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Abstract

Interactions and evolution of the anemonefishes

by

James L. O’Donnell

The interactions among organisms shape the earth’s biodiversity in striking ways, and

these interactions are known to vary substantially over both time and space. Identi-

fying the scale of variation in species interactions allows for a better understanding of

the origins and organization of biodiversity, and informs expectations of the dynamics

of these systems. In order to study the scale of variation in species interactions, I fo-

cused on the anemonefishes, a group of coral reef damselfishes engaged in a mutualism

with sea anemones. I used three complementary approaches. First, I used population

genetic methods to show that populations of anemonefishes are genetically isolated over

relatively small spatial scales in the Mozambique Channel. Second, I employed data

from social media to reveal spatial variation in the interactions between anemonefishes

and their host sea anemones. Third, I reconstructed the phylogenetic history of the

anemonefishes to examine their pattern of diversification in the context of both ecolog-

ical and geographic processes. The relatively low dispersal potential of anemonefishes

likely contributes to both the spatial structure among populations within species, and

the strong geographic pattern of diversification among species. In turn, the spatial

variation in diversity within the anemonefishes has led to variation in their interactions

with sea anemones.
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Introduction

All living things are connected by invisible links that form an enormous net-

work connecting every organism that has ever existed. These arbitrary human con-

structs allow us to make sense of the natural world around us. We organize our own

social groups around families, connected by reproduction that has resulted in shared

genetic material among individuals. The same concept of relatedness is used to classify

the breathtaking diversity of life into hierarchical groups evolved over billions of years.

Similarly, we refer to organisms living in the same place at the same time as a com-

munity or ecosystem, some of which interact directly with one another. Interactions

among organisms affect the reproductive output of the participants. For example, a

sperm whale that kills and eats a giant squid acquires energy that increases its ability

to find mates and produce offspring, while reducing the squid’s prospect of reproduction

to nil.

The interactions among species have so deeply shaped the diversity of life

that it would be unrecognizable without them. In the absence of the selective pressure

imposed by species interactions, cheetahs would not be fast, flowers would not have

pleasant fragrances, and grass would not be green. For about as long as humans have
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pondered the natural world, they have recognized the importance of antagonistic inter-

actions – those in which at least one of the participants experiences a net cost. But

in the past several decades, mutualistic interactions that benefit both organisms have

garnered increasing attention from ecologists (Howe, 1984; Bronstein, 2001). Research

has enhanced our knowledge of the conditions under which mutualism might evolve,

the evolutionary outcomes of mutualisms, and the organization of communities of mu-

tualistic species, using both theoretical and empirical approaches (Thompson, 2005).

Theoretical research on mutualisms has been exceptionally productive, but the answers

that theory has provided to these questions can only be confirmed by empirical evi-

dence, ideally from a diverse range of systems. One area of study on mutualisms that

has gained substantial attention is whether mutualistic interactions tend to be more or

less specialized than antagonistic interactions (Thompson, 2005).

Ecological specialization – the breadth of resources on which an organism de-

pends – has captivated biologists for many years (Darwin, 1862). Though conceptually

intuitive, it is difficult to quantify because it is inherently relative. Clearly, a sea otter

that consumes only one type of prey over its lifetime is more specialized than a neigh-

boring otter consuming five prey types. But are these otters more or less specialized

than those consuming the same number of prey types in an area with different avail-

ability of prey? Such information is not always available, and thus no consistent metric

is appropriate for all purposes.

Despite the difficulties in quantifying specialization, theory provides expecta-

tions of how specialization should affect the ecology and evolution of species, and these
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expectations have been confirmed by empirical evidence. For example, specialization is

commonly invoked as the mechanism driving adaptive radiation, the evolution of ecolog-

ical and phenotypic diversity within a rapidly multiplying lineage (Schluter, 2000). Yet,

it remains to be known which types of specialization drive the population divergence

leading to speciation. Quantifying the links between specialization and the divergence of

lineages is critical to our understanding of the role of species interactions on speciation

mechanisms.

While evolutionary biologists have long speculated about the dynamics and

outcomes of specialization for speciation and community organization, it is only in

the last decade that the tools necessary to assess complex ecological networks within

an evolutionary context have become available. Scientists have begun to address this

primarily using three approaches: (1) Analyzing interaction network structure in the

context of a known phylogenetic framework to test for phylogenetic constraints (Cattin

et al., 2004; Rezende et al., 2007); (2) inferring the rate of transitions to and from

specialization using character mapping on a phylogenetic tree (Kelley and Farrell, 1998;

Nosil and Mooers, 2005; Stireman, 2005; Yotoko et al., 2005); and (3) comparing the

amount of genetic structure or distance between sympatric species of closely related

specialists and generalists (Dobler and Farrell, 1999; Kelley et al., 2000; Brouat et al.,

2003). Each of these approaches has its own strengths and weaknesses, and thus the

combination of these three approaches within a single system would yield more robust

results.

Here, I focus on the mutualism between anemonefishes (Perciformes: Pomacen-
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tridae: Amphiprioninae) and their host sea anemones. This mutualism provides the fish

with shelter from predators, while the fish guards the anemone from predators and in-

creases anemone growth and reproduction by supplementing nutrients to the anemone’s

photosynthetic zooxanthellae via excrement (Porat and Chadwick-Furman, 2004; Hol-

brook and Schmitt, 2005; Roopin and Chadwick, 2009). The interaction is obligatory

for the fish, as they are never found outside of anemones, though in some areas host

anemones may be found without fish (Fautin and Allen, 1997). The 30 described species

of anemonefish can be found on Indo-Pacific coral reefs from East Africa to Polynesia

(Fautin and Allen, 1997). The species are grouped into two genera, Amphiprion and

Premnas, though Premnas has repeatedly been found to be nested within Amphiprion

(Santini and Polacco, 2006; Cooper et al., 2009; Frédérich et al., 2013). Ten species of

anemone hosts are recognized (Fautin and Allen, 1997), and individual fish associate

with a single host for the entirety of their post-settlement life. Some fish species are

only known to associate with a single host species, while others can be found with any

of the ten hosts. All species are protandrous hermaphrodites and are usually found in

small monospecific groups. Mated pairs guard nests of demersal eggs until hatching, at

which point larvae begin a pelagic phase lasting 7-22 days (Wellington and Victor, 1989;

Thresher et al., 1989). Here, I study the interactions and evolution of the anemonefishes

using three approaches.

First, I investigate the degree of population genetic structure of an anemonefish

species in the Mozambique Channel. The extent of connectivity among populations is

of fundamental importance to ecology and evolutionary biology, and plays an important
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role in the planning and management of natural reserves; however, it is poorly under-

stood in most marine organisms. Studies of demersal coral reef fishes have been key

to enhancing our understanding of marine population connectivity, but few have exam-

ined gene flow in the Western Indian Ocean, a marine biodiversity hotspot. We studied

the population genetic structure of Amphiprion akallopisos among four island sites in

the Mozambique Channel using highly variable microsatellite loci. We employed two

Bayesian clustering algorithms along with classical population genetic approaches, and

found evidence for subtle population structure among island sites. While bathymetric

and oceanographic features may have predicted genetic homogeneity in this region, we

argue that the complex system of seasonal eddies may serve to increase the likelihood of

larvae recruiting close to their natal habitat, thereby increasing population structure.

Second, I characterized the interaction frequency and spatial variation between

anemonefish and their host anemone species, using a novel data source. Understand-

ing the dynamics of species interactions is a central goal of ecology, but comprehensive

assessments of interactions across space and taxonomic groups are difficult to obtain.

I collected and analyzed 10,167 georeferenced photos from the entire geographic range

of the interaction to compile a data set of 11,029 occurrence records of all species of

anemonefish and sea anemones, including 4,830 records explicitly depicting an interac-

tion. I used this data set along with a detailed habitat map to model species distribution

and diversity, and reconstruct both local and global quantitative interaction matrices.

The nestedness of these interaction matrices is not spatially variable at the regional

scale, and the structure of regional networks does not differ from that of the global
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network. Within suites of species, there is no correlation between the spatial overlap

of species and their pattern of partner interaction. These results suggest that similar

processes structure the interaction network at multiple scales, and that species with

overlapping distributions partition host resources in order to coexist.

Third, I reconstructed the evolutionary history of the diversification of the

anemonefishes using a phylogenetic approach. While much is known about their behav-

ior and ecology, their evolutionary history remains poorly resolved. We generated DNA

sequence data from 24 of the 29 species for three mitochondrial loci and four nuclear

loci, and include samples from multiple geographic variants of wide-ranging species.

We reconstructed phylogenies at both the gene and species level using Bayesian and

maximum likelihood methods to infer patterns of the evolution of the group. Gene

phylogenies revealed reciprocal monophyly among species in most cases, though sub-

stantial divergence between populations indicates the presence of cryptic diversity in at

least one wide-ranging taxon, A. clarkii. We recovered exceptionally strong support for

most nodes in the species phylogeny, which upheld the taxonomic grouping of species

based on morphology. Strongly supported yet shallowly divergent sister relationships

between morphologically disparate taxa support the putative reports of interspecific hy-

bridization by other authors. The earliest branching taxa are restricted to the center of

the spatial distribution of the Amphiprioninae, the Coral Triangle, while more recently

diverging species are found in the periphery of this region and in the Western Indian

Ocean. This pattern is indicative of an origin within the Coral Triangle, followed by

diversification driven by spatial isolation outside of the core of diversity.
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Chapter 1

Population structure of Amphiprion akallopisos

in the Mozambique Channel: Connectivity,

management, and conservation in the Scattered

Islands

Introduction

The Western Indian Ocean (WIO) is one of the most biodiverse yet understud-

ied regions of the sea (Roberts et al., 2002). In addition to high levels of local diversity

and endemism, there is substantial turnover in species composition between this region

and the epicenter of marine biodiversity, the Coral Triangle (Briggs and Bowen, 2012;

Allen, 2008; Obura, 2012). These attributes make the WIO an important priority for

conservation, yet its coral reefs are afforded little protection from exploitation (Mora

1Additional coauthors on this manuscript: Ricardo Beldade, Hannah Williams, Suzanne C. Mills,
and Giacomo Bernardi
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et al., 2006). Human populations in this region are growing rapidly, and these popu-

lations rely on marine organisms as a food source and as an economic resource. The

combined threat of global climate change (McClanahan et al., 2014) and anthropogenic

disturbances has generated growing interest in creating reserves that will help sustain

populations of marine organisms both for their economic and intrinsic values.

Optimization of the size, spatial arrangement, and regulation of ecological

reserves so that they effectively serve their intended purpose requires an understanding

of the movement of individuals among populations in the area of interest (Halpern and

Warner, 2003; Palumbi, 2003). The optimal size, arrangement, and regulation of reserves

depends on whether populations in proposed areas can be sustained under harvested

conditions, which in turn depends on the source of new individuals recruited to local

populations (Halpern and Warner, 2003). If population self-recruitment is high, then

local harvesting pressure should have strong effects on population size. Conversely, if

immigration is high, local pressures should have little effect on local population size.

Along with factors like natural mortality and emigration rates, the relationship between

local harvesting pressure and population size is expected to be mediated by the influx

of individuals from outside areas (Carr and Reed, 1993; Shanks et al., 2003).

Population connectivity (the movement of individuals among spatially isolated

populations) of marine organisms remains one of the most elusive problems in ecology.

The majority of marine organisms begin life as tiny larvae that are suspended in the

water column for days to months (Leis, 1991), during which time they are currently

impossible to track using traditional methods. Both intrinsic and extrinsic factors have
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been implicated as major contributors to realized larval dispersal, though their rela-

tive contributions are unknown. It is intuitive to suspect a relationship between the

duration of the pelagic larval phase and population connectivity: If the pelagic larval

duration (PLD) is long, larvae could be carried over long distances by even moderate

currents. Conversely, the larvae of species with a very short PLD are expected to settle

near their natal habitat. Due to the difficulty in tracking actual larvae in the water

column, a number of studies have tried to use genetic tags and relate PLD with gene

flow (Doherty et al., 1995; Riginos and Victor, 2001; Shulman and Bermingham, 1995;

Waples, 1987). Yet, no clear picture has emerged from these studies, suggesting that

simple oceanographic explanations may not be forthcoming.

Simplistic dispersal models take place in the context of extremely complex

and dynamic oceanographic features. Currents differ in direction and speed at different

depths, and drastic changes take place over timescales from seasonal to decadal. While

results to date implicate currents as playing a role in larval dispersal, evidence for strong

and consistent patterns has been obscured by problems incorporating the complexities

of oceanographic forcing at relevant spatial scales. Furthermore, the influence of these

factors may be mediated by larval behavior. Simulations have shown that even modest

abilities for larvae to modulate their position in the water column can obscure the

relationship between PLD, oceanographic features, and larval dispersal (Cowen et al.,

2006; Leis, 2007).

