandard extension, using the properties of f pro-
pels us into a second nonstandard extension *{* X'), creating
more problems than we solve. Hence, the argument must
proceed without invoking the nonstandard characterization
of continuity presented in Proposition 3.5.1.

Definition 8.5.7 Suppose (X,T) is a topological space
and (Y,d) is a metric space. A function f : X — Y is
bounded if sup, oy d{f(z),f(y)) < oo. (C(X,Y),d) de-
notes the metric space of bounded continuous functions
from X to Y, where d(f,g) = sup,cx 4(f{z), g(z)).

Theorem 3.5.8 (Nonstandard Ascoli’s Theorem)
Let (X, T) be a compact topological space and (Y, d) a met-
ric space. If f is an S-continuous function from *X to *Y,
then *d(f,°f) > 0, i.e. f is nearstandard as an element of
*C(X,Y),d), and °f is its standard part.

Proof: By Proposition 3.5.5, °f is a continuous function
from (X, T) to (Y,d). Let ¢ = °f. Given z € *X,, z € u(z)
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for some z € X. Transferring the triangle inequality,
*d(*¢(z), f(2))) <
*d(*g(z),9(z)) + *d(g(z), f(z)) + *d(f(x}, F(2)).

(3.18)

The first term is infinitesimal by Propositions 3.5.1 and
3.5.5; the second by the definition of ¢ = °f; and the third
because f is S-continuous. Therefore *d(g{z}, f(z)) ~ 0 for
every z € *X. Therefore, *d(f,g) < € for every € € R4,
and thus *d(f,g) ~ 0. m

Corollary 3.5.9 (Ascoli) Suppose A C C([0,1],R) 1s
closed, bounded and equicontinuous. Then A ts compact.

Proof: Given e € R, , thereexists § € Ry, and M € R
such that the sentence

vf € Avz,y € [0,1] {[|f(z)| < M]

Ally =zl <é=|f(z) - fy)| < ¢ (3.19)

holds in X. By Transfer, the sentence

Vfe*Avz,ye*0,1] [[|f(z)] < M]

Ally—zl <= *f(z) - *f(v)| < €] (3.20)

holds in *X. Suppose f € *A. f(z) is finite for all z €
*[0,1]. Moreover, if y € u(z), then |f(y)— f(z)] < ¢; since €
is arbitrary, |f{y)— f(z)| = 0. Therefore *f is S-continuous,
so f € u(°f). Since A is closed, °f € A by Proposition
3.2.2. Thus, every element f € *A4 is nearstandard, so 4 is
compact by Theorem 3.3.2. m
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3.6 Differentiation

Definition 3.8.1 Suppose z,y € *R. We write y = o{z)
f there is some & =~ O such that |y| < é|z| and y = O(z) if
there is some m € N such that |y| < M|zl

Proposition 3.6.2 Suppose f : R™ — R" and z € R™.
Then | is differentiable at z tf and only there ezists a linear
function J : R™ — R” such that *ly) = flz) + Ny -
z) + o(z) for all y = 2.

Proof: Let D be the set of all linear maps from R™ to R".
Suppose f is differentiable at z. Then there exists J € L
such that for each € € R, there exists § € R4 such that
the sentence

Vy e R™jy— x| < § = |f(y) — (@) = Iy ~ 2} < ely — =]}
(3.21)
holds in X; by Transfer, the setence

vy € *R™ (ly—2| < 8 = |1 (¥)—F(2)~*T(y—2)| < dly=3]
(3.22)
holds in *X. Therefore, if y ~ =z, then |f(y) — flz) =
*J(y — z)| < €]y — =|. Since € is an arbitrary element of
R, () - fl2) - *T(y — )| = olly — z]) for all y = =.
Conversely, suppose that there exists J € L such that
y =~ z implies |f(y) — flz) = *J(y - z)| = ofly — zj). Fix
¢ € R.,. Then the sentence

36 € *Rys |1 (4) — f(2) Ty~ )| <y -3l (3:23)
holds in *X. By Transfer, the sentence
36 € Ry [f(y) — fle) - Ty —2)| Sely—2]  (3.24)

holds in I. Since ¢ is an arbitrary element of R.,, f is
differentiable at z. &
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3.7 Riemann Integration

Theorem 3.7.1 Suppose [a,b] C R and f : [a,b] = R s
continuous. Givenn € *N\ N,

). (3.25)

Proof: Let I, = 10 fla+ 2%y for n € N. By
Transfer, I, = $¥5 *f(a + ¥=2) for n € *N. Since
f is continuous, I, — f:f(t)dt. By Proposition 3.1.10,
‘oo fo f(t)dt foralln € *N\N. m

3.8 Differential Equations

Nonstandard analysis permits the construction of solutions
of ordinary differential equations by means of a hyperfinite
polygonal approximation; the standard part of the polygo-
nal approximation is a solution of the differential equation.

Construction 3.8.1 Suppose F : R* x [0,1] — R* is con-
tinuous, there exists M € N such that |F(z,t)| < M for all
(2,t) € R* x [0,1], and yo € R*. Choose n € *N'\ N. By
the Transfer Principle, we can define inductively

%) = W
W 2y errewy o

and then extend z to a function with domain *[0,1] by
linear interpolation

2(t) = ([nt] + 1 — nt)z (li:l) 4 (nt — [ntl)s ( Mj:_l)

" (3.27)
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where [nt] denotes the greatest (nonstandard) integer less
than or equal to nt. Let

y(t) = °(2(¢)) for z € [0,1]. (3.28)

Theorem 3.8.2 With the notation in Construction 3.5.1,
z 1s S-continuous and y is a solution of the ordinary differ-
ential equation

y(0)
y'(t)

Proof: Given r,s € *[0,1] with r =~ s, |2(r) — 2(s)| <
Mir — s| =0, so z is S-continuous. By Theorem 3.5.8, y is
continuous and there exists § =~ 0 such that |z(t)~*y(t)| < 6
for all t € *[0,1]. Then

y(t) ~ vo = 2(t) - 2(0) = Thk (= (E21) — 2 (%))
- () ~ B e (v (2) 3
= ff: F(y(s), s)ds
(3.30)

by Theorem 3.7.1. Since y(t} — yo and [ F(y(s), s)ds are
both standard, they are equal. By the Fundamental Theo-
rem of Caleulus, y'(t) = F(y(t),t) forall t € [0,1],s0 y is a
solution of the ordinary differential equation 3.29. m

Yo

Fly(t), 1). (3.29)
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Chapter 4

Loeb Measure

The Loeb measure was developed originally by Peter Loeb
(1975) to solve a problem in potential theory. Loeb’s con-
struction allows one to convert nonstandard summations on
hyperfinite spaces to measures in the usual standard sense.
It has been used very widely in probability theory, and is
an important tool in nonstandard mathematical economics.

4.1 Existence of Loeb Measure

Definition 4.1.1 An internal probability space is a triple
(A, A,v) where
1. A is an internal set,
2. A C (*P)(A) is an internal o-algebra, i.e.
(a) A€ 4
(b} B € A implies A\ B € 4; and

(c) If {B. : n € *N} is an internal sequence with
B,.dE A, then Ny Bn € A and Une*NBﬂ € A;
an

57




58 4. LOEB MEASURE

3. v : A — *[0,1] is an internal finitely additive proba-
bility measure, i.e.

(a) v{A) =1 and
(b) if {B, : n € *N} is an internal sequence and BpN

B,, = § whenever n # m, then V(nne*NB“) =
Ene*NV(B"')‘

Remark 4.1.2 The Loeb measure construction also works
if we merely assume that A is closed under finite unions and
v is finitely additive. We shall be primarily interested in
hyperfinite spaces, in which integration is just summation.

Definition 4.1.8 An internal probability space is hyperfi-
nite if A is a hyperfinite set, 4 = (*P)(A) (L.e. A isthe class
of all internal subsets of A), and there is an internal set of
probability weights {}, : ¢ € A} such that v(B) = X.ea Aa
for all B € A.

Example 4.1.4 The canonical example of a hyperfinite
probability space is (A, A,v), where A = {1,...,n} for
some n € *N\ N, A = (*P)(4), and v(B) = Bl for all
n € N.

Construction 4.1.5 (Loeb Measure) Suppose (4, 4,v)
is an internal probability space. Define

A={BCcA:VeecR,, ICecATDc A

(Cc Bc D, v(D\C) <} (4.1)
4 LB) —mf{u(D):BcDe A}

—swp{(C):Cc B, cedy 42

for B¢ 4. U is called the Loeb measure generated by v.
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Theorem 4.1.6 (Loeb) Suppose (A, A,v) is an internal
probability space. Then

1. A is a o-algebra, A D A;

2. 7 15 a countably additive probability measure;
3. A is complete with respect to U;

4. (B} =°v(B) for every B € 4; and

5. for each B € A, there exists A € A such that

7((A\ B) U (B\ 4)) =0. (4.3)

Proof: If B € A, then for each n € N, we may find
Cn,Dn € :q with Cl - Cz C ... C B...Dz - .D1 and
v(D, \ Cp) < 1/n. By Theorem 1.10.3, we can extend
C, andD, to internal sequences in 4. {n € *N : [C,, C
Cmt1 C Dmi1 © D A ¥(Dm\ Cm) <1/m] (1 < m < n)}
is internal and contains N, so it contains some n € *N\ N
by Proposition 3.1.6. C, € 4. f me N, p({C, \ B)U (B
Cr)) € P((Ca\Crm)U(Dm\Cn) £ P(Dm\Cr) < 1/m. Since
m is an arbitrary element of R ., 7((C,\B)U(B\C,)) = 0.

