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MICROB IOLOGY

The phenotype and genotype of fermentative
prokaryotes
Timothy J. Hackmann1* and Bo Zhang2

Fermentation is a type of metabolism pervasive in oxygen-deprived environments. Despite its importance, we
know little about the range and traits of organisms that carry out this metabolism. Our study addresses this gap
with a comprehensive analysis of the phenotype and genotype of fermentative prokaryotes. We assembled a
dataset with phenotypic records of 8350 organisms plus 4355 genomes and 13.6 million genes. Our analysis
reveals fermentation is both widespread (in ~30% of prokaryotes) and complex (forming ~300 combinations
of metabolites). Furthermore, it points to previously uncharacterized proteins involved in this metabolism. Pre-
vious studies suggest thatmetabolic pathways for fermentation arewell understood, butmetabolicmodels built
in our study show gaps in our knowledge. This study demonstrates the complexity of fermentation while
showing that there is still much to learn about this metabolism. All resources in our study can be explored
by the scientific community with an online, interactive tool.
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INTRODUCTION
Fermentation is a major type of metabolism carried out in the
absence of oxygen. During fermentation, organic molecules (e.g.,
glucose) are catabolized and donate electrons to other organic mol-
ecules. In the process, adenosine 50-triphosphate (ATP) and organic
end products (e.g., lactate) are formed. Because fermentation forms
ATP without using O2, prokaryotes in the environment use it as one
alternative to aerobic respiration. The gut (1, 2), sediments (3), and
anaerobic bioreactors (4) are just some environments where oxygen
is scarce and fermentative microbes are common. Fermentation is
also important because of the end products it forms. These products
are metabolized by human and animal hosts (1, 5, 6), present in
food (7), and valuable as biofuels or other chemicals (8, 9). Fermen-
tation is thus important in many contexts.
Despite the importance of fermentation, we know little about the

range of prokaryotes that carry it out and their traits. There are ex-
cellent reviews of fermentation (10–15), but their focus is on a few
model organisms and their biochemical pathways. Information on
more organisms is available in journal articles or book chapters (16,
17), but each covers just a few (usually related) organisms. With no
central resource for information, it is hard to answer even simple
questions about the prokaryotes carrying out fermentation.
Our laboratory and others have started to collect information on

fermentative prokaryotes. Our laboratory has cataloged prokaryotes
that carry out fermentation and which form one end product
(acetate) (18, 19). Another group has cataloged end products of fer-
mentation, but the scope is limited to bacteria of the human gut
(20). Other groups have collected information on fermentation
when building databases on microbial phenotypes (21, 22). Given
the scope of these databases, information specific to fermentation
tends to be less complete. Although limited in scope or complete-
ness, these resources provide a good starting point and, if expanded,
could give a full picture of fermentative prokaryotes.

Here, we assemble a large dataset on fermentative prokaryotes
and use it to explore the phenotype and genotype of such organ-
isms. This dataset includes phenotypic records on n = 8350 organ-
isms (prokaryotes) as well as n = 4355 genomes and n = 13.6 million
genes. With it, we have answered simple but important questions
about fermentation. We also built an interactive tool for the micro-
biology community to explore our dataset and make predictions
about organisms of interest.

RESULTS
Our dataset contains information on more than 8300
prokaryotes
To examine fermentative prokaryotes, we assembled a dataset from
multiple sources (Fig. 1 and data S1 and S2). Our starting point was
n = 1828 articles from Bergey’s Manual of Systematics of Archaea
and Bacteria (16) and the primary literature. From these articles,
we obtained names, written descriptions, and phenotypic informa-
tion for n = 8350 organisms (type strains). The phenotypic informa-
tion we obtained was for traits related to fermentation (fermentative
ability, fermentation end products, and fermentation substrates).
We used computational approaches to automate some steps (e.g.,
obtaining names of organisms). Other steps (e.g., obtaining pheno-
typic information) were done by manually reading articles.
We obtained genomic and more phenotypic information from

additional sources. We used Genomes OnLine Database (GOLD)
(23) and Integrated Microbial Genomes and Microbiomes (IMG/
M) (24) database to obtain information on genomes and genes
from these organisms. We also used HydDB (25) for information
on genes for hydrogenases. Using BacDive database (21), we ob-
tained phenotypic information for n = 14 traits. The traits (e.g.,
cell length and habitat) were those not directly related to fermenta-
tion. Data from BacDive comes from other databases (26), the
primary literature, and other sources. We considered other
sources of information. For example, we considered one source
with data for n = 701 prokaryotes of the human gut (20).
However, only n = 279 of these were type strains, and n = 234
(84%) were already in our dataset. Furthermore, the source used
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genus-level data when information for specific organisms was not
available. Our dataset included only strain-level data, and we chose
not to mix these two different types of information. In summary,
our dataset was comprehensive. It allowed us to probe both the phe-
notype and genotype of fermentative prokaryotes.

Fermentative prokaryotes are diverse
With our dataset, we first wanted to answer first how widespread
fermentation is across prokaryotes. In total, we found that n =
2357 of the 8350 organisms were capable of fermentation or 28%
of the total (data file S1). In earlier work with a smaller dataset
(19), we found a comparable value (33%).
We then built a phylogenetic tree for the n = 3822 organisms

with enough information (ribosomal protein sequences) available
(Fig. 2A). Fermentative prokaryotes were found all over the tree, al-
though they appeared more abundant on some branches than
others. The phylum Bacillota was one group in which they were
abundant. Nonfermentative prokaryotes were abundant in
Actinomycetota.
We quantified the difference in abundance across phyla using a

statistic known as risk difference (see fig. S1A for definition). This
analysis was done with n = 7394 organisms. We found the risk dif-
ference was highest for Bacillota and lowest for Actinomycetota
(Fig. 2B), in agreement with the tree (Fig. 2A). It identified Thermo-
desulfobacteriota, Spirochaetota, and Mycoplasmatota as other
phyla where fermentative prokaryotes were abundant.
Risk difference is only one example of an effect size statistic.

Another commonly used statistic is the log-odds ratio. When we
calculate the log-odds ratio, the results are generally similar to

those with the risk difference (fig. S2). However, many values
were undefined (negative or positive infinity), which makes inter-
pretation more difficult. Together, these results show the ability to
ferment is found all over the tree of life, being particularly common
for members of Bacillota and certain other phyla.

