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ARTICLE

Liquid biopsy-based single-cell metabolic
phenotyping of lung cancer patients
for informative diagnostics
Ziming Li1,11, Zhuo Wang2,11, Yin Tang3,4,11, Xiang Lu5,11, Jie Chen3, Yu Dong3, Baojun Wu3, Chunying Wang3,

Liu Yang6, Zhili Guo7, Min Xue7, Shun Lu1, Wei Wei 4,5,8 & Qihui Shi2,9,10

Accurate prediction of chemo- or targeted therapy responses for patients with similar driver

oncogenes through a simple and least-invasive assay represents an unmet need in the clinical

diagnosis of non-small cell lung cancer. Using a single-cell on-chip metabolic cytometry and

fluorescent metabolic probes, we show metabolic phenotyping on the rare disseminated

tumor cells in pleural effusions across a panel of 32 lung adenocarcinoma patients. Our

results reveal extensive metabolic heterogeneity of tumor cells that differentially engage in

glycolysis and mitochondrial oxidation. The cell number ratio of the two metabolic pheno-

types is found to be predictive for patient therapy response, physiological performance, and

survival. Transcriptome analysis reveals that the glycolytic phenotype is associated with

mesenchymal-like cell state with elevated expression of the resistant-leading receptor tyr-

osine kinase AXL and immune checkpoint ligands. Drug targeting AXL induces a significant

cell killing in the glycolytic cells without affecting the cells with active mitochondrial

oxidation.
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The current clinical treatment decisions in non-small-cell
lung cancer (NSCLC) are primarily driven by tumor
genetics. However, patients with similar driver oncogene

mutations may have variable responses to the same treatment1.
For example, the clinical decision making of EGFR-TKI is nor-
mally based upon tumor genotyping to identify the existence of
EGFR sensitive mutations. But at least 20–30% of NSCLC patients
with EGFR sensitive mutations do not respond or develop resis-
tance rapidly to EGFR-TKI treatment2,3. The focus on genetic
alterations may not fully explain the fact that some NSCLC
patients have diverse responses to EGFR-TKIs even if they bear
the same EGFR sensitive driver oncogenes and do not con-
currently have other resistance-leading mutations4. Likewise,
cytotoxic chemotherapy is the primary treatment strategy for
NSCLC patients without driver oncogene mutations3, but the
response profiles to chemotherapy also vary across patients3.
There is no simple and cost-effective method in the clinic that can
predict therapy response prior to the onset of therapy or identify
potential drug resistance when the patients are still benefiting
from the therapy. The lack of effective approach for pre-
identifying the non-responders and short-term beneficiaries poses
a significant challenge in clinical decision making for NSCLC
patients.

Change in metabolic activity is often a fast and reliable readout
of tumor cells in response to a stressful condition, such as drug
treatment. A successful drug engagement is normally accom-
panied by the reduction of the aberrant glycolytic activity of
tumor cells with a potential metabolic program switch to mito-
chondrial oxidation5,6. Such rapid inhibition on glycolysis,
assessed by [18F]fluorodeoxyglucose (FDG) uptake through
positron emission tomography (PET), has been utilized as an
in vivo predictive biomarker of drug response for brain cancer7.
Increasing evidence reveals that tumor cells can uncouple gly-
colysis from the mitochondrial oxidation, allowing the use of
additional fuel sources, such as amino acids and fatty acids, to
meet their heightened metabolic needs8–10. The diverse metabolic
dependencies have been observed in different patient tumors,
between the primary and metastatic lesions of the same patient, as
well as within distinct regions of the same tumor11–15. They have
major implications for therapies targeting tumor metabolic vul-
nerabilities. However, few studies have investigated the clinical
applications of the substantial metabolic diversity in tumors,
including drug selection as well as prediction of therapy efficacy
and resistance. Recent studies suggest that the diverse responses
to targeted therapies across patients with the same driver onco-
genes may be attributed to the adaptive reprogramming of cancer
cells beyond genetic level, where cellular phenotypic and meta-
bolic diversity that allows tumor cells to flexibly adapt to various
stressful conditions during tumor progression may play an
important role16,17. These results prompt us to interrogate whe-
ther diverse metabolic profiles of tumor cells across lung cancer
patients may be related to their heterogeneous therapy responses.

Pleural effusion containing rare disseminated metastatic tumor
cells represents a valuable surrogate for the tumor tissue biopsy
and allows us to interrogate the metabolic state of patient tumor
cells. Pleural effusion is a common complication and often the
first sign of lung cancer patients18,19. Compared to pleural biopsy
or thoracoscopic surgery, pleural thoracentesis is the least inva-
sive approach for clinical diagnosis of pleural effusion after
patients receive a positive computed tomography (CT) scan of
lung lesions18,20,21. Although a substantial amount of lung cancer
patients develop pleural effusion during their disease course, the
clinical utilities of the effusion fluid are largely limited to cyto-
pathological and cell block analyses for confirmation of malignant
pleural involvement and metastasis20. The rare disseminated
tumor cells (DTCs) in body cavity fluids and peripheral blood

contain rich biomolecular information, among which the phe-
notypic and functional characteristics of these cells may be uti-
lized to assess or predict patient therapy responses22–24. However,
metabolic phenotyping of rare DTCs in circulation or other body
fluids has barely been explored in clinical biospecimens due to the
lack of single-cell metabolic assay that can robustly identify and
analyze these rare cells.

To this end, we develop and employ an on-chip metabolic
cytometry (OMC) platform and fluorescent metabolic probes to
perform metabolic phenotyping on the rare DTCs in pleural
effusions across a cohort of 32 lung adenocarcinoma (LADC)
patients that covers prevalent driver oncogenes and molecular
subtypes25. We quantify the glucose uptake and mitochondrial
oxidation activity of cells at the single-cell resolution, followed by
single-cell sequencing to dissect the molecular signatures asso-
ciated with distinct metabolic phenotypes of tumor cells in pleural
effusions. This pleural effusion-based metabolic assay thereby
allows us to establish informative connections to patient therapy
responses and clinical performances, and to accurately predict
potential non-responders and short-term beneficiaries prior to
the onset of therapy. The molecular information extracted from
these disseminate cells further permits us to identify clinically
actionable strategy for patients with poor clinical outcomes.

Results
Single-cell on-chip metabolic cytometry. As demonstrated in
our previous report22, we developed an OMC assay for high-
throughput screening of rare metabolically active tumor cells in
liquid biopsy samples through exploiting the elevated glucose
metabolism of the malignant cells compared to benign cells. It
showed superior performance in malignant pleural effusion
(MPE) diagnosis over standard clinical approaches, and allowed
accurate diagnosis for patient samples with inconclusive diagnosis
using traditional cytopathological analysis. In this work, we fur-
ther expanded the capability of the OMC assay for assessing both
cellular glycolytic activity and mitochondrial oxidation at the
single-cell resolution. In brief, the OMC assay is performed on a
PDMS microchip with a total of 110,800 addressable microwells
located in 400 numbered blocks (Fig. 1a, b). The on-chip meta-
bolic phenotyping employs a fluorescent glucose analog 2-NBDG
and a mitochondrial redox indicator C12-Resazurin (C12R) to
probe cellular metabolic activity (Fig. 1a). Prior reports have
shown that 2-NBDG enters a cell via glucose transporters and is
phosphorylated at the C-6 position by hexokinases I-II. The
phosphorylated fluorescent metabolite, 2-NBDG-6-phosphate,
remains in the cell until decomposition into a non-fluorescent
form26–29. 2-NBDG assay has been shown to be consistent with
gold-standard FDG assay in quantifying in vitro glucose uptake of
cells without dead cell interference (Supplementary Fig. 1)22.

