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SUMMARY 

This term paper is a short review of the capabilities and history
of  epigenetic  aging  clocks,  focusing  on  possible  uses  in  both
nonhuman and human longevity research. I will begin by covering the
conceptual  background required for  understanding the function and
purpose of DNA methylation-based aging clocks, first reviewing various
prior methods of measuring aging before defining epigenetic age and
explaining the basic principles behind epigenetic aging clocks. Then, I
will  cover the history of epigenetic aging clocks and their  transition
from  chronological  age  indicators  into  mortality  predictors,  before
focusing on their current uses in both human and nonhuman animals. I
will conclude the paper with an analysis of underutilized opportunities
for  the  use  of  these  clocks  in  biodemography  and  chronic  disease
screening. 
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INTRODUCTION

Over  the  last  several  decades,  the  field  of  epigenetics  has
moved from a relatively niche study of gene expression to the forefront
of  aging  research. Epigenetic  aging  clocks  have  been  critical  in
demarcating the difference between chronological and biological age,
and in enabling a more direct study of the latter. These clocks work by
observing the DNA methylation (DNAm) patterns across a variety of
CpG sites  (sites  where  a  cytosine  is  followed by  a  guanine  on  the
genome,  where  methylation  can  take  place)  of  interest  which  are
strongly  correlated  with  aging and aggregating  this  data  to  predict
either the chronological or biological age of an individual, depending
on the clock design. Both the number of CpG sites surveyed and the
accuracy of the predictions of the DNAm clocks have increased over
time,  and  they  have  already  been  used  as  indicators  for  both  the
mortality  risk  of  an  individual  and  the  success  of  anti-aging
interventions (Fahy et al., 2019). The potential DNAm clocks have to be
used  as  biodemographic  aides  and  as  screening  tools  in  humans,
however, has thus far been mostly neglected. More epigenetic aging
clocks should be devised for model organisms in the near future, and
the implementation of epigenetic assays as screening tools for age-
related diseases should be more widely considered. 

BACKGROUND

Measuring Aging

The age of humans has traditionally been measured simply by
counting the number of years a person has been alive since birth, also
known as their chronological age. There is no doubt that chronological
age is  intrinsically tied to the rate of  actuarial  aging, which can be
modeled impressively well by the Gompertz model, designed in 1815.
The  Gompertz  model  suggests  that  the  risk  of  death  in  humans
increases  by  approximately  8% each year  after  30  until  around 80
years old, and this theory matches observed demographic data well.
(Gompertz,  1815)  However,  individual  humans  vary  greatly  in  their
level of frailty and risk of death, which causes most of the observed
difference in human actuarial aging. (Hawkes et al., 2012) Thus, while
chronological  age  is  a  good  predictor  of  the  biological  age  of  an
organism, it is not ideal for predicting individual outcomes. 

Additionally, the simple passage of time is not enough to explain
the  aging  process,  as  individuals  exposed  to  stressors  like  famine,
droughts,  war,  and  poverty,  or  environmental  toxins  often  display
phenotypical signs of aging earlier, as do people suffering from alcohol
(Leber,  1982)  or  tobacco  (Morita,  2007)  addictions.  The  Gompertz
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model is thus of course outperformed in predicting the risk of death of
any given individual by models that take environmental and historical
data into account (Jylhävä et al., 2017). Even still, gathering data about
individual risk exposures is at best difficult and time-consuming, and
often impossible in many locations. Thus, it is necessary to discover
effective  biomarkers  of  aging,  which  can  easily  and  replicably  be
observed  without  harming  subjects.   Most  molecular  biomarkers  of
aging that reflect environmental risk factors do not meet these criteria.
However, because gene expression in humans is significantly altered
by the environment, novel methods of measuring aging that study the
epigenome, which is the sum of nonstructural changes to the genome
that  adjust  gene  expression  in  cell  lines  and  their  descendants
(Bernstein  et  al.,  2007)  have  been  devised.  The  most  relevant
epigenetic alteration for measuring biological age is direct methylation
of  DNA,  as  other  regulatory  factors  like  acetylation  of  histones  are
much more transient in nature, with most failing to persist through the
DNA replication process (de la Parte, C, & Guallar, D., 2023). 