At large scales discussed above, patterns of population connectivity are not

always consistent across species, in part because barriers to gene flow are relative to
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dispersal ability. Thus, attention has focused on smaller scales that are more relevant

to ecological processes. Early work on Labrids and Pomacentrids showed that self-

recruitment was more common than previously expected (Jones et al., 1999; Swearer

et al., 1999). This was followed by parentage analysis on anemonefishes using microsatel-

lites, which showed the precise point of origin and settlement for individual fishes(Jones

et al., 2005; Planes et al., 2009). These methods were also used to assess the effective-

ness of marine reserves and how larvae travel in and out of such areas (Almany et al.,

2007; Planes et al., 2009; Harrison et al., 2012).

We brought together the necessity for understanding the level of connectivity

and the use of genetic techniques on anemonefishes to address connectivity issues in

the Mozambique Channel. Very few studies have examined population connectivity in

the Mozambique Channel, despite much interest in the establishment of reserves for

both human use and conservation in the region. The channel is approximately 500 km

wide and 1200km long, with a string of islands running along its middle, The Scattered

Islands. This provides a landscape of habitats which are close enough for potential

connectivity, but distant enough to allow populations to diverge genetically. These

islands, Europa, Bassas da India, Juan de Nova, and Iles Glorieuses, are relatively

pristine (Fricke et al., 2013) and a primary candidate for marine protected areas.

To assess the connectivity among isolated areas in the Mozambique Channel,

we studied the spatial genetic structure and differentiation of the skunk anemonefish,

Amphiprion akallopisos. Congeneric species are known to have a brief PLD of 7-22

days (Thresher et al., 1989; Wellington and Victor, 1989), simplifying the relationship
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between intrinsic factors, extrinsic factors and population connectivity (Shanks, 2009).

They are symbiotic mutualists of sessile sea anemones, and adults rarely move further

than a few meters from their host (Fautin and Allen, 1997). While this species is not a

target of harvesting in this region, its life history makes it likely to show fine-scale levels

of population structure should it exist. Significant levels of population structure have

been shown in other members of this genus, even at very fine spatial scales (Beldade

et al., 2012; Jones et al., 2005; Timm and Kochzius, 2008; Pinsky et al., 2010).

We set out to test whether significant genetic differentiation exists among

populations of Amphiprion akallopisos at four sites in the Mozambique Channel.

Methods

Sample Collection

We collected samples at four island sites in the Mozambique Channel: Glo-

rieuses (GLO), Juan de Nova (JDN), Bassas da India (BAS), and Europa (EUR) (Figure

1.1). These islands, along with the island of Tromelin, make up the Îles Éparses, an

overseas administrative division of France. Individuals were captured using hand nets,

and a small piece of fin tissue was collected before returning fish to their host anemone.

Tissue samples were placed in 95% ethanol as soon as possible, and stored at -20C.
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Laboratory Methods

Genomic DNA was extracted using a chloroform protocol (Sambrook et al.,

1989). Microsatellite loci were originally isolated and developed for A. chrysopterus and

A. polymnus (Beldade et al., 2009; Quenouille et al., 2004). From this existing library we

chose 20 microsatellites to test for variability on 32 individuals. Nine polymorphic loci

were selected based on their variability and amplification success rate (Table 1.1). The

polymerase chain reaction (PCR) was carried out in an Applied Biosystems GeneAmp

PCR system 9700 using fluorescently labeled forward primers (Table 1.1). Each reaction

contained 5µL of Qiagen Multiplex PCR mastermix, 0.2 pmol of each primer, and 0.8

µL of DNA, diluted with RNAase-free water to a total reaction volume of 10 µL. The

following temperature profile was used: 15 min at 95 C , followed by 40 cycles of 30

seconds at 94C, 1 min and 30 s at 57 C, and 1 min at 72 C with a final extension of 7 min

at 72C. PCR product was diluted with 50µL of water, and 0.5µL of this diluted PCR

product was added to 9.74µL of HiDi formamide and 0.26µL ROX 500 size standard

(Qiagen, Valencia, California). Fragment size was analyzed on an ABI 96 capillary

3730XL DNA Analyzer (Applied Biosystems, Darmstadt, Germany).

Data Analysis

We genotyped individuals using GeneMapper version 3.7 (Applied Biosys-

tems), and convert v1.31 (Glaubitz, 2004) was used to generate input files for various

analysis programs. We checked for null alleles and scoring errors using micro-checker

v.2.2.3 (Van Oosterhout et al., 2004). Expected and observed heterozygosities, pairwise

12



FST values, an exact test of deviation from Hardy-Weinberg Equilibrium (HWE) us-

ing a Markov Chain of length 100000, as well as an analysis of molecular variance

(AMOVA), were calculated in the software Arlequin v3.1 (Excoffier et al., 2005). One

locus was omitted from the genetic structure analysis due to too much missing data

(0.109). Significance of FST values was assessed using 100 permutations.

We conducted a Bayesian clustering analysis in structure v2.3 (Pritchard

et al., 2000). structure implements a Markov chain Monte Carlo (MCMC) simulation

approach to estimate the posterior probability that a sampled individual belongs to each

of K clusters based on its multi-locus genotype. We conducted analyses for values of K

from 1 to 10, each consisting of 20 independent runs of MCMC length 1,000,000. The

first 10,000 iterations of each chain were discarded as burn-in. We chose an optimum

value of K using the method described by Evanno et al. (2005), and combined runs

using the software clumpp (Jakobsson and Rosenberg, 2007), and visualized the results

in distruct (Rosenberg, 2004).

As an independent line of evidence, we carried out a similar Bayesian clustering

approach that explicitly accounts for the spatial arrangement of sampled individuals.

This algorithm is implemented in Geneland (Guillot et al., 2008), a package developed

for the R computing framework (R Core Team, 2013). Geneland uses MCMC to simul-

taneously estimate the most likely number of clusters to which genotypes belong, the

posterior probability of individuals’ membership to those clusters, and the most likely

distribution of those clusters in space. After a preliminary run of 1 million MCMC gen-

erations using the full dataset, we calculated the frequency of null alleles at each locus,
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and found the two loci with the highest proportion of missing data to show evidence

of high proportions of null alleles (0.22 and 0.38), while the remainder had very low

frequencies of null alleles (0.05 or less). We ran a second analysis using only individuals

with no missing data under identical conditions.

Results

Microsatellite Analysis

We successfully amplified nine microsatellite loci from 110 individuals from

four sites in the Mozambique Channel (Table 1.1, Figure 1.1). While microsatellites

were designed for congeneric species, these nine loci showed sufficient variability for

a population study (2-35 alleles, mean = 16.1). Within sites, there was evidence of

significant deviation from HWE in seven cases (Table 1.2), but no site or microsatellite

showed consistent deviation from HWE, indicating that all sites and microsatellite loci

were usable for this analysis.

Population Structure

Classical FST values as well as Bayesian approaches were used in this study.

In marine populations, where effective population sizes are very large, FST values are

expected to be very low (Bird et al., 2011). As expected, FST values were very low (less

than 0.06), but were statistically significant in all pairwise comparisons except between

Bassas da India and Glorieuses.
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Both of the Bayesian clustering approaches were consistent with the FST anal-

ysis presented above. Indeed, both indicated genetic structure among sites (Figure

1.2,1.3). Notably, the same numbers of clusters (three) were identified by both the

Evanno et al. (2005) method and by Geneland using the dataset trimmed of missing

data (Figure 1.4,1.5). However, the two methods differed in the assignment of individ-

uals and sites among clusters. structure assigned most individuals from Glorieuses

and Bassas da India to two clusters with roughly equal probability, while the majority

of the individuals from Juan de Nova and Europa were assigned to a third cluster with

very high probability. Geneland’s spatially explicit algorithm also identified three clus-

ters, but specifically assigned those clusters to the three regions sampled here (north,

central and south Mozambique Channel), with the geographically close Bassas da India

and Europa grouped together (Figure 1.3).

Discussion

For about a decade, anemonefish have been used to assess population struc-

ture and ecological patterns of larval dispersal in several systems (Berumen et al., 2012;

Saenz-Agudelo et al., 2009). Here, we capitalize on a unique geographic system, the

Mozambique Channel, and a proven biological system, anemonefish, to estimate the

level of connectivity between an island chain in the Mozambique Channel. Using vari-

able microsatellite markers, our data show low but significant levels of genetic structure

based on FST values, as well as distinct patterns of structure based on two indepen-
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dent Bayesian clustering algorithms. The spatially explicit approach implemented by

Geneland separated geographic regions into genetic clusters. Interestingly, both pair-

wise FST values and the algorithm employed by structure indicate a close relationship

between Glorieuses, the northernmost site, and Bassas da India in the far south. This

pattern is contrary to expectations based on an isolation by distance model.

One explanation of this pattern is the complex oceanographic features that

exist in the region (see Figure 1 in Schouten et al., 2003). Water at the surface of

the central Indian Ocean is carried westward by the South Equatorial Current before

being interrupted by Madagascar. Some of that flow is diverted northwards, forming

the East African Coastal Current. The remainder flows southwards along the coast

of Madagascar before arriving at the coast of continental Africa, where it forms the

Agulhas Current. The Mozambique Channel lies in the shadow of this powerful current,

and while previously thought to be dominated by the southward flowing Mozambique

Current (Sætre, 1985), it has now been shown that strong eddies form approximately

four times per year (Schouten et al., 2003). Though the sites included in our study

are small and isolated, these eddies may serve to enhance self recruitment and thereby

increase genetic structure among sites.

Biogeographic patterns corroborate the important role of oceanographic fea-

tures in the Southwestern Indian Ocean and Mozambique Channel. For example, within

Amphiprion alone, another four species can be found in this region. Amphiprion allardi

is common on the reefs of Africa on the western side of the Mozambique Channel, but

is not found on Madagascar. Madagascar is home to its own endemic anemonefish, A.
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latifasciatus, while two other endemics with extremely restricted ranges can be found in

the Seychelles (A. fuscocaudatus) and Reunion (A. chrysogaster). While these species’

small ranges may be mediated by other factors, such as competition for hosts, the

complex circulation patterns are likely to play a role.

We present robust evidence for genetic population structure in a demersal

reef fish in the Mozambique Channel, an understudied hotspot of marine biodiversity

(Roberts et al., 2002). While bathymetric and oceanographic features may have pre-

dicted genetic homogeneity in this region, we argue that the complex system of seasonal

eddies may serve to increase the likelihood of larvae recruiting close to their natal habi-

tat, thereby increasing genetic structure. Future work should focus on the inclusion of

samples from sites on both the eastern and western sides of the Mozambique Channel,

as well as the comparison of these results to other species.
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Tables and Figures
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Figure 1.1: Location of collection sites in the Mozambique Channel (GLO: Glorieuses,
JDN: Juan da Nova, BAS: Bassas da India, EUR: Europa).
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structure (Pritchard et al., 2000). Each vertical bar represents an individual, and the
colors represent the posterior probability of its membership to each of three clusters.
The number of clusters (three) was chosen using the method outlined by Evanno et al.
(2005).
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Figure 1.3: Estimated cluster membership for each pixel of a 100 by 100 grid based on
posterior probability. Pixels are colored by the modal cluster membership of 1 million
iterations. This represents the dataset after removal of individuals for which no data was
available for at least one locus. A preliminary analysis using individuals with missing
data (not shown) yielded qualitatively similar results, but did not appropriately sample
the cluster parameter or establish convergence after multiple runs.
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Figure 1.5: Sampling of cluster number parameter and histogram of posterior probability
density of clusters sampled by the MCMC implemented by Geneland.
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Table 1.1: Primer sequences, repeat motifs, fluorescent label name, and original reference for the nine microsatellite loci
used in this study.

Locus Primer Sequence (5’ to 3’) Repeat Label Reference

10TCTA F: GGGACGTATCTGTTGGAAATGAT (TCTA)26 HEX Quenouille et al., 2004
R: TTAAGGTACTGTGAGATGAGACT

44 F: TTGGAGCAGCGTACTTAGCT (GT)13 TAMRA Quenouille et al., 2004
R: AGATGTGTTTACGCACGCTT

61 F: TGAACACATAAACGCTCACTCAC (GT)49 FLUO Quenouille et al., 2004
R: AAGACAATGCCTCCACATATCTA

120 F: TCGATGACATAACACGACGCAGT (GT)18N20(GT)14 FLUO Quenouille et al., 2004
R: GACGGCCTCGATCTGCAAGCTGA

A130 F: GCACTCAACACAAAGACCTTA (CA)24 FLUO Beldade et al., 2009
R: ACCCAAACAACATCCAGTC

B6 F: TGTCTTCTCCCAAGTCAG (CATC)14 FLUO Beldade et al., 2009
R: ACGAGGCTCAACATACCTG

CF11 F: GCTGGTTACAACACCTTG (CT)15(CA)16 FLUO Beldade et al., 2009
R: GTAATTGCTGCAAGACAG

D103 F: GTTGGCTAATGGTGCTGTG (GATA)13 FLUO Beldade et al., 2009
R: GATTCTGTGGTGGCATCAG

D114 F: TGTTCCAGCTCTGATATTTGAC (GATA)19 TAMRA Beldade et al., 2009
R: TTGGCAGTGTTTTATACCTGTC
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Table 1.2: Number of alleles (Na) and fragment lengths (RR, given in base pairs) for nine microsatellite loci used in this
study, as well as observed and expected heterozygosities for each locus at each sampled site. Asterisks indicate significant
deviations from Hardy-Weinberg Equilibrium (p < 0.05) based on 100,000 generations of Markov chain simulation. Sample
sizes are given next to each site name: Glorieuses (GLO), Juan de Nova (JDN), Bassas da India (BAS), and Europa (EUR).

