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ABSTRACT OF THE THESIS 
 

Learning Robotic Manipulation in 3D 
 

 
by 

 

Litian Liang 

 

Master of Science in Computer Science 

University of California San Diego, 2023 

Professor Hao Su, Chair 
 

 

Building robots that can automate tedious, hazardous, and repetitive jobs has long 

been the driving force behind the advancements in machine learning, computer vision, and 

robotics community. Recent breakthroughs in deep learning, a data centric approach to 

building computer software, achieved tremendous success in visual recognition, natural 

language understanding, and video game playing. However, these approaches usually require 

large and diverse datasets to generalize to unseen situations.  



 

x 

Collecting diverse data is the core challenge in all existing learning-based methods for 

robotic manipulation. Many approaches learn robotic manipulation policy directly on real-

world robot-object interaction data. However, collecting real data is order of magnitudes more 

costly than visual recognition and natural language tasks. In some cases, collecting real robot 

data of some tasks is even impossible with existing infrastructure. Other approaches first learn 

policies in simulation, then deploy in the real world. However, these methods encounter 

another set of challenges including hard to transfer due to physics gap between simulation and 

real world. When using RL to learn policies in simulation, challenges exist also at the 

algorithmic level. The engineered dense reward is hard to specify for the policy to 

autonomously collect data closer to the globally optimal solution, and sparse reward is hard 

for algorithms to optimize. 

In this thesis, we will introduce two projects that lay the foundation of two promising 

directions of building real-world Embodied AI: 1. Large scale sparse reward policy learning 

in simulation, 2. Continuously improving simulation with real data. These projects serve as 

the foundation for building future RL algorithms and learning based simulations.



 

1 

INTRODUCTION 
 

To automate tedious, hazardous, and repetitive jobs require a sophisticated system of 

multiple components working seamlessly together, including a visual perception module needs to 

understand the geometry, physical property, and spatial relationship of objects, and a robot 

planning and control system needs to produce a sequence of low-level control signal to influence 

the world.  

One approach to learn such a robot control policy can be very similar to the established 

paradigm in visual recognition and natural language tasks. Given each observation, human 

labelers label the ground truth actions for the robot by teleoperating the robot in real world to 

complete the task. However, this method has many significant drawbacks. First, many contacts 

rich tasks that require haptic feedback for not only the robot but also the teleoperator to identify 

the state of objects that are being manipulated. Although there are many teleoperation systems 

that exist already, none provide touch sensing and force feedback to the teleoperator, which 

limits the types of tasks solvable with this method. Second, collecting real robot data requires 

extensive training of the teleoperator to be familiar with the system and reduce the number of 

accidents. When they are not used properly, these expensive and heavy-duty robot arms can 

easily damage themselves or other objects.  

Another approach to learn robot control policy considers learning the policy in 

simulation, then deploy in the real world. In this case, since there is no cost in executing the 

policy to collect data, the data collection and policy update loop is often formulated under the 

paradigm of reinforcement learning (RL). Under this formulation, the policy is initialized to 

produce random actions and gradually explores the environment and finds solution through 

optimizing reward. However, this method is also problematic in multiple ways. 1. Due to the 
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lack of ability of existing algorithms to explore the environment, the learning processes rely on 

an engineered dense reward to guide the optimization. 2. These dense rewards are individually 

designed for each task, which significantly limits scalability. 3. These dense rewards also have 

many local optima that can easily make policy optimization stuck. 4. The difficulty of 

transferring learned policies to the real world is much harder due to the problem nature of robotic 

manipulation, which often involves object visual, geometrical, and material variations. 

Can we achieve large scale optimization of policies without engineering dense reward? 

Can we close the gap between simulation and the real world through a data-driven approach? To 

better answer these questions, we will introduce two papers. 1. An RL algorithm that still learns 

to solve the task when only sparse reward is used during optimization. 2. A real-world dataset 

and data collection system of omnispective-view robot-object interactions. 

 

  



Reparameterized Policy Learning for Multimodal Trajectory Optimization

Zhiao Huang 1 Litian Liang 1 Zhan Ling 1 Xuanlin Li 1 Chuang Gan 2 3 Hao Su 1

Abstract
We investigate the challenge of parametrizing
policies for reinforcement learning (RL) in high-
dimensional continuous action spaces. Our ob-
jective is to develop a multimodal policy that
overcomes limitations inherent in the commonly-
used Gaussian parameterization. To achieve this,
we propose a principled framework that models
the continuous RL policy as a generative model
of optimal trajectories. By conditioning the pol-
icy on a latent variable, we derive a novel varia-
tional bound as the optimization objective, which
promotes exploration of the environment. We
then present a practical model-based RL method,
called Reparameterized Policy Gradient (RPG),
which leverages the multimodal policy parame-
terization and learned world model to achieve
strong exploration capabilities and high data ef-
ficiency. Empirical results demonstrate that our
method can help agents evade local optima in
tasks with dense rewards and solve challenging
sparse-reward environments by incorporating an
object-centric intrinsic reward. Our method con-
sistently outperforms previous approaches across
a range of tasks. Code and supplementary ma-
terials are available on the project page https:
//haosulab.github.io/RPG/

1. Introduction
Reinforcement learning (RL) with high-dimensional con-
tinuous action space is notoriously hard despite its fun-
damental importance for many application problems such
as robotic manipulation (OpenAI et al., 2019; Mu et al.,
2021). In practice, popular frameworks (Silver et al., 2014;
Haarnoja et al., 2018; Schulman et al., 2017) of deep RL
formulate the continuous policy as a neural network that out-
puts a single-modal density function over the action space

1UC San Diego 2MIT-IBM Watson AI Lab 3UMass Amherst.
Correspondence to: Zhiao Huang <z2huang@ucsd.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Figure 1. (A) Our method reparameterizes latent variables into
multimodal policy to facilitate exploitation and exploration in
continuous policy learning; (B) Average performance on 6 hard
exploration tasks. Our method outperforms previous methods.

(e.g., a Gaussian distribution over actions). This formu-
lation, however, breaks the promise of RL being a global
optimizer of the return function because the single-modality
policy parameterization introduces local minima that are
hard to escape using gradients w.r.t. distribution parame-
ters. Besides, a single-modality policy will significantly
weaken the exploration ability of RL algorithms because
the sampled actions are usually concentrated around the
modality.

Although there are other candidates beyond the Gaussian dis-
tribution for policy parameterization, they often have limita-
tions when used for continuous policy modeling. For exam-
ple, Gaussian mixture models can only accommodate a lim-
ited number of modes; normalizing flow methods (Rezende
& Mohamed, 2015) can compute density values, but they
may not be as numerically robust due to their dependency
on the determinant of the network Jacobian; furthermore,
normalizing flows must apply continuous transformations
onto a continuously connected distribution, making it dif-
ficult to model disconnected modes (Rasul et al., 2021).
Option-critic (Bacon et al., 2017) represents policies with
options and temporal structure, but it often requires specially
designed option spaces for efficient learning, which moti-
vates research on hierarchical imitation learning that uses
demonstrations to avoid exploration problems (Peng et al.,
2022; Fang et al., 2019). Skill discovery methods learn a
population of skills without demonstrations or rewards by
optimizing for diversity (Eysenbach et al., 2018). However,
the separation of optimization and skill learning can be non-
efficient as it expends effort on learning task-irrelevant skills
and may ignore more important ones that would benefit a

1
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Reparameterized Policy Learning for Multimodal Trajectory Optimization

specific task.

This paper presents a principled framework for learning
the continuous RL policy as a multimodal density function
through multimodal action parameterization. We adopt a
sequence modeling perspective (Chen et al., 2021) and view
the policy as a density function over the entire trajectory
space (instead of the action space)(Ziebart, 2010; Levine,
2018). This allows us to sample a population of trajec-
tories that cover multiple modalities, enabling concurrent
exploration of distant regions in the solution space. Ad-
ditionally, we use a generative model to parameterize the
multimodal policies, drawing inspiration from their success
in modeling highly complex distributions such as natural
images(Goodfellow et al., 2016; Zhu et al., 2017; Rom-
bach et al., 2022; Ramesh et al., 2021). We condition the
policy on a latent variable z and use a powerful function
approximator to “reparameterize” the random distribution
z into the multimodal trajectory distribution (Kingma &
Welling, 2013), from which we can sample trajectories ⌧ .
This policy parameterization leads us to adopt the variational
method (Kingma & Welling, 2013; Haarnoja et al., 2018;
Moon, 1996) to derive a novel framework for modeling the
posterior of the optimal trajectory using variational infer-
ence, which enables us to model multimodal trajectories
and maximize the reward with a single objective.

This framework allows us to build Reparameterized Policy
Gradient (RPG), a model-based RL method for multimodal
trajectory optimization. The framework has two notable
features: First, RPG combines the multimodal policy pa-
rameterization with a learned world model, enjoying the
sample efficiency of the learned model and gradient-based
optimization while providing the additional ability to jump
out of the local optima; Second, we equip RPG with a novel
density estimator to help the multimodal policy explore in
the environments by maximizing the state entropy (Hazan
et al., 2019). We verify the effectiveness of our methods on
several robot manipulation tasks. These environments only
provide sparse rewards when the agent successfully fully
finishes the task, which is challenging for single-modal poli-
cies even when they are guided by intrinsic motivations. In
comparison, our method is able to explore different modal-
ities, improve the exploration efficiency, and outperform
single-modal policies, as shown in Fig. 1. Notably, our
method is more robust than single-modal policies and con-
sistently outperforms previous approaches across different
tasks.

Our contributions are multifold: 1. We propose a variational
policy learning framework that models the posterior of mul-
timodal optimal trajectories for reward optimization. 2. We
demonstrate that multimodal parameterization can help the
policy escape local optima and accelerate exploration in
continuous policy optimization. 3. When combined with a

learned world model and a delicate density estimator, our
method, RPG, is able to solve these challenging sparse-
reward tasks more efficiently and reliably.

2. Related Work
Policy as Sequential Generative Model. Maximum en-
tropy reinforcement learning (Todorov, 2006; 2008; Tou-
ssaint, 2009; Ziebart, 2010; Kappen et al., 2012) can be
viewed as variational inference in probabilistic graphical
models (Levine, 2018) with optimality as an observed vari-
able and sampled trajectories as latent variables. When the
demonstration or a fixed dataset is provided in the offline
RL setting (Chen et al., 2021; Reed et al., 2022), policy
learning is simplified as a sequence modeling task (Chen
et al., 2021; Zheng et al.; Reed et al., 2022). They use au-
toregressive models to learn the distribution of the whole
trajectory, including actions, states, and rewards, and use
the action prediction as policy. In our work, we learn a
sequential generative model of policy for online RL via the
variational method.

Variational Skill Discovery Under additional assump-
tions of rewards, our method degenerates to skill discovery
methods. However, previous skill discovery methods focus
on unsupervised reinforcement learning (Eysenbach et al.,
2018; Achiam et al., 2018; Campos et al., 2020) or diverse
skill learning (Kumar et al., 2020; Osa et al., 2022). These
methods build latent variable policy and encourage the pol-
icy to reach states that are consistent with the sampled latent
variables through a mutual information term as a reward.
These methods do not consider reward maximization or ex-
ploration when learning the skills, making them differ from
our method vastly. For example, Eysenbach et al. (2018);
Achiam et al. (2018) does not optimize the learned skill
for the environment rewards; Osa et al. (2022) does not
optimize the mutual information along trajectories; Kumar
et al. (2020) needs to solve the optimization problem first
before finding a diverse set of solutions. Moreover, these
methods fix the latent distributions, limiting their ability
to achieve optimality when rewards are given. Mazzaglia
et al. (2022) also learns skills within a learned world model.
However, it decouples the exploration and skill learning and
needs offline data or data generated from other exploration
policies to train the model. In contrast, we are motivated
by the parameterization problems in online RL and jointly
optimize the latent representation to model optimal trajecto-
ries. We show that learning a latent variable model benefits
optimization and exploration and they can be considered
together.

Hierarchical Methods The hierarchical methods, e.g.,
option-critic (Bacon et al., 2017), can be regarded as a
special way of policy parameterization by conditioning

2
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the lower-level policy over a sequence of latent variables
z = (z1, · · · , zT ). Usually, most hierarchical RL methods
need special designs for the latent space, e.g., state-based
subgoals (Kulkarni et al., 2016; Nachum et al., 2018b;a) or
predefined skills (Li et al., 2020) to avoid mode-collapse.
Osa et al. (2019) regularized options to maximize the mutual
information between the action and the options, which are
very relevant to ours. However, it does not model temporal
structures as ours to ensure consistency along the trajec-
tories. Goal-conditioned RL (Andrychowicz et al., 2017;
Mendonca et al., 2021; Nachum et al., 2018b) can also be
considered a special hierarchical method that uses states or
goals to help parameterize the policy and has been proven
efficient in exploration, but designing the goal space, sam-
pling and generating goals in high-dimensional space is
non-trivial. The specific reward design of goal-reaching
tasks also makes extending goal-conditioned policies to
general reward functions not easy.

Hierarchical imitation learning (Gupta et al., 2019; Pertsch
et al., 2021; Shankar & Gupta, 2020; Jiang et al., 2022;
Lynch et al., 2020; Fang et al., 2020) extracts temporal ab-
stractions from demonstrations using generative models. For
example, InfoGAN (Li et al., 2017) and ASE (Peng et al.,
2022) use adversarial training (Goodfellow et al., 2020; Ho
& Ermon, 2016) to imitate demonstrations. These works
all rely on demonstrations rather than rewards to learn ab-
stractions. Co-Reyes et al. (2018) learns representation on
the collected dataset with variational inference and then uti-
lizes the trained model for planning or policy learning. The
separation of the representation learning and reward maxi-
mization makes it differ from our methods: first, it requires
a state reconstruction module to supervise the generative
model, which is challenging for high-dimensional observa-
tions; second, it optimizes neither the latent distribution nor
the actions for the reward directly, thus requires additional
planning procedure during the execution to find suitable
actions.