Fermentative prokaryotes have distinct phenotypic traits
After identifying which prokaryotes were fermentative, we wanted
to answer whether their phenotype differed from that of nonfer-
mentative prokaryotes. We examined n = 14 types of phenotypic
traits, such as habitat, that are not immediately related to fermenta-
tion. We calculated the risk difference to determine whether traits
were more common in fermentative versus nonfermentative pro-
karyotes. For continuous traits, we instead calculated a statistic we
call the probability difference. The probability difference is simply
the difference in the probability density functions between the two
groups (see fig. S1B for definition).
We found several traits were more common in fermentative

versus nonfermentative prokaryotes (Fig. 3 and figs. S3 to S5).
Some differences in traits, such as oxygen tolerance, were expected.
Fermentative prokaryotes were more likely to be oxygen intolerant
(anaerobes or microaerophiles) (Fig. 3A), which reflects that fer-
mentation does not use O2. They were also more likely to be isolated
from host-associated habitats (Fig. 3A and figs. S3 and S4). Many
host-associated habitats, such as the gut, are well known to harbor
fermentative prokaryotes (1, 2).
Some differences in traits were more unexpected. For example,

fermentative prokaryotes were also more likely to grow faster (with
shorter incubation period) (Fig. 3B) and have longer cell length

Fig. 1. To study fermentative prokaryotes, we assembled a phenotypic and genotypic dataset. The dataset includes n = 8350 organisms (type strains).
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(Fig. 3B). Examining the raw data confirms a clear difference in cell
length (fig. S6). Although this was unexpected, it has been observed
that growing cells under microaerophilic or anaerobic conditions
increases length (27, 28).
Although the differences were large, they were not as stark as

they might be imagined to be. Fermentative prokaryotes were less
likely than nonfermentative prokaryotes to be aerobic, but 18% of
them still were (see Fig. 3A). The aerobic, fermentative prokaryotes
belonged mostly to Paenibacillus, Corynebacterium, Staphylococcus,
Vibrio, Enterococcus, and Streptococcus. End products and sub-
strates for fermentation have been reported for many of these
aerobic prokaryotes (see data file S1), confirming that they are
fermentative.
Our analysis above considered all prokaryotes, and we next ex-

amined anaerobic prokaryotes only. We examined a total of n =
1496 anaerobic organisms, n = 1029 of which were fermentative.
Even when looking at this subset of data, we still found that many

traits were more common among fermentative prokaryotes (fig. S7).
As before, fermentative prokaryotes were more likely to be isolated
from host-associated habitats, grow with shorter incubation time,
and have longer cells. Thus, their long cells may owe partly to
growth under anaerobic conditions (27, 28), but it is not the full ex-
planation. These results show that fermentative prokaryotes differ
from anaerobic prokaryotes at large.
The analyses above examined phenotypic traits at a broad level.

Our next analysis focused on metabolic traits specifically. To help
carry out this analysis, we used FAPROTAX, a tool that predicts
traits from organism names (taxonomy). After inputting names
of the n = 8350 organisms in our dataset, this tool outputted n =
72 metabolic traits of n = 6065 organisms. We found several of
these traits differed between fermentative versus nonfermentative
prokaryotes (fig. S8A). For example, fermentative prokaryotes
were more likely to carry out respiration with sulfur, iron, and ar-
senate. Similar to fermentation, these types of respiration do not use

Fig. 2. Fermentation is widespread, although it is more common in some groups of prokaryotes than others. (A) Phylogenetic tree of n = 3822 prokaryotes and
their fermentative ability. (B) Phyla of n = 7394 prokaryotes and their fermentative ability. Differences between fermentative and nonfermentative prokaryotes were
determined using a two-tailed z test. Names of phyla correspond to the NCBI taxonomy of organisms (see data file S1). Ca., Candidatus.
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Fig. 3. Examining phenotypic records of n = 6933 prokaryotes shows that fermentative prokaryotes have distinct traits. (A) Discrete traits. The number of or-
ganisms analyzed per trait is shown in the figure. Differences between fermentative and nonfermentative prokaryotes were determined using a two-tailed z test. Habitat
refers to the category 1 isolation source. See figs. S3 and S4 for category 2 and category 3 isolation sources. Fac., facultative; hypertherm., hyperthermophilic; monotrich.,
monotrichous; obl., obligate. (B) Continuous traits. All traits differed between fermentative and nonfermentative prokaryotes according to a two-sample, two-sided
Kolmogorov-Smirnov test (P < 0.001 for cell length, P < 0.001 for incubation period, and P = 0.002 for optimum salt for growth). See fig. S5 for traits that did not
differ according to this test. (C) Summary of the most common phenotypic traits of fermentative prokaryotes.
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oxygen and are alternatives to aerobic respiration. This shows that
fermentative prokaryotes are versatile and can carry out multiple
types of metabolism independent of oxygen.
While traits outputted by FAPROTAX are illuminating, they are

based on an organism’s taxonomy and are thus ultimately predic-
tions. To determine their reliability, we compared prokaryotes pre-
dicted as fermentative by FAPROTAX with those observed as
fermentative in our dataset (fig. S8B). We found good agreement,
although our dataset identified 54% more organisms as fermenta-
tive than did FAPROTAX. This shows value of tools such as FAP-
ROTAX and the need for more focused datasets such as ours.
These results show that fermentative prokaryotes have a distinct

phenotype (Fig. 3C). Some aspects of this phenotype, such as
oxygen tolerance, are easy to explain. Others, such as cell length,
are unexpected but clear. Most fermentative prokaryotes are anaer-
obic, but many are not, and they still have a phenotype distinct from
anaerobic prokaryotes.

Fermentative prokaryotes have a distinct genotype
Next, we wanted to see whether fermentative and nonfermentative
prokaryotes differed in genotype. We looked at their genes and
whether their predicted functions differed. Our analysis included
n = 13.6 million genes and n = 30805 predicted functions. These
were from n = 4355 organisms, n = 1490 of which are fermentative.
The predicted functions correspond to Kyoto Encyclopedia of
Genes and Genome Orthology (KO) (29), Clusters of Orthologous
Genes (COG) (30), pfam (31), and TIGRFAM (32) IDs. We also in-
cluded functions corresponding to HydDB names (25).
We looked for general differences in gene functions by using t-

distributed stochastic neighbor embedding (t-SNE) (33). This tech-
nique projected all n = 30,805 gene functions onto a two-dimen-
sional plot (Fig. 4A). In that plot, fermentative and
nonfermentative prokaryotes generally fell into two different
groups, with some overlap. This suggests that fermentative prokary-
otes have different gene functions from nonfermentative ones, al-
though it does not identify which specific functions differ.
To identify specific functions that differed, we calculated the risk

difference for each function. With this approach, we found n = 9450
predicted gene functions that were more common in fermentative
versus nonfermentative prokaryotes (Fig. 4B and data S3) (P < 0.05).
We examined gene functions corresponding to KO IDs first
(Fig. 4B). Of the top 15 KO IDs, several are involved production
of fermentation end products (e.g., K00656) or their utilization
(e.g., K21636). We next looked at COG, pfam, and TIGRFAM
IDs. Most predicted functions were similar to those of KO IDs, al-
though COG and pfam had more unknown functions (data file S3
and below).
Most gene functions were clear and well defined, but many were

