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Persistent Pandemics☆ 
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A B S T R A C T   

We ask whether mortality from historical pandemics has any predictive content for mortality in the Covid-19 
pandemic. We find strong persistence in public health performance. Places that performed worse in terms of 
mortality in the 1918 influenza pandemic also have higher Covid-19 mortality today. This is true across countries 
as well as across a sample of large US cities. Experience with SARS in 2003 is associated with slightly lower 
mortality today. We discuss some socio-political factors that may account for persistence including distrust of 
expert advice, lack of cooperation, over-confidence, and health care supply shortages. Multi-generational effects 
of past pandemics may also matter.   

1. Introduction 

The Covid-19 pandemic is one of the largest threats to global public 
health and the global economy since the influenza pandemic of 1918. 
Was the world better prepared for a highly contagious airborne 
pandemic in 2020 than it was in 1918? It might be expected that in the 
intervening 100 years societies would have made great progress in 
predicting, containing, mitigating, and managing pandemics (Morens 
and Fauci, 2007). Indeed, the global mortality rate from Covid-19 re-
mains well below the influenza of 1918, despite having an estimated 
case fatality rate of half the magnitude of the 1918 influenza.1 

Additionally, the most recent global public health scares such as 
SARS, MERS, Ebola, and H1N1 influenza were largely successfully 
contained without extraordinary levels of excess mortality at the global 
level. This track record suggests high preparedness and ability to 
manage pandemics. 

On the other hand, Covid-19 has been a significant shock, and some 
places have been harder hit than others. What factors might explain this 
variation in public health outcomes? Our research focusses on the long- 
run correlates of population mortality rates from Covid-19. Specifically 

we relate mortality from Covid-19 to death rates in the 1918 influenza 
pandemic and other past pandemics. We perform this exercise in a broad 
sample of countries and for a sample of large US cities, and we control 
for a number of confounding factors. 

We find strong evidence of long-run persistence in public health 
performance. In the first weeks and months of the Covid-19 pandemic, 
places that performed poorly in terms of mortality during the “Spanish 
flu” were more likely to have higher mortality. This is true across 
countries and across a sample of US cities. Our results are robust to in-
clusion of a range of fixed effects, control variables and corrections for 
spatial correlation. The results for the US city data are robust to endo-
geneity using an instrumental variables strategy. 

We also find that there has been some recent success consistent with 
the possibility of learning (at the societal level) over time. Countries that 
were more strongly affected by SARS in 2002-03 are likely to have lower 
mortality rates from Covid-19 thus far in proportion to their experience 
with SARS. These places are mainly in East Asia where there is recent 
memory of a potentially highly lethal pandemic. 

As we detail in the discussion, the mechanisms by which the past 
may affect us today can be numerous. Preparedness for disasters may 

☆ Lin acknowledges funding from grant P2C-HD041022 from the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD). The 
authors are grateful for helpful comments from Alan M. Taylor, two anonymous referees, the editor, Joerg Baten, and seminar participants at UC Davis. 
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1 According to Our World in Data as of April 6, 2021 2.87 million people have died from Covid-19 or about 0.035% of world population. The flu of 1957-58 and the 
flu of 1968-70 are estimated to have killed about 1 million people each for about 0.02% and 0.034% of world population (HYPERLINK \l "Ref12" \o "Centers for 
Disease Control and Prevention, 2007 Centers for Disease Control and Prevention 2007. Interim Pre-Pandemic Planning Guidance: Community Strategy for Pandemic 
Influenza Mitigation in the United States— Early, Targeted, Layered Use of Nonpharmaceutic" Centers for Disease Control and Prevention, 2007). The influenza of 
1918 killed roughly 50 million people or about 2.6% of world population (Crosby, 1989). 
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increase when the event was recent, but this “collective” memory seems 
to fade over time (Fanta et al., 2019). Socio-political threats to pre-
paredness such as “distrust, isolationism and hubris” are also a possi-
bility (Parmet and Rothstein, 2018). Trust, a key factor in public health, 
evolves slowly and is driven by past pandemics (Aassve et al., 2020). 
Without doubt, society and politics have changed since the 2009 H1N1 
pandemic and potentially in a direction that might work against public 
health efforts, particularly in the US.2 Perhaps politics and social forces 
of 1918 and today have some similarities merely by coincidence. Finally, 
we also highlight the possibility of a multi-generational biological 
impact of the 1918 influenza. 

2. Preliminary Discussion and Background 

The public health response to the Covid-19 pandemic represents a 
significant test of preparedness and represents a new opportunity to 
study the key determinants of public health today. Could public health 
outcomes in 1918 and in the more recent past matter even today? Are 
the drivers of public health in the past related to those today? 

At first glance, the past might seem irrelevant. Rapid geographic 
mobility due to air travel has increased dramatically in recent decades 
and significantly so with respect to the years 1918-1920. International 
connections and cooperation is more significant than in the past. The 
idea that international cooperation is waning is exemplified by the 
Trump administration’s proposal to reduce funding and support for the 
WHO in 2020. Modern methods of communication and social media 
platforms complicate the search for accurate content and often create 
confusion. 

Health infrastructure and accessibility is better than in the past in 
most countries. Still, experts predicted the possibility it would be 

Fig. 1. Mortality Rate per 100,000 Covid-19 versus US Influ-
enza Mortality in 1918: Cross-Country Evidence. 
Notes: Figure shows the population mortality rates for Covid- 
19 based on data from CSSE (2020). We break the data for 
the US into three parts: mortality for the entire US, mortality 
rates for the states of New York and New Jersey, the hardest hit 
states to date, and for the US excluding these two states. Data 
for the influenza pandemic of 1918 are for total weekly deaths 
per 100k from influenza and pneumonia for data from 46 cities 
in the USA (Collins et al., 1930). Data are plotted for countries 
in 2020 that had reached a threshold of 1.34 deaths per 100, 
000. This is the first available level of the mortality rate in the 
1918 for the national level data for the USA. Data from 2020 
are as of 27 April, 2020.   

Fig. 2. Mortality Rate per 100,000 Covid-19 versus US Influenza Mortality in 1918: US States. 
Notes: Figure shows the population mortality rates of Covid-19 based on data from CSSE (2020). Data for the Influenza pandemic of 1918 are as described in the notes 
to Fig. 1. Data for Covid-19 are as of 27 April, 2020. 

2 See Iyengar et al. (2019) for evidence on the US and Boxell et al. (2020) for 
a recent comparative analysis. 
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incapable of meeting surging demands induced by a pandemic (Morens 
and Fauci, 2007). Such capacity bottlenecks can raise cumulative mor-
tality even when modern health care provides a viable means of treat-
ment for a disease. 

Comparing outcomes today to the past is difficult. SARS-CoV-2 and 
the 1918 H1N1 influenza have different etiologies and epidemiological 
properties. Nevertheless, both pandemics seem to pose significant risks 
based on estimates of case fatality rates. An estimate of the case fatality 
rate (CFR) for Covid-19 is 1.38% while the CFR for the 1918-20 influ-
enza has been estimated to be roughly 2.5% (Verity et al. 2020 and Short 
et al., 2018).3 

Given the estimated case/infection fatality rates, most people would 
predict lower mortality in the early stages of the Covid-19 pandemic 
than in 1918-20. After all, humanity has a century of public health 
research and practice, along with experience gained from SARS, MERS 
and Ebola. Contingency plans have been formulated at the behest of the 
WHO and through national initiatives. Non-pharmaceutical in-
terventions (e.g., social distancing) designed to lower peak mortality 
have been investigated and shown to be effective (Bootsma and Fergu-
son, 2007; Hatchett et al., 2007; Markel et al., 2007). 