GLO (n = 32) JDN (n = 37) BAS (n = 33) EUR (n = 8)

Locus Na RR (bp) Ho He Ho He Ho He Ho He

10TCTA 35 500-558 1 0.937 0.91429 0.8911 0.87097 0.91909 0.75 0.75
44 11 241-256 0.54839 0.728 0.5 0.67332* 0.6087 0.63961* 0.375 0.525
61 34 296-359 0.84375 0.88492 0.7027 0.87079 0.81818 0.88112* 0.875 0.83333
120 2 454-456 0.375 0.34722 0.21622 0.19548 0.18182 0.26107 + +
A130 15 171-194 0.08 0.81143* 0.19444 0.48983* 0.09375 0.65278* 0.33333 0.54545
B6 8 141-159 0.78125 0.69147 0.75676 0.74639 0.78788 0.68951 1 0.66667*
CF11 19 184-214 0.77419 0.71444 0.83784 0.79193 0.78788 0.69697 0.75 0.73333
D103 15 250-306 0.96875 0.88492 0.81081 0.88227 0.81818 0.88392 0.875 0.91667
D114 6 202-222 0.6129 0.63194 0.62162 0.63865 0.72727 0.67552 0.75 0.71667
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Table 1.3: Pairwise FST values for sites sampled in this study. Asterisks indicate sig-
nificance (p < 0.05) based on 100 permutations computed in Arlequin v3.1 (Excoffier
et al., 2005).

GLO JDN BAS EUR

GLO 0 - - -

JDN 0.04746* 0 - -

BAS 0.00909 0.03373* 0 -

EUR 0.06064* 0.05622* 0.0353* 0
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Chapter 2

Social media reveals properties of a mutualistic

network at multiple spatial scales

Introduction

The interactions among species are major drivers of ecological and evolution-

ary dynamics. They are responsible for both short and long-term evolutionary change,

and can cause sudden and drastic ecosystem shifts (Moreau et al., 2006; Thompson,

1998; Estes et al., 2011; Myers and Worm, 2003). The accumulation of interaction data

for a range of systems has permitted ecologists to draw inference about the dynamics of

groups of interacting species. These interactions can be analyzed as a network, where

species and the interactions among them are represented by nodes and edges, respec-

tively. All organisms are part of a single global network that describes the interactions

between all living things, but ecologists can gain insight by analyzing a discrete subset

of interactions, the organization and spatial and taxonomic bounds of which are chosen
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arbitrarily depending on the question of interest. Food webs, perhaps the most famil-

iar type of interaction network, may be organized hierarchically, with species grouped

into discrete trophic levels (Estes et al., 1998), while plant-pollinator systems can be

thought of as a bipartite network in which species are categorized into one of two suites

of species (Bascompte et al., 2003). Ecologists are eager to understand the rules that

govern the structure of interaction networks because they represent the manifestation

of processes operating at the levels of the the individual, population, and species. The

study of the structure of interaction networks has revealed food web dynamics such as

trophic cascades (Estes et al., 1998) and non-random extinction potential in mutualistic

networks (Rezende et al., 2007).

The spatial arrangement of individuals and populations is an important pre-

dictor of the distribution of genetic and phenotypic variation within and among species

(Hanski, 1998; Turelli et al., 2001; Futuyma and Mayer, 1980), and it has been shown

that selection on interspecific interactions varies among populations (Thompson, 2009,

2005), even over small spatial scales (Thompson and Cunningham, 2002). Because inter-

actions among species are constrained by their spatio-temporal co-occurrence, a robust

analysis of the structure of the interaction network between suites of species should

incorporate information concerning the spatial scale of the interaction (i.e. the rate of

incidence at the level of individual, population, and species). Though many studies have

examined the structure of interaction networks (Bascompte et al., 2003), none explic-

itly consider the spatial component of a network inclusive of all potentially interacting

species. Thus, it is not known whether the structural properties of interaction networks
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are consistent across spatial scales. An understanding of the critical spatial scale at

which patterns arise informs the search for plausible processes structuring interaction

networks.

The size of the spatial distributions of interacting species may play an impor-

tant role in structuring interaction networks. Among species that vary in their degree

of ecological specialization, generalists are often expected to have larger ranges, though

it is unclear whether range size is a driver or product of specialization (Gaston et al.,

1997; Bell, 2001). Generalists may establish and sustain larger range sizes because their

fitness is not tied to the presence of a single partner, or species with larger ranges may

be generalists simply because they encounter more partner species. Both explanations

of this relationship implicitly assume that the spatial distribution of diversity of part-

nering species is uneven. If partner diversity is even in space, the likelihood of encounter

is equal for all species regardless of range size, and specialization is therefore merely not

a consequence of small range size.

Because interactions vary in their identity, nature, and strength over small

spatial scales (Thompson, 2005), coarse-scale data may not provide the resolution nec-

essary to capture the true organization of interaction networks. Additionally, indices of

specialization and network structure can be biased by small sample sizes; for example,

rarely observed species are likely to be incorrectly categorized as specialists (Blüthgen

et al., 2008; Nielsen and Bascompte, 2007) Taken together, it is critical that ecologists

who wish to better understand broad-scale patterns in species interactions compile data

sets that are as spatially and taxonomically inclusive as possible, and comprise a large
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number of observations. However, acquiring comprehensive datasets spanning large ge-

ographic areas is rarely feasible due to the time and cost associated with gathering such

data. Coincidentally, the extinction rate of species and populations is growing at an

unprecedented rate (Estes et al., 2011; Wake and Vredenburg, 2008), making the need

for such large-scale datasets more urgent than ever.

One potential source of such data is photographs shared publicly online. Though

not intended to be used by scientists, these photos constitute a wealth of potential data,

but their use in this capacity has been limited to date (though see Stafford et al. (2010)).

For example, Flickr, a popular photo sharing website, hosts more than six billion user-

uploaded photos, nearly three million of which are associated with specific geographic

coordinates (“geotagged”/georeferenced?). In order to test the efficacy of such repos-

itories in resolving large scale problems in ecology, I focused on the anemonefishes, a

conspicuous and uniquely photogenic clade of coral reef fishes engaging in an obligate

mutualism with sea anemones. Specifically, I used these data to characterize the struc-

ture and specialization of the anemone-fish interaction on a global scale (the broadest

spatial scale in the context of the interaction: the scale at which all participants in the

system are included), and to answer the following questions:

1. Does network structure differ among regional networks? Does this differ from that

of the global network?

2. Is there a relationship between the degree of spatial overlap and the degree of

interaction overlap among species within suites?
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If network structure at local scales is not significantly different from that at

global or regional scales, similar processes and mechanisms are likely to generate and

maintain the structure of the interaction network across spatial scales. Conversely,

significant differences in network structure across spatial scales suggest that local and

global factors operate and independently influence network structure. A positive rela-

tionship between spatial overlap and host use suggests species coexist without compet-

ing, while a negative relationship implies that species partition space, resources, or both

in order to coexist. These outcomes inform the expectation of the spatial scale at which

coevolution acts among partners in this system.

Methods

Study System

The anemonefishes (Perciformes: Pomacentridae: Amphiprioninae) are a mono-

phyletic subfamily of damselfishes found on coral reefs from East Africa to French Poly-

nesia. Thirty species are recognized, though one of these (Amphiprion thielli Burgess

1981) is known only from two aquarium specimens of dubious geographic origin, and

I disregard it here (see also Fautin and Allen (1997)). All species are obligate mu-

tualistic symbionts of a polyphyletic group of ten species of sea anemones (Anthozoa:

Actiniaria) from three families. Individual fish settle to and remain with a single host for

the (span/duration) of their lives. Allen (Allen, 1975; Fautin and Allen, 1997) is the pri-

mary source for host association data, but the frequency of associations has only been
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explicitly examined in two studies of limited geographic scope (Elliott and Mariscal,

2001; Ricciardi et al., 2010).

Data Collection

I queried Flickr for geotagged photos matching any of a variety of keywords

across the entire spatial range of the anemone-fish interaction (Supplemental Material).

For each photo containing an anemonefish, host anemone, or both, I identified the fish

and anemone to the species level following Allen (1975) and Fautin (1981). I considered

each photo to represent one interaction regardless of the number of individual fish or

anemones portrayed, and mixed species groups were included as a single event for each

species. Duplicate records were omitted from the analysis (Supplemental Material). The

density of photographs on Flickr was low in some locations, and likewise for endemics

of these regions (e.g. Amphiprion chagosensis from the Chagos Archipelago). In order

to ensure distributions and interactions were estimated from as much information as

possible, I incorporated data from the primary literature, solicited unpublished data

from colleagues, and extended the search to include photos that were not geotagged

by coupling the search terms with geocodable place names, both on Flickr and Google

(Supplemental Material).

Data Analysis

Data were processed and analyzed in R 3.0.2 (R Core Team, 2013) using pack-

ages cited individually below.
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I estimated the distribution of each species using a simple presence/absence

geographic distance model informed by the data (Supplemental Material), and overlaid

these distributions onto a high resolution digitized map of the world’s coral reefs (UNEP-

WCMC et al., 2010). Despite the simplicity of this approach, the modeled distributions

of both fish and anemones were nearly identical to those published by experts in the

field (Fautin and Allen, 1997). I used these to quantify the range size (sea surface

area encompassed by the modeled distribution) and habitat area (area of coral reef

encompassed by the modeled distribution) of each species, and to provide the expected

presence/absence of species at a given location.

I quantified specialization at the network level using the index H ′
2 proposed

by Blüthgen et al. (2006) and at the species level using the Shannon entropy (H ′)

(Shannon, 1948). Both indices are derived from Kullback-Leibler divergence: H ′
2 is

standardized to range from 0 for extreme generalization to 1 for extreme specialization,

while Shannon’s Entropy H′ ranges from 0 for a species which interacts with only one

partner and increases with the number and evenness of partners (formulas given in

Supplemental Material). Because Shannon entropy is unbounded and blind to the pool

of available resources (i.e. a species using only one resource has a Shannon entropy of

zero whether there is one resource available or 50), I also used a corrected measure of

Shannon entropy, Hc which is scaled from 0 for generalization to 1 for specialization

(Supplemental Material).

An interaction network is said to be nested if species with fewer partners inter-

act with a subset of those with more partners, for both suites of species (Patterson and
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Atmar, 1986). The prevalence of this pattern not only in mutualistic interaction net-

works but in species incidence among habitat patches suggests it may be a consequence

of variation in species abundance. I quantified the nestedness of the anemone-fish net-

work using a weighted metric based on overlap and decreasing fill (WNODF), which in-

creases with nestedness from 0 to 100 (Almeida-Neto and Ulrich, 2011). I also calculated

its binary counterpart (NODF) to facilitate comparison to the published system-wide

host associations which do not account for interaction frequency (Almeida-Neto et al.,

2008). Indices were computed using the R packages bipartite and vegan (Dormann

et al., 2008; Oksanen et al., 2013). I regard a network as nested if its index is greater

than half the maximum index value.

I generated null matrices on which the various network indices could be com-

puted for comparison to that of empirical matrices according to a null model in which

the relative species abundance of both suites is held constant to the empirical matrix,

and resulting interactions are filled randomly within this constraints (Algorithm AS159

(Patefield, 1981); implemented in R by function “r2dtable”). I also generated resam-

pled null matrices by sampling interaction observations from the original matrix with

replacement, with the number of samples either equal to the original matrix sum, or

half of the matrix sum.

Observations were not distributed in space randomly, evenly, or uniformly with

respect to habitat; therefore, in order to assess the spatial variation of various measures,

I generated 10,000 randomly distributed points over the potential habitat identified by

the species distribution models (i.e. the intersection of all species distribution models
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and all coral reef habitat) (Figure 2.1). At each of these points, I inferred the species

incidence from the species distribution models, and estimated local specialization for

each suite by calculating the mean corrected Shannon Entropy (Hc) of the interactions

within the more conservative of the buffers used for the species distributions models

(Supplemental Material).

The occurrence of species at each of these points was also used to compute

pairwise Bray-Curtis dissimilarity of spatial overlap among all species within a suite

(fish or anemones). Likewise, pairwise Bray-Curtis dissimilarities were calculated from

the quantitative and binary interaction matrices, for each suite of species. I tested

for correlation between distribution and partner dissimilarity among species by con-

ducting Mantel tests on these distance matrices, and employed a permutational test of

significance by permuting matrix rows and recalculating correlation coefficient (10,000

replicates).

