
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title

Learning Embodied AI Agents with Task Decomposition

Permalink

https://escholarship.org/uc/item/0c70b68j

Author

Jia, Zhiwei

Publication Date

2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0c70b68j
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Learning Embodied AI Agents with Task Decomposition

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Computer Science

by

Zhiwei Jia

Committee in charge:

Professor Hao Su, Chair
Professor Henrik I. Christensen
Professor Zhuowen Tu
Professor Xiaolong Wang

2023

Copyright

Zhiwei Jia, 2023

All rights reserved.

The Dissertation of Zhiwei Jia is approved, and it is acceptable in quality

and form for publication on microfilm and electronically.

University of California San Diego

2023

iii

DEDICATION

To my parents who always support me, those important ones in my life who have guided
me through the darkness, and finally myself.

iv

EPIGRAPH

A year spent in artificial intelligence
is enough to make one believe in God

Alan Perlis

v

TABLE OF CONTENTS

Dissertation Approval Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . ix

List of Tables . xi

Acknowledgements . xii

Vita . xiv

Abstract of the Dissertation . xv

Chapter 1 Introduction . 1
1.1 Background of Embodied AI . 1
1.2 Problem Formulation in Embodied AI . 2
1.3 Simulators . 3
1.4 Datasets and Assets . 6
1.5 Embodied AI Tasks and their Key Challenges . 8
1.6 Introduction to the Presented Work . 9
1.7 Additional Work Done During my PhD . 11

Chapter 2 Task Decomposition for High-level Long-horizon Instruction Following 13
2.1 Introduction . 13
2.2 Related Work . 15
2.3 Problem Formulation . 17
2.4 Affordance-aware Multimodal Neural SLAM . 19

2.4.1 Overall Pipeline . 20
2.4.2 Affordance-aware Semantic Representation . 22
2.4.3 Task-driven Multimodal Exploration . 23
2.4.4 Other Modules . 26

2.5 Experiments . 27
2.5.1 Validation of the Need for Affordance-aware Navigation 28
2.5.2 Validation of the Need for Hierarchical Task Execution 28
2.5.3 Main Results . 29
2.5.4 Qualitative Evaluations . 29
2.5.5 Other Ablation Studies . 31

2.6 Implementation Details . 33

vi

2.6.1 Neural SLAM module . 33
2.6.2 Waypoint Generation . 35
2.6.3 Task-driven Multimodal Exploration Module 36
2.6.4 Action Augmentation during Exploration . 37
2.6.5 Subgoal Parser and Target Object Parser . 38
2.6.6 Online Planner . 39

2.7 Conclusion, Limitation, and Future Work . 39

Chapter 3 Task Decomposition for Low-level Object Manipulation 41
3.1 Introduction . 42
3.2 Related Work . 43

3.2.1 Extended Discussions of Closely Related Work 45
3.3 Preliminaries . 47
3.4 Challenges of Learning from Sub-optimal Demos for Low-level Control . . . 48
3.5 Method . 49

3.5.1 Unsupervised Discovery of Chain-of-Thought from Demos 50
3.5.2 Chain-of-Thought Guided Action Modeling . 52

3.6 Experiments . 57
3.6.1 Moving Maze . 57
3.6.2 Franka Kitchen . 58
3.6.3 ManiSkill2 . 59
3.6.4 Ablation Studies . 62
3.6.5 Preliminary Results of Sim-to-Real Transfer 63

3.7 Implementation Details . 64
3.7.1 Details of the Environments . 64
3.7.2 Details of the Demos and the Evaluation Protocol 66
3.7.3 Details of Network Architecture and Training 69
3.7.4 Details of Point Cloud-based CoTPC . 70

3.8 Conclusion and Discussion . 71

Chapter 4 Task Decomposition by Partitioning the Task Space 73
4.1 Introduction . 74
4.2 Related Work . 76
4.3 Background . 78
4.4 An Illustrative Example . 78
4.5 Generalist-Specialist Learning . 81

4.5.1 The Meta-Algorithm Framework . 82
4.5.2 When and How to Train Specialists . 82
4.5.3 Generalist Training Guided by Specialist Demos 84

4.6 Experiments . 86
4.6.1 Environments . 87
4.6.2 Main Results . 88
4.6.3 Additional Results . 90

4.7 Ablation Studies . 91

vii

4.7.1 Influence of Granularity in Task Partitioning 92
4.7.2 Influence of the Timing of Specialist Training 93
4.7.3 Tuning and Evaluation of Plateau Criteria H 94
4.7.4 Diagnosis into Generalist Performance at Plateau 96
4.7.5 Influence of Specialist-to-Generalist Merging Algorithms 96

4.8 Implementation Details . 97
4.8.1 Illustrative example . 97
4.8.2 Procgen . 98
4.8.3 Meta-World . 100
4.8.4 ManiSkill . 102

4.9 Conclusion . 102

Bibliography . 104

viii

LIST OF FIGURES

Figure 2.1. The Exploration Phase and the Overall Pipline of AMSLAM. 18

Figure 2.2. The Affordance-aware Semantic Representation used in AMSLAM . . . 21

Figure 2.3. The Exploration Module with Four Input Branches 24

Figure 2.4. Illustration of Trajectory I by AMSLAM at Inference Time 30

Figure 2.5. Illustration of Trajectory II by AMSLAM at Inference Time 31

Figure 2.6. Implementation Details of the Exploration Module 37

Figure 3.1. Architecture and Data Pipeline of CoTPC (training & inference) . . . 50

Figure 3.2. Pairwise Similarity Maps used in Unsupervised CoT Discovery 52

Figure 3.3. Illustration of Decomposed Subskills from CoT Discovery 53

Figure 3.4. Illustration of Various Environments and Tasks used to Evaluate
CoTPC . 56

Figure 3.5. Sampled Geometric Variations for ManiSkill2 Tasks 56

Figure 3.6. Visualization of Succeeded Trajectories for Sim-to-real Transfer of
CoTPC . 64

Figure 3.7. Architecture and Pipeline of Point Cloud-based CoTPC 71

Figure 4.1. Illustration of the Generalist-Specialist Learning (GSL) framework . . 76

Figure 4.2. Training Curve of PPO on the Illustrative Example (Maze) 79

Figure 4.3. Illustration of the Environment and Tasks used to Evaluate GSL . . . 80

Figure 4.4. Visualized Comparison of GSL and the Baselines (Procgen & ManiSkill) 89

Figure 4.5. Visualized Comparison of GSL and the Baselines (Meta-World) 89

Figure 4.6. Visualized Comparison of GSL and the Baselines Aggregated over
Multiple Runs . 91

Figure 4.7. Influence of Granularity in Task Partitioning . 92

Figure 4.8. Influence of the Timing of Specialist Training . 93

ix

Figure 4.9. Qualitative Evaluation of The Plateau Criteria 94

Figure 4.10. Diagnosis into Generalist Performance at Plateau 95

x

LIST OF TABLES

Table 2.1. Generalization Performance of AMSLAM with Ground Truth Navigation 27

Table 2.2. Comparison of the Success Rates of Object Interaction Subgoals in
ALFRED . 29

Table 2.3. Comparison of the Generalization Performance on ALFRED 30

Table 2.4. Ablation of Task-driven Multimodal Exploration in AMSLAM 32

Table 2.5. Ablations of Affordance-aware Semantic Representation & Planner in
AMSLAM . 33

Table 3.1. Test Performance on Moving Maze and Franka Kitchen 59

Table 3.2. Test Performance for ManiSkill2 Tasks (State Observations) 60

Table 3.3. Test Performance for ManiSkill2 Tasks (Point Cloud Observations) . . 60

Table 3.4. Ablation Study Results for CoTPC . 62

Table 4.1. Main Results of GSL on Procgen . 90

Table 4.2. Main Results of GSL on Meta-World . 90

Table 4.3. Comparison of GSL to Additional Baselines and Design Choices 96

Table 4.4. Hyperparameters for DAPG and PPO in the Illustrative Example . . . 97

Table 4.5. Hyperparameters of GSL in the Illustrative Example 98

Table 4.6. Hyperparameters of PPO and DAPG for Procgen 98

Table 4.7. Additional Hyperparameters of PPG for Procgen 99

Table 4.8. Hyperparameters of GSL for Procgen . 99

Table 4.9. Hyperparameters of GSL for Meta-World . 100

Table 4.10. Hyperparameters of PPO and DAPG for Meta-World 101

Table 4.11. Hyperparameters of SAC and GAIL+SAC for ManiSKill 102

Table 4.12. Hyperparameters of GSL for ManiSkill . 103

xi

ACKNOWLEDGEMENTS

I would like to thank my PhD advisor Hao Su for his guidance and support

during the five years of my PhD study. He taught me important lessons about being a

great AI researcher and pursuing academic excellence in general. Special thanks to my

former advisor Zhuowen Tu who guided me to this fantastic world of AI when I was an

undergraduate, passionate yet disoriented.

Thanks to my parents who always gave me unconditional support. In some of the

darkest moments, I could only regroup myself knowing that someone carried the umbrella

somewhere for me. I really love you!

Many thanks to my labmates who accompanied me throughout this painstaking

journey, especially Tongzhou, Shuang, and Fangchen.

Thanks to those important ones whom I fell for, liked, and loved. The PhD journey

wasn’t very easy with rainy days here and there. Sadly, the same goes for the beautiful

journeys with them. I am genuinely grateful for all those unforgettable memories and

valuable time, which kept making me a better person.

Last but not least, I would like to thank a large group of people - my friends, and of

course, special thanks to the few closest ones. I really couldn’t have come this far without

you guys, who have accompanied and supported me over the years, actively or passively.

Hope I have brought enough support and joy in return and will be capable of doing better

in the future. Stay connected and see you around!

Chapter 2, in full, is a reprint of the material published in the 2022 International

Conference on Intelligent Robots and Systems (IROS): “Learning to Act with Affordance-

Aware Multimodal Neural SLAM” (Zhiwei Jia, Kaixiang Lin, Yizhou Zhao, Qiaozi Gao,

Govind Thattai, and Gaurav Sukhatme). The dissertation author was the primary

investigator and author of this paper.

Chapter 3, in full, is a reprint of the manuscript: “Chain-of-Thought Predictive

Control” (Zhiwei Jia, Vineet Thumuluri, Fangchen Liu, Linghao Chen, Zhiao Huang, Hao

xii

Su), whose preliminary version has been presented at the Workshop on Reincarnating Re-

inforcement Learning at ICLR 2023. The dissertation author was the primary investigator

and author of this paper.

Chapter 4, in full, is a reprint of the material published in the 2022 International

Conference on Machine Learning (ICML): “Improving Policy Optimization with Generalist-

Specialist Learning” (Zhiwei Jia, Xuanlin Li, Zhan Ling, Shuang Liu, Yiran Wu, Hao Su).

The dissertation author was the primary investigator and author of this paper.

Chapter 1 contains citations to other published materials during my PhD study of

which I was the primary investigator and author.

xiii

VITA

2014–2017 Bachelor of Science in Computer Science and Applied Math, UC San Diego

2018–2023 Doctor of Philosophy in Computer Science, UC San Diego

PUBLICATIONS

[1] “Chain-of-Thought Predictive Control”. Z. Jia, F. Liu, V. Thumuluri, L. Chen, Z.
Huang, and H. Su. ICLR 2023 RRL Workshop (preliminary version)
[2] “KAFA: Rethinking Image Ad Understanding with Knowledge-Augmented Feature
Adaptation of VLMs”. Z. Jia, P. Narayana, A. Akula, G. Pruthi, H. Su, S. Basu, and V.
Jampani. ACL 2023 (Industry Track)
[3] “MetaCLUE: Towards Comprehensive Visual Metaphors Research”. A. Akula, B.
Driscoll, P. Narayana, S. Changpinyo, Z. Jia, S. Damle, G. Pruthi, S. Basu, L. Guibas, W.
Freeman, Y. Li, and V. Jampani. CVPR 2023
[4] “Improving Policy Optimization with Generalist-Specialist Learning”. Z. Jia, X. Li, Z.
Ling, S. Liu, Y. Wu, and H. Su. ICML 2022
[5] “Learning to Act with Affordance-Aware Multimodal Neural SLAM”. Z. Jia, K. Lin,
Y. Zhao, Q. Gao, G. Thattai, and G. Sukhatme. IROS 2022
[6] “LUMINOUS: Indoor Scene Generation for Embodied AI Challenges”. Y. Zhao, K.
Lin, Z. Jia, Q. Gao, G. Thattai, J. Thomason, and G. Sukhatme. NeurIPS 2022 CtrlGen
Workshop
[7] “ManiSkill: Generalizable Manipulation Skill Benchmark with Large-Scale Demonstra-
tions”. T. Mu, Z. Ling, F. Xiang, D. Yang, X. Li, S. Tao, Z. Huang, Z. Jia, and H. Su.
NeurIPS 2021 (Dataset Track)
[8] “Semantically Robust Unpaired Image Translation for Data with Unmatched Semantics
Statistics”. Z. Jia, B. Yuan, K. Wang, H. Wu, D. Clifford, Z. Yuan, and H. Su. ICCV 2021
[9] “Refactoring Policy for Compositional Generalizability using Self-Supervised Object
Proposals”. T. Mu, J. Gu, Z. Jia, H. Tang, and H. Su. NeurIPS 2020
[10] “One-pixel Signature: Characterizing CNN Classifiers for Backdoor Detection”. S.
Huang, W. Peng, Z. Jia, and Z. Tu. ECCV 2020
[11] “Information-Theoretic Local Minima Characterization and Regularization”. Z. Jia
and H. Su. ICML 2020

xiv

ABSTRACT OF THE DISSERTATION

Learning Embodied AI Agents with Task Decomposition

by

Zhiwei Jia

Doctor of Philosophy in Computer Science

University of California San Diego, 2023

Professor Hao Su, Chair

One of the ultimate goals of artificial intelligence (AI) is to build autonomous

agents that can perceive, reason, and interact with the surroundings (i.e., Embodied AI).

Despite the recent advances in deep learning and simulators, acquiring embodied agents

via robot learning remains extremely demanding. In this dissertation, we present three

methods, each from a different aspect, that adopt task decomposition to improve robot

learning.

Training agents that follow human instructions to complete long-horizon household

tasks, especially solely from offline data, poses several technical challenges, such as

scene understanding and compositionally generalizable task executions (usually high-level

xv

actions). We propose to decompose the tasks into exploration and execution phases. In

the first phase, we utilize multimodal signals to explore the scene in a task-driven manner

to obtain an affordance-aware semantic map. Next, we adopt a hierarchical task execution

system to complete the sub-task sequences (another level of task decomposition) according

to the map and the instructions.

Short-horizon tasks involving low-level motor controls are usually harder for AI

(Moravec’s paradox). To solve challenging contact-rich object manipulation that entails

high precision and/or object variations, we develop a novel hierarchical imitation learning

method that utilizes scalable, albeit sub-optimal, demonstrations by further decomposing

short-horizon tasks into subskills. We first propose an observation space-agnostic method

that unsupervisedly discovers the multi-step subskill decomposition (sequences of key

observations) from demos. Next, we propose a Transformer-based design that effectively

learns to dynamically predict such subskill decomposition as the high-level future guidance

for low-level actions.

Besides the hierarchical principles, task decomposition also refers to decomposing

the task space itself. While large-scale RL over diverse environment variations poses great

optimization challenges, we find that launching a population of agents (the specialists),

each trained on a subset of the task variations, drastically eases policy optimization.

We, therefore, propose a meta-framework that generally improves online RL methods to

tackle complex tasks by combining distributed and joint training in a principled manner.

Our approach achieves a great balance of efficiency and effectiveness in large-scale policy

learning, which is verified with extensive ablation studies and a diverse set of benchmark

tasks.

xvi

Chapter 1

Introduction

In this chapter, we mainly introduce the background of Embodied AI, representative

simulators, datasets, and tasks (as well as their major challenges) used in Embodied AI

research. We then briefly discuss the general motivations behind the three approaches

presented in this dissertation as well as the structure of the remaining chapters.

1.1 Background of Embodied AI

The history of Artificial Intelligence (AI) can date back to the era before the

invention of modern computers, Embodied AI is usually vaguely defined with a relatively

short history. It can refer to systems of different levels, ranging from any (semi-)autonomous

systems involving physical structures with or without organism-like bodies [28]. The

early studies are largely motivated by the fields of cognitive science and developmental

psychology, where it is hypothesized that physical bodies and its complicated interactions

with the surroundings promote the emergence of human intelligence, a general idea in

embodied cognition [3]. Other studies [153] based on how babies learn suggest that the rich

regularities inherently presented in the physical world help to shape intelligence, and such a

process is accelerated by the agents’ sensorimotor activities in exploring the surroundings.

Nowadays, Embodied AI is generally defined as the study of AI agents operating

in 2D/3D physical environments that receive perceptual inputs and output actions to

1

perform certain tasks. For its multidisciplinary nature, Embodied AI usually involves

researchers from a wide range of fields such as computer vision, natural language process-

ing, reinforcement learning, graphics, simulation, robotics, and so on. More concretely,

Embodied AI is the study of intelligent agents that can see (usually in an egocentric view),

talk (via languages or audios), reason (understand the surroundings and plan), and act

(through motor controls or high-level actions). Some representative tasks include visual-

and-language navigation [4], visual language task completion [149], object manipulations

[107], and embodied question answering [37].

1.2 Problem Formulation in Embodied AI

Researchers in Embodied AI often adopt a unified formulation that captures

the essence of most tasks in this field. Specifically, we introduce the partially ob-

served Markov decision process (POMDP) [99] setup from the reinforcement learning

(RL) literature. Namely, a POMDP is a representation of an environment as a 9-tuple

(S,O,A, p(s), T,R, ρ0, γ,H), where S is the state space, O the observation space (the

actual perceptual signals received by the agent), A the action space, p(s) the observation

distribution conditioned on the state s ∈ S, T the dynamic transition distribution, R the

reward function that incorporates any goals required by the underlying tasks, ρ0 the initial

state distribution, and γ the discount factor. We usually assume a finite horizon H since

in tasks in Embodied AI should be finished within a limited time.

For each episode or instance of the task T in Embodied AI, the agent is spawned

and the environment is re-configured with state s0 sampled from the distribution ρ0. At

each timestamp t, the agent receives an observation (can be visual, audio, etc.) ot ∼ p(st).

The partial observability setup is common due to the egocentric perception of the agent

or the contextual information being revealed partially at each time. It then executes

an action at ∼ π(st) according to some policy π (can be motor activities, text outputs,

2

etc.), receives a reward rt ∼ R(at, st) which is determined by the underlying task T ,

and reaches a new state st+1 ∼ T (st, at). By such policy π we can obtain a trajectory

τ = s0, s1 ∼ T (s0, a0 ∼ π), ..., sH+1 ∼ T (sH , aH ∼ π). The agent solves the task T

by trying to learn the optimal policy π∗ that maximizes the expected return (sum of

discounted rewards over a trajectory), i.e.,

π∗ = arg max
π

E
τ∼π

H∑
t=0

γtrt

In many cases, the metric for the task is given by a binary variable, indicating whether it

succeeds or not. This is equivalent to using a binary threshold on the sum of the discounted

reward.

1.3 Simulators

Almost all recent research in Embodied AI in building embodied agents involves the

use of simulators. There are multiple obvious advantages of training agents in simulated

environments that even make it arguably necessary. First of all, the sheer amount of

physical resources (robots, indoor scenes, etc.) required for training is usually prohibitively

expensive. Secondly, training in simulated environments significantly improves training

speed as it bypasses physical constraints in the real world. Thirdly, in the real world, it is

hard to reset the physical states of the environments such as the positions and poses of

3D objects exactly. There are various existing simulators with different characteristics.

These diverse features play a major role in shaping the research in Embodied AI as

different features are suited for different tasks. We will briefly discuss some of these key

characteristics, including physics, rendering, speed, and controllers.

At a high level, a simulator has two major components: an engine that simulates

the physical states of the environment (which is a dynamic model that generates st+1

given st) and a renderer that provides multi-modal sensory signals that the agents actually

3

observe (which is a model that generates ot given st). Dynamics modeling of the physical

state transitions is the most critical part of simulators as most Embodied AI tasks entail

interactive environments. Due to the infeasibility of a perfect simulation of the real

world, there exist various levels of accuracy and details for modeling real-world physics.

Typically, the designers of the simulators make such decisions as different levels are suitable

for different tasks in Embodied AI. The simplest level could support minimal physical

simulation, for instance, a static maze that only supports tasks such as navigation. A

basic level includes features such as collision modeling and rigid-body dynamics. More

advanced ones are equipped with features such as enhanced modeling of articulated objects,

soft-body physics on deformable objects, fluid dynamics, and differentiable physics (e.g.,

DiffTaichi [66]). The property derived from the different levels of physical simulation is

the supported action space. Some simulators support fine-grained low-level motor controls

while others only support high-level actions as they lack such simulation capabilities.

As for rendering, 2D images are the most common rendered outputs of the simulators.

Different simulators achieve different levels of photorealism. Compared to the pioneer

simulator DeepMind Lab [5] in Embodied AI research, most recent simulators can generate

images of rather high resolution and fidelity. Advanced techniques such as ray tracing and

physically-based rendering are also widely adopted. More recently, researchers have paid

more attention to the fidelity of other modalities of sensory signals. For instance, SAPIEN

incorporates advanced material-dependent noise-aware rendering for its depth signals [188].

ThreeDWorld [50] features a high-fidelity audio rendering of the environments.

The speed of a simulator is an important metric, which depends on both the

physical simulation process and the rendering process. Solving most tasks in Embodied

AI requires a large number of interactions (“samples” using words in RL). A faster speed

enables extensive usage of policy gradient-based methods which typically entail enormous

amounts of samples. On the other hand, a slower speed restricts the tools yet encourages

the development of more sample-efficient and generalizable algorithms. However, it is

4

rather challenging to give a precise comparison of the speed across different simulators,

because there are a variety of factors to be considered that can influence the absolute speed,

which is normally measured in frame rate, i.e., frame per second (FPS), for instance, the

specific hardware setups (modern GPUs are much faster than previous ones) and number

of threads or processes used. In terms of physics simulation, there are no standard scenes

and object sets that are used to benchmark the speed (complicated scenes take much

longer to simulate). Moreover, the speed-accuracy trade-off is inherent in every physics

engine - choosing a smaller ∆t means a slower but more accurate simulation. Usually, a

simulation speed of around 1000 FPS allows large-scale RL, and faster ones indicate that

simulation might not be the bottleneck for model training. In terms of rendering, there

are no standard setups for resolution, image quality, and specific types of sensors.

There are multiple types of controller interfaces between the user and the simulator,

which determine how easily the researchers can collect training data. The most common

one is through API calls (usually via Python for programs and via keyboards/mice for

humans). Some simulators have advanced controllers that support virtual reality (VR)

interfaces, which significantly increase the efficiency and effectiveness of human control.

Large-scale high-quality demonstrations for solving tasks in Embodied AI usually rely

on VR-based teleoperation, which is both expensive and not widely supported in recent

simulators. Another direction is to leverage vision-based teleoperation as the controller

[168], which is still under-explored. Some simulators such as VirtualHome [122] support

unconventional controllers including human language, which is easier to obtain yet the

accuracy of the control highly depends on the quality of the command and effectiveness of

the language parser.

5

1.4 Datasets and Assets

Datasets and assets are also critical components of Embodied AI research. Here we

refer to the physical or virtual assets (such as robots and 3D objects) and the collected

demonstrations. While some are built-in in their associated simulators, many of those are

proposed to be simulator-agnostic: they are used for multiple different tasks and across

different simulators.

Agents in simulation usually interact with the environments via a virtual yet

physical robot. Different mechanical constraints of various robot actuators give us a wide

range of robots. Some robots are highly realistic and are reflective of their real-world

counterparts. For instance, AI2-Thor supports LoCoBot1, Habitat 2.0 supports mobile

manipulators like Fetch2, fixed-base arms like Franka3 and quadrupeds like AlienGo4;

RLBench [71] is based on Franka; DoorGym [166] is based on Berkeley BLUE Robot

arm [51]; simulators such as Meta-World [182] utilize MuJoCo for simulation and so are

equipped with robot models such as Sawyer5. On the other hand, some robots do not

resemble those in the real world: the humanoid robot in iGibson 2.0 [95], the flying gripper

in SAPIEN, and the magnet-based robot Magnebot in ThreeDWorld. The different robot

assets have a major impact on the action space of the tasks. For instance, some simulators

primarily support high-level actions (discrete, magic grasp, etc.) which are good for

learning long-horizon tasks but cannot be directly transferred to the real world where it

requires gross motor control (low-level actions).

Object-oriented assets aim to promote research in object recognition, pose esti-

mation, attribute learning, object manipulation, and other aspects related to Embodied

AI research. The iTHOR assets in the AI2-Thor framework [87] consist of more than

1http://www.locobot.org
2https://fetchrobotics.com
3https://www.franka.de
4https://www.unitree.com
5https://www.rethinkrobotics.com/sawyer

6

http://www.locobot.org
https://fetchrobotics.com
https://www.franka.de
https://www.unitree.com
https://www.rethinkrobotics.com/sawyer

100 interactable 3D objects that support rich physical properties. The YCB Benchmark

[14] standardizes both the 3D models of the objects and their real-world counterparts

(the physical copy) by scanning 3D everyday objects in the real world. More recently,

PartNet-Mobility Dataset [174] which is used in various simulators is designed to enable

more complex manipulation of articulated objects.

Scene-oriented assets typically feature diverse indoor scenes that are either static

(supportive of navigation-based tasks) or compatible with interactable objects. In either

case, they usually promote tasks of a longer horizon than solely object manipulations, such

as mobile manipulation (i.e., navigation + manipulation) and object rearrangement. There

are three types of scene assets: synthesized, reconstruction-based, and floor plan-based.

They reflect the different trade-offs between scale, diversity, and quality of the generated

scenes. The creation of synthesized scenes usually involves professional 3D artists and is

very expensive (e.g., the construction of interactive ReplicaCAD requires > 900 hours of

human effort). The 3D reconstruction-based scenes are created by leveraging 3D scans

of real buildings. Yet due to the imperfection of 3D reconstruction methods, they might

contain artifacts and errors. Floor plan-based scenes are generated by first producing

the floor plans and then converted to full 3D models (usually by some heuristics). It is

relatively inexpensive to obtain (e.g., LUMINOUS [190] adopts procedural generation)

with some compromise of the scene quality.

Language-oriented datasets refer to those where human language plays a central

role. They inherently consist of multiple input modalities compared to the pure language-

based datasets in the field of NLP. For instance, Cornell Instruction Following Framework

(CIFF) [105] is an early effort to provide a unified framework for benchmarking instruction

following tasks (consisting of mostly navigation and simple manipulation). ALFRED [149]

is a more recent instruction following dataset for more complex navigation and object

manipulations (e.g., cut an apple, cook an egg in the microwave). On the other hand, some

datasets consider languages as actions to interact with the environments. For instance,

7

the EmbodiedQA [171] is used to train an agent to navigate in the environment to answer

a question about the scene. A later dataset, named Vision-and-Dialog Navigation (CVDN)

[165], allows dialogues from the agents to clarify the tasks. However, the dialogues cannot

be generated from the oracle in real-time and so methods designed for CVDN can only

leverage pre-defined conversations. Due to the nature of language, most existing assets do

not allow online conversation. Nevertheless, it becomes feasible to do so with the recent

advances in large language models [113].