3. Preliminary
Markov decision process A Markov decision process
(MDP) is a tuple of (S,A,P,R), where S is the state
space and A is the action space. p(s0|s, a) is the tran-
sition probability that transits state s to another state s0

after taking action a. The function R(s, a, s0) computes
a reward per transition. A policy ⇡(a|s) outputs an ac-
tion distribution according to the state s. Executing a
policy ⇡ starting from the initial state s1 with density
p(s1) will result in a trajectory ⌧ , which is a sequence of
states and actions {s1, a1, s2, . . . , st, at, . . . } where at ⇠

⇡(a|s = st), st+1 ⇠ p(s|s = st, a = at). We also
use the terminology environment to refer to an MDP in
an RL problem. The discounted reward of a trajectory is

R�(⌧) =
P1

t=1 �
tR(st, at, st+1) where 0 < � < 1 is

the discount factor to ensure the series converges. The
goal of reinforcement learning (RL) is to find a param-
eterized policy ⇡✓ that maximizes the expected reward
Es1⇠p(s1)[V

⇡✓ (s1)] = E⌧⇠⇡✓,s1⇠p(s1)[R�(⌧)], where V ⇡✓

is the value function. Many environments have an observa-
tion space O that is not the same to the state space. In this
case the agent may need to identify the state st from the
observation ot.

RL as probabilistic inference The RL as inference
framework (Todorov, 2006; 2008; Toussaint, 2009; Ziebart,
2010; Kappen et al., 2012; Levine, 2018) defines opti-
mality p(O|⌧) / eR(⌧)/T , where T is a temperature
scalar and R(⌧) is the total rewards of the trajectory
⌧ . It further defines a prior distribution of the trajectory
p(⌧) = p(s1)

Q
T

t=1 p(at|st)p(st+1|st, at), where p(at|st)
is a known prior action distribution, e.g., a Gaussian dis-
tribution. Thus, it can compute the density of optimal-
ity p(O) =

R
p(O|⌧)p(⌧)d⌧ . The goal of the frame-

work is to approximate the posterior distribution of op-
timal trajectories p(⌧ |O) = p(O|⌧)p(⌧)R

p(O|⌧)p(⌧)d⌧ . In the maxi-
mum entropy framework (Haarnoja et al., 2017), one can
apply evidence lower bound (Kingma & Welling, 2013)
log p(O) � E⌧⇠⇡ [log p(O|⌧) + log p(⌧)� log ⇡(⌧)] to
train the model.

4. Method
To overcome the limitations of single modality policies, we
propose to use latent variables to parameterize multimodal
policies in Sec. 4.1. We then propose a novel variational
bound as the optimization objective to approximate the pos-
terior of optimal trajectories in Sec. 4.2. The variational
bound naturally combines maximum entropy RL and in-
cludes a term to encourage consistency (Zhu et al., 2017)
between the latent distribution and the sampled trajectories,
preventing the policy from mode collapse. To optimize this
objective in hard continuous control problems, we propose
to learn a world model and build the Reparameterized Pol-
icy Gradient, a model-based latent variable policy learning
framework in Sec. 4.3.1. We design intrinsic rewards in
Sec. 4.3.2 to facilitate exploration. Figure 3 illustrates the
whole pipeline.

4.1. Reparameterize Latent Variables for Multimodal
Policy Learning

Policy parameterization matters. In continuous RL, it is
popular to model action distribution with a unimodal Gaus-
sian distribution. However, theoretically, to make sure that
the optimal policy will be captured by RL, the function
class of continuous RL policies has to include density func-
tions of arbitrary probabilistic distributions (Sutton & Barto,

3
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Figure 2. (A) rewards; (B); soft max policy over discrete action
space; (C) single-modality Gaussian policy; (D) our methods repa-
rameterize a random variable into multimodal distributions with
neural networks.

2018). Consider maximizing a continuous reward function
with two modalities as shown in Figure 2(A). When the
action space is properly discretized, a SoftMax policy can
model the multimodal distribution and find the global opti-
mum after sampling over the entire action space as shown
in Figure 2(B). However, discretization can lead to a loss of
accuracy and efficiency. If we instead use a Gaussian pol-
icy N (µ,�2) by the common practice in literature, we will
have trouble – as shown in Figure 2(C), even if its standard
deviation is so large to well cover both modalities, the policy
gradient can push it towards the local optimum on the right
side, causing it to fail to converge to the global optimum. To
address the issue, a more flexible policy parameterization is
needed for continuous RL problems, one that is simple to
sample and optimize.

Multimodal policy by reparameterizing latent variables
Motivated by recent developments in generative models
that have shown superiority in modeling complex distribu-
tions (Kingma & Welling, 2013; Ho et al., 2020; Rombach
et al., 2022; Ramesh et al., 2021), we propose to parame-
terize policies using latent variables, as illustrated in Fig-
ure 2(D). Instead of adding random noise to perturb network
outputs to generate an action distribution, we build a genera-
tive model of policy distribution by taking random noise as
input and relying on powerful neural networks to transform
it into actions of various modalities.

Formally, let z 2 Z be a random variable, which can be
either continuous or categorical. We design our “policy” as
a joint distribution ⇡✓(z, ⌧) of the latent z and the trajectory
⌧ . This paper considers a particular factorization of ⇡✓(z, ⌧)
that samples z in the beginning of each episode and then

sample trajectory ⌧ conditioning on z:

⇡✓(z, ⌧) = p(s1)⇡✓(z|s1)
TY

t=1

p(st+1|st, at)⇡✓(at|z, st) (1)

where T is the length of the sampled trajectory.

One can use the policy gradient theorem (Sutton & Barto,
2018), i.e., rJ(⇡) = E⌧ [R(⌧)r log p(⌧)] to optimize the
generative model policy. However, computing p(⌧) needs
to marginalize over z, i.e., computing

R
z
p(z, ⌧) dz, which

is often intractable when z is continuous. Besides, optimiz-
ing the marginal distribution log p(⌧) by gradient descent
suffers from local optimality issues (e.g., using gradient
descent to optimize Gaussian mixture models which have
latent variables is not effective, so EM is often used in-
stead (Ng, 2000)).

4.2. Variational Inference for Optimal Trajectory
Modeling

To overcome these obstacles, following Todorov (2006;
2008); Toussaint (2009); Ziebart (2010); Kappen et al.
(2012); Levine (2018); Haarnoja et al. (2018), we adopt
variational method (maximum entropy RL) to directly op-
timize the joint distribution of the optimal policy without
hassles of integrating over z.

The evidence lower bound We learn ⇡✓(z, ⌧) using vari-
ational inference (Kingma & Welling, 2013; Haarnoja et al.,
2018; Moon, 1996). Like an EM algorithm, we define an
auxiliary distribution p�(z|⌧) to approximate the posterior
distribution of z conditioning on ⌧ using function approxi-
mators. This auxiliary distribution p�(z|⌧) helps to factorize
the joint distribution of optimality O, latent z, and the tra-
jectory ⌧ as p�(O, z, ⌧) = p(O|⌧)p�(z|⌧)p(⌧). Treating
⇡✓(z, ⌧) as the variational distribution, we can write the
Evidence Lower Bound (ELBO) for the optimality O:

log p(O)

= Ez,⌧⇠⇡✓ [log p�(O, z, ⌧)� log ⇡✓(z, ⌧)]| {z }
ELBO

+DKL(⇡✓(z, ⌧)||p�(z, ⌧ |O))

� Ez,⌧⇠⇡✓ [log p�(O, ⌧, z)� log ⇡✓(z, ⌧)]

= Ez,⌧⇠⇡✓ [log p(O, ⌧) + log p�(z|⌧)� log ⇡✓(z, ⌧)]

= Ez,⌧

2

64log p(O|⌧)| {z }
reward

+ log p(⌧)| {z }
prior

+ log p�(z|⌧)| {z }
cross entropy

� log ⇡✓(z, ⌧)| {z }
entropy

3

75

(2)

If we optimize ⇡✓(z, ⌧) and p�(z|⌧) using the gradient of
the variational bound, the variational distribution ⇡✓(z, ⌧)
learns to model the optimal trajectory distribution p(⌧ |O).

4
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How it works ELBO contains four parts that can all be
computed directly given the sampled z and ⌧ (the environ-
ment probability p(st+1|st, at) is canceled as in (Levine,
2018)). The first two parts are the predefined reward
log p(O|⌧) = R(⌧)/T + c, where T is the temperature
scalar, and c is the normalizing constant that can be ignored
in optimization. The prior distribution p(⌧) is assumed to be
known. The third part is the log-likelihood of z, defined by
our auxiliary distribution p�(z|⌧). It is easy to see that if we
fix ⇡✓, maximize p� alone will minimize the cross-entropy
Ez,⌧⇠⇡✓ [� log p�(z|⌧)], similar to the supervised learning
of predicting z given ⌧ . This achieves optimality when
p�(z|⌧) = p✓(z|⌧) =

⇡✓(z,⌧)R
z ⇡✓(z,⌧)dz

, modeling the posterior
of z for ⌧ sampled from ⇡✓. On the other hand, by fixing
�, the policy ⇡✓ is encouraged to generate trajectories that
are easy to identify or classify; this helps to increase diver-
sity and enforce consistency to avoid mode collapse, letting
the network not ignore the latent variables. The fourth
part is the policy entropy that enables maximum entropy
exploration. Maximizing all terms together for the param-
eters ✓ and � will minimize DKL(⇡✓(z, ⌧)||p�(z, ⌧ |O)) =
DKL(⇡✓(z, ⌧)||p�(z|⌧)p(⌧ |O)). The optimality can be
achieved when p�(z|⌧) equals to p(z|⌧), the true poste-
rior of z. Then, p✓(⌧) = p�(z|⌧)p(⌧ |O)/p(z|⌧) = p(⌧ |O)
where p✓(⌧) =

R
⇡✓(⌧, z)dz is the marginal distribution of

⌧ sampled from ⇡✓.

Relationship with other methods Our method is closely
related to skill discovery methods (Eysenbach et al., 2018;
Mazzaglia et al., 2022). A skill discovery method usu-
ally uses mutual information I(⌧, z) = H(⌧)�H(⌧ |z) or
H(z)�H(z|⌧) � Ez,⌧ [log p�(z|⌧)� log p(z)] to encour-
age diversity. For example, DIYAN (Eysenbach et al., 2018)
directly optimizes mutual information to learn various skills
without reward. Dropping out the reward term in Eq. 2
shows that the skill learning objective can be seamlessly
embedded into the “RL as inference” framework with ex-
ternal reward, and there is no need to introduce the mutual
information term manually. Furthermore, the framework
suggests we can model the posterior of the optimal trajec-
tories, which enables us to unify generative modeling and
trajectory optimization in a single framework. As for the
relationship of our method with other generative models, we
refer readers to a more thorough discussion in Appendix F.

4.3. Reparameterized Policy Gradient for Model-based
Exploration

We now describe Reparameterized Policy Gradient (RPG),
a model-based RL method with intrinsic motivation
for sample efficient exploration in continuous control
environments. We first simplify the right side of
Eq. 2 using the factorization in Eq. 1 and assum-
ing log p�(z|⌧) =

P
t>0 log p(z|st, at). Thus, the

ELBO becomes � log ⇡✓(z|s1) +
P1

t=1 R(st, at)/T �

log ⇡✓(at|st, z) + log p�(z|st, at), which can be optimized
with an RL algorithm by maximizing the reward

R(st, at)/T| {z }
rt

�↵ log ⇡✓(at|st, z) + � log p�(z|st, at)| {z }
r0t

,

where scalars ↵,� control the exploration and consistency.
We use neural networks to model log p�(z|st, at) and
⇡✓(at|st, z).

4.3.1. MODEL-BASED RL WITH LATENT VARIABLES

In our method Reparameterized Policy Gradient (RPG),
we train a differentiable world model (Hafner et al., 2019;
Schrittwieser et al., 2020; Ye et al., 2021; Hansen et al.,
2022) to improve data efficiency. The world model con-
tains the following components: observation encoder st =
f (ot), reward predictor rt = R (st, at), Q value Qt =
Q (st, at, z) and dynamics st+1 = h (st, at).

Given any z and latent state st0 = f (ot0) at time step t0,
the learned dynamics network can generate an imaginary
trajectory for any action sequence. If we sample actions
from the policy ⇡✓(at|st, z) for t � t0 and execute them in
the latent model, it will produce a Monte-Carlo estimate for
the value of st0 for optimizing the policy ⇡✓:

Vest(ot0 , z) ⇡ �
K(Qt0+K + r

0
t0+K) +

t0+K�1X

t=t0

�
t�t0(rt + r

0
t)

(3)

We self-supervise the dynamics network to ensure state
consistency without reconstructing observations as in (Ye
et al., 2021; Hansen et al., 2022). For any latent variable
z and trajectory segments of length K + 1 ⌧t0:t0+K =
{ot0 , a

gt

t0
, rgt

t0
, ot0+1, . . . , ot0+K} sampled from the replay

buffer, we execute actions {agt
t
} in the world model and use

the following loss function to train the world model, as well
as the Q function:

L (⌧) =
t0+K�1X

t=t0

L1kst+1 � ng(f (ot+1))k2 + L2(rt � r
gt
t )2

+ L3(Qt � ng(rgtt + �Vest(ot+1, z)))
2 (4)

where ng(x) means stopping gradient and L1 =
1000, L2 = L3 = 0.5 are constants to balance the loss.