not. In total, n = 1229 gene functionsmore common in fermentative
prokaryotes were “uncharacterized” or of “unknown function” (data
file S3).We found or predicted protein structures for several of these
(Fig. 4C). Despite having no established function, they appear to
play an important role in fermentation. In one case, this has been
verified; COG3610 is still reported as uncharacterized in its data-
base, but one member was recently characterized as a transporter
of a fermentation product (succinate) (34).
We also found n = 13,945 gene functions that were more

common in nonfermentative prokaryotes (Fig. 4B and data file

S3) (P < 0.05). Many corresponded to enzymes used in oxidative
phosphorylation (e.g., K02275).
Besides looking at the level of individual genes and functions, we

examined whether certain metabolic pathways were more common.
To do this, we examined the abundance of all n = 3445 metabolic
pathways in MetaCyc (data file S4) (35). The prokaryotes in our
dataset encoded n = 1579 of these pathways, and n = 337 were
more abundant in fermentative ones (P < 0.05). The top 15 path-
ways in fermentative prokaryotes included those for production
of fermentation products (e.g., PWY-5481) or their utilization
(e.g., PWY-1722). More expectedly, there were pathways involved
in quorum sensing (e.g., PWY-6154) and nucleotide metabolism.
Thus, pathways were as expected, although a few surprises were
also present.
Our analysis above considered all prokaryotes, and we next ex-

amined anaerobic prokaryotes only. We examined a total of n =
1039 anaerobic organisms, n = 745 of which were fermentative.
Again, we found gene functions and pathways more common in fer-
mentative prokaryotes (data files S5 and S6). Furthermore, they
were similar to functions and pathways identified above. Of the
top 15 KO IDs in Fig. 4B, 13 were still more common in fermenta-
tive versus nonfermentative prokaryotes (see data file S5). The sit-
uation was similar for MetaCyc pathways, with 11 of the 15 top
pathways still being more common (see data S6). These results
show the genotype of fermentative prokaryotes differs from anaer-
obic prokaryotes at large.
These results together show that fermentative prokaryotes have a

distinct genotype. Intriguingly, several genes appear to be impor-
tant in fermentation but have no known function. These are
targets for further study in understanding fermentation and
protein function.

Fermentation forms many end products
Another important trait of fermentative prokaryotes is which end
products of fermentation they form. We collected information on
end products for n = 1455 organisms. On the basis of the text of
the written description, we divided these into major and minor
end products. We also recorded the n = 100 substrates reported to
form these end products (information available for n = 1260
organisms).
In total, we found prokaryotes formed n = 55 fermentation prod-

ucts (Fig. 5, A and B). Acetate and lactate were the most common
products, with at least one being formed by 97% of organisms. Most
(83%) organisms formed multiple organic products (Fig. 5C). Of
the organisms that formed only one organic product, nearly all
formed lactate (56%) or acetate (34%). There were many (n =
289) unique combinations of products altogether.
We also examined end products formed by substrate (Fig. 5, A

and B). We focused on the n = 46 substrates that are single, chem-
ically defined molecules (e.g., glucose). This represented informa-
tion for n = 805 organisms. Glucose was the most common
substrate reported, and acetate was the most common product
(Fig. 5A). Other common products were as before, although the
order of their abundance differed somewhat (Fig. 5, A and B).
The number of end products in our dataset is higher than in

other sources. It is >3-fold higher than reported for prokaryotes
of the human gut (20) (fig. S9). The large size of our dataset
makes it a useful resource.
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Fig. 4. Examining n = 13.6 million genes reveals that fermentative prokaryotes have a distinct genotype. (A) Two-dimensional plot of gene functions after per-
forming t-SNE. A total of n = 4301 organisms was analyzed. Colors of phyla are same as in Fig. 2. (B) Top 15 KO IDs for gene functions. See data S3 for full list of gene
functions. The number of organisms analyzed was as above. Differences between fermentative and nonfermentative prokaryotes were determined using a two-tailed z
test. The class of KO IDs refers to level B of the BRITE hierarchy. Some class names have been abbreviated for display. SED, standard error for the difference. (C) Structures of
uncharacterized proteins common in fermentative prokaryotes.
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Our dataset gives simple but important insights about end prod-
ucts of fermentation. It shows which products are most common,
and it shows nearly all fermentations form multiple products and
in many combinations. It shows the relationship between substrate,
organism, and end product with a dataset of unprecedented size.

End products can be predicted from genes using
metabolic models
Many studies use an organism’s genes to predict their metabolic
pathways and fermentation products they form (20, 36–38). We
wanted to test how reliable is this practice with our dataset. We
built metabolic models of our prokaryotes and then used flux

balance analysis (39) to predict end products. We then compared
predicted end products to those observed in our dataset. Because
glucose metabolism is well studied, we examined prokaryotes
known to ferment glucose (n = 406) and focused on the n = 9
most common fermentation end products (see Fig. 5B).
The metabolic models we built were networks of up to n = 98

metabolites connected by n = 110 biochemical reactions and n =
210 enzymes (Fig. 6A). Of the total metabolites, n = 64 were
carbon-carrying metabolites (e.g., glucose), and an additional n =
34 were cofactors [e.g., reduced form of NAD+ (NADH)]. For
each organism, we built a model containing only those enzymes
and reactions corresponding to the KO IDs of its genes (see