Results

Search Method

The automated Flickr query returned a total of 4881 images containing at least

one anemonefish or host from 3344 unique locations and comprising 3864 anemone-

fish pairings (Table 2.1). Some images contained more than one species of fish or

anemone, thus the total number of observations of a fish, anemone, or both was 5290. An

additional 1084 records were gleaned from auxiliary sources, bringing the total number
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of observations in the data set to 6374, representing all species of anemonefishes and

host anemones.

The number of observations varied by species, but was consistent with expecta-

tions based on the amount of habitat available to each species. I calculated the expected

number of observations for each species by multiplying the proportion of 10,000 random

points that occur within it’s modeled distribution by the total number of observations

for all fish or anemone species (Figure 2.6).

Species Distributions

Three distinct regions were apparent with respect to fish species richness:

the Indian (“West”), the Indo-Australian Archipelago (“Central”/“IAA”), and Pacific

(“East”) (Figure 2.1). Twenty-two (79.3%) fish species were restricted to one of these

three regions. Only one species (3.4%; A. clarkii) occurred in all three regions, one

species (3.4%; A. akallopisos) occurred in both the West and Central regions, and four

species (13.8%; A. akindynos, A. chrysopterus, A. melanopus, and A. perideraion) were

found in the Central and Eastern regions. The Western and Central regions are compa-

rable in size and species richness of fish and anemones, but share only two fish species.

Diversity varies substantially between them: The fauna of the Central region is both

rich and spatially even, with high local diversity, while the Western region is rich in

total number of species but with low local diversity.

Conversely, local anemone richness was relatively high in nearly every part

of the geographic range of the interaction. All species of anemone occur in the Indo-
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Australian Archipelago; all but one (S. gigantea) occur in the Indian Ocean basin, and

all species’ ranges extend at least partially into the Pacific.

At the randomly generated sites (N = 10,000 ), anemone diversity was nested

(Ncol = 94; Nrow = 74; NODF = 74; Matrix fill = 0.76), while fish diversity was not

nested (Ncol = 20; Nrow = 30; NODF = 30; Matrix fill = 0.16) (Figure 2.3).

Species Interactions

Of the 290 possible anemone-fish species pairings, 46 were determined to be

impossible due to spatial non-overlap of the species’ ranges, and 98 species pairs were

observed. The overall pattern of binary host association did not differ from that reported

in Ollerton et al. (2007) (Pearson’s chi-squared test; χ2 = 130, df = 225, p = 1).

However, the identity of interactions differed: 14 interactions (4.8% of 290) reported by

Ollerton were not observed in the present study, 32 observed in the present study were

previously unreported (11%), and the remaining 244 were consistent between studies,

comprising 66 interactions (23%) and 178 empty cells (61.4%) (Figure 2.4). Previously

unpublished host association data were obtained for four fish species (A. chagosensis,

A. omanensis, A. barberi, and A. pacificus). The two matrices were similarly slightly

nested (NODFOllerton = 56; NODFpresent = 58).

Regional Network Structure

The global quantitative matrix (Nobs = 4830) is not nested (WNODF = 33),

and significantly less so than null matrices generated with equivalent marginal sums
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and matrix fill (WNODFmean = 73). The Western and Central regional networks had

a value of WNODF less than 100% of 10,000 null matrices; the value of WNODF was

less than 98.7% of 10,000 null matrices (Figure 2.5A). Resampled values of H ′
2 also did

not differ significantly by region, and all networks were much more specialized than

expected based on the null hypothesis (Figure 2.5B).

Spatial Overlap and Interaction Overlap

Neither fish nor anemones showed any relationship between their spatial distri-

bution and pattern of interactions, as indicated by the Mantel test on pairwise dissimi-

larities of those properties (fish: r = 0.003; significance = 0.45; anemones: r = 0.177;

significance = 0.13) Additionally, binary host associations did not show any relationship

with spatial distribution for the fish (r = 0.051; significance: 0.257), though they did

result in a positive and significant correlation for the anemones (r = 0.535; significance:

0.002) Thus, fish species with similar spatial distributions do not have similar host use

patterns, but anemones with similar spatial distributions do tend to host similar fish

assemblages.

Discussion

These analyses demonstrate that the structure of this mutualistic network

dissolves once the spatial scale of focus becomes smaller than the ocean basin level.

Outside of the central core of diversity in the Coral Triangle, local species richness of

fish is so low (1-3), that network indices are no longer meaningful. Nevertheless, these
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areas retain high species richness of anemones (8-10), indicating that a nested network

structure is not required to maintain diversity at local scales.

Differences in the distribution of diversity between fish and anemones may

reflect different scales of dispersal. It is known that the dispersal of anemonefish is

extremely localized, more so than other marine fishes (Jones et al., 2005). The scale of

dispersal in anemones is unknown, but the lack of fine-scale endemism and large range

size shown here predicts that dispersal scales should be broader in this group.

Few studies have examined network structure on large spatial scales, but we

know from studies of pollination and seed dispersal that these networks tend to be nested

at small spatial scales (Bascompte et al., 2003). Given that the anemone-fish network

is only slightly more nested than random at the broadest spatial scales, and that local

networks are even less nested, it appears the anemone-fish interaction differs fundamen-

tally from the more intensely studied networks from which many of the generalizations

about interaction networks have been made. Coevolutionary theory predicts that nest-

edness and specialization should vary as a function of interaction intimacy (the degree

of biological association between partners) (Thompson, 2005), and empirical evidence

for this prediction is accumulating (Guimarães et al., 2007; Hembry, 2012; Thompson

et al., 2013). Additionally, the spatial scale of dispersal of participating species may

influence selection and thus network structure.

In considering only local patterns, it appears the anemone-fish mutualism de-

viates substantially from expectations, though these expectations are based largely on

pollination and seed dispersal networks. The results presented here provide further ev-
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idence that patterns of network structure are not consistent across all mutualisms, and

instead, that specific properties such as interaction intimacy may be the best predictors

of network structure.

The role of interaction intimacy reflects the importance of the balance between

costs and benefits to each species, balanced by selection. While the benefits of mutu-

alisms often gain substantial attention, costs can be less obvious but equally important

drivers of selection (Addicott, 1986; Bronstein, 2001). Investigating the costs of the

anemone-fish interaction may provide fruitful insights into the processes that structure

it on broad levels. In particular, the production of nematocysts (stinging cells) may be

energetically costly to anemones, but mediated by hosting resident fish.

The lack of a relationship between spatial distributions and interactions is

indicative of, but not evidence for, the presence of competition for hosts among fish

species. While a negative relationship may be expected, such relationships are uncom-

mon (Dutilleul et al., 2000; Legendre and Fortin, 2010), and the non-overlapping spatial

distributions of many fish species may preclude such a result. Nevertheless, competition

has been implicated in behavioral studies of these species, and likely structures large-

scale patterns of the interaction (Elliott and Mariscal, 1995). On the anemone side,

the positive relationship between spatial and binary interactions with fish species likely

reflects the anemones’ generally large spatial distributions.

Broad-scale studies of interaction networks have been hampered by a lack of

taxonomically and spatially comprehensive data sets. I present a novel method for

obtaining such data, and demonstrate the utility of those data to addressing questions
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regarding the structure of the interaction network of the anemone-fish system, at both

the network and species level. While this study exploits the large amount of data

available in a photogenic species, the increased use of cameras, mobile phones, and

social media suggests this method will become a widespread utility for other organisms.

The economy of this method will also increase rapidly with the development of the field

of computer vision. Incorporating technology to discriminate among subjects in photos

even on coarse levels will reduce the workload of taxonomists, and facilitate ecologists’

access to global-scale datasets. While this method cannot replace field surveys with

respect to the sampling intensity at small scales, it is instrumental in gathering data for

many species over broad geographic areas.
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Table 2.1: Query results.

Category Number of Observations

Georeferenced photos on Flickr matching query terms 9083
Photos documenting ≥ 1 species of interest 4880
Site records from Flickr query (fish OR anemone) 5290
Interactions from Flickr search 3863
Accessory records 1084
Total unique site records (Flickr + accessory) 11029
Total unique site records (anemones) 5844
Total unique site records (fish) 5185
Total photos analyzed (Flickr + accessory) 10167
Total interactions (Flickr + accessory) 4830
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Figure 2.1: Maps illustrating spatial approach. Blue dots (A) represent observations
from the image search for all species; shaded areas represent the buffer around those
points used for the distribution model. The system-wide distribution model was then
mapped onto polygons of a digitized map of coral reefs (B; red). Random points (purple
dots in C; n = 10,000) were generated on the intersection of the distribution model
(shaded blue areas in A) and coral reef habitat (B). At each of these points, I inferred
species occurrence from individual species distribution models. Note the absence of
anemonefishes in the Hawaiian archipelago (A) and the presence of coral reefs there (B)
result in the exclusion of that region from the random point set (C). Distinct regions of
diversity are outlined in A.
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Figure 2.2: Random points colored by (A) fish richness, (B) anemone richness, and (C)
local fish specialization (Hc). Local specialization is not displayed for random points
which fall further than 528720 m from an observed interaction.
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Fish Anemones

Figure 2.3: Geographic nestedness of fish (left; red) and anemones (right; blue). Rows
represent 10,000 randomly generated sites across all potential habitat; columns represent
species. Fill indicates a species’ presence at a given location, and rows and columns are
arranged by decreasing frequency from top left to bottom right.
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Figure 2.4: Interactions between anemones and fish. Note that rows and columns are
arranged alphabetically to facilitate visual comparison among matrices, rather than
being arranged by fill, as is done to calculate nestedness.
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Figure 2.5: Variation in nestedness (WNODF; a) and specialization (H ′
2; b) of networks

by region. Box plots illustrate median value of resampled or null matrices. Boxes
encompass the interquartile range (IQR), lines extend to 1.5IQR, and dots represent
outliers. Empirical values of the index are represented by red triangles.
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Supplemental Material

Search Method

Images were queried and downloaded from Flickr1 using the Python interface

to the Flickr API2. For a variety of bounding boxes encompassing the range of all

anemonefish species, I queried and downloaded images tagged with any of seven relevant

character strings (“amphiprion”, “anemone”, “anemonefish”, “clownfish”, “clown fish”,

“nemo”, and “premnas”). As an informal test for the occurrence of false positives, I

also conducted the query around the Hawaiian islands, a heavily touristed, dived, and

photographed area where anemonefishes are known to be absent. No relevant photos

were returned from this query.

Records containing specimens of uncertain taxonomic identity were omitted

from the analysis, as were multiple photos of the same subject as determined by identical

location, interaction identity, and photo similarity. Cases in which more than one fish

species shared a single host or vice versa were recorded as a single event for each species.

Records that constituted a significant range expansion were reviewed for evidence such

as album titles, tags, and captions to confirm the location. If it was not possible

to confirm the location based on secondary lines of evidence, the photo was omitted

from the analysis. The identity of the individuals in each photo was assessed at least

three times: first when both species names were recorded, and a second and third

time after the photos were parsed by either fish or anemone species for error checking.

1original code at http://graphics.cs.cmu.edu/projects/im2gps/flickr code.html
2available from: http://pypi.python.org/pypi/flickrapi
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Both fish and host species can be identified visually, making them uniquely suited to

this application. For the morphologically cryptic species A. ocellaris and A. percula, I

designated individuals to one of these species based on their location with respect to the

genetic break defined in Timm et al. (2008) For records taken from sources besides the

standardized Flickr search, place names were manually geocoded using a variety of data

sources ranging from Wikipedia’s GeoHack Tool to personal blogs and scuba diving

websites. Coordinates were only extrapolated for place names that were sufficiently

specific (e.g. for “Guam”, but not “Papua New Guinea”).

Search Efficacy and Sampling Evenness

In order to account for sampling bias, I generated 10,000 random points over

the intersection of coral reef habitat and the union of all species distributions, and

calculated which species are present at each of these points according to the species

distribution models. This provides estimates of species level variables that are spatially

random with respect to habitat available to all species, as well as providing an expected

number of observations if samples had been randomly placed. The number of photos

returned varied by species. I compared these values to the expected number of obser-

vations for each species, which I defined as the proportion of 10,000 spatially random

points that lie within the species’ range, multiplied by the total number of observations

in the dataset (Figure 2.6).

I also used these points to calculate pairwise spatial overlap for all within-suite

(fish and anemones) species pairs using Bray-Curtis dissimilarity values. I conducted a
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Mantel test to compare these values to pairwise niche overlap, defined as the Bray-Curtis

dissimilarity of two species’ resource use.