To fluorescently assess the cellular mitochondrial oxidation
activity, we use non-fluorescent C12R that acts as an intermediate
electron acceptor in the electron transport chain (ETC) and can
be reduced to a fluorescent C12-Resorufin primarily by mito-
chondrial NAD(P)H and FADH2 (Fig. 1c). Resazurin has been
used as an oxidation-reduction indicator in a variety of assays
for assessing the cell viability and mitochondrial metabolic
activity30–32. Although resazurin reacts with various cell reducing
components such as NADH, glutathione, amino acids in
both non-enzymatic and enzymatic reactions, our results and
other studies showed that it has much faster reaction kinetics
with NAD(P)H compared to other major cellular reducing
components, such as glutathione, in a short incubation time
(Fig. 1d)33,34. For this reason, in live cells, the reduction of
resazurin is primarily attributed to different oxidoreductase
enzyme systems that use NAD(P)H as the primary electron
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donor32,33,35. To further ensure a majority of the resazurin signal
coming from mitochondrial NAD(P)H, we used a hydrophobic
carbon tail (C12)-modified resazurin (C12R) to facilitate the fast
diffusion to mitochondria. A co-staining assay on the lung cancer
cell line A549 with Mitotracker Green and C12R demonstrated a
clear co-localization of C12R signal and cellular mitochondria
(Fig. 1c). As a further validation, we treated lung cancer cells with
ETC complex I inhibitor rotenone36 and complex V inhibitor
oligomycin37. The treated cells showed a significantly reduced
C12R signal compared to untreated cells, which is consistent with
a repressed mitochondrial oxidation activity (Fig. 1e, and
Supplementary Fig. 2a). Addition of fuels and precursor
metabolites that can feed into the TCA cycle (glutamine,
pyruvate, lactate, etc.) in the culture media also elevated number
of C12Rhigh cancer cells relative to baseline control (Supplemen-
tary Fig. 2b, c). Furthermore, a side-by-side comparison between
the OMC assay and the commercially available Seahorse assay
confirmed that 2-NBDG and C12R readouts are consistent with
extracellular acidification rate (ECAR) and oxygen consumption

rate (OCR) readouts, respectively, when we perturbed A549 cells
with a series of metabolic inhibitors to repress either glycolysis or
mitochondrial respiration (Fig. 1f; Supplementary Fig. 2d). Taken
together, these results indicate that 2-NBDG and C12R can be
used as robust surrogates for assessing cellular glucose uptake and
mitochondrial oxidation activity, respectively without mutual
interference (Supplementary Fig. 3).

Figure 1a shows the workflow of the OMC assay from MPE
sample processing to the rare cell retrieval. Red blood cells in
MPE are firstly removed by osmotic cell lysis. Then around
500,000 nucleated cells are resuspended in Hank’s balanced salt
solution (HBSS) and incubated with allophycocyanin (APC)-
labeled anti-CD45 antibody, 2-NBDG and C12R for 15 min. Cell
suspension is applied onto a PDMS-based microwell chip
followed by washing and imaging by a high-speed fluorescent
microscope to capture a total of 728 images in ~10 min (Fig. 1b).
A computational algorithm (MetaXpress software, Molecular
Devices) analyzes the images at the single-cell resolution,
identifies putative metabolically active tumor cells based on
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Fig. 1 Platform and metabolic markers of the on-chip metabolic cytometry. a The working flow of the single-cell on-chip metabolic cytometry assay on
pleural effusion samples based upon triple fluorescence staining (2-NBDG/C12R/CD45). Metabolically active tumor cells are retrieved individually for
DNA and RNA sequencing, as well as other functional assays. b Top, a picture of the PDMS microwell chip; Bottom, the bright field and fluorescence
composite image of a representative block in the microchip (scale bar, 30 μm). The fluorescence signals of CD45 (Cy5), 2-NBDG (FITC), and C12R
(TRITC) are shown in red, green, and blue, respectively. Putative metabolically active tumor cells are circled in green (for 2-NBDGhigh) and blue (for
C12Rhigh). c Co-location of mitochondria (mitotracker green) and C12R in A549 cells after 15 min incubation (scale bar, 30 μm). d C12R signal assessed
within a set of abundant cellular reducing agents using 60min incubation time, showing the minimal contribution to the measured signal from other
common cellular reducing agents. Quadruplets were used to determine the error bars (n= 4 independent experiments, mean ± SD). e On-chip metabolic
cytometry of A549 cells treated with DMSO control and rotenone. The data are represented as scatter plots and bar columns (control n= 2469 cells,
rotenone n= 2501 cells, mean ± SD). f Relative 2-NBDG (n= 8433, 3498, 18148, 18987, and 17248 cells from left to right, respectively), ECAR (n= 3
independent samples), C12R (n= 9576, 3673, 10298, 14625, and 11428 cells from left to right, respectively), and OCR (n= 3 independent samples)
readout changes of A549 cells in response to a set of metabolic inhibitors with respect to DMSO control (mean ± SD). For ECAR and OCR measurements,
three replicates were performed in each experiment and each replicate represented the average of ten cycles of ECAR and OCR measurements (Also see
Supplementary Fig. 2d). Source data are provided as a Source Data file
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calculated fluorescence cut-offs (Supplementary Fig. 4, see
Methods for cut-off determination), and reports the correspond-
ing microwell addresses. Target cells are retrieved individually by
a micromanipulator based upon recorded addresses for single-cell
sequencing of driver mutations, copy number variation (CNV),
and transcriptome profiles (Supplementary Fig. 1c). Metabolically
active cells found to harbor the same driver mutation as the
primary lesion are confirmed to be malignant cells. For wild type
(WT) primary lesion, the CNV profiles of those putative cells are
evaluated to confirm the malignancy. The protocol only takes
about 20 min from MPE sample processing to metabolic
phenotyping via staining. Such a short duration helps retain the
original metabolic profiles of those rare tumor cells with minimal
perturbation.

Heterogeneous metabolic reliance of DTCs in MPE samples.
To interrogate the metabolic phenotypes of the rare DTCs, we
analyzed a cohort of MPE samples from 32 LADC patients
through the OMC assay (Fig. 2). The 32 patients (except for
patient-21) were diagnosed to bear stage IV LADC with different
genetic background, driver mutations, and treatment history (Fig.
2a; Table 1; Supplementary Table S1). All of them developed
MPE. We collected their MPE for metabolic phenotyping as well
as downstream single-cell sequencing. The patients then received
appropriate clinical treatments tailored to their own disease status
(Supplementary Table S1). Since the reported average survival
time for stage IV LADC patients with MPEs is around
6 months38,39, We therefore chose 5–7 months after the MPE
draw as a follow-up time point for review of patient performance,
therapy response, and survival (Fig. 2a).

The scatter plot reports 2-NBDG and C12R fluorescence
intensity of all CD45neg cells in the MPE sample from patient 1
(P1) (Fig. 2b). Measurement of CD45pos leukocytes was used to
generate the cut-offs for identification of 2-NBDGhigh and
C12Rhigh cells (See Methods). Under these cut-offs, four subsets,
including CD45neg/2-NBDGhigh/C12Rlow cells (2-NBDGhigh for
short in the following text), CD45neg/2-NBDGlow/C12Rhigh cells
(C12Rhigh for short), CD45neg/2-NBDGhigh/C12Rhigh cells (dou-
ble positive), and CD45neg/2-NBDGlow/C12Rlow cells (double
negative), are thereby identified (Fig. 2c). The first three subsets
are putative metabolically active tumor cells for subsequent
genomic and transcriptomic analyses. The double negative subset
may include normal epithelial cells, reactive mesothelial cells, as
well as dying tumor cells with diminished metabolic activity. A
total of 66 CD45neg metabolically active cells (per 500,000 input
cells) were identified in P1, and 34 of them were isolated for
single-cell sequencing. Among these 34 cells, 18 out of 20 (90%)
2-NBDGhigh cells, 7 out of 10 (70%) C12Rhigh cells, and 3 out of 4
(75%) double positive cells were found to harbor an in-frame
deletion (p. E746_A750del) in exon 19 of EGFR, consistent with
the mutation status found in the primary lesion (Supplementary
Fig. 5; Supplementary Table 2). The WT metabolically active cells
exhibited similar CNV patterns as those EGFR19Del-mutant cells,
confirming their malignant involvement (Supplementary Fig. 6).

