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Abstract of the Dissertation

Sums of SL(3, Z) Kloosterman Sums

by

Jack Buttcane

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2012

Professor William Duke, Chair

We show that sums of the SL(3,Z) long element Kloosterman sum against a smooth weight

function have cancellation due to the variation in argument of the Kloosterman sums, when

each modulus is at least the square root of the other. Our main tool is Li’s generalization of

the Kuznetsov formula on SL(3,R), which has to date been prohibitively difficult to apply.

We first obtain analytic expressions for the weight functions on the Kloosterman sum side

by converting them to Mellin-Barnes integral form. This allows us to relax the conditions

on the test function and to produce a partial inversion formula suitable for studying sums

of the long-element SL(3,Z) Kloosterman sums.
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CHAPTER 1

Introduction

The classical Kloosterman sums originated in 1926 in the context of applying the circle

method to counting representations of integers by the four-term quadratic form ax2 + by2 +

cz2 + dt2 [18]; they are defined by

S(a, b, c) =
∑

x (mod c)
(x,c)=1

xx̄≡1 (mod c)

e

(
ax+ bx̄

c

)
, e (x) = e2πix,

and they enjoy a multiplicativity relation: If (c, c′) = 1, then

S(a, b, cc′) = S(c′a, c′b, c)S(ca, cb, c′),

where c′c′ ≡ 1 (mod c), cc ≡ 1 (mod c′). In 1927, Kloosterman [17] used these sums

to estimate Fourier coefficients of modular forms, as did Rademacher in 1937 [30]. Opti-

mal estimates for individual Kloosterman sums were obtained in 1948 by André Weil [41]:

|S(a, b, c)| ≤ d(c)
√

(a, b, c)
√
c, where d(c) is the number of positive divisors of c and (a, b, c)

is the greatest common divisor. In 1963, Linnik published a paper outlining methods for

problems in additive number theory [22] in which he noted the importance of sums of Kloost-

erman sums and made the conjecture that such sums should have good cancellation between

terms:

Conjecture 1 (Linnik). Let N be large and C > N
1
2
−ε, then

∑
c≤C

S(1, N, c)� C1+ε.
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One should compare this to Weil’s estimate which gives C
3
2

+ε.

On a parallel track, between 1932 and 1940, Petersson [29], Rankin [31] and Selberg [35]

connected Fourier coefficients of modular forms to sums of Kloosterman sums by studying

Poincaré series. This led to Kuznetsov’s trace formulas [19] which relate sums of Kloosterman

sums to sums of Fourier coefficients of SL(2,Z) automorphic forms, and using these formulas

in 1980, Kuznetsov was able to make progress towards Linnik’s conjecture:

Theorem 2 (Kuznetsov).

∑
c≤T

1

c
S(n,m, c)�n,m T

1
6 (lnT )

1
3 .

As Weil’s estimate here gives T
1
2

+ε, we must be seeing cancellation between terms as

Linnik predicted.

This second track has been quite fruitful for the followers of Iwaniec – sums of arithmetic

functions, usually related to quadratic forms in some sense, can sometimes be decomposed

into sums of Kloosterman sums, e.g. [5], and similarly, exponential sums related to quadratic

forms can often be decomposed into Poincaré series, e.g. [8]. The Kuznetsov trace formulas

then play the role of Poisson summation, allowing one to substitute a sum of Fourier co-

efficients of automorphic forms for a sum of Kloosterman sums and visa versa. Iwaniec in

particular has made good use of a sort of double application of Kuznetsov’s formulas; using

positivity to study averages of Fourier coefficients of automorphic forms via the Kuznetsov

formula and then applying these estimates to sums of Kloosterman sums via the second form

of the Kuznetsov formula, e.g. [5].

Finally, we note that the Fourier coefficients of automorphic forms which are also eigen-

functions of the Hecke operators give rise to L-functions. By applying the Kuznetsov formulas

in this situation we may obtain results on averages of L-functions and all of the problems to

which such things apply, e.g. [7].

Now having noted the strong connection between analysis on SL(2,R) and quadratic

forms, it is hoped that analysis on SL(3,R) will play a similar role in the study of cubic
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forms, and the analysis of Hecke operators on SL(3,R) automorphic forms is also known to

give rise to L-functions. A paper of Jacquet, Piatetski-Shapiro and Shilika [14] and a book

of Bump [2] (which is essentially his dissertation), form the foundations of the L-function

approach; and a paper of Bump, Friedberg and Goldfeld [3] initiates the study of Poincaré

series and Kloosterman sums on SL(3,Z).

The BFG paper notes that the Fourier coefficients of Poincaré series are given by sums of

two new types of exponential sums in addition to the classical sums of Kloosterman himself;

we will primarily be concerned with the long-element sum which we denote Swl(ψm, ψn, c),

for reasons which will be made clear later, and is given by the sum

Swl(ψm1,m2 , ψn1,n2 , (A1, A2)) =∑∗

B1,C1 (mod A1)
B2,C2 (mod A2)

e

(
m2

Z2B1 − Y2A1

A2

+m1
Y1A2 − Z1B2

A1

+ n2
B1

A1

+ n1
−B2

A2

)
,

here the sum
∑∗ is restricted to those quadruples of B1, C1, B2, C2 satisfying

(A1, B1, C1) = (A2, B2, C2) = 1, A1C2 +B1B2 + C1A2 ≡ 0 (mod A1A2),

and the numbers Y1, Z1, Y2, Z2 are defined by

Y1B1 + Z1C1 ≡ 1 (mod A1), Y2B2 + Z2C2 ≡ 1 (mod A2).

In BFG, the authors list a number of basic properties of this new Kloosterman sum, which

generally relate to its well-definedness and interchanging indices of characters or moduli, but

the most important is a type of multiplicativity:

Lemma 3 (BFG). If (c1c2, c
′
1c
′
2) = 1 and

c1c1 ≡ c2c2 ≡ 1 (mod c′1c
′
2), c′1c

′
1 ≡ c′2c

′
2 ≡ 1 (mod c1c2),

3



then

Swl(ψm, ψn, (c1c
′
1, c2c

′
2)) = Swl(ψm′ , ψn, (c1, c2))Swl(ψm′′ , ψn, (c

′
1, c
′
2)),

where m′ =
(
c′1

2
c′2m1, c

′
1c
′
2

2
m2

)
, and m′′ = (c1

2c2m1, c1c2
2m2).

Similarly, we have Weil-quality estimates for these sums, courtesy of Stevens [38]:

Theorem 4 (Stevens).

|Swl(ψm, ψn, (A1, A2))|2 ≤ d(A1)2d(A2)2 (|m1n2| , D) (|m2n1| , D) (A1, A2)A1A2,

where D = A1A2

(A1,A2)
.

Dabrowski and Fisher [4] have improved these estimates in most cases, but we expect

that the exponents (A1A2)
1
2 are sharp in the general case, though the author is unaware of

any such proof.

The hope that these generalized Kloosterman sums will play a similar role to their clas-

sical counterparts leads us to make Linnik-type conjectures for cancellation between terms

in a sum of SL(3,Z) Kloosterman sums, and the main result of this paper confirms this for

a smooth weight function when the moduli are roughly the same size:

Theorem 5. Let f ∈ C8
c ((R+)2), and take X and Y to be large parameters, with ψm and

ψn non-degenerate characters, then

∑
ε∈{±1}2

∑
c1,c2≥1

Swl(ψm, ψεn, c)

c1c2

f

(
X

4π2c2 |m1n2|
c2

1

, Y
4π2c1 |m2n1|

c2
2

)
�f,m,n,ε (XY )ε

(
(XY )

5
14 +X

1
2 + Y

1
2

)
.

If we instead apply Stevens’ estimate for the individual Kloosterman sums, we are led to

the bound (XY )
1
2

+ε, so we are seeing cancellation between terms in the sum. The (XY )
5
14

comes from the Kim-Sarnak bound on the (real part of the) Langlands parameters of SL(3,R)

cusp forms, and the X
1
2 and Y

1
2 terms come from some second-term asymptotics which

present a difficulty in our partial inversion of a two-dimensional integral transform. If the

4



generalized Ramanujan-Selberg conjecture (a.k.a. generalized Selberg eigenvalue conjecture)

holds, then our bound becomes (XY )ε
(
X

1
2 + Y

1
2

)
, but we expect that the optimal bound

would be (XY )ε if one had a full inversion formula.

We expect that the most interesting examples should have c1 � c2, i.e. when X = Y ,

and in this case the dominant term becomes X
5
7

+ε, which is entirely controlled by the Kim-

Sarnak bound. Again, under the generalized Ramanujan-Selberg conjecture, this becomes

X
1
2

+ε and the optimal bound should be Xε.

We have not chosen to track the dependence on the indices m and n here, but it is

simple to do so. The resulting bound is not close to optimal; essentially, we are multiplying

the bound by powers of m and n. For comparison, Sarnak and Tsimerman [32] have made

Theorem 2 explicit in m and n with the bound

(
x

1
6 + (mn)

1
6 + (m+ n)

1
8 (mn)

7
128

)
(mnx)ε,

and the third term may be removed if we assume the Ramanujan-Selberg Conjecture. Similar

bounds for the long-element Kloosterman sums on SL(3) would require a great deal more

work, and optimal bounds are not possible with the current method, again because of the

error terms.

Finally, there is another new type of Kloosterman sum on SL(3) which arises in the

same manner, but is much smaller in summation. There is some contention over whether

this second type also has good cancellation in sums: If it behaves as the examples we have

studied so far, the answer should be yes, but Bump, Friedberg and Goldfeld have put forth

a competing theory in [3, Conjecture 1.2] to the effect that the Kloosterman zeta function

of this sum should have poles on the boundary of its region of absolute convergence; in

particular, this region would coincide with the region of conditional convergence, and there

would be no significant cancellation between terms.

The methods here come from harmonic analysis on symmetric spaces. Specifically, these

results are obtained by studying a generalization of the Kuznetsov formula to SL(3,R):

Starting from a proof of Kuznetsov’s trace formula on SL(2,R) by Zagier, and using the

5



Fourier coefficient decomposition of automorphic forms on SL(n,R) by Friedberg (generalizes

that of BFG on SL(3,R)), Li has given a generalization of the first of Kuznetsov’s trace

formulas to SL(n,R) and this appears in Goldfeld’s book on automorphic forms on SL(n,R)

[11]. So far, only the most basic of estimates have come out of the SL(n) Kuznetsov formula

and only for SL(3), these may be found in a paper of Li herself [21], but in general, the

integral transforms appearing in her formula are too complex to use effectively. Blomer has

been able to push somewhat farther by developing his own generalization of Kuznetsov’s

first formula [1].

Using the Kuznetsov formula, we are able to express the integral transforms as an in-

tegral of the original test function against a function in Mellin-Barnes integral form. With

this representation, we can produce a sort of first-term inversion for the integral transform

attached to the sum of long-element Kloosterman sums, which gives us a sort of incom-

plete generalization of Kuznetsov’s second trace formula, and the proof of Theorem 5 then

proceeds much as in Kuznetsov’s original paper.

The central idea is that the spectral parameters of the SL(3,R) automorphic forms occur

in a strip which is positive distance from the region of absolute convergence of the long-

element Kloosterman zeta function. The aforementioned difficulties with the second-term

asymptotics prevent us from obtaining the analytic continuation of the Kloosterman zeta

function, but a similar path of shifting contours outside the region of absolute convergence

yields the above results.

The BFG paper contains an alternate approach; they state, but do not prove, the mero-

morphic continuation of the unweighted Kloosterman zeta function (the main object of study

in the paper is weighted by a type of generalized Bessel function, much as the sum appearing

in the spectral Kuznetsov formula), which would in principle give the above results without

the error terms X1/2 and Y 1/2, if one could control the growth of the Kloosterman zeta

function on vertical lines in the complex plane. On SL(2), this method was started by Sel-

berg [34] (see [33] as well as the Göttingen lecture in the second volume) and completed by

Goldfeld and Sarnak [10].

6



Similarly, Yangbo Ye [42] has given a third approach starting directly with sums of the

long-element Kloosterman sums. He provides a spectral interpretation which could be used

to provide bounds in much the same manner as the current paper. The difficulty with his

Kuznetsov formula, as with Li’s, lies in the complexity of the generalized Bessel functions,

hence an analysis of the functions occurring in his formula, as we are about to provide for

Li’s, should produce similar results. It would be an interesting problem for future research

to compare the two.

7



CHAPTER 2

Background

To do harmonic analysis, we require a space with two properties:

1. A measure on the space.

2. A commutative group of differential operators which act on smooth functions on the

space.

The first allows us to discuss the L2 space, and the second allows us to decompose the L2

space into eigenfunctions, a.k.a. harmonics.

More specifically, we are interested in harmonic analysis on symmetric spaces: Originally,

a symmetric space referred to a Riemannian manifold with a geodesic-reversing isometry, but

in Lie group theory, we define a symmetric space as having a continuous, transitive group

action, where the stabilizer of any point is an open subgroup of the fixed point set of an

involution of the group. We will not be concerned with the exact definition of a symmetric

space, except to say that the groups we study are Lie groups, and the spaces are symmetric

spaces under both definitions, so we may borrow theorems from these areas as necessary.

In summary, we require:

3. A smooth, transitive group action on the space; the measure and differential operators

should be invariant under this action.

Lastly, as we are studying number theory on these groups, we need:

4. A discrete subgroup.

8



Goldfeld’s ν Parameters

ν1 = µ1−µ2+1
3

µ1 = 2ν1 + ν2 − 1
ν2 = 1+µ1+2µ2

3
µ2 = −ν1 + ν2

µ3 = 1− ν1 − 2ν2

Terras’ s Parameters

s1 = 1+µ1−µ2
2

µ1 = −1 + 2s1−2s2
3

s2 = −2µ1+µ2
2
− 1 µ2 = −4s1+2s2

3

s3 = 1+µ1+µ2
2

µ3 = 1 + 2s1+4s2
3

Terras’ ia Parameters = Jorgensen and Lang’s iλ Parameters
λ1 = a1 = −2iµ3 µ1 = ia3

2

λ2 = a2 = −2iµ2 µ2 = ia2
2

λ3 = a3 = −2iµ1 µ3 = ia1
2

Table 2.1: Conversion of Spectral Parameters.

We will then study the L2 space of functions on the quotient space of our symmetric space

modulo this discrete subgroup.

The setting that we are most concerned with is SL(3,R) and its symmetric space at

full level, i.e. the discrete subgroup is SL(3,Z). We will first review SL(2,R) and discuss

the above four properties in a setting which is hopefully most natural to the reader, before

generalizing to SL(n,R) and then specializing back to SL(3,R). A good reference here is

Goldfeld’s book [11] for the automorphic forms side. For the harmonic analysis on symmetric

spaces, the author learned from Terras’ book [39], but would like to recommend Jorgensen

and Lang [15].

Before we begin, we have two notes on notation: First, we are considering SL(n,R)

embedded as the matrices of positive determinant in GL(n,R)/R+, so when we discuss

matrices of (positive) determinant other than one, we simply mean to divide by the n-th

root of the determinant. Second, we are expressing everything in terms of the Langlands

parameters µ = (µ1, . . . , µn) with µ1 + . . . + µn = 0, which are the analytic parameters of

Whittaker functions and Eisenstein series . This differs from all of the referenced texts, but

it is difficult to give a coherent presentation using the ν parameters of Goldfeld’s book, which

are the analytic parameters of L functions, and the extra factor of i
2

in the harmonic analysis

books becomes annoying to deal with (clearly, the ia and iλ parameters are best suited

for harmonic analysis). Regardless, the reader must convert between multiple parameter

definitions when referencing the texts, so we give the conversions for SL(3,R) in Table 2.1.

9



2.1 A Review of SL(2,R)

For classical automorphic forms on G = SL(2,R), the symmetric space is the upper half-

plane H = {z = x+ iy ∈ C : y > 0}, the measure is dx dy
y2

, the group action is by fractional

linear transformation a b

c d

 z =
az + c

bz + d
,

the group is differential operators is C[∆], where ∆ = −y2
(
∂2

∂x2
+ ∂2

∂y2

)
is the hyperbolic

Laplacian, and we are operating at full level, so the discrete subgroup is Γ = SL(2,Z). A

calculation shows that the measure and ∆ are invariant under the action of SL(2,R).

To connect with the general case, we take a moment to rephrase this: Given a matrix

g ∈ SL(2,R), we may apply the Gram-Schmidt procedure on the rows, starting at the

bottom, to obtain g = uk where u is upper-triangular, and k ∈ K = SO(2,R) is orthogonal.

We can further decompose u = rxy where r ∈ R+, x is upper unipotent and y is positive

diagonal with a one in the bottom right:

g ≡

1 x

1

y
1

 (mod K),

where x ∈ R and y ∈ R+, this is called the Iwasawa decomposition. (Recall that we ignore

the determinant, so the y matrix need not have determinant 1.) This space G/K may then

be identified with H by g 7→ x+ iy, and if we allow G to act on G/K by left translation, we

see that a b

c d

 g ≡

1 (ax+b)(cx+d)+acy2

(cx+d)2+c2y2

0 1

 y
(cx+d)2+c2y2

0

0 1

 (mod K)

(by Gram-Schmidt), and

az + b

cz + d
=

(ax+ b)(cx+ d) + acy2

(cx+ d)2 + c2y2
+ i

y

(cx+ d)2 + c2y2
,

so the G actions agree.

10



2.1.1 Selberg Spectral Decomposition

We mentioned above that our first goal is a decomposition of the space L2(Γ\H) by eigen-

functions of the Laplacian; a theorem of Selberg gives

L2(Γ\H) = C⊕ Lcusp ⊕ LEisenstein,

where Lcusp is spanned by the Maass cusp forms, and LEisenstein is spanned by integrals of

the Eisenstein series. Before we go into more detail, we need to give the definitions of these

functions.

We start with the simplest function on H: the power function. Let

p 1
2

+µ(x+ iy) = y
1
2

+µ, then p 1
2

+µ is a function on H, but it is not Γ invariant. It is, however,

an eigenfunction of ∆, with ∆p 1
2

+µ =
(

1
4
− µ2

)
p 1

2
+µ.

Maass forms are defined by three conditions: A non-zero function φ : H → C, which is

square-integrable on Γ\H, is called a Maass form of type µ if it is

(a) Automorphic, φ(γz) = φ(z) for all γ ∈ Γ,

(b) Harmonic, ∆φ =
(

1
4
− µ2

)
φ, and

(c) Cuspidal,
∫ 1

0
φ(x+ iy)dx = 0.

The SL(2,Z) Eisenstein series is initially defined by

E(z, µ) =
1

2

∑
γ∈Γ∞\Γ

p 1
2

+µ(γz), Γ∞ =


1 n

0 1

 : n ∈ Z

 , Re(µ) >
1

2
.

Its completion is E∗(z, µ) = π−( 1
2

+µ)Γ
(

1
2

+ µ
)
ζ (1 + 2µ)E(z, µ), which has analytic contin-

uation to C\
{
±1

2

}
, simple poles at µ = ±1

2
, and functional equation E∗ (z, µ) = E∗ (z,−µ).

Theorem 6 (Selberg). Let {φj} be an orthonormal basis of SL(2,R) cusp forms with φ0

11



constant. Then for any Φ ∈ L2(Γ\G/K), we have

Φ(z) =
∞∑
j=0

〈Φ, φj〉φj(z) +
1

4πi

∫
Re(µ)=0

〈Φ, E(·;µ)〉E(z;µ)dµ.

2.1.2 Location of the cusp forms & The Weyl Law

The eigenvalues of the Laplacian ∆ are of the form 1
4
−µ2 where µ is the Langlands parameter

of an eigenfunction. Now cusp forms are square-integrable and integration by parts shows

that ∆ is a positive operator:

〈∆f, f〉 =

∫
Γ\H

(∣∣∣∣∂f∂x
∣∣∣∣2 +

∣∣∣∣∂f∂y
∣∣∣∣2
)
dx dy = 〈f,∆f〉 ,

so the eigenvalues of cusp forms must be non-negative. An actual calculation can show that

these eigenvalues are larger than 1
4

(due to Roelcke and Selberg, but see [11, Thm 3.7.2] for

an easy proof), so we have µ = iy for some y ∈ R.

Now that we know the (general) location of the Langlands parameters of cusp forms, we

also want to be able to count the cusp forms; this was also done by Selberg:

Theorem 7 (Selberg). Let {φ} be a basis of SL(2,R) cusp forms with eigenvalues λφ =

1
4
− µ2

φ, and let N(T ) be the counting function

N(T ) = # {φ : λφ ≤ T} ,

then

N(T ) ∼ vol(Γ\H)

4π
T.

This sort of theorem is called a Weyl Law.
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2.1.3 Bruhat decomposition, Plücker coordinates & Kloosterman sums

Notice that a matrix γ =

a b

c d

 ∈ Γ with c 6= 0, can be written uniquely as

γ =

1 a
c

1

1
c

c

 −1

1

1 d
c

1

 ,

so we define the Kloosterman sums for c ∈ N by

S(m,n, c) =
∑

γ∈Γ∞\Γ/Γw
γ=( a bc d )

e

(
m
a

c
+ n

d

c

)
,

by ad−bc = det γ = 1, we have (a, c) = 1 and ad ≡ 1 (mod c), and the Bruhat decomposition

tells us that this is really a sum over a, d (mod c), so

S(m,n, c) =
∑

a (mod c)
(a,c)=1

e

(
ma+ nā

c

)
,

where aā ≡ 1 (mod c). This is the classical Kloosterman sum.

Notice that the bottom row of a matrix is invariant under left translation by a matrix in

Γ∞.

2.1.4 Fourier coefficients & Whittaker functions

For any Maass cusp form φ, we have

φ(z + 1) = φ

1 1

0 1

 z

 = φ(z),

13



so φ has a Fourier expansion in x, but the zeroth term is zero by the cuspidality condition,

so

φ(x+ iy) =
∑

06=n∈Z

An(y)e (nx) , e (x) = e2πix.

If we define the Whittaker function by

W (z, µ, n) =

∫ ∞
−∞

p 1
2

+µ(w(z + u))e (−nu) du, w =

0 −1

1 0

 , Re(µ) > 0,

we can show that

W (z, µ, n) =

√
4πy

(π |n|)−µΓ
(

1
2

+ µ
)e (nx)Kµ (2π |n| y) ,

and that actually the An(y) above is some constant multiple of the Whittaker function

W (y, µ, n). Thus if φ is of type µ, we have the Fourier-Whittaker expansion

φ(z) =
∑

0 6=n∈Z

a(n)W (z, µ, n).

Here Kµ denotes the K-Bessel function.

There is some question of normalization of Fourier coefficents, and we now choose a

particular normalization: For any Maass cusp form φ, we define the normalized Fourier

coeffcients ρφ by
ρφ(m)

|m|
W ∗(|m| y, µ, 1) =

∫ 1

0

φ(x+ iy)e (−mx) dx,

where W ∗(y, µ, 1) = 2y1/2Kµ (2πy) is the normalized Whittaker function.

One may show by direct computation that the Eisenstein series has a Fourier-Whittaker
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expansion

E(z, µ) =p 1
2

+µ(y) +
√
π

Γ (µ) ζ(2µ)

Γ
(

1
2

+ µ
)
ζ (1 + 2µ)

p−µ(y) +
∑

06=n∈Z

σ−2µ(n)

ζ (1 + 2µ)
W (z, µ, n),

σs(n) =
∑
d|n
d>0

ds.

We let η(m,µ) be the Fourier coefficients of the Eisenstein series with the same normalization

as above.

2.1.5 The Kuznetsov formula

The formula most central to this thesis will be the Kuznetsov formula on SL(3,R), so

in preparation to discuss that generalization, we give the original Kuznetsov formula for

SL(2,R), a good reference here is Iwaniec and Kowalski ch. 16 [13]. Let {φ} be an o.n.b.

of cusp forms with Langlands parameters µφ and normalized Fourier coefficients ρφ; simi-

larly, let η be the normalized Fourier coefficents of the Eisenstein series, then the form of

Kuznetsov’s formula having an arbitrary test function on the spectral side is:

Theorem 8 (Kuznetsov Trace Formula, Spectral Form). Let h be holomorphic on −1
2
− δ ≤

Re(µ) ≤ 1
2

+ δ, h(µ) = h(−µ), and h(µ)� (1 + |µ|)−2−δ, for some δ > 0, then for m,n > 0,

∑
φ

h(µφ)

cosπµφ
ρφ(n)ρφ(m) +

1

4πi

∫
Re(µ)=0

h(µ)

cosπµ
η(n, µ)η(m,µ)dµ

= δmnHI(h,m) +
∞∑
c=1

S(m,n, c)Hw(h,m, n, c),

where

HI(h,m) =
|m| i
4π3

∫
Re(µ)=0

h(µ)πµ tanπµ dµ,

and

Hw(h,m, n, c) =
|mn|1/2

2π2ic

∫
Re(µ)=0

h(µ)

cos πµ
J2µ

(
4π
√
mn

c

)
πµ dµ.

Here Jµ denotes the J-Bessel function. A quick construction of this formula may be
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found in [12], but beware the different normalizations:

νaj(n) = ρφ(n)

√
2π

|n| cos πµ
.

The spectral form will be our starting point here, but our goal will be the arithmetic

(a.k.a. geometric) form. Let ψj,k be the Fourier coefficients of the jth element of an o.n.b. of

S2k, the space of holomorphic cusp forms of weight 2k, then the form of Kuznetsov’s formula

having an arbitrary test function on the Kloosterman sum side is:

Theorem 9 (Kuznetsov Trace Formula, Arithmetic Form). Let f be twice continuously

differentiable on [0,∞) with f(0) = 0 and f (a)(x) � (1 + x)−α for a = 0, 1, 2, and some

α > 2, then for m,n > 0,

4π
√
mn

∞∑
c=1

S(m,n, c)

c
f

(
4π
√
mn

c

)
=
∑
φ

F (µφ)

cos πµπ
ρφ(n)ρφ(m) +

1

4πi

∫
Re(µ)=0

F (µ)

cos πµ
η(n, µ)η(m,µ)dµ

+
16π(2k − 1)!

(4πi)2k(mn)k−1

∞∑
k=1

G(k)

dimSk∑
j=1

ψj,k(n)ψj,k(m),

where

F (µ) =

∫ ∞
0

J−2µ(x)− J2µ(x)

2 sinπµ
f(x)

dx

x
,

and

G(k) =

∫ ∞
0

J2k−1(x)f(x)
dx

x
.

This formula is produced from the first by inverting the integral transform Hw and

applying a formula of Peterson. Similar formulas apply for mn < 0 and m,n < 0.

2.1.6 Spherical Inversion

The Selberg transform is something that arises in spectral analysis on SL(n,R) and we will

need it and its inversion formula for Li’s construction of the generalized Kuznetsov formula.
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For a function k : H→ C of sufficient decay, we define the Selberg transform

k̂(µ) =

∫
H
k(z)p 1

2
+µ(z)dz,

and it has the following inversion due to Selberg :

Theorem 10 (Selberg Inversion Formula for SO(2,R) Invariant Functions). If k(gz) = k(z)

for all g ∈ SO(2,R), the Selberg transform k 7→ k̂ has the inversion

k(z) =
1

4π2i

∫
Re(µ)=0

k̂(µ)hµ(z)πµ tan πµ dµ,

where hµ(z) is the spherical function

hµ(x+ yi) = P− 1
2
−µ

(
1 + x2 + y2

2y

)
.

Here Ps(y) is the Legendre P function. This is also called Helgason-Fourier or spherical

inversion. The inversion extends to any nice k̂ on Re(µ) = 0 satisfying k̂(µ) = k̂(−µ).

2.2 The General Case: SL(n,R)

For the higher-rank automorphic forms on G = SL(n,R), we have alluded to the fact that

the symmetric space is G/K with K = SO(n,R). Clearly, G acts by left translation on this

space, and the discrete subgroup of interest is Γ = SL(n,Z), i.e. we are interested in “full

level”. Applying the Gram-Schmidt procedure, we may compute the Iwasawa decomposition:

If z ∈ G, then z = rxyk with r ∈ R+, k ∈ K, and

x =



1 x1,2 . . . . . . x1,n

1
. . .