Suppose B,B' € 4. Fix e € Ry, and find C C B C
D, C' C B' C D' with B,B',D,D' € 4 and v(D\ C) <
e/2,v{D'\ C') < ¢/2. C\D' c B\B' C D\C'and
(D\C)\(€\ D)) < (D\ ) U (D' \ &), 50 (DN )\
(C\D") <e€/2+¢/2=c¢ Thus, B\ B' € 4.

Now suppose By, B;,... € A and let B = UpenBn. By
considering B, = B, \ U B;, we may assume without loss
of generality that the B;’s are disjoint. Given e € R, we
may find C, C B, C Dy, with By, Dy, € 4 satisfying v(D, \
C,) < €/2**1, Extend C,, and D, to internal sequences with
C,,D. € A by Theorem 1.10.3. If we let o, = °(v (UL Ch)),
then o, is a nondecreasing sequence in [0, 1], so it converges
to some a € R. By Proposition 3.1.9, we may find some
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no € *N \ N such that v{(UL,C,) = a for n € *N\ N,
n < ng. Moreover, {n : (UL D,) < v(UL,C,) + €/2 is
an internal set which contains N, so by Proposition 3.1.6,
it contains all n < n; for some n; € *N \ N. Taking
n = min{ng,n1}, we see there exists n € *N \ N such
that v(UL,Cp) ~ a and v(UL Dy) < v(UL,Cq) + €/2.
Moreover, we can find m € N such that oy, > a —¢/2. Let
C=UZ,Cand D=UL,D,. ThenC,D€ 4,C C BC D,
and (u(D \C)) <& s0v(D\ C) < e. Therefore, B  A.
o~ /2 < °(v(C)) < B(B) < *(v(D)) < e+ e/2. [7(B,) -
(om — an-1)| < €/2"*1, s0 | Tpen #(B,) — @] < €/2. Since
€ is arbitrary, 7(B) = a = 3 ,.n P{B,), so 7 is countably
additive.

Suppose B C B' with B € A and o(B) = 0. Then
given € € R, ., there exists D € A such that B' ¢ D and
‘v(D) <e. Then® Cc BC D,so B€ 4, so 4 is complete
with respect to . m

4.2 Lebesgue Measure

In this section, we present a construction of Lebesgue mea-
sure in terms of the Loeb measure on a natural hyperfinite
probability space.

Construction 4.2.1 (Anderson) Fix n € *N \ N, and
let A={2:kc*N, 1<k<n) Let A = (*P)(4 ) the
set of all internal subsets of A, and v{B) = 1—1 for B € 4.
Let (A, A4,7) be the Loeb probability space generated by
(4, A, v). Let st denote the restriction of the standard part
map to A, ie. st(a) = °a for @ € A, and let st~! denote
the inverse image of st, i.e. st™'(B) = {a € A: °a € B}
for B c [0,1]. Let B = {B C [0,1] : st"}(B) € A} and
u(B) = p(st=(B)) for all B € B.
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Theorem 4.2.2 (Anderson, Henson) ([0,1},8,u) is
the Lebesgue measure space on [0,1].

Proof: Let C = {C < [0,1] : st™!(C) € A}, and define
¢ (C) = p(st™1(C)) for C € C. Since 4 is a o-algebra, so is
C; since 7 is countably additive, so is z'. Consider the closed
interval [a b C [0 1]. Then st™([a,b]) = Npen(*(a— 2,5+
=)NA). *(a—%,b+21)nA) € 4 by the Internal Definition
Principle, so st 1([a, b]) € A i(la,b]) = p(st™{[a,b]) =

*f g d btk n
a b+ A
hmm_,oo ° ....._n_.m..__l ( 4|

#([e,8]) = u(la,b)).

Let By be the class of Borel sets. Since B, is the smallest
o-algebra containing the closed intervals, ¢ D B,. Since u
and u' are countably additive, and agree on closed intervals,
they agree on By. C is complete with respect to ' because
A is complete with respect to 7. Therefore, C O 8 and u
agrees with u on B.

=liMp oo b—a+% = b—a. Thus,

Finally, we show that ¢ C B.! Suppose B € ¢. Given
€ € Ry, there exist C, D € 4 with C C st™!(B) € D and
*v(D) ~°v(C) < e. Let € = {°¢: ceC}, D=1[0,1]\{:
@ € A-D}. Then ¢ C B C D. C and [0,1]\ D are
closed by Proposition 3.2.3, so D is open, thus, C, D € B.
(D)~ u(C) = w(D) - —u '(C) = p(stH(D)) - B(st71(C)) <
p(D) — p(C) (smce st™*(C) D C and st™'(D) ¢ D) =
*v(D) —°v(C) < e. Since B is complete with respect to u,
BeB,soC=8.m

1The proof of this part given here is due to Edward Fisher.
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4.3 Representation of Radon Mea-
sures

Definition 4.3.1 A Radon probability space is a proba-
bility space (X, 8,u) where (X, T) is a Hausdorff space, B
is the o-algebra of Borel sets {i.e. the smallest o-algebra
containing T), and

p(B) =sup{u(C):Cc B, C compact}

=inf{p(T):BCT, Te T} (4.4)
for every B < B.

Example 4.3.2 Let (X, d) be any complete separable met-
ric space, B the o-algebra of Borel sets. Then any proba-
bility measure x on 8 is Radon (see Billingsley (1968)).

Theorem 4.3.3 (Anderson) Let (X,B,u) be a Radon
probability space, and B is the completion of B with respect
to p. Then there is a hyperfinite probability space (A, A,v)
and a function S : A — X such that B € B if and only if
S71(B) € 4. For every B€ B, u(B) = o(S7Y(B)).

Proof: The proof is similar to the proof of Theorem 4.2.2;
for details, see Anderson (1982). m

4.4 Lifting Theorems

In this section, we state a number of “Lifting Theorems”
relating integration theory in Loeb probability spaces to
the internal integration theory in internal measure spaces.
Note that, in the case of a hyperfinite measure space, the
internal integration theory reduces to finite summations.
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In particular, feasibility conditions in hyperfinite exchange
economies can be formulated as conditions on summations,
in exactly the same way as they are formulated in finite
exchange economies. However, the Loeb measure construc-
tion can be used to convert a hyperfinite exchange economy
to an economy with a measure space of agents in the sense
introduced by Aumann. The lifting theorems provide the
link between the two constructions.

Definition 4.4.1 Suppose {4, 4,v) is an internal proba-
bility space and (X, T) is a topological space. A function
f: A— *R is said to be v-measurable if it is internal and
F7YT) e Aforevery T € *T.

Theorem 4.4.2 (Loeb, Moore, Anderson) Let (A, 4,v)
be an internal probability space.

1. If (X, T) is a regular topological space, f : A — *X
is v — measurable, and f(a) is nearstandard for D-
almost ali A€ A, then°f: A — X ts D-measurable.

2. If (X, T) is a Hausdorff topological space with a count-
able base of open sets and F : A — X is D-measurable,
then there ezists a v-measurable function f: A — X
such that °f(a) = F(a) v-almost surely.

Proof: This will be provided in the monograph. For now,
see Anderson (1982).m

Definition 4.4.3 Suppose (A, 4,v) is an internal proba-
bility space and f : A — *R is v-measurable. Suppose
A € *X,. Let I be the function which assigns to every
pair ((B, B,u),g), where (B, 8,4) is a standard probabil-
ity space and ¢ is a y~-measurable real-valued function, the
integral J((B, B,u),g) = [g gdu. The internal integral of f,
denoted [, fdv,is defined by f, fdv = (*I)((4, A,v), f).
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Example 4.4.4 Let (A, A4,v) be as in the construction of
Lebesgue measure (Construction 4.2.1). If f: A — *R is
any internal function, then f is v-measurable by the Inter-
nal Definition Principle. Moreover,

/A fdv = % " f(a) (4.5)

aEA

by the Transfer Principle.

Definition 4.4.5 Suppose (A4, A,v) is an internal proba-
bility space and f : A — *R. We say f is S-tntegrable
if

1. f is a v-measurable function;

2. ° [, |fldv < o0
3. Be A, v(B)~0= [5ifldv ~0.

Theorem 4.4.6 (Loeb, Moore, Anderson) Let (A, A,v)
be an internal probability space.

1. If f+ A — *R is v-measurable and [, |f(a)|dv is fi-
nite, then °f is integrable with respect to 7 and
JalPfldp < ° [4]fldv;

2. If f: A — *R is S-integrable, then °f is integrable
with respect to U; moreover, ° [, fdv = [,°fdy;

3. If F: A — R is integrable with respect to v, then

there ezists an S-integrable function f : A — *R such
that °f = F D-almost surely. Moreover, ° [, fdv =

Jasfdv.

Proof: Items (2) and (3) are proved in Anderson(1976).
To see item (1), suppose m € N, and define f,(a) =
min{|f(a}|},m}. f. is obviously S-integrable, so by (2),
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° fn is integrable and ° [, fmdv = [, °fmd?. By the defini-
tion of the standard integral, [, °|f|d7 = liMipm oo [4 ° frndP
= liMy oo ° 4 fmdy; note that this last sequence is increas-
ing and bounded above by ° f, |f|dv < co. Therefore °f is
integrable and f, [°f|dp < °[4|fldv. =

Definition 4.4.7 Suppose A, is a sequence of finite sets.
A sequence of functions f, : 4, — RE is said to be uni-
formly integrable if, for every sequence of sets E, C A,
satisfying |Enl/|An| — 0,

1
| An]

3" fala) —0. (4.6)

GEAR

Proposition 4.4.8 Suppose {4, : n € N} 15 a sequence
of finite sets and fn : An — RE. Then {f, :n € N is
uniformly integrable if and only if for all n € *N, f, 15 S-
integrable with respect to the normalized counting measure
va(B) = |B|/|An| for each internal B C An.