Recent data make us less sanguine. Fig. 1 illustrates that many 
countries, especially advanced western countries, had mortality rates 
above the frontier defined by US mortality rates from flu and pneumonia 
in 1918 at similar stages in the pandemic.4 Similarly, Fig. 2 shows a 
number of US states also witnessed mortality rates per 100,000 popu-
lation above those witnessed in 1918 at a similar stage. Clearly, public 
health knowledge and practices are not the only thing that matter for 
outcomes in a pandemic. Performance should have been better than in 
1918 given the lower mortality rates 

We emphasize that our goal in this paper is not to assess the level of 
mortality in one pandemic versus the other.5 There are obvious prob-
lems comparing distinct diseases and many data measurement issues. 
Neither do we wish to argue that Covid-19 will be worse in terms of 

cumulative mortality than the 1918 pandemic. Instead, we compare 
relative outcomes, and we ask whether the mortality outcomes of his-
torical pandemics have any predictive content for mortality in this 
contemporary pandemic. We find that historical experience helps pre-
dict recent experience even after controlling for a range of potentially 
confounding factors. This suggests, at the very least, that the “technol-
ogy” of public health and preparedness are as of yet unable to overcome 
entirely the shadow of the past. 

3. Data 

3.1. Data Collection: Countries 

We collect data on country–level population mortality from the 
influenza pandemic of 1918 and from Covid-19. Our baseline country 
sample covers 39 countries for up to 120 days since the 100thcase 
(corresponding roughly to February 2020 until mid-July 2020). The 
country sample is determined by availability of estimated mortality 
rates from the 1918 influenza pandemic, other control variables, and 
whether a country had recorded at least one death or confirmed case of 
Covid-19. Therefore, our sample for cross-country comparison covers 
those countries subjected to Covid-19 relatively early in the recent 
global pandemic. 

Data on mortality from Covid-19 are expressed as the number of total 
deaths per 100 thousand population and are from CSSE Johns Hopkins 
University (2020). For Covid-19, excess mortality statistics are not 
readily available yet for our entire sample on a consistent basis. Under- 
or inconsistent reporting of death from Covid-19 might be a problem 
which deserves further scrutiny in later research. Nevertheless, these 
numbers are the official numbers, and those which have driven policy 
and response in the first year of the pandemic. 

Data on mortality in the 1918 influenza pandemic are also expressed 
in deaths per 100,000 population and come from Barro et al. (2020).6 

Fig. 3. Mortality of 1918-20 Influenza and Covid-19 Pan-
demics, 39 Countries. 
Notes: This graph plots the average daily growth rate of total 
deaths from Covid-19 in the first 60 days since the first death in 
a sample of 39 countries against the excess mortality rate of the 
1918 Influenza pandemic, both conditional on a set of regional 
fixed effects (we include fixed effects for the Americas, Europe, 
East Asia, South Asia, and Oceania). Data are described in the 
data appendix A. The average growth rate of total deaths for 
Covid-19 is calculated as 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
cmdeathi60/cmdeathi1)

59
√

− 1. The 
robust t-statistic for the coefficient on deaths from influenza in 
1918 is = 4.14, and the regression has an R2 = 0.5.   

3 Case fatality ratios for the 1957 and 1968 influenza pandemics were much 
lower at roughly 0.27 and 0.15 (Centers for Disease Control and Prevention, 
2007).  

4 The mortality rates from flu and pneumonia in 1918 are based on a widely 
used data base of weekly death rates in a group of 35 cities (see Table 1, Collins 
et al., 1930).  

5 See the papers by Beach et al. (Forthcoming), He et al. (2020) and Petersen 
et al. (2020) for comparisons of pandemics over the last 100 years. 

6 Barro et al. (2020) develop an original database of excess mortality from 
influenza and pneumonia. When this is not available they rely on total excess 
mortality and report that “…comparisons of direct yearly estimates of death 
rates from influenza/pneumonia with all-cause excess mortality rates for 
countries with both types of data indicate a close correspondence for the two 
methods.” The primary data sources they use include Johnson and Mueller 
(2002), Murray et al. (2006), Mitchell (2007), and the Human Mortality 
Database (www.mortality.org). 
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These latter figures refer to estimates of excess mortality rates from 
influenza (or influenza and pneumonia as was common historically) 
between 1918 and 1920. Excess mortality is defined either relative to 
normal seasonal mortality from influenza or pneumonia or from 
all-causes. Barro et al. (2020) argue that these two types of measures 
“correspond closely”. Given the speed with which the influenza 
pandemic overcame most populations in this period and historical 
mis-perceptions about the transmission of the influenza, excess mor-
tality is a reasonable and readily available summary statistic for the 
severity of the 1918 influenza pandemic. Crosby (1989) notes that 
influenza was not a reportable cause of death in many cities of the US 
prior to mid-1918 and the same held true in many countries even 
throughout the pandemic. 

We added several data points for the 1918 flu pandemic from sec-
ondary sources including Singapore, Hong Kong, and Korea. These are 

the official deaths from influenza and pneumonia without reference to a 
baseline level of mortality. Deaths and confirmed cases of Covid-19 were 
last updated on October 1, 2020. Our data begin as early as January 21, 
2020. For the 39 sample countries, the inter-quartile range of mortality 
in the 1918 pandemic is 620-1360 deaths per 100,000 population with a 
median of 780 and a mean value of 1,120. This compares to the inter-
quartile range across countries (as of May 21, 2020) for reported Covid- 
19 deaths of 0.52 to 16.75 per 100,000 and a median of 4.88. 

We supplement the country mortality data with population mortality 
rates from SARS in 2002-03, GDP per capita in 2018, population density 
in 2019, share of the population over 70 years old, some measures of 
cultural differences such as an index of individualism in a country, and a 
dummy variable for a tradition of Confucianism. Places coded as 
Confucianist include mainland China, Taiwan, Hong Kong, Singapore, 
Japan, and South Korea. We include regional fixed effects for five re-
gions: East Asia, South Asia, Europe, the Americas, and Oceania. 

3.2. Data Collection: US Cities 

We also explore a historical data base of 46 US cities. Data are from 
Collins et al. (1930). The total population in these cities totaled 20.4 
million or about 18% of the 1918 US population. Data cover most of the 
largest cities in the US. We include deaths attributed to influenza and 
pneumonia, as the rest of the literature has done in the face of historical 
problems in coding precise causes of death. In these years, the two were 
often confounded, although they were strongly related. 

For the 1918-1920 influenza pandemic in these US cities, Collins 
et al. (1930) report only monthly or weekly excess mortality per 100,000 
population of 1920. We use weekly data for the period 10 September 
1918 to 13 November 1918, covering the first six weeks of the 1918-20 
pandemic for US cities. The excess mortality rate is calculated as the 
difference between the actual mortality rate and the (within city) me-
dian monthly mortality rate from influenza and pneumonia in previous 
non-epidemic years in those cities. Given the speed with which the 
influenza pandemic overcame most populations in this period and the 
lack of understanding of the transmission, excess mortality is a reason-
able and readily available summary statistic for the severity of the 
influenza pandemic. To make data even more comparable to our 
Covid-19 data, we convert the weekly excess deaths to daily observa-
tions by linear interpolation within the week. This yields daily cumu-
lative excess influenza and pneumonia deaths by city from the first week 
of September 1918. 

We match US cities with continuous historical data to modern city or 
county-level data. One issue associated with the long-run city-level 
comparison is that Covid-19 data are separately reported only for some 
cities in our sample (New York City, St. Louis, Richmond, etc.) while 
most data from 2020 is reported at the county level. For cities in the 
historical sample without separately reported Covid-19 data at the city- 
level, we use data from the counties where the cities are located. For 
example, we pair the 1918 data for Detroit with Wayne County today. 
Our Covid-19 mortality data run through November 16, 2020 for our 
sample of U.S. cities. 

To calculate event time, we set a threshold level of mortality at the 
city level of 0.5 per 100,000 for each pandemic. Event time and obser-
vations begin as per this threshold mortality rate. This threshold was 
chosen since this is the lowest recorded threshold for excess deaths from 
influenza and pneumonia we have available in the historical city-level 
data in 1918-20. 