Methylation and CpG Sites

DNA methylation is chemically trivial in animals: at each CpG
dinucleotide,  which  is  simply  a  cytosine  nucleotide  followed  by  a
guanine nucleotide (Li et al., 2022), a methyl group may be added to
the genome by one of many proteins. The process of methylation is
common  to  essentially  all  life,  and  it  is  one  of  many  epigenetic
methods that allow organisms to regulate the transcription of genes
without  altering  their  genetic  code  (Bernstein  et  al.,  2007).
Methylation at CpG sites in the genome force that part of DNA to coil
more tightly around its histone, which makes it difficult for proteins to
access it. This is likely why CpG sites are so common in the promoter
region of genes: they allow for easy regulation of the transcription of a
gene simply by preventing RNA transcriptases from ever being able to
form  a  complex  and  begin  transcription.  DNA  methylation  is  also
heritable  across  instances of  mitosis  (Bernstein et  al.,  2007),  which
means that all daughter cells of a given cell will carry nearly the same
epigenome  as  their  progenitor.  It  is  also  somewhat  heritable  from
mother to daughter across meiosis, though much of the epigenome is
reset during that process.  Not all CpG sites are correlated with aging
or environmental stressors, but the methylation status of some CpG
sites is highly correlated with increased age. Thus, identifying a large
number of  sites correlated with age and assaying their  methylation
status can provide a good estimate of the age of an individual, both
chronologically and biologically.  This is the main objective of DNAm
aging clocks. 
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History

The history of epigenetic aging clocks begins in 2011 with the
creation of the first epigenetic predictor of age (Bocklandt et al., 2011).
Bocklandt  and colleagues analyzed thousands of  CpG sites in  twins
ranging  from  18  to  70  years  of  age,  looking  for  locations  where
methylation  status  was  heavily  correlated  with  chronological  age.
While the Bocklandt predictor made no attempt to estimate biological
age,  it  was  able  to  estimate  chronological  age  with  an  average
accuracy of 5.2 years simply by observing the methylation patterns
across three CpG sites. Horvath was the first to create an epigenetic
aging clock with the express goal of designing a multi-tissue predictor
of  age,  which tracked 353 clock CpG sites (Horvath,  2013) with  an
average accuracy of 3.6 years, as shown in Figure 1. The clock was
capable of predicting the age of chimpanzees with some accuracy, but
it was less useful for other primates like gorillas. 

In comparison, Porter et al.’s modern chronological DNAm clock,
created  in  the  same  way  as  Horvath’s  but  with  many  more  sites

included (Porter et al., 2021), had an average accuracy of 3.7 years,
which indicates that there are diminishing returns for including ever
more CpG sites in DNAm clocks. Tissue-specific clocks like the blood-
based clock created by Zhang et al  with a best-performing average
error of 2.04 years (Zhang et al.,  2019) can be better predictors of
chronological age than pan-tissue clocks like the Horvath and Porter
clocks, but they can be greatly skewed by tissue-specific diseases. This
also  raised  the  question:  should  epigenetic  aging  clocks  still  be
attempting to predict chronological age as a proxy for biological age,
or  would  they  be  more  useful  attempting  to  predict  age-related
phenomena like mortality rates or chronic disease incidence?
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CONTEMPORARY USES 

