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Nuclear mechanosignaling in
striated muscle diseases

Bo Zhang1, Joseph D. Powers1, Andrew D. McCulloch1,2 and
Neil C. Chi1,2,3,4*
1Department of Bioengineering, University of California San Diego, La Jolla, CA, United States, 2Institute
for Engineering in Medicine, University of California San Diego, La Jolla, CA, United States, 3Department of
Medicine, Division of Cardiovascular Medicine, University of California San Diego, La Jolla, CA,
United States, 4Institute of Genomic Medicine, University of California San Diego, La Jolla, CA,
United States

Mechanosignaling describes processes by which biomechanical stimuli are
transduced into cellular responses. External biophysical forces can be
transmitted via structural protein networks that span from the cellular
membrane to the cytoskeleton and the nucleus, where they can regulate gene
expression through a series of biomechanical and/or biochemical
mechanosensitive mechanisms, including chromatin remodeling, translocation
of transcriptional regulators, and epigenetic factors. Striated muscle cells,
including cardiac and skeletal muscle myocytes, utilize these nuclear
mechanosignaling mechanisms to respond to changes in their intracellular and
extracellular mechanical environment and mediate gene expression and cell
remodeling. In this brief review, we highlight and discuss recent experimental
work focused on the pathway of biomechanical stimulus propagation at the
nucleus-cytoskeleton interface of striated muscles, and the mechanisms by
which these pathways regulate gene regulation, muscle structure, and
function. Furthermore, we discuss nuclear protein mutations that affect
mechanosignaling function in human and animal models of cardiomyopathy.
Furthermore, current open questions and future challenges in investigating
striated muscle nuclear mechanosignaling are further discussed.

KEYWORDS

mechanosignaling, nucleus, myocytes, nucleoskeleton, nuclear morphology, LINC
complex, cardiomyopathy, laminopathy

1 Introduction

Striated muscles, including cardiac muscle, skeletal muscle, or insect flight muscles, are
highly organized tissues specifically designed to produce precise forces and movements for a
diverse set of functions. Striated muscle cells (myocytes) comprising these tissues all share
the remarkable ability to both produce and adapt to highly variable microenvironmental
forces. During myocyte contraction, ATP-driven myosin motors on the thick filament of the
sarcomere, the contractile unit of myocytes, cyclically interact with actin filaments to induce
filament sliding and force-generating sarcomere shortening (Powers et al., 2021). For these
molecular-level processes to translate to cell- and tissue-level force production, sarcomere-
generated forces must be transmitted from the sarcomere, to the intermediate filaments of
the cytoskeleton and costamere, and outward to the extracellular matrix (ECM) and
surrounding cells. Similarly, forces generated from outside the cell (e.g., passive stretch,
ECM stiffness) are transmitted into and distributed throughout the cell, putatively through
the same molecular structures.
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Both intracellular and extracellular forces ultimately reach the
myocyte nucleus, where they can be processed into biological
responses that mediate the structural or functional adaptation of
the cell through a process called nuclear mechanosignaling. The
nucleus of striated muscle cells, among many other cell types
(Maurer and Lammerding, 2019), is now considered to be a key
mechanosensor, reacting to forces at the nucleus-cytoskeleton
interface and mediating downstream biological responses. Factors
such as nuclear envelope structure, intracellular nuclear positioning,
and nuclear deformation can influence the mechanosensing ability
and response to mechanical forces (Jabre et al., 2021). Therefore,
myocytes and their nuclei must maintain a mechanical homeostasis
during muscle contractions and deformations to preserve healthy
muscle structure and function.

However, this homeostasis can be disrupted by defects in the
ability of the myocyte nucleus to sense the mechanical forces and/or
by abnormal mechanical forces imposed onto the nucleus. Myocytes
under persistent abnormal mechanical forces, such as chronically
altered contractility or abnormal strains imposed during passive
muscle stretch, can trigger a myriad of biological responses that
often lead to maladaptive cell remodeling or hypertrophy,
contractile dysfunction, and cell death (Dupont et al., 2011;
Kresh and Chopra, 2011). In mammalian hearts, for example,
prolonged high load or deposition of extracellular matrix (ECM)
can lead to cardiac hypertrophy, cardiomyopathy, and heart failure
(Cook et al., 2014; Lyon et al., 2015; Yadav et al., 2021). Moreover,
skeletal muscle cells with defective proteins that mediate the
structural integrity of the nucleoskeleton or the ability of the
nucleus to sense mechanical loading can lead to muscular
dystrophy phenotypes (Bianchi et al., 2018).