Proof: See Anderson (1982), Theorem 6.5.

4.5 Weak Convergence

Definition 4.5.1 A sequence of probability measures un
on a complete separable metric space (X, d) is said to con-
verge weakly to a probability measure p (written p, = )

if
[ Fapn— [ Fdp (4.7)
X X

for every bounded continuous function # : X — R. The
standard theory of weak convergence of probability mea-
sures is developed in Billingsley (1968). Because the the-
ory is widely used in the large economies literature {Hilden-
brand (1974,1982), Mas-Colell (1985)), it is useful to have
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the following nonstandard characterization in terms of the
Loeb measure.

Theorem 4.5.2 (Anderson, Rashid) ? Suppose v, (n €
N) is a sequence of Borel probability measures on a complete
separable metric space (X,d). Let p,(B) = *u,(st™}(B))
for each Borel set B C X define a Borel measure on X for
each n € *N. Then v, converges weakly if and only if

1. Zr(ns(*X)} =1 for all n € *N\ N; and
2. pn = pm for alln,m e *N\ N,

In this case, the weak limit is the common value p, for

n € *N\N.
Proof:

1. Suppose v, = v.

(a) Since v is a probability measure and X is com-
plete separable metric, {1, : n € N} is tight,
ie. given € € R, there exists K compact such
that v,(K) > 1 — ¢ for all n € N (Billingsley
(1968)). By transfer, v,(*K) > 1 — ¢ for all
n € *N\N. *K C ns(*X) by Theorem 3.3.2,
so Tn(ns(*X)) = 1.

(b) Given F: X — R, F bounded and continuous,
fx Fdv, — [x Fdy by assumption. Therefore,

Jx *Fdv, = [y Fdv for all n € *N\ N by Propo-
sition 3.1.10. Then

fx Fdu, = fn o PR (48)

2The result holds for spaces much more general than the complete
separable metric spaces considered here, See Anderson and Rashid
(1978) for details.




4.5. WEAK CONVERGENCE 67

= [Log CFENTE (49

by Proposition 3.5.1

- don ~ [ *F(z)dv, (4.10
= [ J *F@dv,  (4.10)
by Theorem 4.4.6

o [X Fdv. (4.11)

Therefore, fy Fdun, = [x Fdv for alln € *N\N.
Since this holds for every bounded continuous

F, pn, = v by Billingsley (1968). In particular,
- if m,n € *N'\ N, then u, = .
2. Suppose T(ns(*X)) = 1 for all n € *N \ N and
Bn = pim for all n,m € *N\N. Let v be the common
value of g, for n € *N\ N.

ﬁ_ *Fdu, o f e (4.12)
by Theorem 4.4.6

= ftr) @) = [,y F(%ndv—n
(4.13)
= [y Fdp, = [y Fdu.

Thus, for n € *N\ N, fs, *Fdvp, = [y Fdv. Then
fx Fdv,, — [x Fdv as n — oo by Proposition 3.1.10.
Therefore v, = v.
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Chapter 5

Large Economies

The subject of large economies was introduced briefly in
Section 1.1.1. We are interested in studying properties of
sequences of exchange economies xy, : Ap — P X Ri, where
An is a set of agents, RE the commodity space, and P
the space of preference relations on R’j_. In this section,
we examine price decentralization issues for the core, the
bargaining set, the value, and the set of Pareto optima, as
well as the question of existence of approximate Walrasian
equilibria. _

We begin by studying the properties of hyperfinite ex-
change economies. The Transfer Principle then gives a very
simple derivation of analogous properties for sequences of
finite economies.

Much of the work on large economies using nonstandard
analysis concerns the core. For this reason, we have chosen
to devote considerable attention to the core, in order to
illustrate the use of the nonstandard methodology, and to
contrast that methodology to measure-theoretic methods.
In Section 5.5, we focus on the following issues:

1. The properties of the cores of hyperfinite exchange

69
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economies, in Theorem 5.5.2.

2. The use of the Transfer Principle to give very simple
derivations of asymptotic results about the cores of
large finite economies from results about hyperfinite
economies, in Theorem 5.5.10.

3. The close relationship between hyperfinite economies
and Aumann continuum economies, which are linked
using the Loeb measure construction, in Proposition
5.5.6.

4. The ability of the nonstandard methodology to cap-
ture behavior of large finite economies which is not
captured in Aumann continuum economies, in Re-
mark 5.5.3 and Examples 5.5.5, 5.5.7, 5.5.8 and 5.5.9.

5.1 Preferences

Given z,y € Rf‘,_, z' denotes the 1** component of z; z > y
means z' > y' for all { and z # y; z >> y means z* > 3
for all . I 1 < p < o0, ||2]l, = (ZEy [2°P)7; |izlleo =
max{|z|' 11 =1,...,k}.

Definition 5.1.1 A preference is a binary relation on R,
Let P denote the set of preferences. A preference >
1. is transitive if Vz,y,z e RE[z > y,y > 2 = 1 > 2];

2. is continuous if {(z,y) € RE x RE : z > y} is rela-
tively open;

3. is
(a) monotonic if Vz,y € RE [z >> y = z > y;

(b) strongly monotonic if Vz,y e RE[z > y = z >
y);
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4. is trreflezive if Vz € RE [z # z);
5. is
(a) convezif Vz € RE, {y:y > z} is convex;

(b) strongly convex if

z
Vx,yeRi, z#y=>[—}g>zvx—;;y->y]];

(5.1)
6. satisfies free disposal if

Vz,y,z€RE [z~ y| Ay > 2] =z > z]. (5.2)
Let P. denote the space of continuous preferences.

Definition 5.1.2 We define a metric on P, as follows: Let
d; be the one-point compactification metric on Rﬁ_" U {oo}.
Given any compact metric space (X, d), the Hausdorff met-
ric d¥ is defined on the space of closed sets of X by

d#(B,C) = inf{6 : Vz € By € C d(z,y) < 6]

AVy € C3ze Bd(z,y) < 6]} (5.3)

Let d; be the Hausdorff metric {d;)¥. Given >& P,, define
Cyr = {{z,y) € R¥ : z % y} U {o0}. Then define

d(>,>") = dz(C,., Cy1). (5.4)

Proposition 5.1.3 (Brown, Robinson, Rashid) If ¢
PCJ

p(>) = {>'e *P, :Vz,y e R [z >y & u(z) > u(v)]}
(5.5)
where p(z), u(y) ere taken with respect to the Euclidean
metric on R%. (P,,d) is compact.
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1. Recall that the one-point compactification metric in-
duces the usual Euclidean topology on R%, so that
if z € R, the di-monad of z, pg4 (z) coincides with
the Euclidean monad p(z). Suppose > P,. We will
show that equation 5.5 holds.

(a) Suppose >'c *P,, >'e u(>). Fix z,y € RY. We
show z > y if and only if u(z) > u(y).

i.

il.

Suppose z > y. If there exist u € u(z),
v € p(y) with u #' v, then (u,v) € *C,., so
there exist (w,2) € *C, such that
*di((u,v),{w,2)) < *d(>,>) «~ 0.
*di((w,2),(z,y)) < *di((w, 2), (v, v)) +
*di{(uw,v),(z,¥)) = 0, so w € pfz), z €
u(y). Since (w,z) € *C,, w*#z. Since
r > y and ~€ P, u(z)*>~uly), so w > z,
a contradiction which shows u(z) >’ u(y).
If z # y, then (z,y) € C,, so there exists
{v,v) € *Cyr such that *d,((u,v), (z,y)) =
0. Therefore v € p(z) and v € p(y), so
m(z) # u(y).

(b) Conversely, suppose for every z,y € R*, z >
y < p(z) > uly). We will show that every
w € *C,: is infinitely close to some z € *C,,
and vice versa.

i.

Suppose w € *C,,. We will show there ex-

ists z € *C, with *d;(w,2) ~ 0. We con-

sider two cases:

A. Suppose w € py,(o0). In this case 0o €
*C,+ and *d;(w,00) =~ 0.
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B. w = (u,v) € pq,(z,y) for some z,y €
R, In this case, u #' v, so u(z) ¥'
u(y), so z # y, so (z,y) € C,..

Accordingly, for every w in *C., there exists

z € *C, such that *di{w,2) ~ 0.

il. Suppose w € *C,. We will show there exists
z € *C,s with *d;(w,2) =~ 0. Again there
are two cases.

A. The case w € pg4,{00) is handled as in
item 1(b)iA above.

B. Suppose w = (u,v) € uq4,(z,y) for some
z,y € RE. In this case, u*#v, so u(z)*¥
#(y), so z ¥ y (since > is continuous),
so (z,y) € C,.

Therefore,
{n € *N:|Vz € B3y C d(z,y) < 1/n]
A [VyeCIz e Bd(z,y) <1/n|} (5.6)

contains N, The set is internal by the Inter-
nal Definition Principle. Hence, it includes some
infinite n by Proposition 3.1.6, so *d(>,>') =
*d3(*Cs, *Cy1} 2= 0. Therefore, >'c u(>).

We have thus verified equation 5.5.

2. It remains to show that (P.,d) is compact. Given
>'€ *P,, define > by z > y & ulz) >' u(y). fz >y,
then u(z) >' p(y). Let B = {(u,v) : v »' v}. B
is internal and contains u(z,y), so it contains *T for
some open set T with (z,y) € T. If (w,2) € T, then
p(w,z) C *T, so p(w) >' u(z), so w > z. Thus,
>€ P,. By equation 5.5, »'€ p(>). By Theorem
3.3.2, (P.,d) is compact.
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5.2 Hyperfinite Economies

Definition 5.2.1 A hyperfinite ezchange economy is an in-
ternal function x : A — *(PxR}), where 4 is a hyperfinite
set. We define the endowment e(a} and preference >, of o

by (e(a),>,) = x{a).

