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Improved characterisation and modelling of measurement errors 
in electrical resistivity tomography (ERT) surveys

Chak-Hau Michael Tsoa, Oliver Kurasb, Paul B. Wilkinsonb, Sebastian 
Uhlemannb, Jonathan E. Chambersb, Philip I. Meldrumb, James Grahamc, 
Emma F. Sherlockd, AndrewBinleya

Abstract

Measurement errors can play a pivotal role in geophysical inversion. Most 
inverse models require users to prescribe or assume a statistical model of 
data errors before inversion. Wrongly prescribed errors can lead to over- or 
under-fitting of data; however, the derivation of models of data errors is 
often neglected. With the heightening interest in uncertainty estimation 
within hydrogeophysics, better characterisation and treatment of 
measurement errors is needed to provide improved image appraisal. Here 
we focus on the role of measurement errors in electrical 
resistivity tomography (ERT). We have analysed two time-lapse ERT 
datasets: one contains 96 sets of direct and reciprocal data collected from a 
surface ERT line within a 24 h timeframe; the other is a two-year-long cross-
borehole survey at a UK nuclear site with 246 sets of over 50,000 
measurements. Our study includes the characterisation of the spatial and 
temporal behaviour of measurement errors using autocorrelation and 
correlation coefficient analysis. We find that, in addition to well-known 
proportionality effects, ERT measurements can also be sensitive to the 
combination of electrodes used, i.e. errors may not be uncorrelated as often 
assumed. Based on these findings, we develop a new error model that allows
grouping based on electrode number in addition to fitting a linear model to 
transfer resistance. The new model explains the observed measurement 
errors better and shows superior inversion results and uncertainty estimates 
in synthetic examples. It is robust, because it groups errors together based 
on the electrodes used to make the measurements. The new model can be 
readily applied to the diagonal data weighting matrix widely used in common
inversion methods, as well as to the data covariance matrix in a Bayesian 
inversion framework. We demonstrate its application using extensive ERT 
monitoring datasets from the two aforementioned sites.

Graphical abstract

Probability density functions (PDF) of different ERT errors for 24 h of surface 
ERT data collected at a wetland site in the UK. The mean repeatability errors 
generally increase with the period of time considered. Reciprocal errors 
generally agree with short-term repeatability errors. The PDF of stacking 
errors shows much lower mean and variance. Using stacking errors as a 
measure of measurement errors may lead to overfitting of data during 
inversion and underestimation of uncertainty.

Keywords: ERT, Resistivity, Measurement errors, Uncertainty, Linear mixed 
effects, Inversion



1. Introduction

Measurement errors are an integral part of scientific observations. Properly 
describing such errors is essential to harness the information about the 
observed behaviour contained in the measurements. Measurement errors 
may be random or systematic. In commonly used geophysical 
inverse methods, measurement errors are assumed to be uncorrelated and 
random. In the context of an inversion, the total data error is given by the 
square root of the sum of squares of measurement errors and modelling 
errors. Sources of modelling errors include inaccuracy of the forward model 
(e.g. due to discretisation of a numerical model) and appropriateness of a 
forward model (e.g. representing a 3D problem using a 2D model). Modelling
errors are relatively well understood because they can be studied by 
comparing forward modelling data of a homogeneous domain with analytical 
solutions (see Binley, 2015). We, therefore, focus here on measurement 
errors, in particular within the context of electrical 
resistivity tomography (ERT).

1.1. The role of ERT measurement errors

Measurement error estimates play a critical role in ERT inversion (see more 
in Section 2.3). They affect the amount of damping imposed on the data and 
also the point at which convergence is attained. Both of the above are 
achieved by weighting data in the objective function, and thus, 
measurement error estimates control whether there will be over-fitting or 
under-fitting of data during inversion. This concept can be illustrated by 
comparing various inverted images. Fig. 1 shows the results of inverting 
synthetic ERT experiments corrupted by 5% Gaussian noise. In the synthetic 
domain, a resistive target is placed between x = 15 m and x = 20 m and the 
topsoil is relatively conductive (Fig. 1a). Inverting the data with 10% 
assumed Gaussian noise leads to under-fitting and a very smooth resultant 
image (Fig. 1b), while assuming 2% noise leads to over-fitting and a number 
of artefacts (Fig. 1d). This simple example shows that inversion results can 
be sensitive to the assumed measurement error levels. Failure to prescribe 
them adequately can significantly change the resultant image.



Fig. 1. Synthetic problem for demonstration: (a) synthetic domain with a more conductive layer near 
the surface and a resistive area between x = 15 m and x = 20 m. The synthetic data from running a 
forward model in (a) is perturbed with 5% Gaussian noise and then inverted by assuming (a) 10% 
linear error model (b) 5% linear error model (c) 2% linear error model. Note that rms error is defined 
as ∑i=1nobs−sim2/n, where obs and sim are vectors of observed/true and simulated transferred 
resistances of length n respectively. Note that the convergence target for all the inversions is a chi-
squared statistic of 1.

Attempts have been made to account for data errors in a more sophisticated 
manner. Robust inversion (Kemna, 2000, Morelli and LaBrecque, 1996) 
adjusts error weights when there are apparent outliers. It is important, 
however, to notice that the outliers are linked to a specific error weight 
derived a priori by the error model—they may not be outliers anymore if a 
different error model is used. Similarly, in Bayesian inversion (e.g. Irving and 
Singha, 2010, Ramirez et al., 2005), one needs to prescribe the estimated 
data uncertainty in the likelihood function. While different inversion 



strategies handle measurement errors differently, a robust and accurate 
prescription of measurement errors is essential to obtain reliable and 
realistic inversion results.

The impact of measurement errors is not limited to inversion—it is a natural 
extension of stochastic inversion where posterior models are estimates of 
uncertainty, whereas deterministic inversion results (or an ensemble of 
them) can further be used to estimate uncertainty via Monte Carlo 
approaches. Therefore, uncertainties in measurements would propagate to 
uncertainties of model estimates. Similarly, if the inversion results are used 
to detect or monitor subsurface processes, or to infer hydrological 
properties, their associated errors can be traced back to measurement 
errors. It is apparent that measurement errors propagate through the various
stages of a hydrogeophysics study workflow. With the heightening interest in
uncertainty estimation within hydrogeophysics (Binley et al., 2015, Huisman 
et al., 2010, Linde et al., 2015, Rubin and Hubbard, 2005, Vereecken et al., 
2006), better characterisation and treatment of measurement errors is 
necessary to provide better image appraisal.