4. Analysis 

4.1. Determinants of Country Level Mortality 

Our first test finds significant persistence of mortality outcomes be-
tween the 1918 influenza pandemic and the current Covid-19 pandemic 
across countries. In Fig. 3, we plot the average daily growth rate of total 

Table 1 
Mortality Rates of Three Pandemics: 1918-20 Influenza, 2002-03 SARS, and 
Covid-19  

Country Mortality Rates of 
1918-20 Influenza 
(per 100,000) 

Mortality Rates of 
2002-2003 SARS 
(per 100,000) 

Mortality Rates of 
Covid-19 by Oct 1, 
2020 (per 100,000) 

Argentina 330 0 45.31 
Australia 280 0 3.53 
Austria 970 0 8.96 
Belgium 830 0 86.86 
Brazil 690 0 68.55 
Canada 620 0.131 25.04 
Chile 860 0 67.66 
Colombia 460 0 52.04 
Denmark 310 0 11.28 
Finland 710 0 6.22 
France 740 0.002 43.25 
Germany 780 0 11.39 
Greece 450 0 3.75 
Hungary 1270 0 8.06 
Ireland 430 0 36.99 
Italy 1230 0 59.32 
Mexico 2060 0 61.20 
Netherlands 710 0 37.54 
New Zealand 690 0 0.52 
Norway 570 0 5.09 
Peru 390 0 99.85 
Portugal 1810 0 19.33 
Russia 1870 0 14.26 
Spain 1360 0 68.41 
Sweden 630 0 58.72 
Switzerland 760 0 24.14 
Turkey 1080 0 9.90 
United Kingdom 460 0 62.56 
United States 650 0 63.15 
Uruguay 220 0 1.39 
Average 1128 0.0035 48.16  

Asian Countries 
China 1430 0.027 0.32 
India 5220 0 7.30 
Indonesia 3040 0 4.01 
Japan 960 0 1.25 
South Korea 1380 0 0.81 
Philippines 1880 0.002 5.14 
Singapore 1290 0.79 0.47 
Taiwan 1070 0.799 0.03 
Hong Kong 238 4.448 1.41 
Average 2759 0.03 3.62 
Asia Average 

(ex. China and 
Japan) 

4637 0.04 6.37 

Notes: Estimated mortality rates of 1918 Influenza come from the recalculation 
and compilation by Barro et al. (2020) except for Hong Kong, South Korea, and 
Singapore (see the data appendix A for additional sources of these three loca-
tions). Mortality rates for 2002-2003 SARS come from WHO and only include 
the SARS deaths between November 1, 2002 and July 31, 2003. Mortality rates 
for Covid-19 come from the CSSE (2020). Average mortality rates are weighted 
by country-specific population for certain regions. 

P.Z. Lin and C.M. Meissner                                                                                                                                                                                                                   



Economics and Human Biology 43 (2021) 101044

5

deaths from Covid-19 in the first sixty days since each country reported 
their first death case against the excess mortality rates from the 1918 
influenza pandemic. The scatter plot is conditional on a set of fixed 
effects for geographic regions. The conditional scatter plot suggests a 
positive and statistically significant correlation between the two pan-
demics (robust t-statistic = 4.14, adjusted R2 = 0.5) 

The positive correlation reveals that some countries performing 
poorly in terms of mortality in the 1918 pandemic, such as Spain and 
Italy, also experienced fast mortality growth in the recent Covid-19 
pandemic. However, the persistence between 1918 influenza and the 
current Covid-19 pandemic might not be a universal phenomenon. We 
note that some places such as Singapore, Hong Kong, and Taiwan, fall 
below the regression line, suggesting these countries are performing 
much better than what their 1918 performance would predict. 

Results from formal regression analysis are reported in Table 2. 
Besides country-level mortality in the 1918 pandemic, we also include 
these countries’ mortality rates from the SARS pandemic in 2002-03 as 
well as other control variables. We run cross sectional regressions of the 
following form 

MCovid
i = β1M1918

i + β2MSARS
i + X’

i γ + ρr + εi  

where i indexes countries, MCovid
i is the average daily growth rate of 

deaths from Covid-19 in the first 60, 90, or 120 days since the first 
reported death, M1918

i is the total excess mortality rate from the 1918 
influenza pandemic, MSARS

i is the total mortality from SARS in 2002-03, 
Xi includes a set of control variables, ρr is a set of regional fixed effects, 
and εi is an error term. We use heteroscedasticity robust standard errors 
in all specifications. 

Our baseline results are reported in columns (1)-(3) of Table 2. We 
also explore the dependent variable of the average daily growth rate of 
confirmed cases of Covid-19 in the first 60, 90, 120 days after the 100th 

confirmed case. These results are reported in column (4)-(6). 
All of our findings suggest that, even conditional on a set of 

observable characteristics, including population density, 2018 GDP per 
capita, and cultural controls, countries performing poorly in the 1918 
pandemic tended to fail to control mortality growth of Covid-19 in the 
first several months of the outbreak.7 The point estimate of the coef-
ficient on 1918 mortality for mortality growth of Covid-19 in the first 
60 days is 0.022 (p-value: 0.017, 95% C.I.: 0.004 to 0.04)8 . This implies 
that a one standard deviation rise in 1918 mortality is associated with a 
0.52 standard deviation rise in the growth rate of deaths from Covid-19. 

On the other hand, there is some evidence of learning. The negative 
correlation between mortality from SARS and Covid-19 mortality re-
veals that the countries hit harder by the more recent epidemic have 
been more successful in slowing down the development of Covid-19 in 
the first several weeks and months. The point estimate of the coefficient 
on 2002-03 SARS mortality is -0.077 (p-value: 0.003, 95% C.I.: -0.125 
to -0.029). This implies a one standard deviation rise in 2002-03 SARS 
mortality is associated with a fall in the growth rate of deaths from 
Covid-19 of 1.63 standard deviations. This is suggestive evidence that 
some countries strongly learned from their more recent experience. 

4.2. US Cities: Panel Data 

Next, we examine the persistence of mortality outcomes in a group 
of large U.S. cities. We compare the early trajectories of population 
mortality rates in the 1918 influenza and the contemporary Covid-19 
pandemic. Data are for 46 cities for which high frequency data in 
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. 7 We also included the number of years of educational attainment for the 
population aged 15-64 in 2010. The coefficient on this variable is insignificant 
in all specifications with no changes in the reported coefficients.  

8 The coefficients and 95% confidence intervals are multiplied by 1000 for 
better presentation. 
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1918 are available. 
In Fig. 4, we plot the trajectory of the mortality rate (excess deaths 

per 100,000 population) from influenza and pneumonia and Covid-19 in 
the days after total deaths crossed the 0.5 per 100,000 people in those 
cities.9 The city-by-city comparison of historical and contemporary 
mortality trajectories reveals high similarity of the two epidemics in 
most cities. 

We next conduct regression analysis with daily observations for the 
46 large cities. We start with regressions of the following form 

ln
(
DCovid

cτ
)
= π1ln

(
D1918

cτ
)
+ τ + τ2 + κc + εcτ  

where c indexes cities, DCovid
cτ is the number of cumulative deaths from 

Covid-19, D1918
ct is the number of cumulative deaths from influenza and 

pneumonia in 1918 in event time, τ indexes event time, κc is a set of city 
fixed effects and ε is an error term. To compare the mortality from 
Covid-19 and 1918 influenza at a similar stage, we line up the event time 
for both epidemics by the number of days since the death rate reached 
the threshold of 0.5 per 100,000 population. 

For robustness we try specifications with state fixed effects to control 
for spatial correlation, and also including calendar day fixed effects 
instead of event time trends for more flexibility in the trend. As for 
spatial correlation, correcting the standard errors with arbitrary spatial 

weights makes little qualitative difference to the results. Calendar time 
fixed effects are highly correlated with event time which makes it hard 
to control for both at the same time. 

Regression results are reported in Table 3 and indicate that Covid-19 
deaths are positively correlated with total excess deaths in the 1918 
influenza pandemic conditional on being at a similar stage in the 
epidemic (point estimate: 0.38, p-value: 0.000, 95% C.I.: 0.29-0.47). The 
results are robust to the alternative specifications and are not driven by 
the city of New York (Column 4 omits New York). 

In addition Table A6 and A7 present two other approaches. Table A6 
changes the dependent variable to the log change in mortality andin-
cludes the lagged mortality level from Covid-19 and city fixed effects. 
Results are similar to our baseline models. Table A7 converts the modern 
data from daily to weekly data since the historical data are originally at 
the weekly level. We find our results are also highly qualitatively similar 
to those in the baseline. 