Elucidating the role of nuclear mechanosignaling in
mechanosensitive genetic signaling pathways and their
involvement in muscular diseases is currently a major research
area, but there are still many unknown mechanisms about the
transduction of intracellular and extracellular forces into
downstream gene expression via nuclear mechanosignaling. Here,
we briefly review our current understanding of mechanisms by
which mechanical forces and nuclear mechanosensing influence
gene regulatory programs underlying pathological remodeling and
dysfunction of striated muscle cells.

2 The bridge between chromatin and
the extracellular matrix of striated
muscle cells

In healthy striated muscle cells, the pseudo-crystalline structure
of myofilaments, sarcomeres, and myofibrils establishes a highly
organized and uniquely anisotropic subcellular architecture. This
subcellular organization is, in part, maintained by rapid and spatially
controlled protein turnover (Wood et al., 2022) of large
macromolecular complexes, which together provide mechanical
linkages between chromatin, the cytoskeletal and sarcomere
network, and the extracellular matrix (Figure 1). At the cell
membrane-ECM interface, the cell connection to the ECM is
supported by transmembrane protein complexes called
costameres. As depicted in Figure 1, the costamere is a molecular
complex that consists of integrin, vinculin, integrin-linked kinase,

ankyrin, filamin C, talin, desmin, dystrophin, the dystrophin-
glycoprotein complex (DGC), among many others (Bang et al.,
2022). The costamere also helps connect the Z-disk of the sarcomere
to the sarcolemma and the ECM, providing a structural and
mechanical link between the intracellular contractile machinery
and the extracellular environment. Deeper into the cell interior, a
framework of microtubules, intermediate filaments, and F-actin
maintain the connection of the Z-disks throughout the
cytoskeleton and to the nucleoskeleton.

The correct crosstalk between cytoskeleton and nucleoskeleton is
necessary for proper mechanosignaling in straited muscle cells. Muscle-
specific LIM domain protein (MLP) has been shown to be a stretch
sensor in cardiac muscle in both mice and human (Knöll et al., 2002).
MLP KO mice showed severe DCM phenotype and mRNA profile.
Cardiomyocytes from these mice indicate significant disruption in their
cardiomyocyte cytoarchitecture and myofibril arrays (Arber et al.,
1997). It is thought that MLP-TCAP binding is necessary for proper
cardiac muscle mechanotransduction. Loss of MLP-TCAP changes
intrinsic elastic properties of titin, which further affects proper
mechanotransduction from the ECM to the nucleus (Arber et al.,
1997; Knöll et al., 2002). Another example of cytoskeleton-
nucleoskeleton crosstalk is desmin [please see (Capetanaki et al.,
2015; Hnia et al., 2015; Tsikitis et al., 2018) for more comprehensive
reviews on desmin in muscle diseases]. Desmin interfilament
cytoskeleton network connects with the lamin nucleoskeleton either
directly through the nuclear pores or indirectly through plectin-
nesprin3-LINC complex (Georgatos et al., 1987; Lockard and
Bloom, 1993; Frock et al., 2006). This crosstalk is essential for
propagating mechanical stimuli from ECM to the nucleus. Depletion
of either desmin or Nesprin-3 causes nuclear envelope deformation and
chromatin disorganization (also discussed in Section 4, below).
Moreover, desmin-KD cardiomyocytes showed an altered expression
profile that has significant cardiac dysfunction, DCM, hypertrophy
signatures (Heffler et al., 2020). Patients with dysfunctional desmin
mutations showed granulofilamentous accumulations and sandwich
formations and characteristic z-disk deformity (Vrabie et al., 2005;
Claeys et al., 2008). These abnormal structuresmight affect cytoskeleton
and nucleoskeleton crosstalk. Furthermore, in addition to nuclear
mechanical regulation, desmin also serves as a signaling platform to
help its binding partners in significant cellular functions like DNA
repair (with MLH1), endocytosis pathway (with ITSN1), and calcium
hemostasis (with S100A1) (Hnia et al., 2015).