4.3.2. MAXIMIZE STATE ENTROPY WITH
OBJECT-CENTRIC RANDOMIZED NETWORK
DISTILLATION

For challenging continuous control tasks with sparse
rewards, policies that maximize the action entropy of
⇡✓(a|s, z) usually have trouble obtaining a meaningful
reward, making its exploration inefficient. We follow
(Hazan et al., 2019) to let the policy additionally maximize
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Figure 3. An overview of our model pipeline: A) a reparameterized policy from which we can sample latent variable z and action a given
the latent state s; B) a latent dynamics model which can be used to forward simulate the dynamic process when a sequence of actions is
known. C) an exploration bonus provided by a density estimator. Our Reparameterized Policy Gradient do multimodal exploration with
the help of the latent world model and the exploration bonus.

the entropy of the discounted stationary state distribution
d⇡(s) = (1� �)

P1
t=1 �

tP (st = s|⇡).

We use the object-centric Randomized Network Distilla-
tion (RND) (Burda et al., 2018) as a simple and effective
method to approximate the state density in continuous con-
trol tasks. RND uses a network g✓(ot) to distill the output
of a random network g0(ot) by minimizing the difference
kg✓(ot)� g0(ot)k2 over states sampled by the current agent
and treat the difference as the negative density of each ob-
servation ot.

We make several modifications to the vallina RND to im-
prove its performance for state vector observations in con-
trol problems. First, we inject object-prior to the RND
estimator to make the policy sensitive to regions that in-
clude objects’ position change. Specifically, before feeding
objects’ coordinates into the network, we apply positional
encoding (Vaswani et al., 2017; Mildenhall et al., 2021) to
turn all scalars x to a vector of {sin(2ix), cos(2ix)}i=1,2,...

for objects of interest (e.g., in robot manipulation, the end
effector of the robot and the object). Second, we use a large
replay buffer to store past states to avoid catastrophic for-
getting (Zhang et al., 2021). We verified that it is necessary
to normalize the RND’s output to stabilize the training and
make it an approximated density estimator. Lastly, to ac-
count for the latent world model, we relabel trajectories’
rewards sampled from the replay buffer instead of estimat-
ing them directly in the latent model by reconstructing the
observation.

An implicit benefit of a latent variable policy model is its
ability to maximize the state entropy better, as will be shown
in the experiments of Sec. 5.1. When combined with our
RND method, RPG achieves much better state coverage
while single modality policy cannot stabilize. The combina-
tion of multimodal policy learning and state entropy maxi-
mization accelerates the exploration of continuous control

tasks with sparse rewards. We describe the whole algorithm
in Alg. 1 and implementation details in Appendix A.

5. Experiments
In this section, we first illustrate the potential of RPG in op-
timization and exploration through two example tasks. We
then show that our method can help solve hard continuous
control problems, even with only sparse rewards. We ablate
essential design choices and provide additional experiments
in section 5.3.

5.1. Illustrative Experiments

Can multimodal policies help escape local optima? We
study the effects of our method on a 1D bandit problem as
shown in Fig. 4. It has a 1d action space and a non-convex
reward landscape with an additional discontinuous point.

Fig. 4 compares the performance of our method with a sin-
gle modality Gaussian policy optimized by REINFORCE.
Notice that we do not add the intrinsic reward for dense
reward maximization tasks. The Gaussian policy, initialized
at 0 with a large standard deviation, can cover the whole so-
lution space. However, the gradient w.r.t µ is positive, which
means the action probability density will be pushed towards
the right, as the expected return on the right side is larger
than the left side, although the left side contains a higher
extreme value. As a result, the policy will move right and
get stuck at the local optimum with a low chance of jumping
out. In contrast, under the entropy maximization formula-
tion, our method maximizes the reward while seeking to
increase diversity, providing more chances for the policy to
explore the whole solution space. Furthermore, by turning
the latent variables into action distribution, our method can
build a multimodal policy distribution that fits the multi-
modal rewards, explore both modalities simultaneously, and
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Figure 4. Illustrative experiment on continuous bandit Figure 5. Illustrative experiment on 2D maze navigation problem

Figure 6. Results on dense re-
ward tasks with local optima (ex-
ploration disabled)

Figure 7. Results on sparse reward tasks

eventually stabilize at the global optimum. This experiment
suggests that a multimodal policy is necessary for reward
maximization, and our method can help the policy better
handle local optima.

Can multimodal policies accelerate exploration? We
argue that maintaining a multimodal policy is beneficial
even in the existence of an intrinsic reward to guide the
exploration. We illustrate it in a 2D maze navigation task
shown in Figure 5. The maze consists of 5⇥ 5 grids. Each
of them is connected with neighbors with a narrow passage.
The agent starts in the center grid and can move in four
directions. The action space is its position change in two
directions (�x,�y).

We apply RPG and single-modality model-based
SAC (Haarnoja et al., 2018) on this environment to
maximize the intrinsic reward described in Sec. 4.3.2.
We count the areas covered by the two policies during
exploration with respect to the number of samples in
Fig. 5(D). The curve suggests that our method explores the
domain much faster, quickly reaching most grids, while
the Gaussian agent only covers the right part of the maze

within a limited sample budget.

To understand their differences, we visualize states sam-
pled at different training steps of the two policies in Fig. 5
(A-B). Our policy below quickly finds four directions to
move and gradually expands the state distribution until it
fully occupies all grids. Fig. 5(C) shows the historic state
visitation count. It is easy to see that our multimodal policy
induces a more uniform distribution over the whole state
space, generating a higher state distribution entropy. The
optimization procedure of single-modality policy, as shown
in the first row of Fig. 5, suffers from its policy parameter-
ization. It can only explore one modality every time and
has to switch modalities one by one, where modalities refer
to different regions of the state space. It is hard to predict
when it switches modality, making algorithms behave vastly
differently in different environments with different random
seeds. Sometimes it moves slowly from one direction to
another because it has to wait for samples for density es-
timators to generate enough momentum. As a result, it
never explores the left side in Fig. 5(C). While sometimes, it
switches too fast due to the fast updates of the network and
does not exploit some modalities enough, missing far-end
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grids of certain directions that it has explored once. This
also causes issues when maximizing external rewards. Even
if a single-modal policy finds the optimal solution, it may
switch to another modality to continue exploration and it
is hard to guarantee that it would come back in the end. In
contrast, our method is more like Monte-Carlo sampling,
which samples all candidates while converging to solutions
of high rewards with high probability.

5.2. Continuous Control Problems

We now verify if our method can scale up and help solve
challenging continuous control problems. We take 8 rep-
resentative environments from standard RL benchmarks,
including 2 table-top environments from MetaWorld (Yu
et al., 2020), 2 dexterous hand manipulation tasks from Ra-
jeswaran et al. (2017), 1 navigation problems from Nachum
et al. (2018b), and 2 articulated object manipulation from
ManiSkill (Mu et al., 2021). We show environment ex-
amples and provide a detailed environment description in
Appendix C. Only Cabinet (Dense) and AntPush contain
dense rewards that lead to local optima. The remaining 6
environments all only provide sparse rewards, which means
the agents receive a reward 1 when it succeeds to finish the
task and 0 otherwise. This change dramatically increases the
difficulty of these environments and disastrously hurts the
performance of classical RL methods like SAC (Haarnoja
et al., 2018) and PPO (Schulman et al., 2017).

We evaluate our methods against the following baselines:
DreamerV2 + Plan2Explore (Sekar et al., 2020), abbreviated
as DreamerV2 (P2E), a model-based exploration method
based on the disagreement of learned models’ prediction.
We also consider 3 baselines, TDMPC, MBSAC, and SAC
using the same intrinsic rewards as ours. The suffix (R)
means that when we apply these methods to a sparse-reward
environment, we will add RND intrinsic rewards that are the
same as in our method. For all results evaluated on dense-
reward environments in Figure 6, the exploration method of
the corresponding algorithm is disabled. The standard SAC
without intrinsic rewards validates the difficulty of our tasks.
Details of the baseline implementations are in Appendix D.

Fig. 6 and 7 plots the learning progress of each algorithm in
all environments (x-axis: number of environment interaction
steps in million, y-axis: task success rate). For all environ-
ments, we run each algorithm for at least five trials. The
curve and the shaded region shows the average and the stan-
dard deviation of performance over trials. MBSAC shares
almost the same implementation as our method, except that
it does not condition its policy on latent variables..

We first observe that, for dense reward tasks, our method
largely improves the success rate on tasks with local optima
(Fig. 6). We can see that in both AntPush and Cabinet
(Dense) tasks, our method outperforms all baselines. Our

method consistently finds solutions, regardless of the local
optima in the environments. For example, in the task of
opening the cabinets’ two doors and going to the two sides
of the block, our method usually explores the two directions
simultaneously and converges at the global optima. In con-
trast, other methods’ performance highly depends on their
initialization. If the algorithm starts by opening the wrong
doors or pushing the block in the wrong direction, it will
not escape from the local minimums; thus, its success rates
are low.

Our methods successfully solve the 6 sparse reward tasks as
shown in Fig. 7. Especially, it consistently outperforms the
MBSAC(R) baseline, which is a method that only differs
from ours by the existence of latent variables to parameterize
the policy. Our method reliably discovers solutions in envi-
ronments that are extremely challenging for other methods
(e.g., the StickPull environment), clearly demonstrating the
advantages of our method in exploration. Notably, we find
that MBSAC(R), which is equipped with our object-centric
RND, is a strong baseline that can solve AdroitHammer
and AdroitDoor faster than DreamerV2(P2E), proving the
effectiveness of our intrinsic reward design. TDMPC(R)
has a comparable performance with MBSAC(R) on several
environments. We validate that it has a faster exploration
speed in Adroit Environments thanks to latent planning. We
find that the Dreamer(P2E) does not perform well except
for the BlockPush environment without the object prior
and is unable to explore the state space well. We visualize
modalities explored by our method in Appendix E.

5.3. Additional Experiments

Ablation study We analyze various factors influencing the
performance of our method in the Maze navigation task in
Section 5.1. More detailed discussion and experiment re-
sults are in Appendix B. Experimental comparisons between
different latent spaces show that a Gaussian distribution of
dimension 12 outperforms the categorical latent space, both
surpassing a baseline that does not use latent variables. A
moderate latent space size � 6 is found to be sufficient, with
performance declining if the latent dimensions are too small.
In terms of reward maximization, the weight of the cross-
entropy term (�) is crucial, with results indicating an ideal
range between 0.001 and 0.01 for the RND design. Further-
more, the performance from RND is tied to maintaining a
large replay buffer and using positional embedding, with
a lack of either resulting in degraded exploration. A com-
parative analysis of policy parameterization methods shows
the superiority of the vanilla Gaussian policy over the Gaus-
sian Mixture Models (GMM) and CEM-based policy. The
latter two display several optimization issues; GMM strug-
gles with log-likelihood maximization, and CEM, despite
its proficiency at finding local optima, tends to sacrifice its
explorative capabilities. Finally, normalizing flow showed
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initial promise but soon encountered numerical instabilities,
highlighting the need for further investigation.

Evaluation on locomotion environments We modified the
HalfCheetah-v3 environment in OpenAI Gym (Brockman
et al., 2016) to study the performance of our methods in
locomotion tasks, shown in Figure 11 in the appendix. The
cheetah robot moves backward for a certain distance to
receive a sparse reward of 1 to succeed. Our exploration
method was able to effectively aid the exploration of the
Cheetah robot and solve the task easily while removing the
exploration term that led to the agent getting stuck. However,
in this particular task, modeling multi-modal exploration
did not increase the sampling efficiency, as there were only
two modalities (moving forward and backward), and model-
based SAC could exploit the two modes one by -one and
solve the task. This made the advantage of our method neg-
ligible in this case. We also evaluated our method compared
to SAC (Haarnoja et al., 2018) on the standard Mujoco
environments. Results are shown in Fig. 12.

Vision-based RL As a proof of concept, we illustrate, in
Fig. 13, the potential of our method for image observations
in a single-block pushing environment: the observation
consists of two consecutive 64x64 RGB images; the agent
needs to control the red block to push the purple box into the
target region. We use 4-layer convolutional networks as the
encoder for both the policy network and RND estimator. We
compare our method with model-based SAC (RND), which
has an intrinsic reward to guide exploration but only models
single modality policies, and model-based SAC without
RND. The result validates our method’s effectiveness.

6. Limitation and Future Work
Our approach capitalizes on the advantages offered by multi-
ple components, effectively addressing complex exploration
issues in continuous spaces. However, it also introduces
certain hurdles and constraints. For instance, our intrinsic
reward is predicated on assumptions regarding the recogni-
tion of objects and their spatial positioning. This approach
may be unsuitable in environments with unidentified objects
or where observations don’t plainly reveal object-related
information, akin to scenarios in vision-based RL; Learning
the world model typically results in a slower pace of gradi-
ent updates; Incorporating a cross-entropy network adds an
extra layer of complexity to the network design and training.
Therefore, it is worth discussing potential future directions
that might address these limitations.

Object-centric learning for vision-based RL While the
Random Network Distillation (RND) is initially tailored
for image observations, integrating object-centric design
to accelerate exploration in vision-based RL will be an in-
teresting direction. This suggests two typical strategies to

apply our method to tasks with vision observations: (1) The
first involves directly encoding observations without con-
sidering object information. It proves effective in scenarios
with no occlusion and a static background, wherein objects
emerge as the sole salient feature of the input. We pro-
vide a proof-of-concept experiment in Section 5.3. (2) The
second approach harnesses computer vision techniques to
identify objects for object-centric exploration. This includes
applying recent large-scale vision foundation models, which
possess zero-shot object detection capabilities as outlined in
(Zhang et al., 2022) or leveraging slot-attention for object
discovery as described in (Locatello et al., 2020).