1.2. Measurement errors in ERT: a review

The handling of measurement errors in ERT surveys, despite its importance 
as outlined above, is variable. The simplest (but not necessarily the most 
reliable) method of assessing a measurement error in an ERT measurement 
is through the use of stacking, i.e. the repeated measurement of transfer 
resistance through a number of cycles of current injection. Such stacking 
assessment offers valuable in-field data quality appraisal but, as shown later,
may be of limited value in quantifying a data weight for ERT inversion. 
Alternatively, repeatability errors can be obtained by multiple, separate 
measurements of transfer resistance over time. Usually this involves a 
repetition of the entire ERT measurement sequence sometime after the first 
attempt. Reciprocity checks are another method of measurement error 
assessment. Reciprocity is the general physical principle where the switching
of source/sink and observation locations would yield the same response 
(Parasnis, 1988). It is, for example, utilised in 
groundwater hydrology (Barker, 1991, Bruggeman, 1972, Delay et al., 
2011, Falade, 1981). Reciprocity checks for ERT are conducted by swapping 
the current and potential electrodes. Reciprocity breaks down when the 
ground response is non-linear (i.e. non-ohmic for ERT) or time-dependent 
(i.e. something changes between forward and reciprocal measurements).

As LaBrecque et al. (1996) point out, both repeated and reciprocal 
measurements are measures of precision not accuracy. Sources 
of systematic error are not accounted for explicitly in measurements of 
precision – some procedures may miss them entirely while others lump them
as random errors. Reciprocal errors treat the swapping of electrodes as a 
way to account for some systematic errors while repeatability errors do not 
consider them at all. Therefore, reciprocal errors may be more useful to 



eliminate bias caused by using a particular pair of electrodes as transmitter 
and another as receiver. The most commonly used errors in ERT, however, 
are stacking errors and they are misreferred as repeatability errors (Day-
Lewis et al., 2008). Modern ERT instruments are equipped with stacking 
capability and they automatically return stacking errors. In other words, 
stacking errors can be obtained without re-running the measurement 
procedure, which is very attractive in time-sensitive or time-consuming 
surveys.

We surveyed a number of published ERT studies and report their description 
of error analysis in Table 1. From Table 1 we see that reciprocity is a 
commonly used measure, while a small fraction of field and experimental 
studies do not report their treatment of errors at all. Studies often attribute 
their exclusion of reciprocal errors to logistical constraints and argue that 
reporting stacking errors is sufficient. After errors are obtained, an error 
model (usually a linear relationship linking error to transfer resistance) is 
established (Binley et al., 1995). Once obtained, such a relationship may be 
used to predict the errors of individual measurements and thus contribute to 
the data weight in the inverse modelling. Some authors, however, assign 
observed errors directly in the inverse modelling, although this is potentially 
flawed unless statistical robustness of the quantified error is established 
(recognising that for most surveys errors are only computed from two 
observations). This practice also makes it impossible to identify 
“disinformative data” (Beven and Westerberg, 2011). From the reported 
error models, it is observed that error levels are generally higher for cross-
borehole surveys, largely due to more challenging electrode contact 
conditions (compared to most surface ERT array surveys). Prior to fitting the 
error model and carrying out inversion, measurements with high errors are 
often eliminated; sometimes more than 20% of the collected data are 
removed. For time-lapse studies, it is quite common that the entire time 
series of an individual resistance measurement is removed if any part of the 
time series is deemed to be an outlier. For recent work on time-lapse cross-
borehole ERT, see Schmidt-Hattenberger et al. (2016) and Yang et al. (2014).









Error models are generally a function of average measured transfer 
resistance (i.e. the error in a transfer resistance increases with the 
magnitude of transfer resistance) because of the well-known proportionality 
effects (Aster et al., 2005) in DC resistivity measurement errors (Binley, 
2015, Binley et al., 1995). In studies where errors are accounted for, there is 
generally a preference to use model-predicted errors rather than individually 
observed errors since error assessment based on two observations is 
potentially unreliable. Some studies mitigate this potential issue by binning 
(or grouping) data with similar transfer resistance together before fitting an 
error model (Koestel et al., 2008, Robinson et al., 2015, Wehrer and Slater, 
2014). This practice should give more robust error estimates, although the 
error model may vary with the number of bins used.

To better characterise measurement errors, more understanding of the 
factors that contribute to them is needed. Current practice leaves many of 
the assumptions in ERT measurement errors modelling unchallenged. For 
example, do measurement errors show temporal or spatial correlations? Can 
we improve from using linear measurement error models? Are stacking 
errors and reciprocal errors comparable indicators of measurement errors? 
ERT surveys typically use each of the electrodes for multiple 
measurements. Ramirez et al. (2005) notes that this may increase the 
probability that measurement errors are correlated, however, there has been
no published work addressing this issue.

1.3. Recent work on ERT measurement errors

Attempts have been made to handle potential systematic effects of 
measurement errors. Zhou and Dahlin (2003) studied the effect of spacing 
errors for 8 types of common 2D resistivity arrays. They confirm the common
observation that ERT error outliers are often correlated with high contact 



resistances for some of the electrodes used in a measurement. Wilkinson et 
al. (2008) developed an approach to filter out configurations that are highly 
sensitive to geometric error in crosshole ERT surveys. Similarly, Wilkinson et 
al., 2016, Wilkinson et al., 2010a developed techniques to recover 
movements of permanently installed electrodes so that active landslides can 
be monitored using time-lapse ERT data only. As the popularity of time-lapse
surveys increases, specific methods to handle and characterize 
measurement errors in large time-lapse datasets emerge. Deceuster et al. 
(2013) developed a method to automate the identification of changes in 
electrode contact during time-lapse ERT experiments. More recently, Mitchell
and Oldenburg (2016)developed a 4-step data quality control methodology 
for very large ERT datasets.

Meanwhile, Kim et al. (2016) proposed a new measurement protocol in which
self-potential (SP) data are obtained immediately prior to measuring DC. It 
involves swapping the polarities of the two current electrodes in each 
measurement to obtain a positive and a negative potential (i.e. thus a 
forward and backward resistance) for each measurement. This protocol 
claims to account for SP effects in DC measurements and eliminate 
distortions in the DC resistivity potential field caused by all unknown 
mechanisms including ambient noise.

1.4. Outline of this work

This paper addresses a number of practical issues related to the treatment of
measurement errors in ERT inversion. We compare stacking, repeatability, 
and reciprocal errors in their utility to describe errors in measurements. We 
also study whether measurement errors are correlated in time and/or in 
space. We then hypothesize that measurement errors in ERT are not only 
linearly dependent on transfer resistances, but that the electrodes used in 
taking each measurement can be used as a grouping variable to improve 
error characterisation. We show that using the new error model leads to 
better inversion results and uncertainty estimates through synthetic 
and field experiments data. We first describe the datasets and analysis 
methods in 2.1 Dataset description, 2.2 Analysis methods. Then we describe 
the ERT inversion and uncertainty estimation methods used in 2.3 Inversion 
methods, 2.4 Error propagation and uncertainty quantification 
methods. Section 3 reports results for the error analysis. We introduce a new
error model based on linear mixed effects models and grouping of electrodes
in Section 4, and Section 5 shows results of inversion and uncertainty 
quantification. We then discuss the implications of the results in Section 6, 
and provide conclusions and recommendations in Section 7.