5.3 Loeb Measure Economies

Definition 5.3.1 Let (A, B,u) be a standard probability
space. An Aumann continuum economy is a function X :
A — P, x R such that

1. x is measurable;
2. e(a) is integrable.

Construction 5.3.2 Suppose x : A — *(P, x Rt )isa
hyperfinite exchange economy. Let A denocte the set of all
internal subsets of A, and v(B) = JI'EI[ for B € A. Let

(4, £, 7) be the Loeb measure space generated by (A, 4, v).
Define °x : A — P, x R% by °x(a) = (°>,,%¢(a)).

Theorem 5.3.3 (Rashid) If x : A » P, xR*) is a
hyperfinite ezchange economy with n = |A| infinite and
> Tacacla) is finite, then °x as defined in Construction
5.9.2 is an Aumann continuum economy. [,°e{a)dp <
°(7 Tacaela)), with equality if e is S-integrable.

Proof: Since P, is compact by Proposition 5.1.3, >, is
nearstandard for all a € A. °v({a : |le(a)|l > M}) <
°(—-"5‘——-—E fol:(a]llm) < °(—--—‘-§4--——“Z em”""), so {{a : e(a) is finite
}) = 1. Thus, °x(a) is deﬁned for D-almost all @ € A4; it is
measurable by Theorem 4.4.2. [, °e(a)dp < °(2 ., e(a))
(with equality in case e is S- -integrable) by Theorem 4.4.6.
]
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5.4 Budget, Support and Demand
Gaps

Definition 5.4.1 Let A = {p € R* : lp|) = 1, A, =
A ﬂRﬁ_, a.nd A'i"}‘ - AﬂRi'?"

Definition 5.4.2 Define D,Q: A x P x R* — P(R*) by

Dip,-,e)={zs€Ry:p-z<p-ey>z=>p-y>p-e}
(5.7)
Qp,~e)={zcR::ip-z<p-ey>z=p.y>p-e).
(5.8)
D and @Q are called the demand set and the quasidemand
set respectively.

Definition 5.4.3 Define ¢5 : RX x A x R¥ — R, ¢5 :
RixAxP—-Ry,and¢:RE x Ax PxRE - R, by

¢5(z,p.€) = |p- (z — ¢)]; (5.9)
ds(z,p,>) =sup{p-{z—y) : ¥y > z};and (5.10)
#(z,p,>,€) = ¢p(z,p,€) + ds(z, p,>). (5.11)

$B; ¢s and ¢ are referred to as the budget gap, the support
gap, and the demand gap respectively.

Proposition 5.4.4 Suppose z,e € *RE are finite, > *P,,
and p € *A.

1. If *¢s(z,p,>=) =~ 0, then °z € Q(°p,*>,°z). If in
addition °p € A, then °z € D(°p,°>,°z).

2. If *¢(z,p,>,€) = O, then °z € Q(°p,°>,%). If in
addition °p € Ay, then °z € D(°p,°>, ).

Proof:
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1. Suppose the hypotheses of (1) are satisfied. If y € R®
and y°>°z, then y > u{°z) by Proposition 5.1.3, so
¥ > z. Therefore, “p-y~p-y>p-z— ds(p,z,>) =~
pz’p°z,80 °p-y > °p°z, hence °z € Q(°p, °>, °z).
If °p € Ay, we show that °z € D{°p,°>,°z) by con-
sidering two cases:

(a) If°p-°z =0, thenz = 0 and D(°p,°>,°z) = {0},
so °z € D(°p,°>,°z).

{(b) If °p-°z > 0, suppose y € Rk, y°~°z and °p -
y = °p-°z. Since °> is continuous, we may find
w € R* with °p-°w < °p-y = °p-°z with w°>°z.
By Proposition 5.1.3, w > z, so ¢s{z,p,>) # 0,
a contradiction. Hence °z € D(°p,°>,°z).

2. If the hypotheses of (2) are satisfied, then (1) holds
and in addition °p-°z =°(p-z) = °(p-€) = °p- °¢, so
the conclusions of (2) follow from those of (1).

5.5 Core

Definition 5.5.1 Suppose x : A — P x Rk is a finite ex-
change economy or an Aumann continuum economy. The
Core, the set of Walrasian aliocations, and the set of quasi-
Walrasian allocations, of x, denoted C(x), W(x) and @(x)
respectively, are as defined in Chapter 18 of this Handbook
Hildenbrand (1982). In case x is a finite exchange econ-
omy, C(x), W(x), and Q(x) are defined by the following
sentences:

Clx) ={f € F(4,RY): Zfa) > ¢(a)

agEA acA
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AVS € P(A) Vg € F(S,RY)D 9la) = X (o)

aES aES

= [§ =0V 3ac Sg(a) #a fl))i} (5.12)

Wx) = {f € F(4RE) : 2 f(a) = 2 e(a)

acAd aEA

A 3pe AVac A f(a) € D(p, ~ar¢(a))} (5.13)

and

O(x) = {f € FIA,RE) : 3 f(a) = 2_ e(a)

A dpe AVac A f(a) € Q(p, >ase(a))}- (5.14)
Given 6 € R4, define
Welx) = {f € FARE) s = 3 f(a) — e(a)| < 6
lAl acA
A 3pc AVae A f(a) € D(p,>asela)}.  (5:15)

Because C, O, and W are defined by sentences, if ¥ is a
hyperfinite exchange economy, we can form *C(x), *W(x),
and *Q(x); each is internal by the Internal Definition Prin-
ciple. Define

wgg(X) = ngeR++*W5(x). (516)

Theorem 5.5.2 (Brown, Robinson, Khan, Rashid,
Anderson) Let x : A — *(P. x R%) be a hyperfinite ez-
change economy.
1. 1If
{a) n€ *N\N;
(b) for each a € A, >,
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t. 15 *-monotonic;

11. satisfies *-free disposal;

(c) °(5 Tacacela)) € RE .

(d) e(a)/n =0 for alla € A.
then for every f € *C(x), there exists p € *A, such
that °f(a) € Q(°p,°>,,"e(a)} for D-almost all a € A.
If °p € ALy, then °f(a) € D(°p, °>q,%e(a)) for v-
almost all a € A.

2. If the assumptions in (1) hold and in addition for each
commodity i, D({a € A :°>, is strongly monotonie,
“e(a)’ > 0}) > 0, then °p € A, and hence °fla) €
D(°p,°>,,%¢(a)) for v-almost all a.

8. If the assumptions in (1) and (2) hold and in addition
€ ss S-integrable, then f is S-integrable and (°p,°f) €
w{x).

4. If the assumptions in (1) hold and in addition
(a) ° >, s strongly convez for D-almost all a € A;
(b) for each commodity i, p({a : *¢(a)’ > 0}) > 0;
(¢) =a is *-irreflezive, *-convez, and *.strongly con-
vez for all a € A;
then f(a) ~ *D(p, >,,e{a)) for D-almost all ¢ € A.

5. If the assumptions in (1) and (4) hold and, in addi-
tion, € ts S-integrable, then there ezists g € Weolx)
such that

~ 3" 1#(a) - g(a)| = 0. (5.17)

acA

Proof:
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. Suppose x satisfies the assumptions in part (1) of

the Theorem. By Anderson (1978) (see also Dierker
(1975)) and the Transfer Principle, there exists p €
*A, such that

k maxsea |le(e)l|o

=~0

= *8(/(a),pre(a) <

a€A
(5.18)

since maxaeq4 le(a)|/n = 0. 1 T, o4 fla) = 1 5, cae(a)
is finite, so f(a) and e(a) are finite for F-almost all
a € A. °f(a) € Q(°p,°>4,¢(a)) by Proposition 5.4.4.
If °p € Ay, then °f(a) € D(°p,°>,,e(a)) by Propo-
sition 5.4.4.

Suppose in addition that for each commodity ¢, 7({a €
A : °», is strongly monotenic, °e(a)* > 0}) > 0. We
will show that °p € A, by deriving a contradiction.
If °p € Ay 4, we may assume without loss of general-
ity that °p! = 0,°p* > 0. By assumption {1)(c), |e(a)|
is finite for D-almost all @ € A. Let

S = {a € A : °>~, is strongly monotonie,

“e(a)? >0, °f(a)} € Q(°p, >, °e(a))}. (5.19}
7(8) > 0 by the conclusion of (1) and the additional
assumption in (2), so in particular § # . Sup-
pose a € S. Then °p - °e(a) > °p*°e(a)? > 0. Let
z = °f(e) + (1,0,0,...,0). Since °>, is strongly
monotonic, z°>.°f(a). °p-z = °p°f(a) < °p- °ela).
There are two cases to consider.

(2) °p-z < °p-°e(a): Then °f(a) & Q(°p, >4, €(a)),

a contradiction. '

(b) °p-z = °p°e(a) > 0. Since °>, is continuous,
there exists § € R, such thaty € R, [y—z| <
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6 implies y°>,°f(a). We may find y € R* such
that |y —z| < § and °p-y < °p-z = °p-°¢(a), so
°f(a} & Q{(°p,°>4,°¢(a)}, again a contradiction.

Consequently, °p € A4, so °f{a) € D(°p,°>,, e(a))
by the conclusion of (1),

3. We show first that f is S-integrable. Suppose S C A4
is internal and v(S) ~ 0.

T @)oo € —— X p- 1(a)

=y nmin; p

=~ Z p-e(a) =0 (5.20)
nmin; p* L% :
since e is S-integrable. Thus, f is S-integrable. By

Theorem 4.4.6,

[ =L T 0 = Tl = [ cean

(5.21)
and so (°p,"f) € W(°x).