The primary connection between the nucleus and cytoskeleton
in striated muscles is a protein complex called the Linker of
Nucleoskeleton and Cytoskeleton (LINC) complex, which
comprise many proteins that have been associated with
cardiomyopathies, demonstrating its critical role in maintaining
striated muscle function [please see (Stroud et al., 2014; Stroud,
2018; Bang et al., 2022) for reviews on this subject]. As illustrated in
Figure 1, the LINC complex is part of the molecular connections
between the nuclear lamina and the cytoskeletal/sarcomeric
network, which is facilitated (in part) by nesprins at the outer
nuclear membrane and SUN domain proteins (SUN1/2) at the
inner nuclear membrane. In the inner nucleus, chromatin
interacts directly with the LINC complex via emerin, lamins, and
many other proteins. In particular, the interaction between lamin
and desmin in cardiomyocytes is critical for normal heart function.
A lack of lamin A/C expression in mice cardiomyocytes has been
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shown to exhibit disorganized desmin filaments and paranuclear
regions where the desmin filaments are detached from the nucleus
(Nikolova et al., 2004). Many Lamin A/C mutations also show
different degrees of disruption on cytoskeleton structures in both
human and mice models (Sebillon et al., 2003; Mounkes et al., 2005;
Lanzicher et al., 2015; Yang et al., 2021). In a mouse model of dilated
cardiomyopathy caused by the lamin A/C mutation H222P, desmin
loses its localization from Z-disks and intercalated disks and forms
aggregates (Galata et al., 2018). Interestingly, ameliorating the
desmin-associated defects in these cardiomyocytes provided
cardioprotection from the H222P lamin A/C mutation (Galata
et al., 2018), suggesting that desmin is a promising target for
certain laminopathies.

Thus, myocytes, like many other cell types, exhibit tight
mechanical coupling from chromatin to ECM. However, the
anisotropic subcellular ultrastructure of myocytes and their high
degree of force production impose distinct mechanical
environments onto myonuclei that may elicit unique and
underexplored nuclear mechanosignaling pathways underlying
muscle structure and function. In the sections that follow, we
discuss specific proteins known to be involved in the
maintenance of this process, and the relationship between defects
in nuclear mechanosignaling, mechanosensitive gene regulation and
protein synthesis, and striated muscle diseases.

3 Functions of nuclear envelope and
nucleoskeleton proteins in healthy and
diseased myocytes

The nuclear envelope (NE) and nucleoskeleton provide a
connection between the sarcomere, the cytoskeleton, and
chromatin in myocytes, which likely facilitates important
mechanosensitive gene regulatory programs. In the following
subsections, we discuss specific proteins known to be involved in
nuclear mechanosignaling or nucleus-related pathologies in striated
muscle.

3.1 Nesprins

Nesprins provide many of the linkages between the outer
nuclear membrane and cytoskeletal proteins. Nesprins generally
are composed of three domains: a highly conserved C-terminus
which interacts with the SUN (Sad1p, UNC-84) protein at the outer
nuclear membrane (ONM), a spectrin repeat domain, and a diverse
N-terminus that binds to cytoskeleton structures (Stroud, 2018; Liao
et al., 2019). Nesprin-1/2 can also directly bind to actin filaments
(Chancellor et al., 2010; Zhou et al., 2018), while nesprin-1α2
indirectly interacts with microtubule structures through Kinesin 1

FIGURE 1
Schematic of the intracellular environment of a mature cardiomyocyte, illustrating mechanical coupling between the ECM the costamere, the
sarcomere, the nucleoskeleton, and chromatin. Costameres consists of integrins, laminins, and DGCs (among other proteins not depicted here) and
provides linkages between the Z-disks of the sarcomere, IFs in the cortical cytoskeleton, and the ECM, and other cytoskeletal IFs. Desmin, a-actinin, and
Filamin C provide (among other proteins not shown here for clarity) provide structural integrity to the Z-disk, to which myofilaments of the
sarcomere are anchored. ECM, extracellular matrix; IFs, intermediate filaments; DGC, dystrophin-glycoprotein complex; LAP1/2, lamina-associated
polypeptide 1/2; NPC, nuclear pore complex; NE, nuclear envelope.
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(Mislow et al., 2002; Briand and Collas, 2020). Nesprin-3 indirectly
binds to intermediate filaments through plectin (Wilhelmsen et al.,
2005), and microtubules through Microtubule-Actin Cross-linking
Factor (MACF) and Bullous pemphigoid antigen 1 (BPAG1)
(Ketema and Sonnenberg, 2011; Liao et al., 2019). The
interaction between Nesprin and SUN forms the basic structure
of LINC that can propagate forces between the cytoskeleton and the
nucleus.