Skill-oriented datasets typically benchmark locomotion or object manipulation

skills of robots with additional collected demonstrations so that AI agents can leverage a

learning-from-demonstration setup. For instance, ManiSkill [107], RLBench-100 [71] and

MT-50 [182] promote object manipulation research. The Advanced Physical Prediction

Benchmark proposed in ThreeDWorld evaluates a set of more general skills (such as object

permanence and collision understanding) of an agent.

1.5 Embodied AI Tasks and their Key Challenges

In this section, we briefly introduce the three major categories of tasks in Embodied

AI, including navigation, object manipulation, and instruction following.

Navigation is a group of tasks where the agent is asked to navigate through (indoor)

scenes to reach a specified target (a relative location coordinate, a semantic class, a short

sentence specifying the location, etc.). While the ground truth map is not provided,

the challenge is to understand the scenes and keep track of where the agent has visited

and where it should explore next (similar to SLAM). The tasks usually also emphasize

the efficiency of the navigation, measured by the ratio between the length of the actual

trajectories and that of the shortest possible ones. It can be further divided into visual

navigation and visual language navigation (VLN) where the latter also asks the agents

to understand human language as part of the task specification. VLN can be extended

8

to also allow dialogues between the agent and the environment (e.g., the instructor) to

eliminate any ambiguities in the instructions.

Manipulation asks the agents to interact with objects in the scene to complete

certain tasks. It can be with static robotic arms (static manipulation) or with mobile

ones (mobile manipulation). Based on the type of objects, it involves rigid and articulated

objects or deformable objects (soft-body manipulation). The specific atomic actions that

constitute the tasks are usually push, pull, grasp, pour, etc. The major challenges lie in

high precision perception and control (e.g., plug charger requires a precision level of around

1mm), the handling of geometric variations (e.g., common objects such as chairs have

diverse shapes), and the difficulties of modeling certain objects’ dynamics (e.g., cloth).

Instruction following is an umbrella term for mobile manipulation tasks with human

instructions as the task specification. The agent is asked to translate a potentially long

sequence of human instructions into actions (e.g., ALFRED). Besides the requirement

of interpreting human instructions correctly, the two lines of work have their different

challenges. Model-based approaches where the agent acquires a map of the surrounding

[7, 104, 76] entail affordance-aware scene understanding. Purely instruction following

ones where the agent directly translates the instructions [110, 115, 156] thrive given a

tremendous amount of training data (which is usually not the case).

1.6 Introduction to the Presented Work

Decomposing a complex task into a set of simpler ones is a common technique

used by AI agents, especially in the field of Embodied AI. Intuitively, humans routinely

perform decompositions of tasks into goals, subgoals, and low-level actions, to improve the

effectiveness or the efficiency [35]. In this dissertation, we present three methods, each

from a different perspective, that adopt the general idea of task decomposition to handle

some of the aforementioned challenges and improve robot learning.

9

The first work to be presented (in Chapter 2) is regarding acquiring embodied agents,

solely from offline data, that follow human instructions to complete long-horizon household

tasks (the ALFRED challenge). The nature of this task (long sequences of sub-tasks,

each composed of high-level actions, though) makes it suitable for task decomposition.

Its challenges include the requirement of an affordance-aware scene understanding of the

indoor environment and the compositional generalizability in executing a sequence of

diverse actions. To deal with this, we propose to decompose the tasks twice. Firstly, we

decompose the task into exploration and execution phases. In the first phase, we utilize

multimodal signals to explore the scene in a task-driven manner to obtain an affordance-

aware semantic map that can be used for downstream task planning. In the second phase,

we adopt a hierarchical task execution system to interact with the environments according

to the semantic map and the instructions. We design the task execution system to operate

in a sub-task manner by further categorizing the sub-tasks into either navigation or object

manipulation. Our work achieves a substantial improvement in generalization over the

unseen combinations of sub-tasks in unseen scenes.

The second work to be presented (in Chapter 3) handles short-horizon tasks. As

pointed out by Moravec’s paradox, low-level control tasks are usually harder for AI

agents to learn than high-level reasoning tasks. We study challenging contact-rich object

manipulation with high-precision and/or object-level geometric variations. We find that it

is beneficial for short-horizon tasks to be further decomposed into subskills (e.g., atomic

actions). Accordingly, we develop a novel hierarchical imitation learning method that

can utilize scalable, albeit sub-optimal, demonstrations. We first propose an observation

space-agnostic approach that efficiently discovers the multi-step subgoal decomposition

(sequences of key observations) of the demos unsupervisedly. By grouping temporarily close

and functionally similar actions into subskill-level segments, the discovered breakpoints

(the segment boundaries) constitute a chain of planning steps (i.e., the chain-of-thought)

to complete the task. Next, we propose a Transformer-based design that effectively learns

10

to predict the decomposition (the chain-of-thoughts) as the high-level future guidance for

low-level actions by using prompt tokens and a hybrid masking strategy during training.

Our model consistently surpasses existing strong baselines.

Besides the aforementioned hierarchical approaches where tasks are decomposed

temporarily into sub-tasks, task decomposition can also refer to partitioning the task

space itself. While generalization in deep RL over unseen environments requires large-scale

policy optimization over diverse environment variations, the optimization process is already

computationally prohibitive. One of the key ideas of the third work to be presented (in

Chapter 4) is to decompose the space of task variations and learn to solve the task in a

divide-and-conquer manner. Specifically, we observe that an agent (a generalist) trained on

many variations tends to learn faster at the beginning yet plateaus at a less optimal level

for a long time. In contrast, an agent (a specialist) trained only on a few variations can

often achieve high returns under a limited computational budget. We, therefore, propose

an RL framework to tackle complex tasks in a distributed training manner to have the

best worlds of both worlds. Several key ablations reveal when and how to launch the

specialist agents as well as how to merge them back into a single generalist agent. Our

proposal is a meta-framework that brings performance boost to various baseline online RL

methods over several popular RL benchmarks.

1.7 Additional Work Done During my PhD

Apart from the aforementioned research, I have been working on diverse topics

within AI/ML. Some of the work which I am the primary investigator includes: (1) the

study of local minima in optimizing neural network where we propose a metric that is both

strongly indicative of the generalizability of the neural network and may be effectively

applied as a practical regularizer with both theoretical and empirical justifications [78];

(2) the study of robust image translation where we propose a novel multi-scale ”semantic

11

robustness” loss for GAN-based image translation models to reduce semantics flipping

that is common in unpaired image-to-image translation tasks [79]; (3) the first empirical

study of image advertisement understanding through the lens of large vision-language

models, where we augment these models with real-world knowledge [77].

12

Chapter 2

Task Decomposition for High-level
Long-horizon Instruction Following

Several challenges in solving long-horizon embodied multimodal tasks include long-

horizon planning, vision-and-language grounding, and efficient exploration of the indoor

scene. In this work, we identify a critical bottleneck, namely the performance of planning

and navigation, and tackle it by decomposing the task into a task-driven multimodal

exploration phase and a hierarchical planning and execution phase. Specifically, we

propose a Neural SLAM approach that, for the first time, utilizes several modalities for

exploration, predicts an affordance-aware semantic map, and plans over it simultaneously.

This significantly improves exploration efficiency, leads to robust long-horizon planning,

and enables effective vision-and-language grounding. With the proposed Affordance-aware

Multimodal Neural SLAM (AMSLAM) approach, we obtain more than 40% improvement

over prior published work on the ALFRED benchmark and set a new state-of-the-art

generalization performance at a success rate of 23.48% on the test unseen scenes1.

2.1 Introduction

There is significant recent progress in learning simulated embodied agents [115,

189, 8, 108, 152, 156] that follow human language instructions, process multi-sensory

1The code is publicly available at https://github.com/amazon-research/multimodal-neuralslam.

13

https://github.com/amazon-research/multimodal-neuralslam

inputs and act to complete complex tasks [4, 37, 21, 149]. Despite this, challenges remain

before agent performance approaches satisfactory levels, including long-horizon planning

and reasoning [8], effective language grounding in visually rich environments, efficient

exploration [24], and importantly, generalization to unseen environments. Most prior

work [152, 115, 110, 156] adopted end-to-end deep learning models that map visual and

language inputs into action sequences. Besides being difficult to interpret, these models

show limited generalization, suffering from significant performance drop when tested on

new tasks and scenes.

In contrast, hierarchical approaches [189, 8] achieve better generalization perfor-

mance and interpretability. Although hierarchical structure is helpful for long-horizon

planning, its key impact is an expressive semantic representation of the environment

acquired via Neural SLAM-based approaches [17, 20, 8]. However, a missing component

in these methods is fine-grained affordance [85, 124]. To build a robotic assistant that can

follow human instructions to complete a task (e.g., Open the fridge and grab me a soda),

it is essential that the agent can perform affordance-aware navigation: it must navigate to

a reasonable position and pose near the fridge that enables follow-on actions open and

pick-up. Operationally, the agent has to move to a location where the fridge is within reach

without preventing the fridge door from being opened. Ideally, it should also position itself

so that the soda is in its first-person viewing field to allow the follow-on pick-up action.

This is challenging compared to pure navigation (where navigating to any location close

to the fridge is acceptable). To achieve this, we propose an affordance-aware semantic

representation that leads to accurate planning for navigation setting up subsequent object

interactions for success.

Efficient exploration of the environment [133, 24] needs to be addressed to establish

this semantic representation - it is unacceptable for a robot to wander around for an

extended period of time to complete a single task in a real-world setting. To resolve this

issue, we propose the first task-driven multimodal exploration module that takes language

14

instruction as guidance and keeps track of visited regions to explore the area of interest

efficiently. This lays a foundation for map construction, which is critical to long-horizon

planning.

Here, we introduce Affordance-aware Multimodal Neural SLAM (AMSLAM), which

implements two key insights to address the challenges of robust long-horizon planning,

namely, efficient exploration and generalization: 1. Affordance-aware semantic rep-

resentation that estimates object information in terms of where the agent can interact

with them to support sophisticated affordance-aware navigation, and 2. Task-driven

multimodal exploration that takes guidance from language instruction, visual input,

and previously explored regions to improve the effectiveness and efficiency of exploration.

AMSLAM is the first Neural SLAM-based approach for embodied AI tasks to utilize sev-

eral modalities for effective exploration and an affordance-aware semantic representation

for robust long-horizon planning. We conduct comprehensive empirical studies on the

ALFRED benchmark [149] to demonstrate the key components of AMSLAM, setting a

new state-of-the-art generalization performance at 23.48%, a >40% improvement over

prior published state-of-the-art approaches.

2.2 Related Work

Recent progress in Embodied AI, spans both simulation environments [87, 95, 140,

50, 122] and sophisticated tasks [37, 4, 149]. Our work is most closely related to research

in language-guided task completion, Neural SLAM, and exploration.

Language-Guided Task Completion

. ALFRED [149] is a benchmark that enables a learning agent to follow natural

language descriptions to complete complex household tasks. The agent’s goal is to learn

mappings from natural language instructions to a sequence of actions for task completion

in a simulated 3D environment. Various modeling approaches have been proposed falling

15

into roughly two families of methods. The first focuses on learning large end-to-end models

that directly translate instructions to low-level agent actions [152, 156, 115]. However,

these agents typically suffer from poor generalization performance and are difficult to

interpret. Recently, hierarchical approaches [189, 8] have attracted attention due to their

better generalization and interpretability. We also adopt a hierarchical structure, focusing

on affordance-aware navigation thereby achieving significantly better generalization than

all existing approaches.

Neural SLAM and Affordance-aware Semantic Representation

. Neural SLAM [17, 18, 20], constructs an environment semantic representation en-

abling map-based long-horizon planning [19]. However, these are tested in pure navigation

tasks instead of complex household tasks, and does not consider affordance [124, 108, 175],

which is required for tasks involving both navigation and manipulations. In [8], the authors

utilize SLAM for 3D environment reconstruction in language-guided task completion. Their

approach relies heavily on accurate depth prediction (less robust in unseen environments).

Instead, we propose a waypoint-oriented representation which associates each object with

the locations on the floor from where the agent can interact with the object. Furthermore,

different from the 2D affordance map in [8] that directly predicts affordance type, our

semantic representation supports more fine-grained control of the robot’s position and

pose, which facilitates significantly better generalization. The approach in [124] assumes

direct access to the ground truth depth information (not available in our setup) and

the method in [108] only focuses on pure navigation problems. Concurrently, in [104],

the authors also propose constructing a semantic map and then planning over the map.

However, their approach relies on depth prediction, which requires extra information from

the environment during training.

16

Learning to Explore for Navigation

. An essential step in Neural SLAM-based approaches is learning to explore the

environment for map building [133, 24, 74, 17]. Multiple approaches have been proposed to

tackle aspects of exploration in the reinforcement learning [142, 117, 13, 24, 74], computer

vision [133, 108], and robotics [8, 59] communities. The central principle of prior methods is

learning to reduce environment uncertainty; different definitions of uncertainty lead to the

following types of methods [133]. Curiosity-driven [142, 117, 13] approaches learn forward

dynamics and reward visiting areas that are poorly predicted by the model. Count-based

exploration [160, 6, 112, 134] encourages visiting states that are less frequently visited.

Coverage-based [24, 74] approaches reward visiting all navigable areas by searching in

a task-agnostic manner. In contrast, we propose a task-driven multimodal exploration

approach utilizing egocentric visual input, language instructions, and memory of explored

areas to reduce task-specific uncertainty of points of interest (areas important to complete

the task). We show this to be more efficient, leading to more effective map prediction and

robust planning.

2.3 Problem Formulation

We focus on the ALFRED challenge [149], where an agent is asked to follow human

instructions to complete long-horizon household tasks in indoor scenes (simulated in

AI2Thor [87]). Each task in ALFRED consists of several subgoals for either navigation

(moving in the environment) or object interactions (interacting with at least one object).

Language inputs contain a high-level task description and a sequence of low-level step-

by-step instructions (each corresponding to a subgoal). The agent is a simulated robot

with access to the states of the environment only through a front-view RGB camera with

a relatively small field of view. The agent’s own state is a 5-tuple (x, y, r, h, o), where x, y

are its 2D position, r the horizontal rotation angle, h the vertical camera angles (also

17

Latest RGB Observation

Semantic Map

Egocentric RGB Observations

Language instructions

Explored area

Head forward to the other side of room.
Turn to your left and walk to the stove.

Multimodal
Exploration Module

Environment

Move Ahead

Navigable area

Counter Top
Table

Details of Exploration Phase Pipeline of AMSLAM

Figure 2.1. AMSLAM consists of two phases. Exploration Phase: The agent aims to
explore the environment given guidance from low-level language instructions, egocentric
observations, previous exploration actions, and the explored area. At the same time, it
produces waypoint-oriented semantic maps. Execution Phase: Given the language in-
structions and the affordance-aware semantic representation (i.e., semantic maps) acquired
during exploration, the agent executes the subgoals sequentially. It uses a planning module
(which consumes the semantic map) for navigation subgoals and an object interaction
transformer for other subgoals.

called “horizon”) and o the type of object held in its hand. The state space of the agent is

discrete, with navigation actions: MoveAhead (moving forward by 0.25m), RotateLeft &

RotateRight (rotating in the horizontal plane by 90◦) and LookUp & LookDown (adjusting

the horizon by 15◦). Formally, r ∈ {0◦, 90◦, 180◦, 270◦}, h ∈ {60◦, 45◦, ...,−15◦,−30◦}

where positive h indicates facing downward. With these discrete actions, the agent has full

knowledge of the relative changes ∆x,∆y,∆r and ∆h. Each of the 7 object interaction

actions (PickUp, Open, Slice, etc.) is parametrized by a binary mask for the target object,

which is usually predicted with a pre-trained instance segmentation module. Featuring

long-horizon tasks with a range of interactions, the ALFRED challenge evaluates an agent’s

ability to perform tasks over unseen test scenes, while only allowing ≤1000 steps and ≤10

action failures for each task at inference time.

18

2.4 Affordance-aware Multimodal Neural SLAM

Affordance-aware navigation is a major challenge in solving complex and long-

horizon indoor tasks such as ALFRED with both navigation and object interactions.

Specifically, given each object of interest in the scene, the agent is required to not only

find and approach it but also end up at a pose (x, y, r, h), that is feasible for subsequent

interactions with the object. For instance, to open a fridge, the robot should approach

the fridge closely enough (so the door is within reach), look at it (so that the fridge is

in the field of view), and leave enough room to open the door. To solve a long-horizon

task involving multiple navigation and object interaction subgoals, it is natural to use

an explicit semantic map, either 2D or 3D, of the environment (similar to Neural Active

SLAM [17]), together with model-based planning (e.g. as in HLSM [8]). This line of

work tends to generalize better than models that directly learn mappings from human

instructions to navigation & interaction actions (e.g., E.T. [115]). With perfect knowledge

of the environment, it is possible to achieve (nearly) perfect performance. In practice,

however, the semantic map acquired at inference time is usually far from ideal, primarily

due to Incompleteness (missing information due to insufficient exploration of the scene)

and Inaccuracy (erroneous object location prediction on the map, especially for small

objects).

To improve exploration performance, we propose a multimodal module that, at

each step, predicts an exploration action a ∈ {MoveAhead, RotateLeft, RotateRight}

by taking visual observations & actions in the past, step-by-step language instructions,

and the explored area map which indicates where the agent has visited. We show that,

compared to existing model-based approaches on ALFRED (e.g., HLSM [8] which applies

random exploration), our use of low-level language instructions leads to more efficient

exploration. The proposed exploration module operates at the subgoal level and only

predicts exploration actions (in contrast to E.T. which directly predicts actions for the

19

entire task). The extra modality (the explored area) facilitates exploration by providing

the agent with explicit spatial information. We illustrate the exploration module in Figure

2.3, elaborate its details in Section 2.4.3, and empirically demonstrate its advantages in

Section 2.5.

To deal with the inaccuracy in map prediction, we carefully design an affordance-

aware semantic representation for the environments. On one hand, knowing the precise

spatial coordinates of objects requires precise depth information, which is difficult to

acquire due to 3D sensor noise and/or inaccuracy in predicting depth from 2D images.

On the other hand, affordance-aware navigation essentially asks for poses (x, y, r, h) of

the agent suitable for interactions with the target objects, thus requiring only coarse-

grained spatial information. Given an object type o, we define such corresponding poses

as waypoints Wo and then treat navigation as a path planning problem among different

waypoints. To generate such waypoints, we handle large objects (fridges, cabinets, etc.)

and small objects (apples, mugs, etc.) differently. The waypoints for large objects are

computed using 2D grid maps predicted and aggregated from front-view camera images by

a CNN-based network; for small objects, we directly search over all observations acquired

during the exploration phase with the help of a pre-trained Mask RCNN [60] (detailed

below in Section 2.4.2).

2.4.1 Overall Pipeline

We illustrate the overall inference pipeline of our proposed framework in Figure 2.1.

Given a task T specified by a high-level goal description and low-level human instructions,

our method proceeds in two phases: exploration and execution. During exploration, the

agent navigates across the room (guided by the language instructions) for a sufficient

exploration of the indoor scene, where a multimodal transformer predicts the exploration

actions sequentially. In the meantime, an affordance-aware semantic representation is

acquired given the egocentric observations (images) at each step by a neural SLAM system.

20

Figure 2.2. Illustration of the affordance-aware semantic representation used in our
framework. (left) A top-down view of an indoor scene used in ALFRED (this view is
not available to the agent at test time). (middle) A visualization of the corresponding
semantic map; only shown are the side table (in green), countertop (in blue) and the
navigable area (in red). Two waypoints (drawn in white stars and arrows) are displayed
for the side table (∈ large object) and lettuce (∈ small object), respectively. (right) While
the waypoint for the side table is computed from the predicted map, the waypoint for
lettuce is obtained by searching among all exploration steps. The visual observation and
its mask prediction on the waypoint for lettuce are shown. For reference, the high-level
goal description of the task used in this example is “pick up the lettuce and place it on a
table”.

This representation can be used to derive waypoints for all target objects (from which the

agent can interact with the objects of interest). When the exploration phase ends (by the

agent predicting Stop), it moves to the execution phase, where the agent carries out actions

predicted for each subgoal of the task T in a sequential manner. Specifically, since each

step-by-step language instruction corresponds to a subgoal, we use a Transformer-based

[167] subgoal parser to process the text and predict the subgoal g ∈ T is for navigation or

not. For a navigation subgoal, we further use another Transformer-based target object

parser to process the same text and predict the categories of the target objects, which are

consumed together with the affordance-aware semantic representation by a Dijkstra-based

planner to generate navigation actions. Otherwise, an object interaction transformer

takes charge of the action predictions given the visual and language inputs of the object

interaction subgoal.

21

2.4.2 Affordance-aware Semantic Representation

We empirically show in Section 2.5.1 that a major bottleneck for solving long-

horizon navigation & interaction tasks is affordance-aware navigation. To do so, the agent

needs a position and pose (defined as waypoints previously in this section) from which

the potential follow-on actions for the target object are feasible, rather than the exact

location of the target object. Accordingly, our goal is to develop a map representation that

supports waypoint generation so that navigation can be solved reasonably well by path

planning. ALFRED supports more than 100 types of objects (one way in which it mimics

real-world complexity), and we propose to handle small and large objects differently. We

detail our design below and give an example in Figure 2.2.

For a class clarge out of Nlarge large object types, we compute its waypoint

(x∗, y∗, r∗, h∗) in 3 steps. First, we find all positions {(x, y)} that might contain an

instance of class clarge and all navigable locations for the robot, both represented on a

2D grid map of dimension G × G × (Nlarge + 1), with grid size G = 37 and unit length

0.25m. Each grid point in the map has a binary multi-hot vector to represent whether each

object class appears there and whether the point is navigable. Specifically, at each (x, y, r)

visited in the exploration phase, we use a pre-trained CNN (whose inputs are images at 3

different horizons observed at (x, y, r)) to predict a small partial map of the 2D map. We

then aggregate across all exploration steps by max-pooling over these partial maps, each

translated and rotated via a Spatial Transformer [69]. Similar to Neural Active SLAM

[17], as we know the changes (∆x,∆y,∆r) of the agent after each action, we can directly

compute the parameters of the Spatial Transformer. After applying some post-processing,

we obtain the final 2D map estimation. Second, we find (px, py) on this 2D map as the

most confident position predicted for class c and then find the navigable position (x′, y′)

closest to (px, py). Third, we choose the rotation r∗ to be the one, suppose the agent

stands at (x′, y′), and an object at (px, py) appears closest to the center of the agent’s field

22

of view. To leave room for object interactions (by the agent’s backing up a few steps), we

compute x∗ = x′ − δ1(c, r
∗) and y∗ = y′ − δ2(c, r

∗) where δ∗ are rule-based functions. We

defer the estimation of the horizon h∗ (the camera angle relative to the horizontal) to the

execution phase described in Section 2.4.4.

For a small object type csmall, predicting its 3D coordinates precisely is rather

challenging (even 2D object detection for small objects is hard [86]). In ALFRED, this

is especially true since only RGB images are given at test time and many types of small

objects occur rarely. To deal with this challenge, we propose to directly find the waypoint

(x∗, y∗, r∗, h∗) for csmall by searching through all observations (RGB images) at each step

during exploration. Specifically, we compare all instance masks for csmall predicted by a

pre-trained Mask RCNN [60] that are of confidence ≥ τc. Then (x∗, y∗, r∗, h) is computed

as the one where the aforementioned mask prediction has the largest area. Similar to

the waypoint generation for large objects, we do not estimate the horizon h∗ until the

execution phase. Directly finding the waypoint of csmall (without estimating its location)

relies heavily on how well the exploration is carried out (discussed later in Section 2.4.3).

In case the agent finds no such waypoint (no valid observation of csmall during exploration),

we instead use the waypoint for the container (normally of large object type such as fridge,

side table) of the small object, which is much easier to find.

2.4.3 Task-driven Multimodal Exploration

The task-driven multimodal exploration module consists of several sub-modules,

either learned or pre-trained/fixed. At a high level, given a task which is usually a

sequence combining navigation and object manipulation subgoals, in the exploration

phase, the agent goes through its navigation subgoals one by one to explore the scene.

Note that we adopt a subgoal parser to predict whether a subgoal is for navigation or

not based on the input instruction. Specifically, the module predicts exploration actions

a ∈ {MoveAhead, RotateLeft, RotateRight} or Stop auto-regressively for each navigation

23

Figure 2.3. Consisting of several transformer-based networks, the exploration module
operates at a subgoal level. Given a navigation subgoal during inference, it takes multiple
modalities as input including language instructions for the current and subsequent subgoals,
egocentric observations from the agent, and exploration actions in the past as well as their
corresponding explored area. It predicts the next exploration action carried out in the
environment auto-regressively. Illustrated is an example where given 4 previous actions
the model tries to predict the 5-th. Note that for brevity the positional (and temporal)
encoding layers right before the transformer encoders are omitted in the figure.

subgoal. The agent switches to the next navigation subgoal whenever it predicts Stop until

the last one to end the exploration phase. Instead of random exploration (as in HLSM)

or exploration for maximum coverage (as in Active Neural SLAM), our module utilizes

low-level language instructions to achieve task-driven exploration for better efficiency. In

ALFRED the exploration is done individually for each task and the steps count towards

the total steps (which has a limit of 1000).

There are 4 modalities (and 4 corresponding branches). At each time step, the first

branch takes two low-level human instructions, one for the current navigation subgoal, and

one for the subsequent object interaction subgoal. The second and third branches consume

the egocentric observations (images) and the previous exploration actions, respectively.

Inspired by E.T. [115], we use a cross-modal transformer (also see [100, 189]), which

aggregates inputs of these 3 modalities across all previous exploration steps to output

24

f1,2,3. The fourth modality, the explored area, is a G×G 2D grid map marked 1 for the

regions observed by the agent in the past and elsewhere 0, except that the center of the

map (which always indicates the agent’s position) is marked 2. This map is constructed

in 2 steps. First, at each previous exploration step, since the agent can only observe a

small area in front of it, we define a single-step explored region as a binary map where

there is a 5 × 3 rectangle grid of 1’s representing where the agent has observed. Second,

we aggregate the maps across all previous steps. Each single-step map is translated and

rotated by a Spatial Transformer and then merged by max-pooling (similar to the semantic

map described in Section 2.4.2). Given this explored area map, we use a CNN to extract

f4 ∈ R32. Together with f1,2,3, we finally use an MLP to predict the next exploration

action. Illustrated in Figure 2.3 and evaluated in Section 2.5.5, our design to represent the

action history explicitly and geometrically improves both the effectiveness and efficiency

of the exploration.

We train the exploration module supervisedly. A common practice (e.g. in HLSM

[8], EmBERT [156], LWIT [110]) during inference is to augment the exploration by injecting

actions periodically. We manually inject 4 RotateRight after every 2 MoveAhead predicted

by our module to acquire 360◦ views of the scenes. Moreover, the semantic representation

produced by the neural SLAM requires input images of 3 different horizons. So we further

inject two LookUp or two LookDown actions alternately after every exploration action. This

zigzagging scheme is an efficient way to acquire images of multiple horizons, which only

triples the total number of steps in the exploration phase. Since each exploration step

counts towards the total steps for a task, there is a trade-off between exploration (a better

view of the environment) and exploitation (there is an upper limit of 1000 for total steps).