As surrogates of cellular glycolytic activity and mitochondrial
oxidation, 2-NBDG and C12R intensities are consistently
correlated in cancer cell lines with correlation coefficients >0.5
(Supplementary Fig. 7). However, such correlation disappears
among the DTCs in patient MPE samples. The CD45neg,
metabolically active cells in the MPEs are either highly glycolytic
(2-NBDGhigh cells) or having a high mitochondrial oxidation
activity (C12Rhigh cells) with few cells in double positive
phenotype (Fig. 2d; Supplementary Figs. 8 and 9). This holds
true for the entire cohort of 32 patients where no single patient

has a large percentage of double positive cells (Fig. 2d; Table 1).
The two metabolic phenotypes showed selective sensitivities to
inhibition of glycolysis and mitochondrial respiration, respec-
tively (Fig. 2e). The majority of these metabolically active cells are
confirmed to be malignant cells by sequencing (Supplementary
Fig. 5). The uncoupling of glycolysis from the mitochondrial
oxidation was further confirmed to exist in tumor cell popula-
tions isolated from primary tumor tissues (Supplementary Fig.
10) and may bear important implications.

Prediction of therapy response and performance by the OMC.
While the MPE samples from patients with different driver
oncogenes and treatment history had diverse metabolic pheno-
types (Fig. 2d; Table 1), we found that the ratio of the number of
2-NBDGhigh cells to that of the C12Rhigh cells, denoted as N/R
ratio (2-NBDG/C12-Resazurin), was predictive for the patient
performance upon follow-up 5 to 7 months later after the MPE
draw. Herein, P6, P21, and P32 were excluded in the subsequent
analyses due to lack of appropriate treatment, lack of determined
diagnosis, and lack of follow-up information, respectively (Table
1; Supplementary Table 1). The patient performance was eval-
uated by the ECOG score where 0 means asymptomatic and 5
means death. The higher the score, the worse the patient per-
formance. The N/R ratios have a strong positive correlation (r=
0.791) with the ECOG scores upon follow-up (Fig. 3a), which
indicates the prognostic capacity of this ratio.

ECOG score is a patient-centric score based upon physiological
evaluation, which is in part the consequence of the patient’s
therapy response. We further verified if the N/R ratio is also
predictive for the drug response profile of patient tumors assessed
by Response Evaluation Criteria In Solid Tumors (RECIST 1.1).
We employed a partial least square discriminant analysis (PLS-
DA) to quantitatively assess the contributions of various factors
to this tumor-centric RECIST criteria (Fig. 3b–d). PLS-DA is a
multivariate linear regression model that seeks fundamental
relations between the explanatory variable matrix (various clinical
measurements) and the observation matrix (RECIST specifica-
tion; Supplementary Table 3)40. Due to the relatively small
sample size, we further categorized the partial response (PR) and
stable disease (SD) as positive response (P), and progressive
disease (PD) and death as negative response (N). In the
explanatory variables, in addition to the N/R ratio, we also
considered the numbers of 2-NBDGhigh, C12Rhigh, and double
positive cells per 500,000 input cells of MPE, as well as the
volume concentration of the metabolically active cells (Supple-
mentary Table 3). The classification functions of the model
produced a confusion matrix with 86.21% accuracy in the leave-
one-out cross validation (Fig. 3b; Supplementary Table 4) and an
ROC curve with an area under the curve (AUC) of 0.952 (Fig.
3d), demonstrating a decent model quality and classification
accuracy.

To quantitatively evaluate the contribution of various variables
to the model, we calculated their Variable Importance for the
Projection (VIP) that measures the importance of an explanatory
variable for the prediction of the patient response profile (Fig. 3c).
Consistent with what we found using patient-centric ECOG
scores, the N/R ratio is most influential variable (VIP > 1). The
number of 2-NBDGhigh cells is the second most influential
variable and other variables are not predictive (Fig. 3c). Taken
together, we can conclude that, while these patients are having
different driver oncogenes, treatment history, and subsequent
clinical managements after MPE draw, the N/R ratio of the rare
DTCs in the MPE sample is a good predictive factor for the
patient drug response profile and physiological performance.
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The clinical utility of the OMC. Although clinical trials over
years have established many front-line experience and clinical
factors (genetics, pathology, physiology, etc.) for anticipating
LADC patient responses to standard-of-care treatments, there is
no simple and cost-effective assay for predicting therapy
responses and identifying non-responders and short-term

beneficiaries prior to the onset of therapies. For example, in newly
diagnosed patients with mutations that confer sensitivity to
EGFR-TKIs, the established clinical factors may not effectively
distinguish patients who bear EGFR sensitive mutations but do
not respond to EGFR-TKIs. However, the metabolic phenotypes
of their MPEs, represented by the N/R ratio, can accurately

A cohort of 32 stage IV LADC patients with different genetic background, driver
mutations, and treatment history.
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Fig. 2 Metabolic phenotyping of rare disseminated tumor cells in MPE. a Illustration of study design and distribution of patient driver oncogene mutations.
b Scatter plot generated from the OMC reports 2-NBDG and C12R fluorescence intensity of all CD45neg cells in MPE sample from P1. The histograms of 2-
NBDG and C12R intensities of CD45pos leukocytes (red) in MPE are shown on the top and right to generate cut-offs for identification of 2-NBDGhigh and
C12Rhigh cells (black dots). 2-NBDGhigh and C12Rhigh cells are gated out by five and three standard deviations above mean of CD45pos leukocytes,
respectively. CD45neg/2-NBDGlow/C12Rlow cells are displayed in blue dots. c Representative images of four subsets of CD45neg cells as well as CD45pos

leukocytes. The images are overlaid by a bright-field image and three fluorescence images (CD45: red; 2-NBDG: green; C12R: blue, scale bar, 30 μm). d The
number of CD45neg, metabolically active cells that are categorized into three subsets across 32 LADC MPE samples. The oncogenic driver mutation
associated with each sample is listed. e Relative viability of the two metabolically active cell populations in response to 2-DG and phenformin, respectively,
with respect to the DMSO control (n= 2 independent samples, mean ± SD). (*P < 0.05; **P < 0.005). Source data are provided as a Source Data file
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predict and segregate therapy response profiles for all our cases
(Fig. 4a; Supplementary Fig. 11a), including newly diagnosed
patients prior to the onset of the therapy.

In our patient cohort, we have 14 newly diagnosed patients
from whom we analyzed the MPE samples prior to the onset of
the 1st line therapy (purple dots in Fig. 4a and Supplementary
Table 1). Among them, patients with predominantly glycolytic
cells (N/R ≥ 2) in their effusions were all having a progressive
disease and dead before the follow-up (diamond purple dots in
Fig. 4a). In contrast, patients with predominantly mitochondrial
oxidation cells (N/R ≤ 0.5) in their effusions were all partial
responders with reduced tumor sizes upon follow-up. In addition,
in the patients with a balanced metabolic phenotypes (0.5 < N/R
< 2), four out of the five patients were having a stable disease
upon follow-up (Fig. 4a). The segregation capability of the N/R
ratio holds for patients with EGFR mutations (Fig. 4b;
Supplementary Fig. 11b), other driver mutations, or WT tumors
(Fig. 4a; Table 1; Supplementary Table S1). Even if the patients
(P12 and P26) were diagnosed as having resistance-leading
secondary mutation EGFRT790M and receiving a third-generation
EGFR TKI (Osimertinib) specifically targeting this mutation
(black arrows in Fig. 4b), their N/R ratios could still segregate
their drug response profiles.