Nesprin-1/2 mutations have been found to be correlated with
Emery-Dreifuss muscular dystrophy (EDMD) and dilated
cardiomyopathy (DCM) (Zhang et al., 2007; Puckelwartz et al.,
2010). One patient with mutation in the C-terminus of nesprin-1
(p.R374H) experiences DCM with elevated expression of nesprin-1
and lamin A/C (Puckelwartz et al., 2010). Mice that have C-terminus
KASH-domain deleted in nesprin-1 developed EDMD-like and
DCM phenotypes. Gene-edited mice where the C-terminus of
nesprin-1 was deleted experience hindlimb muscle weakness and
cardiac conduction defects (Puckelwartz et al., 2009). Nesprin-1/
2 siRNA knockdown in fibroblasts leads to abnormal nuclear
morphology and mislocalization of emerin and SUN-2 (Zhang
et al., 2007). Surprisingly, nesprin-3 mutation, deletion, or
overexpression in mice and zebrafish does not seem to cause
significant phenotypes (Banerjee et al., 2014).

3.2 SUN proteins

SUN1/2 are expressed in skeletal and cardiac muscles in humans
(Crisp et al., 2006; Puckelwartz et al., 2009; Zhang et al., 2010). They
both have a C-terminal SUN domain, a coiled-coil domain, a
transmembrane (TM) domain, and an N-terminus nucleoplasmic
domain (Stroud, 2018; Sosa Ponce et al., 2020). The SUN domain is
the most conserved domain that interacts with the KASH domain on
Nesprin (Sosa et al., 2012; Wang et al., 2012; Sosa Ponce et al., 2020).
Inter-protein interactions between the coiled-coil domains form the
SUN protein trimer (Sosa et al., 2012; Jahed et al., 2018a; Jahed et al.,
2018b; Sosa Ponce et al., 2020). The N-terminus nucleoplasm
domain binds with emerin and lamin A/C, anchoring the SUN
protein at the NE (Crisp et al., 2006; Haque et al., 2010).

SUN1/2 mutations are rarely associated with cardiomyopathy
(Meinke et al., 2014; Bang et al., 2022). However, patients carrying
SUN mutations can experience significant cardiac abnormalities
when there are also mutations in other LINC proteins (Manila et al.,
1998; Bonne et al., 2000; Vytopil et al., 2003). Neither global
knockout (KO) of SUN1/2 in mice show significant defects in
heart or skeletal muscle (Ding et al., 2007; Lei et al., 2009).
However, double-KO of SUN1/2 in mice leads to premature
death due to central neuron system defects (Lei et al., 2009).
Nesprin-1 but not lamin A/C are mislocalized in SUN1/
2 double-KO mice skeletal muscle cells (Lei et al., 2009). These
results indicate that SUN1 and SUN2 play a critical but potentially
redundant role in Nesprin-1 localization on skeletal muscle NE.

3.3 Emerin

Emerin has a long N-terminus in the nucleoplasmic domain that
interacts with SUN1/2, LAP1, lamin A/C, histone deacetylase 3

(HDAC3), and barrier to autointegration factor (BAF) (Lee et al.,
2001; Demmerle et al., 2012; Shin et al., 2013; Berk et al., 2014).
HDAC3 and BAF help emerin indirectly bind with chromatin, and
the lamin A/C and LAP1 interaction with emerin is thought to be
important for its localization at inner nuclear membrane (INM)
(Mislow et al., 2002; Haque et al., 2010; Guilluy et al., 2014; Shin
et al., 2014; Osmanagic-Myers et al., 2015).

Mutations in emerin are clinically observed to be related to EDMD,
DCM, and other cardiac and skeletal muscle defects (Bione et al., 1994;
Bione et al., 1995; Essawy et al., 2019). Emerin KO mice were recently
developed to study the effect of loss of emerin (Lammerding et al., 2005;
Melcon et al., 2006). Surprisingly, emerin KO mice show no significant
difference in skeletal muscle development and only a mild reduction in
ejection fraction (Melcon et al., 2006; Ozawa et al., 2006; Stubenvoll
et al., 2015). However, LAP1 and emerin double-KO mice showed
exacerbated myopathy, suggesting that LAP1 and emerin may have
compensatory functions in myocytes (Shin et al., 2013).