...

. . . . . .
...

1 xn−1,n

1


, y =



y1 · · · yn−1

y1 · · · yn−2

. . .

y1

1


,
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yi ∈ R+, xi,j ∈ R. Again ignoring the determinant, we have z ≡ xy (mod K). We denote

the space of such x as U(R) = R
n(n−1)

2 and such y as Y (R) = Y (R+) = (R+)n−1.

The G-invariant measure, a.k.a Haar measure on a quotient space, has the form dz =

dx dy where

dx =
∏

1≤i<j≤n

dxi,j, dy =
n−1∏
k=1

dyk

y
k(n−k)+1
k

.

For the differential operators, we start with the space of G-invariant differential operators

acting on smooth functions G/K → C and take its center, call it D. It can be shown that

D = C[∆1, . . . ,∆n−1] where ∆i is given by an explicit formula, called a Casimir operator,

and ∆1 in particular generalizes the Laplacian, which we will discuss when we talk about

the geometric location of the Maass cusp forms on SL(3,R).

2.2.1 Langlands Spectral Decomposition

After Selberg, Langlands was able to show a very general spectral decomposition:

Theorem 11 (Langlands).

L2(Γ\G/K) = C⊕ Lcusp ⊕ Lresidual ⊕ LEisenstein,

where Lcusp is spanned by Maass cusp forms, LEisenstein is spanned by Eisenstein series, and

Lresidual is spanned by residues of the Eisenstein series at points in the complex plane, all of

which are eigenfunctions of all of D.

The constant function, Maass cusp forms, and residues of Eisenstein series form the

discrete spectrum of D, while the Eisenstein series cover the continuous spectrum. Actually,

Langlands spectral decomposition applies in much greater generality than we are using here,

see [27].

It is easiest to define the power function in the µ parameters by looking at diagonal
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matrices

a =


a1

. . .

an

 .

For µ = (µ1, . . . , µn) with
∑
µi = 0, we set

pρ+µ(a) =
n∏
i=1

aρi+µii ,

and choose ρ so that

pρ+0(a)2 =
∏

1≤i<j≤n

ai
aj
⇒ ρi =

(n− i)− (i− 1)

2
=
n+ 1

2
− i.

The conditions on ρ and µ give pρ+µ(rI) = 1 for r ∈ R+, so it is unaffected by the determi-

nant, and we can explicitly write it as a function of y and extend to G/K by the Iwasawa

decomposition, as before:

pρ+µ(xy) = pρ+µ(y) =
n−1∏
i=1

ysii ,

si =
n−i∑
j=1

(ρj + µj) =
i(n− i)

2
+ µ1 + . . .+ µn−i.

We say a non-zero function ϕ : G/K → C is a Maass cusp form if it is

(a) Automorphic: ϕ(γz) = ϕ(z) for all γ ∈ Γ,

(b) Harmonic: Dϕ = λDϕ for some λD ∈ C for each D ∈ D,

(c) Cuspidal: ∫
U∗(Z)\U∗(R)

f(uz)du = 0,
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for all upper-triangular groups

U∗ =



In1 ∗

. . .

Inr


 ,

r∑
i=1

ni = n,

and square-integrable, i.e. ϕ ∈ L2(Γ\G/K). We parameterize cusp forms by the Langlands

parameters: A Maass cusp form is of type µ if it shares the eigenvalues under D of the

power function at µ, i.e. if Dpρ+µ = λDpρ+µ, then also Dϕ = λDϕ. It can be shown that the

eigenvalues of pρ+µ form a basis for the symmetric polynomials in µ, hence they are sufficient

to describe the eigenvalues of the cusp forms, which are also symmetric in µ.

The power function is harmonic and, for certain values of µ, it is square-integrable, but not

automorphic (and not cuspidal). It is, however, a character of the group of upper-triangular

matrices: If z = xy and z′ = x′y′ are upper triangular, then

pρ+µ(zz′) = pρ+µ(x(yx′y−1)yy′) = pρ+µ(yy′) = pρ+µ(y)pρ+µ(y′) = pρ+µ(z)pρ+µ(z′).

Langlands Eisenstein series are much more complicated. In general, they split into two

types: Parabolic Eisenstein series, and Eisenstein series twisted by Maass cusp forms of lower

rank. The Eisenstein series are constructed by summing the power function and possibly a

Maass cusp form over quotients of Γ, so they are harmonic, and the quotients are chosen

so the resulting function is automorphic. Since we are only interested in these series to the

extent that they appear in the spectral decomposition, we will defer their construction to

the section on SL(3,R).

For ease of notation, we will denote the combined spectral basis B, and write the spectral

expansion of Φ ∈ L2(Γ\G/K) as

Φ(z) =

∫
B
ξ(z) 〈Φ, ξ〉 dξ.

The
∫
B dξ is a place-holder for the sum over cusp forms and residual spectrum, integrals of
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parabolic Eisenstein series, and sums of integrals of Eisenstein series twisted by Maass forms

of lower rank.

2.2.2 Location of the cusp forms & The Weyl law

The operators ∆i can be taken to be symmetric or antisymmetric, and ∆1, the generalized

Laplacian, is distinguished as a negative operator – in particular, for SL(2,R), ∆1 = −∆.

As with SL(2,R), we believe that the Langlands parameters of cusp forms should be purely

imaginary – called the Strong Ramanujan-Selberg Conjecture, but this is not known for

n > 2. Following the same track, the eigenvalues of−∆1, which turn out to be n3−n
24
−µ21+...+µ2n

2

are at least n3−n
24

by a theorem of Miller [26]. This shows that the Langlands parameters are

not all real, but is no longer sufficient to imply that they are purely imaginary (on SL(2,R)

this works because there is essentially only one parameter). We do have results on the size of

the real part of the Langlands parameters, the current best is due to Luo, Rudnik, and Sarnak

[23, 24]: |Re(µi)| ≤ 1
2
− 1

n2+1
for the Langlands parameters of a Maass cusp form. This can be

improved in special cases, in particular, a result of Kim and Sarnak is |Re(µi)| ≤ 1
2
− 1

n(n+1)
2

+1

for n = 3, 4 [16]. Taking these results and the symmetry of the operators, we can solve for

constraints on the possible location of the Langlands parameters of cusp forms. This is best

done on a case-by-case basis, which we defer to the section on SL(3,R).

Sarnak conjectured a form for the Weyl Law on SL(n,R) which was recently proven by

Müller [28]:

Theorem 12 (Müller). Let {ϕ} be a basis of SL(n,R) cusp forms with eigenvalues −∆1ϕ =

λϕϕ, and let N(T ) be the counting function

N(T ) = # {ϕ : λϕ ≤ T} ,

then

N(T ) ∼ vol(Γ\G/K)

(4π)d/2Γ
(
d+ d

2

)T d/2,
where d = dimRG/K.
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This is actually not the most general theorem that we would like: The Maass cusp forms

on SL(n,R) are parameterized by n − 1 variables – the Langlands Parameters µ, but the

above theorem counts points in a one-dimensional space – λ ∈ R+. Lapid and Müller [20]

have a much more general Weyl law which essentially counts Langlands parameters in a

region as the size of the region becomes large, but their proof is currently only for level at

least 3.

2.2.3 Bruhat decomposition, Plücker coordinates & Kloosterman sums

Let W be the group of permutation matrices in G, we call this the Weyl group. The Bruhat

decomposition of G tells us that

G =
⋃
w∈W

Gw, Gw = BwB,

where B ⊂ G is the group of (all) upper triangular matrices, a.k.a. the Borel subgroup.

We are more interested in the following consequence, which we also call the Bruhat decom-

position: Let U(R) be the set of real upper unipotent matrices, and for each w ∈ W , let

Uw = (w−1Uw) ∩ U , Uw = (w−1tUw) ∩ U and Γw = Uw(Z) (forces zeros in some of the

coordinates), then

Theorem 13 (Bruhat Decomposition). A matrix in Γ∩Gw can be represented by a product

of the form b1cvwb2 where b1, b2 ∈ U(Q), v in the group of diagonal orthogonal matrices V ,

and

c =



1
c1

c1
c2

. . .

cn−2

cn−1

cn−1


, ci ∈ N.

The decomposition is unique if we require b2 ∈ Uw(Q).
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The characters of U(R) are exactly the functions

ψm


1 xn−1 ∗

. . . . . .

. . . x1

1

 = e (m1x1 + . . .+mn−1xn−1)

(note the order of indices!), mi ∈ R. If all mi ∈ Z, then ψm is a function on U(Z)\U(R) and

U(R)/U(Z), and by abuse of terminology, we call ψm a character on these quotient spaces.

It is vital to note that for n > 2, these are not groups! If all mi 6= 0, then we call ψm

non-degenerate.

The v matrix contains the sign information which would otherwise be part of the c matrix;

we want to give a definition of the Kloosterman sum c matrices with 0 6= ci ∈ Z which handles

this in a convenient, but algebraically nice manner: then we define the Kloosterman sums

for G by

Sw(ψm, ψn, cv) =
∑

γ∈Γ∞\Γ∩Gw/V Γw
γ=b1cvwb2

ψm(b1)ψn(b2)

when the sum does not depend on the choice of Bruhat decompositions – where we allow

b1, b2 ∈ U(R), and 0 otherwise. If we let v′ = w−1vw, and conjugate v′b2v
′ 7→ b2, we see

that Sw(ψm, ψn, cv) = Sw(ψm, ψ
v′
n , c), where ψv

′
n (b) = ψn(v′b2v

′) (note that v′ is its own

inverse). Comparing this to our previous definition of the Kloosterman sums, we find the

two definitions match on SL(2,R) when w = ( −1
1 ).

The condition that Sw(ψm, ψn, cv) not depend on the choice of Bruhat decompositions

is called the compatibility condition, and it can be given explicitly from two facts: First,

for any u ∈ Uw(R) and any Bruhat decomposition γ = b1cvwb2, we also have the Bruhat

decomposition γ = b′1cvwb
′
2 with b′1 = b1(cvw)u(cvw)−1 and b′2 = u−1b2 gives us the necessary

condition ψm((cvw)u(cvw)−1)ψn(u−1) = 1 for all u ∈ Uw(R). Second, the fact that the

Bruhat decomposition is unique if b2 ∈ Uw(Q) tells us that any b′2 differs from b2 by an

element u ∈ Uw(R) so setting b1cvwb2 = b′1cvwub2 gives b1 = b′1(cvw)u(cvw)−1 and the
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condition is sufficient.

These Kloosterman sums first arose in the Fourier coefficients of SL(n,R) Poincaré series,

and they will appear in the Kuznetsov formula as one side is essentially the Fourier coefficient

of a Poincaré series. We will list the specific types which occur on SL(3,R) in that section.

In expressing the Kloosterman sums, we will need something called Plücker coordinates;

these are invariants of U(R)\G (and so also of U(Z)\Γ), and they are defined as the set of

all j × j minors taken from the bottom j rows for j = 1 . . . n − 1. For SL(2,Z), these are

just the coordinates of the bottom row of the matrix and there are no linear relations among

the variables. In general, the j× j minors of a matrix in Γ will not have any common factor,

and there will be linear relations between the minors for different values of j.

2.2.4 Fourier coefficients & Whittaker functions

Shalika [36] has shown that an automorphic, harmonic function satisfying certain growth

properties has Fourier coefficients of the form

∫
U(Z)\U(R)

ϕ(uy)ψm(u)du =
ρϕ(m)

|m1 · · ·mn|
W ∗(|m| y, µ, ψ1,...,1)

for non-degenerate characters ψm, where ρϕ(m) is some constant depending on ϕ and m,

W (z, µ, ψm) =

∫
U(R)

pρ+µ(wluz)ψm(u)du, wl =


±1

1

. . .

1

 ,

is the Jacquet-Whittaker function, and W ∗ is its completion – this particular normalization

of ρϕ is chosen to simplify later formulae. Maass forms meet these three conditions. Notice

also that if any mi = 0, then ρϕ(m) = 0 for Maass cusp forms by the cuspidality condition
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because we are integrating over the upper-triangular group


In−i ∗

0 Ii

 ⊂ U.

There is an accompanying Fourier-Whittaker expansion for automorphic functions, but it is

not relevant to our purposes.

The Langlands Eisenstein series are automorphic and harmonic and meet the growth

properties, so their non-degenerate Fourier coefficients have the form given above. In the

case of the parabolic Eisenstein series, one may compute the Fourier-Whittaker coefficients

directly, and both types of Eisenstein series may be handled by the use of Hecke operators,

but again, we defer this discussion to the section on SL(3,R).

2.2.5 The Kuznetsov Formula

We collect the disparate pieces in Li’s construction of the Kuznetsov formula on SL(n,R)

here, because its solitary appearance is in Goldfeld [11] mostly as an outline. Let k ∈

C∞c (K\G/K), and let ψm, ψn be non-degenerate characters, then set

K(z, z′) =
∑
γ∈Γ

k(z−1γz′),

and we evaluate

P (k, y, y′, ψm, ψn) =

∫
U(R)/U(Z)

∫
U(R)/U(Z)

K (xy, x′y′)ψm(x)ψn(x′)dx′ dx

in two ways: first analytically, then algebraically.

Lemma 14 (Pre-Kuznetsov Formula Spectral Decomposition). P has a spectral decomposi-

tion of the form

P =

∫
B
k̂(µξ)

∫
U(R)/U(Z)

ξ(x′y′)ψn(x′)dx′
∫
U(R)/U(Z)

ξ(xy)ψm(x)dx dξ,
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where k̂ is the generalized Selberg transform

k̂(µ) =

∫
G

k(z)pρ+µ(z)dz.

Proof. Use the Langlands spectral decomposition for K in the z′ variable, giving

K(z, z′) =

∫
B
ξ(z′)

∫
Γ\G/K

K(z, u)ξ(u)du dξ =

∫
B
ξ(z′)

∫
G/K

k(z−1u)ξ(u)du dξ.

Examining the inner integral, we may substitute u 7→ zu, integrate over K on the right of

u, and separate the K integral on the left of G so

∫
G/K

k(z−1u)ξ(u)du =

∫
K\G

k(u)

∫
K

ξ(zku)dk du.

Taking f(u) to be the inner integral, we have that f is an eigenfunction of all of D with

eigenvalues matching pρ+µξ by left-translation invariance, and f(k1gk2) = f(g) for all k1, k2 ∈

K, g ∈ G, but these two properties uniquely define the spherical function

hµ(z) =

∫
K

pρ+µ(kz)dk

up to a constant multiple [39, Ch 4, eq. 2.27 and Theorem 3 (4)], and taking u = I with the

fact hµ(I) = 1 gives f(u) = ξ(z)hρ+µξ(u), so

∫
G/K

k(z−1u)ξ(u)du = ξ(z)

∫
K\G

k(u)hµξ(u)du = ξ(z)

∫
G

k(u)pρ+µξ(u)du,

by applying the above integral representation of hµ.

Lemma 15 (Pre-Kuznetsov Formula Arithmetic Decomposition). For each w ∈ W , let

Rw ⊂ U(Q) × CV × Uw(Q) be a complete set of representatives for U(Z)\Γ ∩ Gw/Uw(Z),
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that is

U(Z)\Γ ∩Gw/Uw(Z) =
{
U(Z)b1cvwb2Uw(Z) : (b1, cv, b2) ∈ Rw

}
,

(b1, cv, b2) 6= (b′1, c
′v′, b′2) ∈ Rw ⇒ U(Z)b1cvwb2Uw(Z) 6= U(Z)b′1c

′v′w′b′2Uw(Z),

then

P =
∑
w∈W

∑
v∈V

∑
c1,c2∈N

(∫
Uw(R)/Uw(Z)

ψm
(
(cw)u(cw)−1

)
ψvn(u)du

)
 ∑

(b1,cwvw−1,b2)∈Rw

ψm(b1)ψn(b2)


∫
U(R)

∫
Uw(R)

k
(
y−1x−1cwx′y′

)
ψm(x)ψvn(x′)dx′ dx.

Note that P is an integral of a Poincaré series, and though we are not presenting it in

that manner, we are essentially following a construction first given on SL(3,R) by Bump,

Friedberg and Goldfeld [3] and later extended to SL(n,R) by Friedberg [9].

Proof. Apply the Bruhat decomposition and unfold:

P =
∑
w,c,v

∑
(b1,cv,b2)∈Rw

∫
U(R)

∫
U(R)/U(Z)

k
(
y−1x−1b1cvwb2x

′y′
)
ψm(x)ψn(x′)dx′ dx.

First, we substitute x 7→ b1x and x′ 7→ b−1
2 x′; then conjugating by any element w ∈ W leaves

w−1V w = V intact, so we may move w one step to the left and conjugate v completely to

the right, sending vx′v 7→ x′:

P =
∑
w,v,c

 ∑
(b1,cwvw−1,b2)∈Rw

ψm(b1)ψn(b2)


∫
U(R)

∫
U(R)/U(Z)

k
(
y−1x−1cwx′y′

)
ψm(x)ψvn(x′)dx′ dx,

where ψvn(x′) = ψn(vx′v). Next substitute x′ 7→ ux′ where now x′ ∈ Uw(R) and u is in some

fixed fundamental domain of Uw(R)/Uw(Z), so that (cw)u(cw)−1 ∈ U(R), and we substitute
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on x to remove this from the main integral.

Lemma 16 (Friedberg). Independent of the choice of Bruhat decompositions Rw, the product

(∫
Uw(R)/Uw(Z)

ψm
(
(cw)u(cw)−1

)
ψvn(u)du

) ∑
(b1,cwvw−1,b2)∈Rw

ψm(b1)ψn(b2)


is Sw(ψm, ψ

v
n, c).

Proof. We denote the sum and integral above by Scvw and Icvw, respectively. From the

definition and the remarks on the compatibility condition, Scvw = Sw(ψm, ψ
v
n, c) exactly

when ψ∗(u) = ψm ((cw)u(cw)−1)ψvn(u) is the trivial character on Uw(R), and in that case,

the integral is one, so the main point here is that if ψ∗(u) is non-trivial on Uw(R), then

the product is zero. Friedberg [9] gives two arguments that the sum is zero unless ψ†(u) =

ψm ((cw)u(cw)−1) is trivial on Uw(Z); if that is the case, and ψ∗(u) is non-trivial, then the

integral must be 0: If ψ∗(a) 6= 1, then we translate by u 7→ au in the integral (which requires

ψ∗ to be well-defined on the quotient space and not just a fundamental domain), giving

Icvw = ψ∗(a)Icvw so that Icvw = 0.

Friedberg’s first proof that ψ†(u) is trivial on Uw(Z) is the easiest, but least informative:

For each w ∈ W , c ∈ C, and v ∈ V , the integral Pcvw given by

∑
(b1,cwvw−1,b2)∈Rw

∫
U(R)/U(Z)

∫
U(R)/U(Z)

k
(
(xy)−1b1cwvb2(x′y′)

)
ψm(x)ψn(x′)dx′ dx

= IcvwScvw

∫
U(R)

∫
Uw(R)

k
(
y−1x−1cwx′y′

)
ψm(x)ψvn(x′)dx′ dx

is independent of the choice of fundamental domains in Icvw. As before, we translate by an

element a ∈ Uw(Z) giving Pcvw = ψ†(a)Pcvw.

For his second proof, he finds a sum of ψ† over a subgroup inside the sum Scvw, which is

much more constructive, but also more difficult. We will not give that argument here.

To move from the Pre-Kuznetsov formula to the Kuznetsov formula, we need to integrate

away some extra variables on the spectral side, which leads us to the following theorem of
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Stade [37]:

Theorem 17 (Stade). For Re(s) ≥ 1,

2n−1Γ
(ns

2

)∫
Y (R)

W ∗(y, µ, ψ1,...,1)W ∗(y, µ′, ψ1,...,1)dνs(y)

=
n∏
j=1

n∏
k=1

Γ

(
s+ µj + µ′k

2

)
,

where

dνs(y) =
n−1∏
j=1

(πyj)
(n−j)s dyj

y
1+j(n−j)
j

=

(
n−1∏
j=1

(πyj)
(n−j)s

)
dy.

The spectral side of the Pre-Kuznetsov formula has products of two Fourier coefficients

of automorphic forms, which we know are multiples of Whittaker functions, so we choose

values y = |m|−1 t and y′ = |n|−1 t, and integrate the formula against the measure dν1(t),

then Stade’s formula will replace the Whittaker functions with a product of gamma functions:

n∏
j=1

n∏
k=1

Γ

(
1 + µj + µk

2

)
= Γ

(
1

2

)n∏
j<k

Γ

(
1 + µj − µk

2

)
Γ

(
1 + µk − µj

2

)

=
πn

2/2∏
j<k cos π

2
(µk − µj)

,

when −µ is some permutation of µ.

Corollary 18. Suppose −µ is some permutation of µ, then

∫
Y (R)

W ∗(y, µ, ψ1,...,1)W ∗(y, µ, ψ1,...,1)

(
n−1∏
j=1

(πyj)
n−j

)
dy

=
πn

2/2

2n−1Γ
(
n
2

)∏
j<k cos π

2
(µk − µj)

.

Putting everything together gives

Theorem 19 (Kuznetsov Formula).

∫
B

k̂(µξ)

C(µξ)
ρξ(n)ρξ(m) dξ =

2n−1Γ
(
n
2

)
πn/2

∑
w∈W

∑
v∈V

∑
c∈C

Sw(ψm, ψ
v
n, c)Hw(k, ψm, ψ

v
n, c),
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where C(µ) =
∏

j<k cos π
2
(µk−µj) if −µ is a permutation of µ and Hw is given by the integral

∫
Y (R)

∫
U(R)

∫
Uw(R)

k
(
|m| t−1x−1cwx′t |n|−1)ψm(x)ψvn(x′)dx′ dx

(
n−1∏
j=1

|mjnj| tn−jj

)
dt.

We will write out the formula completely for SL(3,R) below. The condition that −µ be

a permutation of µ is met for the spectral decomposition on GL(2) (−iy = iy) and GL(3)

[40] and seems to be a general symmetry statement for all GL(n), but the author is unware

of the proof of this fact.

Li also notes that one may apply spherical inversion to allow k̂ in some larger space of

analytic functions, provided both sides converge absolutely.

2.2.6 Spherical Inversion

The generalization of the Selberg transform which occurs in the generalized Kuznetsov for-

mula has the following inversion due to Helgason, Harish-Chandra, and Bhanu-Murthy (see

Sect 4.3 Theorem 1 of [39] and equation 3.23 in particular for the K-invariant form on

SL(n,R)):

Theorem 20 (Spherical Inversion). For k as above, the Selberg transform k 7→ k̂ has the

inversion

k(z) = 2πiωn

∫
Re(µ)=(0,...,0)

k̂(µ)

|cn(µ)|2
hµ(z)dµ,

where

ωn =
n∏
j=1

Γ
(
j
2

)
j(2πi)πj/2

,

|cn(µ)|−2 =

∣∣∣∣∣∏
i<j

B
(µj−µi

2
, 1

2

)
B
(

1
2
, 1

2

) ∣∣∣∣∣
−2

=
∏
i<j

π

2
(µj − µi) tan

π

2
(µj − µi)

for Re(µ) = 0. k̂ may be taken to be any Schwartz-class function on Re(µ) = 0 which is

invariant under permutations of the µ variables.

To discuss the action of the Weyl group, we need to remove ρ from our definition of
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the power function: pρ+µ = pρpµ, where ps, a character of the group of positive diagonal

matrices, has the form

ps


a1

. . .

an

 =
n∏
i=1

asii .

It is trivial to see that conjugating by an element of the Weyl group permutes the entries of

a, so the action of the Weyl group is given by

pwµ (a) := pµ(w−1aw) =: pµw(a),

where now µw is some permutation of the coordinates of µ. That is, the Weyl group acts

by permutation on the coordinates of µ. The reason why this is necessary is that one may

show the Selberg transform is invariant under the action of the Weyl group, k̂(µw) = k̂(µ).

The first theorem of Harish-Chandra [15, Ch VIII, Sect 6, Thm 6.1] is that the Selberg

transform (a.k.a. spherical transform) is an isomorphism

C∞c (K\G/K)
∼→ PWW (µ),

where the second space is the Paley-Wiener space of entire functions of finite order in the

real part and rapid decay in the imaginary part which are invariant under the action of the

Weyl group:

f(µ)�N
ec|Re(µ)|

(1 + |Im(µ)|)N
,

for all N ∈ N, where c is some fixed constant.

The second theorem of Harish-Chandra [15, Ch X, Sect 5, Thm 5.6] is that the Selberg

transform extends to an isomorphism

HCS(K\G/K)
∼→ SCHW (µ).

The first space is the Harish-Chandra Schwartz space defined by the property that f belongs
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to the space whenever f : G→ C is bi-K-invariant, smooth in the coordinates of G, and for

each bi-K-invariant differential operator D on G and any N ∈ N, we have

|f(a)| �D,N
h0(a)

(1 + |logχ1(a)|)N
,

for all positive diagonal a. The second space is the Schwartz space of real-analytic functions

on Re(µ) = 0 which are invariant under the action of the Weyl group.

2.3 SL(3,R) in Particular

As G = SL(3,R) is the particular case which this thesis is about, we wish to carefully spell

out the above concepts for it here: The symmetric space is G/K with K = SO(3,R), and

G acts by left translation on this space – the action is sufficiently complex that we have

no desire to write it out. We are interested strictly in Γ = SL(3,Z), i.e. “full level”. The

Iwasawa decomposition for z ∈ G is z ≡ xy (mod K), where

x =


1 x2 x3

1 x1

1

 , y =


y1y2

y1

1

 ,

yi ∈ R+ and xi ∈ R – we will not often write out the form of the x and y matrices, so please

note the ordering of the indices here. The G-invariant measure has the form

dz = dx dy, dx = dx1 dx2 dx3, dy =
dy1 dy2

(y1y2)3
.

The center of the space of G-invariant differential operators is D = C[∆1,∆2] where

∆1 = y2
1

∂2

∂y1
2

+ y2
2

∂2

∂y2
2
− y1y2

∂2

∂y1∂y2

+ y2
1(x2

2 + y2
2)

∂2

∂x3
2

+ y2
1

∂2

∂x1
2

+ y2
2

∂2

∂x2
2

+ 2y2
1x2

∂2

∂x1∂x3
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is the generalized Laplacian, and

∆2 =− y2
1y2

∂3

∂y2
1∂y2

+ y1y
2
2

∂3

∂y1∂y2
2

− y3
1y2

∂3

∂x2
3∂y1

+ y1y
2
2

∂3

∂x2
2∂y1

− 2y2
1y2x2

∂3

∂x1∂x3∂y2

+ (−x2
2 + y2

2)y2
1y2

∂3

∂x2
3∂y2

− y2
1y2

∂3

∂x2
1∂y2

+ 2y2
1y

2
2

∂3

∂x1∂x2∂x3

+ 2y2
1y

2
2x2

∂3

∂x2∂x2
3

+ y2
1

∂2

∂y1
2
− y2

2

∂2

∂y2
2

+ 2y2
1x2

∂2

∂x1∂x3

+ (x2
2 + y2

2)y2
1

∂2

∂x3
2

+ y2
1

∂2

∂x1
2
− y2

2

∂2

∂x2
2
.

2.3.1 Langlands Spectral Decomposition

We have ρ = (1, 0), so the power function has the form pρ+µ(xy) = y1+µ1+µ2
1 y1+µ1

2 . The

power function can also be realized as

pρ+µ(z) = |Y1|
1+µ1−µ2

2 |Y2|−
2µ1+µ2

2
−1 |Y3|

1+µ1+µ2
2 ,

where |Yj| is the determinant of the upper-left j × j minor of Y = tz−1z−1; clearly this is

right-invariant by SO(3,R) and independent of det(z), block multiplication shows that it

does not depend on x, and a simple calculation shows that has the appropriate dependence

on y1 and y2. We mention this here as it is the definition used by Terras [39].