Combining with previous model-based control and plan-
ning methods Instead of learning the world model from
on-policy data, we can pre-train a physical world model (Li
et al., 2019) or use analytical models (Posa et al., 2014;
Huang et al., 2021) to gain generalizability and efficiency.
Moreover, we drew inspiration from RRT-like motion plan-
ners (Karaman & Frazzoli, 2011) to derive our policy to
sample over the configuration space and bias the explo-
ration towards significant kinematics changes. Thus, an
exciting direction is incorporating structures in model-based
control into RL algorithms, including temporal structures
like dynamics motion primitives (Stulp & Sigaud, 2013) and
semantic information from TAMP (Garrett et al., 2021).

Extending to other probabilistic models Our method can
be viewed as variational inference (Ranganath et al., 2014)
over a particular stochastic computation graph (Weber et al.,
2019). The computation graph contains hidden variables,
and we use the Bellman equation and a learned model to
estimate its gradient. This provides a new perspective that
bridges online Reinforcement Learning (RL) with genera-
tive models and sequence modeling. In the future, we are
interested in exploring how sequence-modeling techniques,
such as transformers and hierarchical methods, can be used
to model the policy in our framework.

7. Conclusion
We derive a framework that models the policy of continuous
RL by a multimodal distribution in the variational inference
framework. The method reparameterizes latent variables
into trajectories like generative models. Under this frame-
work, we learn a world model to help learn multimodal
policy data efficiently. Incorporating an object-centric in-
trinsic reward, our method can solve challenging continuous
control problems with little to no reward signal.
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Kappen, H. J., Gómez, V., and Opper, M. Optimal control as
a graphical model inference problem. Machine learning,
87(2):159–182, 2012.

Karaman, S. and Frazzoli, E. Sampling-based algorithms
for optimal motion planning. The international journal
of robotics research, 30(7):846–894, 2011.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

Kulkarni, T. D., Narasimhan, K., Saeedi, A., and Tenen-
baum, J. Hierarchical deep reinforcement learning: In-
tegrating temporal abstraction and intrinsic motivation.
Advances in neural information processing systems, 29,
2016.

Kumar, S., Kumar, A., Levine, S., and Finn, C. One solution
is not all you need: Few-shot extrapolation via structured
maxent rl. Advances in Neural Information Processing
Systems, 33:8198–8210, 2020.

Levine, S. Reinforcement learning and control as proba-
bilistic inference: Tutorial and review. arXiv preprint
arXiv:1805.00909, 2018.

Li, C., Xia, F., Martin-Martin, R., and Savarese, S. Hrl4in:
Hierarchical reinforcement learning for interactive navi-
gation with mobile manipulators. In Conference on Robot
Learning, pp. 603–616. PMLR, 2020.

Li, Y., Song, J., and Ermon, S. Infogail: Interpretable
imitation learning from visual demonstrations. Advances
in Neural Information Processing Systems, 30, 2017.

Li, Y., Wu, J., Tedrake, R., Tenenbaum, J. B., and Torralba,
A. Learning particle dynamics for manipulating rigid
bodies, deformable objects, and fluids. In ICLR, 2019.

Locatello, F., Weissenborn, D., Unterthiner, T., Mahendran,
A., Heigold, G., Uszkoreit, J., Dosovitskiy, A., and Kipf,
T. Object-centric learning with slot attention. Advances
in Neural Information Processing Systems, 33:11525–
11538, 2020.

Lynch, C., Khansari, M., Xiao, T., Kumar, V., Tompson, J.,
Levine, S., and Sermanet, P. Learning latent plans from
play. In Conference on robot learning, pp. 1113–1132.
PMLR, 2020.

Mazzaglia, P., Verbelen, T., Dhoedt, B., Lacoste, A., and
Rajeswar, S. Choreographer: Learning and adapting
skills in imagination. arXiv preprint arXiv:2211.13350,
2022.

Mendonca, R., Rybkin, O., Daniilidis, K., Hafner, D., and
Pathak, D. Discovering and achieving goals via world
models. Advances in Neural Information Processing
Systems, 34:24379–24391, 2021.

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T.,
Ramamoorthi, R., and Ng, R. Nerf: Representing scenes
as neural radiance fields for view synthesis. Communica-
tions of the ACM, 65(1):99–106, 2021.

Moon, T. K. The expectation-maximization algorithm. IEEE
Signal processing magazine, 13(6):47–60, 1996.

Mu, T., Ling, Z., Xiang, F., Yang, D., Li, X., Tao, S., Huang,
Z., Jia, Z., and Su, H. Maniskill: Generalizable manipu-
lation skill benchmark with large-scale demonstrations.
arXiv preprint arXiv:2107.14483, 2021.

Nachum, O., Gu, S., Lee, H., and Levine, S. Near-optimal
representation learning for hierarchical reinforcement
learning. arXiv preprint arXiv:1810.01257, 2018a.

Nachum, O., Gu, S. S., Lee, H., and Levine, S. Data-efficient
hierarchical reinforcement learning. Advances in neural
information processing systems, 31, 2018b.

Ng, A. Cs229 lecture notes. CS229 Lecture notes, 1(1):1–3,
2000.

OpenAI, Akkaya, I., Andrychowicz, M., Chociej, M.,
Litwin, M., McGrew, B., Petron, A., Paino, A., Plap-
pert, M., Powell, G., Ribas, R., Schneider, J., Tezak, N.,
Tworek, J., Welinder, P., Weng, L., Yuan, Q., Zaremba,
W., and Zhang, L. Solving rubik’s cube with a robot
hand. CoRR, abs/1910.07113, 2019. URL http:
//arxiv.org/abs/1910.07113.

Osa, T., Tangkaratt, V., and Sugiyama, M. Hierarchical rein-
forcement learning via advantage-weighted information
maximization. arXiv preprint arXiv:1901.01365, 2019.

11

http://arxiv.org/abs/1910.07113
http://arxiv.org/abs/1910.07113
Litian
13



Reparameterized Policy Learning for Multimodal Trajectory Optimization

Osa, T., Tangkaratt, V., and Sugiyama, M. Discovering
diverse solutions in deep reinforcement learning by max-
imizing state–action-based mutual information. Neural
Networks, 152:90–104, 2022.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., and Chintala, S. Pytorch: An imperative style,
high-performance deep learning library. In Advances
in Neural Information Processing Systems 32, pp. 8024–
8035. Curran Associates, Inc., 2019.

Peng, X. B., Guo, Y., Halper, L., Levine, S., and Fidler,
S. Ase: Large-scale reusable adversarial skill embed-
dings for physically simulated characters. arXiv preprint
arXiv:2205.01906, 2022.

Pertsch, K., Lee, Y., and Lim, J. Accelerating reinforcement
learning with learned skill priors. In Conference on robot
learning, pp. 188–204. PMLR, 2021.

Posa, M., Cantu, C., and Tedrake, R. A direct method for
trajectory optimization of rigid bodies through contact.
The International Journal of Robotics Research, 33(1):
69–81, 2014.

Rajeswaran, A., Kumar, V., Gupta, A., Vezzani, G., Schul-
man, J., Todorov, E., and Levine, S. Learning complex
dexterous manipulation with deep reinforcement learning
and demonstrations. arXiv preprint arXiv:1709.10087,
2017.

Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Rad-
ford, A., Chen, M., and Sutskever, I. Zero-shot text-
to-image generation. In International Conference on
Machine Learning, pp. 8821–8831. PMLR, 2021.

Ranganath, R., Gerrish, S., and Blei, D. Black box varia-
tional inference. In Artificial intelligence and statistics,
pp. 814–822. PMLR, 2014.

Rasul, K., Seward, C., Schuster, I., and Vollgraf, R. Au-
toregressive denoising diffusion models for multivariate
probabilistic time series forecasting. In International Con-
ference on Machine Learning, pp. 8857–8868. PMLR,
2021.

Reed, S., Zolna, K., Parisotto, E., Colmenarejo, S. G.,
Novikov, A., Barth-Maron, G., Gimenez, M., Sulsky,
Y., Kay, J., Springenberg, J. T., et al. A generalist agent.
arXiv preprint arXiv:2205.06175, 2022.

Rezende, D. and Mohamed, S. Variational inference with
normalizing flows. In International conference on ma-
chine learning, pp. 1530–1538. PMLR, 2015.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp.
10684–10695, 2022.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K.,
Sifre, L., Schmitt, S., Guez, A., Lockhart, E., Hassabis,
D., Graepel, T., et al. Mastering atari, go, chess and shogi
by planning with a learned model. Nature, 588(7839):
604–609, 2020.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Sekar, R., Rybkin, O., Daniilidis, K., Abbeel, P., Hafner, D.,
and Pathak, D. Planning to explore via self-supervised
world models. In III, H. D. and Singh, A. (eds.), Pro-
ceedings of the 37th International Conference on Ma-
chine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 8583–8592. PMLR, 13–18 Jul
2020. URL https://proceedings.mlr.press/
v119/sekar20a.html.

Shankar, T. and Gupta, A. Learning robot skills with tempo-
ral variational inference. In International Conference on
Machine Learning, pp. 8624–8633. PMLR, 2020.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and
Riedmiller, M. Deterministic policy gradient algorithms.
In International conference on machine learning, pp. 387–
395. PMLR, 2014.

Stulp, F. and Sigaud, O. Robot skill learning: From re-
inforcement learning to evolution strategies. Paladyn,
Journal of Behavioral Robotics, 4(1):49–61, 2013.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Todorov, E. Linearly-solvable markov decision problems.
Advances in neural information processing systems, 19,
2006.

Todorov, E. General duality between optimal control and
estimation. In 2008 47th IEEE Conference on Decision
and Control, pp. 4286–4292. IEEE, 2008.

Toussaint, M. Robot trajectory optimization using approx-
imate inference. In Proceedings of the 26th Annual In-
ternational Conference on Machine Learning, ICML ’09,
pp. 1049–1056, New York, NY, USA, 2009. Associa-
tion for Computing Machinery. ISBN 9781605585161.
doi: 10.1145/1553374.1553508. URL https://doi.
org/10.1145/1553374.1553508.

12

https://proceedings.mlr.press/v119/sekar20a.html
https://proceedings.mlr.press/v119/sekar20a.html
https://doi.org/10.1145/1553374.1553508
https://doi.org/10.1145/1553374.1553508
Litian
14



Reparameterized Policy Learning for Multimodal Trajectory Optimization

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Weber, T., Heess, N., Buesing, L., and Silver, D. Credit
assignment techniques in stochastic computation graphs.
In The 22nd International Conference on Artificial Intel-
ligence and Statistics, pp. 2650–2660. PMLR, 2019.

Xiang, F., Qin, Y., Mo, K., Xia, Y., Zhu, H., Liu, F., Liu, M.,
Jiang, H., Yuan, Y., Wang, H., et al. Sapien: A simulated
part-based interactive environment. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 11097–11107, 2020.

Ye, W., Liu, S., Kurutach, T., Abbeel, P., and Gao, Y. Mas-
tering atari games with limited data. Advances in Neural
Information Processing Systems, 34:25476–25488, 2021.

Yu, T., Quillen, D., He, Z., Julian, R., Hausman, K., Finn,
C., and Levine, S. Meta-world: A benchmark and evalua-
tion for multi-task and meta reinforcement learning. In
Conference on robot learning, pp. 1094–1100. PMLR,
2020.

Zhang, H., Zhang, P., Hu, X., Chen, Y.-C., Li, L., Dai,
X., Wang, L., Yuan, L., Hwang, J.-N., and Gao, J.
Glipv2: Unifying localization and vision-language
understanding. In Koyejo, S., Mohamed, S., Agar-
wal, A., Belgrave, D., Cho, K., and Oh, A. (eds.),
Advances in Neural Information Processing Systems,
volume 35, pp. 36067–36080. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.
cc/paper_files/paper/2022/file/
ea370419760b421ce12e3082eb2ae1a8-Paper-Conference.
pdf.

Zhang, T., Xu, H., Wang, X., Wu, Y., Keutzer, K., Gonza-
lez, J. E., and Tian, Y. Noveld: A simple yet effective
exploration criterion. Advances in Neural Information
Processing Systems, 34:25217–25230, 2021.

Zheng, Q., Zhang, A., and Grover, A. Online decision
transformer. arXiv preprint arXiv:2202.05607.

Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. Unpaired
image-to-image translation using cycle-consistent adver-
sarial networks. In Proceedings of the IEEE international
conference on computer vision, pp. 2223–2232, 2017.

Ziebart, B. D. Modeling purposeful adaptive behavior with
the principle of maximum causal entropy. Carnegie Mel-
lon University, 2010.

13

https://proceedings.neurips.cc/paper_files/paper/2022/file/ea370419760b421ce12e3082eb2ae1a8-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/ea370419760b421ce12e3082eb2ae1a8-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/ea370419760b421ce12e3082eb2ae1a8-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/ea370419760b421ce12e3082eb2ae1a8-Paper-Conference.pdf
Litian
15



Reparameterized Policy Learning for Multimodal Trajectory Optimization

A. Implementation Details
Network architecture We use the following two-layer MLP to model policy ⇡✓, value Q , state encoder f , and the
encoder p�(z|s). The network structures are shown in the pytorch’s convention (Paszke et al., 2019).

Sequential(
(0): Linear(in_features=inp_dim, out_features=256, bias=True)
(1): ELU(alpha=1.0)
(2): Linear(in_features=256, out_features=256, bias=True)
(3): ELU(alpha=1.0)
(4): Linear(in_features=256, out_features=out_dim, bias=True)

)

The dynamics network is a single-layer GRU with a hidden dimension 256. The RND network g✓ we use is a 3 layer MLP
network with hidden dimension 512 and leaky ReLU as its activation function.