Species Distribution Models

Both anemonefishes and their host anemones have small home ranges (fish

do not leave their sessile hosts), and dispersal estimates over evolutionary time scales

(i.e. 100 generations) are for fishes uninformatively broad at best, and nonexistent

for anemones. Therefore, I used the location of observations to inform simple presence-

absence geographic distance models of species’ distributions whereby a species is present

within a given radius of each observation, and absent beyond. The maximum nearest

neighbor distance of a set of observations is informative to this end because it defines

the greatest distance over which we can be certain that individuals of a given species

can travel. I calculated the maximum nearest neighbor distances of the observations

of each species (Magnusson, 2012), and used the median of these as the radius of the

buffer around each observation. For fish, the median of the maximum nearest neighbors

was 528.72 km. For anemones, this value was so huge as to be uninformative (1772.688

km), due to great distances between observations of anemone species which have broad

ranges but are very rare. Anemonefish pelagic larval duration is among the shortest

of any marine fish with pelagic larvae, while the anemone species that have been in-

vestigated had high levels of population connectivity over broader scales. Under the

assumption that interaction dynamics are likely constrained by the dispersal potential

of the least-dispersive suite of species, I used the fish estimate for both sets of species
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distribution models. I assumed each species’ distribution to be the union of the buffers

around observations of that species. General spatial operations were performed using

the package sp (Pebesma and Bivand, 2005) and rgeos (Bivand and Rundel, 2013) and

area was calculated using the package geosphere (Hijmans et al., 2012).

Null Models

The choice of null model can affect the outcome of network analyses, and

therefore warrants careful consideration. Null models for ecological networks have been

discussed at length (Ulrich et al., 2009), and the appropriate model may vary depend-

ing on both the biological system and question of interest. Compared to biogeographic

species-site matrices, interaction networks in particular suffer from a lack of consensus

regarding null model choice. Moreover, the anemone-fish mutualism differs from the

more commonly studied pollination and seed dispersal mutualisms in several funda-

mental ways, thus making null model selection less than straightforward.

Anemones are sessile, while mobile fish larvae recruit to a host during set-

tlement from the larval stage, presumably with some potential for selectivity during

this time. Fish do not leave the host after settlement, thus, only one interaction oc-

curs per individual fish. Mixed species groups are rare; it is therefore likely that either

choice or post-settlement survival is affected by the presence and absence of conspecifics

and heterospecifics. However, no studies have been published regarding the competi-

tive hierarchies among species, or the effect of heterospecifics on larval settlement or

post-settlement mortality. Because the presence of fish increases anemone survival,

50



growth, and reproduction (Holbrook and Schmitt, 2005), there is also likely to be posi-

tive feedback between relative abundance of both the fish and anemones, mediated by

fish selectivity. Given these considerations, I regard the most biologically realistic null

model as one in which anemone relative abundance (column totals) is held constant,

fish relative abundance (row totals) is held constant, and resulting interactions are filled

randomly within these constraints (Algorithm AS159 (Patefield, 1981); implemented in

R by function “r2dtable”). Nevertheless, I also evaluated network indices for various

other null models, including unconstrained equiprobable models, and in no case did this

affect the direction of effects reported here.

Quantifying Specialization

I calculated the H ′
2 index of network in the R package bipartite, the value of

which is given by

H ′
2 = −

r∑
i=1

c∑
j=1

(pij · ln pij) (2.1)

where i and j represent rows and columns of an interaction matrix, the numbers of

which are represented by r and c, respectively, and the proportion of each interaction

is denoted by pij . Shannon’s Entropy is a measure of the evenness and richness of

community of species. Its value is given by

H ′ = −
S∑

i=1

(pi · ln pi) (2.2)

where pi is the proportional occurrence of species i, for a given number of species S.
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In order to make comparisons across species and account for differences in

partner availability, I used a Shannon index scaled to the minimum and maximum

values possible given the local richness of partners. This correction, similar to Blüthgen

et al. (2006) and Yeakel et al. (2013), is given as follows:

H ′
c =

H ′ −H ′
even

H ′
uneven −H ′

even

(2.3)

where H ′
uneven is the Shannon entropy if only one partner is used to the exclusion of

others (and is thus always equal to zero), H ′
even is the Shannon entropy if all available

partners are used with equal proportions, and H ′ is the uncorrected Shannon entropy.

The potential number of local partners is computed from species distribution models.

While this index does not take into account differences in relative abundance of re-

sources, it does account for “forbidden interactions”, those which cannot occur due to

non-overlap of species’ distributions. Thus, species that interact with all resources in

equal proportions have identical corrected indices, regardless of the number of resources

available. Because H ′
even is 0 for a system with only a single resource, the corrected

entropy in these systems is undefined. In order to include these networks in analyses,

I assigned them a value of zero, indicating maximum generalization, because the fish is

using all resources available to it.
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Figure 2.6: Relationship between number of expected and observed observations. Open
circles: fish species; filled circles: anemones; dashed line: line of best fit. F-statistic
= 41.29 on 1 and 37 df; p = 1.669e-07; R2

adj = 0.5146. [log(Nobs) = 0.616log(Nexp) +

1.67589]
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Figure 2.7: Abundance of anemone species in the present data set (A) and in Elliott and
Mariscal (2001). Lines represent fitted values to a lognormal distribution with mean
and standard deviation equal to (A) 5.268963, 1.605332; and (B) 4.456957, 1.519102,
respectively.
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Chapter 3

A Multi-locus Phylogeny of the Anemonefishes

Introduction

More than one-third of all extant vertebrate species are ray-finned fishes (class

Actinopterygii), and coral reef associated families of fish are among the largest (Froese

and Pauly, 2014). Elucidating the evolutionary history of these groups is an important

step towards understanding the diversity of vertebrates. Their diversification is likely

the result of a combination of biogeographic and ecological processes, and the study

of large and ecologically diverse families, such as damselfishes, may shed light on such

processes.

The damselfishes (Perciformes: Pomacentridae) are a large and conspicuous

family of reef fishes whose evolutionary history is of central interest to ecologists and

evolutionary biologists. The group originated in the Eocene (Frédérich et al., 2013)

and currently has 375 recognized extant species, which are distributed primarily on

1Additional coauthors on this manuscript: Paul H. Barber and Giacomo Bernardi
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coral reefs (Froese and Pauly, 2014). Due to their abundance, relatively small size, and

amenability to experimental manipulation, Pomacentrids have contributed immensely

to our understanding of marine population dynamics (Carr et al., 2002), the evolution of

reproductive strategies (Fricke and Fricke, 1977), and general patterns in the structure of

biodiversity (Hixon and Brostoff, 1983). Recent work has shown that within the Poma-

centridae, the subfamily Amphiprioninae has undergone extremely rapid diversification

over the past 10-22 million years (Frédérich et al., 2013).

The Amphiprioninae (anemonefishes) are small damselfishes that live amongst

the tentacles of sea anemones on Indo-Pacific coral reefs from East Africa to French

Polynesia. This obligate mutualism provides the fish with shelter from predators, while

the fish guards the anemone from predators and increases anemone growth and repro-

duction by supplementing nutrients to the anemone’s photosynthetic zooxanthellae via

excrement (Porat and Chadwick-Furman, 2004; Holbrook and Schmitt, 2005; Roopin

and Chadwick, 2009).

Thirty species of anemonefish are currently recognized (Froese and Pauly,

2014), though one of these (Amphiprion thielli Burgess 1981) is known only from two

aquarium specimens of dubious geographic origin, and we disregard it here (see also

Fautin and Allen, 1997). The species are grouped into two genera, Amphiprion and

Premnas, though Premnas has repeatedly been shown to be nested within Amphiprion.

Ten species of anemone hosts are recognized (Fautin and Allen, 1997), and individual

fish associate with a single host for the entirety of their post-settlement life. Some fish

species are only known to associate with a single host species, while others can be found
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with any of the ten hosts. All species are protandrous hermaphrodites and are usually

found in small monospecific groups. Pairs guard nests of demersal eggs until hatching,

at which point larvae begin a pelagic phase lasting 7-22 days (Wellington and Victor,

1989; Thresher et al., 1989).

Species richness of anemones and anemonefishes parallels larger diversity pat-

terns within the family and is highest in the Coral Triangle (the reefs of the Indo-

Australian Archipelago), where all 10 species of anemone and up to nine fish species

can be found in a single locale (Fautin and Allen, 1997; Elliott and Mariscal, 2001).

Anemone diversity declines steadily outward from this area, while fish diversity outside

of this area is lower and composed largely of regional endemics (Fautin and Allen, 1997).

The unique symbiotic lifestyle and unusual mating system of Amphiprioninae

make their evolutionary history of considerable interest to a wide range of biologists, but

no robust phylogeny has been attained. Multiple, conflicting hypotheses have been put

forth regarding the diversification of this group, beginning with a morphological analysis

by Allen (1972; Figure 3.1). Morphological characters differentiating these species are

mostly distinct, but can be quite subtle (Allen, 1975), and conspicuous characters like

color pattern can be variable within species (Fautin and Allen, 1997). Several molecular

phylogenies have since been presented (Elliott et al., 1999; Santini and Polacco, 2006),

using 1-3 mitochondrial loci and a subset of the species. Family-level studies have added

better marker coverage, but for fewer taxa (Cooper et al., 2009; Tang, 2001). Two recent

studies reanalyzed data from previous work (Frédérich et al., 2013; Litsios et al., 2012),

and these phylogenies were largely consistent with respect to the sister relationships
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of recently diverged species. However, substantial inconsistencies with respect to the

identity of the earliest diverging species and of the arrangement of the morphological

species complexes preclude accurate estimates of character evolution within the group.

The most recent phylogeny was constructed using sequence data from three

loci from the nuclear genome (nDNA) and six loci from the mitochondrial genome

(nDNA) (Litsios et al., 2012). A total of 106 sequences from 26 species were obtained

from GenBank (45% of a complete data matrix). Seven of the species were represented

by sequences for 8-9 loci, while the remaining 19 species by 4 or fewer loci. No locus

was sampled for all species, and six of the loci were sampled for 12 or fewer species.

It included sequence data from an individual that is verifiably misidentified (A. sebae,

GenBank accession number FJ582825), as well as other sequences from that study (see

Appendix).

Hence, despite several efforts to reconstruct the evolutionary history of the

group from DNA sequence data, important nodes in the phylogeny remained unre-

solved by recent studies. Here we present a more robust molecular phylogeny of the

Amphiprioninae, constructed using a multi-locus analysis of the most taxonomically

and genetically exhaustive data set to date.
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Methods

Taxon Sampling

We obtained samples from 24 species of Amphiprioninae, as well as samples

from multiple geographic locales of wide-ranging species (Table 3.4), and confirmed the

identity of the species either via photograph, voucher, or taxonomic expert. Wherever

possible, we used sequences of the different loci from a single individual. For the species

A. nigripes and A. tricinctus, we were only able to obtain DNA material; however, these

species are unmistakable both in morphology and geographic origin, and samples were

provided by an expert on the group (J. K. Elliott). For outgroup-rooted trees, we chose

Pomacentrus pavo based on its placement in published phylogenies (Cooper et al., 2009;

Frédérich et al., 2013) and availability of sequence data.

Laboratory Methods

Genomic DNA was extracted using a chloroform protocol (Sambrook et al.,

1989). We amplified three mitochondrial loci: 16S ribosomal DNA (16S), cytochrome b

(CYTB), cytochrome c oxidase subunit I (CO1); and four nuclear loci: recombination

activating gene 2 (RAG2), rhodopsin (RHOD), the first intron of 40S ribosomal protein

S7 (S71), and its second intron (S72). Target loci were amplified using the polymerase

chain reaction (PCR) primers and parameters outlined in Tables 3.1 and 3.2. Reactions

took place in 13µL volumes containing 11.25µL ThermoPrime ReddyMix (Thermo Sci-

entific), 0.625µL each primer, and 0.5µL extracted DNA. PCR products were sequenced
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on an Applied Biosystems capillary 3730xl DNA Analyzer.

Alignment

We resolved nucleotide ambiguities and removed primer sequences manually in

Geneious Pro 5.6.5 (Biomatters Ltd.). The S7 intron sequences were marked by several

regions of A-T repeats of variable length. Some individuals were heterozygous for this

sequence length polymorphism. In these cases, we sequenced PCR product using the

reverse primer, and concatenated the two sequences. The region of repeats was removed

from aligned sequences in order to reduce potential noise due to intraspecific variation

in this region.

Sequences were aligned with the MAFFT alignment program v7.017 (Katoh

et al., 2002) using the L-INS-i iterative refinement algorithm with a 200PAM / k=2

scoring matrix, and set a gap open and offset penalty of 1.53 and 0.123, respectively.

Variation in sequence length due to insertion or deletion events (indels) can cause gaps

in an alignment for which theoretical models of evolution are poorly developed. The

alignment process introduced no gaps into CO1, CYTB, RAG2, or RHOD. Gaps from

1-12 bp were inserted into 16S, S71, and S72. We analyzed the full data set with and

without the gaps removed and found no qualitative differences, so further analyses were

conducted with gaps included. We did not make any additional adjustments to the

alignments.

We inferred the models and parameters most likely to have generated each

locus’s alignment using jModelTest (v2.1.4) (Darriba et al., 2012), and chose models
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and parameters based on Bayesian information criterion (BIC) scores (Table 3.3).