The definition of Maass cusp forms on SL(3,R) becomes: ϕ : G/K → C is a Maass cusp

form if ϕ(γz) = ϕ(z) for all γ ∈ Γ, ϕ ∈ L2(Γ\G/K),

∫
Ui(Z)\Ui(R)

ϕ(uz)du = 0,

for the upper-triangular groups

U1 =




1 0 ∗

1 ∗

1


 , U2 =




1 ∗ ∗

1 0

1


 ,

and ϕ is an eigenvalue of all the differential operators in D. A Maass form is of type

µ = (µ1, µ2, µ3) (where µ1 + µ2 + µ3 = 0) if it shares the eigenvalues under D of the power
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function at µ:

−∆1pρ+µ =

(
1− µ2

1 + µ2
2 + µ2

3

2

)
pρ+µ, ∆2pρ+µ = −µ1µ2µ3pρ+µ.

For the Langlands Eisenstein series, we have two types:

E(z, µ) =
∑

γ∈Γ∞\Γ

pρ+µ(γz), Eφ(z, µ1) =
∑

γ∈P2,1\Γ

pµ1,φ(γz),

where

Γ∞ =




1 ∗ ∗

0 1 ∗

0 0 1

 ∈ Γ

 , P2,1 =



∗ ∗ ∗

∗ ∗ ∗

0 0 1

 ∈ Γ

 ,

and pµ1,φ(g) = (y2
1y2)

1
2

+µ1φ(x2 + iy2) with φ any SL(2,R) cusp form. The Eisenstein series

are smooth functions on Γ\G/K which are eigenvalues of all of D, but not square-integrable.

They have meromorphic continuation to all of C in each µi.

The residual spectrum is literally the residues of Eisenstein series at points in the µ

parameters, and a basis for the residual spectrum is Eφ0 .

Theorem 21 (Langlands). Let {ϕj} be an orthonormal basis of the SL(3,R) cusp forms

with ϕ0 constant, and {φj} an orthonormal basis of SL(2,R) cusp forms with φ0 constant.

Then for any Φ ∈ L2(Γ\G/K), we have

Φ(z) =
∞∑
j=0

〈Φ, ϕj〉ϕj(z)

+
1

4πi

∞∑
j=0

∫
Re(µ1)=0

〈
Φ, Eφj(·, µ1)

〉
Eφj(z, µ1)dµ1

+
1

(2πi)2

∫
Re(µ)=(0,0)

〈Φ, E(·;µ)〉E(z;µ)dµ.
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2.3.2 Location of the cusp forms & The Weyl Law

The operator −∆1 (the generalized Laplacian) is homogeneous of degree 2 and symmetric

with respect to Haar measure, and integration by parts shows its eigenvalues on L2 are

non-negative. Again, one can show that these eigenvalues are greater than 1. The second

operator has no homogeneity properties and is anti-symmetric, so its eigenvalues on L2 are

purely imaginary. These three constraints imply that the Langlands parameters of a GL(3)

cusp form are (some permutation of) either (iy1, iy2,−iy1 − iy2) (“tempered at infinity” =

good) or (x+ iy,−x+ iy,−2iy) (not “tempered at infinity” = bad) for some y1, y2, x, y ∈ R,

see [40]. The Kim-Sarnak result shows that the real part of the Langland’s parameters is at

most 5
14

, so we have |x| ≤ 5
14

as well (expect x = 0, i.e. the second case never happens).

Even though we don’t have the results we want for the location of the Langlands param-

eters of the cusp forms, we do have a counting function for the eigenvalues of the generalized

Laplacian. This was first proved by Miller in his thesis (using upper bounds of Donnelly)

(see [25] for an article version).

Theorem 22 (Weyl Law for SL(3,R)). Let {ϕj} be a basis of SL(3,R) cusp forms with

eigenvalues −∆1ϕj = λjϕj, and let N(T ) be the counting function

N(T ) = # {j : λj ≤ T} ,

then

N(T ) ∼ vol(Γ\G/K)

(4π)5/2Γ
(

7
2

)T 5/2.

A simple consequence of the SL(3,R) Kuznetsov formula are some mean value estimates

for Fourier-Whittaker coefficients of SL(3,Z) automorphic forms, which will help us evaluate

convergence of the spectral side of the Kuznetsov formula:

Theorem 23 (Blomer). For µ† and T ≥ 1 fixed, the quantities

∑
j≥1

‖µj−µ†‖≤T

∣∣ρϕj(1, 1)
∣∣2

C(µj)
,
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∑
j≥1

∫
Re(µ1)=0

‖(µ1−µ′j ,−2µ1)−µ†‖≤T

|ηj((1, 1);µ1)|2

C
(
µ1 − µ′j,−2µ1

)dµ1,

and ∫
Re(µ)=(0,0)

‖µj−µ†‖≤T

|η((1, 1);µ)|2

C(µ)
dµ

are all bounded by

T 2
(
T +

∥∥µ†∥∥)3
.

This is essentially a theorem of Blomer, but one can obtain these by applying Theorem 31

with a test function k̂ which is non-negative on the spectrum and decays rapidly away from

the desired regions then applying bounds for the Jw,µ functions. Such test functions are

constructed in [6] – see [21], and we will prove bounds of similar nature in the final section of

this paper. Blomer demonstrates results of this type by applying a Kuznetsov formula of his

own, the purpose of which is the same; that is, to make a sufficiently simplified version of the

Kuznetsov formula on SL(3,R). One can extend this to the m 6= (1, 1) Fourier coefficents

by applying the second half of the Kim-Sarnak result,
ρφ(m)

ρφ(1,1)
� (m1m2)

5
14

+ε, or by applying

the Kuznetsov formula directly, which results in a slightly different bound.

2.3.3 Bruhat decomposition, Plücker coordinates & Kloosterman sums

The c matrix takes the form

c =


1
c2

c2
c1

c1

 , c1, c2 ∈ N,
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the Weyl group has 6 elements

I =


1

1

1

 , w2 =


1

−1

1

 , w3 =


1

−1

1

 ,

w4 =


1

1

1

 , w5 =


1

1

1

 , wl =


1

−1

1

 ,

and V has four

I,


−1

−1

1

 ,


−1

1

−1

 ,


1

−1

−1

 .

We define characters of U(R) by

ψm


1 x2 x3

0 1 x1

0 0 1

 = e (m1x1 +m2x2) ,

and before we define the Kloosterman sums, we return to the discussion of Plücker coordi-

nates. Coset representatives 
∗ ∗ ∗

d e f

a b c

 ∈ U(Z)\Γ

are characterized by six invariants: The bottom row A1 = a,B1 = b, C1 = c having

(A1, B1, C1) = 1, and the first set of minors A2 = bd − ae, B2 = af − cd, C2 = ce − bf

having (A2, B2, C2) = 1 and subject to A1C2 +B1B2 +C1A2 = 0. In [3], the Bruhat decom-

position for each element of the Weyl group were computed using these invariants – note

that membership in a particular Bruhat cell imposes certain requirements on the Plücker
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Bruhat Compatibility Sw(ψm, ψn, (c1, c2))
I c1 = c2 = 1 m = n 1
w2 c1 = 1 m1 = n1 = 0 S(−m2,−n2, c2)
w3 c2 = 1 m2 = n2 = 0 S(m1, n1, c1)

Table 2.2: Degenerate SL(3,Z) Kloosterman Sums

coordinates, giving explicit forms to the SL(3, Z) Kloosterman sums. The three degenerate

sums are listed in Table 2.2.

The w4 Kloosterman sum is a new exponential sum. Its Bruhat condition is c2|c1 and

the compatibility condition is m2c1 = n1c
2
2. Explicitly,

Sw4(ψm, ψn, (A1, B2)) =
∑

C2 (mod B2)
C1 (mod A1)

(A1/B2,C1)=(B2,C2)=1

e

(
−m2

C2C1

B2

−m1
C1B2

A1

− n2
C2

B2

)
.

The w5 Kloosterman sum is essentially the same as for w4. Its Bruhat condition is c1|c2

and the compatibility condition is m1c2 = n2c
2
1, and we have

Sw5(ψm, ψn, (c1, c2)) = Sw4(ψ−m2,m1 , ψn2,−n1 , (c2, c1)).

The second new exponential sum is the long-element Kloosterman sum. Its Bruhat and

compatibility conditions are vacuously true, and it is given by

Swl(ψm, ψn, (A1, A2)) =∑∗

B1,C1 (mod A1)
B2,C2 (mod A2)

e

(
m2

Z2B1 − Y2A1

A2

+m1
Y1A2 − Z1B2

A1

+ n2
B1

A1

+ n1
−B2

A2

)
,

here the sum
∑∗ is restricted to those quadruples of B1, C1, B2, C2 satisfying

(A1, B1, C1) = (A2, B2, C2) = 1, A1C2 +B1B2 + C1A2 ≡ 0 (mod A1A2),
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and the numbers Y1, Z1, Y2, Z2 are defined by

Y1B1 + Z1C1 ≡ 1 (mod A1), Y2B2 + Z2C2 ≡ 1 (mod A2).

There are Weil-quality bounds for these Kloosterman sums due to Larsen (in the BFG

paper) and Stevens (after some work):

Theorem 24 (Larsen).

a) |Sw4(ψm, ψn, c)| ≤ min
{
d(c2)κ

(
|m1| , c1c2

)
c2

2, d(c1)(|m1| , |n2| , c2)c1

}
,

b) |Sw5(ψm, ψn, c)| ≤ min
{
d(c1)κ

(
|m2| , c2c1

)
c2

1, d(c2)(|m2| , |n1| , c1)c2

}
,

where κ = log 3
log 2

.

As Stevens is completely unconcerned with the dependence of his estimate on the indices

m and n, we take a moment to go through his proof and keep closer track of this:

Proof of Theorem 4. In the proof of Theorem (5.9), on page 49, use instead the estimates

(∣∣ν1p
s−a∣∣−1

p
,
∣∣ν ′2pr−b∣∣−1

p
, pr
)
≤
(
|ν1ν

′
2|
−1
p , pr

) (
ps−a, pr−b

)
≤
(
|ν1ν

′
2|
−1
p , pr

)
p
s−a+r−b

2 ,

and similarly

(∣∣ν2p
2r−s−b∣∣−1

p
,
∣∣ν ′1pr−a∣∣−1

p
, pr
)
≤
(
|ν2ν

′
1|
−1
p , pr

)
p

2r−s−b+r−a
2 ,

so that (5.13) becomes

Sw0

(
θλa,b; r

)
≤ 4

(
|ν1ν

′
2|
−1
p , pr

)1/2 (
|ν2ν

′
1|
−1
p , pr

)1/2

p2r−a+b
2 .

Since this section of the proof assumes r ≥ s, we now replace his Theorem (5.9) with the

statement

|Sa,b(n, ψ, ψ′)| ≤
(
|ν1ν

′
2|
−1
p , pl

)1/2 (
|ν2ν

′
1|
−1
p , pl

)1/2

pσ+a+b
2 ,
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where l = max {r, s}.

Then the C in the statement and proof of his Theorem (5.1) becomes

C =
(
|ν1ν

′
2|
−1
p , pl

)1/2 (
|ν2ν

′
1|
−1
p , pl

)1/2

,

where again l = max {r, s}. Multiplicativity then gives Theorem 4 as stated.

To apply the Kuznetsov formula, we will also need to know when the various sums

and integrals converge. From the Weil-quality bounds on the Kloosterman sums, we may

investigate the absolute convergence of the corresponding Kloosterman zeta functions:

Proposition 25.

a)
∑

c1,c2∈N

|Sw4(ψm, ψn, c))|
c1c2

(
c3

2 |n1|
|m1m2

2n2|

)u

�
(|n1| , |m2|)1−3u−2ε

(
|m1| , |n2| , |m2|

(|n1|,|m2|)

)
|m1n2|u−ε |m2|1−u−ε |n1|−u−ε

for u < 0,

b)
∑

c1,c2∈N

|Sw5(ψm, ψn, c))|
c1c2

(
c3

1 |n2|
|m2

1m2n1|

)u

�
(|n2| , |m1|)1−3u−2ε

(
|m2| , |n1| , |m1|

(|n2|,|m1|)

)
|m2n1|u−ε |m1|1−u−ε |n2|−u−ε

for u < 0,

c)
∑

c1,c2∈N

|Swl(ψm, ψn, c)|
c1c2

(
c2

1

c2 |m1n2|

)u1 ( c2
2

c1 |m2n1|

)u2
� |m1n2|−u1+ε |m2n1|−u2+ε for 2u1 − u2,−u1 + 2u2 < −

1

2
.

(These normalizations are unusual, but will make more sense once we start evaluating

the integral transforms.) The proof of this proposition is given in appendix A.
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2.3.4 Whittaker functions

As before, we define the Jacquet-Whittaker function as

W (z;µ, ψm) =

∫
U(R)

pρ+µ(wluz)ψm(u)du.

(Note that the location of the −1 in the wl matrix does not affect pρ+µ(wluz).) Its completion

is given by W ∗(z;µ, ψm) = Λ(µ)W (z;µ, ψm), where

Λ(µ) = π−
3
2

+µ3−µ1Γ

(
1 + µ1 − µ2

2

)
Γ

(
1 + µ1 − µ3

2

)
Γ

(
1 + µ2 − µ3

2

)
.

We will need a number of basic facts about the Whittaker function, so we collect them

here: The Whittaker function is harmonic, square-integrable, cuspidal exactly when ψm is

non-degenerate, shares the eigenvalues of pρ+µ (but isn’t automorphic), and

W (z;µ, ψm) = ψm(x)W (y;µ, ψm), x ∈ u(R).

It is also easy to check that if 0 6= t1, t2 ∈ R,

W (y;µ, ψt1t2) = p−2ρ(t)pρ+µ(wlt
−1vw−1

l )W (tvy;µ, ψ11)

= p−ρ−µwl (t)W (ty;µ, ψ11),

by sending u 7→ t−1vutv, where

t =


|t1| |t2|

|t1|

1

 , v =


sign(t1)

sign(t1t2)

sign(t2)

 ,

and µwl = (µ3, µ2, µ1). This means that we need only analyze the behavior of the function

W (y, µ, ψ11).
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We have the double Mellin transform pair [11, p155 6.1.4 and 6.1.5]

W ∗(y, µ, ψ11) = − 1

16π4

∫
Re(t)=(2,2)

G(t, µ)(πy1)1−t1(πy2)1−t2dt,

G(t, µ) =
4

π2

∫
Y (R)

W ∗(y, µ, ψ11)(πy1)1+t1(πy2)1+t2dy,

where

G(t, µ) =
Γ
(
t1−µ1

2

)
Γ
(
t1−µ2

2

)
Γ
(
t1−µ3

2

)
Γ
(
t2+µ1

2

)
Γ
(
t2+µ2

2

)
Γ
(
t2+µ3

2

)
Γ
(
t1+t2

2

) .

The inverse Mellin form of the Whittaker function also gives the following asymptotics:

By shifting the t1 integral to the right (as we may by the exponential decay of G(t, s)), we

see that the Whittaker function decays faster than any power of y1 as y1 →∞; by shifting to

the left past the first pole of the G function, we see that the Whittaker function is bounded

by y1−c1
1 where c1 = max {Re(−µ1),Re(−µ2),Re(−µ3)} as y1 → 0. The same reasoning

applies for y2 with c2 = max {Re(µ1),Re(µ2),Re(µ3)}. In particular, the Mellin transform

of the Whittaker function converges absolutely for Re(t1) > c1,Re(t2) > c2.

Aside: Given the number of different parameterizations of the Whittaker function, the

author has found it useful to verify the Λ function as follows:

lim
y→0

p−ρ−µwl (y)W (y;µ, ψ11)

= lim
y→0

∫
U(R)

pρ+µ(wlu)ψy(u)du

=

∫
U(R)

(
1 + x2

1 + (x1x2 − x3)2
)−1+µ2−µ1

2
(
1 + x2

2 + x2
3

)−1+µ3−µ2
2 du

=

∫
U(R)

(
1 + x2

1

)−1+µ2−µ1
2

(
1 + x2

2

)−1+µ3−µ2
2

(
1 + x2

3

)−1+µ3−µ1
2 du

=π3/2 Γ
(
µ1−µ2

2

)
Γ
(
µ2−µ3

2

)
Γ
(
µ1−µ3

2

)
Γ
(

1+µ1−µ2
2

)
Γ
(

1+µ2−µ3
2

)
Γ
(
1 + µ1−µ3

2

)
for Re(µ3) < Re(µ2) < Re(µ1) using the substitutions x′1 7→

x′1√
1+x′22

, x′3 7→ x′3
√

1 + x′22 and

then x′1 7→ x′2x
′
3 + x′1

√
1 + x′23 . We now compute limy→0 p−ρ−µwl (y)W ∗(y;µ, ψ11) from the

inverse Mellin transform representation using the G function: Shifting the t contours to the
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left, we pick up the first poles at t1 = µ1 and t2 = −µ3 and computing the residue there

gives

lim
y→0

(πy1)−1+µ1(πy2)−1−µ3W ∗(y;µ, ψ11) =

4(2πi)2

−16π4
Γ

(
µ1 − µ2

2

)
Γ

(
µ2 − µ3

2

)
Γ

(
µ1 − µ3

2

)
,

so Λ(µ) is the ratio of W ∗ over W .

A related product which will occur frequently is

1

Λ(µ)Λ(−µ)
= cos

π

2
(µ1 − µ2) cos

π

2
(µ1 − µ2) cos

π

2
(µ2 − µ3).

2.3.5 Fourier coefficients

Again, a Maass cusp form has Fourier coefficients of the form

∫
U(Z)\U(R)

ϕ(uy)ψm(u)du =
ρϕ(m)

|m1m2|
W ∗(|m| y;µ, ψ11),

where ρϕ(m) is some constant depending on ϕ.

It is interesting to write out the Fourier-Whittaker expansion of the minimal parabolic

Eisenstein series: Let η(y,m, µ) =
∫
U(Z)\U(R)

E(xy;µ), ψm(x)dx, then [11, pp303-306],

η(y,m, µ) =
∑
w∈W

∑
v∈V

δm,wWw(y, µ, ψvm)ζw(ψ00, ψ
v
m, µ),

where δm,w = 1 if ψm is trivial on Uw(R) and zero otherwise,

Ww(z, µ, ψm) =

∫
Uw(R)

pρ+µ(wuz)ψm(u)du

is the Whittaker function associated to the w Bruhat cell (note Wwl = W ; the other cases
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are termed “degenerate” Whittaker functions), and

ζw(ψn, ψm, µ) =
∑
c∈N2

pρ+µ(c)Sw(ψn, ψm, c)

is the SL(3,R) Kloosterman zeta function for the w Bruhat cell. This is computed by

applying the Bruhat decomposition in a manner similar to that of the Kuznetsov formula

that we give in the next section.

If ψm is non-degenerate, then it is non-trivial on Uw(R) for all w except the long element so

η(y,m, µ) = W (y, µ, ψm)ζwl(ψ00, ψm, µ), and we normalize the Fourier-Whittaker coefficients

as η(m,µ) = |m1m2|
ζwl (ψ00,ψm,µ)

Λ(µ)
so that η(z,m, µ) = η(m,µ)

|m1m2|W
∗(z, µ, ψm).

The Fourier-Whittaker coefficients of Eisenstein series twisted by cusp forms are more

difficult, but they may be computed by considering the Hecke operators. We choose not to

do so here.

2.3.6 The Kuznetsov formula

Bringing the pieces together, we have Li’s Kuznetsov formula for SL(3,R), which we will

discuss in detail section 5:

Theorem 26 (Li). Let {ϕ} be an orthonormal basis of the SL(3,R) cusp forms with Lang-

lands parameters µϕ, and {φ} an orthonormal basis of SL(2,R) cusp forms with Langlands
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parameters µφ. Let k ∈ C∞c (K\G/K), and m,n pairs of non-zero integers. Then

∑
ϕ

k̂(µϕ)

C(µϕ)
ρϕ(n)ρϕ(m) (2.1)

+
1

4πi

∑
φ

∫
Re(µ1)=0

k̂ (µ1 − µφ,−2µ1)

C (µ1 − µφ,−2µ1)
ηφ(n;µ1)ηφ(m;µ1)dµ1

+
1

(2πi)2

∫
Re(µ)=(0,0)

k̂(µ)

C(µ)
η(n;µ)η(m;µ)dµ

= δmnHI(k, ψm, ψn, c)

+
∑

w∈{w4,w5,wl}

∑
v∈V

∑
c1,c2∈N

Sw(ψm, ψ
v
n, c)Hw(k, ψm, ψ

v
n, c),

where

C(µ) = cos
π

2
(µ1 − µ2) cos

π

2
(µ1 − µ3) cos

π

2
(µ2 − µ3),

ρϕ, ηφ, and η are the Fourier-Whittaker coefficients of ϕ, Eφ, and E, respectively, and Hw

is given by the integral

2 |m1m2n1n2|
π

∫
Y (R)

∫
U(R)

∫
Uw(R)

k
(
|m| (xt)−1 cw(x′t) |n|−1)ψm(x)ψn(x′)dx′ dx t21t2 dt. (2.2)

Note that C(µ) is real, since µ is some permutation of −µ and C(µ) is invariant under

both operations.

2.3.7 Spherical Inversion

The spherical inversion formula for SL(3,R) has the form:

Theorem 27 (Spherical Inversion). For k ∈ HCS(K\G/K), the Selberg transform k 7→ k̂

has the inversion

k(z) = − 1

48π4

∫
Re(µ)=(0,0)

k̂(µ)

|c3(µ)|2
hµ(z)dµ,

where

|c3(µ)|−2 =
∏

1≤i<j≤3

π

2
(µi − µj) tan

π

2
(µi − µj).
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k̂ may be taken to be any Schwartz-class function on Re(µ) = 0 which is invariant under

permutations of the coordinates of µ.
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CHAPTER 3

The Method on SL(2,R)

Before diving into the process on SL(3,R), we demonstrate the method in the more familiar

setting of SL(2,R). This appears to be a novel approach – though there are similarities with

[10] – to proving the following theorem, originally due to Kuznetsov:

Theorem 28 (Kuznetsov). Suppose g : R+ → C is smooth and compactly supported, and

T > 0, then

∞∑
c=1

S(m,n, c)

c
g

(
T
π2 |mn|
c2

)
�m,n,g,ε T

ε.

Starting with Zagier’s form of the SL(2,Z) Kuznetsov formula, before the simplification

of the weight functions on the arithmetic side:

Theorem 29 (Kuznetsov Trace Formula, Spectral Form). Suppose k : H→ C is sufficiently

nice with k(gz) = k(z) for all g ∈ SO(2,R), then

∑
φ

k̂(µφ)

cosπµφ
ρφ(n)ρφ(m) +

1

4πi

∫
Re(µ)=0

k̂(µ)

cosπµ
η(n, µ)η(m,µ)dµ

= δmnHI(k) +
∞∑
c=1

S(m,n, c)Hwl(k,m, n, c),

where

k̂(µ) =

∫
H
k(z)y

1
2
−µdx dy

y2
,

HI = 4 |mn|
∫
R+

∫
R
k

(
−|m|

t
x+ i

)
e (mx) dx t

dt

t2
,
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and

Hwl =4 |mn|
∫
R+

∫
R

∫
R
k

(
−|m|

t
x+
|mn|
c2

− |n|
t
x′ + i

t2 + n2x′2

)
e (mx) e (−nx′) dx′ dx t dt

t2
.

Note that the action of V is trivial.

We want to express the HI and Hwl functions as integrals of k̂ against a function in

Mellin-Barnes integral form. In both integrals, we send x 7→ − t
|m|x and in the second,

x′ 7→ t
n
x′:

HI = 4 |n|
∫
R+

∫
R
k (x+ i) e (−v1tx) dx t2

dt

t2
,

Hwl = 4

∫
R+

∫
R

∫
R
k

(
x+
−v2αx

′ + αi

t2(1 + x′2)

)
e (−v1tx) e (−tx′) dx′ dx t3 dt

t2
.

where v1 = sign(m), v2 = sign(n) and α = |mn|
c2

.

For Hwl , interchange the x and x′ integrals, and send x 7→ x+ v2αx′

t2(1+x′2)
, so

Hwl =4

∫
R+

∫
R

∫
R
k

(
x+

α

t2(1 + x′2)
i

)
e (−v1tx) e

(
−v1v2

α

t

x′

1 + x′2

)
e (−tx′) dx dx′ t3 dt

t2
.

Now we apply Selberg inversion (Theorem 10) and interchange the x and µ integrals; we

see both HI and Hwl involve an integral of the form

X =

∫
R
hµ (x+ yi) e (ax) dx,

so we take the integral formula for the spherical function

hµ (z) =

∫ π

0

p 1
2

+µ

 cos θ sin θ

− sin θ cos θ

 z

 dθ

π
,
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and for reasons which will become clear momentarily, make the substitution u = − cot θ:

cos θ =
u√

1 + u2
, sin θ =

1√
1 + u2

, dθ =
du

u2 + 1
,

hµ (x+ yi) =
1

π

∫ ∞
−∞

(
y

y2 + (u− x)2

) 1
2

+µ (
1 + u2

)− 1
2

+µ
du.

Though the combined u and x integral does not converge absolutely, we can justify the

interchange of integrals through integration by parts in x, so we send x 7→ x + u and the

integrals separate leaving us (formally) with

X =
1

π

∫
R

(
y

y2 + x2

) 1
2

+µ

e (ax) dx

∫ ∞
−∞

(
1 + u2

)− 1
2

+µ
e (au) du.

These integrals are both the Whittaker function

∫
R

(
y

y2 + x2

) 1
2

+µ

e (ax) dx = 2π
1
2

+µ |a|µ y
1
2
K−µ (2π |a| y)

Γ
(

1
2

+ µ
) ,

so we have

X = 4y1/2K−µ (2πy |a|)Kµ (2π |a|)
Γ
(

1
2

+ µ
)

Γ
(

1
2
− µ

) .

Applying this gives

HI =
4 |n|
π2i

∫
R+

∫
Re(µ)=0

k̂(µ)
K−µ (2πt)Kµ (2πt)

Γ
(

1
2

+ µ
)

Γ
(

1
2
− µ

)πµ tan πµ dµ dt,

Hwl =
4α1/2

π2i

∫
R+

∫
R

∫
Re(µ)=0

k̂(µ)K−µ

(
2π

α

t(1 + x′2)

)
Kµ (2πt)µ sin πµ dµ

e

(
−v1v2

α

t

x′

1 + x′2

)
e (−tx′) dx′

(1 + x′2)1/2
dt.

Where we have applied Γ
(

1
2

+ µ
)

Γ
(

1
2
− µ

)
= π sec πµ to the long-element term.
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We may now finish our computation of HI using the integral formula

∫
R+

K−µ (2πt)Kµ (2πt) dt =
π

8 cosπµ
,

which is Stade’s formula at s = 1, giving

HI =
|mn|1/2

2π2i

∫
Re(µ)=0

k̃(µ)πµ tan πµ dµ.

For the long-element term, we apply

Kµ(2t) =
1

2πi

∫
Re(u)=1

Γ

(
u+ µ

2

)
Γ

(
u− µ

2

)
t−u du, u > |Re(µ)| ,

=Γ (µ) tµ + Γ (−µ) t−µ

+
1

2πi

∫
Re(u)=− 1

2
−4ε

Γ

(
u+ µ

2

)
Γ

(
u− µ

2

)
t−u du,

for |Re(µ)| < 1
2

+ 4ε, ε > 0, and using the symmetry µ 7→ −µ of the remaining terms in the

integrand, we have

Hwl =
1

2πi

∫
Re(µ)=− 1

4
−3ε

k̃(µ)Jwl,µ(α, v) tanπµ dµ,

Jwl,µ(α, v) =Γ (−µ)X ′(α, v, µ)µ cosπµ

+
µ cosπµ

2πi

∫
Re(u)=− 1

4
−4ε

Γ

(
u+ µ

2

)
Γ

(
u− µ

2

)
X ′(α, v, u) du,

X ′(α, v, µ, u) =
16α

1
2
−u

πu−1

∫
R+

∫
R
e

(
−v1v2

α

t

x′

1 + x′2

)
e (−tx′)

(1 + x′2)u−
1
2 dx′Kµ (2πt) tu dt,

which converges absolutely. One could use a similar idea to [10] and replace

e

(
−v1v2

α

t

x′

1 + x′2

)
= 1 +

(
e

(
−v1v2

α

t

x′

1 + x′2

)
− 1

)
,
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with the main term coming from the 1, and the second term being an error term, but we

will instead explicitly compute a Mellin-Barnes expansion of X ′ as this will generalize more

effectively.