Mortality Predictors

Epigenetic aging clocks diversified rapidly over the course of the
2010s,  as  several  teams  analyzed  further  CpG  sites  and  began  to
devise new types of tissue-specific and pan-tissue DNAm clocks. One
significant  milestone  in  the development  of  epigenetic  aging  clocks
was the observation that epigenetic age could act as a better predictor
of  all-cause  mortality  than  chronological  age.  (Chen  et  al.,  2016)
People  that  had  a  higher  predicted  “epigenetic  age”  based  on  the
Horvath and Hannum clocks than their chronological age were much
more likely to die sooner than their non-age-accelerated counterparts,
with  the  5% fastest  epigenetic  agers  having  a  48% higher  risk  of

death.   After  this  milestone  was  reached,  various  competing  clock
teams  began  focusing  on  building  better  predictors  of  mortality.
Chronological clocks, which simply attempted to estimate the time an
individual  has  been  alive,  were  deprioritized  relative  to  biological
clocks (Li et al. 2022), which, like their predecessors, have also begun
to diversify. The first DNAm clock designed to track biological age over
chronological age was dubbed DNAm PhenoAge (Levine et al., 2018),
which was created in 2018 and was the first epigenetic aging clock
specifically designed to incorporate healthspan. In 2021, the leading

Figure 2: Methods used to create the DNAm GrimAge mortality
predictor (Lu et al., 2019).
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epigenetic clock for the prediction of mortality was the aptly named
GrimAge clock (McCrory et al.,  2021). The GrimAge clock (Lu et al.,
2019)  fully  moves  away  from predicting  chronological  age,  instead
consisting of a DNAm surrogate for smoking pack-years and 11 DNAm
surrogates for blood plasma protein levels, as shown in Figure 2, much
of which is taken directly from Lu et al.’s methods. 

The smoking pack-year indicator is still capable of predicting time-to-
death in people who have never smoked, and is a better indicator for
the  lifespan  of  smokers  than  their  self-reported  number  of  packs
smoked. Additionally,  GrimAge is  strongly predictive of the onset of
major mortality contributors like coronary heart disease and cancer. It
is likely that still more accurate mortality predictors will be produced
by folding more DNAm surrogates for other biomarkers of aging into a
single model, but GrimAge is currently the clock of choice for studying
longevity interventions and mortality.

Trials and Interventions 

DNAm  clocks  have  already  seen  some  use  in  the  field  of
longevity  interventions  in  humans.  Perhaps  more  importantly  than
their ability to act as an indicator of the success of aging interventions,
DNAm  clocks  can  also  tell  longevity  researchers  quickly  if  their
interventions  are  unsuccessful,  thereby  preventing  funds  and  time
from being wasted on studies that would otherwise consume a great
deal  of  time  and  money.  However,  there  have  been  some  notable
successes  in  the  field  measured  using  epigenetic  aging  clocks.  For
example, the DNAm GrimAge clock was used to measure the success
of  a  thymus  regeneration  protocol  in  2019,  which  was  the  first
recorded “increase, based on an epigenetic age estimator, in predicted
human lifespan by means of a currently accessible aging intervention.”
(Fahy et al., 2019). DNAm clocks can also be used in vitro to study the
effects of reprogramming factors on human cells, which has been the
method most capable of reversing epigenetic age in the laboratory (Gill
et al., 2022). Gill et al. were able to achieve an estimated decrease in
epigenetic  age of  30 years  in  vitro  without  the loss of  original  cell
identity through maturation phase transient reprogramming, which is
highly significant, given the low mean error rates of DNAm clocks.   

NOVEL USES

Environmental Analysis & Screening

One  of  the  biggest  problems  in  human  demography  is  the
difficulty demographers have in estimating the frailty of  individuals.
Population  frailty  can  be  estimated  by  death  rates  over  time,  and
environmental  risks  identified,  but  it  is  challenging  to  provide
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information  rapidly  enough  to  support  the  healthcare  needs  of  an
aging population. Thus, it would be useful for an already overburdened
healthcare system to have the ability to recognize individuals that are
vulnerable  to  or  in  the  early  stages  of  a  chronic  disease,  making
inexpensive preventative treatment a possibility. Longitudinal studies
will  be critical  in devising predictors for chronic diseases.  As Li  and
Koch discuss in their review, not all DNA methylation studies are cross-
sectional  (Li  et  al.,2022).  The  first  longitudinal  studies  of  the
methylomes of single individuals or twins across several decades are
now providing evidence for epigenetic predictors of the development
of type 1 diabetes (Johnson et al., 2020). One of Johnson et al.’s figures
is included above, indicating that hypermethylation of the LHX6 gene
is linked to the development of type 1 diabetes, as are several other
epigenetic  changes.   Screening  for  these  epigenetic  changes  in
individuals who are already genetically prone to T1D, could eventually
allow  early  intervention  and  treatment  in  order  to  prevent  the
cardiovascular damage that usually occurs with the disease (DiMeglio
et al., 2018), or even enable study of its pathogenesis, which is still not
well understood. As of right now, such research is currently ongoing in
several labs (Crna, 2019), (Zhang et al, 2021). Because DNAm aging
clocks  and  mortality  predictors  are  excellent  predictors  of  many
different  chronic  diseases,  epigenetic  screening  could  allow  us  to
screen for many more diseases beyond type 1 diabetes. It could also
allow us to begin screening for environmental pollutants at the same
time as other diseases, saving a great deal of time and money, if we
were  able  to  discover  sites  whose  methylation  was  correlated  with
exposure to such pollutants.