2. Approach

With recent advances made in the development of automated ERT systems, 
ERT experiments can be conducted remotely, allowing the collection of a 
large volume of background ERT measurements for quality control purposes. 
These rich datasets can be exploited to investigate the behaviour of 



measurement errors through statistical analysis. They provide opportunities 
to explore errors in ERT datasets, including the assessment of temporal and 
spatial correlation of errors. We scrutinize two large field datasets through 
statistical analysis of different types of measurement errors.

First, we examine the probability density functions for each error type, 
namely stacking, reciprocal and repeatability errors. This allows us to 
understand the mean and variance of their distributions. Next, we use 
autocorrelation and correlation coefficient analysis to study the sequential 
and spatial correlation of errors between measurements. Insights about the 
potential correlation in measurement errors can help in developing improved
error models. We study the validity of repeatability errors by computing the 
autocorrelation and correlation coefficient of the departure from the mean of
repeated measurements instead of using the repeatability errors directly. If 
repeatability errors are purely random, using any subset of the set of repeats
for each given measurement should give the same errors and thus the 
departure from the mean should exhibit little correlation. We compare 
inversion of ERT data using different error types and models on identical 
datasets to illustrate how they manifest in inversion results. Lastly, we obtain
uncertainty estimates of inversion results using a Monte Carlo simulation 
procedure. This allows us to visualize how measurement errors propagate 
into uncertainty in model estimates (in this study we assume there are no 
other error sources).

2.1. Dataset description

A synthetic dataset, along with two field datasets collected by the 
British Geological Survey(BGS) are used for this work.

2.1.1. Synthetic dataset

A synthetic dataset was created for use as an illustrative example using the 
synthetic domain and array of Fig. 1. The array consists of 25 2-m spaced 
surface electrodes. As seen in Fig. 1(a), the resistivity structure of the 
domain consists of a 1 m thick, 100 Ωm top layer. Beneath it is a 200 Ωm 
formation, in which a 500 Ωm unit protrudes vertically.

We created a forward model of dipole-dipole transfer resistances on the 
synthetic domain using R2 (http://www.es.lancs.ac.uk/people/amb/Freeware/
R2/R2.htm) to obtain measurement error-free data. Two sets of synthetic 
data are generated by adding noise to these data: one with 2% Gaussian 
noise everywhere, and the other with 10% Gaussian noise on measurements 
involving three of the electrodes on the left (x = 6 m, 14 m, 22 m) and 2% 
noise everywhere else. The second noisy dataset was created to simulate 
the effect of a non-uniform error model that may be typical of surveys in 
areas with variable electrode contact or quality.

2.1.2. Boxford dataset



The first field dataset is from the Boxford Water Meadows Site of Special 
Scientific Interest in Berkshire, United Kingdom (Chambers et al., 
2014, Musgrave and Binley, 2011, Uhlemann et al., 2016). The collection of 
the data was automated using the BGS's PRIME system. The ERT array is 
next to the Northern Array used in Uhlemann et al. (2016), having 32 
electrodes spaced at 0.6 m intervals. A dipole-dipole type measurement 
configuration was chosen with dipole lengths (a) of 0.6 m to 2.4 m, and 
dipole separation multipliers (n) of 1 to 8. The measurement sequence 
includes 516 pairs of reciprocal measurements. Less than 15 min was 
needed to complete the measurement sequence and each of the 
measurements is obtained by stacking multiple readings from the same 
cycle of current injection to improve signal-to-noise ratio. The measurement 
sequence was repeated 96 times within a 24 hour period starting at 
5:43 a.m. on 19th November 2015, yielding 96 independent repeats of full 
reciprocal data. Each of the repeats has 516 measurements (or pairs of 
reciprocals). During the 24-hour period, the air temperature in the area 
varied between 7 and 10 °C and there was no recorded precipitation.

2.1.3. Sellafield dataset

A full-scale 3-D time lapse cross-borehole ERT trial to monitor simulated 
subsurface leakage was undertaken at a UK nuclear licensed site in 
Sellafield, Cumbria, United Kingdom (Kuras et al., 2016). The data collection 
setup includes four 40 m deep boreholes and 160 electrodes. The data 
collection cycle of each ERT frame is less than a day, and each day’s data 
includes 51,302 dipole-dipole measurements, including 12,481 pairs of 
reciprocals. The monitoring spanned a 2-year period with 246 days of data 
collection during that time. The first nine months of monitoring includes 
three stages of conductive leak simulant injection, while the remainder was 
designed for long-term background monitoring. The collection of data was 
automated using BGS's ALERT system. In order to be consistent with the 
autocorrelation analysis of the Boxford dataset, we divide the data into two 
subsets of 96 days (one encompasses all three injection periods while the 
other is during long-term background monitoring) for autocorrelation 
analysis.

2.2. Analysis methods

2.2.1. Definition of measurement error types

Stacking errors are given by the averaging of ‘stacks’ obtained by the ERT 
data collection equipment. Usually they can be output alongside the 
measured transferred resistance from the data collection console.

For reciprocal errors, if Rf is the forward (normal) transfer resistance for a 
particular quadrupole and Rr is the reciprocal of that measurement where its 
current and potential dipoles are swapped with the forward measurement, 
then the mean absolute transfer resistance (| R |) and absolute errors 
(| e |) are simply:



As a proxy for repeatability errors, the departure from the mean of the j-th 
repeated reading for measurement number i (di,j) is given by:

where di¯ is the mean value for the i-th measurement.

2.2.2. Statistical analysis of measurement errors

The probability density function of an error type for a dataset is obtained by 
fitting a Gaussian distribution to the population of errors. Autocorrelation is 
defined as the correlation among a sequence of values at a given lag L:

where E[] is the expected value, Xt is a time-series, Xt+L is a time-series 
shifted by lag L, and X¯ and var(Xt) are the mean and variance of the time 
series respectively. q is the number of repeats for a measurement.

Correlation analysis can be used to study the potential correlation between 
measurement errors. The correlation coefficient, r, for the correlation 
between arbitrary variables x and y is defined by the products of standard 
scores (also known as z-scores or standardized variables) as follows:

For the purposes of our analysis of measurement error 
correlations, x and y are series of two measurements that we consider 
and q is the number of repeats. x¯ and y¯ are the means 
of x and y respectively, while sx and sy are the standard deviations.