We also compare the growth rate of total deaths from the 1918 flu to 
the growth rate of deaths from Covid-19 over the first 3, 4, or 5 weeks 
after total mortality reached 0.5 per 100,000 population in each 
pandemic. In Fig. 5, we plot the average daily growth rate of total deaths 
during the two pandemics in the first 4 weeks after mortality reached 0.5 
per 100,000 population. The positive correlation suggests that the cities 
experiencing faster mortality growth in 1918 tend to experience fast 
growth in the initial phase of Covid-19. 

4.3. U.S. Cities: Cross Section & Instrumental Variable Approach 

In this section we aim to alleviate concerns about endogeneity by 

Fig. 4. Mortality Curves of Covid-19 and 1918 Influenza in Selected U.S. Cities. 
Notes: These graphs plot the mortality curve of Covid-19 and the 1918 Influenza pandemic. The y-axis for each city is the log of total deaths per 100k population (for 
Covid-19) or total excess deaths per 100k population (for 1918 influenza); and the x-axis is the days since mortality rates reached 0.5/100,000 population. The cities 
shown here are the 16 cities with the largest population in 2019. 

9 The threshold of 0.5/100,000 is chosen to attain comparable starting 
mortality rates for the two epidemics across cities. Most cities in our sample 
reached this threshold early in both epidemics. Our results are robust to other 
alternative thresholds such as 1/100,000. 
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using an instrumental variable approach. Our excluded instrument, 
explained below, is not time varying, so we employ a cross-sectional 
model which collapses the panel data from the previous section. 

Regressions relating the average growth rate of deaths in Covid-19 to 
the average growth rate of deaths from the 1918 pandemic are reported 
in Table 4. Regressions take the form 

D̂
Covid
c = θD̂

1918
c + X’

cϕ + νc  

where D̂
Covid
c denotes the average daily growth rate of deaths from 

Covid-19 for city c, D̂
1918
c is the average growth rate of deaths from 

influenza and pneumonia in 1918, X is a set of control variables, and ν is 
an error term. With X we condition on historical and contemporary 
population density and age distribution. 

A positive and statistically significant correlation between the 
growth rates in the first 3, 4, and 5 weeks after mortality rates reached 
the given threshold is evident. For the first 4 weeks, the estimated 

coefficient of mortality growth in the 1918 pandemic is 0.30 (p-value: 
0.00, 95% C.I.: 0.08 to 0.52). This implies a one standard deviation rise 
in mortality growth of the 1918 influenza is associated with a 0.33 
standard deviation rise in the mortality growth from Covid-19 in the first 
4 weeks. 

The strong persistence of mortality outcomes between the 1918 
pandemic and Covid-19 in U.S. major cities could be explained by some 
long-run persistent, but unobservable characteristics of the cities driving 
growth rates of mortality in both pandemics. To understand whether the 
identified persistence might be driven by such factors or whether his-
torical mortality plays a more direct role in influencing health outcomes 
today, we employ an instrumental variable strategy. 

Our excluded instrument for mortality in the 1918 flu during the 
early phase leverages information on the distance between cities and 39 
historical U.S. Army training camps. Historical evidence suggests that 
military personnel were among those who were affected early and 
contributed significantly to disease spread in nearby cities (Crosby, 
1989; Barry, 2004; Byerly, 2010). Crosby (1989) argues strongly that the 

Table 3 
Mortality of Covid-19 and 1918 Influenza in 46 U.S. Cities, Daily Data   

(1) (2) (3) (4) (5)  
Log Total Deaths per 
100,000, Covid-19, All 
Cities 

Log Total Deaths per 
100,000, Covid-19, All 
Cities 

Log Total Deaths per 100,000, 
Covid-19, All Cities, Weighted 

Log Total Deaths per 
100,000, Covid-19, Exc. 
NYC 

Log Total Deaths per 
100,000, Covid-19, All 
Cities 

ln (Total Excess Deaths 
per 100,000, 1918 Flu) 

0.378*** 
(0.066) 

0.381*** 
(0.046) 

0.473*** 
(0.075) 

0.371*** 
(0.045) 

0.223*** 
(0.066) 

Event Days 0.015*** 
(0.003) 

0.015*** 
(0.002) 

0.014*** 
(0.003) 

0.016*** 
(0.002)  

(Event Days)2 − 0.042*** 
(0.001) 

− 0.042*** 
(0.005) 

− 0.038*** 
(0.008) 

− 0.043*** 
(0.005)  

Observations 10212 10212 10212 9990 10202 
R2 0.796 0.924 0.939 0.923 0.942 
Number of Cities 46 46 46 45 46 
Calendar Date F.E. No No No No Yes 
State F.E. Yes No No No No 
City F.E. No Yes Yes Yes Yes 

Notes: Dependent variables are the logarithm of total deaths of Covid-19 per 100,000 population. Regressions are conducted with data at the daily level. Event days are 
the number of days since total deaths (for Covid-19) or total excess deaths (for 1918 Influenza) reached 0.5/100,000 population. To keep a balanced panel data, the 
event days have a maximum of 222 days. The data were last updated on Nov.16, 2020. The full list of cities can be found in data appendix A and are the same as those 
from Collins et al. (1930). All regressions are unweighted, except that in column (3), where the regression is weighed by 2019 population as a robustness check. 
Coefficients and standard errors for square of event days are multiplied by 1,000 for better display. Standard errors are clustered at the city level (clustered at the state 
level for first column) and reported in the parentheses. * p < 0.1, ** p < 0.05. 

*** p < 0.01. 

Fig. 5. Average Daily Growth of Total Deaths from Covid-19 
and 1918 Influenza in U.S. Cities: First 28 Days. 
Notes: This figure shows the unconditional correlation between 
the average daily growth rate of total deaths of Covid-19 and 
the average growth rate of total excess deaths of the 1918-20 
Influenza pandemic in the first 28 days since the total deaths 
(for Covid-19) or total excess deaths (for 1918 Influenza) 
reached 0.5 for every 100,000 population. The coefficient of 
the regression (which includes a constant) is 0.355 with a 
robust t-statistic of 4.09 and a 95% C.I. of 0.179 to 0.531. The 
average daily growth rates of total deaths (or total excess 
deaths for 1918 influenza) in the first 28 days are calculated by 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
cmdeathit/cmdeathit− 27)

27
√

− 1.   
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most deadly wave began on the east coast amongst military personnel in 
August and September 1918. He then makes the case that movement of 
infected personnel, which occurred for strategic military reasons, be-
tween east coast Naval ports and military bases to other camps around 
the nation helps explain the timing of accelerations of civilian influenza. 
Cities closer to military camps would have been at higher risk due to the 
higher possibility of interacting with infected military personnel. 

The military cantonments we use in our data are located across the 
US and were for training recruits for World War I in the early years of 
World War I. Their precise location was likely determined by strategic 
concerns rather than being associated with the drivers of public health in 
a pandemic. It is unlikely that the camp locations exercise much influ-
ence on the spread of Covid-19 since only 8 of the 39 camps are in 
operation currently. 

Clay et al. (2018) uses a measure of proximity to the nearest military 
training camps as a determinant of mortality from in the 1918 
pandemic. Hilt and Rahn. (2020) use average distance to military camps 
as an excluded instrumental variable to predict excess mortality in 
October 1918 while Correia, Luck, and Verner (2020) use distance 
weighted by the number of personnel at the bases as an excluded in-
strument to predict mortality from influenza in late 1918. 

We construct our own index of exposure to influenza in military 
camps. We leverage not only distance to the camps but also the intensity 
of infection in the camps in August and September – largely before the 
onset in the general population which occurred from mid-September 
onwards. 

For each city, exposure is defined as 
∑

j

ln(admissionj)

ln(distancecj)
, where admissionj is 

the number of (camp) hospital admissions due to influenza and pneu-
monia in military camp j in the two months of August and September 
1918. The variable distancecj is the geodesic distance between city c and 
camp. For each city, we include the five closest camps in this calculation. 
To control for potential direct effects of proximity to military camps, we 
also include the log of distance between each city and the nearest camp 
in all 2SLS regressions. The data on location and flu-related admissions 
for the major army camps come from the 1919 Annual Report of the War 
Department. 