3.4 Lamina-associated polypeptides (LAP
proteins)

Lamina-associated polypeptide 1 (LAP1) is encoded by the gene
TOR1AIP1. In humans, two isoforms of LAP1 (LAP1B and LAP1C) are
expressed through alternative splicing (Kondo et al., 2002; Santos et al.,
2014). Both LAP1 isoforms locates at the INM and LAP1B has an
N-terminus nucleoplasmic domain that interacts with Emerin, lamin
A/C, lamin B1, and chromatin (Foisner and Gerace, 1993; Shin et al.,
2013; Luithle et al., 2020). It also has a C-terminus that interacts with
Torsin A, B, 2, and 3 (Goodchild and Dauer, 2005; Jungwirth et al.,
2010; Kim et al., 2010). Because of its close interaction with
mechanosignaling proteins at the INM, LAP1 is suspected to be
involved in the nuclear mechanosensing (Shin et al., 2013).
However, the exact mechanism of LAP1 specific mechanosignaling
remains unknown.

Patients with LAP1 mutation p.Arg321* showed significant
decrease in expression of both LAP1 isoforms in mRNA and
Protein level (Fichtman et al., 2019). This specific mutation
truncates the entire transmembrane domain and cytoplasmic
domain. Skin fibroblast from patients showed distorted nuclear
shape and abnormal lamin A/C localizations. Patients also suffer
from congenital heart malformations and a series of other
abnormalities. Another frameshift LAP1 mutation (c.186delG)
leads to an early stop codon (Kayman-Kurekci et al., 2014). The
consanguineous patients carrying this mutation showed muscle
weakness and atrophy, rigid spine, and rigid interphalangeal
hand joints. Only one patient showed decreased cardiac function.
Interestingly, this mutation only exists at the LAP1B isoform while
LAP1C is unaffected. Interestingly, patients’ skeletal muscle biopsy
showed significantly reduced LAP1B and slightly increased LAP1C
expression. The biopsy also showed intact sarcomere organization
but fragmented nuclear membrane, nuclear blebbing, and naked
chromatin. Because of the relatively mild phenotypes in this isoform
specific mutation, this study suggests that LAP1C might be
complementary to LAP1B function and LAP1B is important for
nuclear structure maintenance (Kayman-Kurekci et al., 2014).
Furthermore, mice with conditional LAP1 KO in striated muscle
cells experienced significant cardiac and skeletal myopathy (Shin
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et al., 2013). Skin fibroblasts from global LAP1-KOmice showed co-
mislocalization of emerin and lamin A/C, indicating the potential
role of LAP1 in localizing LINC proteins.

LAP2 has six isoforms derived from alternative splicing. All of the
six isoforms have an N-terminus with a LEM (LAP2, emerin, MAN1)
domain that interacts with BAF that further binds with chromatin (Lin
et al., 2000). The C-terminus of each LAP2 protein is highly variable in
length and possesses different functions. For example, LAP2α has the
longest C-terminus domain which lacks a TM domain but interacts
with lamin A/C, while LAP2β interacts with lamin B1 at the INM and
possesses a TM domain (Foisner and Gerace, 1993; Dechat et al., 1998).
For more details about isoform domains and protein interactions, we
recommend the following review (Dechat et al., 2000a).

Patients with LAP2α p.R690C mutation have been reported with
severe DCM (Taylor et al., 2005). This mutation occurs within the
domain where LAP2α interacts with lamin A/C, and in vitro functional
analysis shows interaction of mutated LAP2α with the pre-lamin A is
significantly compromised compared to thewild-type LAP2α. Interaction
of lamin A/C and LAP2α seems to be the common mechanism for
LAP2α mutations that lead to diseases in other systems as well (Pekovic
et al., 2007; Gesson et al., 2014; Vidak et al., 2018).

3.5 Nuclear pore complex (NPC)

The nuclear pore complex (NPC) mediates the transport of all
macromolecules between the nucleus and the sarcoplasm. NPC is
composed of ~30 different proteins with multiple copies of each
nucleoporin (Cronshaw et al., 2002), and these nucleoporin
constitute three different regions: the cytoplasmic ring, the central
framework, and the nuclear basket (Hurt and Beck, 2015).
NUP153 is a nucleoporin on the nuclear basket that interacts with
SUN1, lamin A/C and lamin B (Liu et al., 2007; Al-Haboubi et al., 2011;
Li and Noegel, 2015). It is suspected that NPCs possess mechano-
activation through the NUP153-SUN1 interaction. It is hypothesized
that force propagation from SUN1 to NUP153 can induce
rearrangement of the basket structure that extends from the NPC
into the nucleus (Donnaloja et al., 2019). Depletion of NUP153, which
alters the localization of Sun1 and F-actin structure, further supports
this hypothesis (Zhou and Panté, 2010).