2.3. Inversion methods

To obtain 2D tomograms from electrical measurements from the synthetic 
study and Boxford site, we use the finite-element based, Occam-type, two-
dimensional electrical resistivity inversion program R2 
(www.es.lancs.ac.uk/people/amb/Freeware/R2/R2.htm). The three-
dimensional inversion (Sellafield dataset) was performed by using the 
commercial code Res3DInvx64 (Loke and Barker, 1996). The inverse 
problem is posed as a minimization problem, where the objective function is 
defined as



where d are the data vector (e.g. measured apparent resistivities), F(m) is 
the set of simulated data using the forward model and estimated 
parameters m. Wd is a data weight matrix, which, if we consider the 
uncorrelated measurement error case and ignore forward model errors, is a 
diagonal matrix with entries equal to the reciprocal of the standard deviation
of each measurement. Forward modelling errors are also added to the 
diagonal of Wd. Usually a forward model is run for the computational grid 
using a known homogeneous domain. Any discrepancy between the 
computed and known apparent resistivity values (i.e. data errors) will be 
added to the reciprocal of Wd by means of square root of sum of squares. In 
this study, we assume measurements errors are the only source of data 
errors while other sources, such as forward modelling errors and field 
procedural errors, are negligible. To regularize the minimization problem, a 
model penalty term Φm = αWm

TWm is added to impose the spatial 
connectedness of the parameter cell values. α is a scalar that controls the 
emphasis of smoothing.

We can state a desired level of data misfit as Φd = N, where N is the number 
of measurements (Binley, 2015). In an Occam's solution, we seek to achieve 
this desired data misfit subject to the largest possible value of α. The process
is achieved by utilizing the Gauss–Newton approach, which results in the 
iterative solution of

where J is the Jacobian (or sensitivity) matrix, given by Ji , j = ∂ di/∂ mj; mk is 
the parameter set at iteration k; and ∆m is the parameter update at 
iteration k. For the DC resistivity case, the inverse problem is typically 
parameterized using log-transformed resistivities.

The resolution matrix for the inversion is given by:

2.4. Error propagation and uncertainty quantification methods

We follow the Monte Carlo uncertainty propagation procedure of Aster et al. 
(2005) outlined below. The goal is to simulate a collection of noisy data 
vectors and then examine the statistics of the corresponding models. The 
advantage of this method is that it can readily applied to field data where no 
repeats are available. The procedure is achieved by the following steps:

1



Propagate the inverse solution m¯ into an assumed noise-free 
baseline j × 1 data vector d (where j is the size of number of 
measurements) using the forward model G:

2

Generate q realizations (i = 1, …, q) of noisy data about m¯ using the 
error model

where ε is the j × 1 vector of error levels predicted by the error model 
and Z is the standard normal distribution variable and .* is element-wise 
multiplication.

3

Invert the q realizations (i = 1, …, q) of noisy data using the inverse 
model

4

Let A be a q × m matrix where the i-th row contains the departure of 
the i-th model from the baseline inverse solution m¯

5

An empirical estimate of the model covariance matrix is given by

(12)

6

95% confidence interval about m¯ is given by

7

Similarly, the coefficient of variation of the estimate is given by

where ./ is element-wise division.

3. Analysis of errors in field datasets



In this section, we report results from the statistical analysis of different 
types of errors with the methods outlined in 2.1 Dataset description, 2.2 
Analysis methods. Probability density functions (PDFs) show the ranges of 
these errors, while autocorrelation and correlation coefficient analysis 
reveals the potential autocorrelation of errors for successive repeated 
measurements and correlation of errors between pairs of measurements, 
respectively.

3.1. Probability density function of reciprocal and repeatability errors

Before detailed statistical analysis of measurement errors is performed, we 
first examine the probability density function of errors obtained from the 
Boxford dataset. Since the measurements are repeated 96 times, we can 
define repeatability errors based on averaging different numbers of 
repeats. Fig. 2 shows the repeatability errors based on measurements 
obtained with a 30 min, 1 hour, 2 hour, and 24 hour window. They 
correspond to averaging 2, 4, 8, and 96 repeats. The mean of the PDF 
increases with greater time windows while the variance first decreases, then 
increases for the 24 hour repeatability error. When large windows of 
averaging are used, changes in the subsurface condition such as diurnal 
changes in temperature can be mistaken as errors. This is supported by the 
observed increase in the mean. For the 24 hour sampled PDF, the lower tail 
overlaps that of the 1 hour and 2 hour PDFs while having a much greater 
spread. Clearly some measurements do not vary much during the 24 hour 
monitoring period while others do: measurements sensitive to the shallower 
subsurface will be more susceptible to external influences (e.g. temperature,
evaporation, etc.).



Fig. 2. (a) Comparison of stacking errors, repeatability errors, and reciprocal 
errors for the Boxford dataset by plotting probability density functions. The 
PDFs of reciprocal errors and repeatability errors are comparable to each 
other. The stacking errors PDF, however, show very low mean and low 
variance. Using stacking errors for measurement errors characterisation may
lead to significant underestimation of uncertainty and over-fitting of data. (b)
Comparison of stacking errors, repeatability errors, and reciprocal errors for 
the Sellafield dataset. The PDFs for Sellafield show greater variances than 
those for Boxford. Since a two-week repeatability cycle is used, the 
repeatability errors are much greater than reciprocal errors. In general, the 
stacking errors are more than an order-of-magnitude smaller than the 
reciprocal errors, indicating there may be significant underestimation of 
errors if they are used as error weights. The mean and standard deviation of 
each fitted normal distribution is shown next to the legend.

Fig. 2 also shows the PDF for stacking errors for each of the measurements 
as well as the reciprocal errors from individual datasets. The reciprocal errors
PDF essentially overlay that of the 30 minute repeatability errors. Their 
similarities may be explained by the fact that both of them are obtained from
averaging pairs of measurements. It is noteworthy, however, that both the 
mean and variance of the PDF for reciprocal errors (which is collected in a 
15 minute timeframe) is slightly higher—which is opposite to our general 
observation that repeatability errors increases with the size of the averaging 
window. Reciprocal errors may be sensitive to other error contributions not 
registered by repeatability errors, or the process of taking a reciprocal 
measurement introduces an additional source of error.

The stacking errors PDF overlays the low-end of the PDFs of repeatability 
errors while having a very small variance. In other words, stacking errors do 
not register any of the high-error measurements that appear in the true 
assessment of repeatability or in reciprocal errors. For instance, the PDF 
shows that almost none of the stacking errors are higher than 10− 4 Ω, which 
covers a majority of the area under the other PDFs. This shows that stacking 
errors are potentially an inadequate measure for describing the true quality 
of ERT measurements.

The second portion of Fig. 2 shows the PDF of stacking, reciprocal, and 2-
week (which correspond to six frames) repeatability errors for the Sellafield 
dataset. In general, the ranges of magnitude of the errors are greater due to 
ground conditions and contact resistances. Similar to the Boxford results, we 
find that the stacking errors are an order of magnitude smaller than 
reciprocal errors. Since a larger time window (i.e. days) is used to obtain the 
repeatability errors, they are significantly greater than the reciprocal errors.