We will eventually want a first-term asymptotic for X ′ as α→ 0:

lim
α→0

α−
1
2

+µX ′(α, v, µ, µ) =
16

πµ−1

∫
R+

∫
R
e (−tx′) (1 + x′2)µ−

1
2 dx′Kµ (2πt) tµ dt,

=
32

π2µ− 3
2 Γ
(

1
2
− µ

) ∫
R+

Kµ (2πt)Kµ (2πt) dt

=
4

π2µ− 1
2 Γ
(

1
2
− u
)

cos πµ
,

by dominated convergence and Stade’s formula. Note that our main term also derives from

replacing that particular complex exponential with 1.

Now we inverse-Mellin expand the exponentials in X ′ by taking the limit as θ → π
2

(outside Hwl by dominated convergence) of

e
(
x exp

(
i
(π

2
− θ
)

sign(x)
))

=
1

2πi

∫
Re(u)=u

|2πx|−u eiuθ sign(x)Γ (u) du,

for x 6= 0, 0 < θ < π
2

and u > 0. Now we have X ′(α, v, u) = limθ→π
2
X ′ε (α, v, u, θ), where

X ′δ(α, v, µ, u, θ) =

8α
1
2
−u

π1+u(2πi)2

∫
Re(s)=(δ,ε)

(2π)s1+s2α−s1Γ (s1) Γ (s2)∫
R+

Kµ (2πt) tu+s1−s2 dt∫
R
|x′|−s1−s2

(
1 + x′2

)s1+u− 1
2 exp (−iθ sign(x′)(v1v2s1 + s2)) dx′ ds.

We split the x′ integral by sign and apply the Mellin transform

∫ ∞
0

(1 + x2)uxtdx =
1

2
B

(
t+ 1

2
,
−2u− t− 1

2

)
,
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for −1 < Re(t) < −1− 2Re(u), where B(u, v) = Γ(u)Γ(v)
Γ(u+v)

is the beta function, so

X ′δ(α, v, µ, u, θ) =
2α

1
2
−u

π2+2u(2πi)2

∫
Re(s)=(δ,ε)

2s1+s2π2s2α−s1 cos (θ(v1v2s1 + s2))

Γ (s1) Γ (s2) Γ

(
1 + u+ s1 − s2 + µ

2

)
Γ

(
1 + u+ s1 − s2 − µ

2

)
B

(
−s1 − s2 + 1

2
,
−2u− s1 + s2

2

)
ds,

which should converge absolutely at θ = π
2

on Re(u) + 2Re(s1) < −1
2

provided the contours

miss the poles of the gamma functions, so dominated convergence gives

X ′(α, v, µ, u) = X ′0(α, v, µ, u) +X ′− 1
4
−ε(α, v, µ, u),

where X ′δ(α, v, µ, u) := X ′δ
(
α, v, µ, u, π

2

)
and X ′0(α, v, µ, u) indicates taking the residue at

s1 = 0. Absolute convergence of the remaining integral in X ′0, i.e. the s2 integral, is obvious

from the exponential decay factors.

Having already computed the primary asymptotic of X ′(α, v, µ, µ) as α → 0, the sec-

ondary asymptotics, which will become error terms in our partial inversion formula, can be

obtained by shifting the s1 contour to the left as we have already done – the integral over u

in Jwl,µ is small compared to α
1
2
−µ. The pole at s1 = 0 gives the primary asymptotic, and

the next pole is at s1 = −1 + s2 − 2µ which has real part −1
2

+ 7ε:

Jwl,µ(α, v) =− 4(π2α)
1
2
−µ

π

Γ (1− µ)

Γ
(

1
2
− µ

) + E1,µ(α, v) + E2,µ(α, v),

E1,µ(α, v) =Γ(−µ)X ′− 1
4
−ε(α, v, µ, µ) sinπµ,

E2,µ(α, v) =
sin πµ

2πi

∫
Re(u)=− 1

2
−4ε

Γ

(
u+ µ

2

)
Γ

(
u− µ

2

)
X ′(α, v, µ, u) du.

(The exponential growth of sin πµ in E2,µ may look daunting, but the gamma factors

Γ
(
u+µ

2

)
Γ
(
u−µ

2

)
and Γ

(
1+u+s1−s2+µ

2

)
Γ
(

1+u+s1−s2−µ
2

)
have enough exponential decay to com-

pensate.)

With the integrals evaluated and the primary asymptotics found, we take our test function
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k̃(µ) = k̃1(µ) so that the integral in µ becomes, to a first-term approximation, a Mellin

inversion:

k̃δ(µ) =− 1

2πi

∫
Re(q)=−δ

f̂(q)
2q

(q − µ)(q + µ)

πΓ
(

1
2
− q
)

4Γ (1− q) tanπq
dq

=f̂(µ)
Γ
(

1
2
− µ

)
4π

1
2 Γ (−µ)µ tanπµ

+ k̃0(µ),

where

f̂(q) =

∫ ∞
0

f(t)tq−1dt

is the Mellin transform of some sufficiently nice function f : R+ → C. For such a test

function, we have

Hwl =f(π2α)
√
π2α +

3∑
j=1

Fj(α, v),

F1(α, v) =
1

2πi

∫
Re(µ)=− 1

2
−3ε

k̃0(µ)Jwl,µ(α, v) tanπµ dµ,

F2(α, v) =
1

2πi

∫
Re(µ)=0

f̂(µ)
πΓ
(

1
2
− µ

)
4Γ (1− µ)

E1,µ(α, v) dµ,

F3(α, v) =
1

2πi

∫
Re(µ)=0

f̂(µ)
πΓ
(

1
2
− µ

)
4Γ (1− µ)

E2,µ(α, v) dµ,

so the partial inversion formula becomes (after shifting k̂1 7→ k̂ε on the spectral side):

Theorem 30 (Partial Kuznetsov Inversion Formula on SL(2,R)). Suppose f : R+ → C is

sufficiently nice (which we can quantify, but choose not to), then

π
√
|mn|

∞∑
c=1

S(m,n, c)

c
f

(
π2 |mn|
c2

)

= −δmnHI(k̃)−
3∑
j=1

∞∑
c=1

S(m,n, c)Fj

(
π2 |mn|
c2

, ( sign(m), sign(n))

)
,

+
∑
φ

k̃ε(µφ)

cos πµφ
ρφ(n)ρφ(m) +

1

4πi

∫
Re(µ)=0

k̃ε(µ)

cosπµ
η(n, µ)η(m,µ)dµ,

using the functions constructed above.
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Eisenstein Series<Gap
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ReHΜL

Figure 3.1: Location of the SL(2) Spectral Parameters

One should compare this to the full arithmetic Kuznetsov formula on GL(2), i.e. The-

orem 9: First, our formula here applies regardless of the signs of m and n. Second, the

full inversion formula requires the use of Petersson’s trace formulas and Fourier coefficents

of holomorphic modular forms; as these are zeros of the Laplacian, in some sense they lie

on the line Re(µ) = 0 with the other automorphic forms and our result confirms that the

continuous part of the inversion formula should be large compared to this discrete series.

Third, our error terms limit the study of the Kloosterman zeta function to Re(µ) < −ε; in

other words, the full Kuznetsov formula can be used to give the meromorphic continuation

of the Kloosterman zeta function with poles at µ = µφ on the line Re(µ) = 0, but our error

terms prevent us from reaching this line.

Now suppose f(t) = g (tT ) for some smooth, compactly supported g : R+ → C, T > 0,

then

f̂(t)�A
T−Re(q)

|q|A
, A > 0,

and applying this bound to the absolutely convergent integrals and sums above gives

∞∑
c=1

S(m,n, c)

c
g

(
T
π2 |mn|
c2

)
�m,n,g,ε T

ε.

We visualize the relevant parameters in figure 3.1.
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CHAPTER 4

The Method on SL(3,R)

We start with Li’s generalization of the Kuznetsov formula, whose complexity leads us to

our first technical theorem; in chapter 5 we prove:

Theorem 31. Let k̂(µ) be symmetric in µ, holomorphic in each variable on Re(µ) = η ∈[
−1

2
− ε, 1

2
+ ε
]2

, of sufficient decay that the integral

∫
Re(µ)=η

∣∣∣k̂(µ)
∣∣∣∏
i<j

|µi − µj|
13
8

+100ε |dµ|

converges, then we have the formula (2.1), where now

HI(k, ψm, ψn, (1, 1)) = − 1

283

∫
Re(µ)=(0,0)

k̂(µ)
∏
j<k

(µk − µj)2√
9− (µj − µk)2

dµ,

Hw4(k, ψm, ψn, c) =
1

(2πi)2c1c2

∫
Re(µ)=η

k̂(µ)Jw4,µ

(
8π3m1m

2
2n2

c3
2n1

)
dµ,

Hw5(k, ψm, ψn, c) =
1

(2πi)2c1c2

∫
Re(µ)=η

k̂(µ)Jw5,µ

(
8π3m2

1m2n1

c3
1n2

)
dµ,

Hwl(k, ψm, ψn, c) =
1

(2πi)2c1c2

∫
Re(µ)=η

k̂(µ)Jwl,µ

(
4π2c2m1n2

c2
1

,
4π2c1m2n1

c2
2

)
dµ,

with Jw,µ given by the Mellin-Barnes integrals (5.7), (5.8), and (5.6), and C(µ) replaced with

C∗(µ) =
∏
j<k

√
9− (µj − µk)2 sin π

2
(µk − µj)

1
2
(µk − µj)

.

This should be regarded as a theorem on the higher-rank hypergeometric functions, in the
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style of Stade; it assigns to the weight functions Hw good complex analytic expressions, in

the form of Mellin-Barnes integral representations, though we strongly suspect that we have

not achieved the optimal such representations. We are being quite wasteful in the exponent

13
8

+100ε for our assumptions on k̂; it should properly be 1, but here we only prove the larger

exponent is sufficient. Lastly, we needed to replace C(µ) because the pole at µ1 − µ2 = −1

also shows up on the arithmetic side and interfers with the absolute convergence of the

sum of the long-element Kloosterman sums; we accomplish this change by applying Stade’s

formula at s = 2 instead of s = 1, and renormalizing to obtain the proper asymptotics

(C(µ) � C∗(µ)).

Having the Mellin-Barnes representation of Theorem 31, in section 6.1 we compute a

type of first-term asymptotic for Jwl,µ:

Proposition 32. Jwl,µ(y) = |y1|−µ1 |y2|µ2 Kwl(µ) +
∑7

j=1Ewl,j(µ, y), where

Kwl(µ) =
π

1
2

+3µ1

25−2µ1+2µ2

Γ
(
µ1−µ2

2

)
Γ
(
µ1−µ3

2

)
Γ
(
µ3−µ2

2

)
Γ
(

1+µ2−µ1
2

)
Γ
(

1+µ3−µ1
2

)
Γ
(

1+µ2−µ3
2

) ∏
j<k

(µk − µj)2√
9− (µj − µk)2

,

and the Ewl,j are given explicitly by equations (6.2)-(6.8) and satisy

Ewl,j(µ, y) = o
(
|y1|−Re(µ1) |y2|Re(µ2)

)
(4.1)

as y → 0 with Re(µ1) ≤ Re(µ3) ≤ Re(µ2).

The asymptotics (4.1) are actually power-saving bounds over |y1|−Re(µ1) |y2|Re(µ2) which

are vital to our purposes, but their dependence on Re(µ1) and Re(µ2) is unfortunately quite

complicated. Note that the only zeros of Kwl(µ) in |Re(µi)| < 1
2

+ ε occur when one of

µ2 − µ3, µ3 − µ1, µ2 − µ1 are 0 or −1, and it has no poles on this region.

With this asymptotic of Jwl,µ and the accompanying explicit error terms, in section 6.2

we produce a type of partial inversion to the Hwl transform:
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Theorem 33. Let f : (R+)2 → C such that

f̂(q) :=

∫
(R+)2

f(y)yq11 y
q2
2

dy1 dy2

y1y2

is holomorphic on −1
2
− ε < Re(qi) ≤ 0 and satisfies f̂(q) � |q1q2|−8 there. Then we again

have the formula (2.1), where now

Hwl(k, ψm, ψn, c) =
1

c1c2

f

(
4π2c2m1n2

c2
1

,
4π2c1m2n1

c2
2

)
+

1

c1c2

10∑
j=1

Fj

(
f̂ ;

(
4π2c2m1n2

c2
1

,
4π2c1m2n1

c2
2

))
,

using

k̂(µ) = k̂q(µ) :=
1

2πi

∫
Re(q)=q

f̂(q)

Kwl(q1,−q2)
kconv(µ, q) (4.2)

(q1 + q2)2 (2q1 − q2) (2q2 − q1)

(q1 − µ1) (q1 − µ2) (q1 − µ3) (q2 + µ1) (q2 + µ2) (q2 + µ3)
dq,

where kconv(µ, q) is chosen in (B.3) to be holomorphic on Re(µi),Re(qi) ∈ (−2, 2) with

kconv(µ, (µ1,−µ2)) = 1, and the Fj are given explicitly by equations (6.10)-(6.13) and satisy

Fj

(
f̂ ; y
)

= o
(
|y1|−q1 |y2|−q2

)
(4.3)

as y → 0 with Re(µ1) ≤ Re(µ3) ≤ Re(µ2).

Again, (4.3) does not quite do justice to the actual bounds we obtain. The construction

of k̂q(µ) is such that the double pole at q1 = µ1 and q2 = −µ2 gives the residue

k̂q(µ) =
f̂(µ1,−µ2)

Kwl(µ)
+ error terms,

and paired with our first-term asymptotic for Jwl,µ, Hwl looks like the inverse Mellin trans-

form of f̂ . The motivation for the existence of kconv is to control the convergence of the µ

integral and for ease of proof in the section on bounds; again, the exponent −8 is certainly
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not best possible – optimal is likely −2− ε, but it is convenient.

One should note that this is an incomplete generalization to SL(3,R) of the second

form of Kuznetsov’s formula on SL(2,R); it allows us to study sums of Kloosterman sums

by applying knowledge of the Fourier-Whittaker coefficients of automorphic forms. As the

asymptotic in Proposition 32 is for y1, y2 → 0, this partial inversion formula is effective when

studying sums of Kloosterman sums with 1
2
< log c1

log c2
< 2, i.e. when each of the moduli is at

least the square-root of the other. One would expect that in practice, the remaining sums,

i.e. those over c1 <
√
c2 or c2 <

√
c1, will be small. Similarly, we expect that the sums

of Kloosterman sums for the intermediate Weyl elements w4 and w5 will tend to be small

compared to the long-element sum and the trivial term HI .

Lastly, by comparison with the method on SL(2), one might wonder if the two error

terms at
(
−1

2
, 0
)

and
(
0, 1

2

)
indicate the need for some form of discrete series in the full

inversion formula. This is a somewhat tenuous connection, however.

The formulae used above and in Theorem 5 depend strictly on the location of the contours

in the Mellin-Barnes integrals for each Jw,µ, so we include as appendix B some bounds to

demonstrate their absolute convergence at the relevant locations, which are unfortunately

not entirely trivial. The bounds we obtain are most likely not optimal in their dependence

on µ, but they are sufficient for our purposes here:

Proposition 34. For the contours given in Table 6.1, we have absolute convergence of all

of the weight functions with

|Jwl,µ(y)| � |y1|
1
2

+ε |y2|
1
2

+ε∑
w∈W

|µw3 − µw1 |
3
2

+100ε |µw3 − µw2 |
3
2

+100ε |µw2 − µw1 |
− 1

2
+100ε ,

|Jw4,µ(y)| � |y|ε
∑
w∈W

|µw3 − µw1 |
13
8

+100ε |µw3 − µw2 |
13
8

+100ε |µw2 − µw1 |
3
4

+100ε ,

|Jw5,µ(y)| � |y|ε
∑
w∈W

|µw3 − µw1 |
13
8

+100ε |µw3 − µw2 |
13
8

+100ε |µw2 − µw1 |
3
4

+100ε ,
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|Ewl,1(µ, y)| � |y1|
1
2

+ε |y2|
1
2

+ε∑
w∈W

|µw3 − µw1 |
11
8

+100ε |µw3 − µw2 |
11
8

+100ε |µw2 − µw1 |
− 3

4
+100ε ,

|Ewl,2(µ, y)| � |y1|
1
2

+ε |y2|
1
2

+ε∑
w∈W

|µw3 − µw1 |
11
8

+100ε |µw3 − µw2 |
11
8

+100ε |µw2 − µw1 |
− 3

4
+100ε ,

|Ewl,3(µ, y)| � |y1|
1
2

+ε |y2|
1
2

+ε∑
w∈W

|µw3 − µw1 |
3
2

+100ε |µw3 − µw2 |
3
2

+100ε |µw2 − µw1 |
− 1

2
+100ε ,

|Ewl,4(µ, y)| � |y1|
1
2

+ε |y2|
1
2

+ε∑
w∈W

|µw3 − µw1 |
1+100ε |µw3 − µw2 |

1+100ε |µw2 − µw1 |
− 1

2
+100ε ,

|Ewl,5(µ, y)| � |y1|
1
2

+ε |y2|
1
2

+ε∑
w∈W

|µw3 − µw1 |
1+100ε |µw3 − µw2 |

1+100ε |µw2 − µw1 |
− 1

2
+100ε ,

|Ewl,6(µ, y)| � |y1|
1
2

+ε |y2|
1
2

+ε∑
w∈W

|µw3 − µw1 |
1+100ε |µw3 − µw2 |

1+100ε |µw2 − µw1 |
100ε ,

|Ewl,7(µ, y)| � |y1|
1
2

+ε |y2|
1
2

+ε∑
w∈W

|µw3 − µw1 |
1+100ε |µw3 − µw2 |

1+100ε |µw2 − µw1 |
− 1

2
+100ε ,

Finally, in section 6.3, we obtain the results of the introduction. These results follow

essentially immediately from the locations of the spectral parameters of the objects in the

partial inversion formula Theorem 33, and the absolute convergence of the weight functions

in the desired locations using Proposition 34. We visualize the spectral parameters in figure

4.1.
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Figure 4.1: Location of the SL(3) Spectral Parameters
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CHAPTER 5

Evaluation of the Integral Transforms

We will need a number of elementary results to obtain the Kuznetsov formula above, so we

collect them here.

5.1 Mellin Transforms

Define

eθ (x) =

e
(
x exp

(
i
(
π
2
− θ
)

sign(x)
))

if x 6= 0,

1 otherwise.

Note that eθ is no longer a character of R.

We have the Mellin transform

∫ ∞
0

e (ay) yt−1dy = (−2πia)−t Γ (t) ,

for Re(t) > 0 and Im(a) > 0 (since it holds for −2πia ∈ R+ by substitution in the Euler

integral representation of the gamma function and extends by analytic continuation), and

Mellin inversion gives

e (ay) =
1

2πi

∫
(c)

(−2πia)−t Γ (t) y−tdt,

for c > 0 and Im(a) > 0.
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As we are dealing with the principal value of the power function, we have

(
−2πix exp

(
i
(π

2
− θ
)

sign(x)
))−t

= (2π |x| exp (−iθ sign(x)))−t

= e−t(log|2πx|−iθ sign(x))

= |2πx|−t eitθ sign(x).

The construction of eθ(x) is such that the argument of the exponential always has a

negative real part, so applying the previous two formulae gives

eθ (x) =
1

2πi

∫
Re(t)=c

|2πx|−t eitθ sign(x)Γ (t) dt, (5.1)

for x 6= 0 and c > 0.

We also have the Mellin transform

∫ ∞
0

(1 + x2)uxtdx =
1

2
B

(
t+ 1

2
,
−2u− t− 1

2

)
, (5.2)

for −1 < Re(t) < −1− 2Re(u). Here B(u, v) = Γ(u)Γ(v)
Γ(u+v)

is the beta function.

5.2 The G Function

We start with G∗(u, µ) := G(u,µ)
Λ(µ)

. The G function has poles at u1 = µi and −u2 = µi, so up

to permutations, we may assume a pole is at u1 = µ1, then the residue of G∗(u, µ) there is

given by

G∗l (1, u2, µ) := 2π
3
2

+µ1−µ3 Γ
(
µ1−µ2

2

)
Γ
(
µ1−µ3

2

)
Γ
(

1+µ1−µ2
2

)
Γ
(

1+µ1−µ3
2

) Γ
(
u2+µ2

2

)
Γ
(
u2+µ3

2

)
Γ
(

1+µ2−µ3
2

) .
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For the other poles, we let G∗l (j, u2, µ) be the residue at u1 = µj, and G∗r(j, u1, µ) the residue

at −u2 = µj. In particular,

G∗r(2, u1, µ) := 2π
3
2

+µ1−µ3 Γ
(
µ1−µ2

2

)
Γ
(
µ3−µ2

2

)
Γ
(

1+µ1−µ2
2

)
Γ
(

1+µ2−µ3
2

) Γ
(
u1−µ1

2

)
Γ
(
u1−µ3

2

)
Γ
(

1+µ1−µ3
2

) .

The residue at u1 = µ1 again has poles at −u2 = µ2, µ3, and we assume −u2 = µ2, giving

the residue

G∗b(1, 2, µ) := 4π
3
2

+µ1−µ3 Γ
(
µ1−µ2

2

)
Γ
(
µ1−µ3

2

)
Γ
(
µ3−µ2

2

)
Γ
(

1+µ1−µ2
2

)
Γ
(

1+µ1−µ3
2

)
Γ
(

1+µ2−µ3
2

) .
In general, let G∗b(j, k, µ) be the residue at (u1,−u2) = (µj, µk) for j 6= k.

5.3 The General Term

In Li’s construction of the Kuznetsov formula, the final step involved integrating away some

extra variables on the spectral side, using Stade’s formula (Theorem 17) at s = 1, but this

will make it impossible to obtain a function which is nicely holomorphic in the region we

require. Instead we will apply Stade’s formula at s = 2, which results in a weight function

on the spectral side which is actually too large. So we replace k̂ with

k̂(µ) =
32π4k̃(µ)∏

j<k

√
9− (µj − µk)2

,

taking the branch cuts of the square root to be outside the strip |Re(µi)| < 1
2

+ ε, and the

spectral side is now of the correct magnitude as a function of k̃.

Before we truly start the simplification process, we must engage in a series of transforma-

tions: Since ψm(x) = ψ11(mxm−1), and |m|m−1 ∈ V (up to a multiple of −1), conjugating

by m−1 and by tn−1 we have

Hw =
2 |m1m2n1n2|
π(m1m2)2Cw(n)

∫
(R+)2

∫
U(R)

∫
Uw(R)

k
(
t−1x−1αwtx′

)
ψ11(x)ψt(x′)dx

′ dxCw(t)t42t
2
1 dt,
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where

α = mcwn−1w−1 ≡


α1α2

α1

1

 (mod R+),

and Cw(y) is the Jacobian of the change of variables u 7→ yuy−1 for u ∈ Uw(R). Note that

α1 and α2 may be negative! Now interchange the x and x′ integrals. Then if wx′ ≡ x∗y∗

(mod K) and tw = wtw−1, we may translate and invert x−1(αtw)x∗(αtw)−1 7→ x.

Hw =
2 |m1m2n1n2|
π(m1m2)2Cw(n)

∫
(R+)2

∫
Uw(R)

∫
U(R)

k
(
t−1xαtwy∗

)
ψ11(x)ψαtw(x∗)ψt(x′)dx dx

′

Cw(t)t42t
2
1 dt.

Since k is a function on K\G/K (essentially the space of diagonal matrices by the sin-

gular value decomposition), it is invariant under transposition of its argument, so send

(αtwy∗)−1x(αtwy∗) 7→ x and transpose, giving

Hw =
2 |m1m2n1n2|
π(m1m2)2Cw(n)

∫
(R+)2

∫
Uw(R)

∫
U(R)

k
(
txαtwy∗t−1

)
ψαtwy∗(x)dx

ψαtw(x∗)ψt(x
′)p2ρ(αt

wy∗)dx′Cw(t)t42t
2
1 dt.

We wish to apply spherical inversion, which will require some care with respect to con-

vergence of the integrals, but the integral in x can be evaluated explicitly as in the following

lemma.

Lemma 35 (Fourier Transform of the Spherical Function). For Re(µ1),Re(µ2) ∈
(
−1

8
, 0
)
,

let

X(y, µ, ψ) =

∫
U(R)

hµ(txy)ψ(x)dx,

where the integrals over x1 and x2 are taken in the limit sense
∫∞
−∞ = limR→∞

∫ R
−R, then

X(y, µ, ψ) = κW (y−1,−µ, ψ)W (I, µ, ψ),
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where
1

κ
=

∏
1≤i<j≤3

B

(
1

2
,
j − i

2

)
= 2π2.

Note: We expect this formula to hold on SL(n,R) for arbitrary n, but the interchange

of integrals might be difficult to justify.

Applying spherical inversion, we may shift the integrals in µ1 and µ2 slightly to the left of

the 0 line and apply the above lemma. Note that, despite appearances, we have an expression

for |c3(µ)|2 which is analytic in µ. After moving µ back to the 0 lines, we have

Hw = − |m1m2n1n2|
48π7(m1m2)2Cw(n)

∫
(R+)2

∫
Uw(R)

∫
Re(µ)=(0,0)

k̂(µ)

|c3(µ)|2

W ((αtwy∗)−1t,−µ, ψαtwy∗)W (I, µ, ψαtwy∗)dµ

ψαtw(x∗)ψt(x
′)p2ρ(αt

wy∗)dx′Cw(t)t42t
2
1 dt.

We then return αtwy∗ to the argument of the Whittaker function:

Hw = − |m1m2n1n2|
48π7(m1m2)2Cw(n)

∫
(R+)2

∫
Uw(R)

∫
Re(µ)=(0,0)

k̂(µ)

|c3(µ)|2
(5.3)

W (t,−µ, ψ11)W (αtwy∗, µ, ψ11)dµψαtw(x∗)ψt(x
′)dx′Cw(t)t42t

2
1 dt.

For all but the trivial term, we will use the Mellin expansion of the second Whittaker

function. We will shift the lines of integration in this Mellin expansion Re(u) 7→ −1
2
− 10ε,

picking up poles at u1 = µi and −u2 = µi. As k̂, c3, and the product

W (z,−µ, ψ11)W (z′, µ, ψ11) =
W ∗(z,−µ, ψ11)W ∗(z′, µ, ψ11)

Λ(−µ)Λ(µ)

are invariant under permutations of µ, we may collect like terms, leaving us with four pieces:

The pole at u1 = µ2, u2 = −µ2; the pole at u1 = µ1 with an integral along Re(u2) = −1
2
−10ε;

the pole at u2 = −µ2 with an integral along Re(u1) = −1
2
− 10ε; the double integral along

Re(u) = −1
2
− 10ε. Then we shift Re(µ1, µ2) 7→

(
−1

2
− 9ε, 1

2
+ 9ε

)
, which is possible since
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|cn(µ)|−2

Λ(µ)Λ(−µ)
has no poles. Thus we are evaluating

Hw =
1

(2πi)2c1c2

∫
Re(µ)=(− 1

2
−9ε, 1

2
+9ε)

k̃(µ)J ′w,µ(α) dµ,

J ′w,µ(α) =
π2 |m1m2n1n2| c1c2

3(m1m2)2Cw(n)

(∏
j<k

tan2 π

2
(µj − µk)

)∫
(R+)2

W (t,−µ, ψ11) (5.4)(
−1

16π4

∫
Re(u)=− 1

2
−10ε

G∗(u, µ)X ′w(u, v, β, t)(πβ1t
w
1 )1−u1(πβ2t

w
2 )1−u2du

+
−3i

8π3
(πβ1t

w
1 )1−µ1

∫
Re(u2)=− 1

2
−10ε

G∗l (1, u2, µ)X ′w((µ1, u2), v, β, t)(πβ2t
w
2 )1−u2du

+
−3i

8π3
(πβ2t

w
2 )1+µ2

∫
Re(u1)=− 1

2
−10ε

G∗r(2, u1, µ)X ′w((u1,−µ2), v, β, t)(πβ1t
w
1 )1−u1du

+
6

4π2
(πβ1t

w
1 )1−µ1(πβ2t

w
2 )1+µ2G∗b(1, 2, µ)X ′w((µ1,−µ2), v, β, t)

)
Cw(t)t42t

2
1 dt,

X ′w(u, v, β, t) =

∫
Uw(R)

ψvβtw(x∗)ψt(x
′)y∗1

1−u1y∗2
1−u2dx′,

where β = |α|, v = sign(α), and we justify the interchange of integrals by explicitly

computing y∗, which shows that, in general, X ′w converges absolutely for some region in

Re(u1),Re(u2) < 0. This will further show that the t integral converges absolutely as well

as the sum of Kloosterman sums. This step was a technical necessity, as we did not know

it was safe to pull the t integral inside the sum of Kloosterman sums until right now, but

having done so, we may forget about the sum of Kloosterman sums.

