UC Davis

Dermatology Online Journal

Title

Clinical utility of cell-free DNA liquid biopsies in Merkel cell carcinoma

Permalink

https://escholarship.org/uc/item/1198z48x

Journal

Dermatology Online Journal, 27(10)

Authors

Shalhout, Sophia Z Emerick, Kevin Kaufman, Howard L et al.

Publication Date

2021

DOI

10.5070/D3271055629

Copyright Information

Copyright 2021 by the author(s). This work is made available under the terms of a Creative Commons Attribution-NonCommercial-NoDerivatives License, available at https://creativecommons.org/licenses/by-nc-nd/4.0/

Peer reviewed

Clinical utility of cell-free DNA liquid biopsies in Merkel cell carcinoma

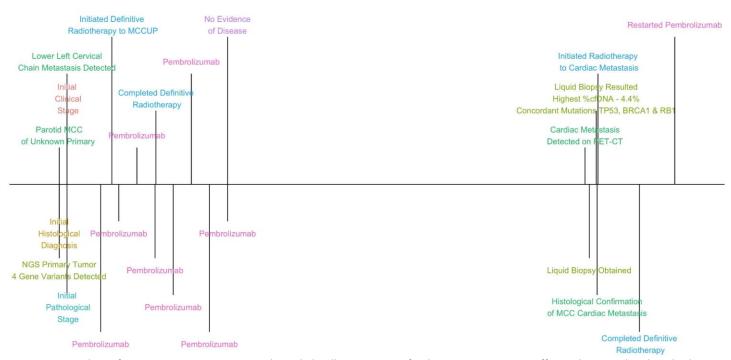
Sophia Z. Shalhout¹ PhD, Kevin Emerick² MD, Howard L Kaufman³ MD, David M Miller^{1,4} MD PhD

Affiliations: ¹Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA, ²Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA, ³Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA, ⁴Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA

Corresponding Author: David Miller MD PhD FAAD, Bartlett Hall, Room 132, 15 Parkman St, Boston MA 02114, Tel: 617-726-2667, Email: dmiller4@mah.harvard.edu

Keywords: advanced Merkel cell carcinoma, cell-free DNA, circulating free tumor DNA, ctDNA, liquid biopsy MCC

To the Editor:


Merkel Cell Carcinoma (MCC) is a rare and aggressive malignancy neuroendocrine cutaneous characterized by the variable presence of Merkel cell polyoma virus (MCPyV), programmed cell death ligand-1 (PDL1) expression, and variable mutation burden status. These varying molecular features have made development of standardized prognostic and predictive biomarkers challenging. MCC patients may be screened for viral oncoprotein antibodies since serum titer levels in MCPyV-positive patients reflect MCC tumor burden and are a strong marker for recurrence [1-2]. However, this assay may not be reliable in immunosuppressed patients and those treated with immunotherapy. Furthermore, it is not useful for monitoring ~50% of MCC patients that are MCPyV-negative. Thus, additional noninvasive modalities are needed for prognosis and monitoring disease-status in all MCC patients, including MCPyV-negative patients.

Liquid biopsy, which allows for the sequential analysis of circulating tumor cells (CTCs) or cell-free DNA (cfDNA) in blood samples, has recently emerged as a potential non-invasive approach for surveillance, prognosis, and guidance for therapeutic options in several cancers. Few previous studies evaluated the CellSearch™ liquid biopsy system which isolates epithelial cell adhesion molecule (EpCAM) positive CTCs in MCC. CTCs were

found associated with MCC disease burden and shorter overall survival [3-5]. While promising, further studies are required to determine the potential use of liquid biopsy in managing MCC patients. The objective of this study was to assess the clinical utility of cell-free DNA (cfDNA) next-generation sequencing (NGS) in MCC.

We performed an institutional review board-approved study of MCC patients at Mass General Brigham who underwent cfDNA-sequencing using an expanded cancer-associated gene panel of the US Food and Drug Administration (FDA)-approved Guardant360® platform under physician-discretion standard-of-care (N=16). Fifteen of these patients also had matched genotyping of primary MCC tumor tissue using targeted next generation sequencing with institutional SNaPshot-NGS assay.

Tumor burden at the time of blood collection was evaluated using Response Evaluation Criteria in Solid (RECISTv1.1). Tumors version 1.1 correlation was used to assess association between tumor burden and the highest allelic frequency detected in cfDNA analysis. Fisher's exact test were used to model associations between cfDNA detection and active MCC disease. Patients with indeterminant status as the time of blood collection were included in the analysis based on the unequivocal true disease status (N=3 no evidence of disease, N=1 regional/distant disease). Given that this is an exploratory analysis of a limited sample size from a single institution with no regulatory implications, dichotomous significance testing was not performed and P values were exploratory only.