3.2. Autocorrelation analysis

Autocorrelation analysis is used to investigate whether there is “memory” 
(i.e. correlation in time) in ERT measurement errors. We compare 
autocorrelation plots between the (i) departure from the mean and (ii) 



reciprocal errors of individual measurements for the Boxford dataset in Fig. 
3. Each grey translucent line represents the autocorrelation function of a 
measurement, while the red line is the mean averaged across all 
measurements. The red hashed regions highlights the area with a 
autocorrelation value below the critical Pearson’s correlation coefficient 
(Pearson and Hartley, 1970), which is around 0.2 for 96 timesteps. For the 
departure from the mean, the autocorrelation drops to 0.5 on average at lag 
1 and then decreases steadily. This is likely to be due to the presence of 
diurnal temperature effects within the 24 hour data collection cycle. 
Individual reciprocal errors, show negligible autocorrelation for all lag 
numbers (i.e. within the hashed region). Thus, we can conclude the 
individual reciprocal errors between any two repeated measurements are 
independent from one another for this survey. From the above, we see that 
the assumption of uncorrelated errors is appropriate for reciprocal errors but 
not so much for long-term repeatability errors.

Fig. 3. Autocorrelation of (a) departure from the mean (as a measure of repeatability errors) and (b) 
reciprocal errors for the 96 datasets collected continuously within 24 h at the Boxford site. The number
of lags is on the horizontal axis (here 1 lag = 15 min). Each grey translucent line plots the 
autocorrelation of one of the 516 ERT measurements as a function of lag. The red line denotes the 
mean autocorrelation. For each autocorrelation plot, 96 datasets are considered. The hashed region 
has insignificant correlation according to the critical Pearson's test (around ± 0.2).

Fig. 4 shows the autocorrelation of (a) departure from the mean and (b) 
reciprocal errors for the 96 datasets collected continuously at the Sellafield 
site encompassing the three injection periods (22th Jan 2013–3rd Nov 2013) 
and those for another 96 datasets during the long-term background 
monitoring period (i.e. no injection, 5th Nov 2013–31st Mar 2014). We can 
see much greater autocorrelation of errors at Sellafield than at Boxford. Like 
in the Boxford dataset, the departure from the mean shows greater 
autocorrelation than individual reciprocal errors, both for injection and long-
term background monitoring. In general, however, the departure from the 
mean and reciprocal errors during background monitoring reach insignificant
autocorrelation sooner than during injections. While the 96 datasets at 
Boxford were collected in less than 24 h, the two groups of 96 datasets 



examined above were collected over a period of months. It is certain that the
subsurface condition had changed during the monitoring period due to 
injection, dilution and dispersal of tracer, as well as regional groundwater 
and vadose zone changes (see Kuras et al., 2016 for details).

Fig. 4. Autocorrelation of (a) departure from the mean (as a measure of repeatability errors) and (b) 
reciprocal errors for the 96 datasets collected continuously at the Sellafield site encompassing the 
three injection periods (22/1/2013–3/11/2013). The number of lags is on the horizontal axis (here 1 
lag = ~ 2 to 3 days). Each grey translucent line plots the autocorrelation of one of the 12,481 ERT 
measurements as a function of lag. The red line denotes the mean autocorrelation. For each 
autocorrelation plot, 96 datasets are considered. The hashed region has insignificant correlation 
according to the critical Pearson's test (around ± 0.2). Similarly, (c) and (d) show the same for the 
long-term background monitoring period (i.e. no injection, 5/11/2013–31/3/2014).

3.3. Correlation coefficient analysis

Although measurement errors are commonly assumed to be uncorrelated in 
ERT, previous studies have highlighted the potential of correlation in 
measurement errors because ERT surveys typically use the 
same electrodes for multiple measurements (Ramirez et al., 2005). We have 
computed the correlation coefficient matrix for departure from the mean and
reciprocal errors for the Boxford dataset. We subdivide all the correlation 
coefficients into two groups: one group consists of pairs of measurements 
that share one or more electrodes and the other consists of all measurement
pairs. Next, we grouped departure from the mean or reciprocal errors as a 
function of dipole-dipole separation multiplier n and plot the mean of each 
group. We show in Fig. 5 that for all n used for the Boxford dataset, the mean



correlation coefficients for measurement pairs that share one or more 
electrodes are always higher than the means for all pairs. The mean 
correlation coefficients for reciprocal errors are orders of magnitude smaller 
than those of departure from the mean. The effect of electrode sharing is 
also pronounced for reciprocal errors—the mean correlations of all reciprocal 
errors pairs are negligible while those for pairs that share one or more 
electrodes are consistently higher. Note that electrode sharing only occurs in
~ 10% of all pairs. Fig. 5shows that by taking into account the correlation of 
the electrodes used to make multiple measurements, ERT measurement 
errors may be better modelled. With the autocorrelation results, we also 
show that the departure from the mean exhibits more spatial and temporal 
correlation than the reciprocal errors.

Fig. 5. Mean correlation coefficient of departure from the mean (as a measure of measurement errors) 
and reciprocal errors for measurement pairs from the Boxford dataset as a function of dipole 
separation multiplier n. For both departure from the mean and reciprocal errors, mean correlation 
coefficients are distinctively higher for measurements that share electrode(s) in their quadrupoles than
the mean correlation coefficients for all measurements, indicating by considering the effect of using 
each electrodeto make multiple measurements may improve error models. Also, note that the 
reciprocal errors have strikingly lower correlation coefficients than the departure from the mean. 
Electrode sharing occurs in ~10% of all pairs.

4. A new error model

4.1. Model definition and implementation



Our error analysis reported in Section 3 revealed that the combination 
of electrodes used appears to influence ERT measurement errors. Therefore, 
we developed a new error model based on linear mixed effects (LME) models
to group measurement errors by the electrodes used to obtain them, which 
allows us to incorporate the effects of electrode combinations.

The linear mixed effect model is a powerful statistical tool in settings where 
repeated measurements are made on the same statistical units (longitudinal 
study), or where measurements are made on clusters of related statistical 
units (Bates et al., 2015, Diggle et al., 2015, Pinheiro and Bates, 1988, West 
et al., 2007). It is especially useful to group qualitative variables that 
influence the data. In general, a mixed effect model is given by

where y is the n-by-1 response vector, and n is the number of 
observations; X is an n-by-pfixed-effects design matrix, and p is the number 
of fixed effect variables; β is a p-by-1 fixed-effects vector and q is the 
number of random effect variables; Z is an n-by-q random-effects design 
matrix; and b is a q-by-1 random-effects vector. ε is an n-by-1 unknown 
vector of random, independent and identically distributed errors.