The function X ′w is a type of generalized hypergeometric function. For fixed v, it is a

function of four variables β1, β2, t1, t2 with two parameters u1 and u2. The object of the

remainder of the analysis will be to obtain a Mellin-Barnes integral representation for this

function; this is accomplished by brute force: By judicious use of the eθ function, and absolute
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convergence of the t, µ, u, and x′ integrals, we will write Hw as a limit over θ:

J ′w,µ(α) =
1

12π6

(∏
j<k

tan2 π

2
(µj − µk)

)
lim
θ→π

2
−

∫
(R+)2

W (t,−µ, ψ11)(
1

(2πi)2

∫
Re(u)=− 1

2
−10ε

G∗(u, µ)X ′w(u, v, β, t, θ)(πβ1t
w
1 )−u1(πβ2t

w
2 )−u2du

+
3

2πi
(πβ1t

w
1 )−µ1

∫
Re(u2)=− 1

2
−10ε

G∗l (1, u2, µ)X ′w((µ1, u2), v, β, t, θ)(πβ2t
w
2 )−u2du

+
3

2πi
(πβ2t

w
2 )µ2

∫
Re(u1)=− 1

2
−10ε

G∗r(2, u1, µ)X ′w((u1,−µ2), v, β, t, θ)(πβ1t
w
1 )−u1du

+ 6(πβ1t
w
1 )−µ1(πβ2t

w
2 )µ2G∗b(1, 2, µ)X ′w((µ1,−µ2), v, β, t, θ)

)
(πt1)5(πt2)3 dt,

since in every case, we have

|m1m2n1n2| β1β2

(m1m2)2Cw(n)
=

1

c1c2

, Cw(t)(tw1 t
w
2 )t42t

2
1 = t51t

3
2.

Suppose that we have

X ′w(u, v, β, t, θ) =
1

(2πi)4

∫
Re(s)=η

∫
Re(r)=η′

T ′w(u, s, r, v, θ)(πβ1)−s1(πβ2)−s2(πt1)r1(πt2)r2dr ds,

where r = (r1, . . . , rk) and η, η′ are chosen to maintain absolute convergence. Explicitly, the

absolute convergence of the t integral requires Re(4 + r1) > 1
2

and Re(2 + r2) > 1
2
. Then we

may again apply the Mellin transform of the Whittaker function, so

Hw =
1

(2πi)2c1c2

∫
Re(µ)=η

k̃(µ)J ′w,µ(α) dµ, (5.5)

where

J ′w,µ(y) =
1

(2πi)2

∫
Re(s)=s

|πy1|−s1 |πy2|−s2 N ′w(s, µ, sign(y)) ds,
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N ′w(s, µ, v) =

(
1

(2πi)2

∫
Re(u)=u

G∗(u, µ)R′w(s, u, v) du

+
3

2πi

∫
Re(u2)=u2

G∗l (1, u2, µ)R′w(s, (µ1, u2), v) du2

+
3

2πi

∫
Re(u1)=u1

G∗r(2, u1, µ)R′w(s, (u1,−µ2), v) du1

+ 6G∗b(1, 2, µ)R′w(s, (µ1,−µ2), v)

)∏
j<k

(µk − µj) tan π
2
(µk − µj)√

9− (µj − µk)2
,

R′w(s, u, v) =
πu

w
1 +uw2

48π4

1

(2πi)2

∫
Re(r)=r

G∗((4, 2) + r − uw,−µ)T ′w

(
u, s− u, r, v, π

2

)
dr.

with uw defined by t
uw1
1 t

uw2
2 = (tw1 )u1(tw2 )u2 , assuming we have absolute convergence at θ = π

2
,

for which we have the contents of appendix B. Note that the zero of 1
Λ(µ)

at µ1 − µ2 = −1

cancels the pole of tan π
2
(µ2 − µ1) there, so the last term of N ′w contributes no poles on the

strip |Re(µi)| < 1
2

+ ε.

This will conclude the construction of the formula.

5.3.1 Fourier Transform of the Spherical Function

The proof of Lemma 35 has three parts: First we give an integral formula for the spherical

function; this is a slight extension of a formula in Terras [39, p. 3.30]. Then we justify

an interchange of integrals in the absence of absolute convergence; essentially, we find an

integral formula for the Jacquet-Whittaker function having a slightly larger region of absolute

convergence. Lastly, some translation is needed to show the integrals we find are actually

each the Jacquet-Whittaker function.

We define the K-part function on G as K(xyk) = k, then the power function identity

[39, p. 3.17]

pρ+µ(K(tx)z) = pρ+µ(txz)p−ρ−µ(tx)
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comes from the decomposition tx = x1y1k1:

pρ+µ(txz) = pρ+µ(x1y1k1z) = pρ+µ(y1)pρ+µ(k1z).

We also need the change of variables formula [39, Lemma 4.3.2]

∫
K/V

f(k̄)dk̄ = κ

∫
U(R)

f(K(tx)V )p2ρ(
tx)dx,

where the measure on K/V is again normalized to
∫
K/V

dk̄ = 1 Then we expand

hµ(z) =

∫
K/V

∑
v∈V

pρ+µ(k̄vz)
dk̄

|V |

=

∫
K/V

pρ+µ(k̄z)dk̄

= κ

∫
U(R)

pρ+µ(K(tu)z)p2ρ(
tu)du

= κ

∫
U(R)

pρ+µ(tuz)pρ−µ(tu)du,

by substituting vk̄v 7→ k̄ in the first integral. Intuitively, if we could pull the x integral of X

inside the u integral of hµ and send xu 7→ x, then we would have a product of two Whittaker

functions; however, we have absolute convergence of the combined x and u integral for no

values of µ.

Applying this integral representation of hµ to X, we have

X(y, µ, ψ) = κ lim
R→∞

∫
[−R,R]2×R

∫
U(R)

pρ+µ(tutxy)pρ−µ(tu) duψ(x)dx,

and the integrals inside the limit converge absolutely. We may then interchange the integrals

and send xu 7→ x, and for convenience, we also send tx 7→ ytxy−1, giving

X = κp−ρ+µ(y) lim
R→∞

∫
U(R)

∫
X (u,y,R)×R

pρ+µ(tx)ψ∗(x) dx pρ−µ(tu)ψ(u) du,

where X (u, y, R) is the result of applying these transforms to the box [−R,R]2, and ψ∗(x) =
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ψ(y−1xy).

Now we need only to rearrange the x integral into an absolutely convergent form as the

u integral will then converge absolutely by our assumptions on µ. To that end, we separate

the x3 integral

X3(x1, x2, µ) =

∫
R
pρ+µ(tx)dx3

=

∫
R

(
1 + x2

1 + x2
3

)− 1+µ1+2µ2
2

(
1 + x2

2 + (x3 − x1x2)2
)− 1+µ1−µ2

2 dx3,

and for convenience, we write X3(s1, s2) = X3(x1, x2, µ) where s1 = −1+µ1+2µ2
2

and s2 =

−1+µ1−µ2
2

.

A quick and useful bound for X3 comes from applying Cauchy-Schwarz:

|X3(s1, s2)| ≤

√∫
R

(1 + x2
1 + x2

3)
2Re(s1)

dx3

√∫
R

(1 + x2
2 + (x3 − x1x2)2)

2Re(s2)
dx3

=

√
π

Γ
(
−1

2
− 2Re(s1)

)
Γ
(
−1

2
− 2Re(s2)

)
Γ (−2Re(s1)) Γ (−2Re(s2))

(
1 + x2

1

)Re(s1)+ 1
4
(
1 + x2

2

)Re(s2)+ 1
4

�s

(
1 + x2

1

)Re(s1)+ 1
4
(
1 + x2

2

)Re(s2)+ 1
4 ,

assuming Re(s1),Re(s2) < −1
4
.

Substituting x3 7→ x1x3 gives

X3 = x
2(s1+s2)+1
1

∫
R

(
x−2

1 + 1 + x2
3

)s1 (1 + x2
2

x2
1

+ (x3 − x2
2)2

)s2
dx3,

so

∂X3

∂x1

=
2(s1 + s2) + 1

x1

X3(s1, s2)− 2
s1

x1

X3(s1 − 1, s2)− 2s2
1 + x2

2

x1

X3(s1, s2 − 1).

Similarly,

∂X3

∂x2

=
2(s1 + s2) + 1

x2

X3(s1, s2)− 2s1
1 + x2

1

x2

X3(s1 − 1, s2)− 2
s2

x2

X3(s1, s2 − 1),
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and

∂2X3

∂x2∂x1

=
(2(s1 + s2) + 1)2

x1x2

X3(s1, s2)

− 2s1
2(s1 + s2)(2 + x2

1) + x2
1

x1x2

X3(s1 − 1, s2)

− 2s2
2(s1 + s2)(2 + x2

2) + x2
2

x1x2

X3(s1, s2 − 1)

+ 4s1s2
1 + (1 + x2

1)(1 + x2)2

x1x2

X3(s1 − 1, s2 − 1)

+ 4s1(s1 − 1)
1 + x2

1

x1x2

X3(s1 − 2, s2)

+ 4s2(s2 − 1)
1 + x2

2

x1x2

X3(s1, s2 − 2).

By comparing the powers of x1 and x2 in each of the three partial derivatives of X3

against the given bound for the corresponding X3(s1 − a, s2 − b), we see that integration by

parts causes problems near zero, but will give us convergence on an integral which is bounded

away from zero, so we now split the plane into four regions (nine total components) as x1 and

x2 have magnitude smaller or larger than 1. On the region |x1| ≤ 1, |x2| ≤ 1, we do nothing,

as this integral converges absolutely without our help. On the region |x1| ≤ 1, |x2| > 1, we

integrate by parts in x2. On the region |x1| > 1, |x2| ≤ 1, we integrate by parts in x1. On

the region |x1| > 1, |x2| > 1, we integrate by parts in both x1 and x2.

Note that the only dependence on u in the x integral is to position the center of the box

X . The integrals over the regions, after the approriate integration by parts, now converge

absolutely (assuming ε < 1
4
), hence the integral over the interior of the box is bounded and

converges pointwise in u as R → ∞. We have two types of boundary coming from the

integration by parts: The first is the boundary of the box, whose integral is bounded and

tends to 0 for each fixed u as R→∞, after the appropriate integration by parts. The second

set are the boundaries of each of the above regions: For the lines x1 = ±1, integrate by parts

in x1 to obtain an absolutely convergent integral, and for x2 = ±1, integrate by parts in

x2; again, the integral over the portion of these lines which falls in the box now converges

absolutely, hence is bounded and converges pointwise in u. Lastly, the value of X3 at the
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intersection of the box and these lines is bounded and tends to zero pointwise in u. Thus,

by dominated convergence, we may move the limit inside the s and u integrals to obtain an

absolutely convergent integral.

After pulling the limit as R → ∞ inside the u integral, the x and u integrals separate,

with the u integral converging absolutely. Now we undo the substitution tx 7→ ytxy−1.

To finish, we first note that a symmetry of the power function [39, Prop. 4.2.1 (4)]: With

µwl = (µ3, µ2, µ1), we have

pµ(xy) = pµ(y) = p−µwl (wly
−1) = p−µwl (wl

t (xy)
−1

),

so the Jacquet-Whittaker function may be written as

W (y−1,−µwl , ψ) =

∫
U(R)

pρ+µ(txy)ψ(x)dx,

by sending x 7→ vx−1v for v =
(

1
−1

1

)
and noticing that −ρwl = ρ. Thus the rearranged

x integral (now consisting of integrals over nine regions, twelve lines, and four points in the

x1, x2 plane) is, by construction, an analytic continuation of the Whittaker function to the

double half-plane Re(µ1),Re(µ2) > −1
8
.

Lastly, the product

W (z,−µ, ψ11)W (z′, µ, ψ11) =
W ∗(z,−µ, ψ11)W ∗(z′, µ, ψ11)

Λ(−µ)Λ(µ)

is permutation-invariant in µ, so we may replace µwl 7→ µ.

5.4 Trivial Element Term

Only occurs when m = n and only for the c = I term; the integral over Uw(R) is trivial as

well. Cw(y) is just 1 since we didn’t actually do any substituting, α = I, and x∗ = I, y∗ = I

since II is already of the form x∗y∗, so pulling the t integral inside in (5.3) (justified by the
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absolute convergence of the interchanged form) gives

Hw = − |m1m2n1n2|
48π7(m1m2)2

∫
Re(µ)=(0,0)

k̂(µ)

|c3(µ)|2 Λ(µ)Λ(−µ)∫
(R+)2

W ∗(t,−µ, ψ11)W ∗(t, µ, ψ11)t41t
2
2 dt dµ

= − 1

273π4

∫
Re(µ)=(0,0)

k̂(µ)

|c3(µ)|2 Λ(µ)Λ(−µ)

∏
j<k

1
2
(µj − µk)

sin π
2
(µj − µk)

dµ

= − 1

283

∫
Re(µ)=(0,0)

k̃(µ)
∏
j<k

(µk − µj)2√
9− (µj − µk)2

dµ,

by Stade’s formula.

5.5 Long Element Term

The computational data that is required is

Uw(R) = U(R), Cw(y) = (y1y2)2, tw =

(
1

t2
,

1

t1

)
, uw = (−u2,−u1)

α1 =
c2m1n2

c2
1

, α2 =
c1m2n1

c2
2

,

x∗1 = − x′2 + x′1x
′
3

1 + x′22 + x′23
, x∗2 = − x′1 + x′2(x′1x

′
2 − x′3)

1 + x′21 + (x′1x
′
2 − x′3)2

,

y∗1 =

√
1 + x′21 + (x′1x

′
2 − x′3)2

1 + x′22 + x′23
, y∗2 =

√
1 + x′22 + x′23

1 + x′21 + (x′1x
′
2 − x′3)2

,

so that we are evaluating

X ′wl(u, v, β, t) =

∫
U(R)

e

(
−v1

β1

t2
x∗1 − v2

β2

t1
x∗2 + t1x

′
1 + t2x

′
2

)
(y∗1)1−u1(y∗2)1−u2 dx′.

We wish to separate the three x′ variables, so we start by noticing that (x′1x
′
2 − x′3)2 +

x′21 + 1 = (1 + x′22 )x′21 − 2x′1x
′
2x
′
3 + x′23 + 1; sending x′1 7→

x′1√
1+x′22

and x′3 7→ x′3
√

1 + x′22 the
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expression becomes (x′1 − x′2x′3)2 + x′23 + 1 and lastly we send x′1 − x′2x′3 7→ x′1
√

1 + x′23 :

X ′wl =

∫
U(R)

e

(
v1
β1

t2

x′2
1 + x′22

+ v1
β1

t2

x′1x
′
3

(1 + x′22 )
√

1 + x′23
+ v2

β2

t1

x′1
√

1 + x′22

(1 + x′21 )
√

1 + x′23

)

e

(
t1

x′2x
′
3√

1 + x′22
+ t1

x′1
√

1 + x′23√
1 + x′22

+ t2x
′
2

)
(
1 + x′21

)−1−u1+2u2
2

(
1 + x′22

)−1+2u1−u2
2

(
1 + x′23

)−1+u1+u2
2 dx′.

For each of the six terms in the exponential, we replace e (·) 7→ eθ(·) and apply its Mellin

expansion (5.1) (interchange by absolute convergence):

X ′wl(u, v, β, t, θ)

=
1

(2πi)6

∫
Re(r)=ν

∫
U(R)

(4π2β1)−r1−r2(4π2β2)−r3(2πt1)r3−r4−r5(2πt2)r1+r2−r6

|x′1|
−r2−r3−r5 |x′2|

−r1−r4−r6 |x′3|
−r2−r4

exp−iθ (r1v1 sign(x′2) + r2v1 sign(x′1x
′
3) + r3v2 sign(x′1))

exp−iθ (r4 sign(x′2x
′
3) + r5 sign(x′1) + r6 sign(x′2))(

1 + x′21
)−1−u1+2u2+2r3

2
(
1 + x′22

)−1+2u1−u2+2r1+2r2−r3+r4+r5
2

(
1 + x′23

)−1+u1+u2+r2+r3−r5
2 dx′

(
6∏
j=1

Γ (rj)

)
dr.

Collecting by sign gives

X ′wl =
4

(2πi)6

∫
Re(r)=ν

(4π2β1)−r1−r2(4π2β2)−r3(2πt1)r3−r4−r5(2πt2)r1+r2−r6

Γ (r1) Γ (r2) Γ (r3) Γ (r4) Γ (r5) Γ (r6)A′wl(r, v, θ)∫
(R+)3

x′−r2−r3−r51 x′−r1−r4−r62 x′−r2−r43

(
1 + x′21

)−1−u1+2u2+2r3
2

(
1 + x′22

)−1+2u1−u2+2r1+2r2−r3+r4+r5
2

(
1 + x′23

)−1+u1+u2+r2+r3−r5
2 dx′ dr,
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where

A′wl =
1

4

∑
ε1,ε2,ε3∈{±1}

exp−iθ (r1v1ε2 + r2v1ε1ε3 + r3v2ε1 + r4ε2ε3 + r5ε1 + r6ε2)

= cos θ(r2v1 + r3v2 + r5) cos θ(r1v1 + r4 + r6)

+ cos θ(−r2v1 + r3v2 + r5) cos θ(r1v1 − r4 + r6)

where ν1, . . . , ν6 = ε are small compared to Re(u1 − 2u2) > 1
2
, Re(−2u1 + u2) > 1

2
, and

Re(−u1 − u2) > 1
2
. The inner integral may be evaluated by (5.2), so we have

X ′wl =
1

(2πi)6

∫
Re(r)=ν

(4π2β1)−r1−r2(4π2β2)−r3(2πt1)r3−r4−r5(2πt2)r1+r2−r6

A′wl(r, v, θ)

B

(
1− r2 − r3 − r5

2
,
u1 − 2u2 + r2 − r3 + r5

2

)
B

(
1− r1 − r4 − r6

2
,
−2u1 + u2 − r1 − 2r2 + r3 − r5 + r6

2

)
B

(
1− r2 − r4

2
,
−u1 − u2 − r3 + r4 + r5

2

)
dr,

which converges absolutely for θ < π
2

because of the exponential decay of the A′wl function.

Sending (r1 + r2, r3, r3 − r4 − r5, r1 + r2 − r6, r2, r4 − r2) 7→ (s1, s2, r1, r2, t1, t2), we may

read off

T ′wl =
4(4π)−s1−s2

(2πi)2

∫
Re(t)=η4

2r1+r2Γ (s1 − t1) Γ (t1) Γ (s2)

Γ (t1 + t2) Γ (s2 − t1 − t2 − r1) Γ (s1 − r2)

A′wl((s1 − t1, t1, s2, t1 + t2, s2 − t1 − t2 − r1, s1 − r2), v, θ)

B

(
1− 2s2 + r1 + t2

2
,
u1 − 2u2 − r1 − t2

2

)
B

(
1− 2s1 + r2 − t2

2
,
−2u1 + u2 + r1 − r2 + t2

2

)
B

(
1− 2t1 − t2

2
,
−u1 − u2 − r1

2

)
dt,
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and sending 1 + r − uwl 7→ r and normalizing the powers of π in (5.5), we have

Hwl =
1

(2πi)2c1c2

∫
Re(µ)=η

k̃(µ)Jwl,µ

(
4π2c2m1n2

c2
1

,
4π2c1m2n1

c2
2

)
dµ,

where

Jwl,µ(y) =
1

(2πi)2

∫
Re(s)=s

|y1|−s1 |y2|−s2 Nwl(s, µ, sign(y)) ds, (5.6)

Nwl(s, µ, v) =(
1

(2πi)2

∫
Re(u)=u

G∗(u+ (µ1,−µ2), µ)Γ (s2 − u2 + µ2)Twl,1(s, u+ (µ1,−µ2), v) du

+
3

2πi

∫
Re(u2)=u2

G∗l (1, (µ1, u2 − µ2), µ)Γ (s2 − u2 + µ2)Twl,1(s, (µ1, u2 − µ2), v) du2

+
3

2πi

∫
Re(u1)=u1

G∗r(2, (u1 + µ1,−µ2), µ)Γ (s2 + µ2)Twl,1(s, (u1 + µ1,−µ2), v) du1

+ 6G∗b(1, 2, µ)Γ (s2 + µ2)Twl,1(s, (µ1,−µ2), v)

)∏
j<k

(µk − µj) tan π
2
(µk − µj)√

9− (µj − µk)2
,

Twl,1(s, u, v) =
1

2πi

∫
Re(t1)=t1

Γ (t1) Γ (s1 − u1 − t1)Rwl(s, u, v, t1) dt1,

Rwl(s, u, v, t1) =
1

(2πi)2

∫
Re(r)=r

G∗((3, 1) + r,−µ)Γ (1 + s1 − r2)Twl,2(r, s, u, v, t1) dr,

Twl,2(r, s, u, v, t1) =

2u1+u2+r1+r2

48π4(2πi)

∫
Re(t2)=t2

Awl(r, s, t, u, v)Γ (t1 + t2) Γ (1 + s2 − r1 − t1 − t2)

B

(
u1 − 2s2 + r1 + t2

2
,
1 + u1 − u2 − r1 − t2

2

)
B

(
u1 − 2s1 + r2 − t2

2
,
−u1 + r1 − r2 + t2

2

)
B

(
1− 2t1 − t2

2
,
1− u1 − r1

2

)
dt2,
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Awl = cos
π

2
(t1v1 + v2(s2 − u2) + s2 − u2 − t1 − t2 − r1)

cos
π

2
(v1(s1 − u1 − t1) + t1 + t2 + s1 − u1 − r2)

+ cos
π

2
(−t1v1 + v2(s2 − u2) + s2 − u2 − t1 − t2 − r1)

cos
π

2
(v1(s1 − u1 − t1)− t1 − t2 + s1 − u1 − r2) ,

and

η =

(
−1

2
− 3ε,

1

2
+ 3ε

)
, u = −ε, s = −1

2
− ε, r =

(
1

2
− 4ε, 100ε

)
, t = ε

are sufficient to maintain positivity of the arguments of all the gamma functions.

We should mention that this is the point where we run into difficulties using Stade’s

formula at s = 1: Doing so would replace the (3, 1) in the argument of the second G function

with (1, 0), and the conflicting inequalities are Re(r2+µ1) > 0, Re(1+s1−r2) > 0, Re(t1) > 0,

Re(s1 − µ1 − t1) > 0, Re(s1) < −1
2
; the last three imply Re(µ1) < −1

2
and so the first two

become Re(r2) > 1
2

and Re(r2) < 1
2
. It may, however, be worthwhile using Stade’s formula

at say 1 +O (ε) to reduce the variation between the minimum and average exponents in the

bounds of Proposition 34.

Additionally, the reader might be wondering how we are shifting contours around without

justification: Since our contours are vertical lines in the complex plane, the requirement that

the real part of the argument of every gamma function be greater than zero (or between

−1 and 0 in the case of G∗(u + (µ1,−µ2), µ), etc.) forms a set of linear inequalities on the

parameter space Re(µ), Re(u), Re(r), Re(s), Re(t), hence defines an open, convex (therefore

connected) subset of the same. Thus we have some finite process of shifting integrals to get

between any two points in this region, and we need only know that both the start and end

points are contained in the region and that the integrals each converge to a holomorphic

function of the remaining variables on some compact set containing the two points and the

path between them. For θ < π
2
, we have exponential decay in every variable, hence each

integral grows at most polynomially, to be compensated by the exponential decay in the next
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(and we are assuming for the moment that k̂ is Schwartz-class), thus every integral converges

absolutely and uniformly on compact subsets of the above region, and we need only know

that both the start and end points are contained therein.

5.6 The w4 Term

The computational data that is required is

Uw(R) =




1 x2 x3

1 0

1

 : x2, x3 ∈ R

 ,

Cw(y) = y1y
2
2, tw =

(
1

t1t2
, t1

)
, uw = (u2 − u1,−u1) ,

α1 =
c2m1n1n2

c2
1

=
m1m

2
2n2

c3
2n1

, α2 =
c1m2

c2
2n1

= 1

x∗1 =
x′3

1 + x′22 + x′23
, x∗2 = − x′2x

′
3

1 + x′22
,

y∗1 =

√
1 + x′22

1 + x′22 + x′23
, y∗2 =

√
1 + x′22 + x′23

1 + x′22
,

so that we are evaluating

X ′w4
(u, v, β, t) =

∫
Uw(R)

e

(
−v1

β1

t1t2
x∗1 − t1x∗2 + t2x

′
2

)
(y∗1)1−u1(y∗2)1−u2 dx′.

Sending x′3 7→ x′3
√

1 + x′22 gives

X ′w4
(u, v, β, t) =

∫
Uw(R)

e

(
−v1

β1

t1t2

x′3√
1 + x′22 (1 + x′23 )

+ t1
x′2x

′
3√

1 + x′22
+ t2x

′
2

)
(
1 + x′22

)−1+u1+u2
2

(
1 + x′23

)−1+2u1−u2
2 dx′.
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As above, we send e (·) 7→ eθ(·) and apply the Mellin expansion (5.1):

X ′w4
(u, v, β, t, θ)

=
1

(2πi)3

∫
Re(r)=ν

∫
Uw(R)

(8π3β1)−r1(2πt1)r1−r2(2πt2)r1−r3

exp−iθ (−r1v1 sign(x′3) + r2 sign(x′2x
′
3) + r3 sign(x′2))

|x′2|
−r2−r3 |x′3|

−r1−r2 (1 + x′22
)−1+u1+u2+r1+r2

2
(
1 + x′23

)−1+2u1−u2+2r1
2 dx′

Γ (r1) Γ (r2) Γ (r3) dr.

Splitting by sign and applying the Mellin transform (5.2) gives

X ′w4
=

1

(2πi)3

∫
Re(r)=ν

(8π3β1)−r1(2πt1)r1−r2(2πt2)r1−r3

Γ (r1) Γ (r2) Γ (r3)A′w4
(r, v, θ)

B

(
1− r2 − r3

2
,
−u1 − u2 − r1 + r3

2

)
B

(
1− r1 − r2

2
,
−2u1 + u2 − r1 + r2

2

)
dr,

A′w4
(r, v, θ) =

1

4

∑
ε2,ε3∈{±1}

exp−iθ (−r1v1ε3 + r2ε2ε3 + r3ε2)

= cos θr1 cos θr2 cos θr3 − iv1 sin θr1 sin θr2 sin θr3.