Phylogenetic Reconstruction

Gene Trees

We confirmed individuals within a species were more similar to one another

than to heterospecifics by reconstructing phylogenies of individual loci using PhyML

3.0 (Guindon et al., 2010) on a server hosted by LIRMM (Montpellier) at http://

www.atgc-montpellier.fr/phyml/. These alignments contained multiple sequences per

species wherever possible (Table 3.4). We employed the models of nucleotide substitu-

tion specified by jModelTest for each gene, except for CYTB and S72, whose specified

models were not available in PhyML. In these cases, we used the next more complex

model, the general time reversible model (GTR). Start trees were constructed using

BIONJ, the SPR algorithm was used to search tree topologies, and both topology and

branch lengths were optimized. Node support was evaluated on the maximum likeli-

hood (ML) tree by analyzing 100 non-parametric bootstrap replicates of this tree. For

comparison, also we concatenated the species tree alignments and analyzed them under

these conditions.

Species Trees

We conducted a multi-locus phylogenetic analysis of the species using a Metropolis-

coupled Markov chain Monte Carlo (MCMCMC) approach implemented in MrBayes

v3.2.2 (Ronquist et al., 2012). Alignments were concatenated and partitioned by locus.
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We assigned a GTR+I+G substitution model to all loci because Bayesian phylogenetic

inference has been demonstrated to be robust to model overspecification (Huelsenbeck

and Rannala, 2004). That is, even if the true process of nucleotide substitution is sim-

ple (e.g. JC or HKY), a more complex model will recover posterior probabilities that

accurately reflect the probability that the tree is correct. As confirmation, We also ran

an analysis with models specified by jModelTest. If a selected model was not available

in MrBayes (e.g. TrN or TPM), we chose the next best model according to BIC score

(e.g. HKY). In all analyses, the proportion of invariable sites, the shape of the gamma

parameter, the character state frequencies, and the substitution rate were allowed to

vary among partitions.

We performed two independent runs of the MCMCMC analysis, each with

four parallel chains with a temperature parameter of 0.1. Chains were run for 10 million

generations, and sampled every 1000 generations. We ensured the chains had adequately

sampled the parameters by confirming the runs had established a minimum effective

sample size (ESS) greater than 1500 and a potential scale reduction factor (PSRF) of 1

for all parameters.

Results and Discussion

We generated DNA sequence data from three mitochondrial loci and four nu-

clear loci, from a total of 145 individuals, comprising 24 species. For species tree re-

construction, our data matrix was 84% full, all but three species were represented by
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more than half the loci, and 15 species had no missing data. In total, 4547 base pairs

were included in the analysis. We provide the first published molecular sequence data

for Amphiprion tricinctus, the first multi-locus phylogenetic treatment of four species

(A. barberi, A. ephippium, A. latezonatus, and A. latifasciatus), and the first nDNA

data for nine species (A. akallopisos, A. bicinctus, A. chrysopterus, A. ephippium, A.

leucokranos, A. mccullochi, A. nigripes, A. percula, A. polymnus). We recovered sub-

stantially higher support values for internal nodes than has previously been obtained

for this group (Figure 3.4).

Gene phylogenies revealed reciprocal monophyly among species in most cases.

There were some notable exceptions. Amphiprion leucokranos was indistinguishable

from A. chrysopterus in mitochondrial gene trees, but rooted within the A. sandaraci-

nos clade for nuclear gene trees (Figures 3.6-3.12). In analyses that included multiple

individuals of A. clarkii from multiple geographic locations, A. tricinctus rendered A.

clarkii paraphyletic, suggesting that A. clarkii may be composed of multiple spatially

isolated cryptic species. For species spanning the Coral Triangle region, the analysis of

multiple individuals from across this region often exhibit substantial divergence between

locales, emphasizing the importance of barriers to gene flow there. Most relationships

among closely related species were recovered in each gene tree (e.g. species of the

“Tomato” complex including A. melanopus and A. frenatus). The RHOD analysis re-

sulted in the least well-resolved tree with respect to node support; however, conspecifics

continued to cluster together, and many clades found in other gene trees were recovered.

Nearly all gene trees supported the validity of the recently described A. barberi.
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The majority rule consensus species trees produced using both GTR+I+G and

simpler models were nearly identical in both topology and branch lengths, except that

the node leading to A. bicinctus was reduced to a polytomy in the tree generated using

a simpler model. Support for internal nodes on the consensus tree was generally high

(Figure 3.2). The majority of nodes had posterior probability values of 1. Only three

nodes had posterior probability values below 0.7: the nodes placing A. rubrocinctus,

A. barberi, and the clade A. akindynos + A. mccullochi. Amphiprion rubrocinctus,

A. akindynos, and A. mccullochi were represented by two, four, and five sequences

respectively, and data for A. rubrocinctus came only from mtDNA.

We present robust phylogenies of both individual genes and species, and we

attribute their high levels of support to increased marker coverage and careful taxon

sampling. Nevertheless, support for the nodes within Amphiprion is relatively low

compared to phylogenies of similar groups, such as the Stegastinae (Frédérich et al.,

2013). The Amphiprioninae are both a recently diverged and rapidly diversifying group

(Frédérich et al., 2013), phenomena that are known to contribute to phylogenetic uncer-

tainty. Resolution may be improved through the incorporation of data from additional

markers, particularly from the nuclear genome. Data from massively parallel sequencing

techniques such as sequence capture of ultra-conserved elements (Faircloth et al., 2012),

would be ideally suited to this problem.

The genus Premnas is embedded within the genus Amphiprion, thus render-

ing Amphiprion polyphyletic. Premnas biaculeatus was first described as Chaetodon

biaculeatus (Bloch 1790), Cuvier erected the genus Premnas in 1816, while Amphiprion
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was designated by Bloch and Schneider in 1801 (Eschmeyer, 2014). The International

Code on Zoological Nomenclature grants priority to the oldest available name given to

a taxon (Chapter 6, Article 23.1), in this case Amphiprion. In Allen’s (1972) definitive

treatment of the Amphiprioninae, he made this change, but later resurrected the genus

Premnas in the second edition of that work (Allen, 1975). These changes were made in

the absence of molecular evidence; however, all subsequent molecular treatments of the

group have included Premnas within Amphiprion. Because of the historical precedence

of the name, along with irrefutable evidence that the continued use of Premnas results

in a polyphyletic Amphiprion, we propose the synonymy of Premnas (Cuvier 1816) with

Amphiprion (Bloch and Schneider 1801).

Immediately following the well-supported A. chrysopterus split, there is ex-

tremely rapid diversification of several groups of species, which are for the most part

morphologically similar within groups and distinct among groups. These include the

“Skunk” clade (A. akallopisos, A. perideraion, and A. sandaracinos), the “Tomato”

clade (A. barberi, A. ephippium, A. frenatus, A. melanopus, and A. rubrocinctus), an

Australian clade (A. akindynos and A. mccullochi), and a Western Indian Ocean clade

(A. allardi, A. latifasciatus, A. bicinctus, A. chagosensis, and A. nigripes). Amphiprion

polymnus also arose from this rapid diversification event, a species that is associated

with anemones usually found in muddy or sandy substrates.

Perhaps the most striking pattern in the tree is the clade containing only

species restricted to the Western Indian Ocean basin west of 90 degrees longitude (A.

bicinctus, A. allardi, A. latifasciatus, A. chagosensis, and A. nigripes), which form the
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bulk of the species found in that area. Outside of this clade, the only other species found

in the region are A. clarkii and A. akallopisos, both which are also found in the Coral

Triangle. None of these species co-occur, suggesting an ancestral invasion of the region

followed by subsequent diversification driven by spatial isolation of populations. While

we did not include data from A. chrysogaster (endemic to Reunion and Mauritius), A.

fuscocaudatus (endemic to the Seychelles), or A. omanensis (endemic to Oman) in our

analysis, other analyses have these species in this clade, strengthening this notion.

The relationship between A. clarkii and A. tricinctus is an intriguing recent

speciation event. Amphiprion clarkii has the largest range of any Amphiprioninae (from

the Persian Gulf to Fiji), while A. tricinctus has among the smallest, occupying only the

Marshall Islands archipelago. This suggests that populations of A. clarkii have been able

to maintain sufficient genetic connectivity to prevent speciation across biogeographic

barriers known to have promoted speciation in other lineages within this group (Timm

2008). Yet the amount of gene flow in the ancestral species between the Marshall Islands

and elsewhere was restricted. Two other species can be found in the Marshall Islands (A.

melanopus and A. chrysopterus), though A. clarkii is absent (Fautin and Allen, 1997).

Endemism resulting from peripheral isolation is known to occur across lineages in other

archipelagos (Drew et al., 2008; Hodge et al., 2012). Populations of A. melanopus and

A. chrysopterus in the Marshall Islands may be similarly divergent, and warrant further

investigation.

The sister relationship between A. chrysopterus and A. leucokranos is incon-

sistent with morphology, but unsurprising given the hypothesized hybrid origin of A.

66



leucokranos. Amphiprion sandaracinos and A. chrysopterus are one of the very few in-

stances of species that regularly form mixed-species groups on the same host individual

(Elliott 2001). This phenomenon occurs where their ranges overlap along the northern

coast of New Guinea. Because family groups on anemones are dominated by the largest

female, and because A. chrysopterus is much larger than the diminutive A. sandara-

cinos, A. chrysopterus is expected to be the maternal species of interspecific hybrids.

The assignment of our A. leucokranos mitochondrial sequences to A. chrysopterus is

consistent with that hypothesis.

The evolutionary history of the species endemic to the seas off of eastern Aus-

tralia (A. akindynos, A. mccullochi, and A. latezonatus) has been difficult to resolve.

Amphiprion mccullochi is restricted to the isolated Lord Howe Island and nearby reefs,

while A. akindynos is found in New Caledonia and the Great Barrier Reef. The two

species are morphologically distinct, much more so than other more distantly related

species (e.g. the species of the “Tomato” complex), making it unlikely the two species

merely represent the result of an allopatric speciation event. Two individuals of A.

akindynos have been reported from Lord Howe Island, a presumably extremely rare

event (Crean et al., 2010). Further, gene flow between the species occurs, suggesting

multiple hybridization events (van der Meer et al., 2012). Similarly puzzling is the role

of A. latezonatus, found both on the eastern coast of Australia and at Lord Howe Is-

land, sympatric with both A. akindynos and A. mccullochi. An in depth consideration

of the relationship between these three species using a broad suite of molecular data is

warranted.
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In addition to the molecular evidence for hybridization provided by (van der

Meer et al., 2012), Amphiprion species are known to interbreed regularly in captivity,

and implicated in the creation of aberrant morphs in the wild (Carlson, 1996; Fautin and

Allen, 1997), including crosses of species that are not closely related (e.g. A. frenatus x

P. biaculeatus, collected in the Philippines https://reefbuilders.com/2012/11/28/wild-

tomato-maroon-clownfish/). It is likely that such events have occurred throughout the

history of the group, obfuscating the true evolutionary history of the group using tradi-

tional phylogenetic approaches. Approaches that explicitly accommodate such reticulate

evolutionary patterns may help to resolve a more accurate evolutionary history.

The species most directly descended from the most recent common ancestor

(A. ocellaris, A. percula, and P. biaculeatus) are all restricted to the Coral Triangle.

Though species distributions are known to not be stationary over long periods of time,

changes are unlikely to be both fast and drastic in species with small adult ranges

and short dispersal phases. Given the anemonefishes originated approximately 10-22

million years ago, have among the shortest dispersal phases of any reef fish, and have

limited realized dispersal (Jones et al., 2005), it is unlikely these species’ ranges could

have moved substantially in this time. Instead, our results support the notion that the

transition to a symbiotic lifestyle was brought about in the exceptionally diverse Coral

Triangle, perhaps a product of high levels of competition for niche space. Subsequently,

lineages diverged as the group expanded outwards from the Coral Triangle. The invasion

into the Western Indian Ocean led to the origin of eight new species, nearly one third

of the family diversity. Likewise, expansion of lineages from the Coral Triangle into the
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Pacific basin may have led to the origin of A. chrysopterus and A. tricinctus, along

with the recently described, morphologically cryptic A. barberi, and A. pacificus (Allen

et al., 2010, 2008). The only other clade of similar diversity to the Western Indian

Ocean clade is the “Tomato” complex containing A. ephippium. As a group, these

species span a range smaller than that of A. clarkii, most of which is contained in the

center of Amphiprioninae diversity.