We maintain target networks like the standard double Q learning. The hyperparameters for training the network are listed in
Table 1.

Hyperparameter Value

Discount factor (�) 0.99
Seed step 1000

Replay buffer size 800000
Model rollout horizon (H) 3

Action distribution Tanh Normal
Entropy target �|A|

Initial entropy coefficient ↵ 0.01
Cross-entropy coefficient � 0.005

RND coefficient � 0.1
Environment steps per gradient update 5

Temperature T

Learning rate 3⇥ 10�4

Batch size 512
Target network update ratio 0.005

Actor update freq 2
State embedding dimension 100

grad norm clip 1.0
Positional encoding dimension 6

Latent distribution Z Normal
Z dimension 12

p�(z|s, a) distribution Normal distribution with std 0.38
⇡✓(z|s1) N (0, 1) for sparse reward tasks

Table 1. RPG hyperparameters. We here list the hyper-parameters used in the experiments. The hyper-parameters keep the same for our
MBSAC baseline except that MBSAC has no latent space. Notice that for dense reward tasks, the entropy of ⇡✓(z|s1) is linearly decayed
starting from 3⇥ 105 environment steps to 1M steps to ensure optimality.

B. Ablation Study
We study and compare various factors in our methods in Fig. 8 on the Maze navigation task described in Sec. 5.1. Fig. 8(A)
compares different latent spaces to use. The continuous latent space modeled by a Gaussian distribution of dimension
12 outperforms the categorical latent space, while both are better than the one without latent variables, i.e., the MBSAC
baselines. Fig. 8(B) shows the effects of our method when using a Gaussian distribution as the latent space with different �
values. The � controls the scale of the cross entropy term log p�(z|s, a) in reward maximization, as mentioned in Sec. 4.3.1.
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Algorithm 1 Model-based Reparameterized Policy Gradient
Input: p�,⇡✓, h , R , f , Q and an optional density estimator g✓
Initialize p�,⇡✓, construct the replay buffer B.
while time remains do

Sample start state o1 and encode it as s1 = f (o1). Select z from ⇡✓(z|s1).
Execute the policy ⇡✓(a|s, z) and store transitions into the replay buffer B.
Sample a batch of trajectory segment of length K {⌧ i

t:t+K
, z} from the buffer B.

Optional: update and estimate the density estimator g✓ and relabel transitions with the negative density as the intrinsic
reward.

Optimize  using Equation 4.
Optimize ⇡✓(a|s, z) with gradient descent to maximize the value estimate in Equation 3 for s, z sampled from the

buffer.
Optimize ⇡✓(z|s1) with policy gradient to maximize Vestimate(s1, z)� ↵ log ⇡✓(z|s1) for s1 sampled from the buffer.
Optimize ↵,� if necessary .

end while

Figure 8. Comparing different factors in our methods.

The policy will ignore the latent variable if the � is too small, e.g., 0., 1e� 4. But if the � is too large, though the policy
generates diverse solutions, it may explore too much without exploiting past experiences. This � plays a similar role as �
in ��VAE (Higgins et al., 2017). In experiments, we find that � from 0.001 to 0.01 works well in the case of our RND
design. Fig. 8(C) shows the effects of the latent dimensions. For tasks like 2D maze, a moderate latent space size d � 6 is
sufficient. But the performance will degrade when it is too small. Fig. 8(D) ablates our design for the RND. When the RND
estimator does not maintain a large replay buffer or does not use the positional embedding, the exploration will suffer a lot.
We further compare various policy parameterization methods in Fig. 8(E). We find that in our implementation, Gaussian
mixture models (GMM) and CEM-based policy do not perform as well as the vanilla Gaussian policy. GMM may have
trouble in log-likelihood maximization. We noticed several numerical issues in optimizing GMM and Flow when we applied
them with RND in sparse reward tasks. Specifically, we have encountered some instability when optimizing the log prob for
GMM due to its non-convex nature and the need for sampling to estimate entropy. Similarly, our experiments with Flow
have revealed significant parameter divergence and instabilities, warranting further investigation to pinpoint the root cause.
CEM has a stronger ability to find local optima and generates actions with less randomness, which may sacrifice its ability
to do exploration. Besides, we find the policy parameterized by a normalizing flow distribution behaves well initially but
soon meets numerical instabilities and fails to proceed with optimization, suggesting more investigations are needed in this
direction.
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C. Environment Details

Cabinet (Dense) (Gu et al., 2023). The agent controls the movement of a 12 dof mobile robot arm
and gripper robot to open both cabinet doors. The agent receives a dense reward for reaching its
nearest door’s handle. Besides, it receives a higher reward when it opens the right door than the left
door. The agent succeeds when it fully opens the right door while the dense reward will typically
drive the agent close to the handle of the left door. The episode length is 60.

AntPush (Nachum et al., 2018b). The agent controls an ant robot with action dimension 8 to go to
the upper room. The reward is the l2 distance between the agent and a point in the upper room. The
optimal path is to go to the left of the red block and push it to the right and go to the upper room.
However, agents often get stuck at the local optima, which pushes the block forward or moves to go
to the right side. The episode length is 400.

Door (Rajeswaran et al., 2017). The agent controls a dexterous hand with action dimension 26 to
open a door. The agent only receives a reward of 1 when it successfully undoes the latch and opens
the door. The episode length is 100 with an action repeat 2. Objects of interest include the hand’s
palm, the latch, and the door.

Hammer (Rajeswaran et al., 2017). The agent controls a dexterous hand with action dimension 26
to force drive a nail into the board. The agent only receives a reward of 1 when it has driven the
nail all the way in. Action repeat is 2. The episode length is 125. We encode the position of the
hand’s palm, the hammer, and the nail.

BlockPush (Xiang et al., 2020). The agent controls the movement of the red block with action
dimension 2 to push the green block (middle) to the green destination (above) and the blue block
(middle) to the blue destination (above). The agent only receives a reward of 1 when it has
successfully pushed both blocks to the exact destination with a small tolerance. The objects of
interest contain the location of the three blocks. The environment horizon is 60.

Cabinet (Sparse) (Gu et al., 2023). The agent controls the movement of a 9 dof robot arm and
gripper robot to open both doors of the cabinet. The agent only receives a reward of 1 when both
cabinet doors are fully opened. We encode the position of the robot’s end effector and the location
of the cabinet’s door. Its episode length is 60.
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Meta-World BaseketBall (Yu et al., 2020). The agent controls the movement of a gripper with a 4
dof controller to move the ball into the basket. The agent only receives a reward of 1 when the ball
is sufficiently close to the basket. The locations of the ball and the location of robots’ fingertips are
what we are concerned about. The episode length is 100, including 2 action repeats.

Meta-World StickPull (Yu et al., 2020). The agent controls the movement of a gripper with a 4 dof
controller to pull the container with a blue stick. The agent receives a reward of 1 only when the
stick is inserted inside the handle, and the container is already pulled sufficiently close to the green
dot. We encode the positions of the fingertips, the stick, and the handle of the cup for computing
intrinsic rewards. The remaining setup is the same as BasketBall.

D. Baseline
TDMPC (Hansen et al., 2022), we used the publically available official implementation and default hyperparameters
provided by the authors at https://github.com/nicklashansen/tdmpc.

SAC (Haarnoja et al., 2018), we implemented according to the original paper and used the default hyperparameter provided
by the authors.

We use the abbreviation TDMPC(R), SAC(R) to represent that we add an intrinsic reward with scale 0.1 for exploration in
environments with only sparse rewards.

DreamerV2 (Hafner et al., 2020), we used the publically available official implementation and default hyperparameters
provided by the authors at https://github.com/danijar/dreamerv2.

Plan2Explore (Sekar et al., 2020), we run DreamerV2 according to the instructions provided by
https://github.com/ramanans1/plan2explore with hyperparameters provided by the authors of the paper.

For all baseline algorithms, we only change model update frequency to once every 5 environment steps.

E. Visualization of the Multimodal Exploration
We plot the trajectory of the agent in AntPush environment, evaluated at different numbers of training stages in Fig. 9. The
agent learned to move forward and explored all directions that would decrease the l2 distance. It found the left side was
easier for moving up in the beginning, but at episode 360, it learned to explore all directions. Ultimately, it explored the left
path to the upper room and converged on it.

Figure 9. Exploration of AntPush, which has the dense reward to guide the agent to move forward.

We also plot the sampled states during exploration for Block, Cabinet, and Stickpull Envs in Fig. 10.
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Figure 10. Exploration on several environments; The first column shows the initial state. The right 5 figures of the same row plot states
sampled from a single agent.

F. Connection with Other Generative Models
Our method is based on the same variational bound shared with many other generative models

log p(x) = Ez⇠q(z) [log p(x, z)� log q(z)] +KL(q(z)kp(z|x)).

By different choices of latent space, posterior q(z|x), joint distribution p(x, z), we can obtain different generative models.
For example, VAE models p✓(x, z) = p✓(x|z)p(z) and q(z) = q�(z|x) using neural networks and then optimize ✓,� jointly
to maximize the ELBO bound. By doing so, q�(z|x) will align with the true posterior of p✓(z|x). Thus

log p(x) � Ez⇠q�(z|x)[log p✓(x|z) + log p(z)� log q�(z|x)]

The Expectation–maximization algorithm (EM) (Dempster et al., 1977) for learning Gaussian mixture models as-
sumes that we have p✓(x, z) = p✓(x|z)p✓(z) where z is a categorical representation. E-step: finding q�(z|x) by
solving max� log p✓(x) � DKL(q�(z|x)||p✓(z|x)) where p✓(z|x) = p✓(x, z)/

R
p✓(x, z)dz. M-step: fixing �, find

max✓ Eq� [log p✓(x, z)]� Eq� [log q�(z|x)] which is exactly maximizing the ELBO.

In Maximum Entropy RL (Levine, 2018), we have optimality p(O, ⌧) = p(O|⌧)p(⌧) defined by the reward, and we optimize
⇡✓(⌧ |O) only. The ELBO bound becomes a maximum entropy term E⌧⇠⇡ [log p(O|⌧) + log p(⌧)� log ⇡(⌧)] . Our method
differs from it by introducing an additional variable z. Table 2 compares various generative models.

Latent Encoder q(z|x) Joint p(x, z) MLE objective

VAE z p�(z|x) p✓(x|z)p(z) p(x)
EM z max� log p✓(x)�DKL(q�(z|x)||p✓(z|x)) p✓(x|z)p✓(z) p(x)

Diffusion {xt}t�1
Q

T

i=1 N (xt;
p
1� �txt�1,�tI) p(xT )

Q
t�1 p✓(xt�1|xt) p(x0)

MaxEntRL ⌧ ⇡✓(⌧) p(O|⌧)p(⌧) p(O)
RPG ⌧, z ⇡✓(z, ⌧) p(O|⌧)p�(z|⌧)p(⌧) p(O)

Table 2. Comparison of different algorithms that optimize ELBO bounds for inference
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G. Environments and Results in Additional Experiments
Cheetah Back

Figure 11. Cheetah Back Task (left), success rate (right)

Standard Mujoco-v2 Environments

Figure 12. Results on Mujoco-v2 Environments

Vision-based RL

Figure 13. Visual Block Push Task (left), success rate (right)
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Figure 1. Example multi-view videos in Robo360 dataset.

Abstract
Building robots that can automate labor-intensive tasks

has long been the core motivation behind the advancements
in computer vision and the robotics community. Recent
interest in leveraging 3D algorithms, particularly neural
fields, has led to advancements in robot perception and
physical understanding in manipulation scenarios. How-
ever, the real world’s complexity poses significant chal-
lenges. To tackle these challenges, we present Robo360, a
dataset that features robotic manipulation with a dense view
coverage, which enables high-quality 3D neural represen-
tation learning, and a diverse set of objects with various
physical and optical properties and facilitates research in
various object manipulation and physical world modeling
tasks. We confirm the effectiveness of our dataset using ex-
isting dynamic NeRF and evaluate its potential in learning
multi-view policies. We hope that Robo360 can open new

research directions yet to be explored at the intersection of
understanding the physical world in 3D and robot control.

1. Introduction

Mastering robotic manipulation in 3D is crucial for embod-
ied agents. It involves manipulating objects within three-
dimensional spaces to accomplish tasks. This field has
seen growing interest recently. Advancements in 3D al-
gorithms, particularly neural fields, have significantly en-
hanced robots’ ability to perceive and act in 3D environ-
ments [24, 31, 38, 74]. Techniques like [16, 59, 75] use
neural fields for neural policy training, facilitating com-
plex decision-making in 3D scenarios. Moreover, [17,
32, 35, 54] employ these fields in world model develop-
ments [25, 33, 54].
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Despite recent advancements, the real-world complex-
ity poses substantial challenges to robotic systems. These
challenges include the need for precise recognition of ob-
jects, materials, and deformations in 3D space, and the han-
dling of complex scenarios involving specular and transpar-
ent objects. Additionally, real-world objects exhibit diverse
physical properties, from rigid bodies to deformables and
fluids. Consequently, creating comprehensive world mod-
els that support model-based planning and the development
of generalizable policies is an intricate task.

To overcome these challenges, the development of a
dataset of dynamic scenes featuring real-world robot ma-
nipulation is crucial. This dataset would propel the de-
velopment of algorithms and hardware in 3D robotic ma-
nipulation, serving as an exhaustive test set for evaluat-
ing progress. The dataset should include a diverse range
of objects with different visual and physical attributes to
enable robust testing across various scenarios. Moreover,
it should provide abundant, and ideally, redundant 3D in-
formation to facilitate the comparison of robot vision sys-
tems with varying algorithmic and hardware configurations.
With a one-time investment in collecting such information-
rich data, which might be via advanced devices, benefits
may be brought to meet varied user requirements. For ex-
ample, the dataset can help design systems with limited
views that are cheap and scalable at deployment time. As
another example, the detailed information on deformable
objects will aid in the training and evaluation of neural sim-
ulators [17, 34]. Lastly, the dataset must incorporate action
information so agents can understand how their actions in-
fluence the 3d environments.