Fig. 6 shows a simple correlation between the growth rate of mor-
tality from influenza in 1918 and exposure to influenza in nearby mili-
tary camps. The positive correlation is consistent with our hypothesis 
that cities more exposed to the influenza outbreaks in nearby camps had 
faster mortality growth in the early phase of the 1918 pandemic. This 
could be explained by the fact that the intensity tended to be higher in 

the South and East where the pandemic started and where local public 
health systems and populations were caught off-guard. We next re- 
estimate the relationship between mortality growth of 1918 influenza 
and contemporary Covid-19, with two-stage least squares (2SLS). 

Two stage least squares estimates are reported in Table 5. The first 
stage results show large F-statistics. A weak instrumental variable is not 
a concern. The coefficients on mortality growth in the 1918 flu remain 
statistically significant and positive. These findings suggest that the 
identified positive correlation between the early performance in these 
two pandemics is not solely driven by potential unobservable pre- 
existing city characteristics. These results suggest that there is a plau-
sible link between contemporary and historical drivers of mortality in 
pandemics. We discuss some potential explanations for this result below. 

We also explored the impact of mortality in 1918 and another 
influenza pandemic (that of 1968) in Table A4 and A5. While daily 
mortality in 1918 seems to be related to daily mortality in 1968 in US 
cities (Table A4), this result is not robust to the instrumental variables 
specification in Table A5. One explanation for the lack of robust corre-
lation may be the significantly smaller scale of the 1968 influenza 
pandemic. We could not readily locate city-level data for 1957-58, but 
this pandemic was also not comparable to Covid-19 nor the Influenza of 
1918 (Doshi, 2008). 

5. Discussion 

What mechanisms link the past to today in this context? We are left 
with several possibilities all of which deserve more research. First, lo-
calities and countries may have bad luck. It is possible that public health 
inaction in the past and today was due to a lack of leadership or was 
hamstrung by politics. This seems unlikely because multiple cities and 
countries would have to be systematically unlucky in multiple periods.10 

Second, there is the possibility the influenza of 1918 affected some 
unobservable variable which is now affecting mortality from Covid-19. 
Such a variable could be overall trust of others in society and/or trust in 
the government. Aassve et al. (2020) argue greater mortality in the 
1918-20 pandemic generated lower trust of others in the long run.11 This 

Table 4 
Growth of Total Deaths of Covid-19 and 1918 Influenza in U.S. Cities: OLS Estimates   

(1) (2) (3) (4) (5)  
Average Daily Growth 
Rate of Total Deaths, 
Covid-19 First 28 Days 

Average Daily Growth 
Rate of Total Deaths, 
Covid-19 First 28 Days 

Average Daily Growth 
Rate of Total Deaths, 
Covid-19 First 28 Days 

Average Daily Growth 
Rate of Total Deaths, 
Covid-19 First 21 Days 

Average Daily Growth 
Rate of Total Deaths, 
Covid-19 First 35 Days 

Average Daily Growth Rate of 
Total Excess Deaths, 1918 
Influenza, First N Days 

0.573*** 
(0.121) 

0.281*** 
(0.0992) 

0.301*** 
(0.105) 

0.246*** 
(0.0798) 

0.366** 
(0.150) 

Population Density, 2019  0.096 
(0.077) 

0.056 
(0.075) 

0.119 
(0.119) 

0.020 
(0.0509) 

Population Density, 1920  0.410*** 
(0.0893) 

0.434*** 
(0.132) 

0.476** 
(0.200) 

0.379*** 
(0.0995) 

Percentage of Population Age 
65 and Over, 2019   

− 0.004 
(0.003) 

− 0.004 
(0.004) 

− 0.004 
(0.003) 

Percentage of Population Age 
65 and Over, 1920   

− 0.003 
(0.005) 

− 0.006 
(0.006) 

− 0.002 
(0.004) 

# Cities 46 46 46 46 46 
R2 0.247 0.681 0.698 0.693 0.671 

Notes: The average daily growth rates of total deaths for first n days are calculated by 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
cmdeathit/cmdeathin− 1)

n− 1
√

− 1. The first n days refers to the days since total deaths 
(for Covid-19) and total excess deaths (for 1918 Influenza) reached 0.5 for every 100,000 people. All regressions are weighted by population in 2019. Standard errors 
are clustered at the state level and reported in the parentheses. * p < 0.1. 

** p < 0.05. 
*** p < 0.01. 

10 Abad and Maurer (2020) show that the 1918 pandemic does not seem to 
have had a major impact on the national elections of 1918.  
11 The measure of trust is based on the General Social Survey question: 

“Generally speaking, would you say that most people can be trusted or that you 
can’t be too careful in dealing with people?” 
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lack of trust could be vertically transmitted to the next generation as 
well. This could help explain some of the persistence in mortality we see 
in the data both across countries and within the US. Parmet and Roth-
stein (2018) highlight three factors that determine public health re-
sponses to a pandemic: “distrust, isolationism and hubris”. The lack of 
trust engendered by the level of exposure to the influenza pandemic of 
1918 could explain why our instrumental variables results show that 
mortality in 1918 matters today. More detailed data by city of residence 
and trust attitudes would be helpful in this regard, but high quality, 
representative data like these are not readily available to the best of our 
knowledge. 

A third possibility relates to the fetal origins hypothesis. The fetal 
origins hypothesis argues that in utero exposure an infectious disease 
like influenza is associated with worse SES outcomes later in life. 
Almond (2006) finds evidence that exposure to influenza in 1918 in 
utero was associated with worse SES later in life. Taking the next step, a 

growing literature emphasizes the multi-generation effects of health 
shocks. If morbidity of offspring is higher due to health shocks, then it is 
likely that the second generation could also suffer from the shocks from 
the previous generation. Richter and Robling (2013) discuss the possi-
bility of a direct biological effect on the germ cells of the exposed fetus as 
well as “indirect” effects to the children of those exposed in utero via 
their mothers who are more likely to have lower SES outcomes. These 
multi-generational effects have been explored in a nascent literature.12 

A sufficient driver of a multi-generational effect would be significant 
spatial persistence in population over multiple generations in the 

Fig. 6. Mortality Growth of 1918 Influenza and Exposure to U. 
S. Army Camps. 
Note: The data for influenza and pneumonia admissions by 
major military camps are from the Report of the Surgeon 
General, which is Volume 1 of the War Department Annual 
Report of 1919. We have 39 major army camps and the dis-
tances between cities and camps are determined by the dis-
tance between cities and the counties in which these camps are 
located. The definition of the exposure to influenza cases in U. 
S. Military camps is given in the text.   

Table 5 
Growth of Total Deaths of Covid-19 and 1918 Influenza in U.S. Cities: 2SLS Estimates   

(1) (2) (3) (4) (5)  
Average Daily Growth 
Rate of Total Deaths, 
Covid-19 First 28 Days 

Average Daily Growth 
Rate of Total Deaths, 
Covid-19 First 28 Days 

Average Daily Growth 
Rate of Total Deaths, 
Covid-19 First 28 Days 

Average Daily Growth 
Rate of Total Deaths, 
Covid-19 First 21 Days 

Average Daily Growth 
Rate of Total Deaths, 
Covid-19 First 35 Days 

Average Daily Growth Rate of 
Total Excess Deaths, 1918 
Flu, First N Days 

0.909*** 
(0.199) 

0.621*** 
(0.191) 

0.630*** 
(0.177) 

0.531*** 
(0.151) 

1.032*** 
(0.349) 

Population Density, 2019  0.050 
(0.041) 

0.013 
(0.042) 

0.066 
(0.083) 

− 0.009 
(0.035) 

Population Density, 1920  0.226* 
(0.137) 

0.262* 
(0.137) 

0.196 
(0.213) 

0.204 
(0.125) 

Percentage of Population Age 
65 and Over, 2019   

− 0.004 
(0.004) 

− 0.00263 
(0.00452) 

− 0.004 
(0.003) 

Percentage of Population Age 
65 and Over, 1920   

− 0.004 
(0.004) 

− 0.003 
(0.008) 

− 0.004 
(0.003)  

First Stage: Dependent Var is Average Daily Growth Rate of Total Excess Deaths, 1918 Flu 
Exposure to Influenza in 

Military Camps 
0.020*** 
(0.004) 

0.017*** 
(0.003) 

0.017*** 
(0.003) 

0.025*** 
(0.007) 

0.009*** 
(0.002) 

K-P F-Statistics for IV 29.082 27.220 25.370 12.119 22.269 
# Cities 46 46 46 46 46 

Notes: The instrumental variable for the daily growth rates of 1918 influenza is an estimated exposure to flu-related admissions in military camps in August and 
September in 1918. The average daily growth rates of total deaths for first n days are calculated by 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
cmdeathit/cmdeathin− 1)

n− 1
√

− 1. The first n days refers to the days 
since total deaths (for Covid-19) and total excess deaths (for 1918 Influenza) reached 0.5 for every 100,000 people. All regressions also control for the log of distance 
between each city to the nearest military camp. Standard errors are clustered at the state level and reported in the parentheses. ** p < 0.05. 