Fig. 5. Examining end products of n = 1455 prokaryotes shows that a wide number and range are formed. (A) Range of products across organisms and substrates.
Lactate represents two potentially different products [(S) lactate and (R) lactate], but articles did not always distinguish which was formed. (B) Most common fermentation
products. (C) Number of products formed. SD, standard deviation.
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Fig. 6. Metabolic models of n = 406 organisms predict end products of fermentation. (A) The referencemodel containing and n = 210 enzymes, n = 110 biochemical
reactions, and n = 64 metabolites (cofactors excluded). (B) An example model for one organism (Lactococcus plantarum), showing the predicted flux from D-glucose to (S)
lactate. (C) End products predicted bymetabolic models compared to those observed in our dataset. (D) Performance of predictions. In (A) and (B), themetabolites are (1)
D-glucose, (2) D-glucose 6-phosphate, (3) D-fructose 6-phosphate, (4) D-fructose 1,6-bisphosphate, (5) D-glyceraldehyde 3-phosphate, (6) 3-phospho-D-glycerate, (7) 2-
phospho-D-glycerate, (8) pyruvate, (9) phosphoenolpyruvate, (10) protein histidine, (11) protein n (pi)-phospho-l-histidine, (12) D-glucono-1,5-lactone 6-phosphate, (13)
6-phospho-D-gluconate, (14) D-ribulose 5-phosphate, (15) D-ribose 5-phosphate, (16) sedoheptulose 7-phosphate, (17) D-xylulose 5-phosphate, (18) D-glucono-1,5-
lactone, (19) D-gluconic acid, (20) 2-dehydro-3-deoxy-D-gluconate, (21) 2-dehydro-3-deoxy-6-phospho-D-gluconate, (22) 2-keto-D-gluconic acid, (23) D-glyceraldehyde,
(24) D-glycerate, (25) glycerone phosphate, (26) (R)-S-lactoylglutathione, (27) (R)-lactaldehyde, (28) (R)-lactate, (29) (S)-lactaldehyde, (30) methylglyoxal, (31) (S)-malate,
(32) oxaloacetate, (33) (S)-lactate, (34) acetyl-CoA, (35) enzyme N6- (lipoyl)lysine, (36) enzyme N6- (dihydrolipoyl)lysine, (37) acetate, (38) succinyl-CoA, (39) succinate, (40)
CoA, (41) butanoyl-CoA, (42) butanoic acid, (43) thiamin diphosphate, (44) acetaldehyde, (45) ethanol, (46) lactoyl-CoA, (47) propanoate, (48) propanoyl-CoA, (49) (S)-
methylmalonyl-CoA, (50) (R)-methylmalonyl-CoA, (51) (S)-3-hydroxybutanoyl-CoA, (52) 3-phospho-D-glyceroyl phosphate, (53) D-erythrose 4-phosphate, (54) acetyl phos-
phate, (55) 6-phospho-2-dehydro-D-gluconate, (56) glutathione, (57) [dihydrolipoyllysine-residue acetyltransferase] s-acetyldihydrolipoyllysine, (58) butanoylphosphate,
(59) 2-(alpha-hydroxyethyl)thiamine diphosphate, (60) propenoyl-CoA, (61) fumarate, (62) propanoyl phosphate, (63) acetoacetyl-CoA, and (64) crotonoyl-CoA.
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Fig. 6B). For hydrogen formation, we used reactions corresponding
to the HydDB name instead. With each model, we calculated the
flux (flow) of metabolites through the network. If there was a pos-
itive flux from the substrate (glucose) to the end product (e.g.,
lactate), that end product was predicted to be formed (see Fig. 6B).
We compared products predicted by models with the observed

ones (Fig. 6C). Some products (acetate, lactate, formate, and CO2)
were predicted in nearly all organisms, whether they were observed
to be formed or not. This meant that the predictions had high sen-
sitivity but low specificity (Fig. 6D). Other products (propionate,
butyrate) were predicted in far fewer organisms than were observed
to form them (Fig. 6C). The predictions had high specificity but low
sensitivity (Fig. 6D). Three products (succinate, ethanol, and hydro-
gen) were predicted with high sensitivity and specificity (Fig. 6D).
We explored why certain products were predicted with low sen-

sitivity (i.e., had many false-negative predictions). For butyrate, we
were able to identify a missing reaction in 45% of cases (fig. S10).
The most common reaction missing was butyryl–coenzyme A
(CoA):acetate-CoA transferase [enzyme commission EC) 2.8.3.8],
and adding it back to an organism’s model restored its ability to
produce butyrate. This reaction may be missing because of poor
gene annotation—databases such as Kyoto Encyclopedia of Genes
and Genomes (KEGG) are missing annotations for 86% of enzymes
known to carry out this reaction (40). In 20% of cases, more than
one reaction could restore the ability to produce butyrate, making it
unclear which reaction was really missing. In the remaining cases,
the missing reaction(s) could not be identified. For propionate,
another product predicted with low sensitivity, the situation was
similar (fig. S10).
Our study shows that some, but not all, end products could be

reliably predicted from metabolic models. Some products were pre-
dicted with low specificity, indicating that more organisms have the
ability to produce them than observed (or reported). Others were
predicted with low sensitivity instead. Furthermore, our study
shows a number of reactions apparently missing from organisms.
Poor gene annotation is likely to blame in some cases, although
the reason is not clear in others. Our study shows there are still
gaps in our knowledge of metabolic pathways and their prediction,
even for glucose.

Our work is available in an interactive tool
Tomaximize the usefulness of our work, we built an interactive tool
we call Fermentation Explorer (Fig. 7). This tool allows users to
explore our dataset (Fig. 7B) and make predictions about prokary-
otes in their samples (Fig. 7, C to E).
With this tool, users can build metabolic models and predict fer-

mentation end products for their organisms (Fig. 7C). This allows
users to predict traits from an organism’s genome. Users first
upload KO IDs for genes for an organism. After this, they specify
substrates and end products to check. The tool builds a metabolic
model specific to the organism and predicts end products formed.
Users can also visualize the model with predicted fluxes. To provide
KO IDs, users can use the KEGG Automatic Annotation Server
(KAAS) (41)—the output can be uploaded into our tool. Users
can also use our library of KO IDs for n = 987 organisms (preloaded
into the tool).
Users can also predict traits for prokaryotes from their taxonomy

(Fig. 7D). After the user uploads the taxonomy (names) of their or-
ganisms, the tool finds matching organisms from our dataset. If the

matching organisms share a trait, the trait is predicted for the user’s
organisms. By default, 50% of the matching organisms must share
the trait, but this threshold is adjustable by the user. The method of
prediction is similar to FAPROTAX (22), but with the added flexi-
bility of an adjustable threshold. The tool accepts partial taxonomy
(e.g., resolved at genus only), making it useful for prokaryotes iden-
tified with ribosomal DNA sequencing. The user can also choose
different systems for taxonomy [that from Bergey’s Manual or the
National Center for Biotechnology Information (NCBI)].
To demonstrate potential applications of our tool, we have used

it to predict traits of prokaryotes in three studies. First, we used it to
predict traits of n = 410 prokaryotes in the Hungate 1000 Project
(fig. S11) (42). These are cultured prokaryotes from the rumen,
and the predictions demonstrate that the tool can be used with
large datasets. Second, we used it with n = 733 metagenome-assem-
bled genomes (MAGs) from Stewart et al. (43) (fig. S12). These
belong to uncultured prokaryotes from the rumen, and our tool
gives insight into possible functions. We show that quality of
MAGs is crucial; genomes with low completeness also have low
numbers of predicted end products. Third, we used it with n =
1053 operational taxonomic units (OTUs) found in the gut of
human infants over the first year of life (fig. S13) (44). Our analysis
shows that fermentative prokaryotes rise and dominate the gut
within weeks after birth. This rise mirrors the increase in fermenta-
tion acids in feces observed over this same time (45).
As a final exercise, we tested our tool with previously uncharac-

terized prokaryotes (Fig. 7E). We chose n = 5 bacteria from the
rumen with no fermentation products reported in the primary lit-
erature (see Materials and Methods). This includes n = 2 bacteria
isolated by our laboratory for this study. All belong to previously
uncharacterized species or genera. We grew these organisms and
measured n = 13 end products. For the n = 2 bacteria isolated by
our laboratory, we also performed de novo genome sequencing.
We found general agreement between end products observed and
those predicted by the tool (Fig. 7E). Agreement was closest when
combining predictions from genomes with those from taxonomy;
accuracy of 90% was achieved (fig. S14). In summary, our tool
works with large datasets of cultured and uncultured prokaryotes,
and it is useful in making predictions for previously uncharacter-
ized prokaryotes.
Our tool is available for use online and for download (https://

github.com/thackmann/FermentationExplorer). It is built as an R
Shiny app, and the online version is hosted by shinyapps.io. The
app can be downloaded for use within R or as a Docker container
image. Being easy to access and use, the tool enables the microbial
community to apply the resources from our work in their own
research.