In addition to predicting short-term therapy response profiles,
the metabolic phenotyping has the potential to predict patient
long-term survival as well. The patients with tumor cells of
predominantly mitochondrial oxidation phenotype (N/R ≤ 0.5) or
balanced phenotype (0.5 < N/R < 2) in their MPEs were having
significantly longer survival time than patients with predominantly
glycolytic cells (N/R ≥ 2) in the effusions (Fig. 4c). This holds true

regardless if we evaluated all the patients, or the newly diagnosed
patients, or the patients with EGFRmutations (Fig. 4c). We further
compared the metabolic phenotyping with patient 18FDG-PET
scan for 3 newly diagnosed patients who performed PET/CT scan
concurrently with the MPE collection. We found that the
Maximum Standard Uptake Values (SUVmax) of their primary
tumor mass were consistent with normalized 2-NBDG uptake
values of the 2-NBDGhigh cells in their MPE samples (Fig. 4d, e).
While the SUVmax has been reported to be negatively correlated
with patient survival in NSCLC41, compared to N/R ratios, the
PET scan results are less predictive for patient therapy responses in
our cases. For example, although P15 had the highest SUVmax in
PET imaging and the highest relative 2-NBDG intensity of 2-
NBDGhigh cell population among the three patients, this patient
had more C12Rhigh tumor cells present in the MPE and
consequently a lower N/R ratio and better response and survival
(Fig. 4e; Supplementary Table 1). In contrast, P30 with lowest
SUVmax but highest N/R ratio had poorest response and shortest
survival (Supplementary Table 1). Taken together, the metabolic
phenotyping of the MPE samples could potentially serve as a
simple assay for predicting the LADC patient response before the
therapy start or identify potential therapy resistance when the
patients are still benefiting from the therapy. It also holds the
promise to score the current risk and long-term survival for lung
cancer patients and potentially provides complementary informa-
tion to 18FDG-PET imaging for more informative diagnostics.

Molecular signatures of each metabolic phenotype. To under-
stand the molecular signatures that underlie the predictive
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capability of the N/R ratio, we performed single-cell sequencing
to profile the driver oncogene, CNV, and transcriptome of those
metabolically active tumor cells from patient MPE samples. We
first sought to identify if different driver oncogene mutations are
associated with different metabolic phenotypes, and thus subse-
quently predictive for patients’ drug response and performance.
Unfortunately, we did not find any clear association between the
driver oncogenes and cellular metabolic phenotypes in the 32
patient MPE samples (Table 1). For example, P9, P10, and P18
had the same driver oncogene EGFR19Del and received no prior
treatment. However, they had diverse N/R ratios with P9= 5,
P10= 0.15, and P18 ~1 respectively, which indicated that they
had different dominant metabolic phenotypes in their metaboli-
cally active tumor cells from MPE samples. In addition, both P4
and P32 were bearing KRASG12D mutations but with very dif-
ferent N/R ratios (P4= 6.94; P32= 0.04). The diverse metabolic
phenotypes were also observed for patients with ALK fusion
alteration (Table 1). Therefore, no driver oncogene with meta-
bolic phenotype preference was identified in our dataset. We next
sought if additional protein-altering mutations, independent of
known driver oncogenes, may contribute to the diverse metabolic
phenotypes. To this end, we performed RNA-seq on the meta-
bolically active tumor cells in 5 randomly selected patient MPE
samples (Supplementary Data 1). For each patient, around 5–15
metabolically active tumor cells associated with each metabolic
phenotype were retrieved and pooled together for sequencing. We
called the mutations using the RNA-seq data and did not identify
any protein-altering mutation incurred in a specific metabolic
phenotype across all five patients (Supplementary Data 2). A
small number of nonsynonymous mutations were found in cer-
tain metabolic phenotype across 4 out of 5 patients. However,
none of these mutations have been reported to be related to
cellular glycolysis and mitochondrial oxidation (Supplementary
Data 2).

We further interrogated if the cellular CNV profile is related to
the metabolic phenotypes. To minimize the potential interference
from different genetic background, we analyzed the CNV profiles
of the metabolically active tumor cells from the MPE samples of
three patients (P1, P6, and P10) with the same EGFR19Del driver
oncogene mutation (Supplementary Fig. 8 and Supplementary
Table 2). Although the CNV profile varied from patient to
patient, both metabolic phenotypes showed relatively consistent
CNV profiles in a specific patient without any identifiable pattern
that could robustly segregate one metabolic phenotype from the
other across the three patients (Fig. 5a; Supplementary Data 3).
Taken together, both the mutational alterations and CNV profiles
appear insufficient to explain the observed uncoupling of
metabolic phenotypes in patient MPE samples.

The null results from genetic analysis prompted us to further
inspect the transcriptomic profile associated with each metabolic
phenotype. The transcriptome data of the five patients displayed
substantial patient-to-patient heterogeneity. We queried the
differentially expressed genes (DEGs) between the two metabolic
phenotypes for each patient. The majority of the DEGs were
patient-specific (Fig. 5b). A closer inspection of gene expression
levels confirmed the elevated expression of glycolysis-related
genes in 2-NBDGhigh cells, and up-regulation of genes that
encode core subunits of mitochondrial ETC complexes and genes
involved in fatty acid β-oxidation in C12Rhigh cells across patients
(Fig. 5c). However, no clear pattern in glutaminolysis-related
genes was observed for segregating the two metabolic phenotypes
(Supplementary Fig. 12). Consistently, 2-NBDGhigh and C12Rhigh

cells showed selective sensitivities to inhibition of glycolysis,
mitochondrial respiration, and fatty acid oxidation, but not to
inhibition of glutaminase (Supplementary Fig. 13).

Enrichment of the DEGs shared by at least by 4 out of 5
patients against several public databases by Enrichr revealed
significant cellular functions and pathways that were differentially
regulated in the two metabolic phenotypes (Fig. 5d)42. We listed
the top two entries enriched by the DEGs up-regulated in each
metabolic phenotype from the databases ranked by enrichment
scores. Among them, proton transporting activities, E-Cadherin
signaling, and integrin signaling43,44 were enriched in the genes
up-regulated in C12Rhigh cells, which suggested the elevated ETC
activities and epithelial polarity in the mitochondrial oxidation
phenotype (Fig. 5d; Supplementary Data 4 and 5). Meanwhile,
genes up-regulated in 2-NBDGhigh cells showed enrichment in
ribosomal biogenesis, translation elongation, and mRNA proces-
sing. It has been recently reported that ribosome biogenesis
contributes to epithelial-to-mesenchymal transition (EMT) and
metastatic cancer progression45. The Gene Set Enrichment
Analysis (GSEA) of the entire transcriptomic dataset supported
that the genes involved in EMT, metastasis, and SOX9 targets
were significantly enriched in 2-NBDGhigh cells for a majority of
patients (Fig. 5e; Supplementary Data 6). SOX9 has been reported
to prompt cytoskeleton alteration, invasion, and EMT in several
cancer types46,47. These enrichments therefore suggested a
mesenchymal feature and elevated metastatic potential in the
glycolytic phenotype. A further inspection of EMT-related genes
revealed that cells in glycolytic phenotype were more
mesenchymal-like with repressed expression of epithelial-related
genes (EPCAM, CDH1, KRT, etc.) and elevated expression of
mesenchymal-related genes (CDH2, WNT5A, TGFBI, etc.) (Fig.
5f)48. In contrast, cells in mitochondrial oxidation phenotype
were having elevated epithelial-related genes and reduced
mesenchymal-related genes (Fig. 5f). The glycolytic phenotype
were also found to have elevated checkpoint ligands (PD-L1, PD-
L2) compared to mitochondrial oxidation phenotype across
patients (Fig. 5f; Supplementary Fig. 14)49, which is consistent
with the recent reports that PD-L1 regulates glucose utilization
and prompts glycolysis in cancer cells50,51 and echoing the
previous observation of the association between EMT and PD-L1
expression in lung cancer52,53.