Mutations on NUP153 are not directly correlated with skeletal
or cardiac myopathy according to our knowledge. However, skin
fibroblasts with lamin A/C mutations within the Ig-fold domain,
which interact with NUP153 shows altered NUP153 localization
(LMNA p.453W) (Al-Haboubi et al., 2011). Another mutation on
lamin A/C (p.A399C) also disrupts the lamin
A/C-NUP155 interaction and causes atrial fibrillation (Han et al.,
2019). Interestingly, ischemic and dilated cardiomyopathy hearts
harvested from patients showed significant increase in NUP153
(Tarazón et al., 2012), however the mechanism behind NUP153 up-
regulation and the downstream effects in these patients is not clear.

4 Nuclear morphology, migration, and
deformation in striated muscle diseases

It is clear that nuclear morphology and deformation play an
important role in regulating gene expression in many different cell

types (Thomas et al., 2002; Kalukula et al., 2022). For example,
extracellular-based mechanical tension across the nuclear
membrane of aortic valve fibroblasts, mediated by the actin
cytoskeleton and LINC complex, facilitates chromatin remodeling
that leads to pro-fibrotic myofibroblast persistence (Walker et al.,
2021). In striated muscle cells, the large magnitude of myocyte
deformations experienced during muscle contraction and relaxation
may facilitate processes involving nuclear migration, chromatin
organization, and mechanosensitive gene expression. For
example, during skeletal muscle contractions, centripetal forces
exerted by myofibrils facilitate the migration of the nucleus to
the periphery of the myofibers (Roman et al., 2017).
Furthermore, myonuclei are readily localized via cytoskeletal
protein networks to sites of myocyte damage to accelerate
sarcomere repair (Roman et al., 2021). Moreover, physiological
myonuclear deformations occur during normal contractions and
passive stretches (Kalukula et al., 2022). A recent study (Ghosh et al.,
2019) demonstrated that intranuclear deformations during
cardiomyocyte contraction depends on the mechanical properties
of the extracellular environment, and that areas in the nucleus with
denser chromatin exhibited greater strain discrepancies between
substrate stiffnesses. This supports the hypothesis that myonuclei
transduce the mechanical properties of the extracellular
environment into epigenetic control via intranuclear strain
distributions that affect chromatin organization and accessibility.

More compliant and fragile nuclei, as well as decoupled nucleus-
cytoskeleton connections, can be consequences of nuclear envelope
protein mutations associated with various myopathies (Zwerger
et al., 2013). In Drosophila larvae with mutated Nesprin,
myonuclei deform differently during contractions compared with
wild-type flies (Lorber et al., 2020). In an aging context,
cardiomyocytes from Drosophila also exhibit decreased Lamin C
expression with age, which coincides with decreased nuclear size,
increased nuclear stiffness, and altered transcriptional programs
(Kirkland et al., 2023). Similarly, aged mice and non-human
primates exhibit reduced nuclear size and circularity, with old
mice also having reduced Lamin C compared to younger mice
(Kirkland et al., 2023). Moreover, mutant lamins in skeletal
muscle associated with laminopathies and muscular dystrophy
cause nuclear envelope rupture and DNA damage that correlate
with disease severity in both mice and humans (Earle et al., 2020).
However, microtubule stabilization reinforced myonuclei in these
diseased muscle fibers, reducing nuclear damage and rescued
myocyte function in viability in cells with mutated lamins (Earle
et al., 2020).

Defects or mutations in proteins comprising the nucleoskeleton
are not only associated with nuclear envelopathies and
laminopathies, but they can also lead to altered nuclear
morphology and mechanotransduction (Janin and Gache, 2018;
Ross and Stroud, 2021). Mice lacking the nuclear envelope
transmembrane protein 39 (Net39) develop skeletal muscle
dysfunction and remodeling that resembles Emery Dreifuss
muscular dystrophy (Ramirez-Martinez et al., 2021). Moreover,
the nuclei in skeletal muscle fibers from Net39-null mice exhibit
significant deformations, changes in chromatin accessibility, and
altered gene expression, while human muscle biopsies from patients
with Emery Dreifuss muscular dystrophy revealed a downregulation
of Net39 (Ramirez-Martinez et al., 2021). [See (Bianchi et al., 2018)
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for a recent review of Emery Dreifuss muscular dystrophy in the
context of nuclear mechanosignaling.]