4. (a) Suppose °>, is strongly convex. We show first
that °>, is strongly monotonic. Suppose z,y €
RY and z > y. Letz—Z:z;--y Thenﬂ—-z
Slnce z # y, either z°>,2 or z°>,y. If %>z,
then z >, z by Proposition 5.1.3, which con-
tradicts irreflexivity. Therefore, we must have
x2°>,y, so °>, is strongly monotonic. Conse-
quently, the assumptions in (4) imply the as-
sumptions in (2), so °p € A, and °f(a) €
D(°p,°>,,°%€¢(a)) for p-almost all a.
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(b) Suppose a € A. Transferring Theorem 1 of An-
derson (1981), *D(p,>,,e(a)) contains exactly
one element. Define g(a) = *D(p, >4,¢(a)). For
p-almost all a € A, we have p- f(a) = p-e(a) =
inf{p-z:z >, f(a)} and e(a) is finite; consider
any such a € A. We will show that f(a) = g{a).
We consider two cases:

i. If e(a) =~ 0, then p-f(a) ~ 0 =~ p-g(a). Since
°p >> 0, f(a) =0 = g(a), so f(a) = g(a).
)

f
ii. If e(a) # 0, then p-efa) # 0. If f(a) # g(a),
then either

of(a) —;_ °g(a) G>_a0f(a) (5.22)
I@ S, o, (529

A. If equation 5.22 holds, then since °>,
is continuous and p - e{a) # 0, we can
find w € RE withp-w < p-e(a), p-w #
p-e(a), such that w®>,°f(a). By Propo-
sition 5.1.3, w >, f{a), which contra-
dicts inf{p-z 1z >, f(a)} = p-e(a).

B. If equation 5.23 holds, we may find w €
R: with p-w < p-efa),p-w # p-
e{a), such that w°>,°g(a). By Proposi-
tion 5.1.3, w >, g(a), which contradicts
g(a) = *D(p, >, €(a))-

Accordingly, f(a) = g(a).

Therefore, we have f(a) ~ g{a) for p-almost all
a € A.

5. Suppose the assumptions in (1) and (4) hold and in
addition e is S-integrable. The assumptions in (4)
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have been shown to imply the assumptions in (2), so
[ is S-integrable by (3). Asin (4}, let g(a) = *D(p, >,
»e{a)). An easier version of the argument in (3) proves
that g is S-integrable. Therefore

~ Y lf@ - g(@l = [ (@)~ gla)l =0 (524)

aEA

by Theorem 4.4.6. Therefore
2l Zacag(a) — e(a)] = 1| Tueag(a) - fla)|

< %EGEA lg(a) — f(a)| = 0,
(5.25)

50 g € Wao{x)-

Remark 5.5.3 Theorem 5.5.2 reveals some significant dif-
ferences between the hyperfinite and continuum formula-
tions of large economies. *

1. One can introduce atoms into both the hyperfinite
and continuum (as in Shitovitz (1973,1974)) formu-
lations. However, as noted by Hildenbrand on page
846 of this Handbook, this leads to problems in in-
terpreting the preferences in the continuum formula-
tion. In essence, the consumption set of a trader rep-
resented by an atom cannot be Ri; it must allow con-
sumptions infinitely large compared to those of other
traders. In asymptotic analogues of the theorems, key
assumptions! are required to hold under rescalings of

! For example, strong monotonicity, in conjunction with compactness
conditions inherent in the measure-theoretic formulation of convergence
for sequences of economies, becomes a uniform monotonicity condition.
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preferences; the economic content is then unclear, ex-
cept in the special case of homothetic preferences. In
the nonstandard formulation, this problem does not
arise. Preferences over the nonstandard orthant *Ri
are rich enough to deal with atoms, although we do
not cover this case in Theorem 5.5.2.

Now, let us compare how the nonstandard and contin-
uum formulations treat the atomless case. In the con-
tinuum formulation, the endowment map is required
to be integrable with respect to the underlying pop-
ulation measure. Onmne could of course consider an
endowment measure which is singular with respect
to the underlying population measure. In this case,
however, the representation of preferences becomes
problematic. Specifically, if one considers a consump-
tion measure u which is singular with respect to the
population measure, then p has no Radon-Nikodym
derivative with respect to the population measure,
so one cannot identify the consumption of individ-
ual agents as elements of RX. Moreover, an alloca-
tion measure u' may allocate a coalition consumption
which is infinitely large compared to the consump-
tion allocated that coalition by another measure u”.
As in the case with atoms, the consumption space
over which preferences need be defined must be larger
than Rf,_. ~Asymptotic formulations require assump-
tions about rescaled preferences which are hard to in-
terpret except in the case of homothetic preferences.
In the nonstandard framework, replacing the assump-
tion that e is S-integrable with the much weaker as-
sumption that e(a}/|A| =~ O for all a € A poses no
technical problems. Part (1) of Theorem 5.5.2 ana-
lyzes precisely what happens in that case, while part
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(3) indicates how the result is strengthened if we as-
sume that e is S-integrable and °>, is strongly mono-
tonic for a set of agents of positive D-measure. Exam-
ple 5.5.4 provides an example of a hyperfinite econ-
omy satisfying the hypotheses of part (1), but not
those of part (3).

. Suppose that the endowment map e is S-integrable,

which corresponds to the integrability of endowment
inherent in the definition of the continuum economy.
In a continuum economy, allocations (including core
allocations) are by definition required to be integrable.
In the hyperfinite context, allocations may fail to be
S-integrable. If f € *C(x) is not S-integrable, then

fA“fdﬁ < % > fla)= % 2_ ¢(a) =f edz,

aEA acA A

(5.26)
so °f does not correspond to an allocation of the as-
sociated Loeb measure economy. In Example 5.5.5,
we present an example due to Manelli of a hyperfi-
nite economy x with a (non S-integrable) core alloca-
tion f such that ¥ ., *ép(f(a),p, e(a)) % 0. How-
ever, core equivalence holds in the associated contin-
uum economy X, in the sense that ¢ € C(°x) implies
g € 2(°x). Indeed, Proposition 5.5.6 shows that,
in the absence of monotonicity assumptions, any S-
integrable core allocation f is close to an element of
the core of °x. In other words, the integrability con-
dition in the definition of the continuum core is re-
vealed by the hyperfinite formulation to be a strong
endogenous assumption.

. In Example 5.5.8, we present Manelli’s example of an

economy X with endowment e and core allocation f,
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both of which are S-integrable, such that

- Z *$p(f(a),p,e(a)) =0 (5.27)
aGA

for some p € *A but there is no p € *A such that
2 Y aea *8(f(a),p,>a,e{a)) = 0. Core equivalence
holds in the associated continuum economy x, in the
sense that g € C(°x) implies ¢ € Q(°x). Indeed,
°f€C(°x),s0 °f € 2(°x). In the example, the com-
modity bundles which show p is not an approximate
supporting price for f are infinite; they thus pose no
barrier to the verification of the support condition in
the continuum economy.

The condition

*¢(f(a), D>y e) ~0 (5.28)

in the hyperfinite formulation implies the condition
$(°f(a),°p,” =,%€) =0 (5.29)

in the Loeb continuum economy which in turn implies
°fla) € Q(°p, >4, ¢(a)). (5.30)

In the presence of strong convexity, equation 5.28 im-
plies that

f(a) = *Q(p, >4, ¢(a)); (5.31)
without strong convexity, equation 5.31 may fail, as
shown by Example 5.5.9. The formulas 5.28 and 5.31
are nearly internal; using the Transfer Principle, we
show in Theorem 5.5.10 that strong convexity of pref-
erences implies a stronger form of convergence for se-
quence of finite economies. However, strong convex-
ity is not needed to deduce formula 5.30 (which cor-
responds to the conclusion of Aumann’s Equivalence
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Theorem) from 5.29. Thus, in the continuum econ-
omy, convexity plays no role in the theorem. Since
formula 5.30 is far from internal, it is not amenable
to application of the Transfer Principle. Thus, the
conclusion of Aumann’s Theorem does not reflect the
behavior of sequences of finite economies, in the sense
that it does not capture the implications of convexity
for the form of convergence.

Example 5.5.4 {Tenant Farmers) In this example, we
construct a hyperfinite economy in which the endowments
are not uniformly integrable. Core convergence of the as-
sociated sequence of finite economies follows from Theorem
5.5.10, however, the sequence does not satisfy the hypothe-
ses of Hildenbrand (1974) or Trockel (1976).

1. We consider a hyperfinite economy x : 4 — *(P x
RE), where A = {1,...,n?} for some n € *N \ N.
For all a € A, the preference of a is given by a utility
function u(z,y) = 2v/2z'? +y. The endowment is
given by

_f(n+1,1) fa=1,...n
e(a,)ﬂ{ (1,1) ifa=n+1,...,n? (5.32)

Think of the first commodity as land, while the sec-
ond commodity is food. The holdings of land are
heavily concentrated among the agents 1,...,n+1, a
small fraction of the total population. Land is useful
as an input to the production of food; however, the
marginal product of land diminishes rapidly as the
size of the plot worked a given individual increases.
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2. There is a unique Walrasian equilibrium, with p =

(%, %) and allocation

_}(@2,n) fa=1,...,n
f(a')“{(2,0) ifa=n+1,...,n% (533)

Thus, the “tenant farmers” n+1,...,n? purchase the
right to use land with their endowment of food; they
then feed themselves from the food they are able to
produce on their rented plot of land.