Figure 1: Timeline of patient course. A patient with Merkel Cell Carcinoma of unknown primary was effectively treated with radiotherapy and pembrolizumab but went on to develop an atrial mass concerning for thrombus versus neoplasm. Liquid biopsy revealed cfDNA with concordant mutations found in the primary tumor tissue which supported metastatic MCC. Although eventually biopsied and confirmed via histologic examination, liquid biopsy was obtained several days prior and resulted ahead of the histological confirmation allowing for prompt radiotherapy planning.

Bonferroni corrections were not applied. R software version 4.0 was used to analyze data from the REDCap database "Merkel Cell Carcinoma Patient Registry" using the REDCap application programming interface and R packages: REDCapR, ggpubr and tidyverse.

Twelve (75%) patients had regional/distant metastasis and three (19%) patients had no clinical or radiographic evidence of disease at the time of blood collection (Table 1). Additional characteristics are summarized in Table 1. cfDNA detection was strongly associated with active MCC disease at the time of sample acquisition (P value = 0.007). MCPyV-negative patients with ln regional/distant disease, at least one matched genetic variant in cfDNA and primary MCC tissue was detected in all patients (7/7). cfDNA was detected in each MCPyV-positive patient with regional/distant disease (5/5). However, only low allelic frequency (<2%) mutations in ATM, NF1, TP53, NTRK, ARID1A, and MET were detected and did not match the mutations found in primary tissue; therefore, clonal hematopoiesis of indeterminate potential cannot be

ruled out (**Table 2**). cfDNA was not detected in patients that had no evidence of disease (3/3) or only localized, sub-centimeter neuroendocrine carcinoma of the skin (1/1). MCC tumor burden significantly correlated with the highest cfDNA variant allele fraction (Pearson's correlation N=0.7, P value=0.046) in the MCPyV-negative population. Only a moderate trend was observed in MCPyV-positive subjects (Pearson's correlation N=0.48, P value=0.33) and was not statistically significant.

In summary, we utilized an FDA-approved commercially available liquid biopsy test to detect cfDNA in MCC and provide the first evaluation of cfDNA in the management of MCC patients. Although Guardant360® was reliable and effective in detecting MCC recurrence and minimal residual disease in MCPyV-negative patients, MCPyV-positive tumors may require liquid biopsy platforms with deeper sequencing and broader coverage due to limited mutations driving virus-positive cancers [6]. In addition, a patient-specific approach utilizing the individual's primary tumor mutations to inform a

personalized cfDNA gene panel may prove useful in detecting cfDNA since MCPyV-positive cancers are generally tumor mutation burden-low [7].

Furthermore, we acknowledge that further large-scale studies of cfDNA analysis with serial blood samples are warranted to evaluate its clinical utility. However, in a rare disease such as MCC, the feasibility of appropriately powered prospective studies to thoroughly evaluate such technologies is limited. Therefore, single-institution case series can establish important proof-of-concept data to guide future studies, as well as early clinical adoption.

In this single-institution case series, liquid biopsy proved clinically useful in the management of several cases and highlights potential scenarios in which cfDNA analysis may be applied. For example, liquid biopsies have the potential to aid clinicians in the confirmation of metastatic disease in the setting of challenging-to-obtain visceral lesions. In one case in our series, a patient developed an atrial mass concerning for thrombus versus neoplasm. Cardiac imaging and cfDNA with concordant mutations found in the primary tumor supported metastatic disease (Figure 1). MCC was subsequently confirmed via histologic examination; however, due to technical challenges of the heart biopsy, liquid biopsy was obtained several days prior and resulted ahead of the histological confirmation. Although tissue confirmation of metastatic disease is the standard of care, there are situations in which the risks of obtaining tissue are quite high. Thus, a highfidelity liquid biomarker may be appropriate for clinical decision-making in certain scenarios.

In addition to potentially functioning as a circulating surrogate for distant disease, liquid biopsies may be able to predict a well-known and particularly concerning subtype: the early rapid progressor. In these patients there is swift development of widespread metastatic disease during the interval from initial work up and management to the first follow up scan at three months. These patients are particularly challenging to manage as progression to extensive-stage disease and rapid clinical decline can limit evaluation for clinical trials and end-of-life planning. In our case series, cfDNA analysis detected high-allelic fraction-disease in one patient despite no definitive evidence of disease on computed tomography performed days earlier. Widespread osseous and hepatic lesions were detected on repeat imaging just 8 weeks later. The patient subsequently succumbed to MCC less than one month following those scans. Thus, a tool that can serve as both a hematologic biomarker of metastatic disease as well as a predictor of rapid progression has obvious potential implications. Although confirmatory studies are needed, these data suggest that liquid biopsies may have several clinical applications for patients with MCC.