DISCUSSION
Fermentation is a major type of metabolism, and it is important in
microbial ecology, host health, food production, and industry.
Despite this importance, there has been no systematic study of fer-
mentative prokaryotes and their properties. Reviews of fermenta-
tion have been based on information from model organisms (10–
15), which may not capture the full diversity of this metabolism.
Some work, including our own, had started to accumulate informa-
tion on more prokaryotes (18, 19, 21, 22), but a full picture has still
been lacking.
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Fig. 7. Screenshot of Fermentation Explorer, an interactive tool for exploring our dataset andmaking predictions about organisms. (A) Home page. (B) Database
search. (C) Predicting end products from genomes using metabolic models. (D) Predicting fermentative traits from taxonomy. (E) End products predicted by tool versus
those observed in n = 5 previously uncharacterized bacteria. Lactate represents two different products [(S) lactate and (R) lactate]. Cl., Clostridium; Co., Corynebacterium;
Lachno., Lachnospiraceae; Porphyro., Porphyromonadaceae; T., Treponema (81–161).
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By using a dataset of n = 8350 organisms (28% of which are fer-
mentative), the current study paints a fuller picture. It shows that
fermentative prokaryotes are both abundant and widespread. It
reveals key insights into their genotype and phenotype and thus
the concept of fermentation as a whole.
Some of the insights we reach make sense in context of earlier

work, while others are unexpected. Some are both expected and un-
expected at the same time. Given that fermentation does not use
oxygen, it is expected that many organisms were reported as anaer-
obes. Fermentation was first described as “la vie sans air” (life
without air) (46), and it is still regarded as a principally anaerobic
metabolism (10–15). It is thus all the more unexpected that 18% of
fermentative prokaryotes were reported as aerobes. These organ-
isms may be more oxygen tolerant than previously realized.
One important insight is fermentation is complex and forms

many end products. Historically, fermentations have been named
by the major end product they form—e.g., alcohol fermentation
forms ethanol (10–12, 14, 15). This is a long-standing practice
(47, 48) and remains useful for teaching, but our dataset shows
that it does not match reality. Nearly all fermentations formed mul-
tiple products and in nearly 300 combinations. Our work reveals a
complexity to fermentation not fully apparent before.
With the rise of genome sequencing, it is common to use an or-

ganism’s genome to predict its metabolic pathways and fermenta-
tion products (20, 36–38). This practice is especially important
when an organism is uncultured and known only by a genome se-
quence (37, 38). Our study shows that this practice is useful but has
limits. We used genomes of n = 406 organisms to build metabolic
models of fermentation. Some end products were predicted with
low specificity or low sensitivity. Low specificity means that more
organisms are predicted to form a product than observed. It
could be due to many factors, such as a product being formed
only under certain growth conditions [often the case for lactate
(49)]. Alternatively, the product could be used for anabolism
[often the case for formate (50)] and not leave the cell. Low sensi-
tivity means that fewer organisms are predicted to form a product
than observed, which represents a different issue.
One approach for raising sensitivity of predictions is gap filling

or adding enzymatic reactions apparently missing from models
(51). This approach is common and used by a study predicting
end products for bacteria from the human gut (20). Our study iden-
tified reactions that are often missing, and adding these would have
raised sensitivity. However, it was not always clear which reaction
was missing, much less the reason. If anything else, missing reac-
tions show areas of metabolism needing further study; such study
has led to previously unknown pathways for fermentation being dis-
covered (18).
To maximize the value of our work to the microbial community,

we built an interactive tool called Fermentation Explorer. This tool
has many applications. One is for identifying organisms for produc-
ing end products for biotechnological purposes (e.g., biofuel pro-
duction). With data on 55 fermentation end products formed in
nearly 300 combinations, our tool can pinpoint the best organism
for an application. Such an organism could be used outright, or it
could be used as a source of genes to genetically engineer other or-
ganisms (52–54). Another application is predicting fermentative
traits of prokaryotes present in a user’s sample. Users can predict
traits in two different ways—either from an organism’s genome
or its taxonomy. We showcase this ability with four datasets,

including one with uncharacterized prokaryotes that was generated
for this study. Because fermentation is widespread, the ability to
make these predictions will be useful to microbiologists working
in many systems.
Fermentation has been studied for 185 years [since the time of

Theodor Schwann (55) and Louis Pasteur (47, 48)], and our study
fills key gaps in our knowledge of this metabolism. It also shows that
there is much to learn. It shows common genes in fermentative pro-
karyotes and that some genes have no defined function. The latter
are targets for further study, and their abundance in fermentative
prokaryotes may help narrow down possible roles. In one case, a
gene with no defined function was confirmed to have a role in fer-
mentation (transport of succinate) (34). Our study shows awealth of
information exists on fermentative prokaryotes, but it speaks little
on eukaryotes. Both unicellular and multicellular eukaryotes carry
out fermentation (13), and they merit further study. The next 185
years of study will be illuminating.