3. By part (4) of Theorem 5.5.2, g € (*C)(x) = g{a) ~
(2,0} for v-almost all a € A, so that almost all of the
tenant farmers receive allocations infinitely close to
their Walrasian consumption. A slight refinement of
Theorem 5.5.2 in Anderson (1981) shows that

(|A| > gl )=(z,0)- (5.34)

a=n+1

(|A| Zg(a ) ,1). (5.35)

Thus, the per capita consumption allocated to the two
classes (landowners and tenant farmers) is infinitely
close to the Walrasian consumptions of those classes.

4. In the associated sequence of finite economies, if g, €
C(xn), one concludes by transfer that

(IAnI a_gugn(a ) (2,0) (5.36)

(7

and

é ) (0,1). (5.37)
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5. If one forms the associated continuum economy °y via
the Loeb measure construction, one gets

[ “e(a)ds = (1,1) % (2,1) = — 3 e(a). (5.38)
A ‘Al ac4d

In other words, the measure-theoretic economy °y
has less aggregate endowment than the hyperfinite
economy . In ° the unique Walrasian equilib-
rium has price g 2,7 and consumption (1,1)
almost surely. hus, the continuum economy does
not capture the behavior of the sequence x, of finite
economies. Trockel (1976) proposed a solution involv-
ing rescaling the weight assigned to the agents in the
sequence of finite economies. However, the example
violates Trockel’s hypotheses, since the preferences do
not converge under Trockel’s rescaling to a strongly
monotone preference as he requires. We conclude that
the assumption that endowments be integrable in the
continuum model represents a serious restriction on
the ability of the continuum to capture the behavior
of large finite economies.

Example 5.5.5 ? (Manelli)

1. We consider a hyperfinite exchange economy x : A —
*(P.xRL). A={1,...,n+2} withn € *N\N. The
endowment map is e{1) = ¢(2) = 0, e{a) = (1,1) (
= n+2) Let V denote the cone {0}u{z € R? _

0. 5 < ’, < 2}. Consider the allocation

f(1) = (n,0), f(z) = (Osg');
fla) =(0,1) (@ =3,...,n).

?Examples 5.5.5, 5.5.8, and 5.5.9 were originally given in the context
of a sequence of finite exchange economies.

(5.39)
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The preferences have the property that
z >, fla) <= z— fla) € *V. (5.40)

It is not hard to see that there are internal complete,
transitive preferences that satisfy equation 5.40. In
addition, we can choose >, so that °>, is locally non-
satiated for each a € A.

2. It is not hard to verify that f € *C(x). However, f is
not approximable by a core allocation of °y. Indeed,

L"fdﬂ = (0, %) #(1,1) =fA°edv, (5.41)

so °f is not even an allocation of °y.
3. Given p € *A.,

3 S ¢sU(ehnele)
_ nlp}[+2]p%| + njp! + 2] n
= ST Sy 2O
(5.42)

4. °x is an Aumann continuum economy with locally
nonsatiated preferences. As Hildenbrand notes on
page 845 of Chapter 18 of this Handbook, a careful
examination of the original proof of Aumann’s Equiv-
alence Theorem shows that C(°x) C Q(°x). In par-
ticular,

geC°x) >3peA fA $(9(a), p,°>a,°¢(a))dD = 0.
(5.43)
Comparing equations 5.42 and 5.43, one sees that the
decentralization properties of *C(x) are totally dif-
ferent from those of C{°x). By the Transfer Princi-
ple, one can construct a sequence of finite economies
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whose core have the decentralization properties ex-
hibited by *C(x) rather than those exhibited by the
Aumann continuum economy C{°x).

5. In Proposition 5.5.6, we show that if & is S-integrable
and h € *C(x), then °h € C(°x); hence,

hel(°’x)=3pe A L¢(h(a),p,°>-a,°e(a))d17 =0

(5.44)
~ by item (4). Consequently, the properties of the inter-
nal core are significantly different from those of the
set of S-integrable core allocations. By the Trans-
fer Principle, one can construct a sequence of finite
economies whose core allocations have the decentral-
ization properties exhibited by *C(x). Consequently,
the restriction to integrable allocations inherent in
the definition of the core in the Aumann economy is
thus a strong endogenous assumption which prevents
the Aumann economy from capturing the properties
of certain sequences of finite economies.

Proposition 5.5.6 (Brown, Robinson, Rashid) Sup-
pose x : A— *(P,xRE) is a hyperfinite exchange economy.
If e andf are S-integrable, and f € *C{x), then°f € C(°x).

Proof: [,°fdv = °(;T.eaf(a)) = °(2T.cacle)) =
fa °edv by Theorem 4.4.6. Thus, °f is an allocation of °.

Suppose °f &€ C(°x). Then there exists § € A with
#(S) > 0 and an integrable function g : § — RX such
that fy9dp = [gjedv and g(a)°>,°f(a) for D-almost all
a € 5. By Theorem 4.1.6, there exists 7' € A4 such that
p((S\TYuU(T'\ S)) = 0. Define gla) = 0 for a €
T'\ S. By Theorem 4.4.6, there is an S-integrable func-
tion G : T' — *R* such that G(a) =~ g(a) for p-almost all
a €T, Let J = {j € {1,...,k} : [ye/dD = 0}. We can
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choose G such that G(a)f = 0 for all a € T, 7€ J. Let
T={acT :Ga) s fla)}. T € A by the Internal Def-
inition Principle; moreover, y(T'\T) = 0. Given m € N,
let Tn={a€T:y€ *RE, |y — Gla)| < L=y, fla)}.
Then T € A by the Internal Definition Principle and
P{UmenTm) = 1 by Propositions 3.1.5 and 5.1.3, and the
fact that °g(a)°>-a°f(a) for p-almost all ¢ € S. Since G is
S-integrable, there exists m € N such that

1 i
_1-_ Z G(G)J _.>- NEGETG(G’)
LAgP=; 2
for j € {1,...,k}\ J. Let H(a) = Gla) il a € T\ Tpn. For
a € Ty, define

(5.45)

H(a)’ = —Z—“T—Té%i fjed (5.46)
and
H{a)y = (1 -~ Eb?liii);zb;’(b)J) Gla) if 5 ¢ J. (5.47)

Then H(a) = G(a) >4 f(a) for a € T \ Tp. For a € T,
H(a) € *R%, and |H(a) — G(a)] = O, so Hf{a) > f(a).
Thus, H(a) s f(a)} for all ¢ € T. An easy calculation

shows that Seer H(6) = Xaer e{a), so [ & *C(x), a con-
tradiction which completes the proof.

Example 5.5.7 In this example, we show that the con-
verse to Proposition 5.5.6 does not hold. Specifically, we
construct an S-integrable allocation f such that °f € C(x)
but f & *C(x). In asense, this example is merely a failure of
lower hemicontinuity on the part of the core, a well-known
phenomenon. Its importance lies in showing that the topol-
ogy on F; is inappropriate for the study of economies where
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large consumptions could matter. We consider a hyperfinite
exchange economy x : A = *(P. xR1). A={1,...,n+1}
with n € *N \ N. The endowment map is e(a) = (1,1) for
all a € A. Let p = (1 — 1,1). The preferences have the
property that

2 (1L,1) = [l2>> (L, 1)] vz >> (0, 2)]]

z>, (L)<= p-z>p- (1,1} (a=2,...,n+1). (5.48)

Consider the allocation f = e. f is Pareto dominated in x
by the allocation

(1) = (0,3:2);
g{a) 1+41 ﬁﬂ) (a=2,...,n+1).

n? 4n

(5.49)

Note however that °f (which equals f) is a Walrasian allo-
cation of °x. One cannot block °f by °g precisely because
g is not S-integrable. Accordingly, the restriction to inte-
grable blocking allocations inherent in the definition of the
core in the Aumann continuum economy is a significant
endogenous assumption, :

Example 5.5.8 (Manelli)

1. We consider a hyperfinite exchange economy x : A —»
*(Pe xRE). A={1,...,2n} with n € *N\ N. The
endowment map is e(a) = (1,1) for all @ € A. Let
V denote the cone {0} U {z € R%, : 0.5 < & <}.
Consider the allocation

fle) = (O,%), (ea=1,...,n);

fle) =(2,9), e=n+1,...,2n). (5.50)

The preferences have the property that

z>, fla) <> z— fla) €*V (a=2,...,2n);
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21 £(1) <= [lo = £(1) € V]V [z >> (n,0)]

(5.51)
It is not hard to see that there are internal complete,
transitive preferences that satisfy equation 5.51. In
addition, we can choose >, so that °>, is locally non-
satiated for each a € A.

2. It is not hard to verify that f € *C(x). Moreover, e
and f are S-integrable, so °f € C(°x) by Proposition
5.5.6. As in item 4 of Example 5.5.5, there exists
7 € A such that

L¢(°f(a),p,°>-—a,°e(a))d17 =0. (5.52)
Indeed, it is easy to see that p = + (%,—%). Conse-
quently, :
1

S *$5(/(a),pre(a)) = [ 65(°F(a).p,"e(a) =0

acA
(5.53)
by Theorem 4.4.6.> However, with p = =+ (313., ‘?-;),

4]

1

A > *¢s{f(a),p,>a) = —o0. (5.54)

acA

Comparing equations 5.54 and 5.52, one sees that
the decentralization properties of f are quite different
from those of °f. By the Transfer Principle, one can
construct a sequence of finite economies whose core
have the decentralization properties exhibited by f
rather than those exhibited by °f.