Potential conflicts of interest

The authors declare the following potential conflicts. DMM has received honoraria for participating on advisory boards for Checkpoint Therapeutics, EMD Serono, Pfizer, Merck, Regeneron and Sanofi Genzyme. This article reflects the views of the authors only.

References

- Paulson KG, Carter JJ, Johnson LG, Cahill KW, et al. Antibodies to Merkel cell polyomavirus T antigen oncoproteins reflect tumor burden in merkel cell carcinoma patients. *Cancer Res.* 2010; 21:8388-97. [PMID: 20959478].
- Paulson KG, Lewis CW, Redman MW, et al. Viral oncoprotein antibodies as a marker for recurrence of Merkel cell carcinoma: A prospective validation study. *Cancer*. 2017; 8:1464-1474. [PMID: 27925665].
- 3. Blom, A, Bhatia, S, Pietromonaco, S, et al. Clinical utility of a circulating tumor cell assay in Merkel cell carcinoma. *J. Am. Acad. Dermatol.* 2014; 70:449–455. [PMID: 24388423].
- 4. Riethdorf, S, Hildebrandt, L, Heinzerling, L, Heitzer, E, et al. Detection and Characterization of Circulating Tumor Cells in

- Patients with Merkel Cell Carcinoma. *Clin. Chem.* 2019; 3: 462-472. [PMID: 30626636].
- Boyer, M, Cayrefourcq, L, Garima, F, et al. Circulating Tumor Cell Detection and Polyomavirus Status in Merkel Cell Carcinoma. Sci. Rep. 2020; 10: 1612. [PMID: 32005907].
- Harms KL, Zhao L, Johnson B, et al. Virus-positive Merkel Cell Carcinoma Is an Independent Prognostic Group with Distinct Predictive Biomarkers. Clin Cancer Res. 2021; 9:2494-2504. [PMID: 33547200].
- 7. Reinert T, Henriksen TV, et al. Analysis of Plasma Cell-Free DNA by Ultradeep Sequencing in Patients with Stages I to III Colorectal Cancer. *JAMA Oncol.* 2019; 8:1124-1131. [PMID: 31070691].

Table 1. Patient characteristics.

Patient characteristics (N=16)						
Age						
Median age, years (range)	77 (56-95)					
Race	Number (%)					
White	16 (100)					
Sex	Number (%)					
Male	15 (94)					
Female	1 (6)					
Merkel Cell Polyoma Virus (MCPyV) titer status	Number (%)					
Positive ^a	6 (38)					
Negative	10 (62)					
Site of MCC	Number (%)					
Primary cutaneous	13 (81)					
Face	6 (38)					
Extremities	4 (25)					
Trunk	3 (19)					
Unknown primary	3 (19)					
Inguinal lymph nodes	2 (13)					
Parotid gland	1 (6)					
Primary tissue genotyped	15 (94)					
Lymphovascular invasion	7 (44)					
Lymph node involvement	14 (88)					
Clinical stage at presentation (AJCC 8 th ed.)	Number (%)					
Stage I	4 (25)					
Stage IIA	3 (18)					
Stage III	7 (44)					
Stage IV	2 (13)					
Extent of MCC disease at time of LiqBx	Number (%)					
Local	1 (6)					
Regional and/or distant metastasis	12 (75)					
No evidence of disease ^b	3 (19)					
History of immunosuppression	Number (%)					
No	13 (81)					
Yes	3 (19)					
HIV and non-Hodgkin lymphoma ^c	1					
Immunosuppressing medical therapy ^d	1					
Rheumatoid arthritis ^e	1					

^a One patient had MCPyV- positive status confirmed with only IHC of MCC tumor tissue and never received an MCPyV antibody serum titer level test. ^b Three patients with indeterminate disease at the time of liquid biopsy were confirmed eventually to have no evidence of MCC disease, in agreement with no cfDNA detection. One patient with indeterminate disease went on to have metastatic disease in agreement with high cfDNA and TMB-high results. ^c Rituximab and anti-neoplastic chemotherapy for NHL. ^dLongstanding history of Copaxone for demyelinating MS. ^e Methotrexate and Prednisone for RA. Abbreviations: AJCC: American Joint Committee on Cancer; IHC: Immunohistochemistry; LiqBx: Liquid Biopsy; RA: Rheumatoid Arthritis; NHL: Non-Hodgkin Lymphoma; MCPyV: Merkel Cell Polyoma Virus; MS: Multiple Sclerosis; TMB: tumor mutational burden.