MATERIALS AND METHODS
Collection of information from Bergey’s Manual and the
primary literature
We collected information from Bergey’s Manual of Systematic of
Archaea and Bacteria using an approach similar to (18, 19, 56).
We downloaded all n = 1751 articles for genera. We then extracted
name, strain ID (s), and written description of each of the n = 8331
organisms using R scripts.
To obtain phenotypic traits related to fermentation, we read all n

= 5465 written descriptions containing the keyword “ferment.” The
traits we recorded were fermentative ability, fermentation end prod-
ucts, and the substrate used to form those end products. We also
recorded the original text reporting the end products, and then,
we used this text to divide fermentation end products into major
and minor types. Minor products were those produced in only
small quantities or only under certain conditions.
Many articles used the term fermentation without defining it. To

be consistent, we defined it as catabolismwhere organic compounds
are both the electron donor and acceptor. Protons can be another
electron acceptor, forming hydrogen (H2). H2 can be another elec-
tron donor but only if an organic electron donor (e.g., glucose) is
also used. This definition draws a solid line between fermentation
and other types of metabolism, and it is consistent with most of the
literature. For example, butyrate fermentation (where protons are
an electron acceptor) is indeed a fermentation according to our def-
inition and most others (10–12, 15). Nitrate respiration (where
nitrate is the electron acceptor); however, is excluded [see (10–13,
15)]. Other examples are shown in table S1.
To check information in Bergey’s Manual, we found n = 77 ar-

ticles in the primary literature on prokaryotes of the rumen, an en-
vironment that our laboratory studies. These articles cover all n = 88
type strains from this environment. We found these articles using
an approach similar to that of (19, 36). We recorded the types of
information above, plus yield of fermentation end products (mol/
mol substrate fermented) in the n = 50 cases it was available. For
polymers of hexose (e.g., cellulose), yield was expressed as mol/
mol hexose equivalents. The moles of substrate fermented was cal-
culated from moles of carbon in products. If CO2 was not reported,
its production was calculated using stoichiometry of other end
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products (36). When yields were available, minor products were
defined as those with yield <0.05 mol/mol.
We compared information in Bergey’s Manual and the primary

literature, and we found good agreement between the sources (fig.
S15 and data file S2). In total, 78% of organisms in the primary lit-
erature were present in Bergey’s Manual, and those absent tended to
be recently described. Fermentative ability and fermentation end
products also closely agreed. For organisms described both in
Bergey’s Manual and the primary literature, we used information
from the latter in subsequent analysis.

Collection of information from other sources
We obtained information on genomes and genes from GOLD (23)
and IMG/M (24) databases. Following (18, 19, 56), we searched
GOLD database for a GOLD organism ID, GOLD project ID, and
IMG genome ID for each organism. Organisms were matched to
GOLD organism ID by their strain ID plus genus or species
name. If the strain ID was assigned by a large culture collection
[Deutsche Sammlung von Mikroorganismen und Zellkulturen
(DSMZ), American Type Culture Collection, Japan Collection of
Microorganisms (JCM), or Collection de l’Institut Pasteur (CIP)],
only the strain ID had to match. We then searched IMG/M database
for all protein-coding genes belonging to each genome (IMG
genome ID). If an organism had multiple genomes, we chose the
one with the most genes. For each gene, we downloaded the locus
tag as well as gene, KO, COG, pfam, and TIGRFAM IDs.
We obtained phenotypic traits (those not related to fermenta-

tion) from BacDive (21). We searched for BacDive IDs for organ-
isms, matching them by strain ID plus the genus or species name
(see above). We downloaded information for traits using the “Ad-
vanced search” and “Isolation sources” features. We formatted data
as needed, such as by averaging data given as ranges (e.g., pH 7 to 9).
Unformatted data are presented in data file S1.
We classified putative genes for hydrogenases using HydDB

(25). We obtained sequences of genes using IMG/M and database
IDs (pfam02906, pfam00346, pfam00374, and TIGR03295) cover-
ing hydrogenases of interest. We then classified sequences with
HydDB (25). HydDB classified the sequences as [NiFe] Group 3B,
[NiFe] Group 3d, [NiFe] Group 4A, [FeFe] Group A, or other. We
further classified [FeFe] Group A hydrogenases as group A1, A2,
A3, or A4 according to which accessory proteins were adjacent
(25). Members of group A2 had GltA (COG0493) adjacent, group
A3 hadHydB (pfam01512) adjacent, group A4 had HytE1 (K05796)
adjacent, and group A1 had no accessory protein adjacent.
We obtained definitions (short descriptions) of KO IDs from

KEGG (29), COG IDs from COG (30), and TIGRFAM IDs (32)
and pfam IDs from InterPro (31). We obtained NCBI taxonomy
ID and names from GOLD database.
We obtained information about organisms in (20) by download-

ing it at https://vmh.life/#microbes/fermcarb. We determined
which organisms were type strains by using BacDive. We found
BacDive IDs for the organisms in that source following methods
above. An updated version of this study has been released (57),
but the data are not yet available at the link above.

FAPROTAX
We used FAPROTAX v. 1.2.6 to predict metabolic traits from the
taxonomy of our organisms. The tool outputted predictions for n

= 88 traits. We removed n = 16 traits related to parasitism,
disease, and habitat, leaving n = 72 traits in our final analysis.

MetaCyc pathways
We predicted which of the n = 3445 pathways onMetaCyc (35) were
encoded by genomes. We navigated to the MetaCyc webpage for
each pathway, and then, we downloaded EC numbers for
enzymes of each pathway using “Download Genes.” We then
found a KO ID corresponding to each EC number on KEGG (29).
We defined a genome as encoding a MetaCyc pathway if it had

KO IDs for each enzyme. If an EC number had multiple KO IDs,
only one had to match. If an enzyme had no EC number or no
KO ID, it was ignored.

Construction of metabolic models
We constructed metabolic models for organisms using R and the
fbar package. We first constructed a reference model that contained
all n = 110 biochemical reactions we found relevant to fermentation
(see data file S7). The reactions were identified mostly from (36) and
are catalyzed by n = 210 enzymes.We obtained information on each
reaction (including equation, EC number, and KO ID) from KEGG
(29) and other sources. For reactions catalyzed by hydrogenases, we
list the HydDB name in place of the KO ID.Many reactions could be
catalyzed bymultiple enzymes, andmany enzymes hadmultiple KO
IDs. Our model preserves the relationship between reaction,
enzyme, and KO ID (see data file S7). After defining the main reac-
tions, we added exchange reactions representing entry of cofactors,
substrates, and products.
We predicted which reactions are catalyzed by each organism.

We predicted that a reaction is catalyzed if an organism has a
gene with the appropriate KO ID (or HydDB name). If a reaction
is catalyzed by an enzyme with multiple KO IDs, genes for all
must be present for it to be predicted.
Last, we set constraints for fluxes and solved the model. Fluxes

for most reactions were constrained between −1000 and 1000 (ar-
bitrary units). Fluxes for reactions that usually proceed in the
forward direction (e.g., EC 2.7.1.1) were constrained between 0
and 1000. Similarly, fluxes for reactions proceeding in reverse
were constrained between −1000 and 0. Fluxes of exchange reac-
tions were constrained to be between −106 and 106 (for cofactors),
−1000 and 0 (for substrates), or 0 and 106 (for products). For reac-
tions not predicted to be catalyzed, fluxes were constrained to 0. The
model was solved once for each product; this was done by setting the
objective function of its exchange reaction to be 1. Products with
flux >1 were considered to be produced.
Cofactors included molecules such as NADH and ATP. They