31t is also easy to verify equation 5.53 by direct reference to the
hyperfinite economy x.
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(b) thereisaé € Ry, such that, for each commodity
1
H{a € A, : ela) > 8§}
| 4]

> 6 (5.58)

(¢) >, is irreflezive, convez, and strongly convez for
allneNand alla € A,,;

then for each e € Ryy,

Ha € 4, : [fala) = D(pn, s, e(a))| > €} — 0.
| An|

(5.59)

5. If the assumptions in (1) and (4) hold and, in ad-

dition, e 15 S-tntegrable, then there exists a sequence
€n — 0 and g, € W, {xn) such that

1
| 4al

3 ifala) = ga(a) 0. (5.60)

GeAn

Proof:

1. This follows immediately from Anderson (1978); see

also Dierker (1975). The proof given in Anderson
(1978) was originally discovered by translating non-
standard proofs of part (1) of Theorem 5.5.2 and a
weaker version of part (1) of Theorem 5.5.10. Note
that if n € *N \ N, then x, satisfies the hypotheses
of part (1) of Theorem 5.5.2.

. Suppose the additional assumption in {2) holds. By

Transfer, for all n € *N, v({a € A, :>.€ *K,e(a)’ >
§}) > 6. If »,€ *K, then °>, € K by Theorem 3.3.2,
so °>, is strongly monotonic. Hence, for n € *N\ N,
Xr satisfies the assumptions of part (2) of Theorem
5.5.2. Hence, °p, € A ;. Hence, for n € *N\ N,
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Prn €A Let M={neN:p. € A} T M
is infinite, then there exists n € *M N (*N \ N), a
contradiction. Hence M is finite; let ny = (max M) +
1. Let D = {°p, : n € *N,n > ny}. D is compact
by Proposition 3.3.7, D C A.,, and p, € D for all
n>0,n&N.

3. Suppose that the sequence e, is uniformly integrable.
Then for n € *N\N, e, is S-integrable by Proposition
4.4.8, By part (3) of Theorem 5.5.2, f;, is S-integrable
for n € *N. Then the sequence {f, : n € N} is
uniformly integrable by Proposition 4.4.8.

4. Fix e € R, 4. It is easy to see that the assumptions in
(4) imply that the assumptions of part (4) of Theorem
5.5.2 hold for n € *N \ N. Thus, for n € *N —~ N,

vn({a € A, i |fa(a) — *D(pa, >4, e(a))} > €}) = 0.
(5.61)
By Proposition 3.1.9, for n € N,

va({a € An : fa(a) — D(pn, >4, e(a)) > €}) — 0.

. (5.62)

5. For n € N, choose p, and g, € D(pp,>,,efa)) to

minimize ]AliEaEA [fa(a) — gn(a)]. Hn € *N\ N,

then x, satisfies the hypotheses of part (5) of Theo-
rem 5.5.2, so

|fn(a) — gn(a)| = 0. 5.63
|Anl GEZA ( )
By Proposition 3.1.10,
en = 3 1fala) —ga(@)| > 0. (5.64)
!‘A IGEAn

Then g, € W,_{xn), which completes the proof.
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5.6 Approximate Equilibria

This section will give a discussion of Khan (1975), Khan and
Rashid (1982), and Anderson, Khan and Rashid (1982).

5.7 Pareto Optima

This section will give a discussion of Khan and Rashid
(1975) and Anderson (1988).

5.8 Bargaining Set

This section will give a discussion of Geanakoplos {1978).

5.9 Value

This section will contain a discussion of Brown and Loeb
(1976).

5.10 “Strong” Core Theorems

This section will contain a discussion of Anderson (1085)
and Hoover (1989).




Chapter 6

Continuum of Random
Variables

6.1 The Problem

In modelling a variety of economic situations, it is desirable
to have a continuuum of independent identically distributed
random variables, and to be able to assert that, with prob-
ability one, the distribution of outcomes of those random
variables equals the theoretical distribution; in other words,
there is individual uncertainty but no aggregate uncertainty.
Some applications include Lucas and Prescott (1974), Dia-
mond and Dybvig (1983), Bewley (1986), and Faust (1988);
see Feldman and Gilles (1985) for other references.

There is no difficulty in defining a continuum of inde-
pendent, identically distributed random variables. Suppose
{Q0, Co, po) is a probability space, and X : 0y — R a ran-
dom variable with distribution function F. Let (0, 8,p) =
Iie,1y(Q0, Bo, oo}, and define X;(w) = X(we). Then the
family {X; :t € {0,1]} is a continuum of independent ran-
dom variables with distribution F.

99



100 6. CONTINUUM OF RANDOM VARIABLES

The problem arises in the attempt to formulate the
statement that there is no aggregate uncertainty. Sup-
pose ([0,1],B,u) is the Lebesgue measure space. Given
w € {1, the empirical distribution function should be de-
fined as F,(r} = p({t € [0,1] : X;(w) < r}. Unfortunately,
{t € [0,1] : Xi(w) < r} need not be measurable, so the
empirical distribution function need not be defined.

Judd (1985) considered a slightly different construction
of (2, B, 1) due to Kolmogorov. In it, he shows that {w : F,
is defined} is a non-measurable set with outer measure 1
and inner measure 0. Thus, one can find an extension u'
of the Kolmogorov measure u such that F,, is defined for
#'-almost all w. However, {w : F,, = F} is not measurable
with respect to u'; in fact, it has u' outer measure 1 and
' inner measure 0. Thus, one can find an extension p” of
#' with the property that p"({w: F,, = F}) = 1. However,
the extensions to p' and u" are arbitrary, leaving the status
of economic predictions from such models unclear.

A variety of standard constructions have been proposed
to alleviate the problem (Feldman and Gilles(1985), Uh-
lig (1988), and Green (1989)). Much earlier, Keisler gave
a broad generalization of the Law of Large Numbers for
hyperfinite collections of random variables on Loeb mea-
sure spaces (Theorem 4.11 of Keisler (1977)). Since Loeb
measure spaces are standard probability spaces in the usual
sense, this provides a solution of the continuum of random
variables problem. In section 6.2, we provide a simplified
version of Keisler’s result. In section 6.3, we describe a non-
tatonnement price adjustment model due to Keisler (1979,
1988, 1990); in Keisler’s model, individual uncertainty over
trading times in a hyperfinite exchange economy results in
no aggregate uncertainty.




6.2. LOEB SPACE CONSTRUCTION 101

6.2 Loeb Space Construction

Loeb probability spaces are standard probability spaces in
the usual sense, but they have many special properties. In
the following construction, the internal algebra is guaran-
teed to be rich enough to ensure that the measurability
problems outlined in Section 6.1 never arise. The construc-
tion also satisfies an additional uniformity condition high-
lighted in Green {1989), since the conclusion holds on every
subinterval of the set of traders (conclusion 2b of Theorem
6.2.2, below).

Construction 6.2.1 Let (A4, A,~) be as in the construc-
tion of Lebesgue measure {Construction 4.2.1). Suppose
Y : A — *R is v-measurable, and °|Y (a)| < oo for p-almost
all ¢ € A. Define @ = [Les 4, R = (*P)(02), o(B) = 2]
for B € R, Y,(w) = Y{w,), and X,(w) = °Y {w,).

Theorem 6.2.2 (Keisler) Consider Construction 6.2.1.
Let F' be the distribution function for °Y, i.e. F(r) =
p({a€ A:°Y{a) <r}).

1. X, 18 p-measurable, and has distribution function F,
forallac A;

2. for p-almost all w € Q, for all r € R, for all s,t €
[0,1] satisfying s < ¢

(a) {GEAﬂ *[s3t]:XaST}ER andl
(b) p{{ac AN *s,t]: X, <r}) = (t — s)F(r);

Proof:

1. X, is p-measurable by Theorem 4.4.2. For all e € A,
the distribution function of X, equals F, the distri-
bution function of °Y.




102 6. CONTINUUM OF RANDOM VARIABLES

2 freR,letC ={ac€A: °Y(a) < r}. Since
C, = N%=1{a € A:Y(e) 7+ #}a y({a € 4
Y{g) < r+ 2} — 5(C,) as m — oo Therefore,
there exists m € *N \ N such that v({a€ A:Y(a) <
r+ 1)) = p(Cr), by Proposition 3.1.9; let D, = {a €
A:Y(a)<r+ i)

Let W = {(r,s,t) € R X [0,1] x [0,1] : 8 < t}. By
Theorem 1.13.4, we may find an internal set T C *W
such that W ¢ T and |T| < n!/4, where n = |Al. Let
T, = {r € *R : 3s,t (r,s,t) € T}. Given 2 finite
set V C R, let Gy denote the set of internal func-
tions g : Ty — A such that r € R => g(r) = D».
Gy is nonempty for all V by the Internal Definition
Principle; by saturation, Mverr®)GV # 0. Choose
g € Nyesrr®m)Gv and define D, = g(r) forall r € T:.
For (r,s,t) € T, let k be the greatest element of
*N less than or equal to n(t — s). Let A, = AN
*[s, 1], nv(Y"HDr) N A,) has a *-binomial distribu-
tion B(k,v(D,)), so it has mean kv(D,) and stan-
dard deviation \/E/(D,.) (1-v(Dy) < Vk by Feller
(1957) and the Transfer Principle. Thus, v(Y~}(D,)0

A,) has mean EEL:—"—l and standard deviation less than

3? < % Therefore,

w: (YD) N Ag) - E‘L('-?Ll >n~i
p ({ ‘ <1 ’ }) (6.1)

= VR
by Chebycheff’s Inequality (Feller (1957}). Therefore

p ({w :(r,8,t) €T, \V(Y“(Dr) NAg)— 5—‘-’-(,?41‘ > n'%})

141 ~
< niftde ~0.

(6.2)
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Therefore

A{w :V(r,s,t) eW
(6.3)
v(YH(D) N Au) = (t—s)F(r)} = 1,

50

p{w :V(r,s,t) €W
P{a€ Ay:Y{e) <r}) > (t-s)F(r)}) = 1.