25

2.4.4 Other Modules

Subgoal Parser & Target Object Parser

Both the subgoal parser and the target object parser take the language instruction

as the only input. Both models use the same Transformer-based architecture (not sharing

weights, though) and are trained supervisedly. The subgoal parser performs a binary

classification, predicting whether each subgoal is for navigation (based on its human

instruction). The target object parser predicts both the target object and its container (if

it has one) by taking the language instructions for the navigation subgoal and for the next

subgoal.

Online Planner for Affordance-aware Navigation

Given the affordance-aware semantic representation that supports waypoint gen-

eration, we deal with a navigation subgoal in 3 steps: (1) Obtain a waypoint (x, y, r, ∗)

for the object type predicted by the target object parser. (2) Derive an action sequence

from the path connecting the current location and pose (x′, y′, r′, h′) to (x, y, r, h′) using

Dijkstra’s algorithm. (3) Decide the horizon h by online exploration by first navigating to

(x, y, r, h′). The agent then goes through 6 horizons {60◦, 45◦, ..., 0◦,−15◦} (essentially a

search over most horizons allowed for the agent) and obtains the mask prediction with

confidence > 0.8 (selected from {0.5, 0.6, 0.7, 0.8, 0.9} using the valid unseen data) of

the target object type by a pre-trained Mask RCNN. Finally, we select h with the largest

mask area. See ablation studies of this scheme in Section 2.5.5.

Object Interaction Transformer

We adopt the cross-modal transformer again at the subgoal level for object inter-

action subgoals, which maps language instructions and visual observations (only for the

current object interaction subgoal) to actions. The module is trained by imitation learning

on the ALFRED training data at the subgoal level.

26

Table 2.1. Ablation study results of the generalization performance of our framework
with ground truth navigation (denoted GT navi.) inserted together with different types of
pose perturbations. For reference, we also include results from HLSM [8], the previous
state-of-the-art method on ALFRED. Note that the object interaction transformer is
abbreviated as Obj. Int. Xformer.

Valid Unseen (%)
Success Rate Goal Cond.

HLSM [8] 11.8 24.7
GT navi. + Obj. Int. Xformer 64.6 74.2
GT navi. + Obj. Int. Xformer + rand. horizon 21.7 35.9
GT navi. + Obj. Int. Xformer + rand. displacement 47.3 65.4

2.5 Experiments

We evaluate our method for language-guided task completion on the ALFRED

challenge [149], which supports task evaluation in unseen environments (i.e., room layouts),

the main focus of our method. ALFRED provides both a validation (with ground truth

provided) and a test set (evaluation occurs in the server) for tasks sampled in indoor scenes

unseen during training. The training split contains 21,023 tasks sampled from 108 scenes

(i.e., rooms), the valid unseen split and the test unseen split contain 821 tasks sampled

from 4 scenes and 1,529 tasks sampled from 8 scenes, respectively. For all experiments, we

report the commonly used evaluation metrics: the task level Success Rate and the subgoal

level Goal Condition. Notice that each task in ALFRED allows up to 1000 total steps

(including both exploration and execution phases in our method).

We organize the presentation of the numerical results into 3 parts. Firstly, we

demonstrate that affordance-aware navigation is the major bottleneck for language-guided

task completion. Secondly, we present our main numerical results showing that with better

affordance-aware navigation, our method significantly outperforms previous state-of-the-art

methods on ALFRED. Finally, we perform a series of ablation studies to justify our design.

27

2.5.1 Validation of the Need for Affordance-aware Navigation

We first validate the need for better affordance-aware navigation. To do so, we

analyze the generalization performance of our approach by using ground truth actions

for navigation subgoals instead (we still use actions generated by the object interaction

transformer otherwise). Similar to solving indoor tasks in real-world settings, the major

bottleneck in tackling ALFRED is affordance-aware navigation. A navigation subgoal

succeeds only if the agent stays close enough to the target object (so that it is within

reach), sets a camera angle so that the object is in the field of view, and leaves room for

object articulation (e.g., open a door of a fridge). We perform several experiments on the

valid unseen data of ALFRED with numerical results reported in Table 2.1. Specifically,

when the ground truth navigation actions (denoted GT navi.) are used during inference,

our framework achieves an extremely high success rate (64.6%). However, the performance

drops significantly if perturbations (random displacement is adding ±1 to the coordinates)

are added to the target (x, y, r, h) of each navigation subgoal, verifying our claim about

the need for affordance-aware navigation.

2.5.2 Validation of the Need for Hierarchical Task Execution

We further validate the need for the hierarchical approach (i.e., subgoal level task

execution) adopted by our method where each subgoal is executed sequentially by either

a Dijkstra-based planner (for navigation subgoals) or otherwise the object interaction

transformer. Here we justify the use of the object interaction transformer, which is a

cross-modal transformer trained at the subgoal level. Specifically, we pre-process the

training data from the original training fold of ALFRED such that each trajectory contains

inputs (low-level language instructions and visual observations) and ground truth actions

for a single object interaction subgoal. We evaluate our proposed module on the valid

unseen split of ALFRED. Compared to E.T.+, which adopts a cross-modal transformer

28

trained in full task level and with extra synthesized data, our object interaction transformer

generalizes better on nearly all subgoals, as reported in Table 2.2.

Table 2.2. Success rates (%) of all 7 object interaction subgoals evaluated on valid unseen
data in ALFRED. Overall, our method (object interaction transformer) generalizes better
than E.T.+.

Valid Unseen (%)
Toggle Pickup Cool Put Heat Clean Slice

E.T.+ [115] 83.2 69.0 99.1 69.6 99.3 91.2 65.8
Obj. Int. Transformer (ours) 86.1 72.0 100.0 75.3 98.5 91.7 72.1

2.5.3 Main Results

We present the main results of our proposed method, evaluated on the test unseen

and valid unseen data of ALFRED. Our framework uses no ground truth or metadata about

the environment during inference. As introduced in Section 2.4.1, our framework performs

exploration to acquire knowledge about the indoor scenes and then predict actions in a

hierarchical approach with both a rule-based planner and a few learning-based modules.

We set a new state-of-the-art performance with a substantial improvement (>40%) over

previously published methods (see Table 2.3).

While AI2THOR adopts a discrete action/state space for the agent, we believe the

idea behind our task-driven exploration design and waypoint-based semantic representation

is applicable to generic embodied tasks. In the presence of motion noise and pose sensor

noise, Active Neural SLAM shows that such inaccuracy can be solved to an acceptable

level by simply learning a pose estimator.

2.5.4 Qualitative Evaluations

We also illustrate qualitative results from our proposed method compared to the

E.T. baseline. We display a pair of trajectories predicted from both models (for ours, we

29

Table 2.3. Performance on valid & test unseen data from ALFRED. Our method achieves
new state-of-the-art results with a substantial improvement over previously published
methods.

Test Unseen (%) Valid Unseen (%)
Success rate Goal Cond. Success rate Goal Cond.

EmBERT [156] 7.52 16.33 5.73 15.91
E.T.+ [115] 8.57 18.56 7.32 20.87
LWIT [110] 9.42 20.91 9.70 23.10
HiTUT [189] 13.87 20.31 12.44 23.71
ABP [84] 15.43 24.76 - -
HLSM [8] 16.29 27.24 11.80 24.70
AMSLAM (ours) 23.48 34.64 17.68 33.96

Figure 2.4. For the task “Move a watch to the inside of a small safe”, the first row and
second row correspond to trajectories predicted by ours and E.T. Each column corresponds
to a different time step with t = 0, 6, 12, 18, 24, 32, 35, 36 from left to right.

only show results from the execution phase) for data in the valid unseen and test unseen

split, respectively. By utilizing task-driven exploration to acquire the affordance-aware

map of the scene, together with the planning and object interaction modules, our model

is capable of completing long-horizon instruction-following tasks. In the first task where

it asks the agent to grab a watch and then find and store it inside a safe, E.T. fails to

navigate to a position such that it can successfully open the safe, whereas ours succeeds.

In the second task for moving two spray bottles from a single shelf to the same toilet tank,

E.T. fails to find the second sprayer while ours can move both sprayers to the right place.

The two sets of trajectories are illustrated in Fig. 2.4 and 2.5, respectively.

30

Figure 2.5. For the task “Place two spray bottles on a toilet tank.”, the first row and
second row correspond to trajectories predicted by ours and E.T. Each column corresponds
to a different time step with t = 0, 5, 10, 15, 20, 30, 35, 41 from left to right.

2.5.5 Other Ablation Studies

We perform ablation studies to justify our framework design. In Ablation Studies

I, we examine the components in our exploration module. We choose four variants. In

variant AMSLAM + rand. exploration, we replace the task-driven multimodal exploration

with a random exploration strategy similar to that in HLSM. In variant AMSLAM -

lang., we do not use the language instructions at all to guide the exploration process In

variant AMSLAM - lang. (partial), we only use language instructions associated with

the navigation subgoal (i.e., without the next object interaction subgoal) to guide the

exploration. In variant AMSLAM - explored area, we do not use the extra modality in the

exploration module. For all variants, the exploration phase ends when a pre-defined upper

limit of action fails or a pre-defined upper limit of exploration steps is reached. In Table

2.4, we compare the valid unseen performance on ALFRED, the coverage, defined as the

number of distinct (x, y) pairs visited during the exploration phase (average per task),

and the coverage efficiency (Cov. Eff.), defined as the coverage divided by total number of

(un-augmented) exploration steps.

Specifically, for all the four variants, we stop the exploration process if (1) the

module predicts a Stop action, or (2) the number of action failures reaches 4, or (3)

the total number of exploration steps (including the injected actions) reaches 500. In

31

the variant AMSLAM + rand. exploration, we adopt the following random exploration

strategy. First, we make 4 RotateRight and adjust the horizon of the agent to acquire a

360◦ and 3 horizon view of the environment. Next, we obtain the navigable area estimated

by our Neural SLAM system. Then, we randomly sample a point on the boundary of the

navigable area and navigate to that point (during which process we inject the RotateRight

and LookUp/Down similar to our multimodal exploration strategy). We repeat the previous

step until the aforementioned stop condition is satisfied.

In Ablation Studies II, we examine the components in the affordance-aware map

representation and in the online planner. We justify our approach of handling small

(denoted as instance mask waypoints) and large objects (denoted as object map waypoints)

in different ways by showing that the generalization performance degrades drastically when

adopting only one strategy for waypoint generation. We show that the “backing up” rule in

the planner (to leave room for articulated objects) is important. Moreover, we evaluate a

variant (AMSLAM + rand. horizon) where horizon h is perturbed for all subgoals to justify

our online exploration (and backtracking) strategy for finding the best h. Specifically,

for the variant AMSLAM + rand. horizon, we first disable the online exploration and

backtracking strategy of the planner for finding the best horizon h. We then randomly

choose a final horizon for each navigation subgoal as one of {60◦, 45◦, ...,−15◦,−30◦}. See

numerical results in Table 2.5.

Table 2.4. Ablation Studies I: the task-driven multimodal exploration module in AM-
SLAM.

Valid Unseen (%) Coverage Analysis (%)
Success Rate Goal Cond. Coverage Cov. Eff.

AMSLAM + rand. exp. 9.73 22.10 20.40 58.39
AMSLAM - lang. 4.30 15.90 9.10 43.50
AMSLAM - lang. (partial) 13.66 28.93 24.37 66.05
AMSLAM - explored area 15.17 30.90 27.13 65.48
AMSLAM (ours) 17.68 33.96 28.70 67.09

32

Table 2.5. Ablation Studies II: affordance-aware semantic representation & planner in
AMSLAM.

Valid Unseen (%)
Success Rate Goal Cond.

AMSLAM - object map waypoints 12.10 26.73
AMSLAM - instance mask waypoints 8.90 18.70
AMSLAM - back up steps 12.50 28.85
AMSLAM + rand. horizon 9.81 20.60
AMSLAM (ours) 17.68 33.96

2.6 Implementation Details

2.6.1 Neural SLAM module

CNN Architecture

The CNN used for predicting the 2D grid map of size G×G× (Nlarge + 1) (with

grid size G = 37 and unit length 0.25m) has the following architecture. The inputs are 3

images, which are first processed by the ResNet-50 Faster RCNN feature extractor (we

use the checkpoint provided by E.T.) Then the three 512-d features are each processed by

the same 4-layer CNN (filter size 3, stride size 2, number of features as 256, 256, 256, 256).

The flattened and concatenated features from the previous step are then fed into a 4-layer

FC network (number of features is 512, 512, 512, 128 · 7 · 10). Next, the output features

are reshaped into a 128 × 7 × 10 tensor. Finally, another 3-layer CNN (filter size 3, stride

size 1, number of features as 256, 256, Nlarge + 1) takes in the tensor and outputs the

7 × 10 × (Nlarge + 1) map, which represents the prediction of a small region in front of the

agent (in its egocentric view).

Aggregation

The 2D grid map predictions at each exploration step are aggregated via the use of

a spatial transformer. The parameters to the spatial transformer are computed in the same

way as the Neural Action SLAM (since we know exactly what each exploration action is

33

and thus where the agent was headed). Each predicted 2D grip map is first rotated and

translated by the spatial transformer (with the initial location considered as the center

of the 2D map and the initial rotation angle considered as the direction facing upward)

and then max-pooled to form the complete semantic map of the environment. During

this process, since each region at a single step has a limited field of view, we mask the

prediction at each step by a hard-coded 7×10 binary map (starting from the row the agent

is standing at towards another 9 rows facing forward). We have tried multiple combinations

for the shape of the binary map, with height ∈ {5, 6, 7} and width ∈ {9, 10, 11}. We

choose 7 × 10 using valid unseen data in ALFRED by the average prediction accuracy.

Model Training

We train the model by minimizing the cross-entropy distance between the ground

truth semantic map and the predicted one. The training is performed for each single-step

map prediction. The ground truth for the navigable area is generated by using the API

from AI2Thor. The ground truth for the object map is not available for scenes in ALFRED,

which uses a version of AI2Thor that does not support bounding box information for

general objects in the scenes. However, later AI2Thor versions support such functionality.

There are some scene layout mismatches between later versions of AI2Thor and the version

used by ALFRED, though. We solve this by manually inspecting all 108 training scenes

and fixing bugs by hand. We will release the code as well as the processed training data

for our Neural SLAM module. We use the Adam optimizer to train the CNN model with

an initial learning rate of 0.005 and a linear decaying schedule (starting from the second

half of the training) to 0 for a total of 10 epochs. We find the best checkpoint using the

prediction accuracy evaluated on the valid seen and valid unseen data of ALFRED.

Post-processing

To have a more robust navigable area for long-horizon planning, we further apply

some post-processing steps to the aggregated navigable map by the Neural SLAM module

34

(i.e., the last dimension of the 2D grid map). Specifically, we consider map A as the

binary navigable area map where only the predicted confidence greater than 0.95 will be

considered a valid prediction for a navigable point (i.e., a value of 1). We also consider

map B as the binary map where a location with greater or equal to 3 nearby points (i.e.,

the one whose L1 distance to it is 1) being navigable (here we use confidence threshold

0.5) is marked as a navigable point. We then perform an element-wise product of the two

maps to obtain the final navigable area.

2.6.2 Waypoint Generation

Small and Large Objects

As mentioned in the paper, we handle small and large objects differently when

designing our affordance-aware semantic representation. In specific, we consider large

object types in the following list and otherwise small object types:

• armchair, chair, cart, sofa, shelf, drawer, cabinet, countertop, sink, stove burner

• fridge, bed, dresser, toilet, bathtub, ottoman, diningtable, sidetable, coffeetable, desk

The Backing up Steps

The benefit of handling large objects in a 2 step process is that we can compute

their waypoints in a more flexible manner. In our framework, we find backing up a

few steps to be a very effective strategy, which leaves some margin between the target

position of the agent and the target object the agent needs to interact with This strategy

is particularly critical for articulated objects. We use simple heuristics, denoted δ1 and δ2

as introduced in the paper. Specifically, the agent will back up 3 steps if the target object

is a fridge, 2 steps if it is a safe, a cabinet or a drawer, and 1 step for everything else. The

implementation of the δ∗(·, ·) is simply an integer 1, 2 or 3 for either x or y coordinate

given the 4 different rotation angles r ∈ {0◦, 90◦, 180◦, 270◦}.

35

2.6.3 Task-driven Multimodal Exploration Module

The Extra Modality: Explored Area

The extra modality introduced in our multimodal exploration module essentially

tracks the action history explicitly and geometrically. Specifically, during each step in

the exploration phase, we hard-code a 5 × 3 binary mask to indicate where the agent has

observed in the current egocentric view. We find the exact shape of this region does not

matter much (we have tried 3x2, 4x2, 5x4) as long as it helps to track where the agent has

visited. As the agent always stands at the center of the explored region map, we set the

binary mask as starting from the center row and extending facing forward towards another

4 rows. Then we merge these single-step explored areas by using the spatial transformer

and max-pooling, the same way as when we aggregate the 2D object map in our semantic

representation. We finally mark the center of the aggregated explored area as 2, indicating

where the agent is standing. An illustration is shown in Figure 2.6 (for simplicity, we only

draw a 3 × 2 binary mask), where four single-step explored area maps are aggregated into

one. The CNN used to process the explored area is of 4 layers (filter size 3, stride size

2, number of features as 128, 128, 64, 32). The output of the CNN is flattened and fed

into a 2-layer FC network (the feature dimensions are 128 and 32). Then we concatenate

its output with the output from the multimodal transformer (which extracts features for

the other 3 modalities) and feed it into the final 3-layer FC network to predict the next

exploration action (number of features are 256, 128, Nexp + 1 where Nexp = 3 and the extra

1 is for the Stop action).

Training Data

We regenerate the trajectories from the training data of ALFRED by ignoring all

object interaction actions and LookUp/Down. We train the exploration module by imitation

learning on this new training set. Each sample in the new training set corresponds to one

navigation subgoal in a trajectory of the original training set. As each trajectory in the

36

Figure 2.6. An illustration of the single-step explored area for four exploration steps
(left) and the aggregated one (right). The actual size of a single-step explored area is
5 × 3 instead of 3 × 2 shown here.

training data in ALFRED starts with an initial horizon of 30◦, all visual observations used

for training are of such horizon (i.e., vertical camera angle).

Hyper-parameters

We train the exploration module by Adam optimizer with an initial learning rate

of 0.001 and a linear decaying schedule (kicking in only for the second half of the training)

to 0 for a total of 20 epochs. We find the best checkpoint using the coverage and coverage

efficiency computed on the valid seen and valid unseen data of ALFRED.

2.6.4 Action Augmentation during Exploration

Zigzagging

At inference time, we inject two LookUp or two LookDown actions alternately after

every exploration action so that we acquire images of 3 different horizons at each (x, y, r)

observed during exploration. We choose this zigzagging scheme as it is the most efficient

way to perform exploration in the vertical camera angle space. An example is listed below

with the action sequence (after the periodic injection of RotateRight) shown in the first

line and the zigzagged sequence shown in the second line.

• Move, Right, Move, Right, Right, Right, Right, Move, Left

• Down, Up, Up, Move, Down, Down, Right, Up, Up, Move, Down, Down,

Right, Up, Up, Right, Down, Down, Right, Up, Up, Right, Down, Down,

Move, Up, Up, Left, Down, Down

37

The injected actions are bolded, with the first LookDown inserted to handle the beginning

of the exploration.

Other Details

Since each augmented trajectory (i.e., the sequence injected with RotateRight and

LookUp/Down) is a strict superset of the original unaugmented ones predicted directly via

the multimodal exploration module, these injection does not interfere with the normal

inference pipeline of the exploration module. Specifically, we mask out the inputs (obser-

vations, actions history, and the explored area) corresponding to the injected actions in all

of the 4 branches.

2.6.5 Subgoal Parser and Target Object Parser

Network Architecture

We use a transformer-based architecture similar to the multimodal transformer

used for exploration. Since the input to both the subgoal parser and the target object

parser is the language instruction, we mask out the inputs to the other 3 branches (i.e.,

we use uni-modal transformers). The two models share the same architecture while not

sharing the weights. The subgoal parser is essentially a binary classifier. The target object

parser, on the other hand, predicts two pieces of information, namely the target object for

the navigation subgoal and its container (if it has one). This prediction involves two steps;

we, therefore, model it in an auto-regressive manner.

Model Training

We train the subgoal parser and the target object parser by minimizing the cross-

entropy loss using the ground truth object information. Specifically, we use APIs provided

by AI2Thor to acquire spatial relationships and use them to decide the container object

type for each instance of the small objects (which the target object parser is trained to

predict). We train the 2 models by Adam optimizer with an initial learning rate of 0.001

and a linear decaying schedule (kicking in in t=the second half of the training) to 0 for

38

a total of 10 epochs. We find the best checkpoint using the prediction accuracy (both

for the binary prediction problem and the 2-step classification problem) evaluated on the

valid seen and valid unseen data of ALFRED.

Pre-trained Mask RCNN

We use a pre-trained Mask RCNN in multiple occurrences in our framework. We

directly use the checkpoint provided by E.T., which is trained for predicting the instance

and segmentation masks of objects in ALFRED.

2.6.6 Online Planner

During online planning, we always keep track of the agent’s current position, pose,

and so on (to be more precise, the (x, y, r, h) tuple). Then at each navigation subgoal, we

can perform path planning using Dijkstra’s algorithm given the acquired waypoints in our

affordance-aware semantic representation. To decide the target horizon of the agent, we

perform online exploration to cover 6 different vertical camera angles and select the one

with the largest mask area for the target object type (predicted by a pre-trained model,

with confidence > 0.8). We also add a backtracking mechanism in case the estimated best

horizon h∗ does not work for the subsequent object interaction subgoals. In specific, if the

subsequent object interaction subgoal fails (i.e., the agent encounters an action failure),

we find another horizon and perform inference for the object interaction subgoal again. In

total, we try 3 times for h = h∗, h∗ + 15◦, h∗ − 15◦.

2.7 Conclusion, Limitation, and Future Work

Task decomposition is critical for acquiring AI agents to perform long-horizon tasks.

It can be instantiated via two aspects presented in this work, namely decomposition into

task-driven exploration and execution, the latter of which is further decomposed into

subgoal-level hierarchical policies. Moreover, our work presents comprehensive empirical

39

results that substantiate the importance of affordance-aware navigation for language-

guided task completion. We propose an Affordance-aware Multimodal Neural SLAM

(AMSLAM) that constructs an accurate affordance-aware semantic representation and

collects data efficiently through a novel task-driven multimodal exploration module. We

conduct thorough ablation studies to demonstrate that the various aspects of our design

choices are essential to the performance. AMSLAM achieves more than 40% improvement

over prior published work on the ALFRED benchmark and sets a new state-of-the-art

generalization performance at a success rate of 23.48% on test unseen scenes.

The existing framework in our proposal regarding the affordance-aware semantic

representation can be further improved by: (1) Introducing an instance-level representation

such that multiple instances of the same object type can be handled better. (2) Training

with more room layouts, such as those in [190], to prevent overfitting as currently there

are only 108 scenes in the training data of ALFRED. AMSLAMcurrently only supports

high-level actions (discrete actions via APIs with target objects specified by segmentation

masks). Long-horizon tasks with low-level levels typically require skill chaining as in [54],

which is largely based on online RL. We present how to tackle low-level tasks (short-horizon,

though) by further adopting the idea of task decomposition in the next chapter.

Acknowledgement

Chapter 2, in full, is a reprint of the material published in the 2022 International

Conference on Intelligent Robots and Systems (IROS): “Learning to Act with Affordance-

Aware Multimodal Neural SLAM” (Zhiwei Jia, Kaixiang Lin, Yizhou Zhao, Qiaozi Gao,

Govind Thattai, and Gaurav Sukhatme). The dissertation author was the primary

investigator and author of this paper.

40

Chapter 3

Task Decomposition for Low-level
Object Manipulation

As pointed out by Moravec’s paradox, low-level control tasks are usually harder

for AI agents to learn than high-level reasoning tasks (including the long-horizon tasks

in ALFRED presented previously). In this section, we study challenging short-horizon

contact-rich object manipulation tasks with high-precision and/or object-level geometric

variations by further decomposing them into subskills (e.g., atomic actions). We develop a

novel hierarchical imitation learning method that can utilize scalable, albeit sub-optimal,

demonstrations. We first propose an observation space-agnostic approach that efficiently

discovers the multi-step subgoal decomposition (sequences of key observations) of the

demos unsupervisedly. By grouping temporarily close and functionally similar actions into

subskill-level segments, the discovered breakpoints (the segment boundaries) constitute

a chain of planning steps (i.e., the chain-of-thought) to complete the task. Next, we

propose a Transformer-based design that effectively learns to predict the decomposition

(the chain-of-thoughts) as the high-level future guidance for low-level actions by using

prompt tokens and a hybrid masking strategy during training. Our model consistently

surpasses existing strong baselines1.

1The code is publicly available here.

41

https://github.com/SeanJia/CoTPC

3.1 Introduction

Hierarchical RL (HRL) [67] has attracted much attention in the AI community as

a promising direction for sample-efficient and generalizable policy learning. HRL tackles

complex sequential decision-making problems by decomposing them into simpler and

smaller sub-problems via temporal abstractions (the so-called chain-of-thought [170]).

In addition, many adopt a two-stage policy and possess the planning capabilities for

high-level actions (i.e., subgoals or options) to achieve generalizability. On the other

hand, imitation learning (IL) remains one of the most powerful approaches to training

autonomous agents. Without densely labeled rewards or on-policy / online interactions,

IL usually casts policy learning as (self-)supervised learning with the potential to leverage

large-scale pre-collected demonstrations, usually with Transformer, as inspired by the

recent success of large language models (LLMs). An obstacle in building foundational

decision-making models [179] remains the better use of sub-optimal demonstrations. In

this paper, we study hierarchical IL from sub-optimal demonstrations for low-level control

tasks.

Despite the recent progress [22, 47, 146, 98, 2], it remains extremely challenging to

solve low-level control tasks such as contact-rich object manipulations by IL in a scalable

manner. Usually, the demonstrations are inherently sub-optimal because of the underlying

contact dynamics [120] and the way they are produced. The undesirable properties, such

as being non-Markovian, noisy, discontinuous, and random, pose great challenges in both

the optimization and the generalization of the imitators (see detailed discussion in Sec.

3.4). We find that, by adopting the hierarchical principles (i.e., temporal abstraction and

high-level planning) into our Transformer-based design, we can enjoy large-scale (albeit

sub-optimal) demonstrations for their performance boost on solving challenging tasks.

To achieve this, we first propose an unsupervised chain-of-thought discovery strategy to

generate CoT supervision from the demonstrations. We then design our model to learn to

42

dynamically generate CoT guidance for better low-level action predictions.

Specifically, we consider the multi-step subgoal decomposition of a task into a chain

of planning steps as its chain-of-thought (inspired by CoT [170] and PC [178]). As part

one of our contribution, we propose an observation space-agnostic approach that efficiently

discovers the chain-of-thought (CoT), defined as a sequence of key observations, of the

demos in an unsupervised manner. We propose to group temporarily close and functionally

similar actions into subskill-level segments. Then the breakpoints (the segment boundaries)

naturally constitute the CoT that represents the high-level task completion process. For

part two, we propose a novel Transformer-based design that effectively learns to predict the

CoT jointly with the low-level actions. This coupled prediction mechanism is achieved by

adding additional prompt tokens at the beginning of the context history and by adopting

a hybrid masking strategy. As a result, CoT guidance is dynamically updated at each step

and better feature representation of the trajectories is learned, eventually improving the

generalizability of the low-level action prediction process.