Overall, our findings support a pattern of diversity originating in the Coral

Triangle with speciation events occurring at the periphery of this region. This pattern

is evident with respect to the entire group, but also to more recent events such as

the radiation of the Western Indian Ocean clade and the origin of A. tricinctus and

A. barberi. Phylogenetic analyses of other groups of Indo-Pacific coral reef organisms

have found similar patterns (Hodge et al., 2012; Malay and Paulay, 2010; Drew et al.,

2008). As suggested by previous authors, following the divergence of populations at the

margins of the Coral Triangle, peripatric species may subsequently expand their range

into the region, further enhancing the high diversity found there.
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Appendix

There exists at least at least one instance where vouchers were misidentified and

resultant sequences deposited to GenBank under the incorrect taxon name. Photographs

of the vouchers (found at http://www.marinebarcoding.org/species/region/1/id/10537)

for GenBank sequences FJ582817-FJ582830 confirm that these individuals are Am-

phiprion clarkii, not A. sebae as labeled in GenBank. This error has been reported

but not corrected. These sequences have been used in phylogenetic studies (Frédérich

et al., 2013; Litsios et al., 2012), where they are concatenated with sequences that may

or may not come from the same species. Such errors can contribute to poor resolution

of phylogenetic reconstruction.
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Figure 3.1: Trees representing topology supported by previous studies. (A) Santini and
Polacco 2006, (B) Frederich et al 2013, (C) Litsios et al 2013. Tips with particularly
problematic placement are highlighted in grey.
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Figure 3.3: Plot of the mean pelagic larval duration (PLD) in days for species of Am-
phiprioninae (n = 21) and species of other Pomacentrids (n = 309). Data from Luiz
et al. (2013). Boxes encompass the interquartile range (IQR), lines extend to 1.5 IQR,
and circles represent outliers.
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Figure 3.4: Comparison of support values (posterior probability) for internal nodes
recovered by two previous species level phylogenies (Frédérich et al., 2013; Litsios et al.,
2012) and the present study. Boxes encompass the interquartile range (IQR), lines
extend to 1.5 IQR, and circles represent outliers.
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Figure 3.5: Maximum clade credibility tree of Amphiprion species inferred from
Bayesian analysis.
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Table 3.1: PCR primers used in this study.

Genome Locus Primer Name Direction Primer Sequence Reference

mtDNA 16S 16SAR Forward CGCCTGTTTATCAAAAACAT Palumbi 2002
16SBR Reverse CCGGTCTGAACTCAGATCACGT

mtDNA CO1 CO1 Vr1dT1 Forward TAGACTTCTGGGTGGCCRAARAAYCA Ivanova 2007
CO1 VF2 T1 Reverse TCAACCAACCACAAAGACATTGGCAC

mtDNA CYTB GLUDG-L Forward TGACTTGAARAACCAYCGTTG Palumbi 2002
CB3-H Reverse GGCAAATAGGAARTATCATTC

nDNA RAG2 RAG2 F1 Forward GAGGGCCATCTCCTTCTCCAA Cooper 2009
RAG2 R2 Reverse GTCTGTAGAGTCTCACAGGAGAGCA

nDNA RHOD Rod-F2X Forward AGCAACTTCCGCTTCGGCGAGAA Sevilla 2007
Rod-R4n Reverse GGAACTGCTTGTTCATGCAGATGTAGAT

nDNA S71 S7-F Forward TGGCCTCTTCCTTGGCCGTC Chow 1999
S7-R Reverse AACTCGTCTGGCTTTTCGCC

nDNA S72 S7RPEX2F Forward AGCGCCAAAATAGTGAAGCC Chow 1999
S7RPEX3R Reverse GCCTTCAGGTCAGAGTTCAT
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Table 3.2: PCR conditions used in this study. Temperatures are given in degrees Celsius.

Initial Denaturation Annealing Extension Final Extension
Locus Temp Time Temp Time Temp Time Temp Time N cycles Temp Time

16S 94 5:00 94 0:30 54 0:30 72 0:30 35 72 7:00
CO1 94 4:00 94 0:45 54 0:45 72 1:00 35 72 1:00
CYTB 94 5:00 94 0:45 45 0:45 72 0:45 35 72 7:00
RAG2 94 3:00 94 0:45 54 0:45 72 0:45 35 72 5:00
RHOD 95 7:00 94 0:30 56 0:30 72 0:30 40 72 7:00
S71 94 3:00 94 0:45 54 0:45 72 0:45 35 72 5:00
S72 94 3:00 94 0:45 54 0:45 72 0:45 35 72 5:00
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Table 3.3: Substitution models selected for each locus based on BIC scores in jModel-
Test2. N Taxa = number of taxa for individual gene tree construction; -lnL = negative
log likelihood; K = number of estimated parameters.

Genome Locus Length N Taxa Model -lnL K

mtDNA 16S 538 101 K80+I+G 1583.15 203
mtDNA CO1 618 80 TrN+I+G 2466.03 165
mtDNA CYTB 764 86 TPM2uf+I+G 3323.24 177
nDNA RAG2 755 86 K80+I 1486.58 172
nDNA RHOD 410 95 K80 716.66 189
nDNA S71 715 70 JC 1792.15 138
nDNA S72 721 72 TPM3uf+G 1836.96 148
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Figure 3.6: Maximum likelihood tree for 16S. Numbers at nodes indicate the number of
bootstrap replicates out of 100 in which nodes were recovered, and branch lengths are
expected substitutions per site.
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Figure 3.7: Maximum likelihood tree for CO1. Numbers at nodes indicate the number
of bootstrap replicates out of 100 in which nodes were recovered, and branch lengths
are expected substitutions per site.
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Figure 3.8: Maximum likelihood tree for CYTB. Numbers at nodes indicate the number
of bootstrap replicates out of 100 in which nodes were recovered, and branch lengths
are expected substitutions per site.
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Figure 3.9: Maximum likelihood tree for RAG2. Numbers at nodes indicate the number
of bootstrap replicates out of 100 in which nodes were recovered, and branch lengths
are expected substitutions per site.
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Figure 3.10: Maximum likelihood tree for RHOD. Numbers at nodes indicate the num-
ber of bootstrap replicates out of 100 in which nodes were recovered, and branch lengths
are expected substitutions per site.
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Figure 3.11: Maximum likelihood tree for S7-1. Numbers at nodes indicate the number
of bootstrap replicates out of 100 in which nodes were recovered, and branch lengths
are expected substitutions per site.
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Figure 3.12: Maximum likelihood tree for S7-2. Numbers at nodes indicate the number
of bootstrap replicates out of 100 in which nodes were recovered, and branch lengths
are expected substitutions per site.
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Table 3.4: Species and sampling locales for taxa used in this study. Sequences used in gene
tree reconstruction are indicated by a 1, an asterisk indicates a sequence used in species
tree reconstruction, and a 0 indicates no sequence.

Species Origin Sample 16S CO1 CYTB RAG2 RHOD S71 S72 Total

A. akindynos Great Barrier Reef AMAIBRI001 0 0 0 0 1 0 0 1
A. akindynos Great Barrier Reef AMAIBRI002 0 0 * 0 * * * 4
A. akindynos New Caledonia AMAINOU001 0 0 0 0 1 0 0 1
A. akallopisos Mozambique Channel AMAKEUR001 * * 0 * * * * 6
A. akallopisos Flores AMAKFLO001 1 1 1 1 1 1 1 7
A. akallopisos Mozambique Channel AMAKGLO001 1 1 * 1 1 1 1 7
A. allardi Mozambique Channel AMALEUR001 * * * * * * * 7
A. barberi Fiji AMBAFIJ001 * * * * * * 0 6
A. barberi Fiji AMBAFIJ002 1 0 1 1 1 0 * 5
A. bicinctus Red Sea AMBIDUB001 * * 0 0 * * 0 4
A. bicinctus Red Sea AMBIDUB002 1 1 0 * 1 0 0 4
A. bicinctus Red Sea AMBIDUB003 1 1 0 1 0 0 0 3
A. bicinctus Red Sea AMBIDUB004 1 1 0 1 0 0 0 3
A. bicinctus Red Sea AMBIDUB005 1 1 0 1 0 1 0 4
A. chagosensis Chagos AMCHCHA116 0 * 0 0 0 0 0 1
A. chagosensis Chagos AMCHCHA117 0 1 0 0 0 0 0 1
A. chagosensis Chagos AMCHCHA118 0 1 0 0 0 0 0 1
A. chagosensis Chagos AMCHCHA169 0 1 0 0 0 0 0 1
A. chagosensis Chagos AMCHCHA170 0 1 0 0 0 0 0 1
A. chagosensis Chagos AMCHCHA171 0 1 0 0 0 0 0 1
A. chagosensis Chagos AMCHCHA172 0 1 0 0 0 0 0 1
A. chagosensis Chagos AMCHCHA212 0 1 0 0 0 0 0 1
A. clarkii New Guinea AMCLHKN042 0 0 * 0 0 0 0 1

Continued on next page
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Table 3.4 – Continued from previous page

Species Origin Sample 16S CO1 CYTB RAG2 RHOD S71 S72 Total

A. clarkii New Guinea AMCLHKN050 * * 1 0 * * * 6
A. clarkii New Guinea AMCLHKN052 0 0 1 0 0 0 0 1
A. clarkii New Guinea AMCLHKN055 1 1 1 1 1 1 1 7
A. clarkii New Guinea AMCLHKN069 1 0 1 0 0 0 0 2
A. clarkii New Guinea AMCLHKN070 1 0 1 0 0 0 0 2
A. clarkii New Guinea AMCLHKN195 1 0 0 0 0 0 0 1
A. clarkii New Guinea AMCLHKN223 0 0 1 0 0 0 0 1
A. clarkii Java AMCLKAR001 0 0 0 0 1 0 0 1
A. clarkii Java AMCLKAR002 0 0 0 0 1 0 0 1
A. clarkii New Caledonia AMCLNOU002 0 0 0 0 1 0 0 1
A. clarkii Japan AMCLOKI001 1 1 1 1 1 1 1 7
A. clarkii Philippines AMCLUSU003 1 1 1 * 1 0 1 6
A. clarkii Philippines AMCLUSU005 1 1 1 1 1 1 1 7
A. chrysopterus Fiji AMCPFIJ001 1 1 1 1 1 1 1 7
A. chrysopterus New Guinea AMCPHKN219 * * * * * * * 7
A. chrysopterus French Polynesia AMCPMOO059 1 1 1 1 1 1 1 7
A. chrysopterus French Polynesia AMCPMOO060 1 1 0 1 1 1 1 6
A. chrysopterus French Polynesia AMCPMOO061 0 0 0 1 0 1 1 3
A. chrysopterus Solomon Islands AMCPSOL001 1 1 1 1 1 0 1 6
A. ephippium Sumatra AMEPKRA001 0 0 * 0 0 * 0 2
A. frenatus Flores AMFRFLO001 1 0 1 1 1 1 1 6
A. frenatus Japan AMFROKI001 1 1 1 1 1 0 0 5
A. frenatus Philippines AMFRUSU063 * 1 * * * * * 7
A. frenatus Philippines AMFRUSU068 1 * 1 1 1 1 1 7
A. latifasciatus Mozambique Channel AMLFEUR001 * * * * * 0 * 6
A. latifasciatus Mozambique Channel AMLFEUR002 0 1 0 0 1 0 0 2
A. latifasciatus Mozambique Channel AMLFGLO001 0 0 0 0 1 0 0 1

Continued on next page
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Table 3.4 – Continued from previous page

Species Origin Sample 16S CO1 CYTB RAG2 RHOD S71 S72 Total

A. latifasciatus Mozambique Channel AMLFJDN001 0 1 1 0 1 * 1 5
A. leucokranos New Guinea AMLUHKN037 * * * 1 * * 0 6
A. leucokranos Solomon Islands AMLUSOL002 1 1 1 * 1 0 0 5
A. leucokranos Solomon Islands AMLUSOL003 1 0 1 1 1 0 0 4
A. latezonatus Lord Howe Island AMLZLHI001 * 0 * * * * 0 5
A. latezonatus Lord Howe Island AMLZLHI002 1 0 1 1 1 1 0 5
A. mccullochi Lord Howe Island AMMCLHI001 * * * 0 1 * 0 5
A. mccullochi Lord Howe Island AMMCLHI002 0 0 0 0 1 0 0 1
A. mccullochi Lord Howe Island AMMCLHI003 0 0 0 0 1 0 0 1
A. mccullochi Lord Howe Island AMMCLHI004 0 0 0 0 * 0 0 1
A. melanopus Flores AMMEFLO001 1 1 1 1 1 0 0 5
A. melanopus Great Barrier Reef AMMEGBR001 1 1 1 1 1 1 1 7
A. melanopus Great Barrier Reef AMMEGBR002 1 0 1 1 1 1 1 6
A. melanopus New Guinea AMMEHKN054 * * * * * * * 7
A. melanopus New Guinea AMMEHKN064 0 1 0 1 0 1 1 4
A. melanopus New Guinea AMMEHKN065 1 1 1 0 1 1 1 6
A. melanopus New Guinea AMMEHKN075 0 0 1 0 0 0 0 1
A. melanopus New Guinea AMMEHKN088 1 0 1 0 0 0 0 2
A. melanopus New Guinea AMMEHKN102 1 0 0 0 0 0 0 1
A. melanopus New Guinea AMMEHKN285 1 0 0 0 0 0 0 1
A. melanopus Micronesia AMMEULI001 1 1 1 1 1 1 1 7
A. nigripes Maldives AMNIMAL001 * * * 0 * * 0 5
A. nigripes Maldives AMNIMAL002 1 0 0 0 1 0 * 3
A. ocellaris Darwin, Australia AMOCDAR001 1 1 1 1 1 1 1 7
A. ocellaris Darwin, Australia AMOCDAR002 1 0 1 1 1 1 1 6
A. ocellaris Flores AMOCFLO001 1 1 1 0 1 1 0 5
A. ocellaris Flores AMOCFLO002 1 1 1 1 1 1 1 7
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Table 3.4 – Continued from previous page