In the heart, a loss of desmin or nesprin in the LINC complex in
cardiomyocytes causes the nucleus to collapse in response to
neighboring polymerizing microtubules, which can lead to
chromatin reorganization, DNA damage, and altered
transcriptomic expression (Heffler et al., 2020). Similarly,
genetically engineered mice carrying the human p.L13 > R
mutation in the nuclear envelope protein LEM domain
containing protein 2 (LEMD2) develop severe DCM and cardiac
fibrosis, which lead to premature death (Caravia et al., 2022).
Homozygous mice for the p.L13 > R LEMD2 variant exhibit
disorganized heterochromatin, nuclear envelope deformations,
extensive DNA damage, and apoptosis linked to p53 activation
(Caravia et al., 2022), suggesting that LEMD2 is essential for genome
stability and cardiac function.

Finally, we note that defects in cytoskeletal proteins not directly
linked to the nuclear envelope (but associated with other
cardiomyopathies) also can cause changes in nuclear structure.
For example, a loss of filamin C in adult mouse hearts causes
nuclear remodeling and altered gene expression (Zhou et al.,
2020; Powers et al., 2022; Powers and McCulloch, 2022),
suggesting that cytoskeletal proteins not directly interacting with
the nucleoskeleton in myocytes may also influence nuclear structure
and mechanosignaling.

5 Mechanical regulation of chromatin
positioning, epigenetic factors, and
gene expression in myocytes

In the nucleus, chromatin accessibility and its three-dimensional
organization are correlated (Bertero et al., 2019; Bertero and Rosa-
Garrido, 2021). As such, mechanical forces and/or defects in the
nucleoskeleton structure that affect chromatin organization may be
key factors underlying mechanosensitive gene regulation of
pathogenic remodeling or dysfunction in myocytes. Lamin has
been shown to organize the three-dimensional genome from the
nuclear periphery (Zheng et al., 2018). While the conventional view
is that chromatin activity is reduced from the nuclear center to
periphery, a recent study (Amiad-Pavlov et al., 2021) found that
A-type lamin upregulation in instar larva muscle caused chromatin
to collapse toward the nuclear center while also reducing overall
levels of active chromatin. These findings suggest that: 1) lamina
composition regulates the organization of peripheral chromatin, and
2) there may not be a clear spatial distribution of active versus
inactive chromatin throughout the nuclear volume. Furthermore, a
loss of all isoforms of lamin has been shown to expand or detach
specific lamina-associated domains (LADs), and dysregulate the
active and repressive chromatin domains among different
topologically associated chromatin domains (TADs) (Zheng et al.,
2018). Lamin mutations also cause increased Yes-associated protein
(YAP) nuclear entry in muscle stem cells (Owens et al., 2020) and
alter chromatin interactions and depress alternative fate genes (Shah
et al., 2021). With the emerging new findings on lamin A/Polycomb
Repressive Complex (PRC) crosstalk (Marullo et al., 2016), it is
speculated lamin A can also affect gene expression through histone
modifications (Bianchi et al., 2018). PRC proteins are known to form

PRC aggregates that form an intranuclear structure that regulates
long-range chromatin interactions (Lanzuolo et al., 2007; Bantignies
et al., 2011; Cesarini et al., 2015). Polycomb Repressive Complex 2
(PRC2) is responsible for H3K27me3 through the catalytic activity
of Ezh2 (Bianchi et al., 2018). It is speculated that, under mechanical
stress, lamin A is upregulated, leading to more crosstalk with PCR2,
resulting in observed accumulation of H3K27me3 (Bianchi et al.,
2018). This hypothesis also explains the higher mechanosignaling
sensitivity observed in cells carrying lamin A/C mutation: mutated
lamin A/C cannot achieve effective crosstalk with PRC2 which
further leads to a loss of repressive activity on mechanosensitive
genes.

Mechanical stimulation also affects nuclear translocation of
transcription factors. Under mechanical stimulation, myocardin-
related transcription factors (MRTFs), YAP, and extracellular signal-
regulated kinase (ERK) are translocated into the nucleus in myocytes
(Wada et al., 2011; Aragona et al., 2013; Velasquez et al., 2013; Gallo
et al., 2019). Two mechanisms of NPC mediated nuclear translocation
have been proposed: the first hypothesis is that the NPCmight increase
the ring structure diameter under the mechanical force because of its
connection with SUN2 protein. The enlargement of the NPC tunnel
promotes the entry of transcriptional factors. The second hypothesis is
that the mechanical stimulation changes the state of transcriptional
factors which subsequently increase their binding affinities with nuclear
transport receptors (Matsuda andMofrad, 2022). As cells show reduced
mechanosensitivity with dysfunction of NPC, both hypotheses could be
correct (Mofrad and Kamm, 2009; Fichtman and Harel, 2014).