We call our method Chain-of-Thought Predictive Control (CoTPC). From an

optimization perspective, it learns faster from sub-optimal demos by utilizing the subgoals

(CoTs) that are usually more robust and admit less variance. From a generalization

perspective, it uses Transformers [12] to improve generalization with CoT planning, which

is learned from the unsupervisedly discovered CoTs from the demos. We evaluate CoTPC

on several challenging low-level control tasks (Moving Maze, Franka-Kitch, and ManiSkill2)

and verify its design with ablation studies.

3.2 Related Work

Learning from Demonstrations (LfD)

Learning interactive agents from pre-collected demos has been popular due to its

effectiveness and scalability. Roughly speaking, there are three categories: offline RL,

online RL with auxiliary demos, and behavior cloning (BC). While offline RL approaches

43

[89, 49, 94, 90, 88, 22, 169] usually require demonstration with densely labeled rewards and

the methods that augment online RL with demos [61, 82, 137, 109, 131, 62, 119, 151] rely

on on-policy interactions, BC [121] formulates fully supervised or self-supervised learning

problems with better practicality and is adopted widely, especially in robotics [184, 47,

125, 187, 11, 127, 48, 185]. However, a well-known shortcoming of BC is the compounding

error [137], usually caused by the distribution shift between the demo and the test-time

trajectories. Various methods were proposed to tackle it [136, 137, 157, 93, 164, 10, 16].

Other issues include non-Markovity [103], discontinuity [47], randomness and noisiness

[139, 173] of the demos that results in great compounding errors of neural policies during

inference (see Sec. 3.4 for detailed discussions).

LfD as Sequence Modeling

A recent trend in offline policy learning is to relax the Markovian assumption of

policies, partially due to the widespread success of sequence models [53, 29, 167] where

model expressiveness and capacity are preferred over algorithmic sophistication. Among

these, [38, 102] study one-shot imitation learning, [101, 151] explore behavior priors from

demos, [22, 98, 73, 146, 2, 72] examine different modeling strategies for policy learning. In

particular, methods based on Transformers [167, 12] are extremely popular due to their

simplicity and effectiveness.

Hierarchical Approaches in Sequence Modeling and RL

Chain-of-Thought [170] refers to the general strategy of solving multi-step problems

by decomposing them into a sequence of intermediate steps. It has recently been applied

extensively in a variety of problems such as mathematical reasoning [97, 33], program

execution [135, 111], commonsense or general reasoning [130, 30, 96, 170], and robotics

[176, 189, 76, 54, 178, 148, 70]. Similar ideas in the context of HRL can date back to

Feudal RL [39] and the option framework [158]. Inspired by these approaches, ours focuses

on the imitation learning setup (without reward labels or online interactions) for low-level

44

control tasks. Note that while Procedure cloning [178] shares a similar name to our paper,

it suffers from certain limitations that make it much less applicable (see detailed discussion

in Sec. 3.2.1).

Demonstrations for Robotics Tasks

In practice, the optimality assumption of the demos is usually violated for robotics

tasks. Demos involving low-level actions primarily come in three forms: human demo

captured via teleoperation [91, 168], expert demo generated by RL agents [106, 107, 25, 75],

or those found by planners (e.g., heuristics, sampling, search) [55, 126, 45]. These demos

are in general sub-optimal due to either human bias, imperfect RL agents, or the nature of

the planners. In this paper, we mostly focus on learning from demos generated by planners

in ManiSkill2 [55], a benchmark not currently saturated for IL while being adequately

challenging (see details in Sec. 3.6.3).

3.2.1 Extended Discussions of Closely Related Work

Procedure Cloning (PC)

PC [178] was recently proposed to use intermediate computation outputs of demon-

strators as additional supervision for improving the generalization of BC policies. However,

it assumes full knowledge of the demonstrators, including the usually hidden computations

that consist of potentially large amounts of intermediate results. For instance, in the graph

search example used in the original paper, PC requires knowing the traversed paths of the

BFS algorithm, such as the status of each node, either the included ones or the rejected

(and so omitted) ones in the final returned result. Whereas, CoTPC does not require

such knowledge, as the CoTs are included as part of the results, not hidden intermediate

computations, and the CoT supervision itself can be obtained via the unsupervised discov-

ery method. Moreover, machine-generated demonstrations can be crowd-sourced and the

demonstrators are usually viewed as black boxes, making this a limitation of PC.

45

Policy Learning with Motion Planning

Some existing work [148, 70] adopt a strategy similar to CoTPC in terms of

predicting key states (the waypoints) as high-level policies. However, they use motion

planners as low-level policies, while CoTPC directly learns to predict low-level controls.

The major advantage of our approach is to handle environments requiring dynamic (or

reactive) controls (like Moving Maze and Push Chair), where the key states must be

updated at every step and so motion planner-based strategies will struggle. Also, PerAct

[148] is relatively limited due to its discretized actions, especially for tasks requiring

high-precision manipulation (e.g., Peg Insertion). Moreover, some existing work [126, 46]

uses motion planners as the only demonstrators to acquire neural policies, which are to

some extent constrained to tasks involving quasi-static control.

Robotic Transformer-1 (RT-1)

RT-1 [11] is a concurrent work that also directly models low-level control actions

with a Transformer. It benefits from the sheer scale of real-world robot demonstration

data pre-collected over 17 months and the tokenization of both visual inputs (RGB

images) and low-level actions. While RT-1 shows great promise in developing decision

foundation models for robotics, it adopts the conventional auto-regressive Transformer

without explicitly leveraging the structural knowledge presented in low-level control tasks.

Moreover, it is so computationally intensive that it usually only admits less than 5 control

signals per second. Our work, CoTPC, is an early exploration in this direction and we

believe it will inspire the future designs of generally applicable models for robotics tasks.

Another difference is that since RT-1 discretizes the action space, it might suffer from

degraded performance for tasks that require high precision (such as Peg Insertion).

46

3.3 Preliminaries

MDP Formulation

One of the most common ways to formulate a sequential decision-making problem is

via a Markov Decision Process, or MDP [65], defined as a 6-tuple ⟨S,A, T ,R, ρ0, γ⟩, with

a state space S, an action space A, a Markovian transition probability T : S ×A→ ∆(S),

a reward function R : S × A→ R, an initial state distribution ρ0, and a discount factor

γ ∈ [0, 1]. An agent interacts with the environment characterized by T and R according to

a policy π : S → ∆(A). We denote a trajectory as τπ as a sequence of (s0, a0, s1, a0, ..., st, at)

by taking actions according to a policy π. At each time step, the agent receives a reward

signal rt ∼ R(st, at). The distribution of trajectories induced by π is denoted as P (τπ).

The goal is to find the optimal policy π∗ that maximizes the expected return Eτ∼π[
∑

t γ
trt].

Notice that, in robotics tasks and many real-world applications, the reward is at best

only sparsely given (e.g., a binary success signal) or given only after the trajectory ends

(non-Markovian).

Behavior Cloning

The most straightforward approach in IL is BC, which assumes access to pre-

collected demos D = {(st, at)}Nt=1 generated by expert policies and learns the optimal

policy with direct supervision by minimizing the BC loss E(s,a)∼D[− log π(a|s)] w.r.t. a

mapping π. It requires the learned policy to generalize to states unseen in the demos since

the distribution P (τπ) will be different from the demo one P (τD) at test time, a challenge

known as distribution shift [136]. Recently, several methods, particularly those based on

Transformers, are proposed to relax the Markovian assumption. Instead of π(at|st), the

policy represents π(at|st−1, st−2, ..., st−T) or π(at|st−1, at−1, ..., st−T , at−T), i.e., considers

the history up to a context size T . This change was empirically shown to be advantageous.

47

3.4 Challenges of Learning from Sub-optimal De-

mos for Low-level Control

There are several technical challenges that make imitation learning or offline RL

difficult from sub-optimal demonstrations, especially for low-level control tasks. In this

section, we briefly discuss four of them.

Non-Markovity

While each trajectory in the demos can be represented by a Markovian policy, the

Markovian policy linearly combined from them by perfectly imitating the combined demos

can suffer from a negative synergic effect if there are conflicts across demos. This is because

the demos might be generated by different agents or different runs of the same algorithm. It

becomes even worse when the demonstrations themselves are generated by non-Markovian

agents (e.g., human or planning-based algorithms). Instead, a non-Markovian policy is

more universal and can resolve conflicts by including history as an additional context to

distinguish between different demos.

Noisiness

Sometimes the demo trajectories are intrinsically noisy with divergent actions

produced given the same states. For instance, a search-based planner returns more than

one possible action given the same action and state history to solve the task. At times,

the demo actions are even distributed uniformly (e.g., with motion planning algorithms as

demonstrators). This leads to increased uncertainty and variance of the cloned policies

and so higher compounding errors. Note that multi-modality is a related but orthogonal

issue [146], i.e., when an unimodal estimate of the (continuous) action distribution leads

to a significantly worse return.

48

Discontinuity

For low-level control tasks, demo policies often consist of sharp value changes or

topology changes (e.g., due to contact changes). Such discontinuity in the underlying

state-to-action mapping leads to difficulties in learning a robust and accurate model, thus

harming generalizability. A recent method [47] deals with this by an energy-based implicit

model in place of an explicit one. While theoretically sound, it is shown [146] to be less

practical for non-Markovian implicit models, and several later non-Markovian explicit

models outperform it.

Randomness

The actual or apparent unpredictability usually exists in sub-optimal demonstrations

either because the intermediate computations of the demonstrators are not revealed in the

demos (e.g., the shortest paths generated by BFS do not reveal the intermediate search

process), or the demonstrators are inherently non-deterministic (e.g., relying on rejection

sampling). Such a trait makes IL less robust as the decision-making patterns from demos

might be unclear, hard to learn, and not generalizable [116]. For instance, in a continuous

action space maze, a solution found by random search is more-or-less a winning lottery

ticket, whose pattern might not be very generalizable.

3.5 Method

To develop a scalable and powerful imitation learning algorithm for diverse yet

sub-optimal demonstrations, especially for low-level control tasks, we propose (1) an

observation space-agnostic strategy that efficiently discovers the subgoal sequences from

the demonstrations (as chain-of-thought supervision) in an unsupervised manner and (2)

a novel Transformer-based design that effectively adopts the hierarchical principles, the

CoT planning (i.e., subgoal sequence predictions), in imitation learning.

49

Predicted CoT

s [t-2] a [t-2] a [t-1]s [t-1] s [t]k [t]k [t-1]k [t-2]

h(s) h(a) h(a)h(s) h(s)

Hybridly Masked Multi-head Attention

h(s) h(a) h(a)h(s) h(s)h(k)h(k)h(k)

Hybridly Masked Multi-head Attention

h(k)h(k)h(k)

Model Inference

CoT
Decoder

Auxiliary
MSE Loss

 Learnable prompt tokens for CoT State and action tokens

Action Decoder (center + offset)

Model Training

All-to-all tokens

Causal tokens

Demo

Unsupervised
CoT Discovery

Discovered CoT

Predicted CoTPredicted CoT

Figure 3.1. During training, CoTPC learns to jointly predict (1) the next & the last
subgoals from each CoT token and (2) the low-level actions from each state token. During
inference, without the CoT decoder, the low-level actions are predicted with the center &
offset predictors from different tokens (detailed in Sec. 3.5.2) with the guidance of the
dynamically updated CoT features. The CoT tokens are all-to-all (can see any tokens).
The state and action tokens are causal (can only see previous and CoT tokens). Only 2
attention layers and 3 timesteps are shown for better display.

3.5.1 Unsupervised Discovery of Chain-of-Thought from
Demos

We observe that many low-level control tasks (e.g., object manipulations) naturally

consist of sequences of subgoals. In a succeeded trajectory, there exist key observations,

each of which marks the completion of a subgoal. For instance, in Moving Maze illustrated

in Fig. 3.4, the two bridges naturally divide the task into three subgoals. We denote

such a multi-step subgoal decomposition of a task into a chain of planning steps as its

chain-of-thought. The CoT provides coherent and succinct behavior guidance - typical

benefits of hierarchical policy learning. Formally, for each trajectory τ ∈ D, we define

CoT as a sequence of its obervations Fcot(τ) = {st|st ∈ τ} = {scotk }. In this section, we

present an intuitive strategy to discover CoT from demos as the CoT supervision for our

model introduced shortly. Our unsupervised approach is observation space-agnostic and

relies on neither human supervision nor reward design.

50

First of all, each demo trajectory can be considered as an execution of a chain of

subskills to complete the corresponding sequence of subgoals. Accordingly, the ending

observations of each subskill constitute the subgoal sequence (i.e., chain-of-thought). Also,

note that the number of these subskills is not known a prioi, since demonstrations of the

same task can still have variability in terms of the starting configurations and execution

difficulty. Our base assumption is that actions within the same subskill are temporally

close and functionally similar. We, therefore, propose to group contiguous actions into

segments, using a similarity-based heuristic to find these subskills. We provide visualization

of similarity maps across actions in the same trajectory in Fig. 3.2 to illustrate that

there naturally exists such grouping patterns by functional similarities. While an action

sequence is modeled as a time series, its subgoals are the key observations corresponding

to the changepoints of the time series. We then utilize the Pruned Exact Linear Time

(PELT) method [83] with cosine similarity as the cost metric to generate the changepoints

in a per-trajectory manner. This unsupervised formulation has one key hyperparameter β

which controls the penalty for adding more changepoints thereby determining the number

of subgoals (i.e., the length of the CoT). In our experiments, we select β based on a small

set of validation data and we find it relatively robust.

We find our approach discovers meaningful subskills (the action segments) for a

diverse set of tasks with different action spaces, based on a qualitative evaluation of the

key observations at the discovered changepoints (i.e., the chain-of-thought). For instance,

the execution of Peg Insertion consists of reaching, grasping, aligning the peg with the hole,

micro-adjusting, and steady insertion of the peg. We illustrate some CoT discovery results

in Fig. 3.3. Specifically, we visualize the sub-stages (and thus the subgoals) extracted

from two trajectories using the automatic CoT discovery process described previously.

Besides being unsupervised, another major benefit of our approach is that it is

observation space-agnostic with the discovery invariant of the specific sensor setup (e.g.,

camera angles). This eliminates the need to manually tune the observation space (e.g.,

51

Figure 3.2. Pairwise similarities of actions at different timesteps in two trajectories for
two example tasks, Push Chair (left) and Peg Insertion (right). Note that the action
spaces for these tasks are distinct: the former uses delta joint velocity control and the
latter uses delta joint pose control. Visually identifiable blocks along the diagonal, which
have high correlation values among most of its members, tend to correspond very well
with human intuition of subskills (i.e. similar actions at nearby timesteps belong to the
same subskill). We find that this strategy allows for automatic, scalable, and meaningful
subgoal discovery in an unsupervised manner.

the camera setups) to detect the key observations.

3.5.2 Chain-of-Thought Guided Action Modeling

In this section, we introduce our Transformer-based design that learns to model

the CoTs and predict the actions accordingly based on the supervision provided by the

aforementioned CoT discovery.

Learnable Prompt Tokens for CoT with Hybrid Masking

We base our architecture on the recently proposed Behavior Transformer (BeT)

[146], which empowers GPT [12] with a discrete center plus continuous offsets prediction

strategy for modeling diverse and noisy action sequences. To predict CoTs, we propose to

add a set of learnable prompt tokens [191] at the beginning of the state and action context

history. We train these tokens to extract features from the sequence to predict CoTs

together with a CoT decoder (similar to the object query tokens in Detection Transformer

52

Figure 3.3. Illustration of actions corresponding to different stages and the associated
observations for two tasks: Push Chair (top) and Peg Insertion (bottom). The stages
are discovered by grouping the actions into subskills by our unsupervised CoT discovery
method.

53

[15]). We design a hybrid masking regime, where during inference, the CoT tokens are

all-to-all and can observe all action and state tokens in the context history, and the state or

action tokens attend to those in the past (standard causal mask) including the CoT tokens.

In this way, the action decoding is guided by the extracted CoT features. Formally, given

a context size of T , let us denote the CoT tokens as {Scot
... }. We model the demo trajectory

segment of length T up to timestep t, i.e., τT (t) = {Scot
... , st−(T−1), at−(T−1), ..., st−1, at−1, st}

by applying the hybridly masked multi-head attention, denoted MHAhmask[·]. Features

from a total of J attention layers are

hj(τT (t)) = MHAhmask[Fenc(τT (t))], j = 1

hj(τT (t)) = MHAhmask[hj−1(τT (t))], j > 1

where Fenc encodes each action token and state token by encoder fa(·) and fs(·), respectively

(no encoder for the CoT tokens). Here we omit the position embeddings and the additional

operations between the attention layers as in standard Transformers. Note that we also

put the action sequences into the context in our variant of BeT and our model as we find

this generally performs better.

Coupled Action and CoT Predictions with Shared Tokens

BeT adopts a pair of centers and offsets predictors, gctra (·) and goffa (·), with features

from the last attention layer corresponding to the state tokens as inputs, which are denoted

as hJ(τT (t))[-(2T-1)::2] (with the Python slicing notation). A vanilla design of our

approach is to adopt a CoT decoder gcot(·) taking hJ(τT (t))[:-(2T-1)] as inputs, where

we only need one CoT token. However, we find that a more coupled strategy produces

policies much more generalizable. Specifically, we force the offset predictor of actions

goffa (·) to take the features from the CoT tokens rather than the state tokens as inputs. As

goffa (·) and gcot(·) share the same inputs, this provides stronger CoT guidance for action

54

modeling. To distinguish between actions predicted for different states in the sequence, we

need T such CoT tokens, denoted {Scot
t }, each of which corresponds to one state token

{st} (see Fig. 3.1). The features from the CoT tokens are used by the shared CoT decoder

gcot(·) to predict the CoT output (introduced shortly). An even more coupled prediction

approach is to force the center predictor gctra (·) to also share the inputs with goffa (·) and

gcot(·). However, this leads to optimization challenges and instabilities as CoT tokens hold

direct responsibilities for all three predictions. See ablation studies for further discussions.

We formulate an autoregressive prediction strategy for CoT by training gcot(·) to

decode the next subgoal (i.e., the first scotk with k > t for the demo segment τT (t)) and

the very last subgoal (usually the end of τ) from every CoT token. The predictions are

denoted gcot(S
cot
t) for each timestep t. We find this strategy outperforms both predicting

the individual one, as it performs both immediate and long-term planning. The flexible

numbers of subgoals across different demo trajectories necessitate the autoregressive

decoding of CoTs and make our approach resonate with CoTs in LLMs, where similarly

the outputs are generated jointly with the reasoning chain. Note that during inference the

CoT predictor is not used and only the CoT features are. As CoT features are updated

dynamically, our approach can deal with tasks involving dynamic controls (e.g., Moving

Maze and Push Chair).

Model Training

The overall training pipeline is illustrated in Fig. 3.1. The model is trained with

behavior cloning loss as well as the auxiliary CoT prediction loss Lcot based on MSE

(weighted by a coefficient λ), which yields the overall training objective:

Ltotal = E
(st,at)∈D

Lbc(at, ât) + E
τ ′∈D

1

T

∑
t

Lcot([scotnext(τ
′), scotlast(τ

′)], gcot(S
cot
t))

55

Where ât is the predicted action via gctra (·), goffa (·). τ ′ are randomly sampled segments

of the demo trajectories of length T . scotnext(τ
′), scotlast(τ

′) are the next and last subgoal,

respectively. Note that there are T CoT tokens and so there are T CoT loss terms.

During training, we apply random attention masks to the action and state tokens

so that the CoT tokens attend to a context of varied length (from the first state token in

the context to a randomized t-th state token with 1 <= t <= T). In doing so, we can (1)

prevent CoT tokens from directly copying the corresponding state tokens which makes

offset prediction of actions trivial and (2) perform a way of data augmentation (applying

a form of dropout on the attention masks).

Figure 3.4. Illustration of the Moving Maze (left), Franka-Kitchen (middle) and some
sampled tasks from ManiSkill2 (right), namely Turn Faucet, Peg Insertion and Push
Chair. See detailed descriptions in Sec. 3.6.1, 3.6.2 and 3.6.3, respectively.

Figure 3.5. Sampled geometric variations for Push Chair, Turn Faucet and Peg Insertion.
Note that the sizes of peg & box and the relative locations of the hole vary across different
env. configs.

56

3.6 Experiments

In this section, we present experimental results for several tasks as well as for the

ablation studies. While existing benchmarks are mostly saturated for IL (DMControl [161],

D4RL [49], etc.) or lack demo data (e.g., MineDojo [42]), we choose a diverse range of tasks

that lie in between. We first examine our approach using a 2D continuous-space Moving

Maze and a variant of Franka-Kitchen [57]. We then perform extensive comparisons with

5 object manipulation tasks (ranging from relatively easy ones to very challenging ones)

from ManiSkill2 [55]. These tasks are of several categories (navigation, static/mobile

manipulation and soft-body manipulation, etc.), various action spaces (delta joint pose,

delta velocity, etc.), with different sources of the demos (human, heuristics, etc.) and with

different reasons for being challenging (object variations, long-horizon, etc.).

3.6.1 Moving Maze

We present a 2D maze with a continuous action space of displacement (δx, δy). As

shown in Fig. 3.4 (left), in this s-shaped maze, the agent starts from a location randomly

initialized inside the top right square region (in green) and the goal is to reach the bottom

left one (also in green). Upon each environment reset, the two regions as well as the

two rectangular bridges (in green) have their positions randomized. During the game,

each of them except for the top square moves (independently) back and forth with a

randomized constant speed. Once the agent lands on a moving block, the block will

immediately become static. The agent cannot cross the borders of the maze (but it will

not die from doing so). For simplicity, we adopt a 10-dim state observation consisting of

the current location of the agent and the four green regions. This task requires dynamic

control/planning.

57

Demonstrations

To enable policy learning from demonstrations, we curate demo trajectories (each

with a different randomized environment configuration) by adopting a mixture of heuristics

and an RRT-style planner with hindsight knowledge not available at test time (see details

in Sec. 3.7.2). This setup follows recent work [55] for leveraging machine-generated

demonstrations.

Training and Evaluation

For this task, we compare CoTPC with vanilla BC, Behavior Transformer (BeT)

[146], Decision Transformer (DT) [22]. DT was originally proposed for offline RL with

demonstrations of dense rewards. We adapt it for the BC setup by ignoring the reward

tokens. We add action tokens to BeT (like in DT) and build CoTPC on top of BeT. We

implement CoTPC, DT, and BeT with the shared Transformer configuration for a fair

comparison. We train all methods on 400 demo trajectories of different env. configs and

evaluate on 100 unseen ones (results in Tab. 3.1).

3.6.2 Franka Kitchen

Different variants and task setups of the Franka Kitchen environment have been

studied previously [57, 139, 49]. We propose a setting where the agent is asked to complete

4 object manipulations (out of 7 different options) in an order specified by the goal. We use

a strict criterion, i.e., the task succeeds when all 4 sub-tasks are completed. The sub-tasks

need to be done in the requested order to be counted as completed. The environment will

terminate when a sub-task other than the specified 4 is performed. The action space is

based on the joint velocity (8-dim) of the robot. We use the original state observation

appended with the modified goal embedding.

58

Table 3.1. Test performance on Moving Maze and (a variant of) Franka Kitchen. SR (%)
is the task success rate (for Franka Kitchen it means completion of all 4 sub-tasks). #
s-tasks means the avg. number of completed sub-tasks per trajectory rollout. The best
results are bolded.

Vanilla BC DT BeT CoTPC (ours)

Moving Maze (SR) 9.0 23.0 33.0 44.0
Franka Kitchen (#s-tasks/SR) 1.7/6.7 1.6/6.7 1.8/14.4 2.1/25.6

Demonstrations

We replay a subset of the human demonstrations originally proposed in [57].

Specifically, we use 50 demo trajectories of length ranging from 150 to 300 and relabel

them with what sub-tasks are performed and in what order, for each of the trajectories.

As a result, many ordered sub-task combinations admit at most one demo trajectory. See

more details in Sec. 3.7.2.

Training and Evaluation

We use the same set of baselines as in Moving Maze. We evaluate using 90 unseen

env. configs, which vary in initial scene configs (all ordered sub-task combinations have

been observed in the demo, though). This task requires generalizable IL due to the limited

amount of human demos and the diverse set of ordered sub-task sequences. Also see results

in Tab. 3.1.

3.6.3 ManiSkill2

ManiSkill2 [55] is a recently proposed extension of ManiSkill [107], which features

a variety of low-level object manipulation tasks in environments with realistic physical

simulation (e.g., fully dynamic grasping motions). We choose 5 tasks (some illustrated in

Fig. 3.4). Namely, Stack Cube for picking up a cube, placing it on top of another, and

the gripper leaving the stack; Turn Faucet for turning on different faucets; Peg Insertion

for inserting a cuboid-shaped peg sideways into a hole in a box of different geometries

59

Table 3.2. Test performance (success rate) on the unseen and the 0-shot setup for
ManiSkill2 tasks with state observations. The best results are bolded. Note that Pour
does not support state observations.

Stack Peg Turn Push
Cube Insertion Faucet Chair

unseen 0-shot unseen 0-shot unseen 0-shot

Vanilla BC 1.0 0.0 0.0 0.0 0.0 0.0
Decision Transformer 19.0 17.5 40.0 27.0 25.6 17.0
Decision Diffuser 26.0 12.6 17.0 5.0 56.0 20.0
Behavior Transformer 73.0 42.5 49.6 32.5 44.0 33.4
CoTPC (ours) 86.0 59.3 50.0 39.3 51.2 41.0

Table 3.3. Test performance (success rate) on the unseen and the 0-shot setup for
ManiSkill2 tasks for point cloud observations. The best results are bolded. We only show
the best baseline here, i.e., BeT.

Cube Peg Pour Faucet Chair

unseen 0-shot unseen unseen 0-shot unseen 0-shot

Behavior Transformer 70.0 35.0 24.0 50.0 20.0 26.0 13.4
CoTPC (ours) 81.0 44.0 32.0 58.0 27.5 32.0 16.7

and sizes; Push Chair for pushing different chair models into a specified goal location (via

a mobile robot); and Pour for pouring liquid from a bottle into the target beaker with

a specified liquid level. Push Chair adopts a delta joint velocity control (19-dim, dual

arms with mobile base); Pour adopts delta end effector pose control (8-dim); the rest uses

delta joint pose control (8-dim). We perform experiments with both state and point cloud

observations.

Task Complexity

The challenges of these tasks come from several aspects. Firstly, all tasks have

all object poses fully randomized (displacement around 0.3m and 360◦ rotation) upon

environment reset (this is in contrast to environments such as Franka Kitchen). Secondly,

60

Turn Faucet, Peg Insertion, and Push Chair all have large variations in the geometries and

sizes of the target objects (see illustrations in Fig. 3.5). Moreover, the faucets are mostly

pushed rather than grasped during manipulation (under-actuated control), the holes have

3mm clearance (requiring high-precision control) and it needs at least half of the peg to

be pushed sideway into the holes (harder than similar tasks in other benchmarks [177]),

the chair models are fully articulated with lots of joints, and the pouring task requires

smooth manipulation without spilling the liquid. Moreover, ManiSkill2 adopts impedance

controllers that admit smoother paths than the position-based (or specifically-tuned) ones

while at the cost of harder low-level action modeling (e.g., actuators can be quite laggy).