Sending r1 7→ s, r2 7→ s− r1 and r3 7→ s− r2, we again read off

T ′w4
= (8π2)r1−sΓ (s) Γ (s− r1) Γ (s− r2)A′w4

((s, s− r1, s− r2), v, θ)

B

(
1− 2s+ r1 + r2

2
,
−u1 − u2 − r2

2

)
B

(
1− 2s+ r1

2
,
−2u1 + u2 − r1

2

)
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(here we have dropped the 1
2πi

∫
Re(s2)=η2

ds2), and we have

Hw4 =
1

(2πi)2c1c2

∫
Re(µ)=η

k̃(µ)Jw4,µ

(
8π3m1m

2
2n2

c3
2n1

)
dµ,

where

Jw4,µ(y) =
1

2πi

∫
Re(s)=s

|y|−sNw4(s, µ, sign(y)) ds, (5.7)

Nw4(s, µ, v) =

(
1

(2πi)2

∫
Re(u)=u

G∗(u+ (µ1,−µ2), µ)Rw4(s, u+ (µ1,−µ2), v) du

+
3

2πi

∫
Re(u2)=u2

G∗l (1, u2, µ)Rw4(s, (µ1, u2 − µ2), v) du2

)
∏
j<k

(µk − µj) tan π
2
(µk − µj)√

9− (µj − µk)2
,

Rw4(s, u, v) =
23r1+3u1π2r1+u2

48π4
Γ (s− u1)

1

(2πi)2

∫
Re(r)=r

2r1+r2Γ (s− u1 − r1) Γ (s− u1 − r2)Aw4(r, s, u, v)

G∗((4 + u1 − u2 + r1, 2 + u1 + r2),−µ)

B

(
1 + 2u1 − 2s+ r1 + r2

2
,
−u1 − u2 − r2

2

)
B

(
1 + 2u1 − 2s+ r1

2
,
−2u1 + u2 − r1

2

)
dr,

Aw4(r, s, u, v) = cos
π

2
(s− u1) cos

π

2
(s− u1 − r1) cos

π

2
(s− u1 − r2)

− iv sin
π

2
(s− u1) sin

π

2
(s− u1 − r1) sin

π

2
(s− u1 − r2) ,

and

η = (−2ε, 0) , u = (−ε, ε) , s = −ε, r = −1

2
+ 3ε

are sufficient to maintain positivity of the arguments of the gamma functions. We have
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chosen to reabsorb the poles in u2 since they do not affect the asymptotics in y.

5.7 The w5 Term

The computational data that is required is

Uw(R) =




1 0 x3

1 x1

1

 : x1, x3 ∈ R

 ,

Cw(y) = y2
1y2, tw =

(
t2,

1

t1t2

)
, uw = (−u2, u1 − u2) ,

α1 =
c2m1

c2
1n2

= 1, α2 =
c1m2n1n2

c2
2

=
m2

1m2n1

c3
1n2

x∗1 = − x′1x
′
3

1 + x′21
, x∗2 =

x′3
1 + x′21 + x′23

,

y∗1 =

√
1 + x′21 + x′23

1 + x′21
, y∗2 =

√
1 + x′21

1 + x′21 + x′23
,

so that we are evaluating

X ′w5
(u, v, β, t) =

∫
Uw(R)

e

(
−t2x∗1 − v2

β2

t1t2
x∗2 + t1x

′
1

)
(y∗1)1−u1(y∗2)1−u2 dx′.

This matches X ′w4
with x′2 7→ x′1, α1 7→ α2, and the coordinates of u and t permuted, so

one may just propagate these changes, but we give the entire construction instead. Sending

x′3 7→ x′3
√

1 + x′21 gives

X ′w5
(u, v, β, t) =

∫
Uw(R)

e

(
t2

x′1x
′
3√

1 + x′21
− v2

β2

t1t2

x′3√
1 + x′21 (1 + x′23 )

+ t1x
′
1

)
(
1 + x′21

)−1+u1+u2
2

(
1 + x′23

)−1−u1+2u2
2 dx′.
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As above, we send e (·) 7→ eθ(·) and apply the Mellin expansion (5.1):

X ′w5
(u, v, β, t, θ)

=
1

(2πi)3

∫
Re(r)=ν

∫
Uw(R)

(8π3β2)−r2(2πt1)r2−r3(2πt2)−r1+r2

exp−iθ (r1 sign(x′1x
′
3)− r2v2 sign(x′3) + r3 sign(x′1))

|x′1|
−r1−r3 |x′3|

−r1−r2 (1 + x′21
)−1+u1+u2+r1+r2

2
(
1 + x′23

)−1−u1+2u2+2r2
2 dx′

Γ (r1) Γ (r2) Γ (r3) dr.

Splitting by sign and applying the Mellin transform (5.2) gives

X ′w5
=

1

(2πi)3

∫
Re(r)=ν

(8π3β2)−r2(2πt1)r2−r3(2πt2)−r1+r2

Γ (r1) Γ (r2) Γ (r3)A′w5
(r, v, θ)

B

(
1− r1 − r3

2
,
−u1 − u2 − r2 + r3

2

)
B

(
1− r1 − r2

2
,
u1 − 2u2 + r1 − r2

2

)
dr,

A′w5
(r, v, θ) =

1

4

∑
ε1,ε3∈{±1}

exp−iθ (r1ε1ε3 − r2v2ε3 + r3ε1)

= cos θr1 cos θr2 cos θr3 − iv2 sin θr1 sin θr2 sin θr3.

Sending r2 7→ s, r1 7→ s− r1 and r3 7→ s− r2, we again read off

T ′w5
= (8π2)r1−sΓ (s) Γ (s− r1) Γ (s− r2)A′w5

((s, s− r1, s− r2), v, θ)

B

(
1− 2s+ r1 + r2

2
,
−u1 − u2 − r2

2

)
B

(
1− 2s+ r1

2
,
u1 − 2u2 − r1

2

)
,
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and we have

Hw5 =
1

(2πi)2c1c2

∫
Re(µ)=η

k̃(µ)Jw5,µ

(
8π3m2

1m2n1

c3
1n2

)
dµ,

where

Jw5,µ(y) =
1

2πi

∫
Re(s)=s

|y|−sNw5(s, µ, sign(y)) ds, (5.8)

Nw5(s, µ, v) =

(
1

(2πi)2

∫
Re(u)=u

G∗(u+ (µ1,−µ2), µ)Rw5(s, u+ (µ1,−µ2), v) du

+
3

2πi

∫
Re(u1)=u1

G∗r(2, u1, µ)Rw5(s, (u1 + µ1,−µ2), v) du1

)
∏
j<k

(µk − µj) tan π
2
(µk − µj)√

9− (µj − µk)2
,

Rw5(s, u, v) =− 23r1+3u2π2r1+u1

48π4
Γ (s− u2)

1

(2πi)2

∫
Re(r)=r

2r1+r2Γ (s− u2 − r1) Γ (s− u2 − r2)Aw5(r, s, u, v)

G∗((4 + u2 + r1, 2− u1 + u2 + r2),−µ)

B

(
1 + 2u2 − 2s+ r1 + r2

2
,
−u1 − u2 − r2

2

)
B

(
1 + 2u2 − 2s+ r1

2
,
u1 − 2u2 − r1

2

)
dr,

Aw5(r, s, u, v) = cos
π

2
(s− u2 − r1) cos

π

2
(s− u2) cos

π

2
(s− u2 − r2)

− iv sin
π

2
(s− u2 − r1) sin

π

2
(s− u2) sin

π

2
(s− u2 − r2) ,

and

η = (0,−2ε) , u = (ε,−ε) , s = −ε, r = −1

2
+ 3ε

are sufficient to maintain positivity of the arguments of the gamma functions. Here we have

reabsorbed the poles in u1 as they do not affect the asymptotics in y.
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5.8 Notes

(a) The above reasoning is sufficient to evaluate the trivial term of the Kuznetsov formula

on SL(n,R) for all n, provided one can justify the interchange of integrals in Lemma 35.

Though this line of attack works well for the trivial term, it gets more difficult for

the remaining terms. The author would like to point out a method of Zagier in his

infamous “unpublished notes” for the Kuznetsov formula on SL(2,R): He proceeded

from the original formula by substituting x′ 7→ x′x and then performing a substitution

on xt to put u = m−1cwnx′ in block diagonal form. For the positive discriminant

case, one ends with an integral of essentially a Herz hypergeometric function. In the

negative discriminant case, the author encountered an unexpected interaction with an

off-diagonal term and was unable to complete the process. The purpose in mentioning

this here is that up to that point the method appeared quite promising and readily

generalizable; if one could overcome the technical difficulties, it should lead to formulas

for the long-element term for the Kuznetsov formula on SL(n,R) for general n. Also,

Zagier’s method does apply to the trivial term for all n. As the trivial and long-element

terms tend to be the most important for applications, that would be quite useful.

(b) Again, assuming the interchange of integrals in Lemma 35 can be justified on SL(n,R),

the long-element weight function is the SL(n,R) convolution

X ′(α, µ) =

∫
G/K

W (z,−µ, ψ11)W (αwlz,−µ, ψ11)p11(z) dz.

It would be nice to think that this satisfies some differential equation in α having a

known solution. This would give X ′(α, µ) = g(µ)f(α, µ) and later we will compute the

limit

lim
α→0

p−ρ−µwl (α)X ′(α, µ) =
∏
j<k

B

(
1

2
, µj − µk

)
6= 0,

for Re(µ1),Re(µ2) > 0, which would fix the value of g(µ). The author did not have

much luck finding such a differential equation, but still believes it should be related

to the differential equations satisfied by the Whittaker function itself. (This would be
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obvious, except that we are right-translating α.)

(c) While we have made use of the gamma function to convert exponentials to powers

(i.e. the Mellin expansion of the eθ function), Stade was able to compute the Mellin

transforms of the Jacquet-Whittaker functions by converting powers to exponentials

(essentially the same trick in reverse), giving quadratics in the exponential terms, which

can then be evaluated using the known Fourier transform of exp(−x2). Attempting to

do so here becomes complicated rather quickly.

Stade was also quite successful in applying the theory of Barnes integrals to reduce

the number of extraneous integrals in the Mellin transform of the Whittaker functions.

Again, we did not have any success with this method.

(d) One may reduce the number of extra integrals in the long-element weight function by 2

by sending y 7→ y |m|−1 and y′ 7→ y′ |n|−1 and integrating over both y and y′ separately.

(As opposed to sending y 7→ t |m|−1 and y′ 7→ t |n|−1 and integrating over t.) This

then requires finding an exponential decay factor in the weight function to compensate,

which is somewhat difficult.

(e) It may be possible to attack the X ′ function as in [10] by writing

e

(
−α1

t2
x∗1 −

α2

t1
x∗2

)
=1 +

(
e

(
−α1

t2
x∗1

)
− 1

)
+

(
e

(
−α2

t1
x∗2

)
− 1

)
+

(
e

(
−α1

t2
x∗1

)
− 1

)(
e

(
−α2

t1
x∗2

)
− 1

)
,

and simply bounding the resulting error terms directly. This could lead to a much

cleaner derivation, if it is possible to use this method.
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CHAPTER 6

Applications

6.1 Asymptotics of the Jwl,µ Function

We want to achieve the highest power of the β variables possible – this gives the fastest

convergence of the Kloosterman zeta function, so we want to move the s variables as negative

as possible. As the s variables are indirectly bounded below by (µ1,−µ2), any terms which

allow us to cross below those lines will be considered small. Thus we only care about the

u = (0, 0) residue in the Nwl function. Then we shift the s integrals back, with poles at

s1 = µ1 + t1 and s2 = −µ2, and we shift the t1 integral back, with a pole at t1 = 0. So far,

we have

Jwl,µ(y) ∼6 |y1|−µ1 |y2|µ2 G∗b(1, 2, µ)

(∏
j<k

tan2 π

2
(µk − µj)

)
Rwl((µ1,−µ2), (µ1,−µ2), v, 0),

(6.1)

as y → 0. This yields the error terms of Proposition 32:

Ewl,1(µ, y) =
3

(2πi)3

(∏
j<k

tan2 π

2
(µk − µj)

)∫
Re(s)=s

|y1|−s1 |y2|−s2 (6.2)∫
Re(u1)=u1

G∗r(2, (u1 + µ1,−µ2), µ)Γ (s1 − u1 − µ1)

Twl,1(s, (u1 + µ1,−µ2), v) du1 ds,
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Ewl,2(µ, y) =
3

(2πi)3

(∏
j<k

tan2 π

2
(µk − µj)

)∫
Re(s)=s

|y1|−s1 |y2|−s2 (6.3)∫
Re(u2)=u2

G∗l (1, (µ1, u2 − µ2), µ)Γ (s1 − µ1)

Twl,1(s, (µ1, u2 − µ2), v) du2 ds,

Ewl,3(µ, y) =
1

(2πi)4

(∏
j<k

tan2 π

2
(µk − µj)

)∫
Re(s)=s

|y1|−s1 |y2|−s2 (6.4)∫
Re(u)=u

G∗(u+ (µ1,−µ2), µ)Γ (s1 − u1 − µ1)

Twl,1(s, u+ (µ1,−µ2), v) du ds,

Ewl,4(µ, y) =
6

2πi
G∗b(1, 2, µ)

(∏
j<k

tan2 π

2
(µk − µj)

)
(6.5)∫

Re(s1)=Re(µ1)−ε
|y1|−s1 |y2|µ2

Twl,1((s1, µ2), (µ1,−µ2), sign(y)) ds2,

Ewl,5(µ, y) =
6

(2πi)2
G∗b(1, 2, µ)

(∏
j<k

tan2 π

2
(µk − µj)

)
(6.6)∫

Re(s2)=Re(−µ2)−ε
|y2|−s2 Γ (s2 + µ2)

∫
Re(t1)=t1

|y1|−µ1−t1 Γ (t1)Rwl((µ1 + t1, s2), (µ1,−µ2), v, t1) dt1 ds1,

Ewl,6(µ, y) =
6

(2πi)2
G∗b(1, 2, µ)

(∏
j<k

tan2 π

2
(µk − µj)

)
(6.7)∫

Re(s)=Re(µ1,−µ2)−ε
|y1|−s1 |y2|−s2

Γ (s1 − µ1)Twl,1(s, (µ1,−µ2), sign(y)) ds,
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Ewl,7(µ, y) =
6

2πi
G∗b(1, 2, µ)

(∏
j<k

tan2 π

2
(µk − µj)

)
(6.8)

|y1|−µ1
∫

Re(t1)=−ε
|y2|µ2−t1 Γ (t1) (6.9)

Rwl((µ1 + t1,−µ2), (µ1,−µ2), v, t1) dt1.

Returning to (5.4), we may compute the main term explicitly. We have J ′wl,µ(y) =

Jwl,µ(4π2y), so for Re(µ) =
(
−1

2
− 9ε, 1

2
+ 9ε

)
,

lim
y→0
|y1|µ1 |y2|−µ2 Jwl,µ(4π2y)

= lim
y→0
|y1|µ1 |y2|−µ2 J ′wl,µ(y)

=
6

12π6

∏
j<k

(µk − µj) tan π
2
(µk − µj)√

9− (µj − µk)2

G∗b(1, 2, µ)

∫
(R+)2

W (t,−µ, ψ11)

(πtwl1 )−µ1(πtwl2 )µ2 lim
y→0

X ′wl((µ1,−µ2), sign(y), |y| , t)(πt1)5(πt2)3 dt,

by dominated convergence. The limit in X ′wl is actually a Whittaker function,

lim
y→0

X ′wl((µ1,−µ2), sign(y), |y| , t) =

∫
Uw(R)

ψt(x
′)y∗1

1−µ1y∗2
1+µ2dx′

=W (I, (µ2, µ3, µ1), ψt)

=t−1+µ2
1 t−1−µ1

2 W (t, (µ2, µ3, µ1), ψ11),
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again, by dominated convergence. Applying this to the limit of Jwl,µ gives

lim
y→0
|y1|µ1 |y2|−µ2 Jwl,µ(4π2y)

=
π2−µ1+µ2

2

∏
j<k

(µk − µj) tan π
2
(µk − µj)√

9− (µj − µk)2

G∗b(1, 2, µ)

∫
(R+)2

W (t,−µ, ψ11)W (t, (µ2, µ3, µ1), ψ11)t41t
2
2 dt

=
π−µ1+µ2

16π

∏
j<k

1
2
(µk − µj)2√

9− (µj − µk)2

G∗b(1, 2, µ)
Λ(µ)

Λ(µ2, µ3, µ1)

=
π

1
2

+µ2−µ3

4

Γ
(
µ1−µ2

2

)
Γ
(
µ1−µ3

2

)
Γ
(
µ3−µ2

2

)
Γ
(

1+µ2−µ3
2

)
Γ
(

1+µ3−µ1
2

)
Γ
(

1+µ2−µ1
2

) ∏
j<k

1
2
(µk − µj)2√

9− (µj − µk)2
,

thus Jwl,µ(y) ∼ |y1|−µ1 |y2|µ2 Kwl(µ). This expression then agrees with right hand side of (6.1)

over the entire range of holomorphy by analytic continuation and we have Proposition 32.

Note that we induced an asymmetry in the original definition of the J ′wl,µ function, hence the

asymmetry here; this is a subtle but important point as it allows us to avoid some symmetry

requirements for the test functions of Theorem 33 and Theorem 5.

6.2 Partial Inversion Formula

If we take our test function to be (4.2) then in Hwl , we move Re(q) 7→ Re(µ1,−µ2) + ε, and

apply the asymptotics of Jwl,µ at the double residue q = (µ1,−µ2) gives Theorem 33 with

F1(f̂ ; y) =
1

(2πi)2

∫
Re(µ)=η

k̂(η1,−η2)+ε(µ)Jwl,µ(y) dµ, (6.10)

F2(f̂ ; y) =
1

(2πi)2

∫
Re(µ)=η

∫
Re(q2)=−η2+ε

f̂(µ1, q2)
Jwl,µ(y)

Kwl(µ,−q2)
(6.11)

(q2 + µ1) (2µ1 − q2) (2q2 − µ1)

(µ1 − µ2) (µ1 − µ3) (q2 + µ2) (q2 + µ3)
dq2 dµ,
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F3(f̂ ; y) =
1

(2πi)2

∫
Re(µ)=η

∫
Re(q1)=η1+ε

f̂(q1,−µ2)
Jwl,µ(y)

Kwl(q1, µ2)
(6.12)

(q1 − µ2) (2q1 + µ2) (2µ2 − q1)

(q1 − µ1) (q1 − µ3) (µ1 − µ2) (µ3 − µ2)
dq1 dµ.

Fj+3(f̂ ; y) =
1

(2πi)2

∫
Re(µ)=η

f̂(µ1,−µ2)
Ewl,j(µ, y)

Kwl(µ)
dµ. (6.13)

It may be possible to study the Kloosterman zeta functions directly by simply not inte-

grating over q in k̂; this would require a test function k̂ which cancels the intermediate terms

in Hwl and Jwl (the terms with a residue at one of q1 or q2, but not both, and the terms with

a residue at one of s1 or s2, but not both, and the term with a residue in t1).

6.3 Sums of Kloosterman Sums

Let g(y) = f(Xy1, Y y2), then the assumption that f have compact support is not strictly

necessary, we merely need holomorphy of ĝ on Re(q1),Re(q2) ∈
(
−1

2
− ε,−ε

)
and the bound

ĝ(q)� X−Re(q1)

|q1|8
Y −Re(q2)

|q2|8
,

which follows by integration by parts eight times in each y variable. Theorem 5 follows from

Theorem 33 by fixing the contours of the error terms and those of the cusp form terms,

Eisenstein series terms, and non-long-element Kloosterman sum terms and justifying their

absolute convergence in the new locations. Specifically, we want to shift the contours in q

as far to the right as possible.

For the cusp form terms in (2.1), we may shift the q contours of k̂ up to q = − 5
14
− ε

without encountering poles at any of the q1−µi or q2 +µi terms, thanks to the Kim-Sarnak

result. The Kwl(q1,−q2) term has poles at −q1 − q2 = 0, −2q1 + q2 = 0 and q1 − 2q2 = 0,

but we need not encounter these and they are cancelled by the terms in the numerator as

well. Now the mean-value estimates of Theorem 23 show that the sum over the cusp forms
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j q η u r t
1 −ε

(
−1

2
− 3ε, 1

2
+ 3ε

)
−ε

(
1
2
− 4ε, 100ε

)
ε

2 (–,−ε)
(
−1

2
− 3ε, 1

2
+ 3ε

)
−ε

(
1
2
− 4ε, 100ε

)
ε

3 (−ε, –)
(
−1

2
− 3ε, 1

2
+ 3ε

)
−ε

(
1
2
− 4ε, 100ε

)
ε

4 –
(
−3ε, 1

2
+ 3ε

) (
−1

2
, –
) (

1
2
− 4ε, 100ε

)
ε

5 –
(
−1

2
− 3ε, 3ε

) (
–,−1

2

) (
1
2
− 4ε, 100ε

)
ε

6 – (−3ε, 3ε) −1
2

(
1
2
− 4ε, 100ε

)
ε

7 –
(
−ε, 1

2
+ 3ε

)
– (−4ε, 100ε)

(
ε, 1

2
− ε
)

8 –
(
−1

2
− 3ε, ε

)
– (−3ε, 7ε)

(
6ε, 1

2
− 6ε

)
9 – (−ε, ε) – 0 ε

10 –
(
−ε, 1

2
+ 3ε

)
– (ε, 4ε)

(
−1

2
+ 5ε, 1− 10ε

)
Table 6.1: Contours for the Fj error terms.

converges absolutely so we have the bound (XY )
5
14

+ε here.

The terms in (2.1) for both types of Eisenstein series have k̂ evaluated at Re(µ) = 0, as

does the trivial Weyl element term, and the sums of Kloosterman sums at the w4 and w5

Weyl elements still converge absolutely at Re(µ) = (−ε, ε) so for each of these terms we may

shift the q contours to q = −2ε. Again, absolute convergence gives (XY )2ε.

In the section on bounds, we will show the Fj error terms of Theorem 33 are all bounded

by (XY )10ε(X
1
2 + Y

1
2 ) by taking the contours as in Table 6.1, with s = −1

2
− ε. Lastly, we

keep

η = (−2ε, 0) , u = (−ε, ε) , s = −ε, r = −1

2
+ 3ε

for Jw4,µ and

η = (0,−2ε) , u = (ε,−ε) , s = −ε, r = −1

2
+ 3ε

for Jw5,µ. Our choice of s maintains the absolute convergence of the Kloosterman zeta

functions and the exponent on the bounds come from q. The choice of contours for Jw4,µ

and Jw5,µ are primarily driven by a desire for convenience in the bounds section.
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APPENDIX A

Absolute convergence of the Kloosterman zeta

functions

This appendix gives the proof of Proposition 25. For convenience, we set

Zw4(ψm, ψn, u) =
∑

c1,c2∈N

|Sw4(ψm, ψn, c)|
c1c2

(
c3

2 |n1|
|m1m2

2n2|

)u
Zw5(ψm, ψn, u) =

∑
c1,c2∈N

|Sw5(ψm, ψn, c)|
c1c2

(
c3

1 |n2|
|m2

1m2n1|

)u
Zwl(ψm, ψn, u) =

∑
c1,c2∈N

|Swl(ψm, ψn, c)|
c1c2

(
c2

1

c2 |m1n2|

)u1 ( c2
2

c1 |m2n1|

)u2
,

and assume u, u1, u2 ∈ R.

A.1 The Intermediate Kloosterman Zeta Functions

We first prove Proposition 25 part a; part b will follow by symmetry. Note that the w4

Kloosterman sum is defined to be zero unless c2|c1 and n1c
2
2 = m2c1, so applying Larsen’s

bound gives

∣∣m1m
2
2n2

∣∣u |n1|−u Zw4(ψM , ψN , u1, u2) ≤
∑
c2|c1

n1c22=m2c1

cε1c
3u−1
2 (|m1| , |n2| , c2) ,

and the sum is empty unless sign(n1) = sign(m2).

We decompose the summation conditions as follows: Let d = (c1, c
2
2), then c2|d, so let

e = d
c2

. Then 1 =
(
c1
ec2
, c2
e

)
and n1

c2
e

= n2
c1
ec2

so let f = |n1|
c1/(ec2)

= |m2|
c2/e

. Note that c2 = |m2|e
f

,
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c1 = |n1|ec2
f

= n1m2e2

f2
, and so also f = (|n1| , |m2|). Applying what we have so far gives

|m1n2|u |m2|1−u−ε |n1|−u−ε Zw4(ψM , ψN , u1, u2)

≤ (|n1| , |m2|)−3u+1−2ε
∑
e∈N

e3u−1+2ε

(
|m1| , |n2| ,

|m2|
(|n1| , |m2|)

e

)
.

Let g =
(
|m1| , |n2| , |m2|

(|n1|,|m2|)

)
, then take e = hi where h =

(
|m2|
g
, |n2|

g
, e
)

, then we have

|m1n2|u |m2|1−u−ε |n1|−u−ε (|n1| , |m2|)3u−1+2εZw4(ψM , ψN , u1, u2)

≤ g
∑

h|
(
|m1|
g
,
|n2|
g

)h3u+2ε
∑
i∈N

i3u−1+2ε,

which clearly requires u < 0, and in turn allows us to trivially estimate the divisor sum:

Zw4(ψm, ψn, u)�
(|n1| , |m2|)1−3u−2ε

(
|m1| , |n2| , |m2|

(|n1|,|m2|)

)
|m1n2|u−ε |m2|1−u−ε |n1|−u−ε

.

A.2 The Long Element Kloosterman Zeta Function

Applying Stevens’ bound to the partial long-element Kloosterman zeta function gives

|m1n2|u1 |m2n1|u2 Zwl(ψm, ψn, u)

≤
∑

c1,c2∈N

c
−1/2+2u1−u1+ε
1 c

−1/2+2u2−u1+ε
2 (c1, c2)1/2

(
|m1n2| ,

c1c2

(c1, c2)

)1/2(
|m2n1| ,

c1c2

(c1, c2)

)1/2

≤
∑

c1,c2∈N

c
−1/2+2u1−u2+ε
1 c

−1/2+2u2−u1+ε
2 (c1, c2)1/2

(
|m1m2n1n2| ,

c1c2

(c1, c2)

)
.

Let c1 = ab, c2 = bd, with (a, d) = 1. Refining somewhat, we let a = a1a2 with a2|D,(
a1,

D
a2

)
= 1,d = d1d2 with d2|D,

(
d1,

D
d2

)
= 1, and b = b1b2 with b2| Da2d2 ,

(
b1,

D
a2b2d2

)
= 1,
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then

|m1n2|u1 |m2n1|u2 Zwl(ψm, ψn, u)

≤
∑

a2b2d2|D

a
1/2+2u1−u2+ε
2 b

1/2+u1+u2+2ε
2 d

1/2+u2+ε
2

∑
a1,b1,d1∈N

a
−1/2+2u1−u2+ε
1 b

−1/2+u1+u2+2ε
1 d

−1/2+2u2−u1+ε
1 ,

The series clearly converge exactly when max {2u1 − u2, 2u2 − u1} < −1
2

(which implies

u1, u2 < −1
2
), and the divisor sum is bounded by d4(D) and can be rolled into the Dε, giving

the bound in Proposition 25 part c, and the proposition is complete.
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APPENDIX B

Bounds for the Mellin-Barnes Integrals

We are left with two items to prove, which are essentially the same: First, completing

Theorem 31 requires justifying the growth hypothesis on k̂, in other words, bounding Jw,µ,

which is also desirable for Theorem 23. Second, the evaluation of the integral transforms,

the asymptotics of Ewl,j and Fj given in Proposition 32 and Theorem 33, and the completion

of Theorem 5 all require absolute convergence of the Mellin-Barnes integrals.

It is difficult to obtain a general bound for Nwl and Jwl that works for all ranges of the η

and s parameters, hence it is also difficult to show that these functions converge absolutely

over the entire range of holomorphy. Therefore, we will not actually show that these functions

are holomorphic over the given ranges. This leads one to question whether it is valid to shift

contours as we have freely done; for the skeptical reader, we have a simple justification: Do

the shifting before taking the limit in θ back in the original construction. As we have the

bound A′wl �
∏6

j=1 |rj|
Re(rj)− 1

2 exp
((
θ − π

2

)
|Im(rj)|

)
, both convergence and the validity of

the shifts are obvious. Then we only require that the end product converges absolutely at

θ = π
2
, and that is what we will show.