Linear mixed effect models can now be readily implemented using the 
MATLAB® statistics and machine learning toolbox and the lme4 package for 
R (Bates et al., 2015). In this paper, we model measurement errors in ERT by
treating transfer resistances as fixed effects and each of the electrodes used 
(A, B, M, N) as grouping variables. The above model was implemented in 
MATLAB® (see Supplementary information for more details).

The linear mixed effect model essentially establishes a hierarchy or grouping
when fitting the measurement errors. Fitting is achieved by both optimizing 
fit within each cluster, while the covariate vectors link the fixed and random 
effects between clusters. The clustering introduces additional degrees of 
freedom that allow a better fit of measurement errors than commonly used 
linear models. An illustrative example of the LME grouping formulation can 
be found in the Supplementary information, along with details for fitting the 
LME error model to the Boxford and Sellafield field datasets. The evolution of
the error model coefficients with time is also described.

4.2. LME error model behaviour for time-lapse ERT measurements

A longitudinal survey is a correlational research study that involves repeated 
observations of the same variables over long periods of time. One of the 
original uses of LME models is to handle longitudinal data in tracking studies 
to eliminate potential bias of using the same samples. For example, in a drug
study the health indicators of the same group of patients are sampled 
multiple times during a long period. The times at which they are sampled can
be used as an additional grouping variable in the LME model. With the 



increased popularity of long-term monitoring using ERT and 
other geophysical methods, it may be beneficial to treat measurement errors
as longitudinal data too. In Fig. 6, we compare fitting observed measurement
errors in the 96 repeat datasets from Boxford individually (i.e. obtaining 96 
LME equations) and as longitudinal data (i.e. obtaining one LME equation, 
with the repeat number as an additional grouping variable). The scatter plots
show that a much better fit is obtained by fitting each of the 96 datasets 
individually. In other words, treating ERT measurement errors as longitudinal
data does not better characterise them. Measurement errors for time-lapse 
datasets should instead be characterised on a frame-by-frame basis.

Fig. 6. Comparison of fitting reciprocal errors of time-lapse data as (a) individual datasets (fitting each 
dataset individually with a different LME model) and (b) longitudinal data (fitting all data with one LME 
model). The above shows that it is much better not to treat errors as longitudinal data.

5. Comparison of error models using image appraisal

Improvements in the measurement error model are only useful if they can 
lead to better inversion results. We applied the new error model to the 
synthetic data and field data from the Boxford and Sellafield sites. Also, we 
will consider the resolution matrix and model variance from Monte Carlo 
simulations to see whether using the new error model can give additional 
insight to data and reduce uncertainty.

5.1. Synthetic data

Using the synthetic domain introduced in Section 2.1.1, we compared the 
inversion results and the corresponding resolution matrices and uncertainty 
estimates using different error models. Note that since Fig. 1 and Fig. 7 use 
the same domain and have the same resistivity structure, Fig. 1(c) can be 
seen as a benchmark case where the data is inverted with perfect knowledge
of measurement errors.



Fig. 7. Synthetic surface ERT experiments to demonstrate the performance of the error models. For 
data involving 3 bad electrodes(marked by “X”), data is corrupted by 10% white noise while for the 
rest of the data 2% white noise is added. (a) Inverted resistivity distribution using the 2% linear error 
model (a) Inverted resistivity distribution using a 4.52% (obtained from the Koestel et al., 
2008 method) linear error model (c) Inverted resistivity distribution using the LME error model. Note 
that the convergence target for all the inversions is a chi-squared statistic of 1.

Fig. 7 (a–c) shows inversion results for synthetic data where measurements 
involving three “bad electrodes” are corrupted by 10% noise and others by 
2% noise. We first compare the inversion with two linear error model—one 
assumes there are no bad electrodes (i.e. the 2% error model), while the 
other is obtained by fitting the corrupted data with the Koestel et al. 
(2008) model (i.e. the 4.52% linear model). We see that the resultant 
resistivity model from assuming the 2% linear error model is very noisy while
that from assuming 4.52% linear error model is smoother. With the LME error
model, however, the inversion result is the most similar to that of the 
benchmark case (Fig. 1c) (see also rms errors printed on plots). The effect of 
better characterisation of measurement errors by the LME model is 
manifested in the inversion results.

Fig. 8 (a–c) shows the diagonal terms of the resolution matrices for the 
inversion using (a) 2% linear, (b) 4.52% linear, and (c) LME error models. In 
general, the resolution patterns are uniform laterally yet decreases with 
depth. For the 2% linear error model, we see that some of the artefacts from 
the inversion results is also shown on the resolution pattern. For the LME 
error model, the resolution on the right is somewhat higher than on the left 
for the top layer, where the bad electrodes are located. The resolution values
are between that of (a) and (b) in most of the cells, although some of the 



cells near the surface show very high resolution. The above shows that while 
the resolution from the linear error model is purely a function of distance 
away from sources and sensors and therefore cannot distinguish quality 
between measurements, the LME error model allows the inversion to resolve 
areas unaffected by the bad electrodes better.

Fig. 8. (a–c) Diagonal of resolution matrix for inversion using the following error models for inverting 
the synthetic data corrupted by “bad electrodes”: (a) 2% linear model (b) 4.52% linear model (c) LME 
model. (d–f) variance of element-wise log-resistivity estimates using each of the error models obtained
from Monte Carlo experiments. The colour scale is the same for all three error models. Darker cells 
indicate more similar model estimates among Monte Carlo estimates. (g–i) mean model estimates from
Monte Carlo experiments. The transparency is controlled linearly the variance shown in (d–f). With 
model averaging, the mean estimates of the three error models agree. It is noted, however, the 
deterministic results from the LME model agrees the best with its model-averaged results.

Subsequently, we ran Monte Carlo experiments using the procedure 
in Section 2.4 to understand how uncertainty in measurement errors 
propagates to affect uncertainty in the parameter estimates. The Monte 
Carlo experiment results can be used to form empirical 
model covariance matrices. This matrix shows how information is shared 
between parameters (i.e. model estimate of different elements). In the ideal, 
noise-free and well-defined case, the model covariance matrix should be a 
zero matrix, meaning the parameter is deterministically known and the 
parameters are not correlated with one another. Fig. 9 (a–b) show that 
assuming a 2% linear error model yields lower model covariances than the 
4.52% model, which is expected because lower percentage error implies less
sharing of data. Also, the band of high covariances is also narrower. With the
LME model (Fig. 9c), however, we notice that the model covariances values 
are lower than those of the 2% and 4.52% models. More importantly, the 
spread of the high covariance region is less uniform than the linear models, 
meaning that only measurements affected by the bad electrodes share 
information heavily with others. The above agrees with the comparison of 
resolution matrices—the new error model is able to exploit information in 
noisy data without increasing the overall noise level.