* p < 0.1. 
*** p < 0.01. 

12 For a recent review see East and Page (2019). For evidence on multigen-
erational effects of famines and health shocks see Painter et al. (2008), Kaati 
et al. (2007), Roseboom et al. (2011), East et al. (2019) and Richter and Robling 
(2013). 
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context of population level findings. An individual level assessment of 
this hypothesis deserves further scrutiny. In the end, multiple channels 
are likely to be driving the effect found here. The persistence of pan-
demics and health shocks highlights the urgency and importance of 
public health and other efforts to prepare for the next pandemic and to 
allow better mechanisms to cope with health shocks. 

Finally, experience with SARS is associated with lower mortality 
today. Meanwhile, where mortality of the 1918 influenza was high, 
mortality is likely to be higher today. Why? A potential explanation lies 
in evidence from the literature on natural disasters. Fanta et al. (2019) 
provide evidence that in the aftermath of major floods societies tend to 
build new settlements away from the danger zone “for a period of one 
generation”. However, from the second generation onwards, settlements 
tend to be built closer to the flood zone. It is quite plausible that out-
comes were better where SARS was more prevalent for similar reasons. 

In conclusion, it is unlikely that one and only one mechanism ex-
plains the bottom line result that past experience with pandemics mat-
ters for contemporary pandemics. Two things are worth emphasizing at 

this point. First, our results are robust to a number of alternative spec-
ifications, control variables, and a plausible instrumental variables 
model. Second, more research into the exact mechanisms with the 
assistance of new data at a greater level of detail is of importance in 
order to understand the historical drivers of modern pandemics. 
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Appendix A 

Tables A1–A3 

Table A1 
Covid-19 Pandemics and Mortality from 1918 Influenza and SARS, Country-Level Evidence with Spatial HAC Standard Errors   

(1) (2) (3) (4) (5) (6)  
Average Daily Growth 
Rate of Total Deaths of 
Covid-19 

Average Daily Growth 
Rate of Total Deaths of 
Covid-19 

Average Daily Growth 
Rate of Total Deaths of 
Covid-19 

Average Daily Growth 
Rate of Total Cases of 
Covid-19 

Average Daily Growth 
Rate of Total Cases of 
Covid-19 

Average Daily Growth 
Rate of Total Cases of 
Covid-19  

60 Days since First 
Death 

90 Days since First 
Death 

120 Days since First 
Death 

60 Days since 100th 

Case 
90 Days since 100th 

Case 
120 Days since 100th 

Case 
Total Mortality Rate 

of 1918 Influenza 
0.0219*** 
(0.007) 

0.0144*** 
(0.005) 

0.0113*** 
(0.004) 

0.0184** 
(0.007) 

0.0133*** 
(0.005) 

0.00999*** 
(0.003) 

Total Mortality Rate 
of SARS 

− 0.0768*** 
(0.018) 

− 0.0568*** 
(0.014) 

− 0.0448*** 
(0.011) 

− 0.0708** 
(0.023) 

− 0.0504*** 
(0.017) 

− 0.0393*** 
(0.013) 

Observations 39 39 39 39 39 39 
R2 0.664 0.660 0.683 0.473 0.531 0.575 

Notes: This table presents the same estimation as Table 2, however with HAC (heteroskedasticity and autocorrelation consistent) standard errors allowing spatial 
correlation of error terms. We adopt the approach introduced by Kelly (2020), which relies on the Matern function (Gneiting and Gutthorp, 2010) as the kernel function 
characterizing spatial correlation. The estimated coefficients remained unchanged from Table 2, while most standard errors changed. Allowing error terms to be 
spatially correlated does not alter our results significantly. All regressions also include the control variables reported in Table 2 as well as the region fixed effects. 
Spatial HAC standard errors are reported in parentheses. * p < 0.1. 

** p < 0.05. 
*** p < 0.01. 

Table A2 
Mortality of Covid-19 and 1918 Influenza in 46 U.S. Cities, Daily Data with Spatial HAC Standard Errors   

(1) (2) (3) (4) (5)  
Log Total Deaths per 
100,000, Covid-19, All 
Cities 

Log Total Deaths per 
100,000, Covid-19, All 
Cities 

Log Total Deaths per 100,000, 
Covid-19, All Cities, Weighted 

Log Total Deaths per 
100,000, Covid-19, Exc. 
NYC 

Log Total Deaths per 
100,000, Covid-19, All 
Cities 

ln (Total Excess Deaths 
per 100,000, 1918 Flu) 

0.378*** 
(0.050) 

0.381*** 
(0.053) 

0.473*** 
(0.068) 

0.371*** 
(0.051) 

0.223*** 
(0.071) 

Event Days 0.015*** 
(0.003) 

0.015*** 
(0.002) 

0.014*** 
(0.003) 

0.016*** 
(0.002)  

(Event Days)2 − 0.042*** 
(0.009) 

− 0.042*** 
(0.007) 

− 0.038*** 
(0.008) 

− 0.043*** 
(0.007)  

Observations 10212 10212 10212 9990 10202 
R2 0.796 0.924 0.939 0.923 0.942 
Number of Cities 46 46 46 45 46 
Calendar Date F.E. No No No No Yes 
State F.E. Yes No No No No 
City F.E. No Yes Yes Yes Yes 

Notes: This table presents the same estimation as Table 3, but with HAC (heteroskedasticity and autocorrelation consistent) standard errors allowing spatial correlation 
of error terms. We adopt the approach introduced by Kelly (2020), which relies on the Matern function (Gneiting and Gutthorp, 2010) as the kernel function char-
acterizing spatial correlation. The estimated coefficients remained unchanged from Table 3, while standard errors changed. Allowing error terms to be spatially 
correlated does not alter our results significantly. Spatial HAC standard errors are reported in parentheses. * p < 0.1,** p < 0.05. 

*** p < 0.01. 
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Data Appendix 

Cross-Country Data, 1918 
Mortality rates: Barro et al. (2020). This data set is uses excess 

mortality from influenza and pneumonia and total excess mortality 
depending on data availability and country. The primary data sources 
they rely on include Johnson and Mueller (2002), Murray et al. (2006), 
and the Human Mortality Database (www.mortality.org). 

For countries not in Barro et al. (2020): Singapore from Lee et al. 
(2007); Korea from Hong and Yun (2017); Hong Kong from Cheng and 
Leung (2007). Hong Kong population in 1919 calculated from Swee--
Hock and Chiu wing (1975); Singapore, population Dodge (1980) 

Covid-19 Data, 2020 
Data for cases and deaths by country and US cities for Covid-19 come 

from Covid-19 Data Repository by the Center for Systems Science and 

Engineering (CSSE) at Johns Hopkins University. 
https://github.com/CSSEGISandData/COVID-19, downloaded on 

October 4, 2020. 

SARS Mortality, 2002-2003 
World Health Organization: https://www.who.int/csr/sars/count 

ry/2003_07_04/en/ 
Accessed on October 4, 2020. 