The fundamental asymptotic here is Stirling’s formula: For Re(z) in a compact subset of

R (not containing a pole of the gamma function),

|Γ(z)| ∼
√

2π |z|Re(z)− 1
2 e−

π
2
|Im(z)|,

which leads us to integrals of products in the form

∫
Re(u)=u

∏
i

|ai,1u1 + . . .+ ai,nun + bi,1v1 + . . .+ bi,mvm|ci du, (B.1)
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where ai,j, ui, ci ∈ R are fixed, with vi ∈ C having fixed real part. Note that for a and

c non-zero and fixed, b ∈ R, we have |a+ bi| � |c+ bi|. Provided the exponents are not

somehow accumulating on any subspace, we would expect such an integral to converge when∑
i ci < −n− 1, and we give a series of lemmas designed to show that these converge in our

situation.

Bounds for integrals of the above type are derived from Hölder’s inequality and the

following lemma:

Lemma 36. Suppose a1 + a2 < −1 with a1 and a2 fixed, and s ≥ 0, then

∫ ∞
−∞
|1 + i(s+ t)|a1 |1 + i(s− t)|a2 dt� |1 + is|max{a1,a2,a1+a2+1} .

We will occasionally encounter positive exponents in the integrals of type (B.1), but

thankfully these always occur in the terms coming from the beta functions, so we have

Lemma 37. Suppose Re(v) = v with v1 +u, v2−u not non-positive integers, and u, v fixed,

and p > 0, then

(∫
Re(u)=u

|B(v1 + u, v2 − u)|p |du|
) 1

p

� |v1 + v2|max{u−v2,−u−v1, 1p− 1
2} .

Note that this no longer requires Re(v1 + v2 − 1) < −1 as it would if we applied the

previous lemma; this is because we are using the exponential decay of the gamma functions.

Increasing in complexity, we have bounds for the G∗ function and its residues:

Lemma 38. (a)

G∗b(1, 2, µ)�|µ1 − µ2|
Re(µ1−µ2)−1

2 |µ1 − µ3|
Re(µ1−µ3)−1

2 |µ3 − µ2|
Re(µ3−µ2)−1

2

|µ1 − µ2|
Re(µ1−µ2)

2 |µ1 − µ3|
Re(µ1−µ3)

2 |µ3 − µ2|
Re(µ2−µ3)

2

,
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(b) Suppose u2 + Re(µ2), u2 + Re(µ3) > −1, then

∫
Re(u2)=u2

|G∗l (1, u2, µ)| |du2|

� |µ1 − µ2|
Re(µ1−µ2)−1

2 |µ1 − µ3|
Re(µ1−µ3)−1

2 |µ2 − µ3|u2+
Re(µ2+µ3)

2

|µ1 − µ2|
Re(µ1−µ2)

2 |µ1 − µ3|
Re(µ1−µ3)

2 |µ3 − µ2|
Re(µ2−µ3)

2

,

(c) Suppose u1 − Re(µ1), u1 − Re(µ3) > −1, then

∫
Re(u1)=u1

|G∗r(2, u1, µ)| |du1|

� |µ1 − µ2|
Re(µ1−µ2)−1

2 |µ1 − µ3|u1−
Re(µ1+µ3)

2 |µ2 − µ3|
Re(µ3−µ2)−1

2

|µ1 − µ2|
Re(µ1−µ2)

2 |µ1 − µ3|
Re(µ1−µ3)

2 |µ3 − µ2|
Re(µ2−µ3)

2

,

(d) Suppose u1 − Re(µi), u2 + Re(µi) > −1− ε, then

∫
Re(u)=u

|G∗(u, µ)| |du|

�
∑

w∈W |µw3 − µw1 |
κ−δ
2

+ε |µw3 − µw2 |
κ−δ
2

+ε |µw2 − µw1 |
δ+ε

|µ1 − µ2|
Re(µ1−µ2)

2 |µ1 − µ3|
Re(µ1−µ3)

2 |µ3 − µ2|
Re(µ2−µ3)

2

,

where κ = u1 + u2 − 1
2
, and

δ = min
i

{
κ

3
,
2u1 + Re(µi)

2
,
u1 − Re(µi)

2
,
2u2 − Re(µi)

2
,
u2 + Re(µi)

2

}
.

We have taken some care to separate the polynomial part of Λ(µ) as it will cancel with

that of Λ(−µ). The method of proof here is the same as the previous two lemmas.

The ordering of the integrals of Jw,µ and Ewl,j that we have been using is structured for

writing the residues and determining the asymptotics in y; this makes it somewhat more

difficult for bounding the result as the quadruple of integrals in s and t do not have sufficient

exponential decay and hence need to be treated in the form (B.1). That said, we want to

separate the integrals of G∗ and its residues, i.e. the u and r integrals for the long element
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functions, and compute bounds for the integrals of s and t and the three relevent residues

in s and t first, the integrals in u and r to be taken later. The contours have generally

been chosen so that the s and t integrals are bounded by at most a constant multiple of

|y1|−Re(s1) |y2|−Re(s2), so the u and r integrals can be evaluated by the results of the previous

section. In actuality, most of terms have some extra decay in u and r, which we ignore for

convenience.

Bounding the s and t integrals is highly repetitive and simply involves applying Hölder’s

inequality many times; as mentioned above, the core of the difficulty lies in the integrals

Mwl,1(y, r, u, v) :=∫
Re(s)=s

∫
Re(t)=t

|y1|−s1 |y2|−s2 Awl(r, s, t, u, v)Γ (s1 − u1 − t1) Γ (s2 − u2)

Γ (1 + s1 − r2) Γ (1 + s2 − r1 − t1 − t2) Γ (t1) Γ (t1 + t2)

B

(
u1 − 2s2 + r1 + t2

2
,
1 + u1 − u2 − r1 − t2

2

)
B

(
u1 − 2s1 + r2 − t2

2
,
−u1 + r1 − r2 + t2

2

)
B

(
1− 2t1 − t2

2
,
1− u1 − r1

2

)
dt ds,

Mwl,2(y, r, u, v) :=

|y2|−Re(u2)

∫
Re(s1)=s1

∫
Re(t)=t

|y1|−s1 Awl(r, (s1, u2), t, u, v)Γ (s1 − u1 − t1)

Γ (1 + s1 − r2) Γ (1 + u2 − r1 − t1 − t2) Γ (t1) Γ (t1 + t2)

B

(
u1 − 2u2 + r1 + t2

2
,
1 + u1 − u2 − r1 − t2

2

)
B

(
u1 − 2s1 + r2 − t2

2
,
−u1 + r1 − r2 + t2

2

)
B

(
1− 2t1 − t2

2
,
1− u1 − r1

2

)
dt ds1,
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Mwl,3(y, r, u, v) :=

|y1|−Re(u1)

∫
Re(s2)=s2

∫
Re(t)=t

|y1|−t1 |y2|−s2 Awl(r, (u1 + t1, s2), t, u, v)Γ (s2 − u2)

Γ (1 + u1 − r2 + t1) Γ (1 + s2 − r1 − t1 − t2) Γ (t1) Γ (t1 + t2)

B

(
u1 − 2s2 + r1 + t2

2
,
1 + u1 − u2 − r1 − t2

2

)
B

(
−u1 + r2 − 2t1 − t2

2
,
−u1 + r1 − r2 + t2

2

)
B

(
1− 2t1 − t2

2
,
1− u1 − r1

2

)
dt ds2,

Mwl,4(y, r, u, v) :=

|y1|−Re(u1) |y2|−Re(u2)

∫
Re(t)=t

|y1|−t1 Awl(r, (u1 + t1, u2), t, u, v)

Γ (1 + u1 − r2 + t1) Γ (1 + u2 − r1 − t1 − t2) Γ (t1) Γ (t1 + t2)

B

(
u1 − 2u2 + r1 + t2

2
,
1 + u1 − u2 − r1 − t2

2

)
B

(
−u1 + r2 − 2t1 − t2

2
,
−u1 + r1 − r2 + t2

2

)
B

(
1− 2t1 − t2

2
,
1− u1 − r1

2

)
dt,

Mw4(y, r, u, v) :=∫
Re(s)=s

|y|−s Γ (s− u1) Γ (s− u1 − r1) Γ (s− u1 − r2)Aw4(r, s, u, v)

B

(
1 + 2u1 − 2s+ r1 + r2

2
,
−u1 − u2 − r2

2

)
B

(
1 + 2u1 − 2s+ r1

2
,
−2u1 + u2 − r1

2

)
ds,
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Mw5(y, r, u, v) =∫
Re(s)=s

|y|−s Γ (s− u2) Γ (s− u2 − r1) Γ (s− u2 − r2)Aw5(r, s, u, v)

B

(
1 + 2u2 − 2s+ r1 + r2

2
,
−u1 − u2 − r2

2

)
B

(
1 + 2u2 − 2s+ r1

2
,
u1 − 2u2 − r1

2

)
ds.

We bound these quantities by taking the absolute value of the integrand, call the resulting

integral |Mwl,1|, etc., and assume that the real part of each parameter is fixed.

Proposition 39. For the given parameters and δ1, δ2 ∈ {0, ε}, each of the above functions

is bounded by a constant times the expected powers of y:

(a) |Mwl,1| � |y1|−s1 |y2|−s2 for Re(u) = −1
2
− 4ε+ δ, Re(r) =

(
1
2
− 4ε, 100ε

)
, s = −1

2
− ε,

t = ε,

(b) |Mwl,1| � |y1|−s1 |y2|−s2 for Re(u) = −ε, Re(r) = 0, s = −1
2
− ε, t = ε,

(c) |Mwl,2| � |y1|−s1 |y2|−Re(u2) for Re(u) =
(
−ε,−1

2
− 3ε

)
,

Re(r) = (−4ε, 100ε), s1 = −1
2
− ε, t =

(
ε, 1

2
− ε
)
,

(d) |Mwl,3| � |y1|−t1 |y1|−Re(u1)−s2 for Re(u) =
(
−1

2
− 3ε,−ε

)
,

Re(r) = (−3ε, 7ε), s2 = −1
2
− ε, t =

(
6ε, 1

2
− 6ε

)
,

(e) |Mwl,4| � |y1|−Re(u1)−t1 |y2|−Re(u2) for Re(u) =
(
−ε,−1

2
− 3ε

)
,

Re(r) = (ε, 4ε), t =
(
−1

2
+ 5ε, 1− 10ε

)
,

(f) |Mw4 | � |y|
−s for Re(u) = (−3ε+ δ1, ε), Re(r) = −1

2
+ 3ε,

t =
(
−1

2
+ 5ε, 1− 10ε

)
,

(g) |Mw5 | � |y|
−s for Re(u) = (ε,−3ε+ δ2), Re(r) = −1

2
+ 3ε, s = −ε.

As mentioned above, we could do better for most of the terms, but we ignore some decay

factors for convenience.
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Having these bounds, the two (double) integrals of the G∗ functions separate, so we may

apply Lemma 4 to obtain Proposition 34, keeping in mind that the worst-case bound comes

from having the smallest power on the smallest of |µi − µj|, this is done in section B.4.

The content of Theorem 23 is essentially that the spectral side converges absolutely when

the trivial element term does; in other words, convergence of the integral

∫
Re(µ)=η

∣∣∣k̂(µ)
∣∣∣ |µ1 − µ2| |µ1 − µ3| |µ2 − µ3| |dµ| (B.2)

for |ηi| ≤ 5
14

with q = − 5
14
− ε gives absolute convergence of the spectral side as well as the

trivial term. By Proposition 34, increasing the exponent on the |µi − µj| terms to 13
8

+ 100ε

gives a more than sufficient condition for convergence of the intermediate and long element

terms in Theorem 31, hence justifies our use of (B.2) as the convergence hypothesis on k̂

and completes that theorem.

To complete the proof of Theorem 33, we again need to demonstrate that the hypothesis

f̂(q) � |q1q2|−8 is sufficient for absolute convergence of all of the relevant terms. For the

spectral side and the trivial term, we start with (B.2) and apply Stirling’s formula to Kwl

to obtain

|Kwl(µ)| � |µ1 − µ2|
1
2

+Re(µ1−µ2) |µ1 − µ3|
1
2

+Re(µ1−µ3) |µ3 − µ2|
1
2

+Re(µ3−µ2) ,

for Re(µ) constant, so we desire convergence of the integral

L1 :=∫
Re(q)=− 5

14
−ε
|q1|−8 |q2|−8 |q1 + q2|

31
14

+2ε |2q1 − q2|
6
7

+ε |2q2 − q1|
6
7

+ε

∫
Re(µ)=η

|µ1 − µ2|
13
8

+100ε |µ1 − µ3|
13
8

+100ε |µ2 − µ3|
13
8

+100ε |kconv(µ, q)|
|q1 − µ1| |q1 − µ2| |q1 − µ3| |q2 + µ1| |q2 + µ2| |q2 + µ3|

|dµ| |dq| .

From Proposition 34, we note that this also implies absolute convergence of the F1 error
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term. To simplify the above integral, we choose

kconv(µ, q) =

(
(2 + q1) (2 + q2) (2− q1 + q2)

(2 + µ1) (2 + µ2) (2 + µ3)

) 23
12

+300ε

. (B.3)

We call this function kconv because without it, the above integral would not converge – the

total power on µ1 and µ2 is not below −1.

Applying the same logic to the remaining error terms, it is sufficient to consider conver-

gence of the integrals

L2 :=

∫
Re(µ)=(− 1

2
−4ε, 1

2
+ε)

∫
Re(q2)=−6ε

|µ1|−8 |q2|−8

|q2 + µ1|1+4ε |2µ1 − q2|
3
2

+5ε |2q2 − µ1|−ε |kconv(µ, q)|
|q2 + µ2| |q2 + µ3|

|µ1 − µ3|
1
2

+100ε |µ2 − µ1|
1
2

+100ε |µ2 − µ3|
3
2

+100ε |dq2| |dµ| ,

L3 :=

∫
Re(µ)=(−ε,ε)

|µ1|−8 |µ2|−8 |µ1 − µ2|2+100ε |µ1 − µ3|
7
4

+100ε |µ3 − µ2|
7
4

+100ε |dµ| .

Here convergence of the L2 integral is sufficient to show absolute convergence of F2 and F3

(by symmetry), and L3 gives the absolute convergence of the remaining error terms. The

exponents in this last are derived from

|Kwl(µ)|−1 � |µ1 − µ2|
1
2 |µ1 − µ3|

1
4 |µ3 − µ2|

1
4 ,

|Ewl,j| � |µ1 − µ2|
3
2

+100ε |µ1 − µ3|
3
2

+100ε |µ3 − µ2|
3
2

+100ε .

So we have our final technical requirement for Theorem 33:

Proposition 40. The integrals L1, L2, and L3 converge.
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B.1 The Beta Function

We will make repeated use of the integrals

∫ u

0

|1 + it|α dt = u 2F1

 1
2
,−α

2
;

3
2
;
− u2

� umax{0,α+1} � |1 + iu|max{0,α+1}

and ∫ ∞
u

|1 + it|α dt ≤ uα+1

∫ ∞
1

tαdt� |1 + iu|α+1 , Re(α) < −1,

for u ≥ 1.

We may obtain the above asymptotic of 2F1 from the Barnes integral representation

2F1

 a, b;

c;
z

 =
Γ(c)

2πiΓ(a)Γ(b)

∫ i∞

−i∞

Γ(a+ s)Γ(b+ s)Γ(−s)
Γ(c+ s)

(−z)sds,

where the contour is taken to separate the poles of Γ(−s) from those of Γ(a+s) and Γ(b+s).

For our first integral, the first poles of Γ(a+ s) and Γ(b+ s) that we encounter while shifting

the contours to the left are at −1
2

and α
2
, respectively.

Proof of Lemma 36. The result is obvious if s < 1, so we assume s ≥ 1, and split the integral

at −2s,0, and 2s, call the resulting integrals I1, I2, I3, and I4, say. For the first integral, we

substitute t 7→ −t− 2s, so it becomes I1 = I1,a + I1,b:

I1,a =

∫ s

0

|1 + i(s+ t)|a1 |1 + i(t+ 3s)|a2 dt

� |1 + is|a1+a2

∫ s

0

dt

�|1 + is|a1+a2+1 ,

I1,b =

∫ ∞
s

|1 + i(s+ t)|a1 |1 + i(t+ 3s)|a2 dt

�
∫ ∞
s

|1 + it|a1+a2 dt

�|1 + is|a1+a2+1 ,
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similarly I4 � |1 + is|a1+a2+1. For the second, we substitute t 7→ −t− s:

I2 =

∫ s

−s
|1 + it|a1 |1 + i(t+ 2s)|a2 dt

� |1 + is|a2
∫ s

−s
|1 + it|a1 dt

�|1 + is|a2+max{0,a1+1} ,

similarly, I3 � |1 + is|a1+max{0,a2+1}.

Using one of the first two terms in the maximum essentially incurs a loss, so we will tend

to enforce a1, a2 ≥ −1.

For Re(u), Re(v1), Re(v2) fixed, applying the second form of Stirling’s formula shows

that B(u− v1, v2 − u) decays exponentially in u unless

max {Im(v1), Im(v2)} > Im(u) > min {Im(v1), Im(v2)} ,

and in that case, we have

B(v1 + u, v2 − u)� |v1 + u|Re(v1+u)− 1
2 |v2 − u|Re(v2−u)− 1

2

|v1 + v2|Re(v1+v2)− 1
2

,

so the proof of Lemma 37 is precisely the same as Lemma 36, without the equivalent of

requiring a1 + a2 < −1.

B.2 The G Function

The bound for the residue G∗b(1, 2, µ) in Lemma 4 part a is simply from applying Stir-

ling’s formula. The residue G∗l (1, u2, µ) has exponential decay in Im(u2) unless Im(µ2) >

Im(−u2) > Im(µ3) (up to permutation of (µ2, µ3), for fixed Re(u2)), thus it integrates much

like a beta function, and the bound in Lemma 4 part b follows by the same logic, similarly

for part c.

104



For Re(u), Re(µ) fixed, applying Stirling’s formula gives exponential decay in u1 or u2

for G∗ unless, up to permutation of µ or (u1,−u2),

Im(µ1) > Im(u1) > Im(µ2) > Im(−u2) > Im(µ3),

in which case, we have

G∗(u, µ)� |u1 + u2|
1−Re(u1+u2)

2
∏3

i=1 |u1 − µi|
Re(u1−µi)−1

2 |u2 + µi|
Re(u2+µi)−1

2

|µ1 − µ2|
Re(µ1−µ2)

2 |µ1 − µ3|
Re(µ1−µ3)

2 |µ2 − µ3|
Re(µ2−µ3)

2

.

For integrals of the G function, it is sufficient to prove the following lemma:

Lemma 41. Suppose ai, bi > −1 − ε, a2 + b2 + c > −2 − ε, and v1 < v2 < v3 with

v3 − v2 > v2 − v1, then

∫ v2

v1

∫ v3

v2

|1 + i(u1 − u2)|c
3∏
i=1

|1 + i(u1 − vi)|ai |1 + i(u2 − vi)|bi du2 du1

� |1 + i(v3 − v1)|
κ−δ
2

+ε |1 + i(v3 − v2)|
κ−δ
2

+ε |1 + i(v2 − v1)|δ+ε ,

where

κ =a1 + a2 + a3 + b1 + b2 + b3 + c+ 2,

δ = min {a1 + a2 + 1, a1 + a2 + b1 + c+ 1} .

Applying this to the G∗ function, we have

κ =u1 + u2 −
1

2
,

δ = min

{
κ

3
, u1 +

Re(µ3)

2
,
u1 − Re(µ2)

2

}

(including the κ
3

prevents a really good bound from being really bad after permuting µ), and
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the conditions become

ai, bi > −1− ε⇔ u1 − Re(µi), u2 + Re(µi) > −1− 2ε,

a2 + b2 + c = −1

2
> −2− ε.

Permuting µ and interchanging (u1, µ)↔ (u2,−µ) as necessary, we obtain

Lemma 4 part d. We do not give the proof that the integral over the region of exponential

decay satisfies the same bound, but if one conditions on v2 − v1 smaller or larger than

δ = 10 (|a1|+ |a2|+ |a3|+ |b1|+ |b2|+ |b3|+ |c|+ 3) log |1 + i(v3 − v1)| ,

the proof in the first case is essentially identical to the case v2− v1 < 1 ≤ v3− v2 below, and

in the second case we need only extend the region of integration by δ � |1 + i(v3 − v1)|ε.

Proof of Lemma 41. We will repeatedly use the fact v3− v1 = (v3− v2) + (v2− v1) � v3− v2.

If v3 − v2 < 1, the result is obvious; if v2 − v1 < 1 ≤ v3 − v2, the integral reduces to

|1 + i(v3 − v2)|a3
∫ v3

v2

|1 + i(u2 − v2)|c+b1+b2 |1 + i(u2 − v3)|b3 du2

� |1 + i(v3 − v2)|a3+max{c+b1+b2,b3,c+b1+b2+b3+1}

= |1 + i(v3 − v2)|a3+max{b3,c+b1+b2+b3+1}+ε ,

since δ ≤ min {a1 + a2 + 1, a1 + a2 + b1 + b2 + c+ 2}, we have

κ− δ ≥ max {a3 + b1 + b2 + b3 + c+ 1, a3 + b3} ,

and the result follows.

Now assume v2−v1 ≥ 1. We split the integral into three parts: The first with u2 >
v2+v3

2
,

the second with u1 <
v1+v2

2
, and the third over the remaining region. For the first integral,
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we send u2 7→ u2 + v3, then

∫ 0

− v3−v2
2

|1 + i(u1 − v3 − u2)|c |1 + i(u2 + v3 − v1)|b1

|1 + i(u2 + v3 − v2)|b2 |1 + iu2|b3 du2

� |1 + i(u1 − v3)|c |1 + i(v3 − v1)|b1 |1 + i(v3 − v2)|b2
∫ 0

− v3−v2
2

|1 + iu2|b3 du2

� |1 + i(u1 − v3)|c |1 + i(v3 − v1)|b1 |1 + i(v3 − v2)|b2+max{0,b3+1} ,

since v3 − u1 ≥ v3 − v2 > v2 − v1. Then

I1 � |1 + i(v3 − v1)|b1 |1 + i(v3 − v2)|b2+max{0,b3+1}∫ v2

v1

|1 + i(u1 − v1)|a1 |1 + i(u1 − v2)|a2 |1 + i(u1 − v3)|a3+c du1,

and splitting this integral at v1+v2
2

, we obtain

I1A =

∫ v2−v1
2

0

|1 + iu1|a1 |1 + i(u1 + v1 − v2)|a2 |1 + i(u1 + v1 − v3)|a3+c du1

� |1 + i(v3 − v1)|a3+c |1 + i(v1 − v2)|a2+max{0,a1+1} ,

and similarly for

I1B =

∫ 0

− v2−v1
2

|1 + i(u1 + v2 − v1)|a1 |1 + iu1|a2 |1 + i(u1 + v2 − v3)|a3+c du1

� |1 + i(v2 − v1)|a1+max{0,a2+1} |1 + i(v2 − v3)|a3+c

giving

I1 � |1 + i(v3 − v2)|a3+b1+b2+b3+c+1+ε |1 + i(v1 − v2)|a1+a2+1+ε ,

using v3 − v1 � v3 − v2 and the hypotheses on a and b.
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Similarly, for the second integral, we send u1 7→ u1 + v1 so

∫ v2−v1
2

0

|1 + i(u1 + v1 − u2)|c |1 + iu1|a1

|1 + i(u1 + v1 − v2)|a2 |1 + i(u1 + v1 − v3)|a3 du1

� |1 + i(v1 − u2)|c |1 + i(v1 − v2)|a2 |1 + i(v1 − v3)|a3
∫ v2−v1

2

0

|1 + iu1|a1 du1

� |1 + i(v1 − u2)|c |1 + i(v1 − v2)|a2+max{0,a1+1} |1 + i(v1 − v3)|a3

since u2 − v1 ≥ v2 − v1. Then

I2 �|1 + i(v1 − v2)|a2+max{0,a1+1} |1 + i(v1 − v3)|a3∫ v3

v2

|1 + i(u2 − v1)|c+b1 |1 + i(u2 − v2)|b2 |1 + i(u2 − v3)|b3 du2,

which we split at v2+v3
2

so

I2A =

∫ 0

− v3−v2
2

|1 + i(u2 + v3 − v1)|c+b1 |1 + i(u2 + v3 − v2|b2 |1 + iu2|b3 du2

�|1 + i(v3 − v1)|c+b1 |1 + i(v3 − v2|b2+max{0,b3+1} ,

I2B =

∫ v3−v2
2

0

|1 + i(u2 + v2 − v1)|c+b1 |1 + iu2|b2 |1 + i(u2 + v2 − v3)|b3 du2

�|1 + i(v2 − v3)|b3
∫ v3−v2

2

0

|1 + i(u2 + v2 − v1)|c+b1 |1 + iu2|b2 du2,

and we split again at v2−v1
2

, so

I2Ba =

∫ v2−v1
2

0

|1 + i(u2 + v2 − v1)|c+b1 |1 + iu2|b2 du2

�|1 + i(v2 − v1)|c+b1+max{0,b2+1} ,
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I2Ba =

∫ v3−v2
2

v2−v1
2

|1 + i(u2 + v2 − v1)|c+b1 |1 + iu2|b2 du2

�|1 + i(v3 − v2)|c+b1+max{0,b2+1} .

Altogether, this gives

I2 �|1 + i(v2 − v1)|a1+a2+1+ε |1 + i(v3 − v2)|a3+b1+b2+b3+c+1+ε

+ |1 + i(v2 − v1)|a1+a2+b1+b2+2+2ε |1 + i(v3 − v2)|a3+b3 .

Now the third integral becomes

I3 =

∫ 0

− v2−v1
2

∫ v3−v2
2

0

|1 + i(u1 − u2)|c |1 + i(u1 + v2 − v1)|a1 |1 + iu1|a2

|1 + i(u1 + v2 − v3)|a3 |1 + i(u2 + v2 − v1)|b1

|1 + iu2|b2 |1 + i(u2 + v2 − v3)|b3 du2 du1

� |1 + i(v2 − v1)|a1 |1 + i(v2 − v3)|a3+b3∫ v2−v1
2

0

∫ v3−v2
2

0

|1 + i(u1 + u2)|c |1 + iu1|a2

|1 + i(u2 + v2 − v1)|b1 |1 + iu2|b2 du2 du1,

and this we split into three pieces at u2 = u1 and u2 = v2−v1
2

:

I3a � |1 + i(v2 − v1)|b1
∫ v2−v1

2

0

|1 + iu1|a2+c

∫ u1

0

|1 + iu2|b2 du2 du1

�|1 + i(v2 − v1)|b1
∫ v2−v1

2

0

|1 + iu1|a2+b2+c+1+ε du1

�|1 + i(v2 − v1)|a2+b1+b2+c+2+ε ,
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I3b � |1 + i(v2 − v1)|b1
∫ v2−v1

2

0

|1 + iu1|a2
∫ v2−v1

2

u1

|1 + iu2|b2+c du2 du1

�|1 + i(v2 − v1)|b1
∫ v2−v1

2

0

|1 + iu1|a2(
|1 + iu1|b2+c+1 + |1 + i(v2 − v1)|b2+c+1+ε

)
du1

�|1 + i(v2 − v1)|a2+b1+b2+c+2+ε ,

by replacing the range of integration in u2 with
(
0, v2−v1

2

)
if b2 + c + 1 > −1 and (u1,∞)

otherwise,

I3c �
∫ v2−v1

2

0

|1 + iu1|a2 du1

∫ v3−v2
2

v2−v1
2

|1 + iu2|b1+b2+c du2

�|1 + i(v2 − v1)|a2+1+ε(
|1 + i(v2 − v1)|b1+b2+c+1 + |1 + i(v3 − v2)|b1+b2+c+1+ε

)
.

Then δ is the minimum exponent of |1 + i(v2 − v1)| and κ is the sum of the two exponents,

which is the same in every case; we split the remaining κ − δ evenly between |v3 − v2| �

|v3 − v1|.