Biodemography

Unlike  most  methods  of  studying  the  biologically  damaging
effects of age in various organs,  DNAm aging clocks do not require
particularly intrusive tissue sampling (Jylhävä et al., 2017), and were
thus more apt for immediate human study. This is likely responsible for
the  significant  discrepancy  in  use  between  nonhuman  epigenetic
clocks and human clocks. Epigenetic aging clocks have been used in
some model animals, like mice and chimpanzees (Horvath, 2013), but
they have not yet been applied in many studies. It was 6 years after
the first epigenetic clock’s creation that a similar clock was made for
mice (Wagner, 2017), and three years later, in 2020, that the first clock
was designed for zebrafish (Mayne et al.,  2020).  Zebrafish were an
excellent choice for designing a clock, since their methylome is well
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understood and they are easy to breed in captivity. The amount of raw
methylome CpG data required to produce these clocks for any species
should not be understated, as shown in the provided figure.

While DNAm clocks could not be used in yeasts,  for example,
since they only very infrequently regulate gene expression at CpG sites
compared  to  mammals  (Tang  et  al.,  2013),  or  in  organisms  whose
methylome  is  only  very  infrequently  sequenced,  like  lemon  sharks
(Beal et al.,  2022), due to a lack of  data volume required for clock
construction, they are ideal for the study of long-lived vertebrates that
are relatively easy to catch, like naked mole rats (Horvath et al., 2022).
Horvath’s  lab was able to  create an epigenetic  clock for the naked
mole  rat,  a  notoriously  long-lived  eusocial  mammal,  which  showed
significant  differences  in  epigenetic  age  between  queen  and  non-
queen  rats.  This  preliminary  research  may  lead  to  further
understanding  of  the  epigenetic  components  of  their  extraordinary
longevity.  Beyond  enabling  less  invasive  and  rapid  study  of
vertebrates,  DNAm  clocks  can  also  help  solve  a  common  problem
faced in biodemography: the question of where to begin tracking the
life of an organism. Conception and birth are common choices, as are
the beginnings of adult life in animals with larval  stages. Epigenetic
aging  clocks  can  provide  a  method  of  studying  aging  in  early
development  post-conception,  accurately  predicting  age  “back  to  8
weeks  of  gestational  age,  and  likely  to  conception”  (Hoshino  et  al,
2019).  

CONCLUSIONS 

In  conclusion,  DNAm-based  aging  clocks  have  rapidly  moved
from predicting chronological age to predicting biological age and risk
of death over the course of the last decade, and they are an excellent
tool  for  predicting  both  human  mortality  and  the  effectiveness  of
longevity interventions. However, they are significantly underutilized in
nonhuman animals, with the possible exception of mice, which could
be  detrimental  to  our  understanding  of  the  underlying  processes
behind aging. Early studies of many important model vertebrates for
biodemography via DNAm clocks have only started in the last three
years, and so this space is likely to grow rapidly in the coming years.
DNAm predictors could also be used to screen for the early onset of
chronic  diseases  in humans and aid  in the study of  the etiology of
these diseases, acting before traditional screening methods.
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