Regional Fixed Effects 
The 39 countries in our cross-country sample are categorized into 5 

major regions: 
East Asia: Mainland China, Hong Kong, Taiwan, Japan, and South 

Korea. 
South Asia: India, Indonesia, Philippines, and Singapore. 
Europe: Austria, Belgium, Denmark, Finland, France, Germany, 

Table A4 
Mortality of 1968 H3N2 Influenza and 1918 Influenza in 46 U.S. Cities, Daily Data   

(1) (2) (3) (4) (5)  
Log Total Excess Deaths 
per 100,000, 1968 Flu, All 
Cities 

Log Total Excess Deaths per 
100,000, 1968 Flu, All 
Cities 

Log Total Excess Deaths per 
100,000, 1968 Flu, All Cities, 
Weighted 

Log Total Excess Deaths per 
100,000, 1968 Flu, Exc. 
NYC 

Log Total Excess Deaths 
per 100,000, 1968 Flu, 
All Cities 

ln (Total Excess Deaths 
per 100,000, 1918 
Flu) 

0.230*** 
(0.051) 

0.271*** 
(0.031) 

0.296*** 
(0.055) 

0.268*** 
(0.031) 

0.0648 
(0.062) 

Event Days 0.012*** 
(0.004) 

0.008*** 
(0.002) 

0.006** 
(0.003) 

0.008*** 
(0.002)  

(Event Days)2 − 0.0000414*** 
(0.0000118) 

− 0.0000302*** 
(0.00000801) 

− 0.0000216** 
(0.00000912) 

− 0.0000311*** 
(0.00000822)  

Observations 9366 9366 9366 9144 9366 
R2 0.517 0.790 0.806 0.790 0.850 
Number of Cities 44 44 44 43 44 
Calendar Date F.E. No No No No Yes 
State F.E. Yes No No No No 
City F.E. No Yes Yes Yes Yes 

Notes: Dependent variables are the logarithm of total excess deaths of 1968 H3N2 Influenza per 100,000 population. Data come from the 122 Cities Mortality Reporting 
System by CDC, and the data report weekly deaths caused by pneumonia or influenza in U.S. cities from 1962 to 2016. The calculation of total excess death rates is 
detailed in data appendix A. Regressions are conducted at the daily level. Event days are the number of days since total excess deaths (for either 1968 or 1918 
Influenza) reached 0.5/100,000 population. The mortality rate of 1968 influenza is not available for Oakland (CA) and Louisville (KY); leaving 44 cities in the baseline 
regressions. All regressions are unweighted, except that in column (3), the regression is weighed by 2019 population for robustness check. Coefficients and standard 
errors for the square of event days are multiplied by 1,000. Standard errors are clustered at the city level (clustered at the state level for first column) and reported in the 
parentheses. * p < 0.1. 

** p < 0.05. 
*** p < 0.01. 

Table A3 
Growth of Total Deaths of Covid-19 and 1918 Influenza in U.S. Cities: Spatial HAC Standard Errors   

(1) (2) (3) (4) (5)  
Average Daily Growth 
Rate of Total Deaths, 
Covid-19 First 28 Days 

Average Daily Growth 
Rate of Total Deaths, 
Covid-19 First 28 Days 

Average Daily Growth 
Rate of Total Deaths, 
Covid-19 First 28 Days 

Average Daily Growth 
Rate of Total Deaths, 
Covid-19 First 21 Days 

Average Daily Growth 
Rate of Total Deaths, 
Covid-19 First 35 Days  

Ordinary Least Square Estimates 
Average Daily Growth Rate of 

Total Excess Deaths, 1918 
Influenza, First N Days 

0.573*** 
(0.149) 

0.281*** 
(0.074) 

0.301*** 
(0.083) 

0.246*** 
(0.066) 

0.366** 
(0.118)  

Two-Stage Least Square Estimates 
Average Daily Growth Rate of 

Total Excess Deaths, 1918 
Influenza, First N Days 

0.909*** 
(0.318) 

0.621* 
(0.353) 

0.630* 
(0.341) 

0.531** 
(0.252) 

1.032 
(0.684) 

# Cities 46 46 46 46 46 

Notes: This table presents the estimation of the specifications of Table 4 (for OLS estimates) and Table 5 (for 2SLS estimates), but with HAC (heteroskedasticity and 
autocorrelation consistent) standard errors allowing spatial correlation of error terms. We adopt the approach introduced by Kelly (2020), which relies on the Matern 
function (Gneiting and Gutthorp, 2010) as the kernel function characterizing spatial correlation. The estimated coefficients remained unchanged, while most standard 
errors changed. Allowing error terms to be spatially correlated does not alter our results significantly. All regressions also include control variables reported in Table 4 
and 5. Spatial HAC standard errors are reported in parentheses. 

* p < 0.1. 
** p < 0.05. 
*** p < 0.01. 
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Greece, Hungary, Italy, Ireland, Netherlands, Norway, Portugal, Russia, 
Spain, Sweden, Switzerland, Turkey, and United Kingdom. 

The Americas: Argentina, Brazil, Canada, Colombia, Chile, Mexico, 
Peru, United States, and Uruguay. 

Oceania: Australia and New Zealand. 

Density, GDP per capita, and other Control Variables 
The population density and age distribution of sample countries 

come from the World Population Prospects 2019, by the United Nations. 
Details can be found: https://population.un.org/wpp/Download/Stan 
dard/CSV/ 

GDP per capita in 2018 comes from the World Bank and is in constant 
2010 U.S. dollars. Details can be found: 

https://data.worldbank.org/indicator/NY.GDP.PCAP.KD 

Countries coded to have a Confucian tradition include Mainland 
China, Hong Kong, Taiwan, Japan, South Korea, and Singapore. 

The individualism index comes from the 6-dimensional model of 
national culture by Geert Hofstede. The index is based on the Values 
Survey in 2013 (Geert Hofstede and Michael Minkov, 2013). Details of 
the 6-dimensional model can be found at 

https://geerthofstede.com/culture-geert-hofstede-gert-jan-hofs 
tede/6d-model-of-national-culture/ 

Cities in the US Sample 
The 46 cities and states in parentheses in our analysis include: 

Albany (NY), Atlanta (GA), Baltimore (MD), Birmingham (AL), Boston 
(MA), Buffalo (NY), Cambridge (MA), Chicago (IL), Cincinnati (OH), 
Cleveland (OH), Columbus (OH), Dayton (OH), Denver (CO), Detroit 

Table A5 
Growth of Total Deaths of 1968 H3N2 Influenza and 1918 Influenza in U.S. Cities, Two Stage Least Squares.   

(1) (2) (3) (4) (5)  
Average Daily Growth 
Rate of Total Excess 
Deaths, 1968 Flu First 28 
Days 

Average Daily Growth 
Rate of Total Excess 
Deaths, 1968 Flu First 28 
Days 

Average Daily Growth 
Rate of Total Excess 
Deaths, 1968 Flu First 28 
Days 

Average Daily Growth 
Rate of Total Excess 
Deaths, 1968 Flu First 21 
Days 

Average Daily Growth 
Rate of Total Excess 
Deaths, 1968 Flu First 35 
Days  

Ordinary Least Square Estimates 
Average Daily Growth Rate 

of Total Excess Deaths, 
1918 Influenza, First N 
Days 

− 0.0962 
(0.152) 

− 0.181 
(0.167) 

− 0.212 
(0.167) 

− 0.101 
(0.0955) 

− 0.392 
(0.301)  

Two-Stage Least Square Estimates 
Average Daily Growth Rate 

of Total Excess Deaths, 
1918 Influenza, First N 
Days 

0.370 
(0.235) 

0.319 
(0.208) 

0.277 
(0.262) 

0.296 
(0.302) 

0.460 
(0.429) 

# Cities 43 43 43 44 43 

Notes: This table presents the same specifications of Table 4 (for OLS estimates) and Table 5 (for 2SLS estimates), however with the average daily growth rate of total 
excess deaths of 1968 H3N2 Influenza as a dependent variable. All regressions control for population density in 1920 and 1968. We also control for the percentage of 
population aged 65 and over in 1920 and 1968 in all specifications. The 2SLS estimates are subject to potential weak instrument issue as the first stage Kleibergen-Paap 
F-statistics were all below 7. We do not include the city of Buffalo in the regressions with growth rate of excess deaths in first 28 and 35 days because the excess deaths 
fell below the median death rates before the pandemic reached 28 days. We also do not include the city of Oakland (CA) and Louisville (KY) because mortality data for 
the 1968 influenza is unavailable. The standard errors are clustered at state level and reported in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. 