Existing datasets often fail to meet these criteria. 3D
datasets like [9] typically use limited viewpoint cameras
and struggle with non-diffuse materials. Motion datasets
like [40, 42] lack detailed action information. Large-scale
robotic manipulation datasets [19, 67] still face viewpoint
limitations, highlighting the need for a comprehensive ap-
proach combining robotics and 3D vision. This gap is also
evident in fields like dynamic NeRF [21, 72], which often
rely on limited real or simulated scenes for training.

In this paper, we introduce Robo360, showcased in Fig-
ure 1, as the first real-world omnispective robotic ma-
nipulation dataset specifically designed to foster research
in 3D robotic manipulation. This dataset comprises over
2, 000 multi-view robotic manipulation trajectories gener-
ated through teleoperation [53]. To capture these trajecto-
ries, we established a multi-view system with 86 cameras,
each precisely calibrated and temporally aligned across dif-
ferent viewpoints. The extensive visual information in
Robo360 facilitates the creation of high-quality 3D neural
fields, leveraging recent progress in 3D neural representa-
tion learning. The diversity of Robo360 is another high-
light; the dataset includes 100 objects with over 20 differ-

ent materials, encompassing a broad spectrum of optical
and physical properties. This diversity supports studies in a
wide array of object manipulation and physical world mod-
eling challenges. Comparative analysis of Robo360 with
previous real-world robotic datasets is presented in Tables 1.

In preliminary experiments with Robo360, we explore
3D neural scene representation learning and multi-view pol-
icy learning to validate the dataset. We systematically eval-
uate dynamic neural radiance field methods on our dataset
and confirm the dataset’s effectiveness in supporting imi-
tation learning for robots to develop and generalize multi-
view manipulation skills. Robo360 is expected to advance
research in 3D scene representation learning, visual policy
learning, and material modeling, enhancing the understand-
ing of the physical world for robot control.

Our contributions are summarized as follows:
• We curate a unique dataset featuring dynamic scenes of

robot manipulation, encompassing dense view coverage,
diverse objects with distinct mechanical and deformabil-
ity properties, various optical materials, per-frame high-
quality 3D neural representations, and precise robot ac-
tion information.

• We detail the technical challenges encountered in build-
ing a multi-view robotic manipulation data collection sys-
tem and outline a robust pipeline to address these chal-
lenges.

• We conduct evaluations of existing 3D dynamic NeRF al-
gorithms in real-world robot manipulation scenarios.

• A policy learning algorithm that adapts to multi-view in-
puts, showcasing its versatility across various views.

2. Related Work
3D Dataset Captured in Real World Capturing real-
world objects and scenes is vital for computer vision re-
search. Numerous works [3, 9, 12, 60, 62] focus on col-
lecting large-scale scenes for indoor 3D scene understand-
ing, using RGB and depth cameras like Kinect and iPhone
LiDAR scanners. Similarly, [15, 61] employ RGB-D cam-
era rigs to capture individual objects, resulting in influen-
tial datasets like YCB [7]. However, existing depth sen-
sors struggle to capture accurate depth for highly specular
or transparent objects. Unlike depth sensors, RGB cam-
eras directly capture light and are unaffected by these is-
sues. Some works [28, 64] use gantries for precise cam-
era control during capture, but they have limited speed and
are unsuitable for dynamic scenes. To capture dynamic
scenes, complex view-dependent effects, and visual param-
eters, large arrays of RGB cameras and light stages have
been employed. For instance, [41] uses a 34-camera array
to capture intricate visual effects like fog, fluids, and fur, pi-
oneering neural radiance capture. Meanwhile, [14, 39] con-
centrate on capturing objects under controlled lighting con-
ditions for inverse rendering and material decomposition.
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Additionally, [29, 42, 51] capture dynamic scene videos to
advance dynamic scene representation in the field.

Dynamic NeRF The advancements in neural radiance
fields (NeRF) [48] have significantly improved the qual-
ity of novel view synthesis, enabling the generation of re-
alistic and detailed images from 3D scenes. One notable
extension of NeRF focuses on addressing dynamic scenes,
where objects or the scene itself undergo temporal changes.
This has led to the development of dynamic NeRF meth-
ods. One stream of the dynamic NeRF works directly ex-
tends the radiance field with the time dimension or a la-
tent code [18, 22, 35, 70]; some works utilize volume fac-
torization to convert 4D volume into multiple planes or
tensors [8, 21, 57], which provides a compact and effi-
cient representation for dynamic scenes. Another direc-
tion of works [20, 49, 50, 52, 65] focuses on construct-
ing an additional deformation field that maps point coor-
dinates from different time frames into a canonical space,
where large motion and geometry changes can be captured
and learned. Recently, with the emergence of 3D Gaus-
sian Splatting [30], which adopts a novel approach based
on point cloud rendering, a series of works started using 3D
Gaussians to model the dynamic scenes [43, 69, 72].

3D Robot Learning There is growing interest in robotics
policies based on 3D vision [16, 24, 38, 75], and NeRFs de-
rived from multi-view images have proven effective [16, 17,
34, 68, 75]. These neural fields serve as 3D representations,
trained concurrently with policy learning by reconstructing
multi-view observations. Then, policies are trained to con-
dition on past observations, using generative models to out-
put action sequences [11]. For example, imitation learn-
ing [75] learns policies from demonstrations, while rein-
forcement learning directly optimizes policies [16]. Neural
renderers also enhance world model learning [17, 32, 56],
allowing robots to plan using world models and forecast ex-
pected rewards.

Dataset for Robotic Manipulation and Physics Re-
cent advancements in imitation learning highlight the im-
portance of large-scale robot datasets for policy learn-
ing. These datasets are gathered through various methods
such as kinesthetic teaching [58], composing primitive ac-
tions [6, 13], or teleoperation [19, 67]. While some datasets
include multiple views [13, 19, 67], their limited viewpoints
hinder comprehensive 3D scene understanding. In con-
trast, obtaining multi-view and 3D data is more straight-
forward in simulated environments [24, 27, 31, 44–47, 73],
which facilitate testing robot learning and advancing phys-
ical world modeling, intuitive physics, and reasoning re-
search [2, 4, 33]. Despite some progress in soft body sim-
ulation [26, 37, 71], if they can match the simulator with

real-world dynamics remains challenging. A dataset en-
compassing various physical dynamics that can serve as a
benchmark for evaluating these simulators becomes essen-
tial.

3. Robo360 Dataset
Robo360 is the first real-world multi-view dataset that si-
multaneously supports high-quality dynamic 3D scene rep-
resentation and learning-based robot control. Robo360
aims to support research in 3D robotic manipulation, es-
pecially focusing on understanding the low-level dynamics
in the manipulation process. To achieve this, we include
multi-modality data in the Robo360 dataset. Specifically,
Robo360 contains over 2000 demonstration trajectories of
more than 100 different objects with diverse material vari-
ations. The multi-view trajectory RGB video and multi-
directional audio are captured by 86 DSLR cameras, along
with data with different modalities, including robot propri-
oception and robot control signal. This section highlights
several notable features of Robo360.

RGB Video Sequences The robot execution trajectory
video is captured with 86 DSLR cameras distributed across
a half-dome. We calibrated the intrinsic and extrinsic pa-
rameters of all cameras. The visualization of the dome and
calibrated cameras are in Figure 2 (A). All videos are cap-
tured at 30 FPS with 1080p resolution.

Multi-Material Our dataset, Robo360, captures diverse
interactions between robots and objects with a wide range
of visual and physical characteristics, as depicted in Figure
3. It includes over 200 trajectories for each object of rigid
material, including various plastic objects, wood, and met-
als. These objects typically undergo rigid transformations;
however, some of them, such as biscuits, can experience
fractures during interaction. The dataset also encompasses
soft materials, including rubber, cloth, paper, and malleable
metals like copper and iron, with over 200 trajectories for
each. Many of the soft objects in our dataset are compos-
ites, such as cardboard boxes, napkins, electronic cables,
plastic bags, and ropes, combining these materials in varied
configurations. Additionally, certain soft objects, such as
fruits, snacks, and miscellaneous items, combine a distinc-
tive set of materials that distinguishes them from other ob-
jects. Regarding liquids, the dataset encompasses a variety
of types characterized by different colors, levels of trans-
parency, densities, viscosities, and surface tensions. This
includes substances such as water, fruit juice, dish soap,
soda, and coffee for more than 30 trajectories in total.

Robot Proprioception and Control Robo360 captures
high-frequency robot proprioceptions (joint position, joint
velocity, joint acceleration, and joint torque) at 30 Hz, and
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Multi-View Policy Learning

Physical World Modeling

Dynamic NeRF

2. Robot Proprioception Sequence

Temporal Alignment

(A) Teleoperation
and 3D Capturing (B) Robo360 Dataset (C) Downstream Applications

1. Multiview Videos
& Multi-Directional Audio

How to pick
up the duck?

HTC VR Controller

Will the can
tower fall?

Calibrated Camera Poses

3. Robot Control Sequence 

Storage Novel view
synthesis?

Figure 2. An illustration of the comprehensive pipeline encompassing the stages of data collection, postprocessing, storage, and the
subsequent downstream applications.

Name Robot Control # Views Resolution Camera Calib. Audio Depth Cables Cloth Fluid
Deep3DMV [36] 7 7 10 1080p 3 7 7 7 3 7

DiVA360 [42] 7 7 53 720p 3 3 7 7 7 7

RoboSet [5] 3 5 Hz 4 480p 7 7 3 7 7 7

BridgeDataV2 [67] 3 5 Hz 4 480p 7 7 3 7 7 7

RH20T [19] 3 10 Hz 12 720p 3 3 3 3 3 3

Robo360 (Ours) 3 30 Hz 86 1080p 3 3 3 3 3 3

Table 1. Comparing our dataset with existing real-world multi-view video datasets.

teleoperation signals (target joint position, target gripper
position) at 30 Hz. We also record the analytically solved
end-effector pose and gripper tip position for the conve-
nience of downstream applications.

Multi-Modality To support research in understanding
the physical world, Robo360 consists of a rich set of dif-
ferent modalities, including 86-directional audio collected
by DSLR cameras at 48000 Hz and depth map collected by
3 RealSense depth cameras.

4. RoboStage for Dataset Creation
We develop a multi-view system with 86 cameras to capture
rich multi-modal data of the robot manipulation trajectories
to support research in 3D robotic manipulation. Inspired by
light stages in graphics [39, 41], we built our hardware and
software system, which we call RoboStage. RoboStage can
capture high-resolution multi-view videos and audio and
synchronize them with the control signal of the robot arm.
By leveraging a VR controller, we built a teleoperation sys-
tem inside the RoboStage to collect robotic manipulation
trajectories. Figure 2 shows the system and illustrates the
dataset creation process, which enables collecting data that

supports multiple downstream applications.

4.1. RoboStage Setup

RoboStage, as shown in Figure 2 (A), consists of 86 Canon
DSLR 250D cameras (DSLR), and 3 RealSense depth cam-
eras. The DSLR cameras are mounted on the upper half
dome supported by a 2m⇥2m⇥2m metal frame, allowing
RoboStage to capture videos from different directions. The
system’s specifics can be found in the supplementary.

4.2. Dynamic 3D Scene Capture

We carefully calibrate cameras to ensure precise parameters
and align videos to ensure synchronized timesteps.

Camera Calibration Accurate camera parameters play
a pivotal role in a multi-view dataset, particularly for tasks
like 3D scene learning and novel-view synthesis. In our
capturing system, where the positions and orientations of
all cameras are fixed, we opt to perform calibration be-
fore the capturing process, mitigating the need for per-scene
re-calibration. Specifically, we create a static scene with
rich texture and low specularity. Subsequently, we employ
COLMAP [55] to estimate camera parameters. To obtain
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Figure 3. Robo360 captures real-world robot-object interactions with complex visual and material variations.

the metric scales and coordinate uniformity among cam-
era poses, we utilize an ArUco board [23] to estimate the
poses of a subset of the cameras and align the results from
COLMAP and ArUco. We illustrated the calibrated camera
poses in Figure 2 (A).

Video Temporal Alignment To support applications in
the vision and robotics community, such as dynamic NeRF
and imitation learning, we align the multi-view video, robot
proprioception, and robot control sequences in the time di-
mension. To this end, we implemented a common event,
i.e., a floodlight, that is easily detectable at the beginning of
the video, serving as a keyframe to synchronize all videos.
At the start of each trajectory, we activate a 30000-lumen
floodlight and maintain its illumination for approximately 3
seconds. Subsequently, we calculate the average pixel value
difference between each pair of consecutive frames. The
frame exhibiting the maximum difference is identified as
the keyframe. In addition to aligning the cameras, we align
control signals, robot proprioception, and video frames us-
ing the RealSense cameras as a proxy. In detail, during each
teleoperation step, we concurrently record the control sig-
nals and robot proprioception while capturing images using
the RealSense cameras. This simultaneous recording aligns
the control signals, robot proprioception, and RealSense
videos automatically. Then, by applying the method de-
scribed earlier to align the RealSense videos with the DSLR
videos, we can achieve synchronization for the control sig-
nals and robot proprioception as well. We verified our align-
ment approach by comparing it with an iPad displaying a
QR code video at 30 FPS in front of each camera and ob-
serving a maximum discrepancy of 1/30 seconds, while our
method offers the advantage of greater automation as it is
much cheaper and easier to activate.