AXL as a drug target for patients with a large N/R ratio. The
overexpression of AXL – an EMT associated receptor tyrosine
kinase – has been increasingly appreciated as a key drug resis-
tance and tumor dissemination mechanism in a number of solid
tumors54–56. We found a consistent up-regulation of AXL gene
expression in 2-NBDGhigh cells (Fig. 5f), which prompted us to
investigate if AXL inhibition could be beneficial for patients with
high N/R ratios and poor prognosis. To this end, we first con-
firmed that 2-NBDGhigh cells from MPE samples have elevated
AXL protein expression compared with C12Rhigh cells and
CD45pos leukocytes (Fig. 6a; Supplementary Fig. 15), which was
in line with the AXL gene expression pattern of these two
metabolic phenotypes (Fig. 5f). We then collected MPE samples
from three patients with WT tumor in chemotherapy treatment
(P29), untreated EGFR19Del tumor (P9), and EGFRL858R tumor
that had developed resistance to EGFR targeted therapy (P3),
respectively. All the three patients had dominant glycolytic 2-
NBDGhigh phenotype in their MPE samples with N/R ratios
larger than 2 (Table 1). We segregated both the 2-NBDGhigh and
C12Rhigh cells from the MPE samples and treated them with an
AXL inhibitor R428 for 12 hours. Consistent with our expecta-
tion, R428 treatment led to significant cell killing in the 2-
NBDGhigh phenotype for all three patients (Fig. 6b; Supplemen-
tary Fig. 16). In contrast, it had minimal cell killing effect in
paired C12Rhigh cells from the three patient MPE samples
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(Fig. 6c). These results suggest that an AXL targeted therapy may
be considered for treating patients with high N/R ratio effusions.

Discussion
Metabolic phenotyping of bulk tumor tissues has identified inter-
and intra-tumoral regions with heterogeneous metabolic
reliance11,57,58, and has been utilized to reveal metabolic vul-
nerabilities and improve assessment of therapy response59.

However, metabolic phenotyping of rare DTCs in body fluids
with direct functional markers has not been achieved in part due
to the lack of robust tools for identifying and analyzing these rare
tumor cells in a complex biological fluid in a timely fashion. In
this study, we demonstrate the clinical utility of such metabolic
phenotyping through analyzing MPE samples of a group of
LADC patients. Using the OMC assay, we identified 3 metabo-
lically active phenotypes. 2-NBDGhigh cells represent a highly
glycolytic phenotype that is ravenous for glucose with limited
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mitochondrial oxidation. This is one of the most common fea-
tures of cancer metabolism, as discovered by Otto Warburg in
1920s60. In contrast, C12Rhigh cells have active mitochondrial
oxidation but limited glucose uptake. They may either behave like
normal cells by directing the majority of intake glucose to
mitochondrial oxidation, or consume other fuels for bioenergetic
and biosynthetic needs (Fig. 5c, e). The double positive phenotype
covers cells with both enhanced glycolysis and mitochondrial
oxidation. However, the percentage of these cells are relatively
low in patient MPE samples (Fig. 2d). In contrast to cancer cell
lines, we observed nearly mutual exclusive metabolic phenotype
distribution in patient MPE samples (Fig. 2b, d; Supplementary
Figs. 7 and 8). Such discrepancy may be attributed to the high
functional heterogeneity of tumor cells growing in the pleural
fluids that normally have more complicated microenvironment
than the relatively homogeneous culture condition for cell lines.
We showed that the cell number ratio of glycolytic phenotype to
the mitochondrial oxidation phenotype can be used for assessing
patient outcomes. Specifically, a patient with a high N/R ratio is
likely to have a poor therapy response and physiological

performance upon follow-up 5–7 months later after MPE draw,
as well as a shorter survival time (Figs. 3 and 4).

Our results did not identify a clear association between the N/R
ratios and tumor mutations or CNVs, suggesting that the meta-
bolic phenotypes may be regulated by epigenetic and/or tran-
scriptomic programs beyond the genetic level. The predictive
capability of this ratio was linked to the EMT programs, where we
found that 2-NBDGhigh cells bore more mesenchymal-like fea-
tures while C12Rhigh cells were largely epithelial (Fig. 5c–f).
Phenotypic composition and transition have been reported to be
associated with the adaptive resistance to targeted therapies that
allows tumor cells survive drug treatment prior to the establish-
ment of genetically resistant clones16,17. Outstanding examples
include the development of adaptive phenotypic response and
drug tolerance of NSCLC61, glioblastoma17, melanoma62,63, and
circulating breast tumor cells24,64 to chemotherapies and targeted
inhibitions through EMT or similar phenotypic transition pro-
grams. We speculate that a very similar mechanism may con-
tribute to our observation, where patients with MPE samples of
predominantly glycolytic and mesenchymal cells may be more
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tolerant to chemo- or targeted therapies, leading to poor prog-
nosis65. While it is still unclear whether having mesenchymal-like
cells in an MPE samples could reflect a mesenchymal feature of
the primary lesion that is more difficult to treat, the similar
mutual exclusive metabolic phenotypes were indeed observed in
tumor cells isolated from primary tumor tissues (Supplementary
Fig. 10). The excessive number of invasive mesenchymal-like cells
in the pleural effusion might also contribute to the formation of
distant metastases that cause poor clinical outcomes66,67.

Nevertheless, for LADC patients who developed MPE, the
metabolic phenotyping can provide information complementary
to tumor genetics and other clinical factors. The N/R ratio
appears to be a good predictive factor for patient clinical
responses and survival. It holds the potential to identify non-
responders and short-term beneficiaries of LADC patients prior
to the onset of therapy (Fig. 4). We found higher AXL and
checkpoint ligand expression levels (PD-L1, PD-L2, etc.) in 2-
NDBGhigh cells (Figs. 5f and 6; Supplementary Figs. 13 and 14),
which points to a possibility that patients with high N/R ratios
may have higher AXL and checkpoint ligand expression in their
tumor tissues. Given the observation that patients with high N/R
ratios are less likely to get benefit from traditional chemo- or
targeted therapies, alternative treatment strategies, such as inhi-
bition of AXL in combination with the drugs that target the driver
oncogenes or first-line checkpoint immunotherapy (anti-PD1,
anti-PDL1, etc.), might be explored for this poor-prognosis
population. Of course, these hypotheses need to be rigorously
validated in a large patient cohort.

A limitation of this study is the relatively small cohort size and
lack of patients treated by checkpoint blockade. While the patient
population in this study covers major mutational subtypes of
LADC, the number of KRAS-mutant or ALK fusion case is small.
Although we did not see any exception in our dataset, the
robustness and generality of the predictive capability of the N/R
ratio in lung cancer requires further examination in a larger
patient population before clinical translation, particularly for
patients with low frequency driver oncogene mutations, patients
receiving checkpoint inhibitors, and other tumor subtypes. The
underlying molecular mechanism associated with each metabolic
phenotypes also needs further validation in a more controllable
tumor model system. Our results reported here motivate addi-
tional pre-clinical work to set a stage for such a large prospective
clinical study.

Methods
Study design. This pilot study tested the utility of metabolic phenotyping on rare
DTCs in MPEs using single-cell OMC assays and fluorescent metabolic probes.
Pleural effusion samples and remnant surgical tumor biopsies were collected from
NSCLC patients in Shanghai Chest Hospital (Shanghai, China) with written
informed consent and in accordance with guidelines and protocols that approved
by the Ethics and Scientific Committees of Shanghai Chest Hospital. A majority
part of the effusion sample from thoracentesis was sent to cytopathology for
cytological examination and sequencing of cell blocks. The remnant sample usually
consisted of 10–100 mL of cellular fluid and were processed immediately for on-
chip metabolic assay. Metabolically active tumor cells with distinct metabolic sig-
natures were retrieved individually by a micromanipulator for single-cell sequen-
cing of driver mutations, CNVs, and transcriptome profiles. The cytopathological
analysis on pleural effusions, sequencing of cell blocks, and clinical outcomes were
performed independently and blinded to the operators. Thirty two patient samples
were analyzed in this study. After MPE draw, the patients were then received
appropriate clinical treatments tailored to their own disease status. Patient per-
formance and therapy response were reevaluated after 5–7 months of MPE draw
(Fig. 2a).