Demonstrations

The complexity of the tasks also lies in the sub-optimality of the demos (e.g., vanilla

BC struggles on all 5 tasks). The demos here are generated by a mixture of multi-stage

motion-planing and heuristics-based policies (with the help of privileged information in

simulators). We use 500 demo trajectories for Stack Cube and Turn Faucet (distributed

over 10 faucets), 1000 demos for Peg Insertion and Push Chair (distributed over 5 chairs),

and 150 demos for Pour.

Training and Evaluation

Besides vanilla BC, DT, and BeT, we add Decision Diffuser (DD) [2] as a baseline,

which explores the diffusion model [64] for policy learning by first generating a state-only

trajectory and then predicting actions with an acquired inverse dynamics model. As tasks

in ManiSkill2 feature diverse object-level variations, they provide good insights into both

how effective an imitator can learn the underlying behavior and how generalizable it is.

We evaluate using the 5 tasks in both unseen (seen objects but unseen scene configs)

and 0-shot (unseen object geometries) setup. Specifically, we have all but Peg Insertion

with the unseen setup and Turn Faucet, Push Chair & Peg Insertion with the 0-shot

setup. We use task success rate (SR) as the metric. Results are reported in Tab. 3.2

61

Table 3.4. Results from the ablation studies (unseen SR for Push Chair and 0-shot SR
for Peg Insertion).

decoupled only last only next random vanilla o-shared swapped CoTPC

Peg Insertion 47.0 52.0 49.0 41.0 45.0 39.0 46.0 59.3
Push Chair 36.0 36.0 37.0 31.0 35.0 29.0 32.0 41.0

for state observation and Tab. 3.3 for point cloud observations, where we demonstrate

the clear advantages of CoTPC. Note that we only select the best baseline (i.e., BeT) for

experiments with point cloud observations, where we use a lightweight PointNet [123] for

encoding the point clouds. For the main results of all methods on ManiSkill2, we report

the best performance among 3 training runs over the last 20 checkpoints, an eval protocol

adopted by [27].

3.6.4 Ablation Studies

We present ablation studies on two tasks (Peg Insertion and Push Chair) from

ManiSkill2 (we use state observations). We summarize the results in Tab. 3.4 and introduce

the details below.

Decoupled prediction of CoT and actions

In this variant denoted decoupled, we train another Transformer (denoted CoT

Transformer) with the same state and action sequence as inputs to predict the CoT (the

next and the last subgoal). While the original Transformer learns to only predict the

actions with the discovered CoT fed into the CoT tokens. During inference, the CoT

predicted by the CoT Transformer is fed instead. This decoupled CoT and action prediction

strategy is inferior to the coupled one since the latter not only learns to leverage predicted

CoT as guidance but also encourages better feature representation of the trajectory by

sharing the features for these tasks.

62

What subgoals to predict from the CoT tokens?

In the variant named only last, we ask the CoT decoder gcot(·) to only predict

the last subgoal. In the variant named only next, we ask it to only predict the next

subgoal. We find that predicting both works the best as it provides the model with both

immediate and long-term planning. In the variant named random, we ask it to predict a

single randomly selected observation from the future as a random subgoal (not the ones

from our CoT discovery). This leads to the worst results as the action guidance is not

very helpful.

Shared tokens for CoT and action predictions

A vanilla design of jointly predicting CoT and actions is to only use one CoT token

with the center and offset predictors on top of the state tokens and the CoT decoder on

top of the CoT token, denoted as vanilla. We further force both the center and the offset

predictors to take CoT tokens as inputs, denoted o-shared. This variant overly shares the

CoT tokens for all predictors/decoders and suffers from optimization instabilities. In the

last variant, denoted swapped, we let the offset predictor take the action tokens as inputs

and the center predictor take the CoT tokens. We find this alternative setup performs

worse.

3.6.5 Preliminary Results of Sim-to-Real Transfer

We examine the plausibilities of sim-to-real transfer of our state-based CoTPC in

a zero-shot setup on two tasks, namely, Stack Cube and Peg Insertion. Our real-world

experiment setup and two sampled succeeded trajectories are illustrated in Fig. 3.6. With

an off-the-shelf pose estimation framework such as PVNet [118], we can achieve reasonable

performance using the state-based CoTPC policy learned purely from simulated data. As

a preliminary examination, we only perform qualitative evaluations. See detailed camera

setup in [23].

63

Figure 3.6. Two sampled succeeded trajectories for Stack Cube and Peg Insertion,
respectively, in a real robot setup, from state-based CoTPC policies trained purely from
demos in simulators. As an early examination, we increase the clearance for peg insertion
from 3mm (sim) to 10mm (real) and only use peg and box-with-hole models of fixed
geometry.

3.7 Implementation Details

3.7.1 Details of the Environments

Moving Maze

Moving Maze is a 2D maze with a continuous action space of displacement (δx, δy),

where both components ∈ [1.5, 4]. This an s-shaped maze whose height is 80 and width is

60 with the agent starting from a location randomly initialized inside the top right square

region (in green) and the goal is to reach the bottom left one (also in green). Upon each

environment reset, the two regions (the starting square and the target square) as well as

the two rectangular bridges (in green) have their positions randomized. Specifically, The

two square regions are randomized to the right of the top and to the left of the bottom

blue islands, respectively. Their initial locations vary with a range of 20 vertically. The

two bridges’ initial locations vary also with a range of 20 horizontally. During the game,

each of them except for the top square moves (independently) back and forth with a

randomized constant speed ∈ [1, 2]. Once the agent lands on a moving block, the block

will immediately become static. The agent cannot cross the borders of the maze (but it

will not die from doing so). For simplicity, we adopt a 10-dim state observation consisting

64

of the current location of the agent and the four green regions. This task requires dynamic

controls/planning.

Franka Kitchen

We propose a setting (and thus a variant of the original Franka Kitchen task) where

the agent is asked to complete 4 object manipulations (out of 7 different options) in an

order specified by the goal. The 7 tasks are: turn on/off the bottom burner, turn on/off

the top burner, turn on/off the light, open/close the slide cabinet, open/close the hinge

cabinet, open/close the microwave oven, and push/move the kettle to the target location.

Compared to the other variants, we use a strict criterion, i.e., the task succeeds when all 4

sub-tasks are completed, where each of them needs to be done in the requested order to

be counted as completed. The environment will terminate when a sub-task other than the

specified 4 is performed. The action space is based on the joint velocity (8-dim) of the

robot. We use the original 30-dim state observation consisting of poses of all the relevant

objects and the proprioception signals as well as an additional 14-dim goal embedding.

This embedding assigns a 2-d vector to each of the 7 potential sub-tasks. Each vector is

one of [0, 0], [0, 1], [1, 0], [1, 1] (indicating the order to be completed for the corresponding

sub-task) and [−1,−1] (meaning the sub-task should not be completed). Note that we do

not include the target pose of the objects in the state observation (i.e., we ask the agent

to learn it from the demonstrations).

ManiSkill2

ManiSkill2 [55] is a recently proposed comprehensive benchmark for low-level object

manipulation tasks. We choose 5 tasks as the testbed. (1) Stack Cube for picking up a

cube, placing it on top of another, and the gripper leaving the stack. (2) Turn Faucet for

turning on different faucets. (3) Peg Insertion for inserting a cuboid-shaped peg sideways

into a hole in a box of different geometries and sizes. (4) Push Chair for pushing different

highly articulated chair models into a specified goal location (via a mobile robot). (5) Pour

65

for pouring liquid from a bottle into the target beaker with a specified liquid level. All

tasks have all object poses fully randomized (displacement around 0.3m and 360◦ rotation)

upon environment reset (this is in contrast to environments such as Franka Kitchen).

Note that the holes in Peg Insertion have only 3mm of clearance, requiring highly precise

manipulation, and it needs at least half of the peg to be pushed sideway into the holes

(in contrast to the similar yet easier tasks [177]). The tasks we select involve both static

and mobile manipulation and cover 3 action spaces (delta joint velocity control for Push

Chair, delta end-effector pose control for Pour, and delta joint pose control for the rest).

For state observations, we use states of varied dimensions across these tasks (see details in

the ManiSkill2 paper) For Turn Faucet, we slightly modify the default state observation

by appending an extra 3-dim vector (the pose of the faucet link) so that it is easier for the

agent to distinguish between different faucet models. The corresponding demonstrations

are modified as well. For point cloud observations, we use the default pre-processing

strategy provided by ManiSkill2 to obtain a fixed length of 1200 points (RGB & XYZ)

per timestep.

3.7.2 Details of the Demos and the Evaluation Protocol

Moving Maze

We curate demonstrations by adopting a mixture of heuristics and an RRT-style

planner with hindsight knowledge not available at test time. For each randomized environ-

ment configuration, we randomly choose one of the found paths from the starting square

to the target one as the demonstration trajectory. We chunk the maze into 6 regions: the

three islands (each bridge belongs to the island below it; the starting square and the target

square belong to the top right and the bottom left regions, respectively), each of which

is further divided into two regions (cut vertically in the middle). An RRT-style sampler

is used to find paths connecting adjacent regions sequentially (starting from the initial

position to the second region). We restrict the number of steps in each of the paths across

66

two adjacent regions to be ≤ 13 so that the maximum total length of a demo trajectory is

≤ 13 × 5 = 65 steps. To enable this type of planning with dynamic environments, we first

generate demonstrations with a static version of the maze and then animate the moving

elements later coherently. This is not possible during inference time as it requires hindsight

knowledge. We use 400 demo trajectories for training and evaluate all agents on both

these 400 configs and a held-out set of 100 unseen environment configs. We report the

task success rate as the major metric. During inference, we set the maximum number of

steps as 60.

Franka Kitchen

We replay a subset of the human demonstrations originally proposed in [57] in

the simulator. Specifically, we randomly select 50 demo trajectories of length ranging

from 150 to 300 that succeed in achieving 4 different sub-tasks out of the 7 options. We

relabel them with the privileged information to construct the goal embedding described

previously. Note that this embedding vector is fixed across different time steps for each

individual trajectory. There are 20 total different ordered sub-task combination presented

in the 50 demonstrations, where the majority of combination only has ≤ 3 trajectories.

Combinatorial generalization regarding sub-tasks is too challenging in this case (there are

35 × 4! = 840 total combinations); so we focus on evaluating generalization w.r.t. initial

robot/object poses. We use 90 unseen environment configurations (each requiring the

completion of 4 sub-tasks) presented in the original human demonstrations for evaluation

(we only include seen sub-task combinations). We report the task success rate (requiring

the completion of all 4 sub-tasks in a trajectory) and the average number of successful

sub-tasks per trajectory as the metrics. During inference, we set the maximum number of

steps as 280.

67

ManiSkill2

For all tasks except for Push Chair, we use the original demonstrations provided

by ManiSkill2, which are generated by a mixture of TAMP solvers and heuristics. Please

see the original paper for details (the actual code used to generate these demonstrations is

not released, though). For Stack Cube and Turn Faucet, we randomly sampled 500 demo

trajectories for the training data. For Turn Faucet, we use trajectories from 10 different

faucet models for the demos and perform the evaluation of 0-shot generalization on 4

unseen faucets (each with 100 different scene configurations). Not that the demonstrations

of Turn Faucets have most of the faucets pushed rather than grasped, i.e., under-actuated

control. For Peg Insertion, each different environment config comes with a different shape

and size of the box (with the hole) and the peg. We randomly sampled 1000 trajectories

from the original ManiSkill2 demonstrations as the training data and sampled 400 unseen

environment configs for the 0-shot generalization evaluation. For Push Chair, we use a

complicated heuristic-based approach from [114], adapted to ManiSkill2 (where it uses

additional privileged information and achieves around 50% task success rate), as the

demonstrator. We collected 1000 successful trajectories as the training data across 6

chair models and we evaluated the 0-shot generalization performance on 300 environment

configs distributed over 3 unseen chair models. For Pour, we use 150 successfully replayed

demonstration trajectories provided by ManiSkill2 to generate the point cloud observation

sequences (this task does not support state observation as it involves soft-body). We use

the success conditions from the original ManiSkill2 paper to report the task success rate.

During inference, we set the maximum number of steps allowed as 200, 200, 200, 250, and

300 for Stack Cube, Push Chair, Peg Insertion, Turn Faucet, and Pour, respectively.

68

3.7.3 Details of Network Architecture and Training

Vanilla BC

: We use a Markovian policy implemented as a three-layer MLP with a hidden

size of 256 and ReLU non-linearity. We train it with a constant learning rate of 1e− 3

with Adam optimizer with a batch size of 32 for 150K iterations (Moving Maze), 300K

iterations (Franka Kitchen), and 500K iterations (ManiSkill2). We find training longer

leads to over-fitting even with L2 regularization.

Decision Diffuser

We use the reference implementation provided by the authors of DD and make

the following changes in the diffusion model: 100 diffusion steps, 20 context size, and 4

horizon length (in our experiments we found that longer performs worse). The diffusion

and inverse-dynamics models have ∼1.6M parameters in total. Since DD works on fixed

sequence lengths, we pad the start and end states during training and only the start states

during inference.

Decision Transformer

We adopt the minGPT implementation and use the same set of hyperparameters

for all tasks (a feature embedding size of 128 and 4 masked multi-head attention layers,

each with 8 attention heads), totaling slightly greater than 1M learnable parameters. The

action decoder is a 3-layer MLP of two hidden layers of size 256 with ReLU non-linearity

(except that for Franka Kitchen we use a 2-layer MLP of hidden size 1024). We train DT

with a learning rate of 5e− 4 with a short warm-up period and cosine decay schedule to

5e− 5 for all tasks (except for Franka Kitchen, whose terminal lr is 5e− 6) with the Adam

optimizer with a batch size of 256. We train for 200K iterations for Moving Maze and

Franka Kitchen and train for 500K iterations for all tasks in ManiSkill2. We use a weight

decay of 0.0001 for all tasks but Franka Kitchen (for which we use 0.1). We use a context

size of 10 for ManiSkill2 tasks, 20 for Moving Maze, and 10 for Franka Kitchen. We use

69

https://github.com/karpathy/minGPT

learnable positional embedding for the state and action tokens following the DT paper.

Behavior Transformer

We started with the configuration used for the Franka Kitchen task in the original

paper. We changed the number of bins in K-Means to 1024 (we find that for our tasks,

a smaller number of bins works worse) and changed the context size to 10 (in line with

the other transformer-based models). The Transformer backbone has approximately the

same number of parameters (∼1M) as CoTPC and DT. We train the model for around

50k iterations (we find that training longer leads to over-fitting easily for BeT, potentially

because of its discretization strategy and the limited demos used for BC). For ManiSkill2

tasks, we use the same architecture as that for DT, except that we use the center plus

offset predictors to decode the actions. We train 100K iterations for Turn Faucet, Push

Chair, and Pour. We train 200K iterations for Peg Insertion and Stack Cube.

CoTPC

Unless specified here, we keep other configurations (both model training and network

architecture) the same as those in BeT. We use no positional embeddings for CoT tokens

as they themselves are learnable prompts. The CoT decoder is a 2-layer MLP with ReLU

non-linearity of hidden size 256. We use a coefficient λ = 0.1 for the auxiliary MSE loss for

all tasks. During training, we apply random masking to the action and state tokens so that

the CoT tokens attend to a history of varied length (from the first step to a randomized

t-th step). Other details have already been presented previously.

3.7.4 Details of Point Cloud-based CoTPC

To process point cloud observations, we adopt a lightweight PointNet [123] (∼27k

parameters) that is trained from scratch along with the transformer in an end-to-end

manner. We concatenate additional proprioception signals with the point cloud features

to the input state tokens. In CoTPC where the CoT decoder is trained to predict the

70

s a as skkk

Model Inference

CoT
Decoder

Auxiliary
MSE Loss Learnable Prompt Token for CoT

Action Decoder

Model Training

All-to-all tokens Causal tokens

Hybridly Masked Transformer

o o o

PointNet

Key Point Cloud
I, II & III

PointNet

Figure 3.7. Illustration of the point cloud-based CoTPC. Compared to state-based
CoTPC, we add a PointNet to process the point cloud observations as well as the point
cloud CoT. We omit the data path for the input proprioception signals to the model.

point cloud CoT, we ask the decoder to predict PointNet features of the CoT instead. We

find that the auxiliary point cloud CoT loss causes the PointNet encoded representations

to collapse. Inspired by [26], we use a stop-gradient operation in the point cloud CoT

encoding path to prevent this. We illustrate the network architecture in Fig. 3.7. The

training strategies (we use the same set of hyperparameters) and evaluation protocols are

similar to those of the state-based experiments.

3.8 Conclusion and Discussion

In this work, we propose CoTPC, a hierarchical imitation learning algorithm for

learning generalizable policies from scalable but sub-optimal demos. We formulate the

hierarchical principles (in the form of chain-of-thought) in offline policy learning with a

novel Transformer-based design and provide an effective way to obtain chain-of-thought

supervision from demonstrations in an unsupervised manner. Our approach empirically

validates the benefits of task decomposition even for short-horizon tasks. We demonstrate

that CoTPC can solve a wide range of challenging low-level control tasks, consistently

outperforming many existing methods.

71

Many existing work dealing with “long-horizon” robotic tasks (SayCan [1], ALFRED

[149], etc.) assumes that low-level control is solved or that the task hierarchy is given. On

the contrary, in this paper, we study better ways to learn to solve low-level control tasks

with unsupervisedly discovered hierarchical information as supervisions. We believe that

CoTPC can be extended in a multi-task learning setup, i.e., policy learning from diverse

demos across different low-level control tasks.

Acknowledgement

Chapter 3, in full, is a reprint of the manuscript: “Chain-of-Thought Predictive

Control” (Zhiwei Jia, Vineet Thumuluri, Fangchen Liu, Linghao Chen, Zhiao Huang, Hao

Su), whose preliminary version has been presented at the Workshop on Reincarnating Re-

inforcement Learning at ICLR 2023. The dissertation author was the primary investigator

and author of this paper.

72

Chapter 4

Task Decomposition by Partitioning
the Task Space

While most Embodied AI tasks can be decomposed temporarily into sub-tasks or

subskills, as presented in the previous two chapters, task decomposition can also refer to

partitioning the task space itself. In this chapter, we introduce how to tackle the challenges

of large-scale policy optimization over diverse environment variations, which arise from

acquiring generalizable deep RL agents that can potentially work in unseen environment

variations. One of the key ideas here is to decompose the space of task variations and

learn to solve the task in a divide-and-conquer manner. Specifically, we observe that an

agent (a generalist) trained on many variations tends to learn faster at the beginning yet

plateaus at a less optimal level for a long time. In contrast, an agent (a specialist) trained

only on a few variations can often achieve high returns under a limited computational

budget. We, therefore, propose an RL framework to tackle complex tasks in a distributed

training manner to have the best worlds of both worlds. Several key ablations reveal when

and how to launch the specialist agents as well as how to merge them back into a single

generalist agent. Our proposal is a meta-framework1 that brings performance boost to

various baseline online RL methods over several popular RL benchmarks.

1As a meta-algorithm, the (pseudo)code is available here.

73

https://github.com/SeanJia/GSL

4.1 Introduction

Deep Reinforcement Learning (DRL) holds promise in a wide range of applications

such as autonomous vehicles [43], gaming [150], robotics [81] and healthcare [180]. To

fulfill the potential of RL, we need algorithms and models capable of adapting and gener-

alizing to unseen (but similar) environment variations during their deployment. Recently,

several benchmarks [56, 31, 107, 159, 50, 190] were proposed to this end, featuring a very

high diversity of variations in training environments, accomplished through procedural

generation and layout randomization, to encourage policy generalization.

However, due to the sheer number of variations, many existing DRL algorithms

struggle to efficiently achieve high performance during training, let alone generalization.

For instance, in Procgen Benchmark [31], a PPO [144] agent trained on a thousand levels

can have poor performance even with hundreds of millions of samples. Training PPO on

visual navigation tasks involving ∼100 scenes might require billions of samples to achieve

good performance [172]. Several lines of work have been proposed to alleviate this issue,

by accelerating training with automatic curriculum [80], improving learned representations

with the help of extra constraints [68, 129], or decoupling the learning of the policy and

value networks [34, 128].

Orthogonal to these approaches, we tackle the challenge from a perspective inspired

by how human organizations solve difficult problems. We first define a generalist agent to

be a single policy that can solve all environment variations. We also define a specialist

agent to be a policy that masters a subset, but not all, of environment variations. Our goal

is to utilize experiences from the specialists to aid the policy optimization of the generalist.

We observe that trajectories belonging to different environment variations often

consist of shared early stages and context-specific later stages. It is often more efficient

for a single generalist to learn the shared early stages for all contexts than first training

different specialists and then merging them into a generalist. For instance, learning to push

74

a chair towards a goal, regardless of variations in chair geometry, topology, or dynamics,

requires an agent to first recognize the chair and approach it. During these early stages,

jointly training an agent on all chairs, starting and goal states results in faster learning.

However, as the visited states get more and more diverse, it becomes increasingly hard for

the policy and value network to maintain the predictive power without forgetting (i.e.,

“catastrophic forgetting”), or be vigilant to input dimensions that were not useful at the

beginning but crucial for later stages (i.e., “catastrophic ignorance” in Sec. 4.4). This

poses a significant challenge and results in performance plateaus. Meanwhile, if we only

consider a small subset of environment variations and train a specialist on it, then due to

the low state variance, the specialist can often master these variations, achieving a higher

return on them than the generalist.

Inspired by these observations, we propose a novel framework, named Generalist

-Specialist Learning (GSL), to take advantage of both specialist ’s high return and

generalist ’s faster early training. As illustrated in Fig. 4.1, we first optimize the generalist

on all environment variations for fast initial policy learning. When it fails to improve (by

simple criteria), we launch a large population of specialist agents, each loaded from the

generalist checkpoint, and optimize on a small subset of environment variations. After spe-

cialists’ performance quickly surpasses the generalist’s, we use specialists’ demonstrations

as auxiliary rewards for generalist training, advancing its own performance. While some

previous approaches also involve specialist training [107, 163, 52, 106, 25], they either do

not realize or diagnose the gains and losses for generalist vs. specialist, or focus on a

different setup with their essential idea orthogonal to our proposal. We demonstrate the

effectiveness of our framework on subsets of two very challenging benchmarks: Procgen

[32] that consists of procedurally generated 2D games (with 1024 training levels, more than

the official 200 levels setup), and ManiSkill [107] that evaluates physical manipulation

skills over diverse 3D objects with high geometry and topology variations.

75

Generalist Learning
(Phase I)

Specialist LearningClone Distill

Fine-tune

Generalist Learning
(Phase II)

Figure 4.1. Illustration of Generalist-Specialist Learning (GSL) framework. During
initial generalist learning (phase I), a generalist agent learns to master all environment
variations at once. Next, each specialist agent works on a subset of environment variations.
Finally, the generalist is fine-tuned (phase II) with guidance provided by the specialists
(e.g., via demonstrations).

4.2 Related Work

Divide-and-Conquer in RL

Our work is most closely related to works along this line. Previous works like

[163, 52] have adopted divide-and-conquer for training an RL agent. They split the state

space into subsets, and alternate between training each local policy on each subset and

merging the local policies into a single center policy using imitation learning. Although

these approaches also adopt the perspective of generalists and specialists, they did not

study the timing for starting specialist training, which is a key contribution of our work.

In addition, when distilling experiences from specialists into a generalist, they usually use

behavior cloning and address the demonstration inconsistency issue by KL divergence

regularization between local policies [52], which requires a synchronized training strategy,

making it intractable when scaling to large numbers of specialists as in our experiments.

76

We show that our approach can still work well with a large number of specialists.

Policy Distillation and Imitation Learning

Distilling a single generalist (student) from a group of specialists (teachers) is a

promising way to achieve good performance on challenging tasks [138, 137, 106, 36, 162].

Population-based agent training (PBT) was utilized in [36, 162]. Previous works like [138]

have adopted supervised learning to train a generalist over specialists’ demonstrations.

Other works convert demonstrations into rewards for online learning [44, 63, 183, 132, 147].

Our framework makes good use of the policy distillation as its sub-module.

Large-Scale RL

Training an RL agent over a large number of environment variations is a promising

approach to obtaining a generalizable policy [32, 107]. One series of benchmarks for this

objective involves variations of object geometry and topology [107] and task semantics

[182, 71], which are usually mentioned as multi-task RL benchmarks. Another series of

benchmarks procedurally generate diverse levels and layouts for an environment [166, 32].

For both series of benchmarks, training a single agent over multiple variations is known to

be challenging, which warrants more exploration into this field.

Multi-task RL

In multi-task RL, an agent is trained on multiple tasks given a task-specific

encoding. Recent works have made significant progress in accelerating policy optimization

across multiple tasks. One stream of work focuses on improving task (context) encoding

representations from environment dynamics or reward signals [9, 154]. Another stream

focuses on studying and alleviating negative gradient interference from different tasks

[141, 181, 92]. Different from these approaches, our framework is designed for general

RL tasks, which not only encompasses multi-task RL environments but also general

RL environments such as Procgen, whose environment variations do not have semantic

encoding (i.e., each variation is represented by a random seed).

77

4.3 Background

A general Markov decision Process (MDP) is defined as a tuple

M = (S,A, T,R, γ)

where S,A are state space and action space, T (s′|s, a) is the state transition probability,

R(s, a) is the reward function, and γ ∈ [0, 1) is the discount factor. In reinforcement

learning, we aim to train a policy π(a|s) that maximizes the expected accumulated return

given by J(π) = E(st,at)∼ρπ [
∑

t=0 γ
tr(st, at)].

A Block Contextual Markov Decision Process (BC-MDP) [186, 40, 155]

augments an MDP with context information, which can be defined as (C,A,M(c), γ),

where C is the context space, M is a function which maps any context c ∈ C to an MDP

M(c) = {Sc, T c, Rc}. BC-MDP can be adapted to the multi-task setting, where contexts

control objects used in the environments (e.g. object variations in ManiSkill [107]) and

task semantics (e.g. tasks in MetaWorld [182]). BC-MDP can also be adapted to a general

MDP to control the random seeds (e.g. seeds for procedural generation in Procgen [32]).

In this paper, we consider both settings. Unlike previous works [155], our framework does

not require the context to contain any semantic meaning, which is typical in the multi-task

RL setting. The context can be anything that splits an MDP into several sub-MDPs.

In the following sections, we first motivate our approach by analyzing a simple

example in Section 4.4. We then introduce several important ingredients in our Generalist-

Specialist Learning (GSL) framework.

4.4 An Illustrative Example

Consider a simple “brush”-like maze illustrated in Fig. 4.3a. An agent (a generalist)

starts from the leftmost position in the corridor and needs to reach the goal specified by a

78

0 2 4 6 8 10
Number of samples (M)

1800

1600

1400

1200

1000

800

Av
er

ag
e

tra
in

in
g

re
w

ar
d

Generalist
Generalist-cont'd
Specialist
Merged

Figure 4.2. Training curve of PPO on the brush-like maze. The generalist learns fast
but plateaus quickly (dashed blue line). The specialists (cloned from the generalist) learn
to solve individual goals better (solid red line). The fine-tuned generalist (trained by
DAPG) with the specialists’ demos achieves the best results efficiently (green arrow). This
improvement is consistent among 5 runs.

real context c. For each i = {1, 2, · · · , 5}, Ci = (i−1
5
, i
5
] indicates the context space for the

i-th goal (marked as red stars). Upon environment resets, we first uniformly sample the

goal i and then sample c uniformly from Ci. An agent is given the position and velocity

(both are real vectors) as an observation and is capable of setting its velocity as an action.