4.3. Robot Arm
An xArm6 robot arm, equipped with 6 revolute joints and
a parallel gripper, is mounted at the center of the capturing
system. During data collection, the robot is teleoperated
by a human operator, while during deployment, it can be

controlled by a policy neural network. In this dataset, we
use servo joint position as the low-level control signal for
both teleoperation and policy deployment.

Robot Teleoperation The human teleoperator controls
the robot using an HTC Vive VR gaming controller. Dur-
ing teleoperation, we use steam-openvr [1] to read the 3⇥ 4
target pose matrix and the trigger button status of the con-
troller in real-time. Using inverse kinematics, we compute
the closest target joint position to the current joint posi-
tion that matches the end-effector pose to the target pose.
We then compute the target gripper position by scaling the
continuous-valued trigger position. Then, the robot arm and
gripper are driven to the target joint position by making an
API call to the xArm control box. The computed 6D target
joint position and 1D target gripper position during teleop-
eration are recorded in the dataset, together with the real-
time proprioception state information of the robot arm (joint
position, joint velocity, joint acceleration, and joint torque).

Robot Safety We provide safety measures to prevent the
robot from causing damage to other devices, such as cam-
eras, desks, and single-board computers. To ensure the
integrity of extended data-capturing and policy evaluation
sessions, we have implemented a straightforward bounding
box collision check during both teleoperation and policy de-
ployment. Before directing the robot to a target joint posi-
tion, we assess the positions of a predefined set of points
on the surface of the robot links. These positions are then
enclosed within a pre-defined bounding box. Subsequently,
we calculate safe joint positions using inverse kinematics
and execute these safe joint positions. This precaution-
ary process mitigates the risk of collisions and safeguards
against potential damage to surrounding devices.

Policy Deployment The trained visuomotor neural net-
work policy predicts the delta joint position and target grip-
per position to control the robot, given real-time robot pro-
prioception and image observation from a subset (4 in our
experiments) of 86 DSLRs.

We find that our data collection system is quite efficient

Litian
26



Method D-NeRF K-Planes De. 3DGS TensoRF 3DGS
Per-frame 7 7 7 3 3

Bottle Flip 10.96 16.94 18.32 19.42 24.84
Bread Fall 10.75 17.32 19.05 20.36 24.90

Cucumber Skewer 11.02 17.21 18.87 20.05 25.36
Dish Soap 10.82 16.91 19.05 21.05 24.90

Tshirt Fold 11.27 16.89 18.52 20.36 24.07
Cookie Crushed 11.35 17.10 18.75 20.89 25.48

Rope Pick-and-Place 10.39 16.85 18.65 20.47 24.70
Air-bag Squeeze 10.46 17.31 17.94 20.55 24.06

power strip 10.40 16.74 18.09 20.08 23.90
Juice Pour 11.13 17.08 18.59 20.60 24.20

Bread Put-in-bag 9.94 17.07 17.78 19.79 23.94
Sand Pour 10.88 17.26 18.97 20.65 25.78
Sprite Pour 10.21 17.14 18.91 19.79 25.64
Sprite Stack 10.09 17.12 18.83 20.46 24.74

Tshirt Unfold 10.91 17.15 18.03 20.01 24.18

Table 2. Dynamic NeRF Evaluation: Average PSNR across a 5-
second video.

and easy to learn. It took, on average, 2 minutes to collect a
30-seconds manipulation trajectory, including scene setup,
temporal alignment, object manipulation, and data transfer.
Moreover, our system enables a higher control frequency
than other datasets in Table 1, supporting more complicated
manipulation skills. We leave more details in the supple-
mentary.

5. Baseline Experiments
In this section, we verify our dataset in two tasks: novel-
view synthesis of dynamic scenes and policy imitation
learning. We split our dataset into two categories for these
two tasks. For novel-view synthesis of dynamic scenes, we
use videos focusing on collecting a diverse set of objects
with visual and material variation, while for policy learning,
we use videos focusing on a small set of objects with each
50-200 trajectories. We found that from Robo360 we can
obtain high-quality neural radiance fields, and the collected
demonstrations can efficiently drive robot control policy
learning, proving the effectiveness of our dataset. We sys-
tematically evaluated the existing 3D dynamic NeRF meth-
ods in our dataset and found that existing dynamic scene
representation learning methods are insufficient to model
objects with fast motion, resulting in a performance gap
compared to static scenes.

5.1. Dynamic NeRF
We selected 15 different scenes to compare various dynamic
NeRF methods. These scenes cover a wide range of sce-
narios involving the robot’s interactions with objects that
possess diverse materials, both in terms of their visual and
physical properties, We crop the manipulation process into
a 5-second 30FPS video, yielding a total of 150 frames per
scene. For evaluating the models’ ability in novel-view syn-
thesis, we hold 5 of 86 views as the test set.

Task Test BC(F) BC(A) DP(F) DP(A)

Towel

Train 0.60 0.87 1.00 1.00
1-Test 0.26 0.80 0.40 0.80
2-Test 0.00 0.73 0.00 0.80
3-Test 0.00 0.67 0.00 0.73

Slippers

Train 0.20 0.00 0.53 0.53
1-Test 0.07 0.00 0.00 0.60
2-Test 0.00 0.00 0.00 0.53
3-Test 0.00 0.00 0.00 0.00

Bottle

Train 0.27 0.80 1.00 0.87
1-Test 0.00 0.33 0.20 0.87
2-Test 0.00 0.33 0.00 0.80
3-Test 0.00 0.13 0.00 0.80

Cable

Train 0.47 0.60 0.87 0.67
1-Test 0.00 0.60 0.00 0.60
2-Test 0.00 0.27 0.00 0.47
3-Test 0.00 0.00 0.00 0.00

Rope

Train 0.67 1.00 1.00 1.00
1-Test 0.00 0.60 0.47 0.80
2-Test 0.00 0.00 0.00 0.67
3-Test 0.00 0.00 0.00 0.00

Table 3. Imitation learning for robot control baseline methods task
success rate. We report the average success rate over 15 trials. BC
and DP denote Behavior Cloning and Diffusion Policy, respec-
tively. (F) denotes the method is trained on a fixed 4 views. (A)
denotes the method is trained on randomly sampled 4 views. We
test the methods in different 4-view combinations, where “Train”
means the 4 training views are used as input during deployment.
“N-Test” means we use N novel views and 4-N training views as
input during deployment.

Baselines We validate five different dynamic NeRF meth-
ods: D-NeRF[52], K-Planes[21], Deformable 3DGS[72],
per-frame TensoRF[10], and per-frame 3DGS[30]. We re-
port the PSNR results of these methods on novel views in
Table 2 and provide qualitative results in Figure 4.

D-NeRF employs a Multilayer Perceptron (MLP) to
model the dynamic scene by directly extending the radiance
field with the time dimension as an input. Thus, its perfor-
mance is constrained by the network capacity, particularly
in scenarios with a large number of frames. Despite being
trained for 10 hours per scene on our dataset, D-NeRF can
only capture a fuzzy representation of scene composition,
lacking detailed information.

K-Planes utilizes six planes to decompose spatial-
temporal volumes. In our dataset, K-Planes exhibits strong
performance in areas visible from most views but strug-
gles in regions visible from only a small subset of cam-
eras. Since our cameras are predominantly oriented toward
the center of the light stage, where most motion occurs, K-
Planes accurately depicts the approximate motion of the ob-
ject in these regions. However, the novel-view renderings
lack temporal smoothness due to the limited representation
ability.

Deformable 3DGS adds a deformation field to Gaussian
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Figure 4. Qualitative results of dynamic NeRF methods. All the dynamic NeRF methods fail to accurately model objects with fast motion,
such as falling bread and pouring sand, leading to a performance gap compared to static scenes.

Splatting to enable dynamic scene novel-view synthesis.
While it represents the state-of-the-art method in dynamic
NeRF, it still exhibits several limitations when applied to
our dataset. First, the 5-second video contains too much in-
formation and is challenging for the capacity of Deformable
3DGS. Second, we also observe that the GS-based methods
fail and produce a worse result on the specular surfaces.

In addition to the dynamic NeRF methods, we also val-
idate TensoRF and Gaussian Splatting for novel-view syn-
thesis methods in static scenes by training and testing one
model frame by frame. We restrict the model training on
each frame for a maximum duration of 5 minutes to avoid
exceeding the computation budgets. We notice TensoRF
focuses on modeling the whole scene and achieves a rel-
atively high PSNR but lacks details on the manipulated ob-
ject. For Gaussian Splatting, we initialized the Gaussian
using COLMAP and trained the model for 10000 iterations.
We noticed an increase in the degree of spherical harmonic
function boosted the performance on the specular region of
the robot surface. Finally, per-frame Gaussian Splatting de-
livers the highest PSNR in our dataset in all scenes.

We also conducted an ablation study to compare their
performances under different total lengths of frames. Please
refer to the supplementary material for more results.

5.2. Learning-Based Robot Control

We now verify if our dataset can be used to learn robot con-
trol policies with imitation learning and if our dataset can
help learned policies generalize to novel views. We selected
five representative soft body manipulation tasks involving
distinct materials: cloth, rubber, soft metal, plastic, and liq-
uid. The specifics of these tasks are illustrated in Figure 5.
Our analysis used a targeted subset of our dataset, compris-

ing 30-200 demonstrations for each object. Specifically, we
gathered 80 demos for Towel, 30 for Slippers, 80 for Bottle,
150 for Cable, and 155 for Rope to train the policy net-
works. We design the policy network to receive and process
two sequential observations of the task, each from four dif-
ferent angles, presented in 128 ⇥ 128 RGB images. It out-
puts a delta joint position and a gripper position to control
the robot.

Baseline Methods and Evaluation Metric We exper-
imented with 2 imitation learning methods: Behavior
Cloning (BC) [63] and Diffusion Policy (DP) [11]. BC
learns the control policy by minimizing squared L2 loss
between predicted action and ground truth action. Diffu-
sion Policy learns a denoising network by predicting the
noise from the action diffusion process. For each method,
we train 2 different variants. The fixed-view network is
denoted with suffix (F) and the arbitrary view network is
denoted with suffix (A). We verify the correctness of our
dataset by training and evaluating the fixed-view network
and then understand how our dataset helps with learning a
policy that can generalize to novel view directions with the
arbitrary view network. The fixed-view network computes
the multi-view image feature with a convolutional neural
network (CNN) with input channel 24 (4 RGB views, 2
consecutive frames stacked). The arbitrary view network
computes the multi-view image feature with a CNN image
tokenizer with input channel 6 (1 RGB image, 2 consecu-
tive frames stacked) and a transformer encoder [66] that is
used to process these tokens. For BC, the image features
are processed by an MLP to output the action at the cur-
rent timestep. For DP, the image features are processed by
a transformer decoder to compute the denoising step of a
sequence of actions.
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(a) Towel (b) Slippers (c) Bottle (d) Cable (e) Rope

Figure 5. Visualization of 5 example demos used in training networks via imitation learning. For each demo, we show 4 keyframes, where
green arrows show the desired end-effector motion and green checkmarks denote the task is completed at the current time. Zoom in for
details.

Experiment Results We evaluate the performance of
baseline methods in Table 3. We measure the success rate of
each method-network pair in 4 view combinations (Train, 1-
Test, 2-Test, and 3-Test) as mentioned in the table. We first
observe that, given in-distribution training views, both ver-
sions of DP outperform BC in most cases. In this setting,
the fixed-view version performs similarly or better than the
arbitrary-view version. However, in novel view control set-
ting, for both BC and DP, once even 1 camera position is
perturbed to a novel viewing direction, we observe a se-
vere performance drop for the fixed-view policies, whereas
the policy trained on arbitrary view data only drops slightly
or maintains similar performance. This is because when
a view is perturbed, the input is out-of-distribution (OOD)
for fixed-view policies, while the arbitrary view policy can
interpolate the novel view input between the training view
data that is close to the perturbed view direction to gener-
alize to these unseen view directions and maintain perfor-
mance. In the novel view control setting, we also observe
that arbitrary view DP is more robust to view perturbation
than BC. This is likely because the diffusion denoising pro-
cess itself can help with combating OOD. However, this is
not sufficient for a fixed-view DP to generalize to the novel
view directions, since in this case, the novel view image
observation that the diffusion process is conditioned on is
itself OOD to the network. For arbitrary view policies, the
performance continues to drop in most cases when more
views are perturbed. We want to emphasize that building
robust view independent policies is important for many ap-
plications and remains an open problem.

The amount of data available to train a network is cru-
cial to the performance of a policy in all tasks. We observe
all methods perform the worst in the task Slippers, compar-
ing to their performance in other tasks. The performance
of arbitrary view BC is impacted the most as it completely
fails in all trials of all view combinations. This is very
likely since we only provided 30 demonstrations for this
task, compared to other tasks. This shows the importance of
collecting more diverse data for learning-based robot con-

trollers.

One important contributing factor to the performance of
all trained policies is that the inference frequency needs to
match the training frequency to achieve reasonable perfor-
mance. We conjecture that it is because a significant delay
would change the distribution of the observation, leading
to a performance drop. We find that the inference time of
BC is much shorter than DP, which does not require multi-
step control sequence prediction to match the training data
distribution. On the other hand, DP relies on multi-step pre-
diction since the denoising step is relatively more compute-
intensive. We find slightly reducing the number of trans-
former decoder layers of the denoising network benefits per-
formance by providing a higher inference frequency.