Cell lines and reagents. Human lung adenocarcinoma cell lines A549, NCI-H1650,
NCI-H1975, and HCC827, human colorectal carcinoma cell line HCT116, human
osteosarcoma cell lines MG63 and 143B were obtained from the cell bank of Chinese
Academy of Sciences and routinely maintained in RPMI-1640 Medium (Life
Technology, A10491-01) containing 10% FBS in humidified atmosphere of 5% CO2
and 95% air at 37 °C. Allophycocyanin (APC)-conjugated CD45 (clone HI30) and 2-

NBDG (2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino)-2-Deoxyglucose) were
purchased from Life Technologies. C12-Resazurin (IUPAC name of resazurin: 7-
hydroxy-10-oxidophenoxazin-10-ium-3-one) obtained from Vybrant cell metabolic
assay kit and FITC-conjugated goat-anti-rabbit secondary antibody were purchased
from Thermo Fisher Scientific. Anti-PD-L1 (#BX00006, clone RR604) and its
positive cell line were purchased from Biolynx. Hank’s balanced salt solution (HBSS,
no calcium, no magnesium, no phenol red), 0.25% Trypsin-EDTA, Dulbecco’s
modified eagle medium (DMEM, glucose free) and DMEM (glucose free, glutamine
free, sodium pyruvate free) were purchased from Gibco. D-glucose, sodium lactate,
sodium pyruvate, L-glutamine, DMSO (dimethyl sulfoxide) were obtained from
Sigma-Aldrich. Oligomycin was purchased from Cell Signaling Technology. Rote-
none, phenoformin, 2-Deoxy-D-glucose (2-DG), BPTES and etomoxir were pur-
chased from SelleckChem. Cell strainers (70 μm, 100 μm) were purchased from BD
Falcon. Poly(dimethylsiloxane) (PDMS) pre-polymer (Sylgard 184) was purchased
from Dow Corning. Photoresist SU-8 2050 was purchased from MicroChem Corp.
Single-cell whole-genome amplification kit was purchased from Qiagen. Taq DNA
polymerase premix kit and TruePrep DNA Library Prep Kit V2 for Illumina were
purchased from Vazyme Biotech. NEBNext dsDNA Fragmentase and NEBNext
Ultra™ II DNA Library Prep Kit were purchased from New England Biolabs. ERCC
RNA Spike-In Mix and Qubit dsDNA HS Assay Kit were purchased from Life
Technologies. Agencourt AMPure XP was purchased from Beckman Coulter.
SMART-Seq v4 Ultra Low RNA Kit was purchased from Clotech. All primers were
synthesized by Life Technologies and listed in Supplementary Tables 2 and 5.

Fabrication of microwell chip. The microwell chip was fabricated in PDMS using
standard microfabrication soft-lithographic techniques. A replicate for molding the
PDMS was obtained by patterning a silicon wafer using photoresist SU-8 2050. The
PDMS pre-polymer was mixed in a ratio of 10:1, and subsequently casted on this
lithographically patterned replicate. After curing at 80 °C for 2 h, the PDMS
component was separated from the replicate.

Single-cell OMC assay of pleural effusion samples. Typically, 10 mL of pleural
effusion was filtered by a membrane with a pore size around 100 μm, followed by
centrifuging at 500 × g for 5 min to separate cell pellets. 1 mL of red blood cell
lysing buffer (BD) was then added to lyse red blood cells for 5 min. After cen-
trifuging at 500 × g for 5 min, the nucleated cell pellet was resuspended in and
washed with HBSS. After cell counting, ~500,000 cells were treated with 1 μl of
APC-conjugated anti-CD45 antibody (BD Biosciences), 400 μM 2-NBDG and 1
μM C12R in glucose-free DMEM for 10 min in a cell incubator. Cell suspension
was then applied onto a 3% Matrigel (BD Biosciences)-coated microwell chip as a
monolayer and wait for 5 min in a cell incubator until cells sitting down in the
microwells. All cells on the chip were extensively washed with cold PBS and
DMEM. An ImageXpress Micro XLS Widefield High Content Screening System
(Molecular Devices) scanned the chip and imaged all cells in bright field and three
fluorescent colors (CD45: CY5, 2-NBDG: FITC, C12R: TRITC). MetaXpress
software (Molecular Devices) analyzed the images and identified metabolically
active tumor cells (CD45neg/2-NBDGhigh or CD45neg/C12Rhigh) based on the cut-
offs generated from 2-NBDG and C12R fluorescence signals of CD45+ leukocytes
on the chip. The cut-off of 2-NBDGhigh cells is defined as mean plus five standard
deviations of CD45+ leukocytes, and the cut-off of C12Rhigh cells is defined as
mean plus three standard deviations of CD45pos leukocytes. The numbers of three
metabolically active subsets (CD45neg/2-NBDGhigh/C12Rhigh, CD45neg/2-
NBDGlow/C12Rhigh, CD45neg/2-NBDGhigh/C12Rlow) were recorded for each
patient involved in this study. Some of metabolically active tumor cells in the
microwells were individually retrieved using a XenoWorks Micromanipulator and
trimethylchlorosilane (TMCS)-treated micropipettes, and then transferred into low
binding PCR tubes (Axygen) for downstream single-cell sequencing.

C12R reaction kinetics with major cellular reducing agents. 100 μL of reducing
agents (Glutamine 4 mM, Glutathione 16 mM, Glucose 12 mM, ascorbate 1.6 mM,
NADH 1.2 mM in 10 mM PBS buffer) were mixed with 100 μL of diaphorase and
200 μL of C12Rz (2 μM in 10mM PBS buffer), respectively and incubated at room
temperature for 1 hour. The final concentration of the reducing agents are Glu-
tamine 1 mM, Glutathione 4 mM, Glucose 3 mM, ascorbate 0.4 mM, NADH 0.3
mM. The fluorescence intensity was determined by a microplate reader (540 nm
excitation and 590 nm emission). Then the experiment was carried out in quad-
ruplets to determine the error range.

Single-cell oncogenic driver mutation detection. Single-cell whole-genome
amplification (WGA) was performed on single cells using a REPLI-g Single Cell Kit
(Qiagen). PCR for the target regions was performed using the primers listed in
Supplementary Table 1 using 12.5 μl 2X Ex Taq DNA polymerase mix (Vazyme
Biotech), 10 μM forward primer, 10 μM reverse primer, 0.2 μl WGA DNA. The
PCR conditions used were: 95 °C for 3 min, followed by 30 cycles (95 °C for 30 s,
60 °C for 30 s and 72 °C for 30 s), a final extension at 72 °C for 5 min. The PCR
products were analyzed with Sanger sequencing (Genewiz, Suzhou, China).

Single-cell copy number variation detection. To evaluate the WGA amplification
coverage of single cells genome, we designed 22 pairs of primers (Genewiz, Suzhou,
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China) to target 22 loci on different chromosomes (Supplementary Fig. 17). The
primer sequences are listed in Supplementary Table 5. After WGA reaction of
candidate tumor cells, QC PCR reactions were conducted at 95 °C for 3 min,
followed by 30 cycles (95 °C for 20 s, 60 °C for 20 s and 72 °C for 30 s) and a final
extension at 72 °C for 5 min. WGA products that passed QC were digested with
NEBNext dsDNA Fragmentase (New England Biolabs) and 300–500 bp fragments
were selected using Agencourt AMPure XP Beads (Beckman Coulter). We used
100 ng of DNA fragments as input to prepare sequencing libraries. Libraries were
prepared by NEBNext Ultra™ II DNA Library Prep Kit for Illumina (New England
Biolabs), fragments end-repair, 3′ adenylation and ligation according to the
manufacturer’s instructions. 0.8X Agencourt AMPure XP (Beckman Coulter) was
used for purification and we then performed 9 cycles of PCR following the man-
ufacturer’s instructions, using PE5/7 primers (New England Biolabs). Agencourt
AMPure XP (Beckman Coulter) was used for final library purification. The con-
centration of purified fragmented DNA or libraries concentration was measured
with Qubit dsDNA HS Assay Kit (Invitrogen) in steps, and final libraries quantified
by a 2100 Bioanalyzer (Agilent Technologies). Libraries were analyzed by Illumina
HiSeq X Ten platform with 150 bp pair-end reads (Genewiz, Suzhou, China).