Species Origin Sample 16S CO1 CYTB RAG2 RHOD S71 S72 Total

A. ocellaris Philippines AMOCUSU004 * * * * * * * 7
A. ocellaris Philippines AMOCUSU006 1 1 1 1 1 1 1 7
A. percula Cenderawasih Bay AMPCCEN001 0 0 0 0 1 0 0 1
A. percula Cenderawasih Bay AMPCCEN002 0 0 0 0 1 0 0 1
A. percula Great Barrier Reef AMPCGBR001 1 1 1 1 1 1 0 6
A. percula Great Barrier Reef AMPCGBR002 0 0 0 1 1 1 0 3
A. percula Great Barrier Reef AMPCGBR004 0 0 1 0 1 0 1 3
A. percula New Guinea AMPCHKN006 * * * * * * * 7
A. percula New Guinea AMPCHKN007 0 1 1 0 1 1 1 5
A. percula New Guinea AMPCHKN008 1 0 1 0 0 0 0 2
A. percula New Guinea AMPCHKN011 0 0 1 0 0 0 0 1
A. percula New Guinea AMPCHKN123 1 0 0 0 0 0 0 1
A. percula New Guinea AMPCHKN204 1 0 1 0 0 0 0 2
A. percula New Guinea AMPCHKN250 1 0 0 0 0 0 0 1
A. percula Solomon Islands AMPCSOL001 0 0 0 0 1 0 0 1
A. percula Solomon Islands AMPCSOL002 0 0 0 0 1 0 0 1
A. perideraion Flores AMPIFLO001 1 1 1 1 1 1 1 7
A. perideraion Great Barrier Reef AMPIGBR001 0 0 0 0 1 0 0 1
A. perideraion New Guinea AMPIHKN012 * * * * * * * 7
A. perideraion New Guinea AMPIHKN018 1 1 1 1 1 1 1 7
A. perideraion New Guinea AMPIHKN024 1 0 1 0 0 0 0 2
A. perideraion New Guinea AMPIHKN089 1 0 1 0 0 0 0 2
A. perideraion New Guinea AMPIHKN096 1 0 0 0 0 0 0 1
A. perideraion Palau AMPIPAL001 1 1 1 1 1 1 1 7
A. perideraion Philippines AMPIUSU007 1 1 1 1 1 1 1 7
A. perideraion Philippines AMPIUSU018 1 0 1 1 1 1 0 5
A. polymnus New Guinea AMPOHKN141 * * * * * * 0 6
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Table 3.4 – Continued from previous page

Species Origin Sample 16S CO1 CYTB RAG2 RHOD S71 S72 Total

A. polymnus New Guinea AMPOHKN142 0 0 1 0 0 0 0 1
A. polymnus New Guinea AMPOHKN143 1 1 1 1 1 0 * 6
A. polymnus New Guinea AMPOHKN145 1 0 1 0 0 0 0 2
A. polymnus New Guinea AMPOHKN148 1 0 0 0 0 0 0 1
A. rubrocinctus Kimberley, Australia AMRUKIM001 * 0 * 0 0 0 0 2
A. sandaracinos Flores AMSAFLO001 1 1 1 1 1 1 1 7
A. sandaracinos New Guinea AMSAHKN022 1 * 0 * * * * 6
A. sandaracinos New Guinea AMSAHKN033 1 1 * 1 1 1 1 7
A. sandaracinos New Guinea AMSAHKN071 0 0 0 1 0 0 0 1
A. sandaracinos New Guinea AMSAHKN095 1 0 0 1 0 0 1 3
A. sandaracinos New Guinea AMSAHKN120 1 0 0 1 0 0 1 3
A. sandaracinos New Guinea AMSAHKN128 1 0 0 1 0 1 1 4
A. sandaracinos New Guinea AMSAHKN202 0 0 0 1 0 0 1 2
A. sandaracinos New Guinea AMSAHKN229 0 0 0 1 0 0 0 1
A. sandaracinos New Guinea AMSAHKN230 0 0 0 1 0 0 0 1
A. sandaracinos Solomon Islands AMSASOL004 0 0 0 0 1 0 0 1
A. sandaracinos Solomon Islands AMSASOL005 1 1 0 1 1 1 1 6
A. sandaracinos Solomon Islands AMSASOL006 1 1 0 1 1 1 1 6
A. sandaracinos Solomon Islands AMSASOL007 1 1 1 1 1 1 1 7
A. sandaracinos Solomon Islands AMSASOL008 0 1 0 1 1 1 1 5
A. sandaracinos Solomon Islands AMSASOL009 0 0 0 1 1 1 1 4
A. sandaracinos Philippines AMSAUSU016 * 1 0 1 1 1 1 6
A. sandaracinos Philippines AMSAUSU022 1 1 1 1 1 1 1 7
A. sandaracinos Philippines AMSAUSU024 0 0 0 1 0 0 0 1
A. sandaracinos Philippines AMSAUSU031 0 0 0 1 0 0 0 1
A. sandaracinos Philippines AMSAUSU035 0 0 0 1 0 0 0 1
A. tricinctus Marshall Islands AMTRMAR001 * * * * * * * 7
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Table 3.4 – Continued from previous page

Species Origin Sample 16S CO1 CYTB RAG2 RHOD S71 S72 Total

P. biaculeatus Flores PRBIFLO001 1 1 1 1 1 1 1 7
P. biaculeatus Great Barrier Reef PRBIGBR001 1 1 1 1 1 1 1 7
P. biaculeatus Great Barrier Reef PRBIGBR002 1 1 1 1 1 1 1 7
P. biaculeatus New Guinea PRBIHKN001 0 0 0 1 0 0 0 1
P. biaculeatus New Guinea PRBIHKN013 * * * * * * * 7
P. biaculeatus New Guinea PRBIHKN025 1 1 1 0 1 1 1 6
P. biaculeatus New Guinea PRBIHKN036 1 0 1 0 0 0 0 2
P. biaculeatus New Guinea PRBIHKN043 1 0 1 0 0 0 0 2
P. biaculeatus New Guinea PRBIHKN044 1 0 1 0 0 0 0 2
P. biaculeatus New Guinea PRBIHKN046 1 0 1 0 0 0 0 2
P. biaculeatus New Guinea PRBIHKN268 1 0 0 0 0 0 0 1
P. biaculeatus New Guinea PRBIHKN280 1 0 0 0 0 0 0 1
P. biaculeatus Philippines PRBIUSU001 1 1 1 1 1 1 1 7
P. biaculeatus Philippines PRBIUSU002 1 1 1 1 1 0 1 6
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Blüthgen, N., Menzel, F., and Blüthgen, N. (2006). Measuring specialization in species

interaction networks. BMC Ecology, 6(9):9.

Briggs, J. C. and Bowen, B. W. (2012). A realignment of marine biogeographic provinces

with particular reference to fish distributions. Journal of Biogeography, 39(1):12–30.

Bronstein, J. L. (2001). The Costs of Mutualism. American Zoologist, 41(4):825–839.

94



Brouat, C., Sennedot, F., Audiot, P., Leblois, R., and Rasplus, J. Y. (2003). Fine-scale

genetic structure of two carabid species with contrasted levels of habitat specializa-

tion. Molecular Ecology, 12(7):1731–1745.

Carlson, B. (1996). The Amphiprion leucokranos Mystery. Aquarium Frontiers, 3(3):34–

37.

Carr, M. H., Anderson, T. W., and Hixon, M. A. (2002). Biodiversity, population

regulation, and the stability of coral-reef fish communities. Proceedings of the National

Academy of Sciences, 99(17):11241–11245.

Carr, M. H. and Reed, D. C. (1993). Conceptual Issues Relevant to Marine Harvest

Refuges: Examples from Temperate Reef Fishes. Canadian Journal of Fisheries and

Aquatic Sciences, 50(9):2019–2028.

Cattin, M. F., Bersier, L. F., Banasek-Richter, C., Baltensperger, R., and Gabriel, J. P.

(2004). Phylogenetic constraints and adaptation explain food-web structure. Nature,

427(6977):835–839.

Chow, S. and Hazama, K. (1998). Universal PCR primers for S7 ribosomal protein gene

introns in fish. Molecular Ecology, 7(9):1255–1256.

Cooper, W. J., Smith, L. L., and Westneat, M. W. (2009). Exploring the radiation of a

diverse reef fish family: Phylogenetics of the damselfishes (Pomacentridae), with new

classifications based on molecular analyses of all genera. Molecular Phylogenetics and

Evolution, 52(1):1–16.

95



Cowen, R. K., Paris, C. B., and Srinivasan, A. (2006). Scaling of connectivity in marine

populations. Science, 311(5760):522–527.

Crean, A. J., Swearer, S. E., and Patterson, H. M. (2010). Larval supply is a good

predictor of recruitment in endemic but not non-endemic fish populations at a high

latitude coral reef. Coral Reefs, 29(1):137–143.

Darriba, D., Taboada, G. L., Doallo, R., and Posada, D. (2012). jModelTest 2: more

models, new heuristics and parallel computing. Nature Methods, 9(8):772.

Darwin, C. R. (1862). On the various contrivances by which British and foreign orchids

are fertilised by insects. John Murray, London.

Dobler, S. and Farrell, B. D. (1999). Host use evolution in Chrysochus milkweed beetles:

evidence from behaviour, population genetics and phylogeny. Molecular Ecology,

8(8):1297–1307.

Doherty, P. J., Planes, S., and Mather, P. (1995). Gene flow and larval duration in

seven species of fish from the Great Barrier Reef. Ecology, 76(8):2373–2391.

Dormann, C. F., Gruber, B., and Fruend, J. (2008). Introducing the bipartite Package:

Analysing Ecological Networks. R News, 8(2):8–11.

Drew, J. A., Almany, G. R., Kaufman, L., and Barber, P. H. (2008). Endemism and

regional color and genetic differences in five putatively cosmopolitan reef fishes. Con-

servation Biology, 22(4):965–975.

96



Dutilleul, P., Stockwell, J. D., Frigon, D., and Legendre, P. (2000). The Mantel test

versus Pearson’s correlation analysis : Assessment of the differences for biological

and environmental studies. Journal of agricultural, biological, and environmental

statistics, 5(2):131–150.

Elliott, J. K., Lougheed, S. C., Bateman, B., McPhee, L. K., and Boag, P. T. (1999).

Molecular phylogenetic evidence for the evolution of specialization in anemonefishes.

Proceedings of the Royal Society B, 266(1420):677–685.

Elliott, J. K. and Mariscal, R. N. (1995). Host selection, location, and association behav-

iors of anemonefishes in field settlement experiments. Marine Biology, 122(3):377–389.

Elliott, J. K. and Mariscal, R. N. (2001). Coexistence of nine anemonefish species: differ-

ential host and habitat utilization, size and recruitment. Marine Biology, 138(1):23–

36.

Eschmeyer, W. N. (2014). Catalog of Fishes: Genera, Species, References.

Estes, J., Tinker, M., Williams, T., and Doak, D. (1998). Killer whale predation on sea

otters linking oceanic and nearshore ecosystems. Science, 282:473–476.

Estes, J. A., Terborgh, J., Brashares, J. S., Power, M. E., Berger, J., Bond, W. J.,

Carpenter, S. R., Essington, T. E., Holt, R. D., Jackson, J. B. C., Marquis, R. J.,

Oksanen, L., and Oksanen, T. (2011). Trophic Downgrading of Planet Earth. Science,

333:301–306.

Evanno, G., Regnaut, S., and Goudet, J. (2005). Detecting the number of clusters of

97



individuals using the software STRUCTURE: a simulation study. Molecular Ecology,

14(8):2611–2620.

Excoffier, L., Laval, G., and Schneider, S. (2005). Arlequin (version 3.0): An integrated

software package for population genetics data analysis. Evolutionary Bioinformatics,

1:47–50.

Faircloth, B. C., McCormack, J. E., Crawford, N. G., Harvey, M. G., Brumfield, R. T.,

and Glenn, T. C. (2012). Ultraconserved elements anchor thousands of genetic mark-

ers spanning multiple evolutionary timescales. Systematic Biology, 61(5):717–26.

Fautin, D. G. (1981). The Clownfish Sea Anemones: Stichodactylidae (Coelenterata:

Actiniaria) and Other Sea Anemones Symbiotic with Pomacentrid Fishes. Transac-

tions of the American Philosophical Society, 71(1):3–115.

Fautin, D. G. and Allen, G. R. (1997). Anemonefishes and their host sea anemones.

Western Australian Museum, Perth.
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