Table 2. Genetic alterations detected in cfDNA analysis.

Gene	Alteration	Gene	Alteration	Gene	Alteration	Gene	Alteration	Gene	Alteration	Gene	Alteration
AKT1	E17K	CCNE1	P388del	FANCA	A1346A	MET	T222T	NRAS	D30Y	ROS1	E1642K
ALK	S267S	CHEK2	H339R	FANCA	A1346V	MPL	D97D	NTRK1	S246S	ROS1	I1102T
ALK	E1605E	CHEK2	H339R	FBXW7	15631	MPL	Q98*	NTRK3	A647D	ROS1	E2308K
ALK	V979L	CHEK2	L338R	FGFR1	D793N	MSH6	S63S	PALB2	Y521Y	ROS1	M2001I
APC	G2426E	CHEK2	V211_R217del	FGFR1	Y463H	MTOR	P2241P	PALB2	l182l	ROS1	Q1314Q
APC	K1226K	DDR2	R733R	FGFR1	S794F	MTOR	Y1188Y	PDGFRA	E927K	ROS1	R317Q
AR	G578E	DDR2	G517K	FGFR1	R470C	MTOR	R1890G	PDGFRA	L1089L	ROS1	P181S
AR	E643K	DDR2	R489Q	FGFR2	V702V	MYC	N24S	PIK3CA	SPLICE SITE SNV	TERT	V212V
ARAF	S212S	DDR2	T93P	FGFR2	S619S	NF1	S1124fs	PMS2	R563*	TERT	P614L
ARID1A	Y1435H	DDR2	L204L	FGFR3	V682fs	NF1	Splice Site	PTEN	G129R	TERT	Promoter
ATM	R3008C	EGFR	L1198L	GATA3	P154S	NF1	G2539E	PTEN	P213S	TP53	Q317*
ATM	C2488Y	EGFR	V726V	GATA3	Y63Y	NF1	P2401L	PTEN	L152P	TP53	l195l
ATM	SPLICE SITE	EGFR	V505F	GNAQ	A108T	NF1	K1290K	PTEN	Q17fs	TP53	R196*
ATM	R2832H	EGFR	R255G	GNAQ	Splice Site SNV	NF1	T1273A	RB1	Q93*	TP53	H193R
ATM	D1758fs	ERBB2	H589Y	GNAS	Q195*	NF1	G2334D	RB1	SPLICE SITE	TP53	I50fs
ATM	C1831Y	ERBB2	R190W	HRAS	G13D	NF1	G1519E	RB1	W681*	TP53	R248Q
ATM	G1065R	ERBB2	P1162L	HRAS	G13V	NOTCH1	R353C	RB1	Q736*	TP53	P278L
BRAF	I554T	ERBB2	G19E	JAK3	R899Q	NOTCH1	F474F	RB1	Q685*	TP53	L43*
BRAF	G469R	ERBB2	G131R	JAK3	Q507*	NOTCH1	Q475*	RB1	W99*	TP53	V272M
BRCA1	L1472F	ESR1	L296F	JAK3	E337K	NOTCH1	R1984*	RB1	D156N	TP53	Q136E
BRCA1	P209L	ESR1	E181K	JAK3	R916W	NOTCH1	P460S	RB1	Q383*	TP53	V272M
BRCA2	N2436D	ESR1	Amplification	KIT	P911F	NOTCH1	Q1455Q	RB1	L561R	TP53	R196*
BRCA2	I1151T	EZH2	D635N	KIT	P157S	NOTCH1	C416G	RET	R133C	TP53	l195l
CCND1	R228L	EZH2	V172M	MAP2K1	Q110Q	NOTCH1	l1364l	RET	SPLICE SITE SNV	TP53	V197E
CCND2	Amplification	FANCA	A1347S	MET	R143*	NOTCH1	D742H	RET	L16L	TP53	H193R
										TP53	Y205D
										TP53	H179Y
										TP53	R342*
										TSC1	F199F

The mutations detected in cfDNA analysis with Guardant360 are listed above. The mutations/alterations that matched primary tissue mutations as detected with the SNaPshot-NGS assay are shown in bold. Note that primary genotyping covered a larger gene panel and in the case of low allelic fractions detected on cfDNA, clonal hematopoiesis of indeterminant potential cannot be ruled out as discussed.