B.3 Proof of Proposition 39

For brevity, we introduce the shorthand

B

a, b

c
;
u

v

 := |u|a |v|b |u+ v|c exp−π
4

(|Im(u)|+ |Im(v)| − |Im(u+ v)|) ,

and supress terms O (ε2).
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B.3.0.1 (a)

For Re(u) = −1
2
− 4ε+ δ, Re(r) =

(
1
2
− 4ε, 100ε

)
, s = −1

2
− ε, t = ε,

|Mwl,1| �

|y1|−s1 |y2|−s2
∫

Re(s)=s

∫
Re(t)=t

|s1 − u1 − t1|−
1
2

+2ε |s2 − u2|−
1
2

+3ε

|1 + s1 − r2|−101ε |1 + s2 − r1 − t1 − t2|−
1
2

+ε |t1|−
1
2

+ε |t1 + t2|−
1
2

+2ε

B

−ε, −1
4

+ 2ε

−1
4

+ ε
;
u1 − 2s2 + r1 + t2

1 + u1 − u2 − r1 − t2


B

−1
4

+ 49ε, −49ε

−1
4

+ ε
;
u1 − 2s1 + r2 − t2

−u1 + r1 − r2 + t2


B

−ε, 4ε

−1
2
− 2ε

;
1− 2t1 − t2

1− u1 − r1

 |dt| |ds| .
First, apply Hölder in s1 with exponents 2 − 204ε = 1

1
2

+51ε
+ O (ε2) and 2 + 204ε =

1
1
2
−51ε

+O (ε2) giving

∫
Re(s1)=s1

|s1 − u1 − t1|−1+106ε |1 + s1 − r2|−202ε |ds1| � |1 + u1 − r2 + t1|−96ε ,

∫
Re(s1)=s1

|u1 − 2s1 + r2 − t2|−
1
2

+47ε |−2s1 + r1|−
1
2
−49ε |ds1|

� |u1 − r1 + r2 − t2|−2ε ,
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so

|Mwl,1| �

|y1|−s1 |y2|−s2
∫

Re(s2)=s2

∫
Re(t)=t

|1 + u1 − r2 + t1|−48ε |s2 − u2|−
1
2

+3ε

|1 + s2 − r1 − t1 − t2|−
1
2

+ε |t1|−
1
2

+ε |t1 + t2|−
1
2

+2ε |u1 − r1 + r2 − t2|−51ε

B

−ε, −1
4

+ 2ε

−1
4

+ ε
;
u1 − 2s2 + r1 + t2

1 + u1 − u2 − r1 − t2


B

−ε, 4ε

−1
2
− 2ε

;
1− 2t1 − t2

1− u1 − r1

 |dt| |ds2| .

Now apply Hölder in s2 with exponents 4
3
− 4ε and 4 + 36ε giving

∫
Re(s2)=s2

|s2 − u2|−
2
3

+6ε |1 + s2 − r1 − t1 − t2|−
2
3

+8ε |ds2|

� |1 + u2 − r1 − t1 − t2|−
1
3

+14ε ,

∫
Re(s2)=s2

|u1 − 2s2 + r1 + t2|−4ε |1 + 2u1 − u2 − 2s2|−1−5ε |ds2|

� |1 + u1 − u2 − r1 − t2|−4ε ,

so

|Mwl,1| �

|y1|−s1 |y2|−s2
∫

Re(t)=t

|1 + u1 − r2 + t1|−48ε |1 + u2 − r1 − t1 − t2|−
1
4

+10ε

|t1|−
1
2

+ε |t1 + t2|−
1
2

+2ε |u1 − r1 + r2 − t2|−51ε |1 + u1 − u2 − r1 − t2|−
1
4

+ε

B

−ε, 4ε

−1
2
− 2ε

;
1− 2t1 − t2

1− u1 − r1

 |dt| .
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Again, Hölder in t2 with exponents 2 + 48ε, 1
52ε

, and 2 + 160ε giving

∫
Re(t2)=t2

|1 + u2 − r1 − t1 − t2|−
1
2

+8ε |1 + u1 − u2 − r1 − t2|−
1
2
−10ε |dt2|

� |u1 − 2u2 + t1|−2ε ,

∫
Re(t2)=t2

|u1 − r1 + r2 − t2|−
51
52 |2− u1 − r1 − 2t1 − t2|−

51
52 |dt2|

� |2− 2u1 − r2 − 2t1|−
51
52 ,

∫
Re(t2)=t2

|t1 + t2|−1−76ε |2− u1 − r1 − 2t1 − t2|−1+18ε |dt2|

� |2− u1 − r1 − t1|−1+18ε ,

so

|Mwl,1| �

|y1|−s1 |y2|−s2 |1− u1 − r1|4ε
∫

Re(t1)=t1

|1 + u1 − r2 + t1|−48ε |u1 − 2u2 + t1|−ε

|2− 2u1 − r2 − 2t1|−51ε |t1|−
1
2

+ε |2− u1 − r1 − t1|−
1
2

+49ε |dt1| .

Lastly, we apply Hölder in t1 with exponents 1
46ε

, 1
50ε

, and 1 + 96ε giving

∫
Re(t1)=t1

|t1|−
1
2
−47ε |2− u1 − r1 − t1|−

1
2

+ε |dt1| � |2− u1 − r1|−46ε ,

so

|Mwl,1| � |y1|−s1 |y2|−s2 |1− u1 − r1|4ε |2− u1 − r1|−46ε � |y1|−s1 |y2|−s2 .
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B.3.0.2 (b)

For Re(u) = −ε, Re(r) = 0, s = −1
2
− ε, t = ε,

|Mwl,1| �

|y1|−s1 |y2|−s2
∫

Re(s)=s

∫
Re(t)=t

|s1 − u1 − t1|−1−ε |s2 − u2|−1

|1 + s1 − r2|−ε |1 + s2 − r1 − t1 − t2|−3ε |t1|−
1
2

+ε |t1 + t2|−
1
2

+2ε

B

ε, 0

−1
2

;
u1 − 2s2 + r1 + t2

1 + u1 − u2 − r1 − t2


B

0, −1
2

+ ε

−ε
;
u1 − 2s1 + r2 − t2

−u1 + r1 − r2 + t2


B

−ε, ε

−1
2

+ ε
;

1− 2t1 − t2

1− u1 − r1

 |dt| |ds| .
We apply Hölder in t2 with exponents 1

3ε
, 2, 1

ε
, 2 + 16ε, 1

ε
giving

∫
Re(t2)=t2

|1 + s2 − r1 − t1 − t2|−1 |−u1 + r1 − r2 + t2|−1 |dt2|

� |1− u1 + s2 − r2 − t1|−1 ,

∫
Re(t2)=t2

|t1 + t2|−1+4ε |1− u1 − r1 − 2t1 − t2|−1+4ε |dt2|

� |1− u1 − r1 − t1|−1+4ε ,

∫
Re(t2)=t2

B

1, 0

− 1
2ε

;
u1 − 2s2 + r1 + t2

1 + u1 − u2 − r1 − t2

 |dt2| � |1 + 2u1 − u2 − 2s2|−
1
2ε

+2 ,
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∫
Re(t2)=t2

B

0, −1

−2ε
;
u1 − 2s1 + r2 − t2

−u1 + r1 − r2 + t2

 |dt2| � |−2s1 + r1|−2ε ,

∫
Re(t2)=t2

B

−1, 1

−1
;

1− 2t1 − t2

1− u1 − r1

 |dt2| � 1,

so

|Mwl,1| �

|y1|−s1 |y2|−s2
∫

Re(s)=s

∫
Re(t1)=t1

|s1 − u1 − t1|−1−ε |s2 − u2|−1

|1 + s1 − r2|−ε |t1|−
1
2

+ε |1− u1 − r1 − t1|−
1
2

+2ε

|1 + 2u1 − u2 − 2s2|−
1
2

+2ε |−2s1 + r1|−ε |1− u1 + s2 − r2 − t1|−3ε |dt1| |ds|

� |y1|−s1 |y2|−s2
∫

Re(s2)=s2

∫
Re(t1)=t1

|s2 − u2|−1 |1 + u1 − r2 + t1|−ε |t1|−
1
2

+ε

|1− u1 − r1 − t1|−
1
2

+2ε |1 + 2u1 − u2 − 2s2|−
1
2

+2ε |−2u1 + r1 − 2t1|−ε

|1− u1 + s2 − r2 − t1|−3ε |dt1| |ds2|

� |y1|−s1 |y2|−s2 |1 + 2u1 − 3u2|−
1
2

+2ε

∫
Re(t1)=t1

|1 + u1 − r2 + t1|−ε |t1|−
1
2

+ε

|1− u1 − r1 − t1|−
1
2

+2ε |−2u1 + r1 − 2t1|−ε

|1− u1 + u2 − r2 − t1|−3ε |dt1|

� |y1|−s1 |y2|−s2 |1 + 2u1 − 3u2|−
1
2

+2ε

� |y1|−s1 |y2|−s2 .

The extra decay here comes from the two terms

|s2 − u2|−1 and |1 + 2u1 − u2 − 2s2|−
1
2 ,

which essentially only contain s2; we cannot set the contours so that this decay is shifted

into the u and r integrals, so we are accepting a loss of 1
2

by ignoring the term for simplicity.
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B.3.0.3 (c)

For Re(u) =
(
−ε,−1

2
− 3ε

)
, Re(r) = (−4ε, 100ε), s1 = −1

2
− ε, t =

(
ε, 1

2
− ε
)
,

|Mwl,2| �

|y1|−s1 |y2|−Re(u2)

∫
Re(s1)=s1

∫
Re(t)=t

|s1 − u1 − t1|−1−ε |1 + s1 − r2|−101ε

|1 + u2 − r1 − t1 − t2|−
1
2

+ε |t1|−
1
2

+ε

B

 1
4
, 4ε

−3
4
− 3ε

;
u1 − 2u2 + r1 + t2

1 + u1 − u2 − r1 − t2


B

−1
4

+ 51ε, −1
4
− 52ε

ε
;
u1 − 2s1 + r2 − t2

−u1 + r1 − r2 + t2


B

−1
4
, 3ε

−1
4
− 2ε

;
1− 2t1 − t2

1− u1 − r1

 |dt| |ds1| .

Apply Hölder in t2 with exponents 4, 4, 1
ε
, 2 + 16ε, and 1

3ε
giving

∫
Re(t2)=t2

|1 + u2 − r1 − t1 − t2|−1 |1− 2t1 − t2|−1+12ε |dt2| � |u2 − r1 + t1|−1+12ε ,

∫
Re(t2)=t2

|1 + u2 − r1 − t1 − t2|−1+4ε |2− u1 − r1 − 2t1 − t2|−1+4ε |dt2|

� |u1 + u2 + t1|−1+4ε ,

∫
Re(t2)=t2

B

 1
4ε
, 4

− 3
4ε
− 3

;
u1 − 2u2 + r1 + t2

1 + u1 − u2 − r1 − t2

 |dt2| � |1 + 2u1 − 3u2|−
1
2ε

+2 ,
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∫
Re(t2)=t2

B

−1
2

+ 98ε, −1
2
− 108ε

2ε
;
u1 − 2s1 + r2 − t2

−u1 + r1 − r2 + t2

 |dt2| � |−2s1 + r1|−8ε ,

∫
Re(t2)=t2

B

−1, 1

−1
;

1− 2t1 − t2

1− u1 − r1

 |dt2| � 1,

so

|Mwl,2| �

|y1|−s1 |y2|−Re(u2) |1 + 2u1 − 3u2|−
1
2

+2ε

∫
Re(s1)=s1

∫
Re(t1)=t1

|s1 − u1 − t1|−1−ε

|1 + s1 − r2|−101ε |t1|−
1
2

+ε |u2 − r1 + t1|−
1
4

+3ε |u1 + u2 + t1|−
1
4

+ε

|−2s1 + r1|−4ε |dt1| |ds1|

� |y1|−s1 |y2|−Re(u2) |1 + 2u1 − 3u2|−
1
2

+2ε

∫
Re(t1)=t1

|1 + u1 − r2 + t1|−101ε

|t1|−
1
2

+ε |u2 − r1 + t1|−
1
4

+3ε |u1 + u2 + t1|−
1
4

+ε |−2u1 + r1 − 2t1|−4ε |dt1|

� |y1|−s1 |y2|−Re(u2) .
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B.3.0.4 (d)

For Re(u) =
(
−1

2
− 3ε,−ε

)
, Re(r) = (−3ε, 7ε), s2 = −1

2
− ε, t =

(
6ε, 1

2
− 6ε

)
,

|Mwl,3| �

|y1|−t1 |y1|−Re(u1)−s2
∫

Re(s2)=s2

∫
Re(t)=t

|s2 − u2|−1

|1 + u1 − r2 + t1|−4ε |1 + s2 − r1 − t1 − t2|−
1
2

+2ε |t1|−
1
2

+6ε

B

−5ε, −1
2

+ 4ε

2ε
;
u1 − 2s2 + r1 + t2

1 + u1 − u2 − r1 − t2


B

−1
2

+ 2ε, −6ε

5ε
;
−u1 + r2 − 2t1 − t2

−u1 + r1 − r2 + t2


B

−1
4
− 3ε, 1

4
+ 3ε

−1
2

;
1− 2t1 − t2

1− u1 − r1

 |dt| |ds2| .

Apply Hölder in t2 with exponents 4 + 96ε, 2 + 32ε, 1
5ε

, 1
6ε

, and 4− 48ε, and terms paired

as follows:

|1 + s2 − r1 − t1 − t2|−
1
2

+2ε with |1− u1 − r1 − 2t1 − t2|−
1
4

+3ε

|1 + u1 − u2 − r1 − t2|−
1
2

+9ε with |−u1 + r2 − 2t1 − t2|−
1
2

+8ε

B

−5ε, −5ε

2ε
;
u1 − 2s2 + r1 + t2

1 + u1 − u2 − r1 − t2


B

−6ε, −6ε

5ε
;
−u1 + r2 − 2t1 − t2

−u1 + r1 − r2 + t2


|−u1 + r2 − 2t1 − t2|−

1
4
−3ε with |1− u1 − r1 − 2t1 − t2|−

1
4
−3ε ,
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respectively, giving

|Mwl,3| �

|y1|−t1 |y1|−Re(u1)−s2
∫

Re(s2)=s2

∫
Re(t1)=t1

|s2 − u2|−1 |1 + u1 − r2 + t1|−4ε

|t1|−
1
2

+6ε |u1 + s2 + t1|−
1
4

+3ε |1 + 2u1 − u2 − r1 + r2 + 2t1|−
1
2

+9ε

|1 + 2u1 − u2 − 2s2|−3ε |−2u1 + r1 − 2t1|−ε |dt1| |ds2| .

Here we have lost 1
4

on the first pair; this is because the total exponent on t2 is 5
4

and the

most we can accomodate on a single variable using only pairs is 2. Again, there is no choice

of contours which does not result in a final bound of positive exponent that is not wasteful.

Applying Hölder in s2 with exponents 4
3
, 4 + 48ε, and 1

3ε
gives

|Mwl,3| �

|y1|−t1 |y1|−Re(u1)−s2
∫

Re(t1)=t1

|1 + u1 − r2 + t1|−4ε

|t1|−
1
2

+6ε |u1 + u2 + t1|−
1
4

+3ε |1 + 2u1 − u2 − r1 + r2 + 2t1|−
1
2

+9ε

|1 + 2u1 − 2u2 − u2|−3ε |−2u1 + r1 − 2t1|−ε |dt1|

� |y1|−t1 |y1|−Re(u1)−s2 .
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B.3.0.5 (e)

For Re(u) =
(
−ε,−1

2
− 3ε

)
, Re(r) = (ε, 4ε), t =

(
−1

2
+ 5ε, 1− 10ε

)
,

|Mwl,4| �

|y1|−Re(u1)−t1 |y2|−Re(u2)

∫
Re(t)=t

|1 + u2 − r1 − t1 − t2|−
1
2

+ε |t1|−1+5ε |t1 + t2|−5ε

B

1
2
− 2ε, −1

4
+ 6ε

−3
4
− 3ε

;
u1 − 2u2 + r1 + t2

1 + u1 − u2 − r1 − t2


B

−1
2

+ 3ε, −6ε

4ε
;
−u1 + r2 − 2t1 − t2

−u1 + r1 − r2 + t2


B

0, 0

−1
2

;
1− 2t1 − t2

1− u1 − r1

 |dt| .
Apply Hölder in t2 with exponents 2 + 4ε, 4 + 96ε, 1

6ε
, and 4 + 144ε using the pairs

|1 + u2 − r1 − t1 − t2|−
1
2

+ε with |−u1 + r2 − 2t1 − t2|−
1
2

+9ε

B

1
2
− 2ε, −1

4
+ 6ε

−3
4
− 3ε

;
u1 − 2u2 + r1 + t2

1 + u1 − u2 − r1 − t2


B

−6ε, −6ε

4ε
;
−u1 + r2 − 2t1 − t2

−u1 + r1 − r2 + t2


|2− u1 − r1 − 2t1 − t2|−

1
2 ,

respectively (ignoring the remaining term), which gives

|Mwl,4| �

|y1|−Re(u1)−t1 |y2|−Re(u2)

∫
Re(t1)=t1

|t1|−1+5ε |1 + u1 + u2 − r1 − r2 + t1|−
1
2

+9ε

|1 + 2u1 − 3u2|−
1
4
−5ε |−2u1 + r1 − 2t1|−2ε |dt1|

� |y1|−Re(u1)−t1 |y2|−Re(u2) .
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B.3.0.6 (f)

For Re(u) = (−3ε+ δ1, ε), Re(r) = −1
2

+ 3ε, s = −ε,

|Mw4| �

|y|−s
∫

Re(s)=s

|s− u1|−
1
2

+2ε |s− u1 − r1|−ε |s− u1 − r2|−ε

B

−1
2

+ 2ε, −1
4

+ ε

1
4

+ ε
;

1 + 2u1 − 2s+ r1 + r2

−u1 − u2 − r2


B

−1
4

+ ε, −1
4

+ 3ε

0
;

1 + 2u1 − 2s+ r1

−2u1 + u2 − r1

 |ds| .
Applying Hölder on s to separate the first beta function will compensate for the positive

exponent, and the remainder may be bounded trivially.

B.3.0.7 (g)

For Re(u) = (ε,−3ε+ δ2), Re(r) = −1
2

+ 3ε, s = −ε,

|Mw5| �

|y|−s
∫

Re(s)=s

|s− u2|−
1
2

+2ε |s− u2 − r1|−ε |s− u2 − r2|−ε

B

−1
2

+ 2ε, −1
4

+ e

1
4

+ ε
;

1 + 2u2 − 2s+ r1 + r2

−u1 − u2 − r2


B

−1
4

+ ε, −1
4

+ 3ε

0
;

1 + 2u2 − 2s+ r1

u1 − 2u2 − r1

 |ds| .
Again, applying Hölder on s to separate the first beta function will compensate for the

positive exponent, and the remainder may be bounded trivially.
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B.4 Proof of Proposition 34

Using the M functions above, the u and r integrals separate, so we may apply Lemma 4 in

u and in r separately: Since ui ± Re(µj), ri ± Re(µj) > −1− ε, the products

∫
Re(u)=u

|G∗(u, µ)| |du|
∫

Re(r)=r

|G∗(r,−µ)| |dr| ,∫
Re(u2)=u2

|G∗l (1, u2, µ)| |du2|
∫

Re(r)=r

|G∗(r,−µ)| |dr| ,∫
Re(u1)=u1

|G∗r(2, u1, µ)| |du1|
∫

Re(r)=r

|G∗(r,−µ)| |dr| ,

G∗b(1, 2, µ)

∫
Re(r)=r

|G∗(r,−µ)| |dr| ,

are at most

∑
w∈W

|µw3 − µw1 |
κ−δ
2

+ε |µw3 − µw2 |
κ−δ
2

+ε |µw2 − µw1 |
δ+ε ,

where now

δ = min
{κ

3
, δu + δr

}
,

δr = min
i

{
2r1 − Re(µi) + 1

2
,
2r2 + Re(µi) + 1

2

}
,

and the κ and δu parameters are given in Table B.1. The bounds may be expressed in this

manner because the worst bound happens exactly when the least exponent δ is on the least

difference |µi − µj|. We have sacrificed some efficiency for symmetry in the bounds for the

u residues, but it is unlikely that one could exploit what we lost in any case.

When we apply the above bounds we need to replace u and r with real part of the

arguments of the appropriate G function, which we have done in table Table B.2. For Jwl,µ

the worst bound is κ−δ
2

+ ε = 3
2

+ 24ε, δ + ε = −1
2

+ 44ε and for Jw4,µ and Jw5,µ, the worst

bounds are κ−δ
2

+ ε = 13
8

+ 3ε and δ + ε = 3
4
− 4ε, so we have Proposition 34.
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Form κ δu

G∗G∗ u1 + u2 + r1 + r2 − 1 mini

{
2u1+Re(µi)+1

2
, 2u2−Re(µi)+1

2

}
G∗lG

∗ µ1 + u2 + r1 + r2 − 3
2

min
{

Re(µ1−µ2)−1
2

, Re(µ1−µ3)−1
2

, u2 + Re(µ2+µ3)
2

}
G∗rG

∗ u1 − µ2 + r1 + r2 − 3
2

min
{

Re(µ1−µ2)−1
2

, u1 − Re(µ1+µ3)
2

, Re(µ3−µ2)−1
2

}
G∗bG

∗ µ1 − µ2 + r1 + r2 − 2 min
{

Re(µ1−µ2)−1
2

, Re(µ1−µ3)−1
2

, Re(µ3−µ2)−1
2

}
Table B.1: Parameters for bounding the u and r integrals.
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Uses µ Contours u r Form κ−δ
2

+ ε δ + ε
Jwl,µ Mwl,1

(
−1

2
− 3ε, 1

2
+ 3ε

)
−1

2
− 4ε

(
7
2
− 4ε, 1 + 100ε

)
G∗G∗ 3

2
+ 24ε −1

2
+ 44ε

Jwl,µ Mwl,1

(
−1

2
− 3ε, 1

2
+ 3ε

)
−1

2
− 4ε

(
7
2
− 4ε, 1 + 100ε

)
G∗lG

∗ 11
8

+ 23ε −3
4

+ 47ε
Jwl,µ Mwl,1

(
−1

2
− 3ε, 1

2
+ 3ε

)
−1

2
− 4ε

(
7
2
− 4ε, 1 + 100ε

)
G∗rG

∗ 11
8

+ 23ε −3
4

+ 47ε
Jwl,µ Mwl,1

(
−1

2
− 3ε, 1

2
+ 3ε

)
−1

2
− 4ε

(
7
2
− 4ε, 1 + 100ε

)
G∗bG

∗ 9
8

+ 24ε −3
4

+ 47ε
Jw4,µ Mw4 (−2ε, 0) (−3ε, ε)

(
4− 7ε, 3

2

)
G∗G∗ 13

8
+ 2ε 3

4
− 4ε

Jw4,µ Mw4 (−2ε, 0) (−3ε, ε)
(
4− 6ε, 3

2

)
G∗lG

∗ 13
8

+ 2ε 1
4

Jw5,µ Mw5 (0,−2ε) (ε,−3ε)
(
4− 6ε, 3

2
− ε
)

G∗G∗ 13
8

+ 3ε 3
4
− 4ε

Jw5,µ Mw5 (0,−2ε) (ε,−3ε)
(
4− 5ε, 3

2

)
G∗rG

∗ 13
8

+ 3ε 1
4

+ ε
Ewl,1 Mwl,1

(
−1

2
− 3ε, 1

2
+ 3ε

)
−1

2
− 4ε

(
7
2
− 4ε, 1 + 100ε

)
G∗rG

∗ 11
8

+ 23ε −3
4

+ 47ε
Ewl,2 Mwl,1

(
−1

2
− 3ε, 1

2
+ 3ε

)
−1

2
− 4ε

(
7
2
− 4ε, 1 + 100ε

)
G∗lG

∗ 11
8

+ 23ε −3
4

+ 47ε
Ewl,3 Mwl,1

(
−1

2
− 3ε, 1

2
+ 3ε

)
−1

2
− 4ε

(
7
2
− 4ε, 1 + 100ε

)
G∗G∗ 3

2
+ 24ε −1

2
+ 48ε

Ewl,4 Mwl,2

(
−ε, 1

2
+ 3ε

)
– (3− 4ε, 1 + 100ε) G∗bG

∗ 1 + 24ε −1
2

+ 48ε
Ewl,5 Mwl,3

(
−1

2
− 3ε, ε

)
– (3− 3ε, 1 + 7ε) G∗bG

∗ 1 + ε −1
2

+ 2ε
Ewl,6 Mwl,1 (−ε, ε) – (3, 1) G∗bG

∗ 1 + ε 0
Ewl,7 Mwl,4

(
−ε, 1

2
+ 3ε

)
– (3 + ε, 1 + 4ε) G∗bG

∗ 1 + 3ε −1
2

Table B.2: Parameters for Proposition 34.
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B.5 Proof of Proposition 40

After applying the definition of kconv, we have

L1 =

∫
Re(q)=q

|q1|
23
12

+300ε−8 |q2|
23
12

+300ε−8 |q2 − q1|
23
12

+300ε

|q1 + q2|
31
14

+2ε |2q1 − q2|
6
7

+ε |2q2 − q1|
6
7

+ε∫
Re(µ)=η

|µ1|−
23
12
−300ε |µ2|−

23
12
−300ε |µ3|−

23
12
−300ε

|µ1 − µ2|
13
8

+100ε |µ1 − µ3|
13
8

+100ε |µ2 − µ3|
13
8

+100ε

|q1 − µ1| |q1 − µ2| |q1 − µ3| |q2 + µ1| |q2 + µ2| |q2 + µ3|
|dµ| |dq|

�
∫

Re(µ)=η

|µ1|−
2
3
−100ε |µ2|−

2
3
−100ε |µ3|−

2
3
−100ε

∫
Re(q)=q

|µ1 − µ2| |µ1 − µ3| |µ2 − µ3|
|q1 − µ1| |q1 − µ2| |q1 − µ3| |q2 + µ1| |q2 + µ2| |q2 + µ3|

|dq| |dµ| .

using |q1 + q2| � |q1| |q2|, etc. Applying Hölder to the q integrals, gives 6 integrals of the

form (∫
Re(qi)=qi

(|qi − µj| |qi − µk|)−
3
2 |dqi|

) 1
3

� |µk − µj|−
1
2 ,

so

L1 �
∫

Re(µ)=η

|µ1|−
2
3
−100ε |µ2|−

2
3
−100ε |µ3|−

2
3
−100ε |dµ| � 1.
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The second integral becomes

L2 =

∫
Re(µ)=η

∫
Re(q2)=q2

|µ1|−8 |q2|
23
12

+300ε−8 |q2 − µ1|
23
12

+300ε

|q2 + µ1|1+4ε |2µ1 − q2|
3
2

+5ε |2q2 − µ1|−ε

|q2 + µ2| |q2 + µ3|

|µ2|−
23
12
−300ε |µ3|−

23
12
−300ε

|µ1 − µ3|
1
2

+100ε |µ2 − µ1|
1
2

+100ε |µ2 − µ3|
3
2

+100ε |dq2| |dµ|

�
∫

Re(µ)=η

|µ1|−
31
12

+510ε |µ2|−
11
12
−100ε |µ3|−

11
12
−100ε

∫
Re(q2)=q2

|µ2 − µ3|
|q2 + µ2| |q2 + µ3|

|dq2| |dµ|

�1,

and the third is

L3 �
∫

Re(µ)=η

|µ1|−
5
2

+300ε |µ2|−
5
2

+300ε |dµ| � 1.

126



References

[1] Valentin Blomer. “Applications of the Kuznetsov formula on GL(3)”. In: (To appear).

[2] Daniel Bump. Automorphic forms on GL(3,R). Vol. 1083. Lecture Notes in Mathe-

matics. Berlin: Springer-Verlag, 1984, pp. xi+184.

[3] Daniel Bump, Solomon Friedberg, and Dorian Goldfeld. “Poincaré series and Kloost-
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