Table A6 
Mortality of Covid-19 and 1918 Influenza in 46 U.S. Cities, Daily Changes   

(1) (2) (3) (4) (5)  
Change of Log Total 
Deaths per 100,000, 
Covid-19, All Cities 

Change of Log Total 
Deaths per 100,000, 
Covid-19, All Cities 

Change of Log Total Deaths 
per 100,000, Covid-19, All 
Cities, Weighted 

Change of Log Total 
Deaths per 100,000, 
Covid-19, Exc. NYC 

Change of Log Total 
Deaths per 100,000, 
Covid-19, All Cities 

Change of Log Total Excess 
Deaths per 100,000, 
1918 Flu 

0.217*** 
(0.041) 

0.088** 
(0.035) 

0.129*** 
(0.035) 

0.084** 
(0.035) 

0.065** 
(0.032) 

Lag of Log Total Excess 
Deaths per 100,000, 
1918 Flu 

− 0.014*** 
(0.003) 

− 0.039*** 
(0.003) 

− 0.043*** 
(0.003) 

− 0.039*** 
(0.003) 

− 0.022*** 
(0.004) 

Event Days − 0.0006*** 
(0.0001) 

0.0001 
(0.0001) 

0.0001*** 
(0.00004) 

0.00005 
(0.00006)  

(Event Days)2 0.002*** 
(0.0004) 

0.0003 
(0.0002) 

− 0.00002 
(0.0001) 

0.0003 
(0.0002)  

Observations 10166 10166 10166 9945 10156 
R2 0.367 0.410 0.576 0.397 0.474 
Number of Cities 46 46 46 45 46 
Calendar Date F.E. No No No No Yes 
State F.E. Yes No No No No 
City F.E. No Yes Yes Yes Yes 

Notes: Dependent variables are the daily changes of the logarithm of total deaths of Covid-19 per 100,000 population. Regressions are conducted with data at the 
weekly level. Event days are the number of days since total deaths (for Covid-19) or total excess deaths (for 1918 Influenza) reached 0.5/100,000 population. The data 
is lastly updated on Nov.16, 2020. The full list of cities can be found in data appendix A and are the same as those from Collins et al. (1930). All regressions are 
unweighted, except that in column (3), where the regression is weighed by 2019 population. Coefficients and standard errors for the square of event days are multiplied 
by 1,000. Standard errors are clustered at the city level (clustered at the state level for first column) and reported in the parentheses. * p < 0.1. 

** p < 0.05. 
*** p < 0.0. 
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(MI), Fall River (MA), Grand Rapids (MI), Indianapolis (IN), Jersey City 
(NJ), Kansas City (MO), Los Angeles (CA), Louisville (KY), Lowell (MA), 
Milwaukee (WI), Minneapolis (MN), Nashville (TN), New Haven (CT), 
New Orleans (LA), New York City (NY), Newark (NJ), Oakland (CA), 
Omaha (NE), Philadelphia (PA), Pittsburgh (PA), Portland (OR), Provi-
dence (RI), Richmond (VA), Rochester (NY), Saint Louis (MO), Saint 
Paul (MN), San Francisco (CA), Seattle (WA), Spokane (WA), Syracuse 
(NY), Toledo (OH), Washington D.C., Worcester (MA). 

We use data from 46 cities although according to Collins et al. 
(1930), there are 50 cities with documented excess monthly death rates 
from influenza and pneumonia between 1910 and 1929. However, only 
47 of the 50 cities have available data of excess weekly death rates, 
which are the primary sources we use to calculate the city-level 
epidemic curves. The three cities with missing weekly data are Bridge-
port (Conn.), Paterson (NJ), and Scranton (PA). In addition, we drop 
Memphis (Tenn.) from our sample because its weekly data are not 
available until the week of Oct. 12, 1918, when it had already seen a 
significant surge in excess deaths, and we are not able to characterize the 
early phase of the epidemic. 

13. 1918-1919 Influenza Pandemic in U.S. Cities 
The mortality data in 46 major U.S. cities come from the public 

health reports (Collins et al., 1930).13 We interpolate the weekly excess 
deaths to daily basis by linear interpolation. Then, we calculate the 
cumulative excess deaths from the week of September 14, 1918, when 
continuous weekly deaths became available in Collins et al. (1930). For 
cities with negative excess deaths in the mid-September, we start 
counting total deaths when excess deaths became continuously positive. 

14. 1968-1969 H3N2 Influenza Pandemic in U.S. Cities 
The mortality data of 1968-1969 H3N2 Influenza in U.S. cities come 

from the 122 Cities Mortality Reporting System, which is provided by 
CDC and downloaded from HeathData.gov. (https://healthdata.gov/dat 
aset/Deaths-in-122-U-S-cities-1962-2016-122-Cities-Mort/m36n-nf4p) 

The reporting system reports pneumonia or influenza related deaths 

each week from 1962 to 2016. We have 44 cities (out of the 46 cities 
with available 1918 Influenza mortality data) in this reporting system.14 

To calculate the excess mortality rate, we firstly calculate median 
mortality rate for a specific week based on the weekly deaths between 
1962 and 1980. Second, we calculate the excess mortality rate by sub-
tracting the median mortality rate from actual mortality rate. Then, we 
calculate the cumulative excess deaths from the first week of December, 
1968 when the Influenza pandemic start wide spreading in the United 
States. 
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Table A7 
Mortality of Covid-19 and 1918 Influenza in 46 U.S. Cities, Weekly Data   

(1) (2) (3) (4) (5)  
Log Total Deaths per 
100,000, Covid-19, All 
Cities 

Log Total Deaths per 
100,000, Covid-19, All 
Cities 

Log Total Deaths per 100,000, 
Covid-19, All Cities, Weighted 

Log Total Deaths per 
100,000, Covid-19, Exc. 
NYC 

Log Total Deaths per 
100,000, Covid-19, All 
Cities 

ln (Total Excess Deaths 
per 100,000, 1918 Flu) 

0.318*** 
(0.070) 

0.318*** 
(0.048) 

0.408*** 
(0.078) 

0.309*** 
(0.048) 

0.187*** 
(0.063) 

Event Weeks 0.120*** 
(0.023) 

0.120*** 
(0.012) 

0.109*** 
(0.020) 

0.123*** 
(0.012)  

(Event Weeks)2 − 0.002*** 
(0.001) 

− 0.002*** 
(0.0002) 

− 0.002*** 
(0.0004) 

− 0.002*** 
(0.0002)  

Observations 1426 1426 1426 1395 1424 
R2 0.778 0.927 0.941 0.925 0.940 
Number of Cities 46 46 46 45 46 
Calendar Date F.E. No No No No Yes 
State F.E. Yes No No No No 
City F.E. No Yes Yes Yes Yes 

Notes: Dependent variable is the logarithm of total deaths of Covid-19 per 100,000 population. Regressions are conducted with data at the weekly level. Event days are 
the number of days since total deaths (for Covid-19) or total excess deaths (for 1918 Influenza) reached 0.5/100,000 population. To keep a balanced panel dataset, the 
event weeks are at the maximum of 31 weeks. The data is last updated on Nov.16, 2020. The full list of cities can be found in data appendix A and are the same as those 
from Collins et al. (1930). All regressions are unweighted, except that in column (3), where the regression is weighed by 2019 population. Coefficients and standard 
errors for the square of event days are multiplied by 1,000. Standard errors are clustered at the city level (clustered at the state level for first column) and reported in the 
parentheses. * p < 0.1, ** p < 0.05. 

*** p < 0.0. 

13 The original reports by Collins et al. (1930) includes 47 cities. We exclude 
the city of Memphis from our analysis as its weekly mortality data are not 
available until the week of October 12, 1918. 

14 The city of Oakland (CA) and Louisville (KY) are not included in this 
reporting system. 
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