Transcriptome sequencing of rare disseminated cells in MPE. 5–15 metaboli-
cally active cells were retrieved and pooled together into low bind tube (Axygen)
with 12.5 μl lysis buffer, which contained 10X Reaction buffer, ERCC (1:106, Invi-
trogen), 3′ SMART-Seq CDS Primer IIA, RNase Inhibitor plus DEPC-treated water.
Single-cell transcriptome amplifications were performed using SMART-Seq v4 Ultra
Low RNA Kit as described in the protocol for the kit (Clotech). The amplified cDNA
products were purified with 0.8X Agencourt XP DNA beads (Beckman Coulter). The
concentration of purified cDNA was quantified with Qubit dsDNA HS Assay Kit
(Invitrogen), and libraries were then constructed with the TruePrep DNA Library
Prep Kit V2 for Illumina (Vazyme Biotech) and quantified by a 2100 Bioanalyzer
(Agilent Technologies). Libraries were analyzed by an Illumina HiSeq X Ten
sequencer with 150 bp pair-end reads (Genewiz, Suzhou, China).

Analysis of RNA sequencing data. RNA sequences of tumor cells were aligned to
the known human transcriptome (hg19) using HISAT2 (version 2.1.0)68. Reads
that did not align or aligned to multiple locations in the genome were discarded.
The hg19 GTF file from Ensemble was used to map. The reads count for each gene
was the number of reads that were so mapped to that gene. This count was
measured by HTSeq (version 0.8.0)69, and Reads Per Kilobase Million (RPKM)
value was used to quantify gene expression level. RPKM values from replicates of
one metabolic phenotype of the same patient were merged and averaged.

For identifying tumor-specific protein-altering mutations, RNA-sequencing
reads from one phenotype of the same patient were merged and aligned to the
major chromosomes of human (hg19) using BWA (v0.7.16) with default options70.
Then the duplicated reads were removed. We called SNPs using SAMTools (v1.4)71

and BCFtools (v1.3)72 with default options and filtered by SNPs called from
matched leukocytes. An SNP was retained only when it was covered by least 5 reads
in one of all samples.

Cuffdiff in Cufflinks package (version 2.2.1) was used to identify DEGs (false
discovery rate <= 0.05)73 between the two metabolic phenotypes. The DEGs up-
regulated in each metabolic phenotype shared by at least 4 out of 5 patient MPE
samples were enriched by Enrichr algorithm42 against curated databases including
BioCarta, WikiPathways, NCI-Nature Pathway, Gene Ontology (GO) cellular
components and GO Biological process, respectively (Supplementary Data 5). The
top 2 entries ranked by the Enrichr combined scores were listed in Fig. 5d.

Gene Set Enrichment Analysis was performed as described by as described by
Subramanian et. al.74. In brief, genome-wide expression profiles from samples
belonging to two labeled markers (2-NBEG or C12R) were used to perform this
analysis. Genes were ranked based on the correlation between their expression and
the class distinction by using metric of Signal2Noise. The enrichment results for
MSigDB Hallmark and C2 gene sets were listed in Supplementary Data 6.

Copy number determination and segmentation. Sequence reads were aligned to
the major chromosomes of human (hg19) using BWA (version 0.7.16)75 with
default options. To reduce whole-genome sequencing biases caused by difference of
GC contents in the genome, the sequence depths of tumor cells were normalized by
sequence depths from several normal white blood cells (WBC) (CD45+)76. The
CNV regions were identified as described previously76,77. Briefly, the likely diploid
regions were determined using the hidden Markov model (HMM). The identified
diploid regions were then used to provide a normalization factor for determining
copy number. Similar copy numbers in adjacent chromosome regions were merged
HMMcopy78 (version 0.1.1) package.

Metabolic activity assay. A549 cells were cultured in the microwell chip and
treated with 2 μM oligomycin (inhibitor of oxidative phyosphorylation,) for 6 h at
37 °C, followed by adding 2-NBDG to yield a final concentration of 600 μM. A
microchip containing A549 cells with DMSO vehicle was used as the control. After
10 min assay of 2-NBDG, the chip was imaged with an ImageXpress Micro XLS
Widefield High Content Screening System for measuring fluorescence intensity of
2-NBDG uptake. Rotenone (inhibitor of mitochondrial respiratory complexes I)

inhibition experiments were conducted in a similar way. A549 cells were on-chip
treated with 5 μM rotenone for 6 h, followed by adding C12R to yield a final
concentration of 1 μM. To investigate the influence of carbon sources on cell
metabolism, A549 cells were treated with glucose (11 mM), glutamine (2 mM),
sodium lactate (10 mM), and sodium pyravate (1 mM) for 2 h, respectively. The
carbon sources (glucose, glutamine, sodium lactate, sodium pyravate) were dis-
solved in a DMEM medium free of glucose, glutamine and sodium pyruvate
(Gibco, No. A14430). A549 cells cultured in the RPMI 1640 medium containing 11
mM glucose and 2 mM glutamine were used as a control. All treated and control
A549 cells were disassociated with 0.25% Trypsin and resuspended in 1 mL DMEM
medium (no glucose, no glutamine, no sodium pyruvate). After cell enumeration,
300,000 cells were isolated and incubated with 2-NBDG (400 μM) and C12R (1
μM) in the DMEM medium (no glucose, no glutamine, no sodium pyruvate) for
15 min, followed by processing with a BD LSRFortessa flow cytometry for fluor-
escence measurement.

To study the 2-NBDG and C12R response to metabolic inhibitors on cell lines,
A549 cells were treated with 2-DG (5 mM), oligomycin (2 μM), phenoformin (25
μM), BPETS (10 μM), etomoxir (200 μM), and DMSO as the control for 12 h at 37 °
C. Thirty minutes before assay, the media was changed to fresh media containing
inhibitors at the same concentrations. 2-NBDG and C12R were then added to yield
a concentration of 600 μM and 1 μM, respectively. In each condition, more than
5000 cells were assayed at the single-cell level.

To study the effect of metabolic inhibitors on metabolically active cells in
pleural effusions, pleural effusion of Patient 30 was filtered, lysed of red blood cells
and incubated with APC-conjugated anti-CD45 for 30 min. After washing and cell
counting, 2-NBDG (400 μM) and C12R (1 μM) were used to fluorescently label
metabolically active cells and applied onto 3% Matrigel-coated microwell chips at
~500,000 cells/chip via a 5-min rapid incubation. After on-chip washing with cold
PBS and DMEM, the chips were sealed with porous membranes to avoid cell loss in
the following steps. All cells on the chip were imaged and then treated with
metabolic inhibitors (2-DG: 5 mM; phenformin: 25 μM; BPETS: 10 μM; etomoxir:
200 μM) and DMSO as the control for 12 h at 37 °C. At the end of the treatment,
PE Annexin V Apoptosis Detection Kit I was used to stain apoptotic cells on the
chip followed by the second round of imaging. For data analysis, we counted the
metabolically active cells identified by 2-NBDG and C12R, and then calculated the
percentage of cell apoptosis in two metabolically active cell subpopulations
(C12Rhigh and 2-NBDGhigh).