6. Conclusion and Limitation

We introduce Robo360, a 3D omnispective multi-material
robotic manipulation dataset. It comprises a diverse range
of robot manipulation trajectories collected by teleopera-
tion, encompassing various physical and optical properties,
as well as manipulation skills. To facilitate data collec-
tion, we have constructed RoboStage, a multi-view system
equipped with 86 cameras, enabling the collection of multi-
modal observations with rich 3d information. However, cer-
tain limitations are inherent in our approach. Firstly, our
heavy reliance on visual data limits our dataset’s ability
to discern the internal structure of objects, and it is sus-
ceptible to significant occlusion. Nonetheless, we believe
this limitation aligns with the current state of vision-based
robot control and is not necessarily a drawback. Addition-
ally, it is worth noting that the setup of RoboStage entails
non-negligible costs, which may impede its scalability. Al-
though we anticipate expanding our data collection efforts
in the future, an exciting avenue for further exploration lies
in developing techniques aimed at learning 3D scenes more
effectively using fewer views from our dataset.

Litian
29



References
[1] Steam openvr, Welcome to Steam, 2020. 5
[2] Anton Bakhtin, Laurens van der Maaten, Justin Johnson,

Laura Gustafson, and Ross Girshick. Phyre: A new bench-
mark for physical reasoning. Advances in Neural Informa-
tion Processing Systems, 32, 2019. 3

[3] Gilad Baruch, Zhuoyuan Chen, Afshin Dehghan, Tal Dimry,
Yuri Feigin, Peter Fu, Thomas Gebauer, Brandon Joffe,
Daniel Kurz, Arik Schwartz, and Elad Shulman. Ark-
itscenes: A diverse real-world dataset for 3d indoor scene
understanding using mobile rgb-d data. 2021. 2

[4] Daniel M Bear, Elias Wang, Damian Mrowca, Felix J Binder,
Hsiao-Yu Fish Tung, RT Pramod, Cameron Holdaway, Sirui
Tao, Kevin Smith, Fan-Yun Sun, et al. Physion: Evaluat-
ing physical prediction from vision in humans and machines.
arXiv preprint arXiv:2106.08261, 2021. 3

[5] Homanga Bharadhwaj, Jay Vakil, Mohit Sharma, Abhinav
Gupta, Shubham Tulsiani, and Vikash Kumar. Roboagent:
Generalization and efficiency in robot manipulation via se-
mantic augmentations and action chunking, 2023. 4

[6] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen
Chebotar, Joseph Dabis, Chelsea Finn, Keerthana Gopalakr-
ishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al.
Rt-1: Robotics transformer for real-world control at scale.
arXiv preprint arXiv:2212.06817, 2022. 3

[7] Berk Calli, Aaron Walsman, Arjun Singh, Siddhartha Srini-
vasa, Pieter Abbeel, and Aaron M. Dollar. Benchmarking
in manipulation research: The ycb object and model set and
benchmarking protocols. IEEE Robotics & Automation Mag-
azine, 22 (2015) 36 - 52, 22(3):36–52, 2015. 2

[8] Ang Cao and Justin Johnson. Hexplane: A fast representa-
tion for dynamic scenes. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 130–141, 2023. 3

[9] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Hal-
ber, Matthias Nießner, Manolis Savva, Shuran Song, Andy
Zeng, and Yinda Zhang. Matterport3d: Learning from rgb-d
data in indoor environments. 2017. 2

[10] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and
Hao Su. Tensorf: Tensorial radiance fields. In European
Conference on Computer Vision, pages 333–350. Springer,
2022. 6

[11] Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric
Cousineau, Benjamin Burchfiel, and Shuran Song. Diffu-
sion policy: Visuomotor policy learning via action diffusion.
arXiv preprint arXiv:2303.04137, 2023. 3, 7

[12] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Niessner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes, 2017.
2

[13] Sudeep Dasari, Frederik Ebert, Stephen Tian, Suraj Nair,
Bernadette Bucher, Karl Schmeckpeper, Siddharth Singh,
Sergey Levine, and Chelsea Finn. Robonet: Large-scale
multi-robot learning. In CoRL 2019: Volume 100 Proceed-
ings of Machine Learning Research, 2019. 3

[14] Paul Debevec, Tim Hawkins, Chris Tchou, Haarm-Pieter

Duiker, Westley Sarokin, and Mark Sagar. Acquiring the
reflectance field of a human face, 2000. 2

[15] Laura Downs, Anthony Francis, Nate Koenig, Brandon Kin-
man, Ryan Hickman, Krista Reymann, Thomas B. McHugh,
and Vincent Vanhoucke. Google scanned objects: A high-
quality dataset of 3d scanned household items. 2022. 2

[16] Danny Driess, Ingmar Schubert, Pete Florence, Yunzhu Li,
and Marc Toussaint. Reinforcement learning with neural ra-
diance fields. Advances in Neural Information Processing
Systems, 35:16931–16945, 2022. 1, 3

[17] Danny Driess, Zhiao Huang, Yunzhu Li, Russ Tedrake, and
Marc Toussaint. Learning multi-object dynamics with com-
positional neural radiance fields. In Conference on Robot
Learning, pages 1755–1768. PMLR, 2023. 1, 2, 3

[18] Yilun Du, Yinan Zhang, Hong-Xing Yu, Joshua B Tenen-
baum, and Jiajun Wu. Neural radiance flow for 4d view
synthesis and video processing. In 2021 IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages
14304–14314. IEEE Computer Society, 2021. 3

[19] Hao-Shu Fang, Hongjie Fang, Zhenyu Tang, Jirong Liu,
Junbo Wang, Haoyi Zhu, and Cewu Lu. Rh20t: A robotic
dataset for learning diverse skills in one-shot. arXiv preprint
arXiv:2307.00595, 2023. 2, 3, 4

[20] Jiemin Fang, Taoran Yi, Xinggang Wang, Lingxi Xie, Xi-
aopeng Zhang, Wenyu Liu, Matthias Nießner, and Qi Tian.
Fast dynamic radiance fields with time-aware neural vox-
els. In SIGGRAPH Asia 2022 Conference Papers, pages 1–9,
2022. 3

[21] Sara Fridovich-Keil, Giacomo Meanti, Frederik Rahbæk
Warburg, Benjamin Recht, and Angjoo Kanazawa. K-planes:
Explicit radiance fields in space, time, and appearance. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 12479–12488, 2023. 2,
3, 6

[22] Chen Gao, Ayush Saraf, Johannes Kopf, and Jia-Bin Huang.
Dynamic view synthesis from dynamic monocular video. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 5712–5721, 2021. 3

[23] Sergio Garrido-Jurado, Rafael Muñoz-Salinas, Fran-
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7. System Specifics
The 86 Canon 250D cameras record video at 30 FPS, 1080p
resolution, 1/200 shutter speed, F8.0 aperture, ISO 3200,
and Fluorescent white balance. This configuration is se-
lected to balance image quality with motion blur.

The 3 RealSense D435 cameras record pixel-aligned
color and depth video at 30 FPS at 480p, which is the rec-
ommended resolution of D435 for depth image quality.

The 86 Canon cameras are controlled by 23 Raspberry Pi
4B single-board computers for video recording and down-
loading. The Raspberry Pis and the main PC are connected
via LAN using an internet switch. These devices with the
main PC communicate within 192.168.0.x.

The main PC controls the xArm6 robot arm and gripper
via direct ethernet connection on 192.168.1.x. The main PC
reads the target end-effector pose and gripper position from
the VR game controller via USB, computes the target joint
position, and drives the robot arm by sending a packet to
the xArm control box via ethernet using the xArm factory-
provided API. This control loop runs at 30 Hz.

We use 4 Daylight Artist Studio Lamps for illumination,
and 1 TYCOLIT Outdoor Led Flood Light for temporal
alignment.

The desk is 152.4 cm by 76.2 cm.

8. Temporal Alignment Error Analysis

Figure 6. Temporal alignment error

The sudden increase in average pixel intensity is used to
identify the keyframe to align the multi-view videos. This
is shown in Figure 11. To verify the alignment quality of
this method, we record a multi-view video of 1. light on
and off, 2. a phone playing a 30-second 30 fps QR code
video of 0-899 held around the stage to ensure all videos
contain a section where the QR code is visible, shown in
Figure 12. The starting frame is found by subtracting the
QR code number from the frame index of the image. To an-

alyze the error between the 2 methods, we recorded a video
with both alignment events and found the starting frame of
the videos using these 2 methods. Then, we assumed the
two methods agreed with each other on the video recorded
from the 0th camera. After that, we plotted the temporal
shift (unit: frames) between 0th and every other camera us-
ing the 2 methods, shown in Figure 6, where the x-axis is
the camera ID and the y-axis is the relative temporal shift
(unit: frames) of this video compared to the 0th camera, es-
timated using flood light (blue) and QR code (orange). We
found out two methods have a maximum alignment discrep-
ancy of 1 frame in 11 out of 86 videos. We believe this error
is almost negligible for any downstream applications.

The reason QR code video is not used as the alignment
event is that it is inefficient in data collection and post-
processing. During data collection, we empirically found
that showing the QR code video to all cameras takes 30
seconds, whereas light on and off only takes 4-5 seconds
max. During post-processing, the opencv QR code reading
algorithm is much slower than computing the average pixel
intensity of a frame, which is simply a sum and multiply
operation on an integer array.

9. Control Frequency Requirements
The control frequency of teleoperation is crucial to enable
the teleoperator to collect more diverse tasks. In our dataset,
many involve the robot arm manipulating an open container
full of liquid and pouring it into another container. In a task,
we tasked the teleoperator to pour a cup with water filled to
3/4 to another cup. We empirically find out the well-trained
teleoperator starts to spill the liquid uncontrollably when
the control frequency drops below 20. When the control
frequency drops below 10, the teleoperator loses control of
the cup and spills almost all the liquid in the cup. There are
many tasks that require high-frequency feedback control,
such as liquid container manipulation, precise insertion of
objects, balancing objects in hand, etc.

10. Dynamic NeRF experiments
10.1. More visualization results
Here we show more qualitative results of the visualization
of dynamic NeRF baselines in Figure 7.

10.2. Video length
To evaluate the robustness and scalability of these baseline
methods, we conducted an ablation study to investigate the
influence of different video lengths on the performance met-
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Figure 7. Visualization of more dynamic NeRF results using 5 different baselines.

Method 2 seconds 5 seconds 15 seconds
D-NeRF 10.52 10.58 10.34
K-Planes 16.86 16.99 15.84

De. 3DGS 18.42 18.57 17.81
TensoRF 20.21 20.14 20.13

3DGS 24.82 24.76 24.71

Table 4. Ablation study of different video lengths: Average PSNR
over all scenes.

rics. Specifically, we varied the length of the input video
while keeping other parameters constant. The tested video
lengths included short clips (2 seconds), medium-length se-
quences (5 seconds), and longer videos (15 seconds). Ta-
ble 4 presents the quantitative results of our ablation study
for different video lengths using PSNR as the metric. The
table shows that all three dynamic NeRF methods achieve
the best performance on 5s-length videos, so we chose this
length to evaluate the results of various methods.

10.3. Training time

We also conducted ablation studies on different training
time to understand the performance of different training
baselines under a limited training budget. The default train-
ing time of all 3 different dynamic NeRF methods is about
10 hours. Thus, we conducted experiments with three dif-
ferent training durations: 10 minutes, 1 hour, and the default
10 hours. The other parameters are kept the same, such as
5s-length video, 81 views for training and 5 views for test-
ing, etc. The result is shown in Table 5.

Method 10 minutes 1 hour 10 hours
D-NeRF 8.04 8.83 10.58
K-Planes 12.35 15.77 16.99

De. 3DGS 11.61 16.39 18.57

Table 5. Ablation study of different training times: Average PSNR
over all scenes.

11. Imitation Learning
11.1. Task details
Towel The trained policy controls xArm6 to grasp the
towel and put into the basket. The dataset contains 80 de-
mos with each 300 steps at 30 Hz. Execution is considered
a success when the towel is fully inside the basket.

Slippers The trained policy controls xArm6 to move the
slippers together to organize them. The dataset contains 30
demos with each 450 steps at 30 Hz. Execution is consid-
ered a success when both slippers are closer to the center
than before.

Bottle The trained policy controls xArm6 to flip the bottle
up right. The dataset contains 200 demos with each 450
steps at 30 Hz. Execution is considered a success when the
bottle is in an up right position without the robot holding it.

Cable The trained policy controls xArm6 to put a blue
USB extension cable into the basket. The dataset contains
150 demos with each 450 steps at 30 Hz. Execution is con-
sidered a success when the USB cable is fully inside the
basket.

Rope The trained policy controls xArm6 to put a red and
white rope into the basket. The dataset contains 155 demos
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with each 750 steps at 30 Hz. Execution is considered a
success when the rope is fully inside the basket.

11.2. More Visualizations
Please refer to the supplementary material video for more
policy deployment visualizations.

12. Open Source
All data and code will be available at https://
robo360dataset.github.io/.

13. More Example Data
86 views of video data of task orange juice (Figure 8), fold
t-shirt (Figure 9) and sprite can tower collapse (Figure 10)
are shown in the following pages. The full video can be
found in the supplementary material video.

https://robo360dataset.github.io/
https://robo360dataset.github.io/
Litian
35



Figure 8. Video of xArm6 robot pouring orange juice into a plastic cup from all 86 views.
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Figure 9. Video of xArm6 robot folding a t-shirt with an electric brain logo from all 86 views.
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Figure 10. Video of xArm6 hitting a sprite can tower from all 86 views.
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Figure 11. Example light on alignment event captured by all 86 cameras
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Figure 12. Example QR code alignment event captured by 86 cameras over 30 seconds. The teleoperator holds a phone playing a 30 fps
QR code video around the inside of RoboStage to make sure the video recorded from all views contains a portion of the footage that records
the QR code at some point during the entire 30 seconds.
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