Emerin, LAP2, and MAN1 proteins are all referred to as LEM
proteins. All of them have a LEM domain where they interact with
chromatin indirectly via BAF (Brachner and Foisner, 2011), which
helps facilitate the tethering of chromatin around the nuclear
periphery. Patients with EDMD show less repressed chromatin
and altered chromatin structure in their skeletal muscle
(Ognibene et al., 1999; Fidziańska and Hausmanowa-Petrusewicz,
2003; Mewborn et al., 2010). Under force, emerin monomers are
phosphorylated, unbind from BAF, and form oligomers which
strengthens their interaction with SUN protein and lamin A/C
(Guilluy et al., 2014; Fernandez et al., 2022). Through this
mechanism, emerin alters the chromatin organization under
force. All of the six LAP2 isoforms can bind with BAF and affect
chromatin organization (Wilson and Foisner, 2010). Other than its
BAF interactions, LAP2 can also affect chromatin organization
through interaction with other nuclear proteins. While other
isoforms primarily affect chromatin LAD distribution through
interacting with B type lamins, LAP2α only binds with lamin
A/C (Dechat et al., 2000b; Naetar et al., 2008). Furthermore,
LAP2α also interacts with chromatin-binding behavior of the
high-mobility group N protein 5 (HMGN5), and downregulation
of LAP2α leads to disorganized HMGN5-targeted chromatin
regions (Zhang et al., 2013). In addition to interacting with BAF
and lamins, MAN1 can also repress TGFβ, activin, and BMP
signaling through its interaction with Smad proteins (Pan et al.,
2005). However, this interaction is not myocyte or cardiomyocyte
specific. In fact, MAN1’s function in mechanosignaling and in
myocytes is understudied. It will be interesting to investigate
whether MAN1 can interact with Smad-like proteins in
myocytes and to subsequently map out the resulting gene
regulatory network.
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6 Current open questions and
remaining challenges

There is a growing body of research that wewere not able to include
in this review. Nuclear mechanosignaling has been a rapidly developing
field of research for decades, and it provides an exciting direction in
investigating muscle and heart adaptation, maturation, and disease
models. As the majority of the groundwork for understanding the role
of nuclear mechanosignaling in cell state and function has been laid in
non-muscle cell types, there is now an exciting opportunity to apply this
knowledge to investigations into mammalian myocytes. Doing so will
reveal novel mechanisms of the mechanical regulation of myocyte
structure and function that will be critical in defining disease
mechanisms and investigating new therapies for myopathies.
Considering the well-established gene editing protocols to edit stem
cell-derived myocytes, verifying mechano-sensing protein function and
mechanism in human cells is a particularly promising endeavor for
future and ongoing research. Moreover, much of our understanding of
nucleoskeleton protein function is focused on well-studied proteins like
lamins and emerin, while the functions of understudied proteins (such
as MAN1) remain far from understood. As such, new research on the
variety of other nuclear proteins and their role in regulating nuclear
structure, chromatin organization, and nucleoskeletal mechanics will
construct amore complete picture of themechanosignaling processes of
healthy and diseased myocytes.

Building upon the rich history of muscle research in which
multidisciplinary approaches are embedded, combining multiple
existing methodologies and technologies to answer new and exciting
questions about myonuclear mechanosignaling will be undoubtedly
advantageous. For example, bioinformatics (i.e., quantitative
proteomics and transcriptomics) can be applied to future studies
to gather a more complete picture of effects of mechanical
stimulation and protein mutations in striated muscle mechano-
signaling processes. These types of studies will also inform
computational investigations into mechanosensitive genetic
signaling in myocyte remodeling (Tan et al., 2017; Saucerman
et al., 2019; Khalilimeybodi et al., 2023), which will enable a
more holistic view of nuclear mechanosensing and myocyte
structure/function. Furthermore, studying cells/tissues on a
stationary surface/scaffold does not accurately represent the in

vivo environment of muscles where the cells are constantly
experiencing large forces and deformations. Mechanically
stimulating the cells to better mimic the innate physical
environment can provide more accurate representations of the
mechano-sensing protein functions. Exciting ongoing research in
these directions is sure to have a great impact on our understanding
of the role of the nucleus in mediating muscle function in health and
disease.
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