The reward is the approximated negative geodesic distance between the current position

and the goal.

We train a PPO agent and discover the phenomenon of “catastrophic ignorance”

(we coin this term inspired by “catastrophic forgetting”). As in Fig. 4.2, in the early

stages, the agent quickly learns to move rightwards in the maze. However, the agent tends

to ignore the goal context c since it plays little role in the early stages. This is revealed by

the agent’s tendency to always move rightwards after the intersection and arrive at the

middle goal regardless of the goal context. It requires a large amount of samples for the

agent to learn to extract features about the goal context.

To overcome this challenge, at the performance plateau of the generalist, we split

the environment into 5 environment variations, each with a different goal (context interval),

and initiate 5 specialists from the generalist checkpoint to master each of the variations.

For each specialist, because the reward distribution is identical across environment resets,

79

(a) Illustrative environment (b) Procgen

(c) Meta-World (d) ManiSkill

Figure 4.3. (a) An illustrative environment that consists of a long corridor and a “brush”-
like maze, where the agent starts from the left and needs to reach one of the five targets
(stars in the figure) specified by a goal context. (b) Sample environments in Procgen, a
2D vision-based game environment where levels are generated procedurally. (c) Sample
environments in Meta-World, where the agent is asked to perform diverse manipulation
tasks given state-space observations. (d) The PushChair task in ManiSkill, where an agent
is required to push a chair towards a goal (red ball) given point cloud observations of
diverse chairs.

the specialist can quickly succeed even though it does not understand the semantic

meaning of the context. Then, we use specialists to generate demonstrations. In practice,

auxiliary rewards can be generated from the demos using techniques such as Demonstration

Augmented Policy Gradient (DAPG, [132]) and Generative Adversarial Imitation Learning

(GAIL, [63]). With strong rewards obtained from demonstrations, the generalist is not

bothered by the challenges in path-finding and can focus on discriminating goal context.

As a result, it quickly learns (as shown in Fig. 4.2) to factor the previously ignored goal

context into making its decisions, thereby overcoming the performance plateau.

Besides that catastrophic ignorance can be cured by our framework, GSL can also

80

deal with the catastrophic forgetting issue. As the generalist learning proceeds, it becomes

increasingly hard for its policy/value network to maintain the predictive power for all the

environment variations without forgetting. The introduction of specialists can mitigate

this issue because each specialist usually only needs to work well on a smaller subset of the

environment variations and this specialized knowledge is transferred and consolidated into

a single agent with the help of the collected demonstrations. As catastrophic forgetting is

well-known to the neural network community, we do not provide an illustrative example

here.

Algorithm 1. GSL: Generalist-Specialist Learning

Require: (1) Environment E with context space C (2) Number of specialists Ns (3)
Number of env. variations for specialist Nlenv (4) Number of demonstrations N g

D from
generalist and N s

D from specialists (5) Performance plateau criteria H
1: Initialize generalist policy πg

2: Train πg on E until H = 1 ▷ e.g., PPO, SAC
3: if πg optimal enough then
4: Exit ▷ done with GSL
5: end if
6: Find the Nlenv lowest-performing environment variations from E, collectively denoted

as Elow.
7: Split Elow into Ns disjoint environment variations {Ei} by splitting the context space
C.

8: Obtain πglow by fine-tuning πg on Elow ▷ optional
9: for each i = 1 · · ·Ns do ▷ in parallel

10: Initialize specialist πsi = πg or πglow
11: Train πsi on Ei
12: Generate

Ns
D

Ns
demos Ti with πsi on Ei

13: end for each
14: Generate N g

D demos Tg with πg on E\Elow
15: Continue training πg on E with auxiliary rewards induced from {T D

i }∪Tg (via DAPG,
GAIL, etc.)

4.5 Generalist-Specialist Learning

Motivated by our previous example, we now introduce our GSL framework. At a

high level, the framework is a “meta-algorithm” that integrates a reinforcement learning

81

algorithm and a learning-from-demonstration algorithm as building blocks and produces a

more powerful reinforcement learning algorithm. While there exists works with a similar

spirit, we identify several design choices that are crucial to the success but were not

revealed in the literature. We will first describe the basic framework, and then introduce

our solutions to the key design choices that lead to improved sample complexity in

environments that are too difficult for the building block reinforcement learning algorithm

due to the catastrophic forgetting and ignorance issues.

4.5.1 The Meta-Algorithm Framework

We first initialize a generalist policy πg and train the model over all variations of

the environment using actor-critic algorithms such as PPO [145] and SAC [58]. When the

performance plateau criteria H (introduced later) is satisfied, we stop the training of πg.

This could occur either when πg reaches optimal performance (in which case we are done),

or when the performance is still sub-optimal. If the performance is sub-optimal, we then

split all environment variations into small subsets, and launch a population of specialists,

each initiated from the checkpoint of generalist, to master each subset of variations. We

finally obtain demonstrations from the specialists and resume generalist training with

auxiliary rewards created by these demonstrations. The basic framework is outlined in

Algorithm 1.

4.5.2 When and How to Train Specialists

While there exist attempts to use the divide-and-conquer strategy to solve tasks

in diverse environments, a systematic study of the timing to start specialist training is

missing. The default choice in the literature [163, 52] starts specialist training from the

very beginning and periodically distills the specialists into the generalist. However, as

in Fig. 4.8, we observe that training the specialists before the generalist’s performance

plateaus does not take full advantage of the generalist’s fast learning during the early

82

stages, and therefore results in less optimal sample complexity. Consequently, we start

specialist training only after the generalist’s performance plateaus.

Performance plateau criteria for generalists. We introduce a binary criteria

H to decide when the performance of generalist plateaus. In our implementation, we

design simple but effective criteria based on the change in average return, which works

well in our benchmarks. Given returns from M epochs {R1, . . . , RM}, we first apply a 1D

Gaussian filter with kernel size 400 to smooth the data. Then

H(t) = 1(Rt + ϵ ≥ Rt′ , ∀ t′ ∈ {t+ 1, t+ 2..., t+W})

Intuitively, the criteria are satisfied if the smoothed return at a certain epoch is ap-

proximately higher than (more than a margin ϵ) all smoothed returns in the future W

epochs.

Assigning environment variations to specialists. When we assign sets of

environment variations to specialists, we hope that each specialist can master their assigned

variations, yet we also hope that the number of specialists Ns is not too large if the number

of all training environment variations is already large (in which case we need a large amount

computational resource to train the specialists in parallel). Empirically, we observe that

the generalist can solve some environment variations reasonably well, yet performs poorly

on others. Therefore, we launch specialist training only on the Nlenv lowest performing

environment variations.

We empirically find that an optional step (line 8 of Alg. 1), specifically fine-tuning

πg on the Nlenv lowest performing environment variations before training the specialists,

can help to improve sample efficiency as it gives the specialists a better starting point.

Specifically, we fine-tune πg for 200 epochs, or 200 ∗ 16384 samples (a very small number

compared to the 100M total budget) and find this step helpful for tasks in Procgen if PPO

is used as the backbone RL algorithm.

83

After we assign the variations to specialists, we start to train these specialists

in parallel. We assume that a specialist can always solve the environment with a few

variations. For example, for most tasks in Procgen which contain 1024 procedurally

generated levels for training, we find Nlenv = 300 and Ns = 75 good enough (i.e. each

specialist is trained on 300/75 = 4 variations). Therefore, we can train the specialists until

they accomplish their assigned variations. In practice, we set a fixed number of samples

Nsample for training each specialist.

4.5.3 Generalist Training Guided by Specialist Demos

After training each specialist to master a small set of environment variations, we still

need the common generalist to consolidate specialist experiences and master all training

environment variations. In our proposed framework, we first collect the demonstration set

{T D
i } using the specialists on their respective training environment variations (we only

collect trajectories whose rewards are greater than a threshold τ). Specifically, we use the

best-performing model checkpoint stored by each specialist to generate the demonstration

set. To ensure training stability, we also collect demos Tg for the remaining training

variations using the generalist. We then resume generalist training using a learning-from-

demonstrations algorithm by combining the environment reward and the auxiliary rewards

induced from these demonstrations. To train a generalist in this process, we can adopt

many approaches, such as Behavior Cloning (BC), Demonstration-Augmented Policy

Gradient (DAPG, [132]), and Generative-Adversarial Imitation Learning (GAIL, [63]).

It is a key design factor to choose this learning-from-demonstrations algorithm. The

crucial challenge comes from the inconsistency of specialist behaviors in similar states. To

our knowledge, previous work of divide-and-conquer RL uses BC to distill from specialists

in an offline manner; however, even if different environment variations share the same

reward structure and various regularization techniques can be added to the specialist

training process, we find it not scalable to the number of specialists and it fails to work

84

well in diverse environments such as Procgen or ManiSkill in our paper. Moreover, pure

offline methods such as BC usually achieve inferior performance since they are limited to

a fixed set of demonstrations.

With the demos collected from specialists, we find online learning from demon-

stration methods such as DAPG and GAIL to be quite effective. For DAPG and GAIL,

besides utilizing all the collected demos {T D
i } ∪ Tg, we also let the generalist interact with

the environment to obtain online samples. From here, we use ρD and ρπ to denote a batch

of transitions sampled from the demonstrations and from the environment, respectively.

While DAPG and GAIL in principle can be adapted to any RL algorithms (PPO, PPG,

SAC, etc.), we evaluate GSL on challenging benchmarks using their corresponding strong

baseline RL algorithms (PPO/PPG on Procgen, PPO on Meta-World, and SAC on Man-

iSkill). Below, we derive a formula to illustrate how we adapt DAPG and GAIL in our

experiments.

We modify DAPG for DAPG + PPO. We first calculate the advantage value A(s, a)

for (s, a) ∼ ρπ using GAE [143]. Then, in each PPO epoch, we compute the maximum

advantage denoted as Â. We obtain the overall policy loss (value loss omitted here):

LCLIPρ (θ) = −E(s,a)∼ρ[
min

(
πθ(a|s)

πθold
(a|s)A(s,a),clip(rt(θ),1−ϵ,1+ϵ)A(s,a)

)]

L1
ρ(θ) = −E(s,a)∼ρ[πθ(a|s)]

LDAPG+PPO(θ) = LCLIPρπ (θ) + ω · Â · L1
ρD

(θ)

We find that a smoothed loss L1(·) here significantly improves training stability for

some tasks, compared to the cross entropy (style) loss used in the original DAPG paper.

85

We set ω = 0.5 in all our experiments and find that decreasing it over time (as in the

original DAPG paper) can lead to worse performance.

For GAIL + SAC, we train a discriminator to determine whether a transition

comes from policy or from demonstration. We obtain the following losses for policy πϕ,

discriminator Dψ, and Q-function Qθ:

LGAIL+SAC = Lπ(ϕ) + LD(ψ) + LQ(θ)

Lπ(ϕ)=−Est∼ρπ [Eat∼πϕ [α log(πϕ(at|st))−Qθ(st,at)]]

LD(ψ)=Eρπ [log(Dψ(st,at))]+EρD [log(1−Dψ(st,at))]

LQ(θ)=Eρπ∪ρD [(Qθ(st,at)−(r̃(st,at)+γVθ̄(st+1)))2]

r̃(st, at) = βr(st, at) + (1 − β) log(Dψ(st, at))

here α is the temperature in SAC; β is the hyper-parameter that interpolates

between the environment reward and the reward from the discriminator; moreover, Vθ̄(st) =

Eat∼πϕ(·|st) [Qθ(st, at) − α log(πϕ(at|st))] is target value.

PPG [34] is a recently proposed RL algorithm that equips PPO with an auxiliary

phase for learning the value function. It achieves state-of-the-art training performance on

Procgen. We therefore also evaluate the PPG + DAPG combination on Procgen, with

essentially the same adaptation as for PPO + DAPG. Our experiments illustrate the

generality of our framework as a meta-algorithm.

4.6 Experiments

We evaluate our Generalist-Specialist Learning (GSL) framework on three chal-

lenging benchmarks: Procgen [32], Meta-World [182] and SAPIEN Manipulation Skill

Benchmark (ManiSkill Benchmark [107]). To begin with, we introduce the benchmark

86

environments (the tasks) used in our evaluation.

4.6.1 Environments

Procgen

Procgen is a set of 16 vision-based game environments, where each environment

leverages seed-based procedural generation to generate highly diverse levels. All Procgen

environments use 15-dimensional discrete action space and produce (64, 64, 3) RGB ob-

servation space. In our experiments, we use 1024 levels for training, which is different

from the original 200-training-level setup (as we try to evaluate how well GSL scales). We

select the 7 most challenging environments under our setting based on the normalized

score obtained by training the baseline PPO algorithm (PPO can achieve a close to perfect

score on the remaining environments given 100M total samples). These environments are

BigFish, BossFight, Chaser, Dodgeball, FruitBot, Plunder, and StarPilot. A subset of

environments is illustrated in Fig. 4.3b. This benchmark leverages procedural generation

and is also suitable for evaluating the generalization performance of our framework. We

adopt the IMPALA CNN model [41] as the network backbone.

Meta-World

Meta-World is a large-scale manipulation benchmark for meta RL and multi-task

RL featuring 50 distinct object manipulation skills (see samples in Fig. 4.3c). We choose

multi-task RL as our testbed, including MT-10 and MT-50 (with 10 and 50 skills to learn,

respectively), which only evaluate the agents’ performance in the training environments.

The state space for this benchmark is high-dimensional and continuous, representing

coordinates & orientations of target objects and parameters for robot arms as well as

encodings for the skill ID. We use the V2 version of the benchmark.

ManiSkill

ManiSkill is a recently proposed benchmark suite designated for learning general-

izable low-level physical manipulation skills on 3D objects. The diverse topological and

87

geometric variations of objects, along with randomized positions and physical parameters,

lead to challenging policy optimization. Since realistic physical simulation and point

cloud rendering processes (see Fig. 4.3d) are very expensive for ManiSkill environments

(empirically we observe that the speed is at 30 environment steps per second), we only

evaluate our framework on the PushChair task. In this task, an agent needs to move a

chair towards a goal through dual-arm coordination (see Fig. 4.3d). The environment has

a 22-dimensional continuous joint action space. Each observation consists of a panoramic

3D point cloud captured from robot cameras and a 68-dimensional robot state (which

includes proprioceptive information such as robot position and end-effector pose). In

our experiments, we use a smaller scale of the PushChair environment that consists of 8

different chairs, where we already find our framework significantly improves the baseline.

We also transform all world-based coordinates in the observation space into robot-centric

coordinates. Different from the original environment setup, we add an indicator of whether

the robot joints experience force feedback due to contact with objects, and we do not reset

the environment until the time limit is reached. We adopt the PointNet + Transformer

over object segmentations model in the original baseline as our network backbone.

4.6.2 Main Results

We first train a baseline PPO model on Procgen and MT-10 and MT-50 from Meta-

World, along with a baseline SAC model on ManiSkill. We then compare these baselines

with our GSL framework where PPO+DAPG is trained on Procgen and Meta-World and

SAC+GAIL is trained on ManiSkill. We demonstrate the results in Fig. 4.4 & 4.5 and

Tab. 4.1 & 4.2. For better display, we only demonstrate training curves for one run per

environment/task. We present additional results for multiple seeds in the next section. We

also perform experiments with PPG+DAPG on the first two tasks of Procgen to further

verify the generality of GSL (See Tab. 4.1). Since our GSL framework involves online

interactions from specialists, we perform necessary scaling to reflect the actual total sample

88

0 20 40 60 80 100
10
15
20
25
30
35 BigFish (Procgen)

Generalist
Generalist-cont'd
Specialists
Merged

0 20 40 60 80 100
4
6
8

10
12
14 BossFight (Procgen)

0 20 40 60 80 100
0
2
4
6
8

10
12
14
16

Chaser (Procgen)

0 20 40 60 80 100
6
8

10
12
14
16
18

Dodgeball (Procgen)

0 20 40 60 80 100
22
24
26
28
30
32
34 FruitBot (Procgen)

0 20 40 60 80 100
6

8

10

12

14 Plunder (Procgen)

0 20 40 60 80 100

20

30

40

50
StarPilot (Procgen)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

3.6

3.4

3.2

3.0

2.8

2.6
PushChair (ManiSkill)

Figure 4.4. GSL significantly improves baselines (in blue) on Procgen (PPO) and
ManiSkill (SAC) for their most challenging environments, respectively. The X-axis is
the overall training samples (M), and the y-axis is the return. The unit for the y-axis
in PushChair is 1000. The dashed blue line indicates what happens if we choose to
continuously train the generalist. For clarity, we only show the starting and ending points
for the step of converting specialist experiences into the generalist (green arrow) and only
plot one run for better display (see Fig. 4.6 for aggregated training curves across multiple
runs). We report the numerical results in Tab. 4.1.

0 20 40 60 80 100
10

15

20

25

30

35 BigFish (Procgen)

Generalist
Generalist-cont'd
Specialists
Merged

0 20 40 60 80 100
9.0
9.5

10.0
10.5
11.0
11.5
12.0 BossFight (Procgen)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8 MT-10 (Meta-World)

0 5 10 15 20 25 30 35 40
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45 MT-50 (Meta-World)

Figure 4.5. We also evaluate GSL on MT-10 & MT-50 (PPO) and on the first two
challenging tasks of Procgen (with PPG as the baseline, which already achieves close-to-
optimal performance). Again, GSL consistently improves the baselines. The unit for the
x-axis is a million steps. Similar to Fig. 4.4, we only plot one run out of 5 for clarity. See
Tab. 4.1 & 4.2 for numerical results.

complexity of our framework.

We observe that the generalist learns fast at the beginning, yet its performance

plateaus at a sub-optimal level. However, as soon as we launch specialist training, they

quickly master their assigned variations. The strong rewards obtained from specialists’

demonstrations efficiently and effectively lift the generalist out of performance plateaus,

resulting in significant improvement over baselines. These observations also corroborate

those in Fig. 4.2 of our illustrative example.

We compare the final average performance of GSL with PPO/PPG baselines on (1)

89

Table 4.1. Our GSL framework outperforms PPO and PPG baselines on both training
and generalization. Models are trained over 1024 levels for each environment and tested
over 1000 unseen levels. Results are averaged over 5 runs with std. from raw episode
rewards.

BigFish BossFight Chaser Dodgeball FruitBot Plunder StarPilot
PPO-Train 24.6±0.7 8.6±0.2 8.5±0.3 13.7±0.3 30.1±0.6 10.5±0.8 39.4±1.4
GSL-Train 31.1±0.8 11.3±0.2 11.5±0.3 15.5±0.2 31.9±0.3 13.4±0.4 49.5±0.4
PPO-Test 24.3±1.1 8.6±0.3 7.9±0.4 12.7±0.3 29.1±0.5 9.7±0.5 38.0±0.9
GSL-Test 30.0 ±0.5 10.4 ±0.2 10.9±0.2 14.1±0.3 30.5±0.4 13.1±0.3 48.7±0.5

BigFish BossFight
PPG-Train 29.4±1.1 11.3±0.2
GSL-Train 33.5±1.3 11.9±0.2
PPG-Test 28.0±0.9 11.1±0.2
GSL-Test 30.9 ±0.8 11.6±0.2

Table 4.2. GSL boosts training efficiency on MT-10/MT-50 and PushChair. Results are
averaged over 5 and 3 runs, respectively.

MT-10 (%) MT-50 (%)
PPO-Train 58.4±10.1 31.1±4.5
GSL-Train 77.5±2.9 43.5±2.2

PushChair (k)
SAC-Train -2.97±2.7
GSL-Train -2.78±2.3

the 1024 training levels and (2) the 1000 hold-out test levels of Procgen. We observe that

our framework not only improves over the baseline on the training environment variations

but also on unseen environment variations, demonstrating our framework’s effectiveness

for obtaining generalizable policies.

4.6.3 Additional Results

In this section, we present the training curves aggregated across multiple runs. For

experiments on Procgen and Meta-World, we perform 5 runs for both the baseline and

GSL in each environment; for ManiSkill, we perform 3 runs (due to its high computation

complexity). We illustrate the mean rewards and their standard deviations for each

aggregated training curve. Notice that, due to the performance plateau criteria H, each

run has different starting and ending points for both the generalists and the specialists. We

therefore normalize the x-axis to align each training curve. Specifically, we use percentage

90

0 20 40 60 80 100
10

15

20

25

30

35 BigFish [PPO]

Generalist
Generalist-cont'd
Specialists
Merged

0 20 40 60 80 100
6
7
8
9

10
11
12

BossFight [PPO]

0 20 40 60 80 100
4
5
6
7
8
9

10
11
12 Chaser [PPO]

0 20 40 60 80 100
8
9

10
11
12
13
14
15
16 Dodgeball [PPO]

0 20 40 60 80 100
24

26

28

30

32

34
FruitBot [PPO]

0 20 40 60 80 100
7
8
9

10
11
12
13
14
15 Plunder [PPO]

0 20 40 60 80 100

20
25
30
35
40
45
50 StarPilot [PPO]

0 20 40 60 80 100
4.0
3.8
3.6
3.4
3.2
3.0
2.8
2.6
2.4 PushChair [SAC]

0 20 40 60 80 100
15

20

25

30

35 BigFish [PPG]

0 20 40 60 80 100
10.0

10.5

11.0

11.5

12.0
BossFight [PPG]

0 20 40 60 80 100

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9 MT-10 [PPO]

0 20 40 60 80 100

0.1
0.2
0.3
0.4
0.5
0.6 MT-50 [PPO]

Figure 4.6. Aggregated training curves for GSL across multiple runs in Procgen, Meta-
World and ManiSkill, where GSL consistently improves the baseline (dashed blue curves).
The y-axis units are raw episode rewards for Procgen, average success rate for Meta-World
and 1000 for ManiSkill. To align the training curves across different runs, we use percentage
to represent the x-axis (0 ∼ 50% for initial generalist training, 50 ∼ 75% for specialists,
and 75 ∼ 100% for specialist-guided generalist training).

(ranging from 0 to 100) as the x-axis. We display curves for the initial generalist training in

the first 50%, those for the specialists in the next 25%, and finally the fine-tuned generalist

in the remaining 25%.

Since the training curves plotted here are subject to smoothing, their values (mean

episode rewards or success rates) at the end of the training process might not exactly equal

the results reported in Tab. 4.1 & 4.2, which are obtained by batch evaluations using the

model checkpoints.

4.7 Ablation Studies

In this section, we perform several ablation studies to justify our design. In ablation

experiments, we use 256 different levels for all Procgens experiments, as opposed to 1024

different levels in the main result section (Sec. 4.6.2), since obtaining results on fewer

91

levels is faster.

4.7.1 Influence of Granularity in Task Partitioning

0 50 100 150 200
0

5

10

15

20

25
Av

er
ag

e
Tr

ai
ni

ng
 R

ew
ar

d

BigFish K=4
BigFish K=16
BigFish K=64
BigFish K=256

0 50 100 150 200

5

10

15

20

25

30

35

StarPilot K=4
StarPilot K=16
StarPilot K=64
StarPilot K=256

Figure 4.7. The average training returns on BigFish and StarPilot over 256 levels for
Ns = 256/K specialists trained by PPO. The generalist (K = 256) is more efficient early
on but the specialists are more effective in the end.

A motivating observation for our framework is that training with more environment

variations tends to be faster at the beginning but plateaus at sub-optimal performance.

We show the evidence here, by varying the number of environment variations to train an

RL agent. We pay attention to both the learning speed (efficiency) and the performance

at the plateau (effectiveness).

On BigFish and StarPilot in Procgen, we use 256 levels generated with seeds from

2000 to 2256. Note that in Procgen, each seed guarantees a fixed and distinct level,

i.e., environment variation. We choose K = {4, 16, 64, 256} for the number of levels per

specialist. Notice that K = 256 is equivalent to training a single generalist for all levels.

For each K, we evenly and randomly distribute the 256 training levels to Ns = 256/K

specialists so that each specialist only learns on its distinctive set of levels. Each of the

Ns specialists has a budget of 200 million/Ns samples to train the PPO so that the total

sample budget is fixed for a fair comparison of sample complexity. We use the default

network architecture and hyper-parameters for PPO in the Procgen paper, except that

we reduce the number of parallel threads from 64 to 16 for better sample efficiency for

specialists of K = {4, 16}. We plot the training curve as the average of the Ns = 256/K

92

specialists and scale it horizontally so that it reflects the total number of samples in a way

same as the generalist’s training curve.

The results in Fig. 4.7 clearly suggest our findings. In short, when trained from

scratch, training a generalist enjoys a more efficient early learning process; in contrast,

later on, training specialists with smaller variations is more effective in achieving better

performance without plateauing early.

4.7.2 Influence of the Timing of Specialist Training

0 20 40 60 80 100
0

5

10

15

20

25

30

Av
er

ag
e

Tr
ai

ni
ng

 R
ew

ar
d

BigFish

Generalist
Spec.@0 epochs
Spec.@1k epochs
Spec.@2k epochs
Spec.@3k epochs
Spec.@4k epochs

0 2 4 6 8 10

4000

3500

3000

2500

2000
PushChair

Generalist
Spec.@0 epochs
Spec.@5k epochs
Spec.@20k epochs

Figure 4.8. Training curves of specialists launched from the generalist trained with
different numbers of epochs. Starting specialist training after the generalist’s performance
plateaus is more sample-efficient.

In Sec. 4.5.2, we mentioned that the timing to start specialist training plays a crucial

role in the efficiency and effectiveness of our framework. In this section, we show further

evidence. We launch specialist training at different stages of the generalist’s training

curve and present results in Fig. 4.8. We also conduct an experiment where specialists are

trained from scratch instead of initiated from a generalist checkpoint (this corresponds to

“Spec @ 0 epochs” in the figure). We use 64 specialist agents for BigFish training and 8

specialist agents for PushChair training.

We observe that when the generalist is still in the early stages of fast learning

and has not reached a performance plateau, launching specialist training results in worse

sample complexity. In particular, training specialists from scratch as in previous works

93

[163, 52] leads to inefficient and ineffective learning. On the other hand, after the generalist

reaches a performance plateau, specialist training has very close efficiency and efficacy

regardless of when the training is launched, as shown in the nearly parallel specialist curves

in BigFish after the generalist has been trained for 2k epochs. Therefore, a good strategy

for specialist training is to launch it as soon as the generalist reaches a performance plateau,

which we adopt in Algorithm 1.

4.7.3 Tuning and Evaluation of Plateau Criteria H

0 20 40 60 80 100
0

5

10

15

20

25
BigFish

0 20 40 60 80 100
0

2

4

6

8

10 BossFight

0 20 40 60 80 100

2

4

6

8
Chaser

0 20 40 60 80 100

2.5

5.0

7.5

10.0

12.5

15.0

17.5 Dodgeball

0 20 40 60 80 100

0

5

10

15

20

25

30 FruitBot

0 20 40 60 80 100

4

6

8

10

12

14

16 Plunder

0 20 40 60 80 100

10

20

30

40 StarPilot

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0.1

0.2

0.3

0.4

0.5

0.6

0.7 MT-10

0 5 10 15 20 25 30 35 40
0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40 MT-50

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
4.50

4.25

4.00

3.75

3.50

3.25

3.00

2.75

2.50 PushChair

Figure 4.9. Qualitative evaluation of criteria H. Vertical black lines indicate where
H(t) = 1 for the first time in each run of 5 runs for Procgen and Meta-World and 3 runs
for PushChair in ManiSkill. The y-axis is raw episode rewards for Procgen and ManiSkill
(whose unit is 1000) and the average success rate for Meta-World. The x-axis is a million
steps.