also included any metabolite, such as H2O, that we wished to be un-
balanced. They did not include molecules, such as CoA, that are ba-
lanced by reactions in close proximity. With cofactors (unbalanced
metabolites) in the model, the structure could be much simpler and
did not have to include reactions for anabolism.
For propionate and butyrate, we explored how adding reactions

would affect predictions. We built models of organisms observed
but not predicted to form propionate or butyrate. We then added
one-by-one all n = 110 biochemical reactions in the reference
model. We recorded the flux and determined whether adding a re-
action would change it from a negative prediction (flux of <1) to a
positive one (flux of >1). Models were plotted using R and the
igraph package (58).
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Construction of phylogenetic trees
Phylogenetic trees were constructed as in (18, 19). The construction
used sequences of 14 ribosomal proteins (59). We downloaded se-
quences from IMG/M (24) then aligned and concatenated them in
R. We used aligned and concatenated sequences to create a phylo-
genetic tree with Randomized Axelerated Maximum Likelihood
(RAxML) (60). Branch lengths of the consensus tree were calculated
using R and the phytools package (61). The consensus tree was vi-
sualized using R and the ggtree package (62).

Protein structures
Structures were downloaded from Research Collaboratory for
Structural Bioinformatics (RCSB) Protein Data Bank (PDB) (63)
or predicted with ColabFold (64). Structures on PDB were found
by using COG (30) and InterPro (31) as references. If none
existed for a given database ID, we predicted structures with Colab-
Fold with protein sequences from Escherichia coli or Bacillus subti-
lis. The protein sequence used for prediction was downloaded from
IMG/M. Structures were visualized using PyMOL (v2.0, Schröding-
er LLC) following (40).

Other bioinformatics
We constructed heatmaps, lollipop charts, and bar charts using R
and the ggplot2 package (65). Our interactive tool was constructed
using R and the Shiny package.

Source and growth of organisms
We obtained Corynebacterium vitaeruminis DSM 20294, Clostridi-
um lundense R1, and Treponema ruminis Ru1 from the DSMZ.
These organisms were isolated by other laboratories, but their fer-
mentation end products had not been reported in the primary lit-
erature (see data file S2).

Lachnospiraceae sp. C1.1 and Porphyromonadaceae sp. W3.11
were isolated by our laboratory from the rumen of a Holstein
heifer. All procedures with animals have been approved by Univer-
sity of California Davis’s Institutional Animal Care and Use Com-
mittee. Rumen contents were collected through a rumen fistula and
strained through two layers of cheesecloth into a bottle. The bottle
was sealed to exclude air and maintained at 39°C. Contents were
brought to the laboratory and bubbled under O2-free CO2 within
15 min. At the laboratory, serial dilutions were made with anaerobic
dilution solution for Lachnospiraceae sp. C1.1 and propionibacte-
rium diluent for Porphyromonadaceae sp. W3.11 (table S2). Ali-
quots (0.1 ml) of each dilution were injected into anaerobic bottle
plates (66) containing 9 ml of LH medium (table S2). After incuba-
tion at 37°C for 7 days, isolated colonies were picked. Lachnospira-
ceae sp. C1.1 was picked from a bottle inoculated with a 104 dilution
of rumen contents, and Porphyromonadaceae sp. W3.11 was picked
from a bottle inoculated with a 103 dilution. After initial isolation,
these organisms were purified by growing on anaerobic roll tubes
(67) and picking isolated colonies.
In subsequent experiments, organisms were grown anaerobically

under O2-free CO2 in 9 ml of liquid medium at 39°C. Balch tubes
with sealed rubber stoppers were used to exclude air, and syringes
flushed with O2-free CO2 were used for all liquid transfers. The
medium for most organisms was PC-VFA, which contains
glucose as the only carbohydrate (table S2). One organism (T.
ruminis Ru1) was grown on PC + VFA medium, which also con-
tains short-chain fatty acids and stimulated growth. Organisms

were grown on media without glucose (PC-VFA-glucose or PC +
VFA-glucose) as controls.
Tubes were inoculated with a 0.1-ml volume of a stationary

phase culture, and then, growth was monitored by measuring
optical density at 600 nm on a spectrophotometer (Genesys 20,
Thermo Fisher Scientific, Waltham, MA). Growth on media with
glucose was higher than without glucose, showing glucose was
used as a substrate (fig. S16).

Measurement of fermentation products
Fermentation products were measured after cultures reached early
stationary phase. Aliquots (2 ml) of liquid culture were collected by
syringe, and cells were removed by centrifugation (21,100g for 10
min at 4°C). The resulting supernatant was stored at −20°C until
analysis. Separate cultures were grown for analysis of gas headspace.
Cultures were grown at least three times and represent biological
replicates.
Supernatant was analyzed for concentration of fermentation

acids and alcohols (millimole per liter culture). Acetate, propionate,
butyrate, isobutyrate, isovalerate, and valerate were measured by gas
chromatography (18). (R) lactate and (S) lactate were analyzed using
an enzymatic kit from R-Biopharm (product code 11112821035).
Formate, succinate, and ethanol were measured using kits from
Megazyme (product codes K-FORM, K-SUCC, and K-ETOH).
The kit for ethanol cannot distinguish ethanol from propanol or
butanol. When kits were used, supernatant was heated at 100°C
for 10 min to inactivate interfering enzymes.
Headspace from cultures was analyzed for H2. Total gas produc-

tion (milliliter per culture) was measured with a syringe. Aliquots of
gas (1 ml) were then collected and analyzed for H2 by gas chroma-
tography (56). Production of H2 (millimole per liter of culture) was
then calculated.
Production of CO2 (millimole per liter culture) was determined

with two methods. The first method was by measuring the differ-
ence between total gas production and H2 production. This method
cannot distinguish between CO2 produced from glucose versus
buffer, and it gave high values (see fig. S17). A second method,
using stoichiometry of other end products, was also used (36).
This method gave lower values.
Products were measured for cultures grown on media with

glucose (e.g., PC-VFA) and without glucose (e.g., PC-VFA-
glucose). Concentrations (millimole per liter culture) were higher
for cultures grown on media with glucose, showing that glucose
was used to form fermentation end products (fig. S17).
Final yield of products was expressed as millimole formed per

millimole substrate fermented (fig. S18). We calculated millimole
formed as millimole per liter culture with glucose minus millimole
per liter culture without glucose. We assumed 6 mmol C in prod-
ucts/mmol substrate. For these calculations, we used CO2 calculated
using stoichiometry.