(6.4)
Similarly,
P{w :¥(r,5,t) eW
p{a€ Ay :°Y(a) < r}) < (t—s)F(r)}) =1,
(6.5)

P{w : ¥(r, s,t) € W,
p{a € Au:°Y(a) < 3) = (1 - F())) = 1.
(6.6)

Remark 6.2.3 Let G be an arbitrary distribution func-
tion, There exists a random variable Z defined on the
Lebesgue measure space [0, 1] with distribution function F.
Define Z': A —» R by Z'(a) = Z(°a). Z' has distribution
function G by Theorem 4.2.2. There exists a v-measurable
function ¥ : A — *R such that °Y(a) = Z'(a) almost
surely by Theorem 4.4.2; the distribution function of °Y is
G. Thus, Construction 6.2.1 allows us to produce a con-
tinuum of independent random variables with any desired
distribution.
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6.3 Price Adjustment Model

In the tatonnement story of the determination of equilib-
rium prices, it is assumed that a fictitious Walrasian auc-
tioneer announces a price vector, determines the market
excess demand at that price, and then adjusts the price in
a way which hopefully leads eventually to equilibrium. No
trade is allowed until the equilibrium price is reached. This
story has two critical flaws:

1. If no trade is allowed at the non-equilibrium prices
called out by the auctioneer, why should individual
agents bother to communicate their excess demands
to the auctioneer? If they do not convey their excess
demands, how does the auctioneer determine what
the social excess demand is? The more we require
the auctioneer to know, the less the tattonement story
fills the role of providing foundations for a theory of
decentralization by prices.

2. Convergence to the equilibrium price requires a count-
able number of steps. If there is a technological lower
bound on the length of time needed for the auctioneer
to elicit the excess demand information, equilibrium
cannot be reached in finite time. Thus, no trade oc-
curs in finite time.

Thus, it is highly desirable to replace the tatonnement story
with a model which allows trade out of equilibrium, and in
which the information required to adjust prices is kept to
a minimum.

Keisler has developed such a model using a hyperfi-
nite exchange economy in which agents are chosen to trade
randomly. remainder of this section, we sketch Keisler’s
result, listing the principal assumptions and conclusions
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in a special case. For a complete statement, see Keisler
(1979,1986,1990)." The set of agents is A = {1,...,n} and
the time line is T = {f; 1j € *N,jﬁn’} for n € *N \ N.
There are k € N commodities. There is a central market.
At each time ¢ € T, one agent is chosen at random to go
to the market and trade. Thus, the underlying probability
space is (1, B,v), as described below.

1. 0 = AT, Thus, an element w € (1 is an internal
function from T to A. If w(t} = a, then agent a is
chosen to go to market at time ¢.

2. B is the set of all internal subsets of (1.

3. v(B) :}E%lforBE B.

D(p,I,a) denotes the demand of agent a with income
I and price vector p. The prevailing price in the market
is set initially at an arbitrary price p{1). The market has
an initial inventory I(1) = (ne,..., ne). Each agent begins
with an endowment f(a,0). The prevailing price at time ¢,
denoted p(t), the market inventory at time ¢, denoted I(t),
and the commodity bundle of agent a at time ¢, denoted

IIn the monograph, we intend to expand this section to include a
formal statement of Keisler’s result in the special case considered here.
We hope to replace Keisler’s parametrization assumption (discussed
briefly below} with a compactness condition.
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f(a,t) are determined inductively by the formula

fla,t - 1) ifw(t) #a
fla,t) =< D(p(t),p(t) fla,t —1),a) ift>0
Zuw(t)=a

p(t+1) =pt) +A[F(w(t)t) ~ Flwlt),t - )]

I{t+21) =10 + [f(w),t) - Flw(t),t - 2)].

(6.7)
In other words, in each time period, the agent who trades
purchases his/her demand given the prevailing price and
his/her holding from previous trades, the net trade of these
agents is taken from the market inventory, and the price is
adjusted proportionately to the net trade of this agent.

The parameters A and n are chosen so that

°(An) = oo, Alog{An) =0 (6.8)

(in particular A ~ 0). The inventory parameter € =« 0, but
€ is not too small.

The demand functions of the agents are assumed to be
parametrizable in a certain fashion. This parametrization
assumption appears to be a form of compactness condi-
tion on the demand functions. An economy with a finite
(in the standard sense) number of types of agents with C!
demands satisfying a global Lipschitz condition will satisfy
the parametrization assumption. It is also assumed that the
initial endowment f(a,0) is S-integrable {Definition 4.4.5)
and that p(0) is finite.

The evolution of the economy is a random process, de-
pending on the realization of the random variable w which
determines which agents trade at each time. We can as-
sociate a deterministic price adjustment process defined by
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the differential equation

q(0) = p(0)
¢(t) = ° (2 TeealDp(t), p(t) - £(2,0),0) = f(a,0)]).
{6.9)
We assume that the solution of equation 6.9 is exponentially
stable, with limit p, a Walrasian equilibrium price, for every
initial value in a neighborhood of p(0).
Keisler shows that for p-almost all w € {1, the following
properties hold.

1. p(t) = *g(Ant) for all t € T with °t < co. Note that
since g{t) — p as t — oo and An is infinite, p(t) = p
for finite ¢t € T satisfying ° (Ant) = co. Thus,

(a) the path followed by the price is, up to an in-
finitesimal, deterministic; and

(b) the price becomes infinitely close to the Wal-
rasian equilibrium price p in infinitesimal time
and stays infinitely close to p for all finite times.

2. I{t) > 0 for all t € T. Thus, an initial market inven-
tory which is infinitesimal compared to the number of
agents suffices to ensure that the trades desired by the
agents are feasible when the agents come to market.

3. For almost all agents a, there exists t(a) € T with
°t(a) < co such that f{a,t) = D(p,p - f{e,0),a) for
all t > t(a). Thus, almost all agents trade at a price
‘infinitely close to the Walrasian price p, and they con-
sume their demands at p. An infinitesimal proportion
of the trade takes place at prices outside the monad
of the Walrasian price p.
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Chapter 7

Translating
Nonstandard Proofs

Because hyperfinite economies possess both the continu-
ous properties of measure-theoretic economies (via the Loeb
measure construction) and the discrete properties of large
finite economies (via the Transfer Principle), they provide
a tool for converting measure-theoretic proofs into elemen-
tary ones. The strategy for doing this involves taking a
measure-based argument, and interpreting it for Loeb mea-
sure economies; the interpretation typically involves the
use of formulas with iterated applications of external con-
structs. One can then proceed on a step-by-step basis to
replace the external constructs with internal ones; each
time one does this, the conclusion of the theorem is typ-
ically strengthened. In most cases, the process terminates
with one or more external constructs still present, and no
tractable internal arguments to replace them. However, it is
occasionally possible to replace all the external constructs;
if one succeeds in doing this, the internal proof is (with *’s
deleted) a valid standard proof which is elementary in the
sense that measure theory is not used.
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An extended discussion of translation techniques is given
in Rashid (1987). Given the limitations of space, we will
limit ourselves to listing a few examples.

1. The elementary proof of a core convergence result in
Anderson {1978) was obtained by applying the trans-
lation process to a nonstandard version of the Kannai-
Bewley-Grodal-Hildenbrand approach to core limit
theorems using weak convergence reported in Hilden-
brand (1974). Much of the groundwork for the trans-
lation was laid in Brown and Robinson (1974,1975)
who first developed nonstandard exchange economies,
and in Khan (1974b) and Rashid (1979). A criti-
cal phase in the translation was carried out by Khan
and Rashid (1976), who showed that one can dispense
with the assumption that almost all agents in the hy-
perfinite economy have preferences which are near-
standard in the space of monotone preferences.

2. Anderson, Khan and Rashid (1982) presents an ele-
mentary proof of the existence of approximate Wal-
rasian equilibria (in the sense that per capita market
excess demand is small) in which the bound on the
excess demand is independent of compactness con-
ditions on preferences such as uniform monotonicity.
The proof is a translation of the nonstandard proof
in Khan and Rashid (1982). As in item 1, a key to
the successful completion of the translation was the
discovery that one preferences in the hyperfinite econ-
omy need not be nearstandard in the space of mono-
tone preferences.

3. Anderson (1985,1988) proved that “strong” versions
of core convergence theorems and the second welfare
theorem hold with probability one in sequences of
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economies obtained by sampling agents’ characteris-
tics from a probability distribution, even with non-
convex preferences; here, “strong” means that agent’s
consumptions are close to their demand sets. The
proofs are highly external, and so would appear poor
candidates for translation. However, they required
checking certain conditions for standard prices only;
since the set of standard prices can be embedded in
a hyperfinite set by Theorem 1.13.4, this suggested
strongly that the key was to consider only finitely
many prices at a time. Hoover (1989) recently suc-
ceeded in giving a standard proof by carrying out the
translation. Hoover’s proof is elementary in the sense
that it uses little measure theory beyond the bare
bones necessary to define sequences of economies ob-
tained by sampling from a probability distribution.
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Chapter 8
Further Reading

There are a number of other applications of nonstandard
analysis in economics which space did not permit us to
discuss in Anderson (1990). We hope to cover some of
them in the monograph, but for now we limit ourselves to
the following listing of references:

1. Richter (1971) and Blume, Brandenburger and Dekel
(1990a,1990b) on the representation of preferences:

2. Lewis (1977), Brown and Lewis (1981), and Stroyan
(1983) on infinite time horizon models;

3. Geanakoplos and Brown (1982) on overlapping gen-
erations models;

4. Muench and Walker (1981) and Emmons (1984) on
public goods economies: and

5. Simon and Stinchcombe (1989) on equilibrium refine-

ments in noncooperative games.

There are a number of approachable books giving an
introduction to nonstandard analysis. We particularly rec-
ommend Hurd and Loeb (1985), which gives a thorough
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