Fig. 9. Empirical model covariance matrix using the Monte Carlo uncertainty propagation procedure 
and the following error models: (a) 2% linear model (b) 4.52% linear model (c) LME model. The size of 
the matrix is m × m, where m is the number of model parameters. By comparing (a) and (b), it is 
shown that assuming higher error levels, there is higher covariance between model parameters. With 
the LME error model, the model covariance is the lowest. While the spread of high covariance entries 
are quite even throughout the matrix, we can see that the spread for (c) is quite uneven: generally, 
elements on the left of the domain have higher spread.

The diagonal term of the empirical model covariance matrix (i.e. variance) 
shows the variability among parameter estimates from multiple Monte Carlo 
simulation realizations. Specifically, the higher a diagonal term, the more 
uncertain is the estimate. We plot their ranges in Fig. 8 (d–f). For all three 
error models, the variability is always the smallest at depths because deeper
regions are less well resolved for surface arrays. As a result, the model 
estimates at greater depths are closer to the initial guess values and 
therefore, there is less difference between the realizations of Monte Carlo 
model estimates. In Fig. 8 (g–i), we plot the model-averaged parameter 
estimates. The transparency of each element is inversely proportional to its 
model variance, as shown in Fig. 8 (d–f). In other words, the elements that 
have more variable or uncertain estimates have greater transparency. The 
inversion results from assuming a 2% error model are less variable than for 
the 4.52% model. Model averaging also smooths out the noisy artefacts from
deterministic inversion (compare Fig. 8g and Fig. 7a). The LME error model 
gives the most reliable model estimates among the three error models 
tested. Also, it is worth noting that the model-averaged parameter estimates 
are comparable to that obtained from deterministic inversion. This means 
that with the LME error model, there is no need to run many realizations of 
the inverse model in order to obtain reliable parameter estimates. 
Importantly, inversion using the LME error model gives the highest resolution
and the least model variance (Fig. 8), and reduces uncertainty in inversion 
results.

5.2. Boxford field data

In Fig. 10, we compare the inversion results of field data for the Boxford 
datasets. When using reciprocal data, we only consider one of the 96 
available datasets (i.e. the first of the 96 repeats). The resultant image from 



using linear or LME error models for reciprocal or 24-h repeatability errors 
(not shown) for the Boxford dataset are effectively identical. When the linear 
model is applied to the stacking errors, the resultant image becomes quite 
noisy. Surprisingly, when the LME model is applied to the stacking errors, 
there is no distinguishable difference between its result and those using 
reciprocal or 24-h repeatability errors. This shows that although we have 
shown above and warn against the potential underestimation of 
measurement errors caused by using the stacking errors, the LME error 
model is capable of minimizing such effects. We suspect that because of the 
low mean and low variance of the stacking errors, the linear error model is 
forced to assign very low errors across the dataset. The LME error model, in 
contrast, has more degrees of freedom to better fit the observed stacking 
errors.

Fig. 10. Inversion results from Boxford using (a) linear error model for stacking errors, (b) LME error 
model for stacking errors, (c) linear error model for reciprocal errors.

This finding has significant implications because all modern ERT equipments 
output stacking errors and these do not require additional data collection 
time. For many existing datasets where only stacking errors are available or 



in applications where the collection of repeats and reciprocal is prohibitive, 
we recommend using a LME error model instead of a linear model for the 
stacking errors.

5.3. Sellafield field data

We inverted the Sellafield data collected on 5th February 2013, which was 
two days before the first tracer injection (Kuras et al., 2016). Of the 51,302 
measurements in the sequence, there are 12,412 pairs of valid reciprocal 
measurements. We fitted them with the LME error model. Note that we have 
not removed any high-error outliers. Fig. 11 shows the resultant 3-D static 
inversion image and its associated uncertainty estimates (model standard 
deviation and model coefficient of variation) derived from Monte Carlo 
simulations. The resultant model clearly delineates zones of high and low 
resistivities. In terms of uncertainty, regions next to the borehole and 
towards the top of the monitoring array have significantly higher model 
standard deviation. Compared with the absolute images of resistivity 
reported in Kuras et al. (2016) (note that we use the same mesh and 
inversion code), Fig. 11a shows similar patterns but with a smaller range and
variations in resistivities.





Fig. 11. (a) 3-D static deterministic inversion results from Sellafield on 5th February 2013. Error 
weights are prescribed by fitting an LME error model. Black lines are boreholes installed 
with electrodes. (b) The corresponding uncertainty estimates obtained from Monte Carlo simulations, 
given by model standard deviation from Monte Carlo experiments. (c) The corresponding coefficient of 
variation of Monte Carlo model estimates.

6. Discussion

In the present study, we have used statistical methods to explore ways to 
improve the current practice of modelling measurement errors in ERT. 
Among them, we have found that the correlation coefficients of 
measurement pairs that share some of the electrodes are consistently higher
than average. Therefore, we have developped a new error model that 
consider such effects in ERT surveys by adding electrode-specific fitting 
terms (i.e. the LME error model).

The proposed error model based on the linear mixed effect (LME) model 
shows superior performance in terms of characterising errors when 
compared against a unknown linear error model. The LME model assumes 
that errors are linearly dependent on transfer resistances and employs the 
electrodes used to make each measurement as grouping variables. The LME 
error model can more accurately predict observed measurement errors. 
However, as we have already argued in Section 4.2, individual errors should 
not be used directly for inversion because in most practical situations they 
are only averages between two points. To improve the robustness of the 
linear error models, errors can be grouped by the magnitude of transfer 
resistances (Koestel et al., 2008). Such binning, however, is arbitrary and the
resultant error models can be sensitive to the number of bins used. The LME 
error model is based on the same idea of grouping, yet it considers all of the 
four electrodes that are used to make each dipole-
dipole quadrupole measurement and uses them as the grouping variable. 
Electrode number is a qualitative variable and it is a reasonable assumption 
that each electrode has slightly different quality.

The patterns of resolution matrix and model covariance matrix associated 
with using the LME error model are different from those using the linear 
model. This has important implications for inversion and uncertainty 
estimation because it shows that the LME model is capable of detecting 
poorer measurements and downweighting them in an inversion. Most 
inversion schemes are capable of weighting data according to their quality. 
Yet in common ERT practice, either uniform percentage errors (i.e. a linear 
model) are assumed or the errors are not characterised at all. The LME error 
model is one of the first statistical tools to characterise the variable quality of
ERT measurements (while not using individual errors directly) so that the 
data weighting schemes in inverse models can be fully utilized.