Sequencing and analysis of genomes
We performed de novo sequencing of Lachnospiraceae sp. C1.1 and
Porphyromonadaceae sp. W3.11. Aliquots of liquid culture (9 and
1.5 ml, respectively) were collected by syringe and centrifuged
(21,000g for 10 min at 4°C). Cell pellets were submitted to Molec-
ular Research LP for DNA extraction, library preparation, and se-
quencing. After resuspending pellets in 180 ul of ATL buffer
(Qiagen), DNA was extracted using the MagAttract HMW DNA

SC I ENCE ADVANCES | R E S EARCH ART I C L E

Hackmann and Zhang, Sci. Adv. 9, eadg8687 (2023) 27 September 2023 13 of 18



Kit (Qiagen). DNA was eluted in 100 ul of AE buffer (Qiagen) and
then cleaned using the DNEasy PowerClean Pro Cleanup Kit
(Qiagen). DNA was then sheared using the Covaris g-TUBE
(Covaris). Sequencing libraries were prepared using the SMRTbell
Express Template Prep Kit 2.0 (Pacific Biosciences) and 1500 ng of
the sheared and purified DNA. The SMRTbell libraries were size-
selected (>6 Kb) using a BluePippin instrument (Sage Science)
and 0.75% agarose gel. Libraries were then sequenced using the
PacBio Sequel II (Pacific Biosciences) platform and a 30-hour
movie time.
After obtaining raw sequence reads, we assembled them into

contigs. We performed these steps using apps in the Department
of Energy Systems Biology Knowledgebase (KBase) (68).We filtered
low-quality reads using Trimmomatic (v0.36) (69), assembled fil-
tered reads with SPAdes (v3.15.3) (70), and then checked complete-
ness and contamination of the assembled genomes with CheckM
(v1.0.18) (71). Statistics for sequencing and assembly are in table S3.
Using the assembled contigs (genomes), we called genes and an-

notated them. Protein-coding genes were called using Prodigal
(v2.6.3) (72) locally or using KBase [via RASTtk (v1.073) (73)],
with identical results. Genes were annotated with KO IDs using
KAAS (41). They were further annotated with pfam and
TIGRFAM IDs using KBase and the Annotate Domains in a
Genome app. We classified putative genes for hydrogenases using
HydDB. Genes for 16S ribosomal RNA (rRNA) were called using
RASTtk (v1.073) in KBase.
The contigs (genomes) were analyzed to determine whether they

belonged to new species. Taxonomy was assigned using GTDB-Tk
(v1.7.0) (74) in KBase. The identity of 16S rRNA genes to other or-
ganisms was found using EzBioCloud (75). Values of digital DNA-
DNA hybridization (dDDH) were found with Type (Strain)
Genome Server (76). These analyses suggest that Lachnospiraceae
sp. C1.1 and Porphyromonadaceae sp. W3.11 represent novel
species or genera. GTDB-Tk assigned Lachnospiracae sp. C1.1 to
family Lachnospiraceae and genus NK4A144, which contains no
type strains. It assigned Porphyromonadaceae sp. W3.11 to Porphyr-
omonadaceae and genus Porphyromonas_A. Values of 16S rRNA
identity and dDDH with respect to type strains were low (table
S4). Although more phenotypic data are needed, available evidence
supports assignment of genomes to new species or genera.

Prediction of traits with our interactive tool
We used our interactive tool to predict traits of organisms grown in
our study and three external datasets (42–44). Taxonomy and KO
IDs were downloaded from IMG. Sequences of putative genes for
hydrogenases were obtained similarly and then classified with
HydDB as above. Information for Lachnospiraceae sp. C1.1 and Por-
phyromonadaceae sp. W3.11 was obtained as above. Completeness
of genomes in (43) was that reported in the original paper. A newer
version (43) has been published [see (77)], but data are not yet avail-
able on IMG. For (44), taxonomy and abundances of OTUs were
taken from the paper.
To predict traits from taxonomy, we ran the tool using a predic-

tion threshold of 0.5 and with NCBI taxonomy. To simulate typical
use, we used partial taxonomies that included names of genera only.
If names of genera were not available, names of the next highest
rank (e.g., family) were used instead. For Lachnospiraceae sp. C1.1
and Porphyromonadaceae sp. W3.11, we used names of their fami-
lies. To predict traits from genomes, we used the referencemodel for

glucose metabolism described above. To combine predictions, we
added traits predicted from genomes to traits predicted from taxon-
omy. All datasets are available as example datasets in our interac-
tive tool.

Statistical analysis
We calculated risk difference for discrete variables as

P1 � P2
where P1 is the percentage of fermentative prokaryotes positive for a
trait and P2 is the corresponding value for nonfermentative pro-
karyotes (see fig. S1A). The corresponding SEM is

SEM ¼ ½P1ð100 � P1Þ=n1 þ P2ð100 � P2Þ=n2�0:5

where n1 is the total number of fermentative prokaryotes and n2 is
the corresponding value for nonfermentative prokaryotes. We
tested whether the statistic was different from 0 using a two-tailed
z test (78). Values of P1 and P2were arcsine-transformed (78) before
the z test, and they were untransformed for presentation in the
figures. P values from the z test were corrected for multiple compar-
isons using the Benjamini-Hochberg procedure (79).
For continuous variables, we calculated what we call the proba-

bility difference (see fig. S1B). It is

P1ðxÞ � P2ðxÞ

where P1(x) is the probability density function for fermentative pro-
karyotes. P2(x) is the corresponding function for nonfermentative
prokaryotes. We fitted probability density functions to data using
the density function of R (setting the bandwidth to triple the
default value). We calculated 95% confidence limits using boot-
strapping with 10,000 replicates.
For continuous variables, we also performed a two-sample, two-

sided Kolmogorov-Smirnov test using R and the stats package. This
is a nonparametric test for comparing empirical cumulative distri-
bution functions, and it complements the probability difference cal-
culated above.We performed it using the ks.test function of the stats
package of R. We performed t-SNE (33) using R and the Rtsne
package. The value of perplexity was set to 45.
We calculated log-odds ratios according to (80). As with risk dif-

ference, we tested whether the statistic was different from 0 using a
two-tailed z test and corrected P values using the Benjamini-Hoch-
berg procedure (79). We regressed number of end products on
genome completeness using the loess function of R.
We analyzed data from (44) using a linear model. We first calcu-

lated the response (% fermentative prokaryotes) using predictions
from our tool (see fig. S13A) and abundance of OTUs in (44). We
then analyzed the data with the nlme package of R, using the gls
function and model Response ~ Day. To reflect the repeated mea-
sures design, infant was the grouping factor. An unstructured var-
iance-covariance matrix was chosen, as it gave the lowest value of
Akaike information criterion. SEM was estimated using the
emmeans package of R. We tested whether means differed from
each other using a two-tailed t test, and we corrected P values for
multiple comparisons with the Tukey procedure. Other statistical
tests are as described in the figure legends.
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Supplementary Materials
This PDF file includes:
Figs. S1 to S18
Tables S1 to S4
Legends for data S1 to S7

Other Supplementary Material for this
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