ECAR and OCR measurements. A549 cells were plated in the seahorse cell plate at
10,000/well and incubated overnight with RPMI 1640 medium supplemented with
10% FBS. A549 cells were then treated with inhibitors (2-DG: 5 mM; oligomycin:
2 μM; phenoformin: 25 μM; BPETS: 10 μM; etomoxir: 200 μM) and DMSO as a
control in fresh complete cell culture media for 12 hours. Thirty minutes before
assay, the media was changed to fresh media containing inhibitors at the same
concentrations. ECAR and OCR were measured on an XFe96 Seahorse Biosciences
Extracellular Flux Analyzer for 10 cycles. The averages of 10-cycle measurements of
ECAR and OCR were recorded. Three replicates were performed in each condition.

Preparation of single-cell suspensions from lung tissue. Remnant tumor tissue
samples obtained from bronchoscopy were immediately transported to the
laboratory in the F12K/DMEM (1:1, Corning) medium, followed by enzymatic
digestion with collagenase type I (170 mg L−1, Gibco) and elastase (25 mg L−1,
Sigma-Aldrich) at 37 °C for 30–45 min. The dissociated cells were filtered with a
70 μm mesh cell strainer (BD) and centrifuged to a pellet at 300 × g for 10 min.
After aspirating the supernatant, the cell pellet was resuspended in the red blood
cells lysis buffer (BD Pham Lyse) and incubated for 2 min for lysing red blood cells.
The cell pellet was washed twice with HBSS containing 0.1% BSA before per-
forming on-chip metabolic assay.

Patient survival analysis. Survival was defined as the time between the start of
malignant pleural effusions (MPE) collection until date of death or the last follow-
up visit. The last date of follow-up was 10 January 2019. The study was approved
by the institutional review board of the Shanghai Chest Hospital. The
Kaplan–Meier method was used to estimate survival rate, along with a log-rank
statistical test comparing the survival distribution. All tests were two sided, and p
values <0.05 were considered statistically significant. The statistical analyses were
performed with R software (version 3.3.3, R Foundation for Statistical Computing,
Vienna, Austria) and RStudio software (version 1.1.383).

Patient PET/CT scan. FDG-PET/CT images were acquired on a Siemens Biograph
mCT-S system using a standard protocol before invasive procedures were per-
formed. Patients fasted 6 h and had a blood glucose level of <7.8 mmol/L prior to
18F-FDG administration. PET-CT scans were acquired 45–60 min after intravenous
injection of 0.10–0.15 mCi kg−1 (3.7–5.6 Mbq kg−1) 18F-FDG. Patients were
scanned in the supine position from the skull base to one-third of the femur (5–7
beds) at 2 min/bed. The tomographic images were reconstructed by using TrueX
point spread function and time-of-flight iterative reconstruction algorithm. All
patients underwent a 30-s breath-holding thin-slice CT scan. FDG-PET/CT images
were independently reviewed by two experienced nuclear medicine physicians and
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a final consensus was obtained on all imaging findings. Any accumulation of
lesions outside the normal distribution area or above peripheral physiological
uptake area was considered abnormal. The SUV was normalized by body weight,
and the SUVmax was calculated as the highest value of the tumor voxel in each
patient’s primary lung tumor.

PD-L1 immunofluorescence staining. Pleural effusion of patient 31 was processed
and assayed with APC-conjugated anti-CD45 antibody, 2-NBDG and C12R based
on a protocol described above. After on-chip washing with cold PBS and DMEM,
the chip was imaged and then sealed with a porous membrane. After on-chip cell
fixation (2% PFA, 10 min) and blocking (3% BSA and 10% Normal Goat Serum),
the chip was imaged again to confirm the disappearance of fluorescence of 2-
NBDG and C12R. Cells on the chip were then stained with anti-PD-L1 (Biolynx,
clone RR604) overnight at 4°C, and after extensive washing with PBS, cells treated
with FITC-conjugated goat-anti-rabbit secondary antibody (Thermo Fisher Scien-
tific) in PBS for 1 h.

AXL inhibitor treatment on MPE samples. Typically, 45 mL of pleural effusion
was filtered by a membrane with a pore size around 100 μm, followed by lysis of
red blood cells. The remaining nucleated cells were resuspended in HBSS and
incubated with APC-conjugated anti-CD45 antibody for 30 min. After washing and
cell counting, the cell suspension was applied onto three microwell chips and each
chip was loaded with ~500,000 cells. The metabolic activities of these cells were
assayed with 400 μM 2-NBDG and 1 μM C12R in glucose-free DMEM for 5 min at
37 °C. After imaging, the microwell chips were sealed with porous polycarbonate
membranes (pore size: 3 μm) to avoid cell loss. The cells were then cultured on the
chips and treated with DMSO vehicle, and R428 (1 μM) for 12 h at 37 °C,
respectively. PE Annexin V Apoptosis Detection Kit I was used to measure the
apoptosis of cells on the chips for calculating percentages of apoptosis in meta-
bolically active subpopulations (C12Rhigh and 2-NBDGhigh).

Partial least square discriminant analysis. As the number of observations is low
and the multicolinearity between measured variables is high, Partial Least Square
Discriminant Analysis (PLS-DA) was employed to predict the membership of
observations to the categories of responders and non-responders40. PLS-DA was
performed with XLSTAT (Addinsoft) statistical software.

The goal of PLS-DA is to obtain a linear relationship between the measured
variables and the patient response. PLS-DA begins with a matrix in which the
number of columns is the number of measured variables and the number of rows is
the number of patient samples (Supplementary Table 3). We seek a solution to that
matrix that best resolves the responders from the non-responders with the most
stable model. We used 29 patient data to construct the PLS-DA model. P6, P21,
and P32 were excluded in the subsequent analyses due to lack of appropriate
treatment, lack of determined diagnosis, and lack of follow-up information,
respectively (Supplementary Table 1). Due to the relatively small sample size, we
further categorized the partial response (PR) and stable disease (SD) as positive
response (P), and progressive disease (PD) and death as negative response (N)
(Supplementary Table 3). Herein, K is the number of categories (total 2, for either
responder (P) or non-responder (N)) of the observation variable Y (the patient
response). For each patient, we have 5 explanatory variables measured
(Supplementary Table 3). For each category ak (k= 1,2), we obtain a separate
classification function F, so that we obtain one fit that applies to all responders (P),
and a second for all non-responders (N).

Fðyi; akÞ ¼ b0 þ
Xp

j¼1

bixij ð1Þ

Here, b0 is the fitted intercept of the linear model associated each category ak, p
(total 5) is the number of measured explanatory variables and bi are the coefficients
that weigh each variable within the model.

A given patient i is associated to class k (responder or non-responder)
depending on which model best describes explanatory variables measured from
that patient. An observation is assigned to the class with the highest classification
function F. Formally, this is written as:

k� ¼ argmax
k

Fðyi; akÞ ð2Þ
Variable Importance for the Projection (VIP) can measure the importance of an

explanatory variable for determining class membership of the observation variable
y. The VIP for the jth explanatory variable is computed as

VIPj ¼
N
PN

i¼1
w2
ijRSSi

RSST

ð3Þ

where wij is a PLS-DA weight, RSSi is a percentage of the explained residual sum of
squares, and RSST a total percentage of the explained residual sum of squares79.

Statistical analysis. Statistical analyses were performed using GraphPad PRISM 7
(GraphPad Software, Inc) and XLSTAT (Addinsoft, for PLS-DA modeling and
correlation test) unless noted elsewhere. Statistical significance between two groups

were compared using two-tailed Student’s t-test with p < 0.05 as the significance
threshold. Alpha level was corrected by Bonferroni correction when multiple
groups were compared.

Reporting summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability
Sequence data reported in this paper are available in the Sequence Read Archive
(BioProject accession PRJNA554445).The data underlying all findings of this study are
available within the article and its Supplementary Information files or from the
corresponding authors upon reasonable request. A reporting summary and a source data
file for this Article are available as a Supplementary Information files.
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