Due to the different training dynamics of various RL algorithms on the benchmarks,

the plateau criteria H does require some hyper-parameter tuning. However, we find it

relatively robust and easy to tune. It turns out that starting specialist learning at a time

5% of the total training budget earlier or later than the one suggested by H achieves very

94

Figure 4.10. Training returns of PPO on BigFish with 256 levels and performance
histograms over the withheld levels at four generalist checkpoints during training. Policy
learning on BigFish achieves good progress in a large portion of levels but slow to no
improvements on the remaining.

similar final results. Nevertheless, if H is tuned too aggressively (too early), we lose some

efficiency from the initial generalist learning; if it is tuned too conservatively (too late),

the generalist plateaus too long (i.e., less efficiency) and could become too certain about

its decisions, rendering it harder to be fine-tuned with specialists’ knowledge. In addition,

in practice, we do not consider the first 15% to avoid the cases where the generalist gets

stuck at the very beginning (i.e., a “slow start” generalist). We also do not consider the

last 15% to leave a sufficient amount of samples for launching specialist training and using

specialists’ demonstrations to guide generalist training.

Here we verify the effectiveness of our criteria H by providing a qualitative evaluation

on Procgen, ManiSkill, and Meta-World. Specifically, we use a smoothing kernel size of

200 epochs for Procgen & ManiSkill and 10 for Meta-World; the window size is W = 600

for Procgen, W = 2000 for ManiSkill and W = 10 for Meta-World; ϵ = 0.03 for Procgen,

ϵ = 0.01 for Meta-World and ϵ = 0.05k for ManiSkill. For each of the 5 runs in Procgen

environments and one run in PushChair from ManiSkill, we mark the first timestamp t

where our proposed criteria H(t) is evaluated as 1 with the black vertical lines. Areas

close to the vertical lines are generally suitable for starting specialist training. The results

are visualized in Fig. 4.9.

95

4.7.4 Diagnosis into Generalist Performance at Plateau

In Sec. 4.5.2, we discussed the strategy to assign environment variations to specialists.

Specifically, we launch specialist training only on the Ns variants with the lowest training

performance evaluated using the generalist. Our strategy is based on the observation

that the generalist can solve some environment variations reasonably well, but performs

poorly on others. We visualize the performance of the generalist on BigFish from Procgen

in Fig. 4.10, where the PPO agent makes quick progress on most of the levels, with

poor performance only on a portion of variations at the time of plateau. We find this

quite common for environments in Procgen, except for Plunder where PPO struggles in a

majority of levels.

4.7.5 Influence of Specialist-to-Generalist Merging Algorithms

In Sec. 4.5.3, we mentioned the importance of selecting the algorithm for consoli-

dating specialists’ experience for generalist learning. We conduct experiments on BigFish

of Procgen, where we set the number of specialists to be 75. We compare GSL+BC,

GSL+DAPG, and DnC [52], a classic divide-and-conquer RL work that uses BC. As a

baseline, we also show the performance of jointly training a PPO on all variations. How-

ever, for DnC RL, we find that, unlike any other setups, it has quadratic computational

complexity w.r.t. the number of specialists, rendering it computationally intractable, so

Table 4.3. Comparison to baselines and other design choices. DnC RL requires synchro-
nized training across all specialists with a quadratic computational complexity w.r.t. the
number of specialists, and we find it hard to scale up to our setup of 75 specialists as in
GSL. Using GSL with BC harms the performance. Our design works better than all other
choices.

BigFish (train) BigFish (test)
PPO (generalist only) 24.6±0.7 24.3±1.1

DnC RL - -
GSL with BC 25.3±0.4 22.1±0.9

GSL with DAPG 31.1±0.8 30.0±0.5

96

we skip this method. As shown in Table. 4.3, using BC in our GSL framework does not

help to outperform a single PPO generalist. One possible reason is that GSL does not

restrict specialists to be close to the generalist as in DnC, so specialists’ demonstrations

can be inconsistent, posing learning difficulties for BC. On the other hand, our GSL with

DAPG can outperform a single PPO by a large margin. Additionally, we sample 1,000

novel levels from BigFish to test the generalization performance of our models. Results

show that GSL+DAPG stays the best for generalization.

4.8 Implementation Details

4.8.1 Illustrative example

In our illustrative example, we train the generalist and the specialists using PPO

and use DAPG + PPO to resume generalist training with demos from specialists. We

summarize the hyperparameters in Tab. 4.4 & 4.5.

Table 4.4. Hyperparameters for DAPG and PPO in our illustrative example

Hyperparameters Value

Optimizer Adam
Learning rate 3× 10−4

Discount (γ) 0.95
λ in GAE 0.97

PPO clip range 0.2
Coefficient of the entropy loss term of PPO cent 0.01

Coefficient of the entropy loss term of PPO cent (during DAPG) 0.01
Number of hidden layers (all networks) 2

Number of hidden units per layer 256
Number of threads for collecting samples 5

Number of samples per PPO step 104

Number of samples per minibatch 2000
Nonlinearity ReLU

Total Simulation Steps 5× 106

Number of environment variations 5
Environment horizon 150

97

Table 4.5. Hyperparameters of GSL in our illustrative example.

Hyperparameters Value

Number of specialists Ns 5
Number of lowest performing environment variations assigned to specialists Nlenv 5

Number of environment variations per specialist K 1
Number of demos generated from specialists (epochs × time steps per epoch × Ns) N

s
D 10× 150× 5

Number of demo samples from generalist Ng
D N/A

Sliding window size (epochs) for the plateau criteria W 50
Number of samples for training each specialist Nsample 500K

Number of samples for DAPG 1M
Margin in the plateau criteria ϵ 0.01

4.8.2 Procgen

In Procgen, we train the generalist and the specialists using PPO/PPG (which is

an extension of PPO), and use DAPG + PPO/PPG to resume generalist training with

demos from specialists. We summarize the hyperparameters in Tab. 4.6, 4.7 and 4.8.

Table 4.6. The hyperparameters of PPO and DAPG for Procgen experiments.

Hyperparameters Value

Optimizer Adam

Learning rate 5× 10−4

Discount (γ) 0.999

λ in GAE 0.95

PPO clip range 0.2

Coefficient of the entropy loss term of PPO cent 0.01

Coefficient of the entropy loss term of PPO cent (during DAPG) 0.05

Number of threads for collecting samples 64

Number of samples per PPO epoch 256× 64

Number of samples per minibatch 1024

Nonlinearity ReLU

Total Simulation Steps 108

98

Table 4.7. Additional hyperparameters of PPG for Procgen experiments.

Hyperparameters Value

Number of policy update epochs in each policy phase n pi 32

Number of auxiliary epochs in each auxiliary phase n aux epochs 6

Coefficient of the entropy loss term of PPO cent 0.0

Coefficient of the entropy loss term of PPO cent (during DAPG) 0.01

Table 4.8. The hyperparameters of GSL for experiments on Procgen.

Hyperparameters Value

Number of specialists Ns 75

Number of lowest performing environment variations assigned to specialists Nlenv 300

Number of environment variations per specialist K 4

Number of demos generated (epochs × time steps per epoch ×Ns) N
s
D 256× 32× 75

Number of demos generated (epochs × time steps per epoch × number of env. var.) Ng
D 256× 8× 724

Sliding window size (epochs) for the plateau criteria W 600

The threshold for filtering demos (in terms of the normalized score) τ 0.15

Number of samples for training each specialist Nsample (PPO) 16× 256× 64

Number of samples for training each specialist Nsample (PPG) 20× 256× 64

Number of samples for DAPG (for PPO) 50× 256× 64

Number of samples for DAPG (for PPG) 800× 256× 64

Margin in the plateau criteria ϵ 0.03

Other implementation details

For all environments, we use seeds (levels) from 1000 to 2023 for training and from

100000 to 100999 for testing. When training the specialists, we change the number of

parallel environments in PPO from 64 to 16 for a slightly better sample efficiency, and

we change both n pi and n aux epochs to 4 from PPG for a similar reason. We find

that increasing the coefficient cent for the entropy regularization loss during DAPG can

help improve both the optimization and generalization performance for Procgen. For

99

the Plunder environment (with PPO as the baseline), we have observed poor generalist

training performance across a majority of levels. We therefore set Ns = 1024, i.e., we

train specialists on all levels. We also change the number of samples used in DAPG to

200 × 256 × 64 since there are more demos collected from the specialists than in other

tasks. Moreover, in Plunder we set cent to 0.1 during DAPG.

4.8.3 Meta-World

For both MT-10 and MT-50 from Meta-World, we train the generalist and the

specialists using PPO (with a policy network of two hidden layers, each of hidden size 32),

and use DAPG + PPO to resume generalist training with demos from specialists. We

summarize the hyperparameters in Tab. 4.10 & 4.9.

Table 4.9. The hyperparameters of GSL for experiments on Meta-World.

Hyperparameters Value

Number of lowest performing environment variations assigned to specialists Nlenv Varied

Number of specialists Ns Nlenv

Number of environment variations per specialist K 1

Number of demos generated (time steps per env. variations ×Ns) N
s
D 105 ×Ns

Number of demos generated (time steps per env. var. × # of remaining env. var. Nr) N
g
D 105× Nr

Sliding window size (epochs) for the plateau criteria W 10

The threshold for filtering demos (in terms of success rate) τ 1.0 (successful)

Number of samples for training each specialist Nsample 3000× 700

Number of samples for DAPG (MT-10) 2× 106

Number of samples for DAPG (MT-50) 6× 106

Margin in the plateau criteria ϵ 0.01

100

Table 4.10. The hyperparameters of PPO and DAPG for Meta-World experiments.

Hyperparameters Value

Optimizer Adam

Learning rate 2.5× 10−4

Discount (γ) 0.99

λ in GAE 0.95

Minimum std. of the Gaussian policy min std 0.5

Maximum std. of the Gaussian policy max std 1.5

PPO clip range 0.2

Coefficient of the entropy loss term of PPO cent (MT-10) 0.005

Coefficient of the entropy loss term of PPO cent (MT-50) 0.05

Number of threads for collecting samples (MT-10) 10

Number of threads for collecting samples (MT-50) 50

Number of samples per PPO epoch 105

Number of samples per minibatch 32

Nonlinearity ReLU

Total Simulation Steps (MT-10) 2× 107

Total Simulation Steps (MT-50) 4× 107

Other implementation details

We find that in MT-10/50, there always exist some tasks (i.e., environment varia-

tions) that the generalist agent performs extremely poorly after the initial learning phase.

We, therefore, use a threshold of the success rate of 0.5 for MT-10 and 0.2 for MT-50 to

select the Nlenv (which varies across different runs) lowest performing env. variations and

correspondingly launch Nlenv specialists. During specialist training, we reduce the number

of samples per PPO epoch from 105 to 3× 103 to improve the sample efficiency (since each

specialist now only learns to solve one environment variation).

101

Table 4.11. The hyperparameters of SAC and GAIL+SAC for ManiSKill

Hyperparameters Value

Optimizer Adam
Learning rate 3× 10−4

Discount (γ) 0.95
Replay buffer size (γ) 2× 106

Number of threads for collecting samples 4
Number of samples per minibatch 200

Nonlinearity ReLU
Target smoothing coefficient(τ) 0.005

Target update interval 1
Q, π update frequency 4 updates per 64 online samples

GAIL discriminator update frequency 5 updates per 100 policy updates
Total Simulation Steps 2× 107

4.8.4 ManiSkill

For ManiSkill experiments, we adopt the same PointNet + Transformer over object

segmentation architecture as in the original paper. We proportionally downsample point

cloud observations to 1200 points following the same strategy in the original paper. We

train the generalist and the specialists using SAC and we resume generalist training using

GAIL + SAC with demos from specialists. Notice that each specialist only focuses on

one chair model in the PushChair task. We use the hyperparameters listed in Tab. 4.11,

inspired by the implementations of [147]. We also show hyperparameters for GSL in Tab.

4.12.

4.9 Conclusion

Generalization in RL usually requires training in diverse environments. In this

work, we develop a simple yet effective framework to solve RL problems that involve

a large number of environment variations. The framework is a meta-algorithm that

turns a pair of RL algorithms and learning-from-demonstrations algorithms into a more

powerful RL algorithm. By analysis of prototypical cases, we identify that the catastrophic

102

Table 4.12. The hyperparameters of GSL for experiments on ManiSkill.

Hyperparameters Value

Number of specialists Ns 8
Number of lowest performing env. variations assigned to specialists Nlenv 8

Number of environment variations per specialist K 1
Number of demos generated from specialists N s

D 200× 300× 8
Number of demos generated from generalist Ng

D N/A
Sliding window size (epochs) for the plateau criteria W 2000

Threshold for filter the demos τ −3.5× 103

Number of samples for training each specialist Nsample 1.5× 106

Number of samples used in GAIL+SAC 2× 106

Margin used in the plateau criteria ϵ 50

ignorance and forgetting of neural networks pose significant challenges to RL training

in environments with many variations, and may cause the agent to reach performance

plateau at a sub-optimal level. We show that introducing specialists to train in subsets

of environments can effectively escape from this performance plateau and reach a high

reward. Design choices that are crucial yet unknown in the literature must be taken care

of for the success of our framework. Empirically, our framework achieves high efficiency

and effectiveness by improving modern RL algorithms on several popular and challenging

benchmarks.

Acknowledgement

Chapter 4, in full, is a reprint of the material published in the 2022 International

Conference on Machine Learning (ICML): “Improving Policy Optimization with Generalist-

Specialist Learning” (Zhiwei Jia, Xuanlin Li, Zhan Ling, Shuang Liu, Yiran Wu, Hao Su).

The dissertation author was the primary investigator and author of this paper.

103

Bibliography

[1] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron
David, Chelsea Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog,
et al. Do as i can, not as i say: Grounding language in robotic affordances. arXiv
preprint arXiv:2204.01691, 2022.

[2] Anurag Ajay, Yilun Du, Abhi Gupta, Joshua Tenenbaum, Tommi Jaakkola, and
Pulkit Agrawal. Is conditional generative modeling all you need for decision-making?
arXiv preprint arXiv:2211.15657, 2022.

[3] Michael L Anderson. Embodied cognition: A field guide. Artificial intelligence,
149(1):91–130, 2003.

[4] Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Sünderhauf,
Ian Reid, Stephen Gould, and Anton Van Den Hengel. Vision-and-language naviga-
tion: Interpreting visually-grounded navigation instructions in real environments. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 3674–3683, 2018.

[5] Charles Beattie, Joel Z Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright,
Heinrich Küttler, Andrew Lefrancq, Simon Green, Vı́ctor Valdés, Amir Sadik, et al.
Deepmind lab. arXiv preprint arXiv:1612.03801, 2016.

[6] Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and
Remi Munos. Unifying count-based exploration and intrinsic motivation. Advances
in neural information processing systems, 29:1471–1479, 2016.

[7] Valts Blukis, Chris Paxton, Dieter Fox, Animesh Garg, and Yoav Artzi. A persistent
spatial semantic representation for high-level natural language instruction execution.
In Conference on Robot Learning, pages 706–717. PMLR, 2022.

[8] Valts Blukis, Chris Paxton, Dieter Fox, Animesh Garg, and Yoav Artzi. A persistent
spatial semantic representation for high-level natural language instruction execution.
In Conference on Robot Learning, pages 706–717. PMLR, 2022.

[9] Timo Bram, Gino Brunner, Oliver Richter, and Roger Wattenhofer. Attentive
multi-task deep reinforcement learning. arXiv preprint arXiv:1907.02874, 2019.

104

[10] Kiante Brantley, Wen Sun, and Mikael Henaff. Disagreement-regularized imitation
learning. In International Conference on Learning Representations, 2019.

[11] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis,
Chelsea Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine
Hsu, et al. Rt-1: Robotics transformer for real-world control at scale. arXiv preprint
arXiv:2212.06817, 2022.

[12] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. Language models are few-shot learners. Advances in neural information
processing systems, 33:1877–1901, 2020.

[13] Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and
Alexei A Efros. Large-scale study of curiosity-driven learning. arXiv preprint
arXiv:1808.04355, 2018.

[14] Berk Calli, Arjun Singh, James Bruce, Aaron Walsman, Kurt Konolige, Siddhartha
Srinivasa, Pieter Abbeel, and Aaron M Dollar. Yale-cmu-berkeley dataset for robotic
manipulation research. The International Journal of Robotics Research, 36(3):261–
268, 2017.

[15] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander
Kirillov, and Sergey Zagoruyko. End-to-end object detection with transformers. In
European conference on computer vision, pages 213–229. Springer, 2020.

[16] Jonathan Chang, Masatoshi Uehara, Dhruv Sreenivas, Rahul Kidambi, and Wen
Sun. Mitigating covariate shift in imitation learning via offline data with partial
coverage. Advances in Neural Information Processing Systems, 34:965–979, 2021.

[17] Devendra Singh Chaplot, Dhiraj Gandhi, Saurabh Gupta, Abhinav Gupta, and Rus-
lan Salakhutdinov. Learning to explore using active neural slam. The International
Conference on Learning Representations (ICLR), 2020.

[18] Devendra Singh Chaplot, Dhiraj Prakashchand Gandhi, Abhinav Gupta, and Russ R
Salakhutdinov. Object goal navigation using goal-oriented semantic exploration.
Advances in Neural Information Processing Systems, 33, 2020.

[19] Devendra Singh Chaplot, Deepak Pathak, and Jitendra Malik. Differentiable spatial
planning using transformers. In International Conference on Machine Learning,
pages 1484–1495. PMLR, 2021.

[20] Devendra Singh Chaplot, Ruslan Salakhutdinov, Abhinav Gupta, and Saurabh Gupta.
Neural topological slam for visual navigation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 12875–12884, 2020.

105

[21] Howard Chen, Alane Suhr, Dipendra Misra, Noah Snavely, and Yoav Artzi. Touch-
down: Natural language navigation and spatial reasoning in visual street environ-
ments. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 12538–12547, 2019.

[22] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin,
Pieter Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Rein-
forcement learning via sequence modeling. Advances in neural information processing
systems, 34:15084–15097, 2021.

[23] Linghao Chen, Yuzhe Qin, Xiaowei Zhou, and Hao Su. Easyhec: Accurate and
automatic hand-eye calibration via differentiable rendering and space exploration.
arXiv preprint arXiv:2305.01191, 2023.

[24] Tao Chen, Saurabh Gupta, and Abhinav Gupta. Learning exploration policies for
navigation. In International Conference on Learning Representations, 2018.

[25] Tao Chen, Jie Xu, and Pulkit Agrawal. A system for general in-hand object re-
orientation. In Conference on Robot Learning, pages 297–307. PMLR, 2022.

[26] Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 15750–15758, 2021.

[27] Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion.
arXiv preprint arXiv:2303.04137, 2023.

[28] Ron Chrisley. Embodied artificial intelligence. Artificial intelligence, 149(1):131–150,
2003.

[29] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical
evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint
arXiv:1412.3555, 2014.

[30] Peter Clark, Oyvind Tafjord, and Kyle Richardson. Transformers as soft reasoners
over language. arXiv preprint arXiv:2002.05867, 2020.

[31] Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural
generation to benchmark reinforcement learning. In International conference on
machine learning, pages 2048–2056. PMLR, 2020.

[32] Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural
generation to benchmark reinforcement learning. In International conference on
machine learning, pages 2048–2056. PMLR, 2020.

106

[33] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo
Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. Training verifiers to solve math word problems. arXiv preprint
arXiv:2110.14168, 2021.

[34] Karl W Cobbe, Jacob Hilton, Oleg Klimov, and John Schulman. Phasic policy
gradient. In International Conference on Machine Learning, pages 2020–2027. PMLR,
2021.

[35] Carlos G Correa, Mark K Ho, Frederick Callaway, Nathaniel D Daw, and Thomas L
Griffiths. Humans decompose tasks by trading off utility and computational cost.
PLOS Computational Biology, 19(6):e1011087, 2023.

[36] Wojciech Czarnecki, Siddhant Jayakumar, Max Jaderberg, Leonard Hasenclever,
Yee Whye Teh, Nicolas Heess, Simon Osindero, and Razvan Pascanu. Mix & match
agent curricula for reinforcement learning. In International Conference on Machine
Learning, pages 1087–1095. PMLR, 2018.

[37] Abhishek Das, Samyak Datta, Georgia Gkioxari, Stefan Lee, Devi Parikh, and Dhruv
Batra. Embodied question answering. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 1–10, 2018.

[38] Sudeep Dasari and Abhinav Gupta. Transformers for one-shot visual imitation. In
Conference on Robot Learning, pages 2071–2084. PMLR, 2021.

[39] Peter Dayan and Geoffrey E Hinton. Feudal reinforcement learning. Advances in
neural information processing systems, 5, 1992.

[40] Simon Du, Akshay Krishnamurthy, Nan Jiang, Alekh Agarwal, Miroslav Dudik, and
John Langford. Provably efficient rl with rich observations via latent state decoding.
In International Conference on Machine Learning, pages 1665–1674. PMLR, 2019.

[41] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom
Ward, Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scal-
able distributed deep-rl with importance weighted actor-learner architectures. In
International Conference on Machine Learning, pages 1407–1416. PMLR, 2018.

[42] Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi
Zhu, Andrew Tang, De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo:
Building open-ended embodied agents with internet-scale knowledge. arXiv preprint
arXiv:2206.08853, 2022.

[43] Angelos Filos, Panagiotis Tigkas, Rowan McAllister, Nicholas Rhinehart, Sergey
Levine, and Yarin Gal. Can autonomous vehicles identify, recover from, and adapt
to distribution shifts? In International Conference on Machine Learning, pages
3145–3153. PMLR, 2020.

107

[44] Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse
optimal control via policy optimization. In International conference on machine
learning, pages 49–58. PMLR, 2016.

[45] Adam Fishman, Adithyavairan Murali, Clemens Eppner, Bryan Peele, Byron Boots,
and Dieter Fox. Motion policy networks. arXiv preprint arXiv:2210.12209, 2022.

[46] Adam Fishman, Adithyavairavan Murali, Clemens Eppner, Bryan Peele, Byron
Boots, and Dieter Fox. Motion policy networks. In Conference on Robot Learning,
pages 967–977. PMLR, 2023.

[47] Pete Florence, Corey Lynch, Andy Zeng, Oscar A Ramirez, Ayzaan Wahid, Laura
Downs, Adrian Wong, Johnny Lee, Igor Mordatch, and Jonathan Tompson. Implicit
behavioral cloning. In Conference on Robot Learning, pages 158–168. PMLR, 2022.

[48] Peter Florence, Lucas Manuelli, and Russ Tedrake. Self-supervised correspondence
in visuomotor policy learning. IEEE Robotics and Automation Letters, 5(2):492–499,
2019.

[49] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine.
D4rl: Datasets for deep data-driven reinforcement learning. arXiv preprint
arXiv:2004.07219, 2020.

[50] Chuang Gan, Jeremy Schwartz, Seth Alter, Martin Schrimpf, James Traer, Julian
De Freitas, Jonas Kubilius, Abhishek Bhandwaldar, Nick Haber, Megumi Sano, et al.
Threedworld: A platform for interactive multi-modal physical simulation. arXiv
preprint arXiv:2007.04954, 2020.

[51] David V Gealy, Stephen McKinley, Brent Yi, Philipp Wu, Phillip R Downey, Greg
Balke, Allan Zhao, Menglong Guo, Rachel Thomasson, Anthony Sinclair, et al. Quasi-
direct drive for low-cost compliant robotic manipulation. In 2019 International
Conference on Robotics and Automation (ICRA), pages 437–443. IEEE, 2019.

[52] Dibya Ghosh, Avi Singh, Aravind Rajeswaran, Vikash Kumar, and Sergey Levine.
Divide-and-conquer reinforcement learning. arXiv preprint arXiv:1711.09874, 2017.

[53] Alex Graves and Alex Graves. Long short-term memory. Supervised sequence labelling
with recurrent neural networks, pages 37–45, 2012.

[54] Jiayuan Gu, Devendra Singh Chaplot, Hao Su, and Jitendra Malik. Multi-skill
mobile manipulation for object rearrangement. arXiv preprint arXiv:2209.02778,
2022.

[55] Jiayuan Gu, Fanbo Xiang, Xuanlin Li, Zhan Ling, Xiqiaing Liu, Tongzhou Mu,
Yihe Tang, Stone Tao, Xinyue Wei, Yunchao Yao, Xiaodi Yuan, Pengwei Xie, Zhiao
Huang, Rui Chen, and Hao Su. Maniskill2: A unified benchmark for generalizable
manipulation skills. In International Conference on Learning Representations, 2023.

108

[56] Abhinav Gupta, Adithyavairavan Murali, Dhiraj Gandhi, and Lerrel Pinto. Robot
learning in homes: Improving generalization and reducing dataset bias. arXiv
preprint arXiv:1807.07049, 2018.

[57] Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman.
Relay policy learning: Solving long-horizon tasks via imitation and reinforcement
learning. arXiv preprint arXiv:1910.11956, 2019.

[58] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In
International conference on machine learning, pages 1861–1870. PMLR, 2018.

[59] Brent Harrison, Upol Ehsan, and Mark O Riedl. Guiding reinforcement learning ex-
ploration using natural language. In Proceedings of the 17th International Conference
on Autonomous Agents and MultiAgent Systems, pages 1956–1958, 2018.

[60] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In
Proceedings of the IEEE international conference on computer vision, pages 2961–
2969, 2017.

[61] Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal
Piot, Dan Horgan, John Quan, Andrew Sendonaris, Ian Osband, et al. Deep q-
learning from demonstrations. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

[62] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances
in neural information processing systems, 29, 2016.

[63] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances
in neural information processing systems, 29:4565–4573, 2016.

[64] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models.
Advances in Neural Information Processing Systems, 33:6840–6851, 2020.

[65] Ronald A Howard. Dynamic programming and markov processes. 1960.

[66] Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan Ragan-
Kelley, and Frédo Durand. Difftaichi: Differentiable programming for physical
simulation. arXiv preprint arXiv:1910.00935, 2019.

[67] Matthias Hutsebaut-Buysse, Kevin Mets, and Steven Latré. Hierarchical reinforce-
ment learning: A survey and open research challenges. Machine Learning and
Knowledge Extraction, 4(1):172–221, 2022.

[68] Maximilian Igl, Kamil Ciosek, Yingzhen Li, Sebastian Tschiatschek, Cheng Zhang,
Sam Devlin, and Katja Hofmann. Generalization in reinforcement learning with
selective noise injection and information bottleneck. arXiv preprint arXiv:1910.12911,
2019.

109

[69] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial transformer
networks. Advances in neural information processing systems, 28:2017–2025, 2015.

[70] Stephen James and Andrew J Davison. Q-attention: Enabling efficient learning
for vision-based robotic manipulation. IEEE Robotics and Automation Letters,
7(2):1612–1619, 2022.

[71] Stephen James, Zicong Ma, David Rovick Arrojo, and Andrew J Davison. Rl-
bench: The robot learning benchmark & learning environment. IEEE Robotics and
Automation Letters, 5(2):3019–3026, 2020.

[72] Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with
diffusion for flexible behavior synthesis. arXiv preprint arXiv:2205.09991, 2022.

[73] Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one
big sequence modeling problem. Advances in neural information processing systems,
34:1273–1286, 2021.