While fitting a LME model for each set of reciprocal errors gives promising 
estimates, fitting time series of reciprocal errors with a single LME model and
using the sequence of data collection as an additional grouping variable (i.e. 
as longitudinal data) can yield inferior results. Evaluation of the individual 



resultant LME error models reveals that, for the dataset considered here, the 
fixed and random effects coefficients vary over the 24-hour period. Such 
results challenge our common assumption that electrode quality is extremely
stable. The laboratory study by LaBrecque and Daily (2008) on the 
measurement errors of 15 electrode materials showed many possibilities for 
electrode quality to evolve during the course of a ERT experiment, some 
even in the timescale of minutes. Therefore, taking many repeats for 
measurements probably will not provide better error estimates because 
electrode quality may evolve during the process. In summary, we 
recommend the collection of reciprocal measurements at each timeframe 
and fit a LME model based on the measured transfer resistance and 
electrodes used to capture the minor variations in electrode quality during 
ERT experiments.

We have found in the Boxford inversion results that there is no 
distinguishable difference between using repeatability and reciprocal errors 
in inversions (figures not shown). From the PDFs, the stacking errors are 
much smaller and much less variable than the repeatability or reciprocal 
errors at Boxford. With the linear error model, the resultant image for using 
stacking errors is noisy. With the LME error model, however, the inversion 
image is comparable to that obtained from using repeatability or reciprocal 
errors. We attributed its better results to the better handling of spurious and 
overly optimistic estimates of errors by the LME error model.

For the Sellafield dataset, we demonstrated the application of the new LME 
error model to model reciprocal errors and used its predicted errors for 3-D 
inversion and uncertainty quantification (i.e. model variance). Such 
uncertainty estimates are useful as they visualize how uncertainties in 
measurements propagate to uncertainties in the inverse model estimate.

We have highlighted in the previous section that the new LME error model 
can be widely applied to essentially any ERT inversion algorithms. It better 
predicts errors that are used to prescribe weights of the data weighting or 
covariance matrix. The resultant matrix remains diagonal so that it does not 
increase computation costs during inversion. Unlike the data quality 
control strategies recently proposed by Deceuster et al. (2013) and Mitchell 
and Oldenburg (2016), the new LME error model can be applied to any static 
and time-lapse ERT problems regardless of their size. Since the model 
considers the effect of the variable quality of electrodes, it requires minimum
culling of data or re-inversion. Alternatively, the new LME error model can be
used alongside with other data quality control strategies.

The flexibility of the LME model allows it to be applied to characterisation of 
errors in other geophysical measurements. For example, geophones used 
in seismic tomography can be used as grouping variables for their errors. A 
straightforward next step for future study would be to extend the LME error 
model to induced polarisation (IP) studies. It has been reported in the 
literature that IP surveys are even more sensitive to electrode configuration 



than ERT. Much recent work has been done to improve quality of IP 
measurements. For example, Dahlin et al. (2013) conducted a duplicate IP 
survey for a planned tunnel using two types of cable spreads: one with 
standard multi-core cables and the other with separate cable spreads for 
transmitting current and measuring potentials. They suggest that the single 
cable spread is sufficient to give good IP data but suggest the use of 
separate cable spread for spectral IP inversion and recovery of Cole-Cole 
parameters. Flores-Orozco et al. (2012)quantified the measurement errors in 
spectral IP imaging and established a new phase error model. It is an 
extension of previous models where the discrepancy between normal and 
reciprocal measurements is analysed (Binley et al., 1995, LaBrecque et al., 
1996, Slater and Binley, 2006). They also conducted a bin analysis to ensure 
the assumption of a normal distribution of errors is valid and showed that, for
spectral IP measurements, phase error discrepancies show a consistent 
behaviour for all frequencies. They proposed an inverse power-law 
relationship between the error on phase and the corresponding resistance. 
This brief review highlights the similarities between ERT and IP measurement
error models and we believe that the proposed LME model can improve IP 
measurement errors characterisation, too. Future studies should consider 
applying the LME error model.

Finally, the proposed LME models can be used readily in Bayesian 
formulations for ERT inversion. The LME error model can be used to prescribe
entries of the data covariance matrix in their likelihood functions, which are 
usually assumed to be diagonal for computational convenience. Note that 
the LME method considers errors due to electrodes used as a grouping 
variable rather than enforcing a correlation function, which would lead to a 
full data covariance matrix that is computationally difficult to invert. By 
treating the potential correlation of electrode effects as grouping variables 
instead, the data weighting or covariance matrix remains diagonal; 
furthermore, strict and unnecessary assumptions on the correlation between 
measurements are avoided.

7. Conclusion and recommendations

Our analysis of field datasets shows that short-term repeatability and 
reciprocal errors are very comparable, while stacking errors are significantly 
lower. Repeatability errors, however, may increase over time because of 
subsurface changes between repeats. Repeatability errors also tend to show 
greater autocorrelation in time for the same measurements, as well as 
correlation between measurements, than reciprocal errors. Stacking errors 
are found to have significantly lower magnitude and variability, indicating it 
may be an overly optimistic measure of measurement error. Correlation 
coefficients between pairs of measurements that share some of 
the electrodes used are higher than pairs that use completely different 
electrodes. This confirms speculations from previous studies that the 
common use of electrodes may contribute to some correlation in errors 
(Ramirez et al., 2005).



Based on our error analysis, we confirm the value of collecting reciprocal 
data in ERT studies, although when making reciprocal measurements, care 
should be taken to avoid electrode charge-up effects (Dahlin, 
2000, Wilkinson et al., 2012). If it is too difficult to set up reciprocal 
measurements, we recommend running a duplicate survey immediately after
the completion of the original survey. Long-term repeatability data does not 
bring extra benefits for fitting error models because subsurface conditions 
may change over time. But they may be very useful for long-term quality 
assurance, for example, detecting instrument drift or abnormal system 
behaviour. Stacking errors should be avoided when assigning error weights 
because of their low magnitude and low variability. For modelling the 
measurement errors, we recommend fitting a linear mixed effect (LME) 
model over the commonly used linear model. The new LME error model uses 
both the combination of electrodes used for making ERT measurements and 
the proportional relationship between errors and transferred resistance in 
order to better characterize measurement errors. Our synthetic example 
shows that the LME error model is capable of picking up errors due to the 
varying quality of electrodes and adjusts resolutions in the inverse model 
accordingly. This is different from the traditional linear model approach 
where the resolution everywhere in the entire inverse model domain has to 
reduce. The new LME model not only improves the inversion results, but also 
reduces the uncertainty (i.e. variance) in the model estimates. For time-lapse
data, we recommend fitting a LME model for each time step because its 
coefficients change over time and fitting all the data from the different time 
steps with a single LME model (i.e. as longitudinal data) yields inferior 
results. We have demonstrated the applicability of the above-recommended 
procedure by fitting the LME model to errors observed in two field datasets 
and inverting the data. This procedure is easy to implement and requires 
minimal changes to the current practice. Widely implementing this 
procedure in future geophysical studies can greatly improve their overall 
reliability—a necessary step towards obtaining more quantitative information
from geophysical methods across a range of disciplines and applications.
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