[74] Dinesh Jayaraman and Kristen Grauman. Learning to look around: Intelligently
exploring unseen environments for unknown tasks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 1238–1247, 2018.

[75] Zhiwei Jia, Xuanlin Li, Zhan Ling, Shuang Liu, Yiran Wu, and Hao Su. Improving
policy optimization with generalist-specialist learning. In International Conference
on Machine Learning, pages 10104–10119. PMLR, 2022.

[76] Zhiwei Jia, Kaixiang Lin, Yizhou Zhao, Qiaozi Gao, Govind Thattai, and Gaurav
Sukhatme. Learning to act with affordance-aware multimodal neural slam. arXiv
preprint arXiv:2201.09862, 2022.

[77] Zhiwei Jia, Pradyumna Narayana, Arjun R Akula, Garima Pruthi, Hao Su, Sug-
ato Basu, and Varun Jampani. Kafa: Rethinking image ad understanding with
knowledge-augmented feature adaptation of vision-language models. arXiv preprint
arXiv:2305.18373, 2023.

[78] Zhiwei Jia and Hao Su. Information-theoretic local minima characterization and
regularization. In International Conference on Machine Learning, pages 4773–4783.
PMLR, 2020.

[79] Zhiwei Jia, Bodi Yuan, Kangkang Wang, Hong Wu, David Clifford, Zhiqiang Yuan,
and Hao Su. Semantically robust unpaired image translation for data with unmatched
semantics statistics. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 14273–14283, 2021.

[80] Minqi Jiang, Edward Grefenstette, and Tim Rocktäschel. Prioritized level replay. In
International Conference on Machine Learning, pages 4940–4950. PMLR, 2021.

110

[81] Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric
Jang, Deirdre Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al.
Qt-opt: Scalable deep reinforcement learning for vision-based robotic manipulation.
arXiv preprint arXiv:1806.10293, 2018.

[82] Bingyi Kang, Zequn Jie, and Jiashi Feng. Policy optimization with demonstrations.
In International conference on machine learning, pages 2469–2478. PMLR, 2018.

[83] R. Killick, P. Fearnhead, and I. A. Eckley. Optimal detection of changepoints
with a linear computational cost. Journal of the American Statistical Association,
107(500):1590–1598, oct 2012.

[84] Byeonghwi Kim, Suvaansh Bhambri, Kunal Pratap Singh, Roozbeh Mottaghi, and
Jonghyun Choi. Agent with the big picture: Perceiving surroundings for interactive
instruction following. In Embodied AI Workshop CVPR, 2021.

[85] David Inkyu Kim and Gaurav S Sukhatme. Interactive affordance map building for
a robotic task. In 2015 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 4581–4586. IEEE, 2015.

[86] Mate Kisantal, Zbigniew Wojna, Jakub Murawski, Jacek Naruniec, and Kyunghyun
Cho. Augmentation for small object detection. arXiv preprint arXiv:1902.07296,
2019.

[87] Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs, Alvaro
Herrasti, Daniel Gordon, Yuke Zhu, Abhinav Gupta, and Ali Farhadi. Ai2-thor: An
interactive 3d environment for visual ai. arXiv preprint arXiv:1712.05474, 2017.

[88] Ilya Kostrikov, Rob Fergus, Jonathan Tompson, and Ofir Nachum. Offline rein-
forcement learning with fisher divergence critic regularization. In International
Conference on Machine Learning, pages 5774–5783. PMLR, 2021.

[89] Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabi-
lizing off-policy q-learning via bootstrapping error reduction. Advances in Neural
Information Processing Systems, 32, 2019.

[90] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-
learning for offline reinforcement learning. Advances in Neural Information Processing
Systems, 33:1179–1191, 2020.

[91] Vikash Kumar and Emanuel Todorov. Mujoco haptix: A virtual reality system for
hand manipulation. In 2015 IEEE-RAS 15th International Conference on Humanoid
Robots (Humanoids), pages 657–663. IEEE, 2015.

[92] Vitaly Kurin, Alessandro De Palma, Ilya Kostrikov, Shimon Whiteson, and M Pawan
Kumar. In defense of the unitary scalarization for deep multi-task learning. arXiv
preprint arXiv:2201.04122, 2022.

111

[93] Michael Laskey, Jonathan Lee, Roy Fox, Anca Dragan, and Ken Goldberg. Dart:
Noise injection for robust imitation learning. In Conference on robot learning, pages
143–156. PMLR, 2017.

[94] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement
learning: Tutorial, review, and perspectives on open problems. arXiv preprint
arXiv:2005.01643, 2020.

[95] Chengshu Li, Fei Xia, Roberto Mart́ın-Mart́ın, Michael Lingelbach, Sanjana Srivas-
tava, Bokui Shen, Kent Vainio, Cem Gokmen, Gokul Dharan, Tanish Jain, et al.
Igibson 2.0: Object-centric simulation for robot learning of everyday household tasks.
arXiv preprint arXiv:2108.03272, 2021.

[96] Zhengzhong Liang, Steven Bethard, and Mihai Surdeanu. Explainable multi-hop
verbal reasoning through internal monologue. In Proceedings of the 2021 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, 2021.

[97] Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by
rationale generation: Learning to solve and explain algebraic word problems. arXiv
preprint arXiv:1705.04146, 2017.

[98] Fangchen Liu, Hao Liu, Aditya Grover, and Pieter Abbeel. Masked autoencoding for
scalable and generalizable decision making. arXiv preprint arXiv:2211.12740, 2022.

[99] William S Lovejoy. A survey of algorithmic methods for partially observed markov
decision processes. Annals of Operations Research, 28(1):47–65, 1991.

[100] Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vilbert: Pretraining task-
agnostic visiolinguistic representations for vision-and-language tasks. arXiv preprint
arXiv:1908.02265, 2019.

[101] Corey Lynch, Mohi Khansari, Ted Xiao, Vikash Kumar, Jonathan Tompson, Sergey
Levine, and Pierre Sermanet. Learning latent plans from play. In Conference on
robot learning, pages 1113–1132. PMLR, 2020.

[102] Zhao Mandi, Fangchen Liu, Kimin Lee, and Pieter Abbeel. Towards more generaliz-
able one-shot visual imitation learning. arXiv preprint arXiv:2110.13423, 2021.

[103] Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiriany, Chen Wang, Rohun
Kulkarni, Li Fei-Fei, Silvio Savarese, Yuke Zhu, and Roberto Mart́ın-Mart́ın. What
matters in learning from offline human demonstrations for robot manipulation. arXiv
preprint arXiv:2108.03298, 2021.

[104] So Yeon Min, Devendra Singh Chaplot, Pradeep Ravikumar, Yonatan Bisk, and
Ruslan Salakhutdinov. Film: Following instructions in language with modular
methods. arXiv preprint arXiv:2110.07342, 2021.

112

[105] Dipendra Misra, Andrew Bennett, Valts Blukis, Eyvind Niklasson, Max Shatkhin,
and Yoav Artzi. Mapping instructions to actions in 3d environments with visual
goal prediction. arXiv preprint arXiv:1809.00786, 2018.

[106] Tongzhou Mu, Jiayuan Gu, Zhiwei Jia, Hao Tang, and Hao Su. Refactoring policy for
compositional generalizability using self-supervised object proposals. arXiv preprint
arXiv:2011.00971, 2020.

[107] Tongzhou Mu, Zhan Ling, Fanbo Xiang, Derek Yang, Xuanlin Li, Stone Tao,
Zhiao Huang, Zhiwei Jia, and Hao Su. Maniskill: Generalizable manipulation skill
benchmark with large-scale demonstrations. arXiv preprint arXiv:2107.14483, 2021.

[108] Tushar Nagarajan and Kristen Grauman. Learning affordance landscapes for inter-
action exploration in 3d environments. Advances in Neural Information Processing
Systems, 33:2005–2015, 2020.

[109] Ashvin Nair, Murtaza Dalal, Abhishek Gupta, and Sergey Levine. Accelerating
online reinforcement learning with offline datasets. arXiv preprint arXiv:2006.09359,
2020.

[110] Van-Quang Nguyen, Masanori Suganuma, and Takayuki Okatani. Look wide and
interpret twice: Improving performance on interactive instruction-following tasks.
In 30th International Joint Conference on Artificial Intelligence, IJCAI 2021, pages
923–930. International Joint Conferences on Artificial Intelligence, 2021.

[111] Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob
Austin, David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan,
et al. Show your work: Scratchpads for intermediate computation with language
models. arXiv preprint arXiv:2112.00114, 2021.

[112] Georg Ostrovski, Marc G Bellemare, Aäron Oord, and Rémi Munos. Count-based
exploration with neural density models. In International conference on machine
learning, pages 2721–2730. PMLR, 2017.

[113] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training
language models to follow instructions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744, 2022.

[114] Yingwei Pan, Yehao Li, Yiheng Zhang, Qi Cai, Fuchen Long, Zhaofan Qiu,
Ting Yao, and Tao Mei. Silver-bullet-3d at maniskill 2021: Learning-from-
demonstrations and heuristic rule-based methods for object manipulation. arXiv
preprint arXiv:2206.06289, 2022.

[115] Alexander Pashevich, Cordelia Schmid, and Chen Sun. Episodic transformer for
vision-and-language navigation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 15942–15952, 2021.

113

[116] Keiran Paster, Sheila McIlraith, and Jimmy Ba. You can’t count on luck: Why deci-
sion transformers fail in stochastic environments. arXiv preprint arXiv:2205.15967,
2022.

[117] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven
exploration by self-supervised prediction. In International conference on machine
learning, pages 2778–2787. PMLR, 2017.

[118] Sida Peng, Yuan Liu, Qixing Huang, Xiaowei Zhou, and Hujun Bao. Pvnet: Pixel-
wise voting network for 6dof pose estimation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 4561–4570, 2019.

[119] Karl Pertsch, Youngwoon Lee, and Joseph Lim. Accelerating reinforcement learning
with learned skill priors. In Conference on robot learning, pages 188–204. PMLR,
2021.

[120] Samuel Pfrommer, Mathew Halm, and Michael Posa. Contactnets: Learning discon-
tinuous contact dynamics with smooth, implicit representations. In Conference on
Robot Learning, pages 2279–2291. PMLR, 2021.

[121] Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network.
Advances in neural information processing systems, 1, 1988.

[122] Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Tingwu Wang, Sanja Fidler, and
Antonio Torralba. Virtualhome: Simulating household activities via programs. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 8494–8502, 2018.

[123] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning
on point sets for 3d classification and segmentation. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 652–660, 2017.

[124] William Qi, Ravi Teja Mullapudi, Saurabh Gupta, and Deva Ramanan. Learning to
move with affordance maps. In International Conference on Learning Representations,
2019.

[125] Yuzhe Qin, Hao Su, and Xiaolong Wang. From one hand to multiple hands: Imitation
learning for dexterous manipulation from single-camera teleoperation. arXiv preprint
arXiv:2204.12490, 2022.

[126] Ahmed H Qureshi, Anthony Simeonov, Mayur J Bency, and Michael C Yip. Motion
planning networks. In 2019 International Conference on Robotics and Automation
(ICRA), pages 2118–2124. IEEE, 2019.

[127] Rouhollah Rahmatizadeh, Pooya Abolghasemi, Ladislau Bölöni, and Sergey Levine.
Vision-based multi-task manipulation for inexpensive robots using end-to-end learn-
ing from demonstration. In 2018 IEEE international conference on robotics and
automation (ICRA), pages 3758–3765. IEEE, 2018.

114

[128] Roberta Raileanu and Rob Fergus. Decoupling value and policy for generalization
in reinforcement learning. arXiv preprint arXiv:2102.10330, 2021.

[129] Roberta Raileanu, Max Goldstein, Denis Yarats, Ilya Kostrikov, and Rob Fergus.
Automatic data augmentation for generalization in deep reinforcement learning.
arXiv preprint arXiv:2006.12862, 2020.

[130] Nazneen Fatema Rajani, Bryan McCann, Caiming Xiong, and Richard Socher.
Explain yourself! leveraging language models for commonsense reasoning. arXiv
preprint arXiv:1906.02361, 2019.

[131] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schul-
man, Emanuel Todorov, and Sergey Levine. Learning complex dexterous ma-
nipulation with deep reinforcement learning and demonstrations. arXiv preprint
arXiv:1709.10087, 2017.

[132] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schul-
man, Emanuel Todorov, and Sergey Levine. Learning complex dexterous ma-
nipulation with deep reinforcement learning and demonstrations. arXiv preprint
arXiv:1709.10087, 2017.

[133] Santhosh K Ramakrishnan, Dinesh Jayaraman, and Kristen Grauman. An explo-
ration of embodied visual exploration. International Journal of Computer Vision,
129(5):1616–1649, 2021.

[134] Tabish Rashid, Bei Peng, Wendelin Boehmer, and Shimon Whiteson. Optimistic
exploration even with a pessimistic initialisation. arXiv preprint arXiv:2002.12174,
2020.

[135] Scott Reed and Nando De Freitas. Neural programmer-interpreters. arXiv preprint
arXiv:1511.06279, 2015.

[136] Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In
Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pages 661–668. JMLR Workshop and Conference Proceedings, 2010.

[137] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation
learning and structured prediction to no-regret online learning. In Proceedings of
the fourteenth international conference on artificial intelligence and statistics, pages
627–635. JMLR Workshop and Conference Proceedings, 2011.

[138] Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins,
James Kirkpatrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and
Raia Hadsell. Policy distillation. arXiv preprint arXiv:1511.06295, 2015.

[139] Fumihiro Sasaki and Ryota Yamashina. Behavioral cloning from noisy demonstrations.
In International Conference on Learning Representations, 2020.

115

[140] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans,
Bhavana Jain, Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, et al. Habitat:
A platform for embodied ai research. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 9339–9347, 2019.

[141] Tom Schaul, Diana Borsa, Joseph Modayil, and Razvan Pascanu. Ray interference:
a source of plateaus in deep reinforcement learning. arXiv preprint arXiv:1904.11455,
2019.

[142] Jürgen Schmidhuber. Curious model-building control systems. In Proc. international
joint conference on neural networks, pages 1458–1463, 1991.

[143] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel.
High-dimensional continuous control using generalized advantage estimation. arXiv
preprint arXiv:1506.02438, 2015.

[144] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[145] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[146] Nur Muhammad Mahi Shafiullah, Zichen Jeff Cui, Ariuntuya Altanzaya, and Lerrel
Pinto. Behavior transformers: Cloning k modes with one stone. arXiv preprint
arXiv:2206.11251, 2022.

[147] Hao Shen, Weikang Wan, and He Wang. Learning category-level generalizable
object manipulation policy via generative adversarial self-imitation learning from
demonstrations. arXiv preprint arXiv:2203.02107, 2022.

[148] Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Perceiver-actor: A multi-task
transformer for robotic manipulation. In Conference on Robot Learning, pages
785–799. PMLR, 2023.

[149] Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han,
Roozbeh Mottaghi, Luke Zettlemoyer, and Dieter Fox. Alfred: A benchmark
for interpreting grounded instructions for everyday tasks. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 10740–
10749, 2020.

[150] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al.
Mastering the game of go without human knowledge. nature, 550(7676):354–359,
2017.

[151] Avi Singh, Huihan Liu, Gaoyue Zhou, Albert Yu, Nicholas Rhinehart, and Sergey
Levine. Parrot: Data-driven behavioral priors for reinforcement learning. arXiv
preprint arXiv:2011.10024, 2020.

116

[152] Kunal Pratap Singh, Suvaansh Bhambri, Byeonghwi Kim, Roozbeh Mottaghi, and
Jonghyun Choi. Factorizing perception and policy for interactive instruction following.
In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 1888–1897, 2021.

[153] Linda Smith and Michael Gasser. The development of embodied cognition: Six
lessons from babies. Artificial life, 11(1-2):13–29, 2005.

[154] Shagun Sodhani, Amy Zhang, and Joelle Pineau. Multi-task reinforcement learning
with context-based representations. arXiv preprint arXiv:2102.06177, 2021.

[155] Shagun Sodhani, Amy Zhang, and Joelle Pineau. Multi-task reinforcement learning
with context-based representations. In Marina Meila and Tong Zhang, editors,
Proceedings of the 38th International Conference on Machine Learning, volume 139
of Proceedings of Machine Learning Research, pages 9767–9779. PMLR, 18–24 Jul
2021.

[156] Alessandro Suglia, Qiaozi Gao, Jesse Thomason, Govind Thattai, and Gaurav
Sukhatme. Embodied bert: A transformer model for embodied, language-guided
visual task completion. Learning-to-Learn through Interaction (NILLI) workshop,
EMNLP, 2021.

[157] Wen Sun, Arun Venkatraman, Geoffrey J Gordon, Byron Boots, and J Andrew
Bagnell. Deeply aggrevated: Differentiable imitation learning for sequential prediction.
In International conference on machine learning, pages 3309–3318. PMLR, 2017.

[158] Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-
mdps: A framework for temporal abstraction in reinforcement learning. Artificial
intelligence, 112(1-2):181–211, 1999.

[159] Andrew Szot, Alexander Clegg, Eric Undersander, Erik Wijmans, Yili Zhao, John
Turner, Noah Maestre, Mustafa Mukadam, Devendra Singh Chaplot, Oleksandr
Maksymets, et al. Habitat 2.0: Training home assistants to rearrange their habitat.
Advances in Neural Information Processing Systems, 34, 2021.

[160] Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen, Yan Duan,
John Schulman, Filip De Turck, and Pieter Abbeel. # exploration: A study of
count-based exploration for deep reinforcement learning. In 31st Conference on
Neural Information Processing Systems (NIPS), volume 30, pages 1–18, 2017.

[161] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las
Casas, David Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al.
Deepmind control suite. arXiv preprint arXiv:1801.00690, 2018.

[162] Open Ended Learning Team, Adam Stooke, Anuj Mahajan, Catarina Barros, Charlie
Deck, Jakob Bauer, Jakub Sygnowski, Maja Trebacz, Max Jaderberg, Michael
Mathieu, et al. Open-ended learning leads to generally capable agents. arXiv
preprint arXiv:2107.12808, 2021.

117

[163] Yee Whye Teh, Victor Bapst, Wojciech Marian Czarnecki, John Quan, James
Kirkpatrick, Raia Hadsell, Nicolas Heess, and Razvan Pascanu. Distral: Robust
multitask reinforcement learning. arXiv preprint arXiv:1707.04175, 2017.

[164] Guy Tennenholtz, Assaf Hallak, Gal Dalal, Shie Mannor, Gal Chechik, and Uri Shalit.
On covariate shift of latent confounders in imitation and reinforcement learning.
arXiv preprint arXiv:2110.06539, 2021.

[165] Jesse Thomason, Michael Murray, Maya Cakmak, and Luke Zettlemoyer. Vision-
and-dialog navigation. In Conference on Robot Learning, pages 394–406. PMLR,
2020.

[166] Yusuke Urakami, Alec Hodgkinson, Casey Carlin, Randall Leu, Luca Rigazio, and
Pieter Abbeel. Doorgym: A scalable door opening environment and baseline agent.
arXiv preprint arXiv:1908.01887, 2019.

[167] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances
in neural information processing systems, pages 5998–6008, 2017.

[168] Quan Vuong, Yuzhe Qin, Runlin Guo, Xiaolong Wang, Hao Su, and Henrik Chris-
tensen. Single rgb-d camera teleoperation for general robotic manipulation. arXiv
preprint arXiv:2106.14396, 2021.

[169] Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies
as an expressive policy class for offline reinforcement learning. arXiv preprint
arXiv:2208.06193, 2022.

[170] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and
Denny Zhou. Chain of thought prompting elicits reasoning in large language models.
arXiv preprint arXiv:2201.11903, 2022.

[171] Erik Wijmans, Samyak Datta, Oleksandr Maksymets, Abhishek Das, Georgia
Gkioxari, Stefan Lee, Irfan Essa, Devi Parikh, and Dhruv Batra. Embodied question
answering in photorealistic environments with point cloud perception. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
6659–6668, 2019.

[172] Erik Wijmans, Abhishek Kadian, Ari Morcos, Stefan Lee, Irfan Essa, Devi Parikh,
Manolis Savva, and Dhruv Batra. Dd-ppo: Learning near-perfect pointgoal navigators
from 2.5 billion frames. arXiv preprint arXiv:1911.00357, 2019.

[173] Yueh-Hua Wu, Nontawat Charoenphakdee, Han Bao, Voot Tangkaratt, and Masashi
Sugiyama. Imitation learning from imperfect demonstration. In International
Conference on Machine Learning, pages 6818–6827. PMLR, 2019.

118

[174] Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua
Liu, Hanxiao Jiang, Yifu Yuan, He Wang, et al. Sapien: A simulated part-based
interactive environment. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 11097–11107, 2020.

[175] Danfei Xu, Ajay Mandlekar, Roberto Mart́ın-Mart́ın, Yuke Zhu, Silvio Savarese, and
Li Fei-Fei. Deep affordance foresight: Planning through what can be done in the
future. arXiv preprint arXiv:2011.08424, 2020.

[176] Danfei Xu, Suraj Nair, Yuke Zhu, Julian Gao, Animesh Garg, Li Fei-Fei, and Silvio
Savarese. Neural task programming: Learning to generalize across hierarchical tasks.
In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages
3795–3802. IEEE, 2018.

[177] Jing Xu, Zhimin Hou, Zhi Liu, and Hong Qiao. Compare contact model-based
control and contact model-free learning: A survey of robotic peg-in-hole assembly
strategies. arXiv preprint arXiv:1904.05240, 2019.

[178] Mengjiao Yang, Dale Schuurmans, Pieter Abbeel, and Ofir Nachum. Chain of
thought imitation with procedure cloning. arXiv preprint arXiv:2205.10816, 2022.

[179] Sherry Yang, Ofir Nachum, Yilun Du, Jason Wei, Pieter Abbeel, and Dale Schuur-
mans. Foundation models for decision making: Problems, methods, and opportunities.
arXiv preprint arXiv:2303.04129, 2023.

[180] Chao Yu, Jiming Liu, Shamim Nemati, and Guosheng Yin. Reinforcement learning
in healthcare: A survey. ACM Computing Surveys (CSUR), 55(1):1–36, 2021.

[181] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman,
and Chelsea Finn. Gradient surgery for multi-task learning. arXiv preprint
arXiv:2001.06782, 2020.

[182] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea
Finn, and Sergey Levine. Meta-world: A benchmark and evaluation for multi-task
and meta reinforcement learning. In Conference on Robot Learning, pages 1094–1100.
PMLR, 2020.

[183] Kevin Zakka, Andy Zeng, Pete Florence, Jonathan Tompson, Jeannette Bohg, and
Debidatta Dwibedi. Xirl: Cross-embodiment inverse reinforcement learning. In
Conference on Robot Learning, pages 537–546. PMLR, 2022.

[184] Andy Zeng, Pete Florence, Jonathan Tompson, Stefan Welker, Jonathan Chien,
Maria Attarian, Travis Armstrong, Ivan Krasin, Dan Duong, Vikas Sindhwani, et al.
Transporter networks: Rearranging the visual world for robotic manipulation. In
Conference on Robot Learning, pages 726–747. PMLR, 2021.

119

[185] Andy Zeng, Shuran Song, Johnny Lee, Alberto Rodriguez, and Thomas Funkhouser.
Tossingbot: Learning to throw arbitrary objects with residual physics. IEEE
Transactions on Robotics, 36(4):1307–1319, 2020.

[186] Amy Zhang, Clare Lyle, Shagun Sodhani, Angelos Filos, Marta Kwiatkowska, Joelle
Pineau, Yarin Gal, and Doina Precup. Invariant causal prediction for block mdps.
In International Conference on Machine Learning, pages 11214–11224. PMLR, 2020.

[187] Tianhao Zhang, Zoe McCarthy, Owen Jow, Dennis Lee, Xi Chen, Ken Goldberg,
and Pieter Abbeel. Deep imitation learning for complex manipulation tasks from
virtual reality teleoperation. In 2018 IEEE International Conference on Robotics
and Automation (ICRA), pages 5628–5635. IEEE, 2018.

[188] Xiaoshuai Zhang, Rui Chen, Fanbo Xiang, Yuzhe Qin, Jiayuan Gu, Zhan Ling,
Minghua Liu, Peiyu Zeng, Songfang Han, Zhiao Huang, et al. Close the visual
domain gap by physics-grounded active stereovision depth sensor simulation. arXiv
preprint arXiv:2201.11924, 2022.

[189] Yichi Zhang and Joyce Chai. Hierarchical task learning from language instructions
with unified transformers and self-monitoring. In Findings of the Association for
Computational Linguistics: ACL-IJCNLP 2021, pages 4202–4213, Online, August
2021. Association for Computational Linguistics.

[190] Yizhou Zhao, Kaixiang Lin, Zhiwei Jia, Qiaozi Gao, Govind Thattai, Jesse Thomason,
and Gaurav S Sukhatme. Luminous: Indoor scene generation for embodied ai
challenges. arXiv preprint arXiv:2111.05527, 2021.

[191] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to
prompt for vision-language models. International Journal of Computer Vision,
130(9):2337–2348, 2022.

120

	Dissertation Approval Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Background of Embodied AI
	Problem Formulation in Embodied AI
	Simulators
	Datasets and Assets
	Embodied AI Tasks and their Key Challenges
	Introduction to the Presented Work
	Additional Work Done During my PhD

	Task Decomposition for High-level Long-horizon Instruction Following
	Introduction
	Related Work
	Problem Formulation
	Affordance-aware Multimodal Neural SLAM
	Overall Pipeline
	Affordance-aware Semantic Representation
	Task-driven Multimodal Exploration
	Other Modules

	Experiments
	Validation of the Need for Affordance-aware Navigation
	Validation of the Need for Hierarchical Task Execution
	Main Results
	Qualitative Evaluations
	Other Ablation Studies

	Implementation Details
	Neural SLAM module
	Waypoint Generation
	Task-driven Multimodal Exploration Module
	Action Augmentation during Exploration
	Subgoal Parser and Target Object Parser
	Online Planner

	Conclusion, Limitation, and Future Work

	Task Decomposition for Low-level Object Manipulation
	Introduction
	Related Work
	Extended Discussions of Closely Related Work

	Preliminaries
	Challenges of Learning from Sub-optimal Demos for Low-level Control
	Method
	Unsupervised Discovery of Chain-of-Thought from Demos
	Chain-of-Thought Guided Action Modeling

	Experiments
	Moving Maze
	Franka Kitchen
	ManiSkill2
	Ablation Studies
	Preliminary Results of Sim-to-Real Transfer

	Implementation Details
	Details of the Environments
	Details of the Demos and the Evaluation Protocol
	Details of Network Architecture and Training
	Details of Point Cloud-based CoTPC

	Conclusion and Discussion

	Task Decomposition by Partitioning the Task Space
	Introduction
	Related Work
	Background
	An Illustrative Example
	Generalist-Specialist Learning
	The Meta-Algorithm Framework
	When and How to Train Specialists
	Generalist Training Guided by Specialist Demos

	Experiments
	Environments
	Main Results
	Additional Results

	Ablation Studies
	Influence of Granularity in Task Partitioning
	Influence of the Timing of Specialist Training
	Tuning and Evaluation of Plateau Criteria H
	Diagnosis into Generalist Performance at Plateau
	Influence of Specialist-to-Generalist Merging Algorithms

	Implementation Details
	Illustrative example
	Procgen
	Meta-World
	ManiSkill

	Conclusion

	Bibliography

